WorldWideScience

Sample records for hiv-1 recombinant envelope

  1. HIV-1 neutralizing antibodies induced by native-like envelope trimers

    NARCIS (Netherlands)

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C.; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; Labranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505

  2. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...... immunogenic structures inaccessible on the envelope oligomer. The limited ability of recombinant gp120 vaccines to induce neutralizing antibodies against primary isolates may thus not exclusively reflect genetic variation....

  3. Temporal expression of HIV-1 envelope proteins in baculovirus-infected insect cells: Implications for glycosylation and CD4 binding

    International Nuclear Information System (INIS)

    Murphy, C.I.; Lennick, M.; Lehar, S.M.; Beltz, G.A.; Young, E.

    1990-01-01

    Three different human immunodeficiency virus type I (HIV-1) envelope derived recombinant proteins and the full length human CD4 polypeptide were expressed in Spodoptera frugiperda (Sf9) cells. DNA constructs encoding CD4, gp120, gp160, and gp160 delta were cloned into the baculovirus expression vector pVL941 or a derivative and used to generate recombinant viruses in a cotransfection with DNA from Autographa californica nuclear polyhedrosis virus (AcMNPV). Western blotting of cell extracts of the recombinant HIV-1 proteins showed that for each construct two major bands specifically reacted with anti-HIV-1 envelope antiserum. These bands corresponded to glycosylated and nonglycosylated versions of the HIV proteins as determined by 3H-mannose labeling and tunicamycin treatment of infected cells. A time course of HIV envelope expression revealed that at early times post-infection (24 hours) the proteins were fully glycosylated and soluble in nonionic detergents. However, at later times postinfection (48 hours), expression levels of recombinant protein reached a maximum but most of the increase was due to a rise in the level of the nonglycosylated species, which was largely insoluble in nonionic detergents. Thus, it appears that Sf9 cells cannot process large amounts of glycosylated recombinant proteins efficiently. As a measure of biological activity, the CD4 binding ability of both glycosylated and nonglycosylated recombinant HIV envelope proteins was tested in a coimmunoprecipitation assay. The results showed that CD4 and the glycosylated versions of recombinant gp120 or gp160 delta specifically associated with one another in this analysis. Nonglycosylated gp120 or gp160 delta proteins from tunicamycin-treated cultures did immunoprecipitate with anti-HIV-1 antiserum but did not interact with CD4

  4. B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of Rhesus macaques

    Science.gov (United States)

    Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutr...

  5. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    Science.gov (United States)

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  6. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  7. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    Science.gov (United States)

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  8. Frequent intra-subtype recombination among HIV-1 circulating in Tanzania.

    Directory of Open Access Journals (Sweden)

    Ireen E Kiwelu

    Full Text Available The study estimated the prevalence of HIV-1 intra-subtype recombinant variants among female bar and hotel workers in Tanzania. While intra-subtype recombination occurs in HIV-1, it is generally underestimated. HIV-1 env gp120 V1-C5 quasispecies from 45 subjects were generated by single-genome amplification and sequencing (median (IQR of 38 (28-50 sequences per subject. Recombination analysis was performed using seven methods implemented within the recombination detection program version 3, RDP3. HIV-1 sequences were considered recombinant if recombination signals were detected by at least three methods with p-values of ≤0.05 after Bonferroni correction for multiple comparisons. HIV-1 in 38 (84% subjects showed evidence for intra-subtype recombination including 22 with HIV-1 subtype A1, 13 with HIV-1 subtype C, and 3 with HIV-1 subtype D. The distribution of intra-patient recombination breakpoints suggested ongoing recombination and showed selective enrichment of recombinant variants in 23 (60% subjects. The number of subjects with evidence of intra-subtype recombination increased from 29 (69% to 36 (82% over one year of follow-up, although the increase did not reach statistical significance. Adjustment for intra-subtype recombination is important for the analysis of multiplicity of HIV infection. This is the first report of high prevalence of intra-subtype recombination in the HIV/AIDS epidemic in Tanzania, a region where multiple HIV-1 subtypes co-circulate. HIV-1 intra-subtype recombination increases viral diversity and presents additional challenges for HIV-1 vaccine design.

  9. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... residues. The mammalian C-type lectin bovine conglutinin was examined for its ability to interact with recombinant gp160 (rgp160) produced in vaccinia virus-infected BHK21 cells. Specific binding of conglutinin to rgp160 was demonstrated by ELISA. The interaction of bovine conglutinin with rgp160...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  10. Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies

    NARCIS (Netherlands)

    Chung, Nancy P. Y.; Matthews, Katie; Kim, Helen J.; Ketas, Thomas J.; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W.; Klasse, Per Johan; Wilson, Ian A.; Ward, Andrew B.; Marozsan, Andre J.; Moore, John P.; Cupo, Albert

    2014-01-01

    Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate

  11. Construction and immunogenicity of replication-competent adenovirus 5 host range mutant recombinants expressing HIV-1 gp160 of SF162 and TV1 strains.

    Science.gov (United States)

    Hidajat, Rachmat; Kuate, Seraphin; Venzon, David; Kalyanaraman, Vaniambadi; Kalisz, Irene; Treece, James; Lian, Ying; Barnett, Susan W; Robert-Guroff, Marjorie

    2010-05-21

    An HIV Env immunogen capable of eliciting broad immunity is critical for a successful vaccine. We constructed and characterized adenovirus 5 host range mutant (Ad5hr) recombinants encoding HIV(SF162) gp160 (subtype B) and HIV(TV1) gp160 (subtype C). Immunization of mice with one or both induced cellular immunity to subtype B and C peptides by ELISpot, and antibody responses with high binding titers to HIV Env of subtypes A, B, C, and E. Notably, Ad5hr-HIV(TV1) gp160 induced better cellular immunity than Ad5hr-HIV(SF162) gp160, either alone or following co-administration. Thus, the TV1 Env recombinant alone may be sufficient for eliciting immune responses against both subtype B and C envelopes. Further studies of Ad5hr-HIV(TV1) gp160 in rhesus macaques will evaluate the suitability of this insert for a future phase I clinical trial using a replication-competent Ad4 vector. Published by Elsevier Ltd.

  12. Analysis of HIV-1 intersubtype recombination breakpoints suggests region with high pairing probability may be a more fundamental factor than sequence similarity affecting HIV-1 recombination.

    Science.gov (United States)

    Jia, Lei; Li, Lin; Gui, Tao; Liu, Siyang; Li, Hanping; Han, Jingwan; Guo, Wei; Liu, Yongjian; Li, Jingyun

    2016-09-21

    With increasing data on HIV-1, a more relevant molecular model describing mechanism details of HIV-1 genetic recombination usually requires upgrades. Currently an incomplete structural understanding of the copy choice mechanism along with several other issues in the field that lack elucidation led us to perform an analysis of the correlation between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarity to further explore structural mechanisms. Near full length sequences of URFs from Asia, Europe, and Africa (one sequence/patient), and representative sequences of worldwide CRFs were retrieved from the Los Alamos HIV database. Their recombination patterns were analyzed by jpHMM in detail. Then the relationships between breakpoint distributions and (1) the probability of base pairing, and (2) intersubtype genetic similarities were investigated. Pearson correlation test showed that all URF groups and the CRF group exhibit the same breakpoint distribution pattern. Additionally, the Wilcoxon two-sample test indicated a significant and inexplicable limitation of recombination in regions with high pairing probability. These regions have been found to be strongly conserved across distinct biological states (i.e., strong intersubtype similarity), and genetic similarity has been determined to be a very important factor promoting recombination. Thus, the results revealed an unexpected disagreement between intersubtype similarity and breakpoint distribution, which were further confirmed by genetic similarity analysis. Our analysis reveals a critical conflict between results from natural HIV-1 isolates and those from HIV-1-based assay vectors in which genetic similarity has been shown to be a very critical factor promoting recombination. These results indicate the region with high-pairing probabilities may be a more fundamental factor affecting HIV-1 recombination than sequence similarity in natural HIV-1 infections. Our

  13. Hairpin-induced tRNA-mediated (HITME) recombination in HIV-1

    NARCIS (Netherlands)

    Konstantinova, Pavlina; de Haan, Peter; Das, Atze T.; Berkhout, Ben

    2006-01-01

    Recombination due to template switching during reverse transcription is a major source of genetic variability in retroviruses. In the present study we forced a recombination event in human immunodeficiency virus type 1 (HIV-1) by electroporation of T cells with DNA from a molecular HIV-1 clone that

  14. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  15. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay

    DEFF Research Database (Denmark)

    Nikolaitchik, Olga A; Galli, Andrea; Moore, Michael D

    2011-01-01

    Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms...... of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses...

  16. Recombination pattern reanalysis of some HIV-1 circulating recombination forms suggest the necessity and difficulty of revision.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Recombination is one of the major mechanisms underlying the generation of HIV-1 variability. Currently 61 circulating recombinant forms of HIV-1 have been identified. With the development of recombination detection techniques and accumulation of HIV-1 reference stains, more accurate mosaic structures of circulating recombinant forms (CRFs, like CRF04 and CRF06, have undergone repeated analysis and upgrades. Such revisions may also be necessary for other CRFs. Unlike previous studies, whose results are based primarily on a single recombination detection program, the current study was based on multiple recombination analysis, which may have produced more impartial results.Representative references of 3 categories of intersubtype recombinants were selected, including BC recombinants (CRF07 and CRF08, BG recombinants (CRF23 and CRF24, and BF recombinants (CRF38 and CRF44. They were reanalyzed in detail using both the jumping profile hidden Markov model and RDP3.The results indicate that revisions and upgrades are very necessary and the entire re-analysis suggested 2 types of revision: (i length of inserted fragments; and (ii number of inserted fragments. The reanalysis also indicated that determination of small regions of about 200 bases or fewer should be performed with more caution.Results indicated that the involvement of multiple recombination detection programs is very necessary. Additionally, results suggested two major challenges, one involving the difficulty of accurately determining the locations of breakpoints and the second involving identification of small regions of about 200 bases or fewer with greater caution. Both indicate the complexity of HIV-1 recombination. The resolution would depend critically on development of a recombination analysis algorithm, accumulation of HIV-1 stains, and a higher sequencing quality. With the changes in recombination pattern, phylogenetic relationships of some CRFs may also change. All these results may

  17. Genetic architecture of HIV-1 genes circulating in north India & their functional implications.

    Science.gov (United States)

    Neogi, Ujjwal; Sood, Vikas; Ronsard, Larence; Singh, Jyotsna; Lata, Sneh; Ramachandran, V G; Das, S; Wanchu, Ajay; Banerjea, Akhil C

    2011-12-01

    This review presents data on genetic and functional analysis of some of the HIV-1 genes derived from HIV-1 infected individuals from north India (Delhi, Punjab and Chandigarh). We found evidence of novel B/C recombinants in HIV-1 LTR region showing relatedness to China/Myanmar with 3 copies of Nfκb sites; B/C/D mosaic genomes for HIV-1 Vpr and novel B/C Tat. We reported appearance of a complex recombinant form CRF_02AG of HIV-1 envelope sequences which is predominantly found in Central/Western Africa. Also one Indian HIV-1 envelope subtype C sequence suggested exclusive CXCR4 co-receptor usage. This extensive recombination, which is observed in about 10 per cent HIV-1 infected individuals in the Vpr genes, resulted in remarkably altered functions when compared with prototype subtype B Vpr. The Vpu C was found to be more potent in causing apoptosis when compared with Vpu B when analyzed for subG1 DNA content. The functional implications of these changes as well as in other genes of HIV-1 are discussed in detail with possible implications for subtype-specific pathogenesis highlighted.

  18. HIV-1 subtype C envelope characteristics associated with divergent rates of chronic disease progression

    Directory of Open Access Journals (Sweden)

    Goulder Philip JR

    2010-11-01

    Full Text Available Abstract Background HIV-1 envelope diversity remains a significant challenge for the development of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are incompletely understood. HIV-1 subtype C envelope in particular shows significant differences and unique characteristics compared to its subtype B counterpart. Here we applied the single genome sequencing strategy of plasma derived virus from a cohort of therapy naïve chronically infected individuals in order to study diversity, divergence patterns and envelope characteristics across the entire HIV-1 subtype C gp160 in 4 slow progressors and 4 progressors over an average of 19.5 months. Results Sequence analysis indicated that intra-patient nucleotide diversity within the entire envelope was higher in slow progressors, but did not reach statistical significance (p = 0.07. However, intra-patient nucleotide diversity was significantly higher in slow progressors compared to progressors in the C2 (p = 0.0006, V3 (p = 0.01 and C3 (p = 0.005 regions. Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs were observed in the V1-V4 in slow progressors compared to progressors (p = 0.009 and p = 0.02 respectively. Similarly, gp41 in the progressors was significantly longer and had fewer PNGs compared to slow progressors (p = 0.02 and p = 0.02 respectively. Positive selection hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots mapped mainly to gp41 in progressors. Signature consensus sequence differences between the groups occurred mainly in gp41. Conclusions These data suggest that separate regions of envelope are under differential selective forces, and that envelope evolution differs based on disease course. Differences between slow progressors and progressors may reflect differences in immunological pressure and immune evasion mechanisms. These data also indicate that the pattern of envelope evolution

  19. Dynamics of Preferential Substrate Recognition in HIV-1 Protease: Redefining the Substrate Envelope

    Science.gov (United States)

    Özen, Ayşegül; Haliloğlu, Türkan; Schiffer, Celia A.

    2011-01-01

    HIV-1 protease (PR) permits viral maturation by processing the Gag and Gag-Pro-Pol polyproteins. Though HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy, the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates the consideration of drug resistance in novel drug-design strategies. Drug-resistant HIV-1 PR variants, while no longer efficiently inhibited, continue to efficiently hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we defined as the “substrate envelope”. We previously showed that resistance mutations arise where PIs protrude beyond the substrate envelope, as these regions are crucial for drug binding but not for substrate recognition. Here, we extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. Seven molecular dynamics simulations of PR-substrate complexes were performed to estimate the conformational flexibility of substrates in their complexes. Interdependency of the substrate-protease interactions may compensate for the variations in cleavage-site sequences, and explain how a diverse set of sequences can be recognized as substrates by the same enzyme. This diversity may be essential for regulating sequential processing of substrates. We also define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance. PMID:21762811

  20. IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Jingyou Yu

    2015-10-01

    Full Text Available The interferon-induced transmembrane (IFITM proteins have been recently shown to restrict HIV-1 and other viruses. Here, we provide evidence that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env, thereby inhibiting viral infection. IFITM proteins interact with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions does not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes leads to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appears to be virus-strain dependent. Overall, our study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection.

  1. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen

    2013-08-01

    Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as \\'self\\' to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis. © 2013 Future Medicine Ltd.

  2. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion

    International Nuclear Information System (INIS)

    Kwak, Heesun; Mustafa, Waleed; Speirs, Kendra; Abdool, Asha J.; Paterson, Yvonne; Isaacs, Stuart N.

    2004-01-01

    Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus

  3. HIV-1 CRF_BC recombinants infection in China: molecular epidemic and characterizations.

    Science.gov (United States)

    Ouyang, Yabo; Shao, Yiming; Ma, Liying

    2012-03-01

    CRF_BC recombinant strains were first identified in China and are one of the most prevalent and characteristically unique HIV-1 subtypes across China. Here we aim to review the published data about HIV-1 CRF_BC recombinant strains epidemic in China and to characterize the genetics, biology and drug resistance of this virus. This study may help to better understand the current situation of HIV-1 CRF_BC prevalence and facilitate the development of vaccines and more efficient anti-HIV-1 regimens in China.

  4. Identification and genetic characterization of unique HIV-1 A1/C recombinant strain in South Africa.

    Science.gov (United States)

    Musyoki, Andrew M; Rakgole, Johnny N; Selabe, Gloria; Mphahlele, Jeffrey

    2015-03-01

    HIV isolates from South Africa are predominantly subtype C. Sporadic isolation of non-C strains has been reported mainly in cosmopolitan cities. HIV isolate j51 was recovered from a rural South African heterosexual female aged 51 years. Near full length amplification of the genome was attempted using PCR with primers targeting overlapping segments of the HIV genome. Analysis of 5593 bp (gag to vpu) at a bootstrap value greater than 70% found that all but the vpu gene was HIV-1 subtype A1. The vpu gene was assigned HIV-1 subtype C. The recombination breaking point was estimated at position 6035+/- 15 bp with reference to the beginning of the HXB2 reference strain. Isolate j51 revealed a unique genome constellation to previously reported recombinant strains with parental A/C backbones from South Africa though a common recombination with subtype C within the vpu gene. Identification of recombinant strains supports continued surveillance of HIV genetic diversity.

  5. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  6. Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein

    DEFF Research Database (Denmark)

    Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma

    2014-01-01

    Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycop...

  7. The limited role of recombination energy in common envelope removal

    Science.gov (United States)

    Grichener, Aldana; Sabach, Efrat; Soker, Noam

    2018-05-01

    We calculate the outward energy transport time by convection and photon diffusion in an inflated common envelope and find this time to be shorter than the envelope expansion time. We conclude therefore that most of the hydrogen recombination energy ends in radiation rather than in kinetic energy of the outflowing envelope. We use the stellar evolution code MESA and inject energy inside the envelope of an asymptotic giant branch star to mimic energy deposition by a spiraling-in stellar companion. During 1.7 years the envelope expands by a factor of more than 2. Along the entire evolution the convection can carry the energy very efficiently outwards, to the radius where radiative transfer becomes more efficient. The total energy transport time stays within several months, shorter than the dynamical time of the envelope. Had we included rapid mass loss, as is expected in the common envelope evolution, the energy transport time would have been even shorter. It seems that calculations that assume that most of the recombination energy ends in the outflowing gas might be inaccurate.

  8. Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan.

    Directory of Open Access Journals (Sweden)

    Yue Chen

    Full Text Available A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%, together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15% but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a while 12 (38% were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan.

  9. Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan

    Science.gov (United States)

    Chen, Yue; Hora, Bhavna; DeMarco, Todd; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M.; Su, Chang; Carter, Meredith; Stone, Mars; Hasan, Rumina; Hasan, Zahra; Busch, Michael P.; Denny, Thomas N.; Gao, Feng

    2016-01-01

    A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan. PMID:27973597

  10. Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope.

    Science.gov (United States)

    Wang, Xinhai; Kochetkova, Irina; Haddad, Asmahan; Hoyt, Teri; Hone, David M; Pascual, David W

    2005-05-31

    Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1.

  11. Emergence of recombinant forms in geographic regions with co-circulating HIV subtypes in the dynamic HIV-1 epidemic

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming [Los Alamos National Laboratory; Letiner, Thomas K [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory; Foley, Brian [Los Alamos National Laboratory

    2009-01-01

    We have reexamined the subtype designations of {approx}10,000 subtype A, B, C, G, and AG, BC, BF recombinant sequences, and compared the results of the new analysis with their published designations. Intersubtype recombinants dominate HIV epidemics in three different geographical regions. The circulating recombinant from (CRF) CRF02-AG, common in West Central Africa, appears to result from a recombination event that occurred early in the divergence between subtypes A and G, although additional more recent recombination events may have contributed to the breakpoint pattern in this recombinant lineage as well. The Chinese recombinant epidemic strains CRF07 and CRF08, in contrast, result from recent recombinations between more contemporary strains. Nevertheless, CRF07 and CRF08 contributed to many subsequent recombination events. The BF recombinant epidemics in two HIV-1 epicenters in South America are not independent and BF epidemics in South America have an unusually high fraction of unique recombinant forms (URFs) that have each been found only once and carry distinctive breakpoints. Taken together, these analyses reveal a complex and dynamic picture of the current HIV-1 epidemic, and suggest a means of grouping and tracking relationships between viruses through preservation of shared breakpints.

  12. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-01-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  13. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity

    NARCIS (Netherlands)

    Isik, Gözde; van Montfort, Thijs; Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env

  14. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    Science.gov (United States)

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients.

  15. Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity

    NARCIS (Netherlands)

    Sliepen, Kwinten; Ozorowski, Gabriel; Burger, Judith A.; van Montfort, Thijs; Stunnenberg, Melissa; Labranche, Celia; Montefiori, David C.; Moore, John P.; Ward, Andrew B.; Sanders, Rogier W.

    2015-01-01

    Background: Presenting vaccine antigens in particulate form can improve their immunogenicity by enhancing B cell activation. Findings: We describe ferritin-based protein nanoparticles that display multiple copies of native-like HIV-1 envelope glycoprotein trimers (BG505 SOSIP.664). Trimer-bearing

  16. Rare HIV-1 Subtype J Genomes and a New H/U/CRF02_AG Recombinant Genome Suggests an Ancient Origin of HIV-1 in Angola.

    Science.gov (United States)

    Bártolo, Inês; Calado, Rita; Borrego, Pedro; Leitner, Thomas; Taveira, Nuno

    2016-08-01

    Angola has an extremely diverse HIV-1 epidemic fueled in part by the frequent interchange of people with the Democratic Republic of Congo (DRC) and Republic of Congo (RC). Characterization of HIV-1 strains circulating in Angola should help to better understand the origin of HIV-1 subtypes and recombinant forms and their transmission dynamics. In this study we characterize the first near full-length HIV-1 genomic sequences from HIV-1 infected individuals from Angola. Samples were obtained in 1993 from three HIV-1 infected patients living in Cabinda, Angola. Near full-length genomic sequences were obtained from virus isolates. Maximum likelihood phylogenetic tree inference and analyses of potential recombination patterns were performed to evaluate the sequence classifications and origins. Phylogenetic and recombination analyses revealed that one virus was a pure subtype J, another mostly subtype J with a small uncertain region, and the final virus was classified as a H/U/CRF02_AG recombinant. Consistent with their epidemiological data, the subtype J sequences were more closely related to each other than to other J sequences previously published. Based on the env gene, taxa from Angola occur throughout the global subtype J phylogeny. HIV-1 subtypes J and H are present in Angola at low levels since at least 1993. Low transmission efficiency and/or high recombination potential may explain their limited epidemic success in Angola and worldwide. The high diversity of rare subtypes in Angola suggests that Angola was part of the early establishment of the HIV-1 pandemic.

  17. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies.

    Science.gov (United States)

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C; Kalyanaraman, V S; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J; Murthy, Krishna K; Srivastava, Indresh; Barnett, Susan W; Robert-Guroff, Marjorie

    2005-08-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1(MN)env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIV(SF162) gp140deltaV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1(MN)env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1(SF162) gp140deltaV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.

  18. Effect of HIV-1 envelope cytoplasmic tail on adenovirus primed virus encoded virus-like particle immunizations

    DEFF Research Database (Denmark)

    Andersson, Anne Marie C; Ragonnaud, Emeline; Seaton, Kelly E.

    2016-01-01

    were found between the different priming regimens as both induced high titered tier 1 neutralizing antibodies, but no tier 2 antibodies, possibly reflecting the similar presentation of trimer specific antibody epitopes. The described vaccine regimens provide insight into the effects of the HIV-1 Env......The low number of envelope (Env) spikes presented on native HIV-1 particles is a major impediment for HIV-1 prophylactic vaccine development. We designed virus-like particle encoding adenoviral vectors utilizing SIVmac239 Gag as an anchor for full length and truncated HIV-1 M consensus Env...

  19. Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins.

    Science.gov (United States)

    Del Prete, Gregory Q; Ailers, Braiden; Moldt, Brian; Keele, Brandon F; Estes, Jacob D; Rodriguez, Anthony; Sampias, Marissa; Oswald, Kelli; Fast, Randy; Trubey, Charles M; Chertova, Elena; Smedley, Jeremy; LaBranche, Celia C; Montefiori, David C; Burton, Dennis R; Shaw, George M; Markowitz, Marty; Piatak, Michael; KewalRamani, Vineet N; Bieniasz, Paul D; Lifson, Jeffrey D; Hatziioannou, Theodora

    2014-09-10

    Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evolution of R5 and X4 human immunodeficiency virus type 1 gag sequences in vivo: evidence for recombination

    International Nuclear Information System (INIS)

    Rij, Ronald P. van; Worobey, Michael; Visser, Janny A.; Schuitemaker, Hanneke

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is in general established by CCR5-utilizing (R5) virus variants, which persist throughout the course of infection. R5 HIV-1 variants evolve into CXCR4-utilizing (X4) HIV-1 variants in approximately half of the infected individuals. We have previously observed an ongoing genetic evolution with a continuous divergence of envelope gp120 sequences of coexisting R5 and X4 virus variants over time. Here, we studied evolution of gag p17 sequences in two patients who developed X4 variants in the course of infection. In contrast to the envelope gp120 sequences, gag p17 sequences of R5 and X4 virus populations intermingled in phylogenetic trees and did not diverge from each other over time. Statistical evaluation using the Shimodaira-Hasegawa test indicated that the different genomic regions evolved along different topologies, supporting the hypothesis of recombination. Therefore, our data imply that recombination between R5 and X4 HIV-1 variants occurs in vivo

  1. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    OpenAIRE

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity o...

  2. Novel HIV-1 recombinants spreading across multiple risk groups in the United Kingdom: the identification and phylogeography of Circulating Recombinant Form (CRF 50_A1D.

    Directory of Open Access Journals (Sweden)

    Geraldine M Foster

    Full Text Available An increase in non-B HIV-1 infections among men who have sex with men (MSM in the United Kingdom (UK has created opportunities for novel recombinants to arise and become established. We used molecular mapping to characterize the importance of such recombinants to the UK HIV epidemic, in order to gain insights into transmission dynamics that can inform control strategies.A total of 55,556 pol (reverse transcriptase and protease sequences in the UK HIV Drug Resistance Database were analyzed using Subtype Classification Using Evolutionary Algorithms (SCUEAL. Overall 72 patients shared the same A1/D recombination breakpoint in pol, comprising predominantly MSM but also heterosexuals and injecting drug users (IDUs. In six MSM, full-length single genome amplification of plasma HIV-1 RNA was performed in order to characterize the A1/D recombinant. Subtypes and recombination breakpoints were identified using sliding window and jumping profile hidden markov model approaches. Global maximum likelihood trees of gag, pol and env genes were drawn using FastTree version 2.1. Five of the six strains showed the same novel A1/D recombinant (8 breakpoints, which has been classified as CRF50_A1D. The sixth strain showed a complex CRF50_A1D/B/U structure. Divergence dates and phylogeographic inferences were determined using Bayesian Evolutionary Analysis using Sampling Trees (BEAST. This estimated that CRF50_A1D emerged in the UK around 1992 in MSM, with subsequent transmissions to heterosexuals and IDUs. Analysis of CRF50_A1D/B/U demonstrated that around the year 2000 CRF50_A1D underwent recombination with a subtype B strain.We report the identification of CRF50_A1D, a novel circulating recombinant that emerged in UK MSM around 1992, with subsequent onward transmission to heterosexuals and IDUs, and more recent recombination with subtype B. These findings highlight the changing dynamics of HIV transmission in the UK and the converging of the two previously

  3. Near Full-Length Identification of a Novel HIV-1 CRF01_AE/B/C Recombinant in Northern Myanmar.

    Science.gov (United States)

    Zhou, Yan-Heng; Chen, Xin; Liang, Yue-Bo; Pang, Wei; Qin, Wei-Hong; Zhang, Chiyu; Zheng, Yong-Tang

    2015-08-01

    The Myanmar-China border appears to be the "hot spot" region for the occurrence of HIV-1 recombination. The majority of the previous analyses of HIV-1 recombination were based on partial genomic sequences, which obviously cannot reflect the reality of the genetic diversity of HIV-1 in this area well. Here, we present a near full-length characterization of a novel HIV-1 CRF01_AE/B/C recombinant isolated from a long-distance truck driver in Northern Myanmar. It is the first description of a near full-length genomic sequence in Myanmar since 2003, and might be one of the most complicated HIV-1 chimeras ever detected in Myanmar, containing four CRF01_AE, six B segments, and five C segments separated by 14 breakpoints throughout its genome. The discovery and characterization of this new CRF01_AE/B/C recombinant indicate that intersubtype recombination is ongoing in Myanmar, continuously generating new forms of HIV-1. More work based on near full-length sequence analyses is urgently needed to better understand the genetic diversity of HIV-1 in these regions.

  4. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    Science.gov (United States)

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  5. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    International Nuclear Information System (INIS)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-01-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4"+ T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  6. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor, E-mail: leonorhh@biomedicas.unam.mx

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  7. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Anna-Janina Behrens

    2016-03-01

    Full Text Available The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664 maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.

  8. An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope.

    Directory of Open Access Journals (Sweden)

    Art F Y Poon

    2007-11-01

    Full Text Available The third variable loop (V3 of the human immunodeficiency virus type 1 (HIV-1 envelope is a principal determinant of antibody neutralization and progression to AIDS. Although it is undoubtedly an important target for vaccine research, extensive genetic variation in V3 remains an obstacle to the development of an effective vaccine. Comparative methods that exploit the abundance of sequence data can detect interactions between residues of rapidly evolving proteins such as the HIV-1 envelope, revealing biological constraints on their variability. However, previous studies have relied implicitly on two biologically unrealistic assumptions: (1 that founder effects in the evolutionary history of the sequences can be ignored, and; (2 that statistical associations between residues occur exclusively in pairs. We show that comparative methods that neglect the evolutionary history of extant sequences are susceptible to a high rate of false positives (20%-40%. Therefore, we propose a new method to detect interactions that relaxes both of these assumptions. First, we reconstruct the evolutionary history of extant sequences by maximum likelihood, shifting focus from extant sequence variation to the underlying substitution events. Second, we analyze the joint distribution of substitution events among positions in the sequence as a Bayesian graphical model, in which each branch in the phylogeny is a unit of observation. We perform extensive validation of our models using both simulations and a control case of known interactions in HIV-1 protease, and apply this method to detect interactions within V3 from a sample of 1,154 HIV-1 envelope sequences. Our method greatly reduces the number of false positives due to founder effects, while capturing several higher-order interactions among V3 residues. By mapping these interactions to a structural model of the V3 loop, we find that the loop is stratified into distinct evolutionary clusters. We extend our model to

  9. Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein.

    Science.gov (United States)

    Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena

    2014-06-15

    Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  11. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  12. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    Science.gov (United States)

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  13. Four Closely Related HIV-1 CRF01_AE/CRF07_BC Recombinant Forms Identified in East China.

    Science.gov (United States)

    Li, Fan; Li, Yuxueyun; Feng, Yi; Hu, Jing; Ruan, Yuhua; Xing, Hui; Shao, Yiming

    2017-07-01

    Five near full-length genomes of novel second-generation HIV-1 recombinant virus (JS150021, JS150029, JS150129, JS150132, and AH150183) were identified from five HIV-positive people in Jiangsu and Anhui province, east China. Phylogenic analyses showed that these five sequences are all composed of two well-established circulating recombinant forms (CRFs) CRF07_BC and CRF01_AE, grouped into four new discovered recombinant forms, which show several very similar but not identical recombinant breakpoints. The four recombinant forms are also identified to be a sort of family or related viruses, seems to be the results of different recombination events. The emergence of a serious new closely related CRF07_BC/CRF01_AE recombinant strain indicates the increasing complexity of sexual transmission of the HIV-1 epidemic in China.

  14. Genetic Signatures of HIV-1 Envelope-mediated Bystander Apoptosis

    Science.gov (United States)

    Joshi, Anjali; Lee, Raphael T. C.; Mohl, Jonathan; Sedano, Melina; Khong, Wei Xin; Ng, Oon Tek; Maurer-Stroh, Sebastian; Garg, Himanshu

    2014-01-01

    The envelope (Env) glycoprotein of HIV is an important determinant of viral pathogenesis. Several lines of evidence support the role of HIV-1 Env in inducing bystander apoptosis that may be a contributing factor in CD4+ T cell loss. However, most of the studies testing this phenomenon have been conducted with laboratory-adapted HIV-1 isolates. This raises the question of whether primary Envs derived from HIV-infected patients are capable of inducing bystander apoptosis and whether specific Env signatures are associated with this phenomenon. We developed a high throughput assay to determine the bystander apoptosis inducing activity of a panel of primary Envs. We tested 38 different Envs for bystander apoptosis, virion infectivity, neutralizing antibody sensitivity, and putative N-linked glycosylation sites along with a comprehensive sequence analysis to determine if specific sequence signatures within the viral Env are associated with bystander apoptosis. Our studies show that primary Envs vary considerably in their bystander apoptosis-inducing potential, a phenomenon that correlates inversely with putative N-linked glycosylation sites and positively with virion infectivity. By use of a novel phylogenetic analysis that avoids subtype bias coupled with structural considerations, we found specific residues like Arg-476 and Asn-425 that were associated with differences in bystander apoptosis induction. A specific role of these residues was also confirmed experimentally. These data demonstrate for the first time the potential of primary R5 Envs to mediate bystander apoptosis in CD4+ T cells. Furthermore, we identify specific genetic signatures within the Env that may be associated with the bystander apoptosis-inducing phenotype. PMID:24265318

  15. Optimization of a multi-gene HIV-1 recombinant subtype CRF02AG DNA vaccine for expression of multiple immunogenic forms

    International Nuclear Information System (INIS)

    Ellenberger, Dennis; Li Bin; Smith, James; Yi Hong; Folks, Thomas; Robinson, Harriet; Butera, Salvatore

    2004-01-01

    We developed an AIDS vaccine for Western and West-Central Africa based on a DNA plasmid vector expressing HIV-1 recombinant subtype CRF02 A G gag, pol, and env genes. To optimize the production of noninfectious HIV-like particles (VLPs) and potentially improve the effectiveness of the vaccine, we generated four potential vaccine constructs: the parental (IC2) and three modifications (IC25, IC48, and IC90) containing mutations within the HIV protease. While the parental construct IC2 expressed aggregates of Gag proteins, the IC25 construct resulted in the production of immature VLPs (the core comprises unprocessed Pr 55Gag ). The remaining two constructs (IC48 and IC90) produced mature VLPs (the core comprises processed capsid p24) in addition to immature VLPs and aggregates of Gag proteins. VLPs incorporated significant levels of mature gp120 envelope glycoprotein. Importantly, the mature VLPs were fusion competent and entered coreceptor-specific target cells. The production of multiple antigenic forms, including fusion-competent VLPs, by candidate DNA vaccine constructs may provide immunologic advantages for induction of protective cellular and humoral responses against HIV-1 proteins

  16. Prediction of exposed domains of envelope glycoprotein in Indian HIV-1 isolates and experimental confirmation of their immunogenicity in humans

    Directory of Open Access Journals (Sweden)

    Mohabatkar H.

    2004-01-01

    Full Text Available We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB. Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET (subtype C were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

  17. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer

    Directory of Open Access Journals (Sweden)

    Kwinten Sliepen

    2015-10-01

    Full Text Available Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664 has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2 virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP, a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP. Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry.

  18. Infection of human and non-human cells by a highly fusogenic primary CD4-independent HIV-1 isolate with a truncated envelope cytoplasmic tail

    International Nuclear Information System (INIS)

    Saha, Kunal; Yan Hui; Nelson, Julie A.E.; Zerhouni-Layachi, Bouchra

    2005-01-01

    Truncation of the envelope cytoplasmic tail has enabled FIV, SIV, and some laboratory HIV-1 strains to acquire broader cellular tropism and enhanced fusogenicity. Here we have characterized a primary CD4-independent HIV-1 isolate (92UG046-T8) with a truncated cytoplasmic tail that was able to infect and induce syncytia in primary lymphocytes from human, chimpanzee, and monkey, as well as CD4-negative cell lines from human and monkey. Increased syncytia were also noticeable with 293 cells expressing the cloned envelope from the 92UG046-T8 isolate suggesting envelope-mediated cellular fusion. Except pooled serum from HIV-1-infected individuals, monoclonal anti-envelope antibodies or antibodies/antagonists against CD4, CXCR4, and CCR5 were not able to prevent infection by the 92UG046-T8 isolate. This is the first report showing a primary HIV-1 variant with truncated cytoplasmic tail which is highly fusogenic and can infect a broad range of cells from human and non-human origins. In vivo evolution of similar HIV-1 mutants may have important implications in AIDS pathogenesis

  19. Mosaic HIV envelope immunogenic polypeptides

    Science.gov (United States)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  20. Soluble HIV-1 envelope immunogens derived from an elite neutralizer elicit cross-reactive V1V2 antibodies and low potency neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Sara Carbonetti

    Full Text Available We evaluated four gp140 Envelope protein vaccine immunogens that were derived from an elite neutralizer, subject VC10042, whose plasma was able to potently neutralize a wide array of genetically distinct HIV-1 isolates. We sought to determine whether soluble Envelope proteins derived from the viruses circulating in VC10042 could be used as immunogens to elicit similar neutralizing antibody responses by vaccination. Each gp140 was tested in its trimeric and monomeric forms, and we evaluated two gp140 trimer vaccine regimens in which adjuvant was supplied at all four immunizations or at only the first two immunizations. Interestingly, all four Envelope immunogens elicited high titers of cross-reactive antibodies that recognize the variable regions V1V2 and are potentially similar to antibodies linked with a reduced risk of HIV-1 acquisition in the RV144 vaccine trial. Two of the four immunogens elicited neutralizing antibody responses that neutralized a wide array of HIV-1 isolates from across genetic clades, but those responses were of very low potency. There were no significant differences in the responses elicited by trimers or monomers, nor was there a significant difference between the two adjuvant regimens. Our study identified two promising Envelope immunogens that elicited anti-V1V2 antibodies and broad, but low potency, neutralizing antibody responses.

  1. Replacement of the murine leukemia virus (MLV) envelope gene with a truncated HIV envelope gene in MLV generates a virus with impaired replication capacity

    International Nuclear Information System (INIS)

    Nack, Ursula; Schnierle, Barbara S.

    2003-01-01

    Murine leukemia virus (MLV) capsid particles can be efficiently pseudotyped with a variant of the HIV-1 envelope protein (Env) containing the surface glycoprotein gp120-SU and a carboxyl-terminally truncated transmembrane (TM) protein, with only seven cytoplasmic amino acids. MLV/HIV pseudotyped vector particles acquire the natural host tropism of HIV-1 and their entry is dependent on the presence of CD4 and an appropriate co-receptor on the surface of the target cell. We describe here the construction of chimeric MLV/HIV proviruses containing the truncated HIV envelope gene. The MLV/HIV provirus was generated by direct replacement of the MLV envelope gene with HIV Env coding sequences either with or without the additional inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Chimeric MLV/HIV particles could be generated from transfected 293T cells and were able to infect CD4/CXCR4-positive target cells. However, the second round of infection of target cells was severely impaired, despite the fact that the WPRE element enhanced the amount of viral mRNA detected. Viral particles released from infected cells showed reduced HIV Env incorporation, indicating that additional factors required for efficient replication of MLV/HIV pseudotyped viruses are missing

  2. Isolation and characterization of 20'-F-RNA aptamers against whole HIV-1 subtype C envelope pseudovirus

    CSIR Research Space (South Africa)

    London, GM

    2015-01-01

    Full Text Available Aptamers, which are artificial nucleic acid ligands akin to antibodies in function, represent a new class of molecules that can prevent HIV infection. In this study, we isolated RNA aptamers against whole HV-1CAP45 enveloped pseudotyped virus...

  3. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    Science.gov (United States)

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  4. Molecular epidemiology of HIV-1 among the HIV infected people of Manipur, Northeastern India: Emergence of unique recombinant forms.

    Science.gov (United States)

    Sharma, Adhikarimayum Lakhikumar; Singh, Thiyam Ramsing; Devi, Khuraijam Ranjana; Singh, Lisam Shanjukumar

    2017-06-01

    According to the Joint National Programme on HIV/AIDS (UNAIDS), the northeastern region of India has the highest HIV prevalence in the country. This study was conducted to determine the current HIV-1 molecular epidemiology of Manipur, a state in northeast India. Blood samples from HIV-1 seropositive subjects were collected between June 2011 and February 2014. The partial regions of HIV-1 genes; pol and tat-vpu-env were independently amplified, sequenced, analyzed, and genotyped. Based on all sequences generated from 110 samples using pol and/or tat-vpu-env gene, the overall HIV-1 genotypes distribution of Manipur was as follows: 65.45% (72/110) subtype C, 32.73% (36/110) unique recombinant forms (URFs), and 1.82% (2/110) subtype B. The distribution of HIV-1 genotypes among the risk groups was: heterosexual: 58.33% (35/60) subtype C, 38.33% (23/60) URFs, and 3.34% (2/60) subtype B; intravenous drug users (IDUs): 85.36% (35/41) subtype C, 9.76% (4/41) URFs, and 4.88% (2/41) subtype B; mother to child (MTC): 50% (3/6) URFs and 50% (3/6) subtype C and blood transfusion: 100% (3/3) subtype C. The findings for the first time revealed the emergence of URFs of HIV-1 in Manipur which is predominant among the sexual and MTC risk groups as compared to IDUs. Taking together, this study illustrated that Manipur is the "recombinant hotspot of HIV" of India. The results will provide the clinical importance for continuous monitoring of HIV-infections in order to design appropriate prevention measures to limit the spread of new HIV infections. © 2016 Wiley Periodicals, Inc.

  5. The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006.

    Directory of Open Access Journals (Sweden)

    Erik Billings

    Full Text Available Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999-2000 and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006. Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D. This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope, which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic.

  6. The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006

    Science.gov (United States)

    Billings, Erik; Sanders-Buell, Eric; Bose, Meera; Bradfield, Andrea; Lei, Esther; Kijak, Gustavo H.; Arroyo, Miguel A.; Kibaya, Rukia M.; Scott, Paul T.; Wasunna, Monique K.; Sawe, Frederick K.; Shaffer, Douglas N.; Birx, Deborah L.; McCutchan, Francine E.; Michael, Nelson L.; Robb, Merlin L.; Kim, Jerome H.; Tovanabutra, Sodsai

    2015-01-01

    Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999–2000) and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006). Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G) and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D). This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope), which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic. PMID:26287814

  7. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). The AGIS Group, and l'Agence Nationale de Recherche sur le SIDA.

    Science.gov (United States)

    Pialoux, G; Excler, J L; Rivière, Y; Gonzalez-Canali, G; Feuillie, V; Coulaud, P; Gluckman, J C; Matthews, T J; Meignier, B; Kieny, M P

    1995-03-01

    The safety and the immunogenicity of a recombinant canarypox live vector expressing the human immunodeficiency virus type 1 (HIV-1) gp160 gene from the MN isolate, ALVAC-HIV (vCP125), followed by booster injections of a soluble recombinant hybrid envelope glycoprotein MN/LAI (rgp160), were evaluated in vaccinia-immune, healthy adults at low risk for acquiring HIV-1 infection. Volunteers (n = 20) received vCP125 (10(6) TCID50) at 0 and 1 month, followed randomly by rgp160 formulated in alum or in Freund's incomplete adjuvant (FIA) at 3 and 6 months. Local and systemic reactions were mild or moderate and resolved within the first 72 hr after immunization. No significant biological changes in routine tests were observed in any volunteer. Two injections of vCP125 did not elicit antibodies. Neutralizing antibodies (NA) against the HIV-1 MN isolate were detected in 65 and 90% of the subjects after the first and the second rgp 160 booster injections, respectively. Six months after the last boost, only 55% were still positive. Seven of 14 sera with the highest NA titers against MN weakly cross-neutralized the HIV-1 SF2 isolate; none had NA against the HIV-1 LAI or against a North American primary isolate. Specific lymphocyte T cell proliferation to rgp 160 was detected in 25% of the subjects after vCP125 and in all subjects after the first booster injection and 12 months after the first injection. An envelope-specific cytotoxic lymphocyte activity was found in 39% of the volunteers and characterized for some of them as CD3+, CD8+, MHC class I restricted. The adjuvant formulation did not influence significantly the immune responses.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway.

    Science.gov (United States)

    Sancho, Rocío; Márquez, Nieves; Gómez-Gonzalo, Marta; Calzado, Marco A; Bettoni, Giorgio; Coiras, Maria Teresa; Alcamí, José; López-Cabrera, Manuel; Appendino, Giovanni; Muñoz, Eduardo

    2004-09-03

    Coumarins and structurally related compounds have been recently shown to present anti-human immunodeficiency virus, type 1 (HIV-1) activity. Among them, the dietary furanocoumarin imperatorin is present in citrus fruits, in culinary herbs, and in some medicinal plants. In this study we report that imperatorin inhibits either vesicular stomatitis virus-pseudotyped or gp160-enveloped recombinant HIV-1 infection in several T cell lines and in HeLa cells. These recombinant viruses express luciferase as a marker of viral replication. Imperatorin did not inhibit the reverse transcription nor the integration steps in the viral cell cycle. Using several 5' long terminal repeat-HIV-1 constructs where critical response elements were either deleted or mutated, we found that the transcription factor Sp1 is critical for the inhibitory activity of imperatorin induced by both phorbol 12-myristate 13-acetate and HIV-1 Tat. Moreover in transient transfections imperatorin specifically inhibited phorbol 12-myristate 13-acetate-induced transcriptional activity of the Gal4-Sp1 fusion protein. Since Sp1 is also implicated in cell cycle progression we further studied the effect of imperatorin on cyclin D1 gene transcription and protein expression and in HeLa cell cycle progression. We found that imperatorin strongly inhibited cyclin D1 expression and arrested the cells at the G(1) phase of the cell cycle. These results highlight the potential of Sp1 transcription factor as a target for natural anti-HIV-1 compounds such as furanocoumarins that might have a potential therapeutic role in the management of AIDS.

  9. The role of recombination in the emergence of a complex and dynamic HIV epidemic

    Directory of Open Access Journals (Sweden)

    Morgenstern Burkhard

    2010-03-01

    Full Text Available Abstract Background Inter-subtype recombinants dominate the HIV epidemics in three geographical regions. To better understand the role of HIV recombinants in shaping the current HIV epidemic, we here present the results of a large-scale subtyping analysis of 9435 HIV-1 sequences that involve subtypes A, B, C, G, F and the epidemiologically important recombinants derived from three continents. Results The circulating recombinant form CRF02_AG, common in West Central Africa, appears to result from recombination events that occurred early in the divergence between subtypes A and G, followed by additional recent recombination events that contribute to the breakpoint pattern defining the current recombinant lineage. This finding also corrects a recent claim that G is a recombinant and a descendant of CRF02, which was suggested to be a pure subtype. The BC and BF recombinants in China and South America, respectively, are derived from recent recombination between contemporary parental lineages. Shared breakpoints in South America BF recombinants indicate that the HIV-1 epidemics in Argentina and Brazil are not independent. Therefore, the contemporary HIV-1 epidemic has recombinant lineages of both ancient and more recent origins. Conclusions Taken together, we show that these recombinant lineages, which are highly prevalent in the current HIV epidemic, are a mixture of ancient and recent recombination. The HIV pandemic is moving towards having increasing complexity and higher prevalence of recombinant forms, sometimes existing as "families" of related forms. We find that the classification of some CRF designations need to be revised as a consequence of (1 an estimated > 5% error in the original subtype assignments deposited in the Los Alamos sequence database; (2 an increasing number of CRFs are defined while they do not readily fit into groupings for molecular epidemiology and vaccine design; and (3 a dynamic HIV epidemic context.

  10. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Jiang Jiyang; Aiken, Christopher

    2006-01-01

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4 + T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo

  11. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    Science.gov (United States)

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  12. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    International Nuclear Information System (INIS)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-01

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  13. A Universal Approach to Optimize the Folding and Stability of Prefusion-Closed HIV-1 Envelope Trimers

    Directory of Open Access Journals (Sweden)

    Lucy Rutten

    2018-04-01

    Full Text Available Summary: The heavily glycosylated native-like envelope (Env trimer of HIV-1 is expected to have low immunogenicity, whereas misfolded forms are often highly immunogenic. High-quality correctly folded Envs may therefore be critical for developing a vaccine that induces broadly neutralizing antibodies. Moreover, the high variability of Env may require immunizations with multiple Envs. Here, we report a universal strategy that provides for correctly folded Env trimers of high quality and yield through a repair-and-stabilize approach. In the repair stage, we utilized a consensus strategy that substituted rare strain-specific residues with more prevalent ones. The stabilization stage involved structure-based design and experimental assessment confirmed by crystallographic feedback. Regions important for the refolding of Env were targeted for stabilization. Notably, the α9-helix and an intersubunit β sheet proved to be critical for trimer stability. Our approach provides a means to produce prefusion-closed Env trimers from diverse HIV-1 strains, a substantial advance for vaccine development. : Rutten et al. describe a universal repair and stabilize approach that corrects rare mutations and stabilizes refolding regions to obtain high-quality HIV Envs with high yields. The crystal structure shows how the optimization of the trimer interface between α9, α6, and the intersubunit β-sheet stabilizes the membrane-proximal base. Keywords: envelope protein, chronic, ConC_base, HIV, SOSIP, stabilization, transmitted/founder, vaccine, X-ray structure, hybrid sheet

  14. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    Martin-Garcia, Julio; Cao, Wei; Varela-Rohena, Angel; Plassmeyer, Matthew L.; Gonzalez-Scarano, Francisco

    2006-01-01

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  15. Short communication: Anti-HIV-1 envelope immunoglobulin Gs in blood and cervicovaginal samples of Beninese commercial sex workers.

    Science.gov (United States)

    Batraville, Laurie-Anne; Richard, Jonathan; Veillette, Maxime; Labbé, Annie-Claude; Alary, Michel; Guédou, Fernand; Kaufmann, Daniel E; Poudrier, Johanne; Finzi, Andrés; Roger, Michel

    2014-11-01

    Characterization of the immune correlates of protection against HIV infection is crucial for the development of preventive strategies. This study examined HIV-1 envelope (Env) glycoproteins, specifically immunoglobulin G (IgG), in systemic and mucosal compartments of female Beninese commercial sex workers (CSWs). Samples of 23 HIV-1-positive and 20 highly exposed HIV-1-seronegative (HESN) CSWs were studied. HIV-1 Env-specific IgG detection in sera and cervicovaginal lavages (CVLs) from the study population was done by cell-based ELISA. The HIV neutralizing activity was evaluated with a neutralization assay. The HIV-1-specific antibody-dependent cellular cytotoxicity (ADCC) response of the cohort was measured with a FACS-based assay evaluating the ADCC-mediated elimination of gp120-coated target cells. No anti-HIV-1 Env-specific IgG neutralizing or ADCC activities were detected in samples from HESN CSWs. Samples from HIV-1-infected CSWs presented ADCC activity in both sera and CVLs. Anti-Env IgG from sera and CVLs from HIV-1-infected CSWs preferentially recognized Env in its CD4-bound conformation. HIV-1-infected CSWs have ADCC-mediating IgG that preferentially recognizes Env in its CD4-bound conformation at the mucosal site.

  16. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy.

    Science.gov (United States)

    Halim, S S; Collins, D N; Ramsingh, A I

    2000-10-10

    The ultimate goal in the treatment of HIV-infected persons is to prevent disease progression. A strategy to accomplish this goal is to use chemotherapy to reduce viral load followed by immunotherapy to stimulate HIV-specific immune responses that are observed in long-term asymptomatic individuals. An effective, live, recombinant virus, expressing HIV sequences, would be capable of inducing both CTL and CD4(+) helper T cell responses. To accomplish these goals, the viral vector must be immunogenic yet retain its avirulent phenotype in a T cell-deficient host. We have identified a coxsackievirus variant, CB4-P, that can induce protective immunity against a virulent variant. In addition, the CB4-P variant remains avirulent in mice lacking CD4(+) helper T cells, suggesting that CB4-P may be uniquely suited as a viral vector for a therapeutic HIV vaccine. Two strategies designed to elicit CTL and CD4(+) helper T cell responses were used to construct CB4-P/HIV recombinants. Recombinant viruses were viable, genetically stable, and retained the avirulent phenotype of the parental virus. In designing a viral vector for vaccine development, an issue that must be addressed is whether preexisting immunity to the vector would affect subsequent administration of the recombinant virus. Using a test recombinant, we showed that prior exposure to the parental CB4-P virus did not affect the ability of the recombinant to induce a CD4(+) T cell response against the foreign sequence. The results suggest that a "cocktail" of coxsackie/HIV recombinants may be useful as a therapeutic HIV vaccine.

  17. Genetic Characterization of a Novel HIV-1 Circulating Recombinant Form (CRF74_01B) Identified among Intravenous Drug Users in Malaysia: Recombination History and Phylogenetic Linkage with Previously Defined Recombinant Lineages.

    Science.gov (United States)

    Cheong, Hui Ting; Chow, Wei Zhen; Takebe, Yutaka; Chook, Jack Bee; Chan, Kok Gan; Al-Darraji, Haider Abdulrazzaq Abed; Koh, Clayton; Kamarulzaman, Adeeba; Tee, Kok Keng

    2015-01-01

    In many parts of Southeast Asia, the HIV-1 epidemic has been driven by the sharing of needles and equipment among intravenous drug users (IDUs). Over the last few decades, many studies have proven time and again that the diversity of HIV-1 epidemics can often be linked to the route of infection transmission. That said, the diversity and complexity of HIV-1 molecular epidemics in the region have been increasing at an alarming rate, due in part to the high tendency of the viral RNA to recombine. This scenario was exemplified by the discovery of numerous circulating recombinant forms (CRFs), especially in Thailand and Malaysia. In this study, we characterized a novel CRF designated CRF74_01B, which was identified in six epidemiologically unlinked IDUs in Kuala Lumpur, Malaysia. The near-full length genomes were composed of CRF01_AE and subtype B', with eight breakpoints dispersed in the gag-pol and nef regions. Remarkably, this CRF shared four and two recombination hotspots with the previously described CRF33_01B and the less prevalent CRF53_01B, respectively. Genealogy-based Bayesian phylogenetic analysis of CRF74_01B genomic regions showed that it is closely related to both CRF33_01B and CRF53_01B. This observation suggests that CRF74_01B was probably a direct descendent from specific lineages of CRF33_01B, CRF53_01B and subtype B' that could have emerged in the mid-1990s. Additionally, it illustrated the active recombination processes between prevalent HIV-1 subtypes and recombinants in Malaysia. In summary, we report a novel HIV-1 genotype designated CRF74_01B among IDUs in Kuala Lumpur, Malaysia. The characterization of the novel CRF74_01B is of considerable significance towards the understanding of the genetic diversity and population dynamics of HIV-1 circulating in the region.

  18. Genetic Characterization of a Novel HIV-1 Circulating Recombinant Form (CRF74_01B Identified among Intravenous Drug Users in Malaysia: Recombination History and Phylogenetic Linkage with Previously Defined Recombinant Lineages.

    Directory of Open Access Journals (Sweden)

    Hui Ting Cheong

    Full Text Available In many parts of Southeast Asia, the HIV-1 epidemic has been driven by the sharing of needles and equipment among intravenous drug users (IDUs. Over the last few decades, many studies have proven time and again that the diversity of HIV-1 epidemics can often be linked to the route of infection transmission. That said, the diversity and complexity of HIV-1 molecular epidemics in the region have been increasing at an alarming rate, due in part to the high tendency of the viral RNA to recombine. This scenario was exemplified by the discovery of numerous circulating recombinant forms (CRFs, especially in Thailand and Malaysia. In this study, we characterized a novel CRF designated CRF74_01B, which was identified in six epidemiologically unlinked IDUs in Kuala Lumpur, Malaysia. The near-full length genomes were composed of CRF01_AE and subtype B', with eight breakpoints dispersed in the gag-pol and nef regions. Remarkably, this CRF shared four and two recombination hotspots with the previously described CRF33_01B and the less prevalent CRF53_01B, respectively. Genealogy-based Bayesian phylogenetic analysis of CRF74_01B genomic regions showed that it is closely related to both CRF33_01B and CRF53_01B. This observation suggests that CRF74_01B was probably a direct descendent from specific lineages of CRF33_01B, CRF53_01B and subtype B' that could have emerged in the mid-1990s. Additionally, it illustrated the active recombination processes between prevalent HIV-1 subtypes and recombinants in Malaysia. In summary, we report a novel HIV-1 genotype designated CRF74_01B among IDUs in Kuala Lumpur, Malaysia. The characterization of the novel CRF74_01B is of considerable significance towards the understanding of the genetic diversity and population dynamics of HIV-1 circulating in the region.

  19. On the Use of Hydrogen Recombination Energy during Common Envelope Events

    Science.gov (United States)

    Ivanova, Natalia

    2018-05-01

    In this Letter we discuss what happens to hydrogen recombination energy that is released during regular common envelope (CE) events as opposed to self-regulated CE events. We show that the amount of recombination energy that can be transferred away by either convection or radiation from the regions where recombination takes place is negligible. Instead, recombination energy is destined to be used either to help CE expansion, as a work term, or to accelerate local fluid elements. The exceptions are donors that initially have very high entropy material, S/(k B N A) > 37 mol g‑1. The analysis and conclusions are independent of specific stellar models or evolutionary codes, and rely on fundamental properties of stellar matter such as the equation of state, Saha equation, and opacities, as well as on stellar structure equations and the mixing length theory of convection.

  20. Role of HIV-2 envelope in Lv2-mediated restriction

    International Nuclear Information System (INIS)

    Reuter, Sandra; Kaumanns, Patrick; Buschhorn, Sabine B.; Dittmar, Matthias T.

    2005-01-01

    We have characterized envelope protein pseudotyped HIV-2 particles derived from two HIV-2 isolates termed prCBL23 and CBL23 in order to define the role of the envelope protein for the Lv2-mediated restriction to infection. Previously, it has been described that the primary isolate prCBL23 is restricted to infection of several human cell types, whereas the T cell line adapted isolate CBL23 is not restricted in these cell types. Molecular cloning of the two isolates revealed that the env and the gag gene are responsible for the observed phenotype and that this restriction is mediated by Lv2, which is distinct from Ref1/Lv1 (Schmitz, C., Marchant, D., Neil, S.J., Aubin, K., Reuter, S., Dittmar, M.T., McKnight, A., Kizhatil, K., Albritton, L.M., 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 78 (4), 2006-2016). We generated pseudotyped viruses consisting of HIV-2 (ROD-AΔenv-GFP, ROD-AΔenv-RFP, or ROD-AΔenv-REN) and the prCBL23 or CBL23 envelope proteins as well as chimeric proteins between these envelopes. We demonstrate that a single amino acid exchange at position 74 in the surface unit of CBL23-Env confers restriction to infection. This single point mutation causes tighter CD4 binding, resulting in a less efficient fusion into the cytosol of the restricted cell line. Prevention of endosome formation and prevention of endosome acidification enhance infectivity of the restricted particles for GHOST/X4 cells indicating a degradative lysosomal pathway as a cause for the reduced cytosolic entry. The described restriction to infection of the primary isolate prCBL23 is therefore largely caused by an entry defect. A remaining restriction to infection (19-fold) is preserved when endosomal acidification is prevented. This restriction to infection is also dependent on the presence of the point mutation at position 74 (G74E)

  1. Plasticity and Epitope Exposure of the HIV-1 Envelope Trimer.

    Science.gov (United States)

    Powell, Rebecca L R; Totrov, Maxim; Itri, Vincenza; Liu, Xiaomei; Fox, Alisa; Zolla-Pazner, Susan

    2017-09-01

    We recently showed that mutations in the HIV-1 envelope (Env) destabilize the V3 loop, rendering neutralization-resistant viruses sensitive to V3-directed monoclonal antibodies (MAbs). Here, we investigated the propagation of this effect on other Env epitopes, with special emphasis on V2 loop exposure. Wild-type JR-FL and 19 mutant JR-FL pseudoviruses were tested for neutralization sensitivity to 21 MAbs specific for epitopes in V2, the CD4 binding site (CD4bs), and the CD4-induced (CD4i) region. Certain glycan mutants, mutations in the gp120 hydrophobic core, and mutations in residues involved in intraprotomer interactions exposed epitopes in the V2i region (which overlies the α4β7 integrin binding site) and the V3 crown, suggesting general destabilization of the distal region of the trimer apex. In contrast, other glycan mutants, mutations affecting interprotomer interactions, and mutations affecting the CD4bs exposed V3 but not V2i epitopes. These data indicate for the first time that V3 can move independently of V2, with V3 pivoting out from its "tucked" position in the trimer while apparently leaving the V2 apex intact. Notably, none of the mutations exposed V2 epitopes without also exposing V3, suggesting that movement of V2 releases V3. Most mutations increased sensitivity to CD4bs-directed MAbs without exposure of the CD4i epitope, implying these mutations facilitate the trimers' maintenance of an intermediate energy state between open and closed conformations. Taken together, these data indicate that several transient Env epitopes can be rendered more accessible to antibodies (Abs) via specific mutations, and this may facilitate the design of V1V2-targeting immunogens. IMPORTANCE Many epitopes of the HIV envelope (Env) spike are relatively inaccessible to antibodies (Abs) compared to their exposure in the open Env conformation induced by receptor binding. However, the reduced infection rate that resulted from the vaccine used in the RV144 HIV-1 vaccine

  2. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  3. Induction of human immunodeficiency virus (HIV-1 envelope specific cell-mediated immunity by a non-homologous synthetic peptide.

    Directory of Open Access Journals (Sweden)

    Ammar Achour

    2007-11-01

    Full Text Available Cell mediated immunity, including efficient CTL response, is required to prevent HIV-1 from cell-to-cell transmission. In previous investigations, we have shown that B1 peptide derived by Fourier transformation of HIV-1 primary structures and sharing no sequence homology with the parent proteins was able to generate antiserum which recognizes envelope and Tat proteins. Here we have investigated cellular immune response towards a novel non-homologous peptide, referred to as cA1 peptide.The 20 amino acid sequence of cA1 peptide was predicted using the notion of peptide hydropathic properties; the peptide is encoded by the complementary anti-sense DNA strand to the sense strand of previously described non-homologous A1 peptide. In this report we demonstrate that the cA1 peptide can be a target for major histocompatibility complex (MHC class I-restricted cytotoxic T lymphocytes in HIV-1-infected or envelope-immunized individuals. The cA1 peptide is recognized in association with different MHC class I allotypes and could prime in vitro CTLs, derived from gp160-immunized individuals capable to recognize virus variants.For the first time a theoretically designed immunogen involved in broad-based cell-immune memory activation is described. Our findings may thus contribute to the advance in vaccine research by describing a novel strategy to develop a synthetic AIDS vaccine.

  4. Identification of Novel Recombinant Forms of Hepatitis B Virus Generated from Genotypes Ae and G in HIV-1-Positive Japanese Men Who Have Sex with Men.

    Science.gov (United States)

    Kojima, Yoko; Kawahata, Takuya; Mori, Haruyo; Furubayashi, Keiichi; Taniguchi, Yasushi; Itoda, Ichiro; Komano, Jun

    2015-07-01

    The rare hepatitis B virus (HBV) genotype G (HBV/G) coinfects HIV-1-positive individuals along with HBV/A and generates recombinants. However, the circulation of HBV A/G recombinants remains poorly understood. This molecular epidemiologic study examined HBV A/G recombinants in Japanese HIV-1-positive men who have sex with men (MSM). Initially, blood specimens submitted for confirmatory tests of HIV infection in Osaka and Tokyo, Japan, from 2006 to 2013 were examined for HIV-1, and HIV-1-positive specimens were screened for HBV. Among 817 specimens from HIV-1-positive individuals, HBsAg was detected in 59 specimens; of these, HBV/Ae (alternatively A2), a subgenotype of HBV/A prevalent in Europe and North America, was identified in 70.2%, HBV/C in 17.5%, and HBV/G in 10.5%, and HBV/E in 1.8% according to the core gene sequence. The full-length genome analysis of HBV was performed on HBV/G-positive specimens because some HBV A/G recombinants were historically overlooked by genotyping based on a partial genome analysis. It revealed that five of the specimens contained novel Ae/G recombinants, the core gene of which had a high sequence similarity to HBV/G. Detailed analyses showed that novel recombinants were coinfected with HBV/Ae in a recombinant-dominant fashion. No major drug-resistant mutations were found in the newly identified HBV Ae/G recombinants. Some of the individuals asymptomatically coinfected with HIV/HBV suffered mild liver injury. This study demonstrated that novel Ae/G HBV recombinants were identified in Japanese HIV-1-positive MSM. The pathogenicity of novel HBV Ae/G recombinants should be examined in a future longitudinal study. Surveillance of such viruses in HIV-1-positive individuals should be emphasized.

  5. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    Science.gov (United States)

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  6. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  7. Characterization and frequency of a newly identified HIV-1 BF1 intersubtype circulating recombinant form in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Neto Walter

    2010-04-01

    Full Text Available Abstract Background HIV circulating recombinant forms (CRFs play an important role in the global and regional HIV epidemics, particularly in regions where multiple subtypes are circulating. To date, several (>40 CRFs are recognized worldwide with five currently circulating in Brazil. Here, we report the characterization of near full-length genome sequences (NFLG of six phylogenetically related HIV-1 BF1 intersubtype recombinants (five from this study and one from other published sequences representing CRF46_BF1. Methods Initially, we selected 36 samples from 888 adult patients residing in São Paulo who had previously been diagnosed as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA integrated in peripheral blood mononuclear cells (PBMC was amplified from the purified genomic DNA of all 36-blood samples by five overlapping PCR fragments followed by direct sequencing. Sequence data were obtained from the five fragments that showed identical genomic structure and phylogenetic trees were constructed and compared with previously published sequences. Genuine subclade F1 sequences and any other sequences that exhibited unique mosaic structures were omitted from further analysis Results Of the 36 samples analyzed, only six sequences, inferred from the pol region as subclade F1, displayed BF1 identical mosaic genomes with a single intersubtype breakpoint identified at the nef-U3 overlap (HXB2 position 9347-9365; LTR region. Five of these isolates formed a rigid cluster in phylogentic trees from different subclade F1 fragment regions, which we can now designate as CRF46_BF1. According to our estimate, the new CRF accounts for 0.56% of the HIV-1 circulating strains in São Paulo. Comparison with previously published sequences revealed an additional five isolates that share an identical mosaic structure with those reported in our study. Despite sharing a similar recombinant structure, only one sequence appeared to

  8. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations.

    Directory of Open Access Journals (Sweden)

    Chitra Upadhyay

    2018-01-01

    Full Text Available HIV-1 envelope glycoprotein (Env mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP that directs the nascent Env to the endoplasmic reticulum (ER where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody

  9. BF integrase genes of HIV-1 circulating in São Paulo, Brazil, with a recurrent recombination region.

    Directory of Open Access Journals (Sweden)

    Atila Iamarino

    Full Text Available Although some studies have shown diversity in HIV integrase (IN genes, none has focused particularly on the gene evolving in epidemics in the context of recombination. The IN gene in 157 HIV-1 integrase inhibitor-naïve patients from the São Paulo State, Brazil, were sequenced tallying 128 of subtype B (23 of which were found in non-B genomes, 17 of subtype F (8 of which were found in recombinant genomes, 11 integrases were BF recombinants, and 1 from subtype C. Crucially, we found that 4 BF recombinant viruses shared a recurrent recombination breakpoint region between positions 4900 and 4924 (relative to the HXB2 that includes 2 gRNA loops, where the RT may stutter. Since these recombinants had independent phylogenetic origin, we argue that these results suggest a possible recombination hotspot not observed so far in BF CRF in particular, or in any other HIV-1 CRF in general. Additionally, 40% of the drug-naïve and 45% of the drug-treated patients had at least 1 raltegravir (RAL or elvitegravir (EVG resistance-associated amino acid change, but no major resistance mutations were found, in line with other studies. Importantly, V151I was the most common minor resistance mutation among B, F, and BF IN genes. Most codon sites of the IN genes had higher rates of synonymous substitutions (dS indicative of a strong negative selection. Nevertheless, several codon sites mainly in the subtype B were found under positive selection. Consequently, we observed a higher genetic diversity in the B portions of the mosaics, possibly due to the more recent introduction of subtype F on top of an ongoing subtype B epidemics and a fast spread of subtype F alleles among the B population.

  10. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana.

    Science.gov (United States)

    Nii-Trebi, Nicholas Israel; Brandful, James Ashun Mensah; Ibe, Shiro; Sugiura, Wataru; Barnor, Jacob Samson; Bampoh, Patrick Owiredu; Yamaoka, Shoji; Matano, Tetsuro; Yoshimura, Kazuhisa; Ishikawa, Koichi; Ampofo, William Kwabena

    2017-11-01

    There have been hardly any reports on the human immunodeficiency virus type 1 (HIV-1) drug-resistance profile from northern Ghana since antiretroviral therapy (ART) was introduced over a decade ago. This study investigated prevailing HIV-1 subtypes and examined the occurrence of drug resistance in ART-experienced patients in Tamale, the capital of the Northern Region of Ghana. A cross-sectional study was carried out on HIV-infected adult patients receiving first-line ART. HIV viral load (VL) and CD4 + T-cell counts were measured. The pol gene sequences were analysed for genotypic resistance by an in-house HIV-1 drug-resistance test; the prevailing HIV-1 subtypes were analysed in detail.Results/Key findings. A total of 33 subjects were studied. Participants comprised 11 males (33.3 %) and 22 (66.7 %) females, with a median age of 34.5 years [interquartile range (IQR) 30.0-40.3]. The median duration on ART was 12 months (IQR 8.0-24). Of the 24 subjects successfully genotyped, 10 (41.7 %) viruses possessed at least one mutation conferring resistance to nucleoside or non-nucleoside reverse-transcriptase inhibitors (NRTIs/NNRTIs). Two-class drug resistance to NRTI and NNRTI was mostly detected (25 %, 6/24). The most frequent mutations were lamivudine-resistance M184V and efavirenz/nevirapine-resistance K103N. HIV-1 subtype CRF02_AG was predominant (79.2 %). Other HIV-1 subtypes detected were G (8.3 %), A3 (4.2 %) and importantly two (8.3 %) unique HIV-1 recombinant forms with CRF02_AG/A3 mosaic. HIV-1 shows high genetic diversity and on-going viral genetic recombination in the study region. Nearly 42 % of the patients studied harboured a drug-resistant virus. The study underscores the need for continued surveillance of HIV-1 subtype diversity; and of drug-resistance patterns to guide selection of second-line regimens in northern Ghana.

  11. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  12. Short communication: identification of a novel HIV type 1 subtype H/J recombinant in Canada with discordant HIV viral load (RNA) values in three different commercial assays.

    Science.gov (United States)

    Kim, John E; Beckthold, Brenda; Chen, Zhaoxia; Mihowich, Jennifer; Malloch, Laurie; Gill, Michael John

    2007-11-01

    The presence of HIV-1 non-B subtypes is increasing worldwide. This poses challenges to commercial diagnostic and viral load (RNA) monitoring tests that are predominantly based on HIV-1 subtype B strains. Based on phylogenetic analysis of the gag, pol, and env gene regions, we describe the first HIV-1 H/J recombinant in Canada that presented divergent viral load values. DNA sequence analysis of the gag gene region further revealed that genetic diversity between this H/J recombinant and the primers and probes used in the bio-Merieux Nuclisens HIV-1 QT (Nuclisens) and Roche Amplicor Monitor HIV-1, v1.5 (Monitor) viral RNA assays can erroneously lead to undetectable viral load values. This observation appears to be more problematic in the Nuclisens assay. In light of increasing genetic diversity in HIV worldwide we recommend that DNA sequencing of HIV, especially in the gag gene region targeted by primers and probes used in molecular diagnostic and viral load tests, be incorporated into clinical monitoring practices.

  13. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.

    Directory of Open Access Journals (Sweden)

    Lakshmikanth Mariyanna

    Full Text Available Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR-specific recombinase (Tre-recombinase has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD from the HIV-1 Tat trans-activator or the translocation motif (TLM of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies.

  14. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    Science.gov (United States)

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  15. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques.

    Science.gov (United States)

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Grand, Roger Le; Fomsgaard, Anders

    2013-07-19

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  16. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

    Directory of Open Access Journals (Sweden)

    Roger Le Grand

    2013-07-01

    Full Text Available HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb. We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  17. Transfer of the amino-terminal nuclear envelope targeting domain of human MX2 converts MX1 into an HIV-1 resistance factor.

    Science.gov (United States)

    Goujon, Caroline; Moncorgé, Olivier; Bauby, Hélène; Doyle, Tomas; Barclay, Wendy S; Malim, Michael H

    2014-08-01

    The myxovirus resistance 2 (MX2) protein of humans has been identified recently as an interferon (IFN)-inducible inhibitor of human immunodeficiency virus type 1 (HIV-1) that acts at a late postentry step of infection to prevent the nuclear accumulation of viral cDNA (C. Goujon et al., Nature 502:559-562, 2013, http://dx.doi.org/10.1038/nature12542; M. Kane et al., Nature 502:563-566, 2013, http://dx.doi.org/10.1038/nature12653; Z. Liu et al., Cell Host Microbe 14:398-410, 2013, http://dx.doi.org/10.1016/j.chom.2013.08.015). In contrast, the closely related human MX1 protein, which suppresses infection by a range of RNA and DNA viruses (such as influenza A virus [FluAV]), is ineffective against HIV-1. Using a panel of engineered chimeric MX1/2 proteins, we demonstrate that the amino-terminal 91-amino-acid domain of MX2 confers full anti-HIV-1 function when transferred to the amino terminus of MX1, and that this fusion protein retains full anti-FluAV activity. Confocal microscopy experiments further show that this MX1/2 fusion, similar to MX2 but not MX1, can localize to the nuclear envelope (NE), linking HIV-1 inhibition with MX accumulation at the NE. MX proteins are dynamin-like GTPases, and while MX1 antiviral function requires GTPase activity, neither MX2 nor MX1/2 chimeras require this attribute to inhibit HIV-1. This key discrepancy between the characteristics of MX1- and MX2-mediated viral resistance, together with previous observations showing that the L4 loop of the stalk domain of MX1 is a critical determinant of viral substrate specificity, presumably reflect fundamental differences in the mechanisms of antiviral suppression. Accordingly, we propose that further comparative studies of MX proteins will help illuminate the molecular basis and subcellular localization requirements for implementing the noted diversity of virus inhibition by MX proteins. Interferon (IFN) elicits an antiviral state in cells through the induction of hundreds of IFN

  18. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development.

    Science.gov (United States)

    Franco, David; Li, Wenjing; Qing, Fang; Stoyanov, Cristina T; Moran, Thomas; Rice, Charles M; Ho, David D

    2010-08-09

    The failure to develop an effective vaccine against HIV-1 infection has led the research community to seek new ways of raising qualitatively different antibody and cellular immune responses. Towards this goal, we investigated the yellow fever 17D vaccine strain (YF17D), one of the most effective vaccines ever made, as a platform for HIV-1 vaccine development. A test antigen, HIV-1 p24 (clade B consensus), was inserted near the 5' end of YF17D, in frame and upstream of the polyprotein (YF-5'/p24), or between the envelope and the first non-structural protein (YF-E/p24/NS1). In vitro characterization of these recombinants indicated that the gene insert was more stable in the context of YF-E/p24/NS1. This was confirmed in immunogenicity studies in mice. CD8(+) IFN-gamma T-cell responses against p24 were elicited by the YF17D recombinants, as were specific CD4(+) T cells expressing IFN-gamma and IL-2. A balanced CD4(+) and CD8(+) T-cell response was notable, as was the polyfunctionality of the responding cells. Finally, the protective efficacy of the YF17D recombinants, particularly YF-E/p24/NS1, in mice challenged with a vaccinia expressing HIV-1 Gag was demonstrated. These results suggest that YF17D warrants serious consideration as a live-attenuated vector for HIV-1 vaccine development. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. The Presence and Anti-HIV-1 Function of Tenascin C in Breast Milk and Genital Fluids.

    Directory of Open Access Journals (Sweden)

    Robin G Mansour

    Full Text Available Tenascin-C (TNC is a newly identified innate HIV-1-neutralizing protein present in breast milk, yet its presence and potential HIV-inhibitory function in other mucosal fluids is unknown. In this study, we identified TNC as a component of semen and cervical fluid of HIV-1-infected and uninfected individuals, although it is present at a significantly lower concentration and frequency compared to that of colostrum and mature breast milk, potentially due to genital fluid protease degradation. However, TNC was able to neutralize HIV-1 after exposure to low pH, suggesting that TNC could be active at low pH in the vaginal compartment. As mucosal fluids are complex and contain a number of proteins known to interact with the HIV-1 envelope, we further studied the relationship between the concentration of TNC and neutralizing activity in breast milk. The amount of TNC correlated only weakly with the overall innate HIV-1-neutralizing activity of breast milk of uninfected women and negatively correlated with neutralizing activity in milk of HIV-1 infected women, indicating that the amount of TNC in mucosal fluids is not adequate to impede HIV-1 transmission. Moreover, the presence of polyclonal IgG from milk of HIV-1 infected women, but not other HIV-1 envelope-binding milk proteins or monoclonal antibodies, blocked the neutralizing activity of TNC. Finally, as exogenous administration of TNC would be necessary for it to mediate measurable HIV-1 neutralizing activity in mucosal compartments, we established that recombinantly produced TNC has neutralizing activity against transmitted/founder HIV-1 strains that mimic that of purified TNC. Thus, we conclude that endogenous TNC concentration in mucosal fluids is likely inadequate to block HIV-1 transmission to uninfected individuals.

  20. A newly emerging HIV-1 recombinant lineage (CRF58_01B) disseminating among people who inject drugs in Malaysia.

    Science.gov (United States)

    Chow, Wei Zhen; Takebe, Yutaka; Syafina, Nur Ezreen; Prakasa, Malarvelli Soorya; Chan, Kok Gan; Al-Darraji, Haider Abdulrazzaq Abed; Koh, Clayton; Kamarulzaman, Adeeba; Tee, Kok Keng

    2014-01-01

    The HIV epidemic is primarily characterised by the circulation of HIV-1 group M (main) comprising of 11 subtypes and sub-subtypes (A1, A2, B-D, F1, F2, G, H, J, and K) and to date 55 circulating recombinant forms (CRFs). In Southeast Asia, active inter-subtype recombination involving three main circulating genotypes--subtype B (including subtype B', the Thai variant of subtype B), CRF01_AE, and CRF33_01B--have contributed to the emergence of novel unique recombinant forms. In the present study, we conducted the molecular epidemiological surveillance of HIV-1 gag-RT genes among 258 people who inject drugs (PWIDs) in Kuala Lumpur, Malaysia, between 2009 and 2011 whereby a novel CRF candidate was recently identified. The near full-length genome sequences obtained from six epidemiologically unlinked individuals showed identical mosaic structures consisting of subtype B' and CRF01_AE, with six unique recombination breakpoints in the gag-RT, pol, and env regions. Among the high-risk population of PWIDs in Malaysia, which was predominantly infected by CRF33_01B (>70%), CRF58_01B circulated at a low but significant prevalence (2.3%, 6/258). Interestingly, the CRF58_01B shared two unique recombination breakpoints with other established CRFs in the region: CRF33_01B, CRF48_01B, and CRF53_01B in the gag gene, and CRF15_01B (from Thailand) in the env gene. Extended Bayesian Markov chain Monte Carlo sampling analysis showed that CRF58_01B and other recently discovered CRFs were most likely to have originated in Malaysia, and that the recent spread of recombinant lineages in the country had little influence from neighbouring countries. The isolation, genetic characterization, and evolutionary features of CRF58_01B among PWIDs in Malaysia signify the increasingly complex HIV-1 diversity in Southeast Asia that may hold an implication on disease treatment, control, and prevention.

  1. A newly emerging HIV-1 recombinant lineage (CRF58_01B disseminating among people who inject drugs in Malaysia.

    Directory of Open Access Journals (Sweden)

    Wei Zhen Chow

    Full Text Available The HIV epidemic is primarily characterised by the circulation of HIV-1 group M (main comprising of 11 subtypes and sub-subtypes (A1, A2, B-D, F1, F2, G, H, J, and K and to date 55 circulating recombinant forms (CRFs. In Southeast Asia, active inter-subtype recombination involving three main circulating genotypes--subtype B (including subtype B', the Thai variant of subtype B, CRF01_AE, and CRF33_01B--have contributed to the emergence of novel unique recombinant forms. In the present study, we conducted the molecular epidemiological surveillance of HIV-1 gag-RT genes among 258 people who inject drugs (PWIDs in Kuala Lumpur, Malaysia, between 2009 and 2011 whereby a novel CRF candidate was recently identified. The near full-length genome sequences obtained from six epidemiologically unlinked individuals showed identical mosaic structures consisting of subtype B' and CRF01_AE, with six unique recombination breakpoints in the gag-RT, pol, and env regions. Among the high-risk population of PWIDs in Malaysia, which was predominantly infected by CRF33_01B (>70%, CRF58_01B circulated at a low but significant prevalence (2.3%, 6/258. Interestingly, the CRF58_01B shared two unique recombination breakpoints with other established CRFs in the region: CRF33_01B, CRF48_01B, and CRF53_01B in the gag gene, and CRF15_01B (from Thailand in the env gene. Extended Bayesian Markov chain Monte Carlo sampling analysis showed that CRF58_01B and other recently discovered CRFs were most likely to have originated in Malaysia, and that the recent spread of recombinant lineages in the country had little influence from neighbouring countries. The isolation, genetic characterization, and evolutionary features of CRF58_01B among PWIDs in Malaysia signify the increasingly complex HIV-1 diversity in Southeast Asia that may hold an implication on disease treatment, control, and prevention.

  2. Molecular Epidemiology of HIV-1 in Jilin Province, Northeastern China: Emergence of a New CRF07_BC Transmission Cluster and Intersubtype Recombinants

    Science.gov (United States)

    Ning, Chuanyi; Feng, Yi; Xie, Cunxin; He, Xiang; Takebe, Yutaka; Sun, Liuyan; Guo, Qi; Xing, Hui; Kalish, Marcia L.; Shao, Yiming

    2014-01-01

    Objective To investigate the HIV-1 molecular epidemiology among newly diagnosed HIV-1 infected persons living in the Jilin province of northeastern China. Methods Plasma samples from 189 newly diagnosed HIV-1 infected patients were collected between June 2010 and August 2011 from all nine cities of Jilin province. HIV-1 nucleotide sequences of gag P17–P24 and env C2–C4 gene regions were amplified using a multiplex RT-PCR method and sequenced. Phylogenetic and recombination analyses were used to determine the HIV-1 genotypes. Results Based on all sequences generated, the subtype/CFR distribution was as follows: CRF01_AE (58.1%), CRF07_BC (13.2%), subtype B’ (13.2%), recombinant viruses (8.1%), subtype B (3.7%), CRF02_AG (2.9%), subtype C (0.7%). In addition to finding CRF01_AE strains from previously reported transmission clusters 1, 4 and 5, a new transmission cluster was described within the CRF07_BC radiation. Among 11 different recombinants identified, 10 contained portions of gene regions from the CRF01_AE lineage. CRF02_AG was found to form a transmission cluster of 4 in local Jilin residents. Conclusions Our study presents a molecular epidemiologic investigation describing the complex structure of HIV-1 strains co-circulating in Jilin province. The results highlight the critical importance of continuous monitoring of HIV-infections, along with detailed socio-demographic data, in order to design appropriate prevention measures to limit the spread of new HIV infections. PMID:25356726

  3. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    Energy Technology Data Exchange (ETDEWEB)

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B. (Neuropharmacology Laboratory, National Institute on Drug Abuse, Baltimore, MD (USA))

    1991-05-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-(1-14C) glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection.

  4. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    International Nuclear Information System (INIS)

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B.

    1991-01-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-[1-14C] glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection

  5. Human immunodeficiency virus type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a circulating subtype B envelope.

    Science.gov (United States)

    Doria-Rose, N A; Learn, G H; Rodrigo, A G; Nickle, D C; Li, F; Mahalanabis, M; Hensel, M T; McLaughlin, S; Edmonson, P F; Montefiori, D; Barnett, S W; Haigwood, N L; Mullins, J I

    2005-09-01

    Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.

  6. HIV-1 molecular epidemiology among newly diagnosed HIV-1 individuals in Hebei, a low HIV prevalence province in China.

    Science.gov (United States)

    Lu, Xinli; Kang, Xianjiang; Liu, Yongjian; Cui, Ze; Guo, Wei; Zhao, Cuiying; Li, Yan; Chen, Suliang; Li, Jingyun; Zhang, Yuqi; Zhao, Hongru

    2017-01-01

    New human immunodeficiency virus type 1 (HIV-1) diagnoses are increasing rapidly in Hebei. The aim of this study presents the most extensive HIV-1 molecular epidemiology investigation in Hebei province in China thus far. We have carried out the most extensive systematic cross-sectional study based on newly diagnosed HIV-1 positive individuals in 2013, and characterized the molecular epidemiology of HIV-1 based on full length gag-partial pol gene sequences in the whole of Hebei. Nine HIV-1 genotypes based on full length gag-partial pol gene sequence were identified among 610 newly diagnosed naïve individuals. The four main genotypes were circulating recombinant form (CRF)01_AE (53.4%), CRF07_BC (23.4%), subtype B (15.9%), and unique recombinant forms URFs (4.9%). Within 1 year, three new genotypes (subtype A1, CRF55_01B, CRF65_cpx), unknown before in Hebei, were first found among men who have sex with men (MSM). All nine genotypes were identified in the sexually contracted HIV-1 population. Among 30 URFs, six recombinant patterns were revealed, including CRF01_AE/BC (40.0%), CRF01_AE/B (23.3%), B/C (16.7%), CRF01_AE/C (13.3%), CRF01_AE/B/A2 (3.3%) and CRF01_AE/BC/A2 (3.3%), plus two potential CRFs. This study elucidated the complicated characteristics of HIV-1 molecular epidemiology in a low HIV-1 prevalence northern province of China and revealed the high level of HIV-1 genetic diversity. All nine HIV-1 genotypes circulating in Hebei have spread out of their initial risk groups into the general population through sexual contact, especially through MSM. This highlights the urgency of HIV prevention and control in China.

  7. HIV-1 molecular epidemiology among newly diagnosed HIV-1 individuals in Hebei, a low HIV prevalence province in China.

    Directory of Open Access Journals (Sweden)

    Xinli Lu

    Full Text Available New human immunodeficiency virus type 1 (HIV-1 diagnoses are increasing rapidly in Hebei. The aim of this study presents the most extensive HIV-1 molecular epidemiology investigation in Hebei province in China thus far. We have carried out the most extensive systematic cross-sectional study based on newly diagnosed HIV-1 positive individuals in 2013, and characterized the molecular epidemiology of HIV-1 based on full length gag-partial pol gene sequences in the whole of Hebei. Nine HIV-1 genotypes based on full length gag-partial pol gene sequence were identified among 610 newly diagnosed naïve individuals. The four main genotypes were circulating recombinant form (CRF01_AE (53.4%, CRF07_BC (23.4%, subtype B (15.9%, and unique recombinant forms URFs (4.9%. Within 1 year, three new genotypes (subtype A1, CRF55_01B, CRF65_cpx, unknown before in Hebei, were first found among men who have sex with men (MSM. All nine genotypes were identified in the sexually contracted HIV-1 population. Among 30 URFs, six recombinant patterns were revealed, including CRF01_AE/BC (40.0%, CRF01_AE/B (23.3%, B/C (16.7%, CRF01_AE/C (13.3%, CRF01_AE/B/A2 (3.3% and CRF01_AE/BC/A2 (3.3%, plus two potential CRFs. This study elucidated the complicated characteristics of HIV-1 molecular epidemiology in a low HIV-1 prevalence northern province of China and revealed the high level of HIV-1 genetic diversity. All nine HIV-1 genotypes circulating in Hebei have spread out of their initial risk groups into the general population through sexual contact, especially through MSM. This highlights the urgency of HIV prevention and control in China.

  8. Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2009-04-01

    Full Text Available Elite suppressors (ES are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor and CCR5 (co-receptor. In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals.

  9. Molecular Diversity of HIV-1 among People Who Inject Drugs in Kuala Lumpur, Malaysia: Massive Expansion of Circulating Recombinant Form (CRF) 33_01B and Emergence of Multiple Unique Recombinant Clusters

    Science.gov (United States)

    Chow, Wei Zhen; Ng, Kim Tien; Yong, Yean Kong; Azmel, Azureen; Takebe, Yutaka; Al-Darraji, Haider Abdulrazzaq Abed; Kamarulzaman, Adeeba; Tee, Kok Keng

    2013-01-01

    Since the discovery of HIV-1 circulating recombinant form (CRF) 33_01B in Malaysia in the early 2000 s, continuous genetic diversification and active recombination involving CRF33_01B and other circulating genotypes in the region including CRF01_AE and subtype B′ of Thai origin, have led to the emergence of novel CRFs and unique recombinant forms. The history and magnitude of CRF33_01B transmission among various risk groups including people who inject drugs (PWID) however have not been investigated despite the high epidemiological impact of CRF33_01B in the region. We update the most recent molecular epidemiology of HIV-1 among PWIDs recruited in Malaysia between 2010 and 2011 by population sequencing and phylogenetic analysis of 128 gag-pol sequences. HIV-1 CRF33_01B was circulating among 71% of PWIDs whilst a lower prevalence of other previously dominant HIV-1 genotypes [subtype B′ (11%) and CRF01_AE (5%)] and CRF01_AE/B′ unique recombinants (13%) were detected, indicating a significant shift in genotype replacement in this population. Three clusters of CRF01_AE/B′ recombinants displaying divergent yet phylogenetically-related mosaic genomes to CRF33_01B were identified and characterized, suggestive of an abrupt emergence of multiple novel CRF clades. Using rigorous maximum likelihood approach and the Bayesian Markov chain Monte Carlo (MCMC) sampling of CRF33_01Bpol sequences to elucidate the past population dynamics, we found that the founder lineages of CRF33_01B were likely to have first emerged among PWIDs in the early 1990 s before spreading exponentially to various high and low-risk populations (including children who acquired infections from their mothers) and later on became endemic around the early 2000 s. Taken together, our findings provide notable genetic evidence indicating the widespread expansion of CRF33_01B among PWIDs and into the general population. The emergence of numerous previously unknown recombinant clades highlights the

  10. Molecular diversity of HIV-1 among people who inject drugs in Kuala Lumpur, Malaysia: massive expansion of circulating recombinant form (CRF) 33_01B and emergence of multiple unique recombinant clusters.

    Science.gov (United States)

    Chow, Wei Zhen; Ong, Lai Yee; Razak, Siti Humaira; Lee, Yeat Mei; Ng, Kim Tien; Yong, Yean Kong; Azmel, Azureen; Takebe, Yutaka; Al-Darraji, Haider Abdulrazzaq Abed; Kamarulzaman, Adeeba; Tee, Kok Keng

    2013-01-01

    Since the discovery of HIV-1 circulating recombinant form (CRF) 33_01B in Malaysia in the early 2000 s, continuous genetic diversification and active recombination involving CRF33_01B and other circulating genotypes in the region including CRF01_AE and subtype B' of Thai origin, have led to the emergence of novel CRFs and unique recombinant forms. The history and magnitude of CRF33_01B transmission among various risk groups including people who inject drugs (PWID) however have not been investigated despite the high epidemiological impact of CRF33_01B in the region. We update the most recent molecular epidemiology of HIV-1 among PWIDs recruited in Malaysia between 2010 and 2011 by population sequencing and phylogenetic analysis of 128 gag-pol sequences. HIV-1 CRF33_01B was circulating among 71% of PWIDs whilst a lower prevalence of other previously dominant HIV-1 genotypes [subtype B' (11%) and CRF01_AE (5%)] and CRF01_AE/B' unique recombinants (13%) were detected, indicating a significant shift in genotype replacement in this population. Three clusters of CRF01_AE/B' recombinants displaying divergent yet phylogenetically-related mosaic genomes to CRF33_01B were identified and characterized, suggestive of an abrupt emergence of multiple novel CRF clades. Using rigorous maximum likelihood approach and the Bayesian Markov chain Monte Carlo (MCMC) sampling of CRF33_01Bpol sequences to elucidate the past population dynamics, we found that the founder lineages of CRF33_01B were likely to have first emerged among PWIDs in the early 1990 s before spreading exponentially to various high and low-risk populations (including children who acquired infections from their mothers) and later on became endemic around the early 2000 s. Taken together, our findings provide notable genetic evidence indicating the widespread expansion of CRF33_01B among PWIDs and into the general population. The emergence of numerous previously unknown recombinant clades highlights the escalating

  11. Molecular diversity of HIV-1 among people who inject drugs in Kuala Lumpur, Malaysia: massive expansion of circulating recombinant form (CRF 33_01B and emergence of multiple unique recombinant clusters.

    Directory of Open Access Journals (Sweden)

    Wei Zhen Chow

    Full Text Available Since the discovery of HIV-1 circulating recombinant form (CRF 33_01B in Malaysia in the early 2000 s, continuous genetic diversification and active recombination involving CRF33_01B and other circulating genotypes in the region including CRF01_AE and subtype B' of Thai origin, have led to the emergence of novel CRFs and unique recombinant forms. The history and magnitude of CRF33_01B transmission among various risk groups including people who inject drugs (PWID however have not been investigated despite the high epidemiological impact of CRF33_01B in the region. We update the most recent molecular epidemiology of HIV-1 among PWIDs recruited in Malaysia between 2010 and 2011 by population sequencing and phylogenetic analysis of 128 gag-pol sequences. HIV-1 CRF33_01B was circulating among 71% of PWIDs whilst a lower prevalence of other previously dominant HIV-1 genotypes [subtype B' (11% and CRF01_AE (5%] and CRF01_AE/B' unique recombinants (13% were detected, indicating a significant shift in genotype replacement in this population. Three clusters of CRF01_AE/B' recombinants displaying divergent yet phylogenetically-related mosaic genomes to CRF33_01B were identified and characterized, suggestive of an abrupt emergence of multiple novel CRF clades. Using rigorous maximum likelihood approach and the Bayesian Markov chain Monte Carlo (MCMC sampling of CRF33_01Bpol sequences to elucidate the past population dynamics, we found that the founder lineages of CRF33_01B were likely to have first emerged among PWIDs in the early 1990 s before spreading exponentially to various high and low-risk populations (including children who acquired infections from their mothers and later on became endemic around the early 2000 s. Taken together, our findings provide notable genetic evidence indicating the widespread expansion of CRF33_01B among PWIDs and into the general population. The emergence of numerous previously unknown recombinant clades highlights the

  12. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  13. A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Anurag Sethi

    Full Text Available The HIV-1 envelope (Env spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.

  14. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan

    2010-11-01

    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  15. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    International Nuclear Information System (INIS)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-01-01

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d 3 ) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d 3 . In addition, both sCD4-gp120 and sCD4-gp120-mC3d 3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d 3 or sCD4-gp120-mC3d 3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d 3 -DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d 3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d

  16. Cryoelectron Tomography of HIV-1 Envelope Spikes: Further Evidence for Tripod-Like Legs

    Science.gov (United States)

    Zhu, Ping; Winkler, Hanspeter; Chertova, Elena; Taylor, Kenneth A.; Roux, Kenneth H.

    2008-01-01

    A detailed understanding of the morphology of the HIV-1 envelope (Env) spike is key to understanding viral pathogenesis and for informed vaccine design. We have previously presented a cryoelectron microscopic tomogram (cryoET) of the Env spikes on SIV virions. Several structural features were noted in the gp120 head and gp41 stalk regions. Perhaps most notable was the presence of three splayed legs projecting obliquely from the base of the spike head toward the viral membrane. Subsequently, a second 3D image of SIV spikes, also obtained by cryoET, was published by another group which featured a compact vertical stalk. We now report the cryoET analysis of HIV-1 virion-associated Env spikes using enhanced analytical cryoET procedures. More than 2,000 Env spike volumes were initially selected, aligned, and sorted into structural classes using algorithms that compensate for the “missing wedge” and do not impose any symmetry. The results show varying morphologies between structural classes: some classes showed trimers in the head domains; nearly all showed two or three legs, though unambiguous three-fold symmetry was not observed either in the heads or the legs. Subsequently, clearer evidence of trimeric head domains and three splayed legs emerged when head and leg volumes were independently aligned and classified. These data show that HIV-1, like SIV, also displays the tripod-like leg configuration, and, unexpectedly, shows considerable gp41 leg flexibility/heteromorphology. The tripod-like model for gp41 is consistent with, and helps explain, many of the unique biophysical and immunological features of this region. PMID:19008954

  17. Safety and immunogenicity of a live recombinant canarypox virus expressing HIV type 1 gp120 MN MN tm/gag/protease LAI (ALVAC-HIV, vCP205) followed by a p24E-V3 MN synthetic peptide (CLTB-36) administered in healthy volunteers at low risk for HIV infection. AGIS Group and L'Agence Nationale de Recherches sur Le Sida.

    Science.gov (United States)

    Salmon-Céron, D; Excler, J L; Finkielsztejn, L; Autran, B; Gluckman, J C; Sicard, D; Matthews, T J; Meignier, B; Valentin, C; El Habib, R; Blondeau, C; Raux, M; Moog, C; Tartaglia, J; Chong, P; Klein, M; Milcamps, B; Heshmati, F; Plotkin, S

    1999-05-01

    A live recombinant canarypox vector expressing HIV-1 gpl20 MN tm/gag/protease LAI (ALVAC-HIV, vCP205) alone or boosted by a p24E-V3 MN synthetic peptide (CLTB-36) was tested in healthy volunteers at low risk for HIV infection for their safety and immunogenicity. Both antigens were well tolerated. ALVAC-HIV (vCP205) induced low levels of neutralizing antibodies against HIV-1 MN in 33% of the volunteers. None of them had detectable neutralizing antibodies against a nonsyncytium-inducing HIV-1 clade B primary isolate (Bx08). After the fourth injection of vCP205, CTL activity was detected in 33% of the volunteers and was directed against Env, Gag, and Pol. This activity was mediated by both CD4+ and CD8+ lymphocytes. On the other hand, the CLTB-36 peptide was poorly immunogenic and induced no neutralizing antibodies or CTLs. Although the ALVAC-HIV (vCP205) and CLTB-36 prime-boost regimen was not optimal, further studies with ALVAC-HIV (vCP205) are warranted because of its clear induction of a cellular immune response and utility as a priming agent for other subunit antigens such as envelope glycoproteins, pseudoparticles, or new peptides.

  18. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion

    International Nuclear Information System (INIS)

    Ou Wu; Silver, Jonathan

    2006-01-01

    Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion

  19. Subtle differences in selective pressures applied on the envelope gene of HIV-1 in pregnant versus non-pregnant women.

    Science.gov (United States)

    Ransy, Doris G; Lord, Etienne; Caty, Martine; Lapointe, Normand; Boucher, Marc; Diallo, Abdoulaye Baniré; Soudeyns, Hugo

    2018-04-17

    Pregnancy is associated with modulations of maternal immunity that contribute to foeto-maternal tolerance. To understand whether and how these alterations impact antiviral immunity, a detailed cross-sectional analysis of selective pressures exerted on HIV-1 envelope amino-acid sequences was performed in a group of pregnant (n = 32) and non-pregnant (n = 44) HIV-infected women in absence of treatment with antiretroviral therapy (ART). Independent of HIV-1 subtype, p-distance, dN and dS were all strongly correlated with one another but were not significantly different in pregnant as compared to non-pregnant patients. Differential levels of selective pressure applied on different Env subdomains displayed similar yet non-identical patterns between the two groups, with pressure applied on C1 being significantly lower in constant regions C1 and C2 than in V1, V2, V3 and C3. To draw a general picture of the selection applied on the envelope and compensate for inter-individual variations, we performed a binomial test on selection frequency data pooled from pregnant and non-pregnant women. This analysis uncovered 42 positions, present in both groups, exhibiting statistically-significant frequency of selection that invariably mapped to the surface of the Env protein, with the great majority located within epitopes recognized by Env-specific antibodies or sites associated with the development of cross-reactive neutralizing activity. The median frequency of occurrence of positive selection per site was significantly lower in pregnant versus non-pregnant women. Furthermore, examination of the distribution of positively selected sites using a hypergeometric test revealed that only 2 positions (D137 and S142) significantly differed between the 2 groups. Taken together, these result indicate that pregnancy is associated with subtle yet distinctive changes in selective pressures exerted on the HIV-1 Env protein that are compatible with transient modulations of maternal

  20. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L.

    1991-01-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  1. New subtypes and genetic recombination in HIV type 1-infecting patients with highly active antiretroviral therapy in Peru (2008-2010).

    Science.gov (United States)

    Yabar, Carlos Augusto; Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-12-01

    HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country.

  2. Isolation and characterization of a replication-competent molecular clone of an HIV-1 circulating recombinant form (CRF33_01B.

    Directory of Open Access Journals (Sweden)

    Kok Keng Tee

    Full Text Available A growing number of emerging HIV-1 recombinants classified as circulating recombinant forms (CRFs have been identified in Southeast Asia in recent years, establishing a molecular diversity of increasing complexity in the region. Here, we constructed a replication-competent HIV-1 clone for CRF33_01B (designated p05MYKL045.1, a newly identified recombinant comprised of CRF01_AE and subtype B. p05MYKL045.1 was reconstituted by cloning of the near full-length HIV-1 sequence from a newly-diagnosed individual presumably infected heterosexually in Kuala Lumpur, Malaysia. The chimeric clone, which contains the 5' LTR (long terminal repeat region of p93JP-NH1 (a previously isolated CRF01_AE infectious clone, showed robust viral replication in the human peripheral blood mononuclear cells. This clone demonstrated robust viral propagation and profound syncytium formation in CD4+, CXCR4-expressing human glioma NP-2 cells, indicating that p05MYKL045.1 is a CXCR4-using virus. Viral propagation, however, was not detected in various human T cell lines including MT-2, M8166, Sup-T1, H9, Jurkat, Molt-4 and PM1. p05MYKL045.1 appears to proliferate only in restricted host range, suggesting that unknown viral and/or cellular host factors may play a role in viral infectivity and replication in human T cell lines. Availability of a CRF33_01B molecular clone will be useful in facilitating the development of vaccine candidates that match the HIV-1 strains circulating in Southeast Asia.

  3. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  4. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  5. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development.

    Directory of Open Access Journals (Sweden)

    Tim-Henrik Bruun

    Full Text Available An increasing number of broadly neutralizing monoclonal antibodies (bnMAb against the HIV-1 envelope (Env protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i to determine and quantify the enrichment nMAb binders and (ii to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.

  6. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    Science.gov (United States)

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  7. Guatemalan plants extracts as virucides against HIV-1 infection.

    Science.gov (United States)

    Bedoya, Luis M; Alvarez, Amparo; Bermejo, Mercedes; González, Nuria; Beltrán, Manuela; Sánchez-Palomino, Sonsoles; Cruz, Sully M; Gaitán, Isabel; del Olmo, Esther; Escarcena, Ricardo; García, Pablo A; Cáceres, Armando; San Feliciano, Arturo; Alcamí, José

    2008-06-01

    Prevention methods to avoid transmission of pathogens, including HIV, are crucial in the control of infectious diseases, not only to block epidemic spread but to avoid long-term treatments leading to emergence of resistances and drug associated side effects. Together with vaccine development, the discovery of new virucidal agents represents a research priority in this setting. In the screening of new compounds with antiviral activity, three Guatemalan plant extracts from Justicia reptans, Neurolaena lobata and Pouteria viridis were evaluated with a classic antiviral assay and were found to inhibit HIV replication. This activity was corroborated by an original recombinant virus assay, leading us to perform a deeper study of the virucidal activity. Active fractions were non-toxic in vitro and also inhibited other enveloped viruses. Moreover, these fractions were able to inhibit the transfer of HIV from dendritic cells (DCs) to lymphocytes, that represents the main way of HIV spread in vivo.

  8. NF-κB and p53 Are the Dominant Apoptosis-inducing Transcription Factors Elicited by the HIV-1 Envelope

    OpenAIRE

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-01-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-κB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor κB (NF-κB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p5...

  9. Binding of HIV-1 gp120 to DC-SIGN promotes ASK-1-dependent activation-induced apoptosis of human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Yongxiong Chen

    2013-01-01

    Full Text Available During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC, including DC-SIGN⁺ cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN⁺ blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV⁺ serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN⁺ DC that were isolated directly from HIV-1⁺ individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential

  10. Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C

    NARCIS (Netherlands)

    Klasse, P. J.; LaBranche, Celia C.; Ketas, Thomas J.; Ozorowski, Gabriel; Cupo, Albert; Pugach, Pavel; Ringe, Rajesh P.; Golabek, Michael; van Gils, Marit J.; Guttman, Miklos; Lee, Kelly K.; Wilson, Ian A.; Butera, Salvatore T.; Ward, Andrew B.; Montefiori, David C.; Sanders, Rogier W.; Moore, John P.

    2016-01-01

    We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were

  11. Full-length characterization of A1/D intersubtype recombinant genomes from a therapy-induced HIV type 1 controller during acute infection and his noncontrolling partner

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Vinner, L.; Therrien, D.

    2008-01-01

    To increase the understanding of mechanisms of HIV control we have genetically and immunologically characterized a full-length HIV-1 isolated from an acute infection in a rare case of undetectable viremia. The subject, a 43-year-old Danish white male (DK1), was diagnosed with acute HIV-1 infection...... and phylogenic trees were constructed and diversity and evolutionary distances were calculated. Intracellular IFN-gamma in CD8(+)CD3(+) T-lymphocyte reactions was investigated by intracellular flow cytometry (IC-FACS). Virus isolates from both patients were A1D intersubtype recombinants showing 98% sequence...

  12. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  13. Human CNS cultures exposed to HIV-1 gp120 reproduce dendritic injuries of HIV-1-associated dementia

    Directory of Open Access Journals (Sweden)

    Hammond Robert R

    2004-05-01

    Full Text Available Abstract HIV-1-associated dementia remains a common subacute to chronic central nervous system degeneration in adult and pediatric HIV-1 infected populations. A number of viral and host factors have been implicated including the HIV-1 120 kDa envelope glycoprotein (gp120. In human post-mortem studies using confocal scanning laser microscopy for microtubule-associated protein 2 and synaptophysin, neuronal dendritic pathology correlated with dementia. In the present study, primary human CNS cultures exposed to HIV-1 gp120 at 4 weeks in vitro suffered gliosis and dendritic damage analogous to that described in association with HIV-1-associated dementia.

  14. Identifying HIV-1 dual infections

    Directory of Open Access Journals (Sweden)

    Cornelissen Marion

    2007-09-01

    Full Text Available Abstract Transmission of human immunodeficiency virus (HIV is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus and superinfections (second infection after a specific immune response to the first infecting strain has developed can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR strains could recombine to produce a pan-resistant, transmittable virus. We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA, counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the

  15. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection.

    Science.gov (United States)

    Kozlowski, Hannah N; Lai, Eric T L; Havugimana, Pierre C; White, Carl; Emili, Andrew; Sakac, Darinka; Binnington, Beth; Neschadim, Anton; McCarthy, Stephen D S; Branch, Donald R

    2016-08-24

    It has been reported that crocodile blood contains potent antibacterial and antiviral properties. However, its effects on HIV-1 infection remain unknown. We obtained blood from saltwater crocodiles to examine whether serum or plasma could inhibit HIV-1 infection. We purified plasma fractions then used liquid chromatography-mass spectrometry to identify the inhibitory protein factor(s). We then analyzed the ability of recombinant proteins to recapitulate HIV-1 inhibition and determine their mechanism of action. Crocodylus porosus plasma was tested for inhibition of Jurkat T-cell HIV-1 infection. Inhibitor(s) were purified by reverse-phase chromatography then identified by protein liquid chromatography-mass spectrometry. Anti-HIV-1 activity of purified plasma or recombinant proteins were measured by p24 enzyme-linked immunosorbent assay and luciferase readouts, and mechanism of action was determined by measuring HIV-1 RNA, cDNA and transcription (using 1G5 cells). Crocodile plasma contains potent inhibitors of HIV-1IIIB infection, which were identified as histones. Recombinant human histones H1 and H2A significantly reduced HIV-1JR-FL infection (IC50 of 0.79 and 0.45 μmol/l, respectively), whereas H4 enhanced JR-FL luciferase activity. The inhibitory effects of crocodile plasma, recombinant H1 or recombinant H2A on HIV-1 infection were during or post-viral transcription. Circulating histones in crocodile blood, possibly released by neutrophil extracellular traps, are significant inhibitors of HIV-1 infection in-vitro. Extracellular recombinant histones have different effects on HIV-1 transcription and protein expression and are downregulated in HIV-1 patients. Circulating histones may be a novel resistance factor during HIV-1 infection, and peptide versions should be explored as future HIV-1 therapeutics that modulate viral transcription.

  16. Production of Mucosally Transmissible SHIV Challenge Stocks from HIV-1 Circulating Recombinant Form 01_AE env Sequences.

    Directory of Open Access Journals (Sweden)

    Lawrence J Tartaglia

    2016-02-01

    Full Text Available Simian-human immunodeficiency virus (SHIV challenge stocks are critical for preclinical testing of vaccines, antibodies, and other interventions aimed to prevent HIV-1. A major unmet need for the field has been the lack of a SHIV challenge stock expressing circulating recombinant form 01_AE (CRF01_AE env sequences. We therefore sought to develop mucosally transmissible SHIV challenge stocks containing HIV-1 CRF01_AE env derived from acutely HIV-1 infected individuals from Thailand. SHIV-AE6, SHIV-AE6RM, and SHIV-AE16 contained env sequences that were >99% identical to the original HIV-1 isolate and did not require in vivo passaging. These viruses exhibited CCR5 tropism and displayed a tier 2 neutralization phenotype. These challenge stocks efficiently infected rhesus monkeys by the intrarectal route, replicated to high levels during acute infection, and established chronic viremia in a subset of animals. SHIV-AE16 was titrated for use in single, high dose as well as repetitive, low dose intrarectal challenge studies. These SHIV challenge stocks should facilitate the preclinical evaluation of vaccines, monoclonal antibodies, and other interventions targeted at preventing HIV-1 CRF01_AE infection.

  17. The HIV-1 envelope transmembrane domain binds TLR2 through a distinct dimerization motif and inhibits TLR2-mediated responses.

    Directory of Open Access Journals (Sweden)

    Eliran Moshe Reuven

    2014-08-01

    Full Text Available HIV-1 uses a number of means to manipulate the immune system, to avoid recognition and to highjack signaling pathways. HIV-1 infected cells show limited Toll-Like Receptor (TLR responsiveness via as yet unknown mechanisms. Using biochemical and biophysical approaches, we demonstrate that the trans-membrane domain (TMD of the HIV-1 envelope (ENV directly interacts with TLR2 TMD within the membrane milieu. This interaction attenuates TNFα, IL-6 and MCP-1 secretion in macrophages, induced by natural ligands of TLR2 both in in vitro and in vivo models. This was associated with decreased levels of ERK phosphorylation. Furthermore, mutagenesis demonstrated the importance of a conserved GxxxG motif in driving this interaction within the membrane milieu. The administration of the ENV TMD in vivo to lipotechoic acid (LTA/Galactosamine-mediated septic mice resulted in a significant decrease in mortality and in tissue damage, due to the weakening of systemic macrophage activation. Our findings suggest that the TMD of ENV is involved in modulation of the innate immune response during HIV infection. Furthermore, due to the high functional homology of viral ENV proteins this function may be a general character of viral-induced immune modulation.

  18. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody.

    Directory of Open Access Journals (Sweden)

    Maria Trott

    Full Text Available HIV neutralizing antibodies (nAbs represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP and elite controllers (EC, represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.

  19. Saturation Mutagenesis of the HIV-1 Envelope CD4 Binding Loop Reveals Residues Controlling Distinct Trimer Conformations.

    Directory of Open Access Journals (Sweden)

    Maria Duenas-Decamp

    2016-11-01

    Full Text Available The conformation of HIV-1 envelope (Env glycoprotein trimers is key in ensuring protection against waves of neutralizing antibodies generated during infection, while maintaining sufficient exposure of the CD4 binding site (CD4bs for viral entry. The CD4 binding loop on Env is an early contact site for CD4 while penetration of a proximal cavity by CD4 triggers Env conformational changes for entry. The role of residues in the CD4 binding loop in regulating the conformation of the trimer and trimer association domain (TAD was investigated using a novel saturation mutagenesis approach. Single mutations identified, resulted in distinct trimer conformations affecting CD4bs exposure, the glycan shield and the TAD across diverse HIV-1 clades. Importantly, mutations that improve access to the CD4bs without exposing the immunodominant V3 loop were identified. The different trimer conformations identified will affect the specificity and breadth of nabs elicited in vivo and are important to consider in design of Env immunogens for vaccines.

  20. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  1. Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    Full Text Available A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an

  2. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  3. Taking multiple infections of cells and recombination into account leads to small within-host effective-population-size estimates of HIV-1.

    Directory of Open Access Journals (Sweden)

    Rajesh Balagam

    2011-01-01

    Full Text Available Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, N(e, are widely varying. Models assuming HIV-1 evolution to be neutral estimate N(e~10²-10⁴, smaller than the inverse mutation rate of HIV-1 (~10⁵, implying the predominance of stochastic forces. In contrast, a model that includes selection estimates N(e>10⁵, suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate N(e~10³-10⁴, implying predominantly stochastic evolution. Interestingly, we find that N(e and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of N(e>10⁵ reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with N(e~10³-10⁴ may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.

  4. IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria.

    Directory of Open Access Journals (Sweden)

    Kwan-Ki Hwang

    Full Text Available B-cell chronic lymphocytic leukemia (B-CLL patients expressing unmutated immunoglobulin heavy variable regions (IGHVs use the IGHV1-69 B cell receptor (BCR in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s (≥21 aa. IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54 of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54 allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies.

  5. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    International Nuclear Information System (INIS)

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan; Li, Lin; Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen; Jiang, Shibo

    2010-01-01

    Research highlights: → One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. → N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. → These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  6. First report of an HIV-1 triple recombinant of subtypes B, C and F in Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Weissenbacher Mercedes

    2006-09-01

    Full Text Available Abstract We describe the genetic diversity of currently transmitted strains of HIV-1 in men who have sex with men (MSM in Buenos Aires, Argentina between 2000 and 2004. Nearly full-length sequence analysis of 10 samples showed that 6 were subtype B, 3 were BF recombinant and 1 was a triple recombinant of subtypes B, C and F. The 3 BF recombinants were 3 different unique recombinant forms. Full genome analysis of one strain that was subtype F when sequenced in pol was found to be a triple recombinant. Gag and pol were predominantly subtype F, while gp120 was subtype B; there were regions of subtype C interspersed throughout. The young man infected with this strain reported multiple sexual partners and sero-converted between May and November of 2004. This study reported for the first time the full genome analysis of a triple recombinant between subtypes B, C and F, that combines in one virus the three most common subtypes in South America.

  7. Conformational preferences of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV-1 CAN0A based on solution NMR: comparison to a related immunogenic peptide from HIV-1 RF.

    Science.gov (United States)

    Vu, H M; de Lorimier, R; Moody, M A; Haynes, B F; Spicer, L D

    1996-04-23

    A critical problem to overcome on HIV vaccine design is the variability among HIV strains. One strategy to solve this problem is the construction of multicomponent immunogens reflective of common HIV motifs. Currently, it is not known if these motifs should be based primarily on amino acid sequence or higher-order structure of the viral proteins of a combination of the two. In this paper, we report NMR-derived solution conformations for a sympathetic peptide taken from the C4 and V3 domains of HIV-1 CAN0A gp120 envelope protein. This peptide, designated T1-SP10CAN0(A), is compared to a recently reported C4-V3 peptide. T1-SP10RF(A) from the HIV-1 RF strain [de Lorimier et al. (1994) Biochemistry 33, 2055-2062], in terms of conformational features and immune responses in mice [Haynes et al. (1995) AIDS Res. Hum. Retroviruses 11, 211-221]. The T1 segment of 16 amino acids from the gp120 C4 domain is identical in both peptides and exhibits nascent helical character. The SP10 region, taken from the gp120 V3 loop, differs from that of T1-SP10RF(A) in both sequence and conformations. A reverse turn is observed at the conserved GPGX sequence. The rest of the Sp10 domain is extended with the exception of the last three residues which show evidence for a helical arrangement. Modeling of the turn region of the T1-SP10CAN0(A) peptide shows exposure of a continuous apolar stretch of side chains similar to that reported in the crystal structure of a V3 peptide from HIV-1 MN complexed with a monoclonal antibody [Rini et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6325-6329]. this hydrophobic patch is interrupted by a charged Lys residue in the T1-SP10RF(A) peptide. This observation suggests that the HIV-1 CAN0A and HIV-1 RF C4-V3 peptides can induce widely different anti-HIV antibodies. consistent with immunogenic results.

  8. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    Science.gov (United States)

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  9. HIV-1 envelope sequence-based diversity measures for identifying recent infections.

    Directory of Open Access Journals (Sweden)

    Alexis Kafando

    Full Text Available Identifying recent HIV-1 infections is crucial for monitoring HIV-1 incidence and optimizing public health prevention efforts. To identify recent HIV-1 infections, we evaluated and compared the performance of 4 sequence-based diversity measures including percent diversity, percent complexity, Shannon entropy and number of haplotypes targeting 13 genetic segments within the env gene of HIV-1. A total of 597 diagnostic samples obtained in 2013 and 2015 from recently and chronically HIV-1 infected individuals were selected. From the selected samples, 249 (134 from recent versus 115 from chronic infections env coding regions, including V1-C5 of gp120 and the gp41 ectodomain of HIV-1, were successfully amplified and sequenced by next generation sequencing (NGS using the Illumina MiSeq platform. The ability of the four sequence-based diversity measures to correctly identify recent HIV infections was evaluated using the frequency distribution curves, median and interquartile range and area under the curve (AUC of the receiver operating characteristic (ROC. Comparing the median and interquartile range and evaluating the frequency distribution curves associated with the 4 sequence-based diversity measures, we observed that the percent diversity, number of haplotypes and Shannon entropy demonstrated significant potential to discriminate recent from chronic infections (p<0.0001. Using the AUC of ROC analysis, only the Shannon entropy measure within three HIV-1 env segments could accurately identify recent infections at a satisfactory level. The env segments were gp120 C2_1 (AUC = 0.806, gp120 C2_3 (AUC = 0.805 and gp120 V3 (AUC = 0.812. Our results clearly indicate that the Shannon entropy measure represents a useful tool for predicting HIV-1 infection recency.

  10. A plasma membrane localization signal in the HIV-1 envelope cytoplasmic domain prevents localization at sites of vesicular stomatitis virus budding and incorporation into VSV virions.

    Science.gov (United States)

    Johnson, J E; Rodgers, W; Rose, J K

    1998-11-25

    Previous studies showed that the HIV-1 envelope (Env) protein was not incorporated into vesicular stomatitis virus (VSV) virions unless its cytoplasmic tail was replaced with that of the VSV glycoprotein (G). To determine whether the G tail provided a positive incorporation signal for Env, or if sequences in the Env tail prevented incorporation, we generated mutants of Env with its 150-amino-acid tail shortened to 29, 10, or 3 amino acids (Envtr mutants). Cells infected with VSV recombinants expressing these proteins or an Env-G tail hybrid showed similar amounts of Env protein at the surface. The Env-G tail hybrid or the Envtr3 mutant were incorporated at the highest levels into budding VSV virions. In contrast, the Envtr29 or Envtr10 mutants were incorporated poorly. These results defined a signal preventing incorporation within the 10 membrane-proximal amino acids of the Env tail. Confocal microscopy revealed that this signal functioned by causing localization of human immunodeficiency virus type 1 Env to plasma membrane domains distinct from the VSV budding sites, where VSV proteins were concentrated. Copyright 1998 Academic Press.

  11. Biological characterization of HIV type 1 envelope V3 regions from mothers and infants associated with perinatal transmission.

    Science.gov (United States)

    Matala, E; Hahn, T; Yedavalli, V R; Ahmad, N

    2001-12-10

    Our previous study has shown that the human immunodeficiency virus type 1 (HIV-1) envelope V3 region minor genotypes of infected mothers were transmitted to their infants and predominated initially as a homogeneous virus population in the infants (Ahmad N, Baroudy BM, Baker RC, et al.: J Virol 1995;69:1001-1012). Here we have characterized the biological properties, including cellular tropism, replication efficiency, cytopathic effects, and coreceptor utilization, of these V3 region isolates from mothers and infants. Nineteen V3 region sequences from three mother-infant pairs, including the minor variants of mothers and the major variants of infants as characterized in our previous study, were reciprocally inserted into an HIV-1 infectious molecular clone, pNL4-3, and chimeric viruses were generated by DNA transfections into HeLa cells. Equal amounts of chimeric viruses were then used to infect T lymphocyte cell lines (A3.01 and MT-2), primary blood lymphocytes (PBLs), primary monocyte-derived macrophages (MDMs), and coreceptor cell lines. We found that the V3 region chimeras failed to replicate in T lymphocyte cell lines but replicated in MDMs and PBLs, albeit at reduced levels compared with R5 laboratory HIV-1 strains. In addition, the V3 region chimeras were able to infect the HOS-CD4(+)CCR5(+) cell line, suggesting CCR5 coreceptor utilization. Moreover, the V3 region chimeras were unable to induce syncytia in MT-2 cells, indicative of non-syncytium-inducing (NSI) phenotypes. In conclusion, the HIV-1 minor genotypes of infected mothers with macrophage-tropic and NSI or R5 phenotypes are transmitted to their infants and are initially maintained with the same properties.

  12. Characterization of hepatitis C virus recombinants with chimeric E1/E2 envelope proteins and identification of single amino acids in the E2 stem region important for entry

    DEFF Research Database (Denmark)

    Carlsen, Thomas H R; Scheel, Troels K H; Ramirez, Santseharay

    2013-01-01

    The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a....../release. Studies of E1/E2 heterodimerization showed no differences in intracellular E1/E2 interaction for chimeric constructs with or without E2 stem region mutations. Interestingly, the E2 stem region mutations allowed efficient entry, which was verified in 1a-E1/1b-E2 HCV pseudoparticle assays. A CD81 inhibition...

  13. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania☆,☆☆

    Science.gov (United States)

    Bakari, Muhammad; Aboud, Said; Nilsson, Charlotta; Francis, Joel; Buma, Deus; Moshiro, Candida; Aris, Eric A.; Lyamuya, Eligius F.; Janabi, Mohamed; Godoy-Ramirez, Karina; Joachim, Agricola; Polonis, Victoria R.; Bråve, Andreas; Earl, Patricia; Robb, Merlin; Marovich, Mary; Wahren, Britta; Pallangyo, Kisali; Biberfeld, Gunnel; Mhalu, Fred; Sandström, Eric

    2016-01-01

    Background We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. Methods Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1 mg intradermally (id), n = 20, or 3.8 mg intramuscularly (im), n = 20, or placebo, n = 20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (108 pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. Results The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8+ and CD4+ T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01 AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher

  14. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Rui Jia

    Full Text Available The interferon-inducible transmembrane (IFITM proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1 strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3 is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117-125, which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117-125 mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117-125 to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117-125, mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.

  15. HIV-1 genetic diversity and its distribution characteristics among newly diagnosed HIV-1 individuals in Hebei province, China.

    Science.gov (United States)

    Lu, Xinli; Zhao, Cuiying; Wang, Wei; Nie, Chenxi; Zhang, Yuqi; Zhao, Hongru; Chen, Suliang; Cui, Ze

    2016-01-01

    Since the first HIV-1 case in 1989, Hebei province has presented a clearly rising trend of HIV-1 prevalence, and HIV-1 genetic diversity has become the vital barrier to HIV prevention and control in this area. To obtain detailed information of HIV-1 spread in different populations and in different areas of Hebei, a cross-sectional HIV-1 molecular epidemiological investigation was performed across the province. Blood samples of 154 newly diagnosed HIV-1 individuals were collected from ten prefectures in Hebei using stratified sampling. Partial gag and env genes were amplified and sequenced. HIV-1 genotypes were identified by phylogenetic tree analyses. Among the 139 subjects genotyped, six HIV-1 subtypes were identified successfully, including subtype B (41.0 %), CRF01_AE (40.3 %), CRF07_BC (11.5 %), CRF08_BC (4.3 %), unique recombinant forms (URFs) (1.4 %) and subtype C (1.4 %). Subtype B was identified as the most frequent subtype. Two URF recombination patterns were the same as CRF01_AE/B. HIV-1 genotype distribution showed a significant statistical difference in different demographic characteristics, such as source (P  0.05). The differences in HIV-1 genotype distribution were closely associated with transmission routes. Particularly, all six subtype strains were found in heterosexuals, showing that HIV-1 has spread from the high-risk populations to the general populations in Hebei, China. In addition, CRF01_AE instead of subtype B has become the major strain of HIV-1 infection among homosexuals. Our study revealed HIV-1 evolution and genotype distribution by investigating newly diagnosed HIV-1 individuals in Hebei, China. This study provides important information to enhance the strategic plan for HIV prevention and control in China.

  16. Evidence that Vpu modulates HIV-1 Gag-envelope interaction towards envelope incorporation and infectivity in a cell type dependent manner.

    Directory of Open Access Journals (Sweden)

    Archana Gautam

    Full Text Available The HIV-1 Vpu is required for efficient virus particle release from the plasma membrane and intracellular CD4 degradation in infected cells. In the present study, we found that the loss of virus infectivity as a result of envelope (Env incorporation defect caused by a Gag matrix (MA mutation (L30E was significantly alleviated by introducing a start codon mutation in vpu. Inactivation of Vpu partially restored the Env incorporation defect imposed by L30E substitution in MA. This effect was found to be comparable in cell types such as 293T, HeLa, NP2 and GHOST as well as in peripheral blood mononuclear cells (PBMC and monocyte-derived macrophages (MDM. However, in HeLa cells BST-2 knockdown was found to further alleviate the effect of Vpu inactivation on infectivity of L30E mutant. Our data demonstrated that the impaired infectivity of virus particles due to Env incorporation defect caused by MA mutation was modulated by start codon mutation in Vpu.

  17. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    Science.gov (United States)

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  18. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors

    Directory of Open Access Journals (Sweden)

    Simmonds Peter

    2008-01-01

    Full Text Available Abstract Background HIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node. Results R5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542, but with increased resistance to the anti-CD4 monoclonal antibody (mab, Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120. Conclusion Variation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.

  19. Variations in the Biological Functions of HIV-1 Clade C Envelope in a SHIV-Infected Rhesus Macaque during Disease Progression.

    Directory of Open Access Journals (Sweden)

    For Yue Tso

    Full Text Available A better understanding of how the biological functions of the HIV-1 envelope (Env changes during disease progression may aid the design of an efficacious anti-HIV-1 vaccine. Although studies from patient had provided some insights on this issue, the differences in the study cohorts and methodology had make it difficult to reach a consensus of the variations in the HIV-1 Env functions during disease progression. To this end, an animal model that can be infected under controlled environment and reflect the disease course of HIV-1 infection in human will be beneficial. Such an animal model was previously demonstrated by the infection of macaque with SHIV, expressing HIV-1 clade C Env V1-V5 region. By using this model, we examined the changes in biological functions of Env in the infected animal over the entire disease course. Our data showed an increase in the neutralization resistance phenotype over time and coincided with the decrease in the net charges of the V1-V5 region. Infection of PBMC with provirus expressing various Env clones, isolated from the infected animal over time, showed a surprisingly better replicative fitness for viruses expressing the Env from early time point. Biotinylation and ELISA data also indicated a decrease of cell-surface-associated Env and virion-associated gp120 content with disease progression. This decrease did not affect the CD4-binding capability of Env, but were positively correlated with the decrease of Env fusion ability. Interestingly, some of these changes in biological functions reverted to the pre-AIDS level during advance AIDS. These data suggested a dynamic relationship between the Env V1-V5 region with the host immune pressure. The observed changes of biological functions in this setting might reflect and predict those occurring during natural disease progression in human.

  20. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Directory of Open Access Journals (Sweden)

    Mouhssin Oufir

    2011-01-01

    Full Text Available An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  1. Glycans Flanking the Hypervariable Connecting Peptide between the A and B Strands of the V1/V2 Domain of HIV-1 gp120 Confer Resistance to Antibodies That Neutralize CRF01_AE Viruses

    Science.gov (United States)

    O’Rourke, Sara M.; Sutthent, Ruengpung; Phung, Pham; Mesa, Kathryn A.; Frigon, Normand L.; To, Briana; Horthongkham, Navin; Limoli, Kay; Wrin, Terri; Berman, Phillip W.

    2015-01-01

    Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149. PMID:25793890

  2. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  3. Priming B cell-mediated anti-HIV envelope responses by vaccination allows for the long-term control of infection in macaques exposed to a R5-tropic SHIV

    International Nuclear Information System (INIS)

    Buckner, Clarisa; Gines, Leoned G.; Saunders, Cheryl J.; Vojtech, Lucia; Srivastava, Indresh; Gettie, Agegnehu; Bohm, Rudolph; Blanchard, James; Barnett, Susan W.; Safrit, Jeffrey T.; Stamatatos, Leonidas

    2004-01-01

    The potential of vaccine-elicited anti-HIV envelope antibodies to control HIV-infection was evaluated by immunizing macaques with the HIV envelope protein and transiently depleting them of their CD8+ cells before intravenous challenge with the pathogenic CCR5-tropic SIV/HIV chimeric virus, SHIV SF162P4 . Although sterilizing immunity was not achieved, all vaccinated animals effectively controlled infection and remained free of disease for the duration of observation (over 3 years). In contrast, during the same period, the control animals progressed to disease. Both the vaccinees and the controls developed robust cell-mediated antiviral and neutralizing antibody responses following infection. A comparative analysis of these responses suggests that the more effective long-term control of infection by the vaccinated animals is due to the more rapid development of anti-HIV envelope antibodies. These studies suggest that priming by vaccination of B cell anti-HIV envelope responses maybe crucial for the long-term control of HIV infection

  4. Creation of a high yielding recombinant maize hybrid for the production of a microbicide for the prevention of HIV-1 transmission

    CSIR Research Space (South Africa)

    Barros, E

    2010-06-01

    Full Text Available The aim of this study was to use conventional breeding to increase the production in maize of the human monoclonal antibody 2G12, known to have potential therapeutic properties in the prevention of HIV-1 transmission. The recombinant antibody...

  5. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  6. Binding kinetics of aptamers to gp120 derived from HIV-1 subtype C

    CSIR Research Space (South Africa)

    Millroy, L

    2011-02-01

    Full Text Available aptamers with specific and strong affinity to the HIV-1 envelope glycoprotein gp120 and act as novel HIV-1 entry inhibitor drugs or as targeted drug delivery systems to HIV-1 infected cells. Prior to any downstream applications, novel gp120 aptamers need...

  7. HIVBrainSeqDB: a database of annotated HIV envelope sequences from brain and other anatomical sites

    Directory of Open Access Journals (Sweden)

    O'Connor Niall

    2010-12-01

    Full Text Available Abstract Background The population of HIV replicating within a host consists of independently evolving and interacting sub-populations that can be genetically distinct within anatomical compartments. HIV replicating within the brain causes neurocognitive disorders in up to 20-30% of infected individuals and is a viral sanctuary site for the development of drug resistance. The primary determinant of HIV neurotropism is macrophage tropism, which is primarily determined by the viral envelope (env gene. However, studies of genetic aspects of HIV replicating in the brain are hindered because existing repositories of HIV sequences are not focused on neurotropic virus nor annotated with neurocognitive and neuropathological status. To address this need, we constructed the HIV Brain Sequence Database. Results The HIV Brain Sequence Database is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i brain, brainstem, and spinal cord; (ii meninges, choroid plexus, and CSF; (iii blood and lymphoid; and (iv other (bone marrow, colon, lung, liver, etc. Patient coding is correlated across studies, allowing sequences from the same patient to be grouped to increase statistical power. Using Cytoscape, we visualized relationships between studies, patients and sequences, illustrating interconnections between studies and the varying depth of sequencing, patient number, and tissue representation across studies

  8. Escape from Human Immunodeficiency Virus Type 1 (HIV-1 Entry Inhibitors

    Directory of Open Access Journals (Sweden)

    Carol D. Weiss

    2012-12-01

    Full Text Available The human immunodeficiency virus (HIV enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.

  9. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Science.gov (United States)

    Currier, Jeffrey R; Ngauy, Viseth; de Souza, Mark S; Ratto-Kim, Silvia; Cox, Josephine H; Polonis, Victoria R; Earl, Patricia; Moss, Bernard; Peel, Sheila; Slike, Bonnie; Sriplienchan, Somchai; Thongcharoen, Prasert; Paris, Robert M; Robb, Merlin L; Kim, Jerome; Michael, Nelson L; Marovich, Mary A

    2010-11-15

    We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7) or 10(8) pfu) or intradermally (ID; 10(6) or 10(7) pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51)Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6) PBMC at 10(8) pfu IM), but high in response rate (70% (51)Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8) pfu IM); (ii) predominantly HIV Env-specific CD4(+) T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 10(8) pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8) pfu IM). MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  10. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Currier

    2010-11-01

    Full Text Available We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7 or 10(8 pfu or intradermally (ID; 10(6 or 10(7 pfu at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2. Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6 PBMC at 10(8 pfu IM, but high in response rate (70% (51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8 pfu IM; (ii predominantly HIV Env-specific CD4(+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route; (iv dose- and route-dependent with 10(8 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8 pfu IM.MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  11. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  12. HIV-1 and recombinant gp120 affect the survival and differentiation of human vessel wall-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Pasquinelli Gianandrea

    2011-05-01

    Full Text Available Abstract Background HIV infection elicits the onset of a progressive immunodeficiency and also damages several other organs and tissues such as the CNS, kidney, heart, blood vessels, adipose tissue and bone. In particular, HIV infection has been related to an increased incidence of cardiovascular diseases and derangement in the structure of blood vessels in the absence of classical risk factors. The recent characterization of multipotent mesenchymal cells in the vascular wall, involved in regulating cellular homeostasis, suggests that these cells may be considered a target of HIV pathogenesis. This paper investigated the interaction between HIV-1 and vascular wall resident human mesenchymal stem cells (MSCs. Results MSCs were challenged with classical R5 and X4 HIV-1 laboratory strains demonstrating that these strains are able to enter and integrate their retro-transcribed proviral DNA in the host cell genome. Subsequent experiments indicated that HIV-1 strains and recombinant gp120 elicited a reliable increase in apoptosis in sub-confluent MSCs. Since vascular wall MSCs are multipotent cells that may be differentiated towards several cell lineages, we challenged HIV-1 strains and gp120 on MSCs differentiated to adipogenesis and endotheliogenesis. Our experiments showed that the adipogenesis is increased especially by upregulated PPARγ activity whereas the endothelial differentiation induced by VEGF treatment was impaired with a downregulation of endothelial markers such as vWF, Flt-1 and KDR expression. These viral effects in MSC survival and adipogenic or endothelial differentiation were tackled by CD4 blockade suggesting an important role of CD4/gp120 interaction in this context. Conclusions The HIV-related derangement of MSC survival and differentiation may suggest a direct role of HIV infection and gp120 in impaired vessel homeostasis and in genesis of vessel damage observed in HIV-infected patients.

  13. Broadly neutralizing antibodies for treatment and prevention of HIV-1 infection.

    Science.gov (United States)

    Cohen, Yehuda Z; Caskey, Marina

    2018-04-24

    Several anti-HIV-1 broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency that target different HIV-1 envelope epitopes have been identified. bNAbs are an attractive new strategy for HIV-1 prevention and therapy, and potentially, for long-term remission or cure. Here, we discuss findings from early clinical studies that have evaluated these novel bNAbs. Phase 1 studies of bNAbs targeting two distinct HIV-1 envelope epitopes have demonstrated their favorable safety and pharmacokinetic profile. Single bNAb infusions led to significant, but transient, decline in viremia with selection of escape variants. A single bNAb also delayed viral rebound in ART-treated participants who discontinued ART. Importantly, in-vivo efficacy was related to antibody potency and to the level of preexisting resistance. Studies in animal models showed that bNAbs can clear HIV-infected cells and modulate host immune responses. These findings suggest that bNAbs may target the latent HIV reservoir in humans and could contribute to long-term remission of HIV-1 infection. bNAbs may offer advantages over traditional ART for both the prevention and treatment of HIV-1 infection. In addition, bNAbs may target the latent viral reservoir. bNAb combinations and bNAbs engineered for prolonged half-life and increased potency are currently undergoing clinical evaluation.

  14. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate......-binding activity and was dependent on glycosylation of gp120. Native dodecameric SP-D bound to HIV gp120 more strongly than native trimeric SP-D. Since one common polymorphic form of SP-D is predominantly expressed as trimers and associated with lower blood levels, these individuals may have less effective innate...

  15. Molecular detection of HIV-1 subtype B, CRF01_AE, CRF33_01B, and newly emerging recombinant lineages in Malaysia.

    Science.gov (United States)

    Chook, Jack Bee; Ong, Lai Yee; Takebe, Yutaka; Chan, Kok Gan; Choo, Martin; Kamarulzaman, Adeeba; Tee, Kok Keng

    2015-03-01

    A molecular genotyping assay for human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia is difficult to design because of the high level of genetic diversity. We developed a multiplex real-time polymerase chain reaction (PCR) assay to detect subtype B, CRF01_AE, CRF33_01B, and three newly described circulating recombinant forms, (CRFs) (CRF53_01B, CRF54_01B, and CRF58_01B). A total of 785 reference genomes were used for subtype-specific primers and TaqMan probes design targeting the gag, pol, and env genes. The performance of this assay was compared and evaluated with direct sequencing and phylogenetic analysis. A total of 180 HIV-infected subjects from Kuala Lumpur, Malaysia were screened and 171 samples were successfully genotyped, in agreement with the phylogenetic data. The HIV-1 genotype distribution was as follows: subtype B (16.7%); CRF01_AE (52.8%); CRF33_01B (24.4%); CRF53_01B (1.1%); CRF54_01B (0.6%); and CRF01_AE/B unique recombinant forms (4.4%). The overall accuracy of the genotyping assay was over 95.0%, in which the sensitivities for subtype B, CRF01_AE, and CRF33_01B detection were 100%, 100%, and 97.7%, respectively. The specificity of genotyping was 100%, inter-subtype specificities were > 95% and the limit of detection of 10(3) copies/mL for plasma. The newly developed real-time PCR assay offers a rapid and cost-effective alternative for large-scale molecular epidemiological surveillance for HIV-1. © The American Society of Tropical Medicine and Hygiene.

  16. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Science.gov (United States)

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  17. Identification of dual-tropic HIV-1 using evolved neural networks.

    Science.gov (United States)

    Fogel, Gary B; Lamers, Susanna L; Liu, Enoch S; Salemi, Marco; McGrath, Michael S

    2015-11-01

    Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however, it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1 isolates that assist in the biological understanding of dual-tropism and develop an approach for their detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence was represented by 73 structural, biochemical and regional features. These features were provided to an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    Science.gov (United States)

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  19. Selection dramatically reduces effective population size in HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Mittler John E

    2008-05-01

    Full Text Available Abstract Background In HIV-1 evolution, a 100–100,000 fold discrepancy between census size and effective population size (Ne has been noted. Although it is well known that selection can reduce Ne, high in vivo mutation and recombination rates complicate attempts to quantify the effects of selection on HIV-1 effective size. Results We use the inbreeding coefficient and the variance in allele frequency at a linked neutral locus to estimate the reduction in Ne due to selection in the presence of mutation and recombination. With biologically realistic mutation rates, the reduction in Ne due to selection is determined by the strength of selection, i.e., the stronger the selection, the greater the reduction. However, the dependence of Ne on selection can break down if recombination rates are very high (e.g., r ≥ 0.1. With biologically likely recombination rates, our model suggests that recurrent selective sweeps similar to those observed in vivo can reduce within-host HIV-1 effective population sizes by a factor of 300 or more. Conclusion Although other factors, such as unequal viral reproduction rates and limited migration between tissue compartments contribute to reductions in Ne, our model suggests that recurrent selection plays a significant role in reducing HIV-1 effective population sizes in vivo.

  20. [Molecular epidemiological analysis of HIV-1 variants circulating in Russia in 1987-2015].

    Science.gov (United States)

    Lapovok, I A; Lopatukhin, A E; Kireev, D E; Kazennova, E V; Lebedev, A V; Bobkova, M R; Kolomeets, A N; Turbina, G I; Shipulin, G A; Ladnaya, N N; Pokrovsky, V V

    To simultaneously analyze HIV-1 samples from all Russian regions to characterize the epidemiology of HIV infection in the country as a whole. The most extensive study was conducted to examine nucleotide sequences of the pol gene of HIV-1 samples isolated from HIV-positive persons in different regions of Russia, with the diagnosis date being fixed during 1987-2015. The nucleotide sequences of the HIV-1 genome were analyzed using computer programs and on-line applications to identify a virus subtype and new recombinant forms. The nucleotide sequences of the pol gene were analyzed in 1697 HIV-1 samples and the findings were that the genetic variant subtype A1 (IDU-A) was dominant throughout the entire territory of Russia (in more than 80% of all infection cases). Other virus variants circulating in Russia were analyzed; the phenomenon of the higher distribution of the recombinant form CRF63/02A in Siberia, which had been previously described in the literature, was also confirmed. Four new recombinant forms generated by the virus subtype A1 (IDU-A) and B and two AG recombinant forms were found. There was a larger genetic distance between the viruses of IDU-A variant circulating among the injecting drug users and those infected through heterosexual contact, as well as a change in the viruses of subtype G that caused the outbreak in the south of the country over time in 1988-1989. The findings demonstrate continuous HIV-1 genetic variability and recombination over time in Russia, as well as increased genetic diversity with higher HIV infection rates in the population.

  1. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120.

    Science.gov (United States)

    deCamp, Allan C; Rolland, Morgane; Edlefsen, Paul T; Sanders-Buell, Eric; Hall, Breana; Magaret, Craig A; Fiore-Gartland, Andrew J; Juraska, Michal; Carpp, Lindsay N; Karuna, Shelly T; Bose, Meera; LePore, Steven; Miller, Shana; O'Sullivan, Annemarie; Poltavee, Kultida; Bai, Hongjun; Dommaraju, Kalpana; Zhao, Hong; Wong, Kim; Chen, Lennie; Ahmed, Hasan; Goodman, Derrick; Tay, Matthew Z; Gottardo, Raphael; Koup, Richard A; Bailer, Robert; Mascola, John R; Graham, Barney S; Roederer, Mario; O'Connell, Robert J; Michael, Nelson L; Robb, Merlin L; Adams, Elizabeth; D'Souza, Patricia; Kublin, James; Corey, Lawrence; Geraghty, Daniel E; Frahm, Nicole; Tomaras, Georgia D; McElrath, M Juliana; Frenkel, Lisa; Styrchak, Sheila; Tovanabutra, Sodsai; Sobieszczyk, Magdalena E; Hammer, Scott M; Kim, Jerome H; Mullins, James I; Gilbert, Peter B

    2017-01-01

    Although the HVTN 505 DNA/recombinant adenovirus type 5 vector HIV-1 vaccine trial showed no overall efficacy, analysis of breakthrough HIV-1 sequences in participants can help determine whether vaccine-induced immune responses impacted viruses that caused infection. We analyzed 480 HIV-1 genomes sampled from 27 vaccine and 20 placebo recipients and found that intra-host HIV-1 diversity was significantly lower in vaccine recipients (P ≤ 0.04, Q-values ≤ 0.09) in Gag, Pol, Vif and envelope glycoprotein gp120 (Env-gp120). Furthermore, Env-gp120 sequences from vaccine recipients were significantly more distant from the subtype B vaccine insert than sequences from placebo recipients (P = 0.01, Q-value = 0.12). These vaccine effects were associated with signatures mapping to CD4 binding site and CD4-induced monoclonal antibody footprints. These results suggest either (i) no vaccine efficacy to block acquisition of any viral genotype but vaccine-accelerated Env evolution post-acquisition; or (ii) vaccine efficacy against HIV-1s with Env sequences closest to the vaccine insert combined with increased acquisition due to other factors, potentially including the vaccine vector.

  2. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    International Nuclear Information System (INIS)

    Shang Liang; Hunter, Eric

    2010-01-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.

  3. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination.

    Directory of Open Access Journals (Sweden)

    Danushka K Wijesundara

    Full Text Available Qualitative characteristics of cytotoxic CD8+ T cells (CTLs are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV-HIV prime followed by a recombinant vaccinia virus (VV-HIV booster were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold, to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.

  4. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Ranasinghe, Charani; Jackson, Ronald J; Lidbury, Brett A; Parish, Christopher R; Quah, Benjamin J C

    2014-01-01

    Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.

  5. Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses.

    Directory of Open Access Journals (Sweden)

    Michael D Moore

    2009-10-01

    Full Text Available Once transcribed, the nascent full-length RNA of HIV-1 must travel to the appropriate host cell sites to be translated or to find a partner RNA for copackaging to form newly generated viruses. In this report, we sought to delineate the location where HIV-1 RNA initiates dimerization and the influence of the RNA transport pathway used by the virus on downstream events essential to viral replication. Using a cell-fusion-dependent recombination assay, we demonstrate that the two RNAs destined for copackaging into the same virion select each other mostly within the cytoplasm. Moreover, by manipulating the RNA export element in the viral genome, we show that the export pathway taken is important for the ability of RNA molecules derived from two viruses to interact and be copackaged. These results further illustrate that at the point of dimerization the two main cellular export pathways are partially distinct. Lastly, by providing Gag in trans, we have demonstrated that Gag is able to package RNA from either export pathway, irrespective of the transport pathway used by the gag mRNA. These findings provide unique insights into the process of RNA export in general, and more specifically, of HIV-1 genomic RNA trafficking.

  6. HIV-1 subtypes among intravenous drug users from two neighboring cities in São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    M.A.A. Rossini

    2001-01-01

    Full Text Available In order to assess the molecular epidemiology of HIV-1 in two neighboring cities located near the epicenter of the HIV-1 epidemics in Brazil (Santos and São Paulo, we investigated 83 HIV-1 strains obtained from samples collected in 1995 from intravenous drug users. The V3 through V5 region of the envelope of gp 120 was analyzed by heteroduplex mobility analysis. Of the 95 samples, 12 (12.6% were PCR negative (6 samples from each group; low DNA concentration was the reason for non-amplification in half of these cases. Of the 42 typed cases from São Paulo, 34 (81%, 95% confidence limits 74.9 to 87.0% were B and 8 (19%, 95% confidence limits 12.9 to 25.0% were F, whereas of the 41 typed cases from Santos, 39 (95%, 95% confidence limits 91.6 to 98.4% were B and 2 (5%, 95% confidence limits 1.6 to 8.4% were C. We therefore confirm the relationship between clade F and intravenous drug use in São Paulo, and the presence of clade C in Santos. The fact that different genetic subtypes of HIV-1 are co-circulating indicates a need for continuous surveillance for these subtypes as well as for recombinant viruses in Brazil.

  7. Phylogenetic analysis of HIV-1 pol gene: first subgenomic evidence of CRF29-BF among Iranian HIV-1 patients

    Directory of Open Access Journals (Sweden)

    Kazem Baesi

    2014-09-01

    Full Text Available Objective: To identify the dominant subtype among the HIV-1 strains circulation in Iran. Methods: In this cross sectional study 100 HIV positive patients participated. HIV-1 RNA was extracted from plasma. RT nested-PCR was performed and the final products were sequenced and phylogenetically analyzed; reference sequences were downloaded from Los Alamos, aligned with Iranian pol sequences in the study and analyzed by neighbor-joining method. Results: The results of the phylogenetic analysis showed that HIV-1 subtype CRF-35AD was the dominant subtype among HIV-1 infected patients in Iran; this analysis also suggested a new circulating recombinant form that had not previously been identified in Iran: CRF-29BF. Conclusions: The impact of HIV diversity on pathogenesis, transmission and clinical management have been discussed in different studies; therefore, analyses of HIV genetic diversity is required to design effective antiretroviral strategies for different HIV subtypes.

  8. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    Science.gov (United States)

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. ERManI (Endoplasmic Reticulum Class I α-Mannosidase) Is Required for HIV-1 Envelope Glycoprotein Degradation via Endoplasmic Reticulum-associated Protein Degradation Pathway.

    Science.gov (United States)

    Zhou, Tao; Frabutt, Dylan A; Moremen, Kelley W; Zheng, Yong-Hui

    2015-09-04

    Previously, we reported that the mitochondrial translocator protein (TSPO) induces HIV-1 envelope (Env) degradation via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, but the mechanism was not clear. Here we investigated how the four ER-associated glycoside hydrolase family 47 (GH47) α-mannosidases, ERManI, and ER-degradation enhancing α-mannosidase-like (EDEM) proteins 1, 2, and 3, are involved in the Env degradation process. Ectopic expression of these four α-mannosidases uncovers that only ERManI inhibits HIV-1 Env expression in a dose-dependent manner. In addition, genetic knock-out of the ERManI gene MAN1B1 using CRISPR/Cas9 technology disrupts the TSPO-mediated Env degradation. Biochemical studies show that HIV-1 Env interacts with ERManI, and between the ERManI cytoplasmic, transmembrane, lumenal stem, and lumenal catalytic domains, the catalytic domain plays a critical role in the Env-ERManI interaction. In addition, functional studies show that inactivation of the catalytic sites by site-directed mutagenesis disrupts the ERManI activity. These studies identify ERManI as a critical GH47 α-mannosidase in the ER-associated protein degradation pathway that initiates the Env degradation and suggests that its catalytic domain and enzymatic activity play an important role in this process. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Genetic Diversity and Evolution of HIV-1 Subtype B Epidemic in Puerto Rico.

    Science.gov (United States)

    López, Pablo; Rivera-Amill, Vanessa; Rodríguez, Nayra; Vargas, Freddie; Yamamura, Yasuhiro

    2015-12-23

    HIV-1 epidemics in Caribbean countries, including Puerto Rico, have been reported to be almost exclusively associated with the subtype B virus (HIV-1B). However, while HIV infections associated with other clades have been only sporadically reported, no organized data exist to accurately assess the prevalence of non-subtype B HIV-1 infection. We analyzed the nucleotide sequence data of the HIV pol gene associated with HIV isolates from Puerto Rican patients. The sequences (n = 945) were obtained from our "HIV Genotyping" test file, which has been generated over a period of 14 years (2001-2014). REGA subtyping tool found the following subtypes: B (90%), B-like (3%), B/D recombinant (6%), and D/B recombinant (0.6%). Though there were fewer cases, the following subtypes were also found (in the given proportions): A1B (0.3%), BF1 (0.2%), subtype A (01-AE) (0.1%), subtype A (A2) (0.1%), subtype F (12BF) (0.1%), CRF-39 BF-like (0.1%), and others (0.1%). Some of the recombinants were identified as early as 2001. Although the HIV epidemic in Puerto Rico is primarily associated with HIV-1B virus, our analysis uncovered the presence of other subtypes. There was no indication of subtype C, which has been predominantly associated with heterosexual transmission in other parts of the world.

  11. The Genetic Diversity and Evolution of HIV-1 Subtype B Epidemic in Puerto Rico

    Directory of Open Access Journals (Sweden)

    Pablo López

    2015-12-01

    Full Text Available HIV-1 epidemics in Caribbean countries, including Puerto Rico, have been reported to be almost exclusively associated with the subtype B virus (HIV-1B. However, while HIV infections associated with other clades have been only sporadically reported, no organized data exist to accurately assess the prevalence of non-subtype B HIV-1 infection. We analyzed the nucleotide sequence data of the HIV pol gene associated with HIV isolates from Puerto Rican patients. The sequences (n = 945 were obtained from our “HIV Genotyping” test file, which has been generated over a period of 14 years (2001–2014. REGA subtyping tool found the following subtypes: B (90%, B-like (3%, B/D recombinant (6%, and D/B recombinant (0.6%. Though there were fewer cases, the following subtypes were also found (in the given proportions: A1B (0.3%, BF1 (0.2%, subtype A (01-AE (0.1%, subtype A (A2 (0.1%, subtype F (12BF (0.1%, CRF-39 BF-like (0.1%, and others (0.1%. Some of the recombinants were identified as early as 2001. Although the HIV epidemic in Puerto Rico is primarily associated with HIV-1B virus, our analysis uncovered the presence of other subtypes. There was no indication of subtype C, which has been predominantly associated with heterosexual transmission in other parts of the world.

  12. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins.

    Science.gov (United States)

    Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta

    2017-07-01

    Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIVmac251 Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial

    Science.gov (United States)

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F.; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S. Munir; Fenizia, Claudio; Lifson, Jeffrey D.; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David

    2013-01-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines. PMID:23175374

  14. HIV-1 pol diversity among female bar and hotel workers in Northern Tanzania.

    Science.gov (United States)

    Kiwelu, Ireen E; Novitsky, Vladimir; Kituma, Elimsaada; Margolin, Lauren; Baca, Jeannie; Manongi, Rachel; Sam, Noel; Shao, John; McLane, Mary F; Kapiga, Saidi H; Essex, M

    2014-01-01

    A national ART program was launched in Tanzania in October 2004. Due to the existence of multiple HIV-1 subtypes and recombinant viruses co-circulating in Tanzania, it is important to monitor rates of drug resistance. The present study determined the prevalence of HIV-1 drug resistance mutations among ART-naive female bar and hotel workers, a high-risk population for HIV-1 infection in Moshi, Tanzania. A partial HIV-1 pol gene was analyzed by single-genome amplification and sequencing in 45 subjects (622 pol sequences total; median number of sequences per subject, 13; IQR 5-20) in samples collected in 2005. The prevalence of HIV-1 subtypes A1, C, and D, and inter-subtype recombinant viruses, was 36%, 29%, 9% and 27%, respectively. Thirteen different recombination patterns included D/A1/D, C/A1, A1/C/A1, A1/U/A1, C/U/A1, C/A1, U/D/U, D/A1/D, A1/C, A1/C, A2/C/A2, CRF10_CD/C/CRF10_CD and CRF35_AD/A1/CRF35_AD. CRF35_AD was identified in Tanzania for the first time. All recombinant viruses in this study were unique, suggesting ongoing recombination processes among circulating HIV-1 variants. The prevalence of multiple infections in this population was 16% (n = 7). Primary HIV-1 drug resistance mutations to RT inhibitors were identified in three (7%) subjects (K65R plus Y181C; N60D; and V106M). In some subjects, polymorphisms were observed at the RT positions 41, 69, 75, 98, 101, 179, 190, and 215. Secondary mutations associated with NNRTIs were observed at the RT positions 90 (7%) and 138 (6%). In the protease gene, three subjects (7%) had M46I/L mutations. All subjects in this study had HIV-1 subtype-specific natural polymorphisms at positions 36, 69, 89 and 93 that are associated with drug resistance in HIV-1 subtype B. These results suggested that HIV-1 drug resistance mutations and natural polymorphisms existed in this population before the initiation of the national ART program. With increasing use of ARV, these results highlight the importance of drug

  15. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5.

    Science.gov (United States)

    Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella

    2013-05-01

    The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  16. Sero- and Molecular Epidemiology of HIV-1 in Papua Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Muhammad Qushai Yunifiar M

    2017-11-01

    Full Text Available Background: human immunodeficiency virus (HIV infection and acquired immune deficiency syndrome (AIDS cause serious health problems and affect the Indonesian economy. Papua province has the highest prevalence of HIV infection in the country; however, epidemiological data are limited. Therefore, in order to reveal the current situation of HIV/AIDS in Papua province, sero- and molecular epidemiological studies of HIV were conducted. Methods: serological tests were conducted on 157 healthy individuals from the general population residing in Paniai, Papua. In addition, a molecular epidemiological study was then conducted on HIV type 1 (HIV-1 genes derived from infected individuals. Peripheral blood samples from HIV-1-positive individuals and 15 additionally enrolled, previously confirmed HIV-1-positive individuals were subjected to a genotypic analysis. Results: serological tests revealed that 2 out of 157 (1.27% healthy individuals were HIV-positive. In addition, HIV-1 subtyping revealed that subtype B and CRF01_AE were the major subtype and circulating recombinant form (CRF of HIV-1 prevalent in the region, while subtype A1 and a recombinant form including viral gene fragments of CRF01_AE and subtype B was also detected. In addition, HIV drug resistance-associated major mutations were detected in the reverse transcriptase gene derived from infected individual on antiretroviral therapy. Conclusion: these results provide important information for clearer understanding on the current situation of HIV/AIDS in Papua province in Indonesia.

  17. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial.

    Science.gov (United States)

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S Munir; Fenizia, Claudio; Lifson, Jeffrey D; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David; Franchini, Genoveffa

    2013-02-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.

  18. HIV-1 subtypes B and C unique recombinant forms (URFs and transmitted drug resistance identified in the Western Cape Province, South Africa.

    Directory of Open Access Journals (Sweden)

    Graeme Brendon Jacobs

    Full Text Available South Africa has the largest worldwide HIV/AIDS population with 5.6 million people infected and at least 2 million people on antiretroviral therapy. The majority of these infections are caused by HIV-1 subtype C. Using genotyping methods we characterized HIV-1 subtypes of the gag p24 and pol PR and RT fragments, from a cohort of female participants in the Western Cape Province, South Africa. These participants were recruited as part of a study to assess the combined brain and behavioural effects of HIV and early childhood trauma. The partial HIV-1 gag and pol fragments of 84 participants were amplified by PCR and sequenced. Different online tools and manual phylogenetic analysis were used for HIV-1 subtyping. Online tools included: REGA HIV Subtyping tool version 3; Recombinant Identification Program (RIP; Context-based Modeling for Expeditious Typing (COMET; jumping profile Hidden Markov Models (jpHMM webserver; and subtype classification using evolutionary algorithms (SCUEAL. HIV-1 subtype C predominates within the cohort with a prevalence of 93.8%. We also show, for the first time, the presence of circulating BC strains in at least 4.6% of our study cohort. In addition, we detected transmitted resistance associated mutations in 4.6% of analysed sequences. With tourism and migration rates to South Africa currently very high, we are detecting more and more HIV-1 URFs within our study populations. It is still unclear what role these unique strains will play in terms of long term antiretroviral treatment and what challenges they will pose to vaccine development. Nevertheless, it remains vitally important to monitor the HIV-1 diversity in South Africa and worldwide as the face of the epidemic is continually changing.

  19. The Oncolytic Virus MG1 Targets and Eliminates Cells Latently Infected With HIV-1: Implications for an HIV Cure.

    Science.gov (United States)

    Ranganath, Nischal; Sandstrom, Teslin S; Burke Schinkel, Stephanie C; Côté, Sandra C; Angel, Jonathan B

    2018-02-14

    Cells latently infected with human immunodeficiency virus (HIV) evade immune- and drug-mediated clearance. These cells harbor intracellular signaling defects, including impairment of the antiviral type I interferon response. Such defects have also been observed in several cancers and have been exploited for the development of therapeutic oncolytic viruses, including the recombinant Maraba virus (MG1). We therefore hypothesized that MG1 would infect and eliminate cells latently infected with HIV-1, while sparing healthy uninfected cells. Preferential infection and elimination by MG1 was first demonstrated in cell lines latently infected with HIV-1. Following this, a reduction in HIV-1 DNA and inducible HIV-1 replication was observed following MG1 infection of latently infected, resting CD4+ T cells generated using an in vitro model of latency. Last, MG1 infection resulted in a reduction in HIV-1 DNA and inducible HIV-1 replication in memory CD4+ T cells isolated from effectively treated, HIV-1-infected individuals. Our results therefore highlight a novel approach to eliminate the latent HIV-1 reservoir. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  1. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies.

    Science.gov (United States)

    deCamp, Allan; Hraber, Peter; Bailer, Robert T; Seaman, Michael S; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K; Zolla-Pazner, Susan; LaBranche, Celia C; Mascola, John R; Korber, Bette T; Montefiori, David C

    2014-03-01

    Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit

  2. Emergence of new forms of human immunodeficiency virus type 1 intersubtype recombinants in central Myanmar.

    Science.gov (United States)

    Motomura, K; Kusagawa, S; Kato, K; Nohtomi, K; Lwin, H H; Tun, K M; Thwe, M; Oo, K Y; Lwin, S; Kyaw, O; Zaw, M; Nagai, Y; Takebe, Y

    2000-11-20

    We have previously shown that HIV-1 env subtypes B' (a Thai-B cluster within subtype B) and E (CRF01_AE) are distributed in Yangon, the capital city of Myanmar. However, HIV strains from the rest of country have not yet been genetically characterized. In the present study, we determined env (C2/V3) and gag (p17) subtypes of 25 specimens from central Myanmar (Mandalay). Phylogenetic analyses identified 5 subtype C (20%), in addition to 10 CRF01_AE (40%) and 4 subtype B' (16%). Interestingly, the remaining six specimens (24%) showed discordance between gag and env subtypes; three gag subtype B'/env subtype C, one gag subtype B'/env subtype E, one gag subtype C/env subtype B', and one gag subtype C/env subtype E. These discordant specimens were found frequently among injecting drug users (4 of 12, 33%) and female commercial sex workers (2 of 8, 25%) engaging in high-risk behaviors. The recombinant nature of these HIV-1 strains was verified in three specimens, indicating the presence of new forms of HIV-1 intersubtype C/B' and C/B'/E recombinants with different recombination breakpoints. The data suggest that multiple subtypes of B', C, and CRF01_AE are cocirculating in central Myanmar, leading to the evolution of new forms of intersubtype recombinants among the risk populations exhibiting one of the highest HIV infection rates in the region.

  3. Structural Study of a New HIV-1 Entry Inhibitor and Interaction with the HIV-1 Fusion Peptide in Dodecylphosphocholine Micelles.

    Science.gov (United States)

    Pérez, Yolanda; Gómara, Maria José; Yuste, Eloísa; Gómez-Gutierrez, Patricia; Pérez, Juan Jesús; Haro, Isabel

    2017-08-25

    Previous studies support the hypothesis that the envelope GB virus C (GBV-C) E1 protein interferes the HIV-1 entry and that a peptide, derived from the region 139-156 of this protein, has been defined as a novel HIV-1 entry inhibitor. In this work, we firstly focus on the characterization of the structural features of this peptide, which are determinant for its anti-HIV-1 activity and secondly, on the study of its interaction with the proposed viral target (i.e., the HIV-1 fusion peptide). We report the structure of the peptide determined by NMR spectroscopy in dodecylphosphocholine (DPC) micelles solved by using restrained molecular dynamics calculations. The acquisition of different NMR experiments in DPC micelles (i.e., peptide-peptide titration, diffusion NMR spectroscopy, and addition of paramagnetic relaxation agents) allows a proposal of an inhibition mechanism. We conclude that a 18-mer peptide from the non-pathogenic E1 GBV-C protein, with a helix-turn-helix structure inhibits HIV-1 by binding to the HIV-1 fusion peptide at the membrane level, thereby interfering with those domains in the HIV-1, which are critical for stabilizing the six-helix bundle formation in a membranous environment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evidence for Within-Host Genetic Recombination among the Human Pegiviral Strains in HIV Infected Subjects.

    Science.gov (United States)

    Wu, Haoming; Padhi, Abinash; Xu, Junqiang; Gong, Xiaoyan; Tien, Po

    2016-01-01

    The non-pathogenic Human Pegivirus (HPgV, formerly GBV-C/HGV), the most prevalent RNA virus worldwide, is known to be associated with reduced morbidity and mortality in HIV-infected individuals. Although previous studies documented its ubiquity and important role in HIV-infected individuals, little is known about the underlying genetic mechanisms that maintain high genetic diversity of HPgV within the HIV-infected individuals. To assess the within-host genetic diversity of HPgV and forces that maintain such diversity within the co-infected hosts, we performed phylogenetic analyses taking into account 229 HPgV partial E1-E2 clonal sequences representing 15 male and 8 female co-infected HIV patients from Hubei province of central China. Our results revealed the presence of eleven strongly supported clades. While nine clades belonged to genotype 3, two clades belonged to genotype 2. Additionally, four clades that belonged to genotype 3 exhibited inter-clade recombination events. The presence of clonal sequences representing multiple clades within the HIV-infected individual provided the evidence of co-circulation of HPgV strains across the region. Of the 23 patients, six patients (i.e., five males and one female) were detected to have HPgV recombinant sequences. Our results also revealed that while male patients shared the viral strains with other patients, viral strains from the female patients had restricted dispersal. Taken together, the present study revealed that multiple infections with divergent HPgV viral strains may have caused within-host genetic recombination, predominantly in male patients, and therefore, could be the major driver in shaping genetic diversity of HPgV.

  5. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Science.gov (United States)

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  6. Tumour necrosis factor-α stimulates HIV-1 replication in single-cycle infection of human term placental villi fragments in a time, viral dose and envelope dependent manner

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2006-06-01

    Full Text Available Abstract Background The placenta plays an important role in the control of in utero HIV-1 mother-to-child transmission (MTCT. Proinflammatory cytokines in the placental environment are particularly implicated in this control. We thus investigated the effect of TNF-α on HIV-1 expression in human placental tissues in vitro. Results Human placental chorionic villi fragments were infected with varying doses of luciferase reporter HIV-1 pseudotypes with the R5, X4-Env or the vesicular stomatitis virus protein G (VSV-G. Histocultures were then performed in the presence or absence of recombinant human TNF-α. Luciferase activity was measured at different time points in cell lysates or on whole fragments using ex vivo imaging systems. A significant increase in viral expression was detected in placental fragments infected with 0.2 ng of p24 antigen/fragment (P = 0.002 of VSV-G pseudotyped HIV-1 in the presence of TNF-α seen after 120 hours of culture. A time independent significant increase of viral expression by TNF-α was observed with higher doses of VSV-G pseudotyped HIV-1. When placental fragments were infected with R5-Env pseudotyped HIV-1, a low level of HIV expression at 168 hours of culture was detected for 3 of the 5 placentas tested, with no statistically significant enhancement by TNF-α. Infection with X4-Env pseudotyped HIV-1 did not lead to any detectable luciferase activity at any time point in the absence or in the presence of TNF-α. Conclusion TNF-α in the placental environment increases HIV-1 expression and could facilitate MTCT of HIV-1, particularly in an inflammatory context.

  7. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality.

    Directory of Open Access Journals (Sweden)

    David Beauparlant

    2017-03-01

    Full Text Available A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.

  8. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations.

    Directory of Open Access Journals (Sweden)

    Siriwat Akapirat

    Full Text Available Sexual transmission is the principal driver of the human immunodeficiency virus (HIV pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080 efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2 previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE and Case A2 (subtype B in cervico-vaginal mucus (CVM, seminal plasma (SP and rectal secretions (RS from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively, followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11-17 fold and SP (2 fold two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS, gp70V1V2 92TH023 (CVM, SP, and Case A2 (CVM correlated with plasma IgG levels (p<0.001. Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA in anogenital secretions will help determine their role in preventing mucosal HIV acquisition.

  9. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  10. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate.

    Science.gov (United States)

    Visciano, Maria Luisa; Tagliamonte, Maria; Stewart-Jones, Guillaume; Heyndrickx, Leo; Vanham, Guido; Jansson, Marianne; Fomsgaard, Anders; Grevstad, Berit; Ramaswamy, Meghna; Buonaguro, Franco M; Tornesello, Maria Lina; Biswas, Priscilla; Scarlatti, Gabriella; Buonaguro, Luigi

    2013-07-08

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutralizing activity against homologous and heterologous viruses. In the present study, we generated a recombinant trimeric soluble gp140, derived from a previously identified Ugandan A-clade HIV field isolate (gp14094UG018). Antibodies elicited in immunized rabbits show a broad binding pattern to HIV envelopes of different clades. An epitope mapping analysis reveals that, on average, the binding is mostly focused on the C1, C2, V3, V5 and C5 regions. Immune sera show neutralization activity to Tier 1 isolates of different clades, demonstrating cross clade neutralizing activity which needs to be further broadened by possible structural modifications of the clade A gp14094UG018. Our results provide a rationale for the design and evaluation of immunogens and the clade A gp14094UG018 shows promising characteristics for potential involvement in an effective HIV vaccine with broad activity.

  11. Update on HIV-1 diversity in Africa: a decade in review.

    Science.gov (United States)

    Lihana, Raphael W; Ssemwanga, Deogratius; Abimiku, Alash'le; Ndembi, Nicaise

    2012-01-01

    HIV-1 strains have diversified extensively through mutation and recombination since their initial transmission to human beings many decades ago in Central Africa in the first part of the 20th Century (between 1915 and 1941). The upward trend in global HIV-1 diversity has continued unabated, with newer groups, subtypes, and unique and circulating recombinants increasingly being reported, especially in Africa. In this review, we focus on the extensive diversity of HIV-1 over a decade (2000-2011), in 51 countries of the three African geographic regions (eastern and southern, western and central, and northern Africa) as per the WHO/UNAIDS 2010 classification. References for this review were identified through searches of PubMed, conference abstracts, Google Scholar, and Springer Online Archives Collection. We retrieved 273 citations, of which 200 reported HIV-1 diversity from Africa from January, 2000 to August, 2011. Articles resulting from these searches and relevant references cited in those articles were reviewed. Articles published in English and French were included. There has been a high diversity of HIV-1 in its epicenter, west-central Africa. A few subtypes, namely, A (A1, A2, A3, A4, A5), C, CRF02_AG, and D accounted for about 85% of new infections. Subtype A and D have been stable in East Africa; C in southern Africa; A, G, CRF02_AG, and CRF06_cpx in western Africa; and subtype B and CRF02_AG in northern Africa. Recently a new putative group, designated P, was reported to be found in two Cameroonians. The regional distributions of individual subtypes and recombinants are broadly stable, although unique/circulating recombinant forms may play an increasing role in the HIV pandemic. Understanding the kinetics and directions of this continuing adaptation and its impact on viral fitness, immunogenicity, and pathogenicity are crucial to the successful design of effective HIV vaccines. There is need for regular monitoring and review updates, such as the one

  12. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    Science.gov (United States)

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  13. Mucosal IgA Responses: Damaged in Established HIV Infection—Yet, Effective Weapon against HIV Transmission

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    2017-11-01

    Full Text Available HIV infection not only destroys CD4+ T cells but also inflicts serious damage to the B-cell compartment, such as lymphadenopathy, destruction of normal B-cell follicle architecture, polyclonal hypergammaglobulinemia, increased apoptosis of B cells, and irreversible loss of memory B-cell responses with advanced HIV disease. Subepithelial B cells and plasma cells are also affected, which results in loss of mucosal IgG and IgA antibodies. This leaves the mucosal barrier vulnerable to bacterial translocation. The ensuing immune activation in mucosal tissues adds fuel to the fire of local HIV replication. We postulate that compromised mucosal antibody defenses also facilitate superinfection of HIV-positive individuals with new HIV strains. This in turn sets the stage for the generation of circulating recombinant forms of HIV. What can the mucosal B-cell compartment contribute to protect a healthy, uninfected host against mucosal HIV transmission? Here, we discuss proof-of-principle studies we have performed using passive mucosal immunization, i.e., topical administration of preformed anti-HIV monoclonal antibodies (mAbs as IgG1, dimeric IgA1 (dIgA1, and dIgA2 isotypes, alone or in combination. Our data indicate that mucosally applied anti-HIV envelope mAbs can provide potent protection against mucosal transmission of simian-human immunodeficiency virus. Our review also discusses the induction of mucosal antibody defenses by active vaccination and potential strategies to interrupt the vicious cycle of bacterial translocation, immune activation, and stimulation of HIV replication in individuals with damaged mucosal barriers.

  14. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  15. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kai [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yong [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Lou, Jizhong, E-mail: jlou@ibp.ac.cn [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-05-13

    Enveloped virus, such as HIV-1, employs membrane fusion mechanism to invade into host cell. HIV-1 gp41 ectodomain uses six-helix bundle configuration to accomplish this process. Using molecular dynamic simulations, we confirmed the stability of this six-helix bundle by showing high occupancy of hydrogen bonds and hydrophobic interactions. Key residues and interactions important for the bundle integration were characterized by force-induced unfolding simulations of six-helix bundle, exhibiting the collapse order of these groups of interactions. Moreover, our results in some way concerted with a previous theory that the formation of coiled-coil choose a route which involved cooperative interactions between the N-terminal and C-terminal helix. -- Highlights: •Unfolding of HIV-1 gp41 six-helix bundle is studied by molecular dynamics simulations. •Specific interactions responsible for the stability of HIV-1 envelope post-fusion conformation were identified. •The gp41 six-helix bundle transition inducing membrane fusion might be a cooperative process of the three subunits.

  17. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    Science.gov (United States)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801

  18. The latest evidence for possible HIV-1 curative strategies.

    Science.gov (United States)

    Pham, Hanh Thi; Mesplède, Thibault

    2018-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains a major health issue worldwide. In developed countries, antiretroviral therapy has extended its reach from treatment of people living with HIV-1 to post-exposure prophylaxis, treatment as prevention, and, more recently, pre-exposure prophylaxis. These healthcare strategies offer the epidemiological tools to curve the epidemic in rich settings and will be concomitantly implemented in developing countries. One of the remaining challenges is to identify an efficacious curative strategy. This review manuscript will focus on some of the current curative strategies aiming at providing a sterilizing or functional cure to HIV-1-positive individuals. These include the following: early treatment initiation in post-treatment controllers as a long-term HIV-1 remission strategy, latency reversal, gene editing with or without stem cell transplantation, and antibodies against either the viral envelope protein or the host integrin α4β7.

  19. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach.

    Science.gov (United States)

    Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto

    2013-11-14

    The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.

  20. A single gp120 residue can affect HIV-1 tropism in macaques.

    Directory of Open Access Journals (Sweden)

    Gregory Q Del Prete

    2017-09-01

    Full Text Available Species-dependent variation in proteins that aid or limit virus replication determines the ability of lentiviruses to jump between host species. Identifying and overcoming these differences facilitates the development of animal models for HIV-1, including models based on chimeric SIVs that express HIV-1 envelope (Env glycoproteins, (SHIVs and simian-tropic HIV-1 (stHIV strains. Here, we demonstrate that the inherently poor ability of most HIV-1 Env proteins to use macaque CD4 as a receptor is improved during adaptation by virus passage in macaques. We identify a single amino acid, A281, in HIV-1 Env that consistently changes during adaptation in macaques and affects the ability of HIV-1 Env to use macaque CD4. Importantly, mutations at A281 do not markedly affect HIV-1 Env neutralization properties. Our findings should facilitate the design of HIV-1 Env proteins for use in non-human primate models and thus expedite the development of clinically relevant reagents for testing interventions against HIV-1.

  1. [HIV-1 genetic variability in non Spaniard infected children].

    Science.gov (United States)

    Piñeiro Pérez, R; Mellado Peña, M J; Holguín, A; Cilleruelo, M J; García Hortelano, M; Villota, J; Martín Fontelos, P

    2009-01-01

    The prevalence of HIV-1 non-B subtypes (HIV-NBS) is increasing in Europe, because of emigration from countries where genetic variants are endemic. Although HIV-NBS could have a different clinical evolution and could respond differently to antiretrovirals (AR) than B-subtypes, these variant's response remain undocumented. To identify HIV-1 genetic variants and to determine clinical evolution in a non-Spaniard children infected with HIV-1. Children with HIV-1 infection from endemic countries were tested for HIV-1 subtypes between 1-1-1988 and 31-12-2006. Twelve children less than 18 years old and born abroad were selected. HIV-NBS were isolated in 5 children (42%): CRF2_AG recombinant in 3 cases (Equatorial Guinea), Subtype C in one (Equatorial Guinea) and CRF13_cpx in last one (India). Because of the increasing frequency of patients with HIV-NBS and their unknown long-term evolution, all children from endemic countries should be tested for HIV subtypes. We believe new studies with more patients during longer times could reveal differences in these patient's clinical, immunological and virological evolution.

  2. Novel engineered HIV-1 East African Clade-A gp160 plasmid construct induces strong humoral and cell-mediated immune responses in vivo

    International Nuclear Information System (INIS)

    Muthumani, Karuppiah; Zhang Donghui; Dayes, Nathanael S.; Hwang, Daniel S.; Calarota, Sandra A.; Choo, Andrew Y.; Boyer, Jean D.; Weiner, David B.

    2003-01-01

    HIV-1 sequences are highly diverse due to the inaccuracy of the viral reverse transcriptase. This diversity has been studied and used to categorize HIV isolates into subtypes or clades, which are geographically distinct. To develop effective vaccines against HIV-1, immunogens representing different subtypes may be important for induction of cross-protective immunity, but little data exist describing and comparing the immunogenicity induced by different subtype-based vaccines. This issue is further complicated by poor expression of HIV structural antigens due to rev dependence. One costly approach is to codon optimize each subtype construct to be examined. Interestingly, cis-acting transcriptional elements (CTE) can also by pass rev restriction by a rev independent export pathway. We reasoned that rev+CTE constructs might have advantages for such expression studies. A subtype A envelope sequence from a viral isolate from east Africa was cloned into a eukaryotic expression vector under the control of the CMV-IE promoter. The utility of inclusion of the Mason-Pfizer monkey virus (MPV)-CTE with/without rev for driving envelope expression and immunogenicity was examined. Expression of envelope (gp120) was confirmed by immunoblot analysis and by pseudotype virus infectivity assays. The presence of rev and the CTE together increased envelope expression and viral infection. Furthermore the CTE+rev construct was significantly more immunogenic then CTE alone vector. Isotype analysis and cytokine profiles showed strong Th1 response in plasmid-immunized mice, which also demonstrated the superior nature of the rev+CTE construct. These responses were of similar or greater magnitude to a codon-optimized construct. The resulting cellular immune responses were highly cross-reactive with a HIV-1 envelope subtype B antigen. This study suggests a simple strategy for improving the expression and immunogenicity of HIV subtype-specific envelope antigens as plasmid or vector

  3. Risk group characteristics and viral transmission clusters in South-East Asian patients infected with HIV-1 circulating recombinant form (CRF)01_AE and subtype B

    Science.gov (United States)

    Oyomopito, Rebecca A; Chen, Yen-Ju; Sungkanuparph, Somnuek; Kantor, Rami; Merati, Tuti; Yam, Wing-Cheong; Sirisanthana, Thira; Li, Patrick CK; Kantipong, Pacharee; Phanuphak, Praphan; Lee, Chris KC; Kamarulzaman, Adeeba; Ditangco, Rossana; Huang, Szu-Wei; Sohn, Annette H; Law, Matthew; Chen, Yi Ming A

    2016-01-01

    HIV-1 epidemics in Asian countries are driven by varying exposures. The epidemiology of the regional pandemic has been changing with the spread of HIV-1 to lower-risk populations through sexual transmission. Common HIV-1 genotypes include subtype B and circulating recombinant form (CRF)01_AE. Our objective was to use HIV-1 genotypic data to better quantify local epidemics. TASER-M is a multi-centre prospective cohort of HIV-infected patients. Associations between HIV-exposure, patient gender, country of sample origin and HIV-1 genotype were evaluated by multivariate logistic regression. Phylogenetic methods were used on genotypic data to investigate transmission relationships. A total of 1086 patients from Thailand, Hong Kong, Malaysia and the Philippines were included in analyses. Proportions of males within countries varied (Thailand: 55.6%, Hong Kong: 86.1%, Malaysia: 81.4%, Philippines: 93.8%; p Malaysia: 47.8%, Philippines: 25.0%; p <0.001). After adjustment, we found increased subtype B infection among men-who-have-sex with-men, relative to heterosexual-reported exposures (OR = 2.4, p <0.001). We further describe four transmission clusters of 8–15 treatment naive, predominantly symptomatic patients (two each for subtype B and CRF01_AE). Risk-group sub-populations differed with respect to the infecting HIV-1 genotype. Homosexual exposure patients had a higher odds of being infected with subtype B. Where HIV-1 genotypes circulate within countries or patient risk-groups, local monitoring of genotype-specific transmissions may play a role in focussing public health prevention strategies. Phylogenetic evaluations provide complementary information for surveillance and monitoring of viruses with high mutation rates such as HIV-1 and Ebola. PMID:26362956

  4. The HIV-1 epidemic in Bolivia is dominated by subtype B and CRF12_BF "family" strains.

    Science.gov (United States)

    Guimarães, Monick L; Velarde-Dunois, Ketty G; Segurondo, David; Morgado, Mariza G

    2012-01-16

    Molecular epidemiological studies of HIV-1 in South America have revealed the occurrence of subtypes B, F1 and BF1 recombinants. Even so, little information concerning the HIV-1 molecular epidemiology in Bolivia is available. In this study we performed phylogenetic analyses from samples collected in Bolivia at two different points in time over a 10 year span. We analyzed these samples to estimate the trends in the HIV subtype and recombinant forms over time. Fifty one HIV-1 positive samples were collected in Bolivia over two distinct periods (1996 and 2005). These samples were genetically characterized based on partial pol protease/reverse transcriptase (pr/rt) and env regions. Alignment and neighbor-joining (NJ) phylogenetic analyses were established from partial env (n = 37) and all pol sequences using Mega 4. The remaining 14 env sequences from 1996 were previously characterized based on HMA-env (Heteroduplex mobility assay). The Simplot v.3.5.1 program was used to verify intragenic recombination, and SplitsTree 4.0 was employed to confirm the phylogenetic relationship of the BF1 recombinant samples. Phylogenetic analysis of both env and pol regions confirmed the predominance of "pure" subtype B (72.5%) samples circulating in Bolivia and revealed a high prevalence of BF1 genotypes (27.5%). Eleven out of 14 BF1 recombinants displayed a mosaic structure identical or similar to that described for the CRF12_BF variant, one sample was classified as CRF17_BF, and two others were F1pol/Benv. No "pure" HIV-1 subtype F1 or B" variant of subtype B was detected in the present study. Of note, samples characterized as CRF12_BF-related were depicted only in 2005. HIV-1 genetic diversity in Bolivia is mostly driven by subtype B followed by BF1 recombinant strains from the CRF12_BF "family". No significant temporal changes were detected between the mid-1990s and the mid-2000s for subtype B (76.2% vs 70.0%) or BF1 recombinant (23.8% vs 30.0%) samples from Bolivia.

  5. Cellular specificity of HIV-1 replication can be controlled by LTR sequences

    International Nuclear Information System (INIS)

    Reed-Inderbitzin, Edward; Maury, Wendy

    2003-01-01

    Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-κB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry

  6. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA.

    Directory of Open Access Journals (Sweden)

    Shelly J Krebs

    Full Text Available Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab responses toward conserved regions of the viral Envelope (Env. However, the generation of neutralizing Abs (NAbs targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.

  7. HIV-1 drug resistance in recently HIV-infected pregnant mother's naïve to antiretroviral therapy in Dodoma urban, Tanzania.

    Science.gov (United States)

    Vairo, Francesco; Nicastri, Emanuele; Liuzzi, Giuseppina; Chaula, Zainab; Nguhuni, Boniface; Bevilacqua, Nazario; Forbici, Federica; Amendola, Alessandra; Fabeni, Lavinia; De Nardo, Pasquale; Perno, Carlo Federico; Cannas, Angela; Sakhoo, Calistus; Capobianchi, Maria Rosaria; Ippolito, Giuseppe

    2013-09-21

    HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-child-transmission. The study aims to assess the prevalence of HIV primary resistance in pregnant women naïve to antiretrovirals. Cross sectional baseline analysis of a cohort of HIV + pregnant women (HPW) enrolled in the study entitled Antiretroviral Management of Antenatal and Natal HIV Infection (AMANI, peace in Kiswahili language). The AMANI study began in May 2010 in Dodoma, Tanzania. In this observational cohort, antiretroviral treatment was provided to all women from the 28th week of gestation until the end of the breastfeeding period. Baseline CD4 cell count, viral load and HIV drug-resistance genotype were collected. Drug-resistance analysis was performed on 97 naïve infected-mothers. The prevalence of all primary drug resistance and primary non-nucleoside reverse-transcriptase inhibitors resistance was 11.9% and 7.5%, respectively. K103S was found in two women with no M184V detection. HIV-1 subtype A was the most commonly identified, with a high prevalence of subtype A1, followed by C, D, C/D recombinant, A/C recombinant and A/D recombinant. HIV drug- resistance mutations were detected in A1 and C subtypes. Our study reports an 11.9% prevalence rate of primary drug resistance in naïve HIV-infected pregnant women from a remote area of Tanzania. Considering that the non-nucleoside reverse-transcriptase inhibitors are part of the first-line antiretroviral regimen in Tanzania and all of Africa, resistance surveys should be prioritized in settings where antiretroviral therapy programs are scaled up.

  8. Identification of novel targets for HIV-1: Molecular dynamics simulation and binding energy calculations

    Science.gov (United States)

    Pandey, Vishnudatt; Tiwari, Gargi; Mall, Vijaya Shri; Tiwari, Rakesh Kumar; Ojha, R. P.

    2018-05-01

    HIV-1 envelope glycoprotein-mediated fusion is managed by the concerted coalescence of the HIV-1 gp41 N- and C- helical regions, which is a product in the formation of 6-helix bundles. These two regions are considered prime targets for peptides and antibodies that inhibit HIV-1 entry. There are so many rational method aimed to attach a rationally designed artificial tail to the C-terminus of HIV-1 fusion inhibitors to increase their antiviral potency. Here M. D. simulation was performed to go insight for study of C-terminal tail of Ile-Asp-Leu (IDL).

  9. The anti-HIV-1 effect of scutellarin

    International Nuclear Information System (INIS)

    Zhang Gaohong; Wang Qian; Chen Jijun; Zhang Xuemei; Tam, S.-C.; Zheng Yongtang

    2005-01-01

    Scutellarin was purified from the plant Erigeron breviscapus (Vant.) Hand.-Mazz. The activity against 3 strains of human immunodeficiency virus (HIV) was determined in vitro in this study. These were laboratory-derived virus (HIV-1 IIIB ), drug-resistant virus (HIV-1 74V ), and low-passage clinical isolated virus (HIV-1 KM018 ). From syncytia inhibition study, the EC 50 of scutellarin against HIV-1 IIIB direct infection in C8166 cells was 26 μM with a therapeutic index of 36. When the mode of infection changed from acute infection to cell-to-cell infection, this compound became even more potent and the EC 50 reduced to 15 μM. This suggested that cell fusion might be affected by this compound. By comparing the inhibitory effects on p24 antigen, scutellarin was also found to be active against HIV-1 74V (EC 50 253 μM) and HIV-1 KM018 (EC 50 136 μM) infection with significant difference in potency. The mechanism of its action was also explored in this study. At a concentration of 433 μM, scutellarin inhibited 48% of the cell free recombinant HIV-1 RT activity. It also caused 82% inhibition of HIV-1 particle attachment and 45% inhibition of fusion at the concentrations of 54 μM. In summary, scutellarin was found to inhibit several strains of HIV-1 replication with different potencies. It appeared to inhibit HIV-1 RT activity, HIV-1 particle attachment and cell fusion. These are essential activities for viral transmission and replication

  10. Introduction of HIV type 1 into an isolated population

    DEFF Research Database (Denmark)

    Madsen, Tina V; Leitner, Thomas; Lohse, Nicolai

    2007-01-01

    Introduction of HIV-1 into a population may not always give rise to a subsequent epidemic. Greenland is an isolated and sparsely populated island in The Danish Kingdom. We aimed to estimate the number of introductions of HIV-1 into Greenland, the number of subsequent epidemics, and the countries...... from which the virus was introduced. Phylogenetic analyses were performed on three regions of HIV-1 (gag, pol, and env) in samples from 70 Greenlandic patients. Furthermore, we included gene sequences from contemporary Danish HIV-1-infected patients and sequences from the Los Alamos HIV Sequence...... Database. All Greenlandic sequences were subtype B except one sequence found to be a recombinant (probably CRF13). Sequence clusters in the phylogenetic trees indicated that there had been at least nine introductions of HIV-1 into Greenland. One cluster, supported by bootstrap values of 81, 76, and 96...

  11. HIV-1 epidemiology and circulating subtypes in the countryside of South Brazil

    Directory of Open Access Journals (Sweden)

    Carina Sperotto Librelotto

    2015-06-01

    Full Text Available INTRODUCTION: Human immunodeficiency virus type 1 (HIV-1 has spread worldwide, with several subtypes and circulating recombinant forms. Brazil has an incidence of 20.5 HIV-1/acquired immunodeficiency syndrome (AIDS patients per 100,000 inhabitants; however, the Southernmost State of Rio Grande do Sul (RS has more than twice the number of HIV-1-infected people (41.3/100,000 inhabitants and a different pattern of subtype frequencies, as previously reported in studies conducted in the capital (Porto Alegre and its metropolitan region. This study examined HIV-1/AIDS epidemiological and molecular aspects in the countryside of Rio Grande do Sul. METHODS: Socio-demographic, clinical and risk behavioral characteristics were obtained from HIV-1-positive adult patients using a structured questionnaire. HIV-1 subtypes were determined by nested-polymerase chain reaction (PCR and sequencing of the pol and env genes. RESULTS: The study sample included 149 (55% women patients with a mean age of 41.8 ± 11.9 years. Most (73.8% patients had a low education level and reported heterosexual practices as the most (91.9% probable transmission route. HIV-1 subtypes were detected in 26 patients: 18 (69.2% infected with subtype C, six (23.1% infected with subtype B and two (7.7% infected with BC recombinant forms. CONCLUSIONS: These data highlight the increasing number of HIV-1 subtype C infections in the countryside of South Brazil.

  12. High genetic variability of HIV-1 in female sex workers from Argentina

    Directory of Open Access Journals (Sweden)

    Carr Jean K

    2007-08-01

    Full Text Available Abstract Background A cross-sectional study on 625 Female Sex Workers (FSWs was conducted between 2000 and 2002 in 6 cities in Argentina. This study describes the genetic diversity and the resistance profile of the HIV-infected subjects. Results Seventeen samples from HIV positive FSWs were genotyped by env HMA, showing the presence of 9 subtype F, 6 subtype B and 2 subtype C. Sequence analysis of the protease/RT region on 16 of these showed that 10 were BF recombinants, three were subtype B, two were subtype C, and one sample presented a dual infection with subtype B and a BF recombinant. Full-length genomes of five of the protease/RT BF recombinants were also sequenced, showing that three of them were CRF12_BF. One FSW had a dual HIV-1 infection with subtype B and a BF recombinant. The B sections of the BF recombinant clustered closely with the pure B sequence isolated from the same patient. Major resistance mutations to antiretroviral drugs were found in 3 of 16 (18.8% strains. Conclusion The genetic diversity of HIV strains among FSWs in Argentina was extensive; about three-quarters of the samples were infected with diverse BF recombinants, near twenty percent had primary ART resistance and one sample presented a dual infection. Heterosexual transmission of genetically diverse, drug resistant strains among FSWs and their clients represents an important and underestimated threat, in Argentina.

  13. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    International Nuclear Information System (INIS)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  14. Epidemiological trends of HIV-1 infection in blood donors from Catalonia, Spain (2005-2014).

    Science.gov (United States)

    Bes, Marta; Piron, Maria; Casamitjana, Natàlia; Gregori, Josep; Esteban, Juan Ignacio; Ribera, Esteban; Quer, Josep; Puig, Lluís; Sauleda, Sílvia

    2017-09-01

    Human immunodeficiency virus 1 (HIV-1) subtype B is predominant in Spain. However, the recent arrival of immigrant populations has increased the prevalence of non-B subtypes and circulating recombinant forms. The objective of this study was to determine the prevalence of HIV-1 subtypes and transmitted drug-resistance mutations in blood donors from the Catalonian region (northeastern Spain). HIV-1-positive blood donors identified in Catalonia from 2005 to 2014 were included. Demographic variables and risk factors for HIV-1 acquisition were recorded. HIV-1 subtyping was carried out by HIV-1 DNA polymerase region sequencing, and phylogenetic analyses were performed using the neighbor-joining method. During the study period, 2.8 million blood donations were screened, and 214 HIV-1-positive donors were identified, yielding an overall prevalence of 7.7 per 100,000 donations (89% men; mean age, 34 ± 10 years). Most HIV-1-positive donors were native to Spain (81%), and 61% were regular blood donors. When risk factors were known, 62% reportedly were men who had sex with men. HIV-1 subtyping was possible in 176 HIV-1-positive individuals: 143 (81%) had HIV-1 subtype B, and 33 (19%) had non-B subtypes. Most HIV-1 non-B subtypes were circulating recombinant forms (n = 20; 61%). Factors associated with HIV-1 subtype B were male sex (p = 0.007) and men who had sex with men (p HIV-1-positive blood donors in Catalonia. Continuous local epidemiological surveillance is required to implement optimal prevention strategies for controlling transfusion-transmitted HIV and to improve health policies regarding HIV infection. © 2017 AABB.

  15. Interplay between HIV Entry and Transportin-SR2 Dependency

    Directory of Open Access Journals (Sweden)

    Gijsbers Rik

    2011-01-01

    Full Text Available Abstract Background Transportin-SR2 (TRN-SR2, TNPO3, transportin 3 was previously identified as an interaction partner of human immunodeficiency virus type 1 (HIV-1 integrase and functions as a nuclear import factor of HIV-1. A possible role of capsid in transportin-SR2-mediated nuclear import was recently suggested by the findings that a chimeric HIV virus, carrying the murine leukemia virus (MLV capsid and matrix proteins, displayed a transportin-SR2 independent phenotype, and that the HIV-1 N74D capsid mutant proved insensitive to transportin-SR2 knockdown. Results Our present analysis of viral specificity reveals that TRN-SR2 is not used to the same extent by all lentiviruses. The DNA flap does not determine the TRN-SR2 requirement of HIV-1. We corroborate the TRN-SR2 independent phenotype of the chimeric HIV virus carrying the MLV capsid and matrix proteins. We reanalyzed the HIV-1 N74D capsid mutant in cells transiently or stably depleted of transportin-SR2 and confirm that the N74D capsid mutant is independent of TRN-SR2 when pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G. Remarkably, although somewhat less dependent on TRN-SR2 than wild type virus, the N74D capsid mutant carrying the wild type HIV-1 envelope required TRN-SR2 for efficient replication. By pseudotyping with envelopes that mediate pH-independent viral uptake including HIV-1, measles virus and amphotropic MLV envelopes, we demonstrate that HIV-1 N74D capsid mutant viruses retain partial dependency on TRN-SR2. However, this dependency on TRN-SR2 is lost when the HIV N74D capsid mutant is pseudotyped with envelopes mediating pH-dependent endocytosis, such as the VSV-G and Ebola virus envelopes. Conclusion Here we discover a link between the viral entry of HIV and its interaction with TRN-SR2. Our data confirm the importance of TRN-SR2 in HIV-1 replication and argue for careful interpretation of experiments performed with VSV-G pseudotyped viruses in

  16. The HIV-1 epidemic in Bolivia is dominated by subtype B and CRF12_BF "family" strains

    Directory of Open Access Journals (Sweden)

    Guimarães Monick L

    2012-01-01

    Full Text Available Abstract Background Molecular epidemiological studies of HIV-1 in South America have revealed the occurrence of subtypes B, F1 and BF1 recombinants. Even so, little information concerning the HIV-1 molecular epidemiology in Bolivia is available. In this study we performed phylogenetic analyses from samples collected in Bolivia at two different points in time over a 10 year span. We analyzed these samples to estimate the trends in the HIV subtype and recombinant forms over time. Materials and methods Fifty one HIV-1 positive samples were collected in Bolivia over two distinct periods (1996 and 2005. These samples were genetically characterized based on partial pol protease/reverse transcriptase (pr/rt and env regions. Alignment and neighbor-joining (NJ phylogenetic analyses were established from partial env (n = 37 and all pol sequences using Mega 4. The remaining 14 env sequences from 1996 were previously characterized based on HMA-env (Heteroduplex mobility assay. The Simplot v.3.5.1 program was used to verify intragenic recombination, and SplitsTree 4.0 was employed to confirm the phylogenetic relationship of the BF1 recombinant samples. Results Phylogenetic analysis of both env and pol regions confirmed the predominance of "pure" subtype B (72.5% samples circulating in Bolivia and revealed a high prevalence of BF1 genotypes (27.5%. Eleven out of 14 BF1 recombinants displayed a mosaic structure identical or similar to that described for the CRF12_BF variant, one sample was classified as CRF17_BF, and two others were F1pol/Benv. No "pure" HIV-1 subtype F1 or B" variant of subtype B was detected in the present study. Of note, samples characterized as CRF12_BF-related were depicted only in 2005. Conclusion HIV-1 genetic diversity in Bolivia is mostly driven by subtype B followed by BF1 recombinant strains from the CRF12_BF "family". No significant temporal changes were detected between the mid-1990s and the mid-2000s for subtype B (76.2% vs 70

  17. Recombinant protein of heptad-repeat HR212, a stable fusion inhibitor with potent anti-HIV action in vitro

    International Nuclear Information System (INIS)

    Pang, Wei; Wang Ruirui; Yang Liumeng; Liu Changmei; Tien Po; Zheng Yongtang

    2008-01-01

    HR212, a recombinant protein expressed in Escherichia coli, has been previously reported to inhibit HIV-1 membrane fusion at low nanomolar level. Here we report that HR212 is effective in blocking laboratory strain HIV-1 IIIB entry and replication with EC 50 values of 3.92 ± 0.62 and 6.59 ± 1.74 nM, respectively, and inhibiting infection by clinic isolate HIV-1 KM018 with EC 50 values of 44.44 ± 10.20 nM, as well as suppressing HIV-1-induced cytopathic effect with an EC 50 value of 3.04 ± 1.20 nM. It also inhibited HIV-2 ROD and HIV-2 CBL-20 entry and replication in the μM range. Notably, HR212 was highly effective against T20-resistant strains with EC 50 values ranging from 5.09 to 7.75 nM. Unlike T20, HR212 showed stability sufficient to inhibit syncytia formation in a time-of-addition assay, and was insensitive to proteinase K digestion. These results suggest that HR212 has great potential to be further developed as novel HIV-1 fusion inhibitor for treatment of HIV/AIDS patients, particularly for those infected by T20-resistant variants

  18. The VNTR Polymorphism of the DC-SIGNR Gene and Susceptibility to HIV-1 Infection: A Meta-Analysis

    OpenAIRE

    Li, Hui; Yu, Xiao-Min; Wang, Jia-Xin; Hong, Ze-Hui; Tang, Nelson Leung-Sang

    2012-01-01

    BACKGROUND: Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin related (DC-SIGNR) can bind to the human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein and is thus important for the host-pathogen interaction in HIV-1 infection. Studies of the association between the variable number tandem repeat (VNTR) polymorphism of the DC-SIGNR gene and HIV-1 susceptibility have produced controversial results. METHODS AND FINDINGS: We conducted a meta-analysis of th...

  19. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2009-07-01

    Full Text Available Abstract Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1 regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007, we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms. The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges

  20. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Science.gov (United States)

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  1. Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses.

    Directory of Open Access Journals (Sweden)

    Chen-Yi Chiang

    Full Text Available The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus.

  2. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Davide Corti

    2010-01-01

    Full Text Available The isolation of human monoclonal antibodies (mAbs that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine.We immortalized IgG(+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16 specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194 bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20 with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity.This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.

  3. High HIV-1 Diversity and Prevalence of Transmitted Drug Resistance Among Antiretroviral-Naive HIV-Infected Pregnant Women from Rio de Janeiro, Brazil.

    Science.gov (United States)

    Delatorre, Edson; Silva-de-Jesus, Carlos; Couto-Fernandez, José Carlos; Pilotto, Jose H; Morgado, Mariza G

    2017-01-01

    Antiretroviral (ARV) resistance mutations in human immunodeficiency virus type 1 (HIV-1) infection may reduce the efficacy of prophylactic therapy to prevent mother-to-child transmission (PMTCT) and future treatment options. This study evaluated the diversity and the prevalence of transmitted drug resistance (TDR) in protease (PR) and reverse transcriptase (RT) regions of HIV-1 pol gene among 87 ARV-naive HIV-1-infected pregnant women from Rio de Janeiro, Brazil, between 2012 and 2015. The viral diversity comprised HIV-1 subtypes B (67.8%), F1 (17.2%), and C (4.6%); the circulating recombinant forms 12_BF (2.3%), 28/29_BF, 39_BF, 02_AG (1.1% each) and unique recombinants forms (4.5%). The overall prevalence of any TDR was 17.2%, of which 5.7% for nucleoside RT inhibitors, 5.7% for non-nucleoside RT inhibitors, and 8% for PR inhibitors. The TDR prevalence found in this population may affect the virological outcome of the standard PMTCT ARV-regimens, reinforcing the importance of continuous monitoring.

  4. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.

    Science.gov (United States)

    Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia

    2015-12-01

    Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  6. Dicty_cDB: Contig-U14476-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 2 ( EF118776 ) HIV-1 isolate 59_11_25 from Spain envelope glycop... 34 7.1 2 ( EF118775 ) HIV-1 isolate 59_11_20 from Spain... envelope glycop... 34 7.1 2 ( EF118774 ) HIV-1 isolate 59_11_17 from Spain... envelope glycop... 34 7.1 2 ( EF118773 ) HIV-1 isolate 59_11_16 from Spain envelope glycop... 34 7

  7. N-terminally truncated POM121C inhibits HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Hideki Saito

    Full Text Available Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1. These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication.

  8. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C M; Nielsen, C

    1989-01-01

    The binding of 13 different lectins to gp120 partially purified from two HIV-1 isolates and one HIV-2 isolate was studied by in situ staining on electrophoretically separated and electroblotted HIV antigens. The lectins concanavalin A, wheat germ agglutinin, Lens culinaris agglutinin, Vicia faba...

  9. Development and evaluation of a phenotypic assay monitoring resistance formation to protease inhibitors in HIV-1-infected patients.

    Science.gov (United States)

    Gehringer, Heike; Von der Helm, Klaus; Seelmeir, Sigrid; Weissbrich, Benedikt; Eberle, Josef; Nitschko, Hans

    2003-05-01

    A novel phenotypic assay, based on recombinant expression of the HIV-1-protease was developed and evaluated; it monitors the formation of resistance to protease inhibitors. The HIV-1 protease-encoding region from the blood sample of patients was amplified, ligated into the expression vector pBD2, and recombinantly expressed in Escherichia coli TG1 cells. The resulting recombinant enzyme was purified by a newly developed one-step acid extraction protocol. The protease activity was determined in presence of five selected HIV protease inhibitors and the 50% inhibitory concentration (IC(50)) to the respective protease inhibitors determined. The degree of resistance was expressed in terms of x-fold increase in IC(50) compared to the IC(50) value of an HIV-1 wild type protease preparation. The established test system showed a reproducible recombinant expression of each individual patients' HIV-1 protease population. Samples of nine clinically well characterised HIV-1-infected patients with varying degrees of resistance were analysed. There was a good correlation between clinical parameters and the results obtained by this phenotypic assay. For the majority of patients a blind genotypic analysis of the patients' protease domain revealed a fair correlation to the results of the phenotypic assay. In a minority of patients our phenotypic results diverged from the genotypic ones. This novel phenotypic assay can be carried out within 8-10 days, and offers a significant advantage in time to the current employed phenotypic tests.

  10. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    Science.gov (United States)

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  11. HIV-1 impairs human retinal pigment epithelial barrier function: possible association with the pathogenesis of HIV-associated retinopathy.

    Science.gov (United States)

    Tan, Suiyi; Duan, Heng; Xun, Tianrong; Ci, Wei; Qiu, Jiayin; Yu, Fei; Zhao, Xuyan; Wu, Linxuan; Li, Lin; Lu, Lu; Jiang, Shibo; Liu, Shuwen

    2014-07-01

    The breakdown of human retinal pigment epithelial (HRPE) barrier is considered as the etiology of retinopathy, which affects the quality of life of HIV/AIDS patients. Here we demonstrate that HIV-1 could directly impair HRPE barrier function, which leads to the translocation of HIV-1 and bacteria. HRPE cells (D407) were grown to form polarized, confluent monolayers and treated with different HIV-1 infectious clones. A significant increase of monolayer permeability, as measured by trans-epithelial electrical resistance (TEER) and apical-basolateral movements of sodium fluorescein, was observed. Disrupted tightness of HRPE barrier was associated with the downregulation of several tight junction proteins in D407 cells, including ZO-1, Occludin, Claudin-1, Claudin-2, Claudin-3, Claudin-4, and Claudin-5, after exposure to HIV-1, without affecting the viability of cells. HIV-1 gp120 was shown to participate in the alteration of barrier properties, as evidenced by decreased TEER and weakened expression of tight junction proteins in D407 monolayers after exposure to pseudotyped HIV-1, UV-inactivated HIV-1, and free gp120, but not to an envelope (Env)-defective mutant of HIV. Furthermore, exposure to HIV-1 particles could induce the release of pro-inflammatory cytokines in D407, including IL-6 and MCP-1, both of which downregulated the expression of ZO-1 in the HRPE barrier. Disrupted HRPE monolayer allowed translocation of HIV-1 and bacteria across the epithelium. Overall, these findings suggest that HIV-1 may exploit its Env glycoprotein to induce an inflammatory state in HRPE cells, which could result in impairment of HRPE monolayer integrity, allowing virus and bacteria existing in ocular fluids to cross the epithelium and penetrate the HRPE barrier. Our study highlights the role of HIV-1 in the pathogenesis of HIV/AIDS-related retinopathy and suggests potential therapeutic targets for this ocular complication.

  12. Variability of HIV-1 genomes among children and adolescents from Sao Paulo, Brazil.

    Directory of Open Access Journals (Sweden)

    Sabri Saeed Sanabani

    Full Text Available BACKGROUND: Genetic variability is a major feature of the human immunodeficiency virus type 1 (HIV-1 and considered the key factor to frustrating efforts to halt the virus epidemic. In this study, we aimed to investigate the genetic variability of HIV-1 strains among children and adolescents born from 1992 to 2009 in the state of Sao Paulo, Brazil. METHODOLOGY: Plasma and peripheral blood mononuclear cells (PBMC were collected from 51 HIV-1-positive children and adolescents on ART followed between September 1992 and July 2009. After extraction, the genetic materials were used in a polymerase chain reaction (PCR to amplify the viral near full length genomes (NFLGs from 5 overlapped fragments. NFLGs and partial amplicons were directly sequenced and data were phylogenetically inferred. RESULTS: Of the 51 samples studied, the NFLGs and partial fragments of HIV-1 from 42 PBMCs and 25 plasma were successfully subtyped. Results based on proviral DNA revealed that 22 (52.4% patients were infected with subtype B, 16 (38.1% were infected with BF1 mosaic variants and 4 (9.5% were infected with sub-subtype F1. All the BF1 recombinants were unique and distinct from any previously identified unique or circulating recombinant forms in South America. Evidence of dual infections was detected in 3 patients coinfected with the same or distinct HIV-1 subtypes. Ten of the 31 (32.2% and 12 of the 21 (57.1% subjects with recovered proviral and plasma, respectively, protease sequences were infected with major mutants resistant to protease inhibitors. The V3 sequences of 14 patients with available sequences from PBMC/or plasma were predicted to be R5-tropic virus except for two patients who harbored an X4 strain. CONCLUSIONS: The high proportion of HIV-1 BF1 recombinant, coinfection rate and vertical transmission in Brazil merits urgent attention and effective measures to reduce the transmission of HIV among spouses and sex partners.

  13. Involvement of both the V2 and V3 Regions of the CCR5-Tropic Human Immunodeficiency Virus Type 1 Envelope in Reduced Sensitivity to Macrophage Inflammatory Protein 1α

    Science.gov (United States)

    Maeda, Yosuke; Foda, Mohamed; Matsushita, Shuzo; Harada, Shinji

    2000-01-01

    To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1α-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1α (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat–β-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1β (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1α. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1α, MIP-1β, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors. PMID:10644351

  14. Rational design of highly potent HIV-1 fusion inhibitory proteins: Implication for developing antiviral therapeutics

    International Nuclear Information System (INIS)

    Ni Ling; Gao, George F.; Tien Po

    2005-01-01

    Recombinant protein containing one heptad-repeat 1 (HR1) segment and one HR2 segment of the HIV-1 gp41 (HR1-HR2) has been shown to fold into thermally stable six-helix bundle, representing the fusogenic core of gp41. In this study, we have used the fusogenic core as a scaffold to design HIV-1 fusion inhibitory proteins by linking another HR1 to the C terminus of HR1-HR2 (HR121) or additional HR2 to the N terminus of HR1-HR2 (HR212). Both recombinant proteins could be abundantly and solubly expressed and easily purified, exhibiting high stability and potent inhibitory activity on HIV-1 fusion with IC 50 values of 16.2 ± 2.8 and 2.8 ± 0.63 nM, respectively. These suggest that these rationally designed proteins can be further developed as novel anti-HIV-1 therapeutics

  15. Complement and the control of HIV infection: an evolving story.

    Science.gov (United States)

    Frank, Michael M; Hester, Christopher; Jiang, Haixiang

    2014-05-01

    Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.

  16. Surfactant Protein D modulates HIV infection of both T-cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jens Madsen

    Full Text Available Surfactant Protein D (SP-D is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.

  17. Generation of recombinant monoclonal antibodies to study structure-function of envelope protein VP28 of white spot syndrome virus from shrimp

    International Nuclear Information System (INIS)

    Wang Yuzhen; Zhang Xiaohua; Yuan Li; Xu Tao; Rao Yu; Li Jia; Dai Heping

    2008-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV

  18. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.

    Directory of Open Access Journals (Sweden)

    Cândida F Pereira

    Full Text Available Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1 structural proteins (matrix, capsid and nucleocapsid, enzymes (protease, reverse transcriptase, RNAse H and integrase and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.

  19. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Galli, Andrea; Li, Yi-Ping

    2013-01-01

    . In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a......) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13-36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6...

  20. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  1. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies.

    Science.gov (United States)

    Maseko, Sibusiso B; Natarajan, Satheesh; Sharma, Vikas; Bhattacharyya, Neelakshi; Govender, Thavendran; Sayed, Yasien; Maguire, Glenn E M; Lin, Johnson; Kruger, Hendrik G

    2016-06-01

    Human immunodeficiency virus (HIV) infections in sub-Saharan Africa represent about 56% of global infections. Many studies have targeted HIV-1 protease for the development of drugs against AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. Along with the wild type (C-SA) we also over-expressed and characterized two mutant forms from patients that had shown resistance to protease inhibitors. Using recombinant DNA technology, we constructed three recombinant plasmids in pGEX-6P-1 and expressed them containing a sequence encoding wild type HIV protease and two mutants (I36T↑T contains 100 amino acids and L38L↑N↑L contains 101 amino acids). These recombinant proteins were isolated from inclusion bodies by using QFF anion exchange and GST trap columns. In SDS-PAGE, we obtained these HIV proteases as single bands of approximately 11.5, 11.6 and 11.7 kDa for the wild type, I36T↑Tand L38L↑N↑L mutants, respectively. The enzyme was recovered efficiently (0.25 mg protein/L of Escherichia coli culture) and had high specific activity of 2.02, 2.20 and 1.33 μmol min(-1) mg(-1) at an optimal pH of 5 and temperature of 37 °C for the wild type, I36T↑T and L38L↑N↑L, respectively. The method employed here provides an easy and rapid purification of the HIV-1(C-SA) protease from the inclusion bodies, with high yield and high specific activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Detailed Molecular Epidemiologic Characterization of HIV-1 Infection in Bulgaria Reveals Broad Diversity and Evolving Phylodynamics

    Science.gov (United States)

    Ivanov, Ivailo Alexiev; Beshkov, Danail; Shankar, Anupama; Hanson, Debra L.; Paraskevis, Dimitrios; Georgieva, Viara; Karamacheva, Lyudmila; Taskov, Hristo; Varleva, Tonka; Elenkov, Ivaylo; Stoicheva, Mariana; Nikolova, Daniela; Switzer, William M.

    2013-01-01

    Limited information is available to describe the molecular epidemiology of HIV-1 in Bulgaria. To better understand the genetic diversity and the epidemiologic dynamics of HIV-1 we analyzed 125 new polymerase (pol) sequences from Bulgarians diagnosed through 2009 and 77 pol sequences available from our previous study from persons infected prior to 2007. Epidemiologic and demographic information was obtained from each participant and phylogenetic analysis was used to infer HIV-1 evolutionary histories. 120 (59.5%) persons were infected with one of five different HIV-1 subtypes (A1, B, C, F1 and H) and 63 (31.2%) persons were infected with one of six different circulating recombinant forms (CRFs; 01_AE, 02_AG, 04_cpx, 05_DF, 14_BG, and 36_cpx). We also for the first time identified infection with two different clusters of unique A-like and F-like sub-subtype variants in 12 persons (5.9%) and seven unique recombinant forms (3.5%), including a novel J/C recombinant. While subtype B was the major genotype identified and was more prevalent in MSM and increased between 2000–2005, most non-B subtypes were present in persons ≥45 years old. CRF01_AE was the most common non-B subtype and was higher in women and IDUs relative to other risk groups combined. Our results show that HIV-1 infection in Bulgaria reflects the shifting distribution of genotypes coincident with the changing epidemiology of the HIV-1 epidemic among different risk groups. Our data support increased public health interventions targeting IDUs and MSM. Furthermore, the substantial and increasing HIV-1 genetic heterogeneity, combined with fluctuating infection dynamics, highlights the importance of sustained and expanded surveillance to prevent and control HIV-1 infection in Bulgaria. PMID:23527245

  3. Autoantibodies from primary biliary cirrhosis patients with anti-p95c antibodies bind to recombinant p97/VCP and inhibit in vitro nuclear envelope assembly

    Science.gov (United States)

    MIYACHI, K; HIRANO, Y; HORIGOME, T; MIMORI, T; MIYAKAWA, H; ONOZUKA, Y; SHIBATA, M; HIRAKATA, M; SUWA, A; HOSAKA, H; MATSUSHIMA, S; KOMATSU, T; MATSUSHIMA, H; HANKINS, R W; FRITZLER, M J

    2004-01-01

    We have reported previously that p95c, a novel 95-kDa cytosolic protein, was the target of autoantibodies in sera of patients with autoimmune hepatic diseases. We studied 30 sera that were shown previously to immunoprecipitate a 95 kDa protein from [35S]-methionine-labelled HeLa lysates and had a specific precipitin band in immunodiffusion. Thirteen sera were available to test the ability of p95c antibodies to inhibit nuclear envelope assembly in an in vitro assay in which confocal fluorescence microscopy was also used to identify the stages at which nuclear assembly was inhibited. The percentage inhibition of nuclear envelope assembly of the 13 sera ranged from 7% to 99% and nuclear envelope assembly and the swelling of nucleus was inhibited at several stages. The percentage inhibition of nuclear assembly was correlated with the titre of anti-p95c as determined by immunodiffusion. To confirm the identity of this autoantigen, we used a full-length cDNA of the p97/valosin-containing protein (VCP) to produce a radiolabelled recombinant protein that was then used in an immunoprecipitation (IP) assay. Our study demonstrated that 12 of the 13 (93%) human sera with antibodies to p95c immunoprecipitated recombinant p97/VCP. Because p95c and p97 have similar molecular masses and cell localization, and because the majority of sera bind recombinant p97/VCP and anti-p95c antibodies inhibit nuclear assembly, this is compelling evidence that p95c and p97/VCP are identical. PMID:15147362

  4. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    International Nuclear Information System (INIS)

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-01-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B

  5. A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2012-11-01

    Full Text Available Abstract Background Production of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs against the third variable region (V3 of the clade C HIV-1 envelope. Results An antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding

  6. CD4-binding site alterations in CCR5-using HIV-1 envelopes influencing gp120-CD4 interactions and fusogenicity

    International Nuclear Information System (INIS)

    Sterjovski, Jasminka; Churchill, Melissa J.; Roche, Michael; Ellett, Anne; Farrugia, William; Wesselingh, Steven L.; Cunningham, Anthony L.; Ramsland, Paul A.; Gorry, Paul R.

    2011-01-01

    CD4-binding site (CD4bs) alterations in gp120 contribute to different pathophysiological phenotypes of CCR5-using (R5) HIV-1 strains, but the potential structural basis is unknown. Here, we characterized functionally diverse R5 envelope (Env) clones (n = 16) to elucidate potential structural alterations within the gp120 CD4bs that influence Env function. Initially, we showed that the magnitude of gp120-CD4-binding correlates with increased fusogenicity and reduced CD4 dependence. Analysis of three-dimensional gp120 structural models revealed two CD4bs variants, D279 and N362, that were associated with reduced CD4 dependence. Further structural analysis showed that a wider aperture of the predicted CD4bs cavity, as constrained by the inner-most atoms at the gp120 V1V2 stem and the V5 loop, was associated with amino acid alterations within V5 and correlated with increased gp120-CD4 binding and increased fusogenicity. Our results provide evidence that the gp120 V5 loop may alter CD4bs conformation and contribute to increased gp120-CD4 interactions and Env fusogenicity.

  7. Development of a recombinant poxvirus expressing bovine herpesvirus-1 glycoprotein D

    International Nuclear Information System (INIS)

    Ruiz Saenz, Julian; Osorio, Jorge E; Vera, Victor J.

    2012-01-01

    Bovine herpesvirus-1 is a DNA virus belonging to the family herpesviridae, which affects cattle, causing a wide spectrum of clinical manifestations and economic losses. The main immunogenic component is its envelope glycoprotein d (GD), which has been characterized and used as immunogen in different expression systems. The aim of this work was to generate a recombinant poxvirus (raccoonpox [RCN]) expressing a truncated version of BHV-1 GD to be used as a vaccine. to do this, it was amplified the gene for a truncated version of GD which subsequently was cloned in transfer plasmid PTK/IRES/TPA which has homology to sites of poxvirus thymidine kinase, an internal site of ribosome entry (IRES) and a secretory signal (TPA), generating the construct PTK/GD/IRES/TPA. to generate the recombinant RCN, we took BSC-1 cells and we infected with a wild type RCN (CDC/v71-i-85a) at a multiplicity of infection of 0.05, then cells were transfected with the construct PTK/GD/IRES/TPA, generating different viral populations with and without the gene of interest. To select recombinant viruses expressing the gene of interest, we performed a selection of recombinant thymidine kinase negative and positive for GD by three rounds of plaque purification on rat-2 cells monolayers which are thymidine kinase null and using bromodeoxyuridine. Recombinant viruses were recovered and confirmed by PCR and nucleotide sequencing and so called RCN-GD.

  8. Morphogenesis of the infectious HIV-1 virion

    Directory of Open Access Journals (Sweden)

    Jun-Ichi eSakuragi

    2011-12-01

    Full Text Available The virion of HIV-1 is spherical and viral glycoprotein spikes (gp120, gp41 protrude from its envelope. The characteristic cone-shaped core exists within the virion, caging the ribonucleoprotein (RNP complex, which is comprised of viral RNA, nucleocapsid (NC and viral enzymes. The HIV-1 virion is budded and released from the infected cell as an immature donut-shaped particle. During or immediately after release, viral protease (PR is activated and subsequently processes the viral structural protein Gag. Through this maturation process, virions acquire infectivity, but its mechanism and transition of morphology largely remain unclear. Recent technological advances in experimental devices and techniques have made it possible to closely dissect the viral production site on the cell, the exterior – or even the interior – of an individual virion, and many new aspects on virion morphology and maturation. In this manuscript, I review the morphogenesis of HIV-1 virions. I focus on several studies, including some of our recent findings, which examined virion formation and/or maturation processes. The story of novel compound, which inhibits virion maturation, and the importance of maturation research are also discussed.

  9. The Potential of Vaccines for the Control of AIDS

    Directory of Open Access Journals (Sweden)

    Margaret I Johnston

    1994-01-01

    of attenuated and whole-killed products have led to the pursuit of alternativc designs. including recombinant proteins, vectors and particles, synthetic peptides and naked DNA. Seven recombinant envelope. two recombinant vector and four other candidate vaccines that have entered into phase 1 trials in noninfected individuals have proven safe to date, and have differed In their ability lo induce functional antibody and Cytotoxic T lymphocytes. Two recombinant envelope products have recently progressed to phase 2 testing, Five envelope-based and six other products have entered trial in HIV-infected and individuals and have appeared to be safe, Evidence of new antibody, increased T cell proliferation and lncreased cytotoxic T lymphocyte activity have been reported. Additional placebo controlled trials will be required to evaluate the impact of therapeutic vaccination on CD4 cell count. viral burdrn and clinical end-points. The status of HIV/AIDS vaccine development is reviewed. with emphasis on the challenging task of finding an effieacious, safe, prophylactic vaccine.

  10. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Dimiter S. Dimitrov

    2009-11-01

    Full Text Available Several human monoclonal antibodies (hmAbs and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i antibodies in HIV-1-infected patients (X5 is a CD4i antibody as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and

  11. Molecular epidemiology of HIV-1 infection in Europe: An overview.

    Science.gov (United States)

    Beloukas, Apostolos; Psarris, Alexandros; Giannelou, Polina; Kostaki, Evangelia; Hatzakis, Angelos; Paraskevis, Dimitrios

    2016-12-01

    Human Immunodeficiency Virus type 1 (HIV-1) is characterised by vast genetic diversity. Globally circulating HIV-1 viruses are classified into distinct phylogenetic strains (subtypes, sub-subtypes) and several recombinant forms. Here we describe the characteristics and evolution of European HIV-1 epidemic over time through a review of published literature and updated queries of existing HIV-1 sequence databases. HIV-1 in Western and Central Europe was introduced in the early-1980s in the form of subtype B, which is still the predominant clade. However, in Eastern Europe (Former Soviet Union (FSU) countries and Russia) the predominant strain, introduced into Ukraine in the mid-1990s, is subtype A (A FSU ) with transmission mostly occurring in People Who Inject Drugs (PWID). In recent years, the epidemic is evolving towards a complex tapestry with an increase in the prevalence of non-B subtypes and recombinants in Western and Central Europe. Non-B epidemics are mainly associated with immigrants, heterosexuals and females but more recently, non-B clades have also spread amongst groups where non-B strains were previously absent - non-immigrant European populations and amongst men having sex with men (MSM). In some countries, non-B clades have spread amongst the native population, for example subtype G in Portugal and subtype A in Greece, Albania and Cyprus. Romania provides a unique case where sub-subtype F1 has predominated throughout the epidemic. In contrast, HIV-1 epidemic in FSU countries remains more homogeneous with A FSU clade predominating in all countries. The differences between the evolution of the Western epidemic and the Eastern epidemic may be attributable to differences in transmission risk behaviours, lifestyle and the patterns of human mobility. The study of HIV-1 epidemic diversity provides a useful tool by which we can understand the history of the pandemic in addition to allowing us to monitor the spread and growth of the epidemic over time

  12. Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters.

    Directory of Open Access Journals (Sweden)

    Oliver F Brandenberg

    2017-05-01

    Full Text Available The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.

  13. Alkylating HIV-1 Nef - a potential way of HIV intervention

    Directory of Open Access Journals (Sweden)

    Cai Catherine

    2010-07-01

    Full Text Available Abstract Background Nef is a 27 KDa HIV-1 accessory protein. It downregulates CD4 from infected cell surface, a mechanism critical for efficient viral replication and pathogenicity. Agents that antagonize the Nef-mediated CD4 downregulation may offer a new class of drug to combat HIV infection and disease. TPCK (N-α-p-tosyl-L-phenylalanine chloromethyl ketone and TLCK (N-α-p-tosyl-L-lysine chloromethyl ketone are alkylation reagents that chemically modify the side chain of His or Cys residues in a protein. In search of chemicals that inhibit Nef function, we discovered that TPCK and TLCK alkylated HIV Nef. Methods Nef modification by TPCK was demonstrated on reducing SDS-PAGE. The specific cysteine residues modified were determined by site-directed mutagenesis and mass spectrometry (MS. The effect of TPCK modification on Nef-CD4 interaction was studied using fluorescence titration of a synthetic CD4 tail peptide with recombinant Nef-His protein. The conformational change of Nef-His protein upon TPCK-modification was monitored using CD spectrometry Results Incubation of Nef-transfected T cells, or recombinant Nef-His protein, with TPCK resulted in mobility shift of Nef on SDS-PAGE. Mutagenesis analysis indicated that the modification occurred at Cys55 and Cys206 in Nef. Mass spectrometry demonstrated that the modification was a covalent attachment (alkylation of TPCK at Cys55 and Cys206. Cys55 is next to the CD4 binding motif (A56W57L58 in Nef required for Nef-mediated CD4 downregulation and for AIDS development. This implies that the addition of a bulky TPCK molecule to Nef at Cys55 would impair Nef function and reduce HIV pathogenicity. As expected, Cys55 modification reduced the strength of the interaction between Nef-His and CD4 tail peptide by 50%. Conclusions Our data suggest that this Cys55-specific alkylation mechanism may be exploited to develop a new class of anti HIV drugs.

  14. Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1-infected CD4+ T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Ting Pan

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection is characterized by progressive depletion of CD4+ T lymphocytes and dysfunction of the immune system. The numbers of CD4+ T lymphocytes in the human body are maintained constantly by homeostatic mechanisms that failed during HIV-1 infection, resulting in progressive loss of CD4+ T cells mainly via apoptosis. Recently, a non-apoptotic form of necrotic programmed cell death, named necroptosis, has been investigated in many biological and pathological processes. We then determine whether HIV-1-infected cells also undergo necroptosis. In this report, we demonstrate that HIV-1 not only induces apoptosis, but also mediates necroptosis in the infected primary CD4+ T lymphocytes and CD4+ T-cell lines. Necroptosis-dependent cytopathic effects are significantly increased in HIV-1-infected Jurkat cells that is lack of Fas-associated protein-containing death domain (FADD, indicating that necroptosis occurs as an alternative cell death mechanism in the absence of apoptosis. Unlike apoptosis, necroptosis mainly occurs in HIV-infected cells and spares bystander damage. Treatment with necrostatin-1(Nec-1, a RIP1 inhibitor that specifically blocks the necroptosis pathway, potently restrains HIV-1-induced cytopathic effect and interestingly, inhibits the formation of HIV-induced syncytia in CD4+ T-cell lines. This suggests that syncytia formation is mediated, at least partially, by necroptosis-related processes. Furthermore, we also found that the HIV-1 infection-augmented tumor necrosis factor-alpha (TNF-α plays a key role in inducing necroptosis and HIV-1 Envelope and Tat proteins function as its co-factors. Taken together,necroptosis can function as an alternative cell death pathway in lieu of apoptosis during HIV-1 infection, thereby also contributing to HIV-1-induced cytopathic effects. Our results reveal that in addition to apoptosis, necroptosis also plays an important role in HIV-1-induced pathogenesis.

  15. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    Science.gov (United States)

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  16. Detection of viral sequence fragments of HIV-1 subfamilies yet unknown

    Directory of Open Access Journals (Sweden)

    Stanke Mario

    2011-04-01

    Full Text Available Abstract Background Methods of determining whether or not any particular HIV-1 sequence stems - completely or in part - from some unknown HIV-1 subtype are important for the design of vaccines and molecular detection systems, as well as for epidemiological monitoring. Nevertheless, a single algorithm only, the Branching Index (BI, has been developed for this task so far. Moving along the genome of a query sequence in a sliding window, the BI computes a ratio quantifying how closely the query sequence clusters with a subtype clade. In its current version, however, the BI does not provide predicted boundaries of unknown fragments. Results We have developed Unknown Subtype Finder (USF, an algorithm based on a probabilistic model, which automatically determines which parts of an input sequence originate from a subtype yet unknown. The underlying model is based on a simple profile hidden Markov model (pHMM for each known subtype and an additional pHMM for an unknown subtype. The emission probabilities of the latter are estimated using the emission frequencies of the known subtypes by means of a (position-wise probabilistic model for the emergence of new subtypes. We have applied USF to SIV and HIV-1 sequences formerly classified as having emerged from an unknown subtype. Moreover, we have evaluated its performance on artificial HIV-1 recombinants and non-recombinant HIV-1 sequences. The results have been compared with the corresponding results of the BI. Conclusions Our results demonstrate that USF is suitable for detecting segments in HIV-1 sequences stemming from yet unknown subtypes. Comparing USF with the BI shows that our algorithm performs as good as the BI or better.

  17. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Lindsey M. [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Irvin, Susan C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kennedy, Steven C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Guo, Feng [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Goldstein, Harris; Herold, Betsy C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Snapp, Erik L., E-mail: erik-lee.snapp@einstein.yu.edu [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  18. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    International Nuclear Information System (INIS)

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-01-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells

  19. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    Directory of Open Access Journals (Sweden)

    Piubelli Luciano

    2011-06-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA or glutathione S-transferase (GST, also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3-RIL host and in TB or M9 medium to which 1% (w/v glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth. GST:HIVPr was in part (50% produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1

  20. Short Communication: Evolution of HIV-1 Coreceptor Usage and Coreceptor Switching During Pregnancy

    OpenAIRE

    Ransy, Doris G.; Motorina, Alena; Merindol, Natacha; Akouamba, Bertine S.; Samson, Johanne; Lie, Yolanda; Napolitano, Laura A.; Lapointe, Normand; Boucher, Marc; Soudeyns, Hugo

    2014-01-01

    Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predi...

  1. Specific interaction of CXCR4 with CD4 and CD8α: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion

    International Nuclear Information System (INIS)

    Basmaciogullari, Stephane; Pacheco, Beatriz; Bour, Stephan; Sodroski, Joseph

    2006-01-01

    We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8α in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8α/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8α molecules

  2. HIV-1 subtypes D and F are prevalent in Guinea Conakry.

    Science.gov (United States)

    Freimanis, G L; Loua, A; Allain, J P

    2012-04-01

    Limited data is available upon the distribution of different HIV-1/2 genotypes in the blood donor population from Guinea Conakry. To investigate the prevalence of HIV-1/2 subtypes in asymptomatic blood donors in Guinea Conakry, in order to update knowledge of HIV-1/2 epidemiology within this country. Samples from 104 blood donors seropositive for HIV-1/2 were tested for HIV-1 by real-time RT-PCR. Those negative for HIV-1 were tested with HIV-2 nested RT-PCR. Positive samples were further amplified in the HIV-1 gag and pol regions and sequenced. Subtypes were determined by phylogenetic analysis on amplicon sequences. 61 samples were positive by HIV-1 real-time RT-PCR. Of the 43 negative, 2 (4.6%) were positive for HIV-2. 52/61 (85.3%) samples were positive by nested RT-PCR. Of the 52, 43 (70.5%) and 31(59.6%) sequences were obtained in the gag and pol regions, respectively; 23 for both regions. HIV-1 subtype distribution was 1 B (2.1%), 8 F (17%), 8 D (17%) and 28 CRF02_AG (59.6%) with 2 unclassified recombinants (4.3%). Unique clusters for subtype D and F distinguished Guinea from HIV-1 subtype distribution in neighboring countries. Subtype F and subtype D strains, uncommon in West Africa, are a substantial part of HIV-1 epidemiology in Guinea. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Knockdown of MAP4 and DNAL1 produces a post-fusion and pre-nuclear translocation impairment in HIV-1 replication

    International Nuclear Information System (INIS)

    Gallo, Daniel E.; Hope, Thomas J.

    2012-01-01

    DNAL1 and MAP4 are both microtubule-associated proteins. These proteins were identified as HIV-1 dependency factors in a screen with wild-type HIV-1. In this study we demonstrate that knockdown using DNAL1 and MAP4 siRNAs and shRNAs inhibits HIV-1 infection regardless of envelope. Using a fusion assay, we show that DNAL1 and MAP4 do not impact fusion. By assaying for late reverse transcripts and 2-LTR circles, we show that DNAL1 and MAP4 inhibit both by approximately 50%. These results demonstrate that DNAL1 and MAP4 impact reverse transcription but not nuclear translocation. DNAL1 and MAP4 knockdown cells do not display cytoskeletal defects. Together these experiments indicate that DNAL1 and MAP4 may exert their functions in the HIV life cycle at reverse transcription, prior to nuclear translocation.

  4. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Directory of Open Access Journals (Sweden)

    Mattias N E Forsell

    2008-10-01

    Full Text Available The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3. Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4 rabbits with envelope glycoprotein (Env trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  5. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Science.gov (United States)

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  6. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    International Nuclear Information System (INIS)

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika

    2007-01-01

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1 IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent

  7. Conformational alterations in the CD4 binding cavity of HIV-1 gp120 influencing gp120-CD4 interactions and fusogenicity of HIV-1 envelopes derived from brain and other tissues

    Directory of Open Access Journals (Sweden)

    Ramsland Paul A

    2011-06-01

    Full Text Available Abstract Background CD4-binding site (CD4bs alterations in gp120 contribute to HIV-1 envelope (Env mediated fusogenicity and the ability of gp120 to utilize low levels of cell-surface CD4. In a recent study, we constructed three-dimensional models of gp120 to illustrate CD4bs conformations associated with enhanced fusogenicity and enhanced CD4-usage of a modestly-sized panel of blood-derived HIV-1 Envs (n = 16. These conformations were characterized by a wider aperture of the CD4bs cavity, as constrained by the inner-most atoms at the gp120 V1V2 stem and the V5 loop. Here, we sought to provide further validation of the utility of these models for understanding mechanisms that influence Env function, by characterizing the structure-function relationships of a larger panel of Envs derived from brain and other tissues (n = 81. Findings Three-dimensional models of gp120 were generated by our recently validated homology modelling protocol. Analysis of predicted CD4bs structures showed correlations between the aperture width of the CD4bs cavity and ability of the Envs to mediate cell-cell fusion, scavenge low-levels of cell-surface CD4, bind directly to soluble CD4, and bind to the Env mAb IgG1b12 whose epitope overlaps the gp120 CD4bs. These structural alterations in the CD4bs cavity were associated with repositioning of the V5 loop. Conclusions Using a large, independent panel of Envs, we can confirm the utility of three-dimensional gp120 structural models for illustrating CD4bs alterations that can affect Env function. Furthermore, we now provide new evidence that these CD4bs alterations augment the ability of gp120 to interact with CD4 by increasing the exposure of the CD4bs.

  8. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility.

    Science.gov (United States)

    Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D

    2010-01-19

    The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.

  9. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen; Saksena, Nitin K.

    2013-01-01

    architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may

  10. Molecular epidemiological analysis of paired pol/env sequences from Portuguese HIV type 1 patients.

    Science.gov (United States)

    Abecasis, Ana B; Martins, Andreia; Costa, Inês; Carvalho, Ana P; Diogo, Isabel; Gomes, Perpétua; Camacho, Ricardo J

    2011-07-01

    The advent of new therapeutic approaches targeting env and the search for efficient anti-HIV-1 vaccines make it necessary to identify the number of recombinant forms using genomic regions that were previously not frequently sequenced. In this study, we have subtyped paired pol and env sequences from HIV-1 strains infecting 152 patients being clinically followed in Portugal. The percentage of strains in which we found discordant subtypes in pol and env was 25.7%. When the subtype in pol and env was concordant (65.1%), the most prevalent subtypes were subtype B (40.8%), followed by subtype C (17.8%) and subtype G (5.3%). The most prevalent recombinant form was CRF14_BGpol/Genv (7.2%).

  11. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2007-12-01

    Full Text Available Abstract Background CCR5-restricted (R5 human immunodeficiency virus type 1 (HIV-1 variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA and AIDS (A R5 Envs, respectively. Results Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362, a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. Conclusion Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.

  12. Genetic and phylogenetic evolution of HIV-1 in a low subtype heterogeneity epidemic: the Italian example

    Directory of Open Access Journals (Sweden)

    Tornesello Maria

    2007-05-01

    Full Text Available Abstract The Human Immunodeficiency Virus type 1 (HIV-1 is classified into genetic groups, subtypes and sub-subtypes which show a specific geographic distribution pattern. The HIV-1 epidemic in Italy, as in most of the Western Countries, has traditionally affected the Intra-venous drug user (IDU and Homosexual (Homo risk groups and has been sustained by the genetic B subtype. In the last years, however, the HIV-1 transmission rate among heterosexuals has dramatically increased, becoming the prevalent transmission route. In fact, while the traditional risk groups have high levels of knowledge and avoid high-risk practices, the heterosexuals do not sufficiently perceive the risk of HIV-1 infection. This misperception, linked to the growing number of immigrants from non-Western Countries, where non-B clades and circulating recombinant forms (CRFs are prevalent, is progressively introducing HIV-1 variants of non-B subtype in the Italian epidemic. This is in agreement with reports from other Western European Countries. In this context, the Italian HIV-1 epidemic is still characterized by low subtype heterogeneity and represents a paradigmatic example of the European situation. The continuous molecular evolution of the B subtype HIV-1 isolates, characteristic of a long-lasting epidemic, together with the introduction of new subtypes as well as recombinant forms may have significant implications for diagnostic, treatment, and vaccine development. The study and monitoring of the genetic evolution of the HIV-1 represent, therefore, an essential strategy for controlling the local as well as global HIV-1 epidemic and for developing efficient preventive and therapeutic strategies.

  13. Virtually full-length subtype F and F/D recombinant HIV-1 from Africa and South America

    NARCIS (Netherlands)

    Laukkanen, T.; Carr, J. K.; Janssens, W.; Liitsola, K.; Gotte, D.; McCutchan, F. E.; Op de Coul, E.; Cornelissen, M.; Heyndrickx, L.; van der Groen, G.; Salminen, M. O.

    2000-01-01

    For reliable classification of HIV-1 strains appropriate reference sequences are needed. The HIV-1 genetic subtype F has a wide geographic spread, causing significant epidemics in South America, Africa, and some regions of Europe. Previously only two full-length sequences of each of the HIV-1

  14. Hepatitis B virus (HBV)-specific T-cell responses to recombinant HBV core protein in patients with normal liver function and co-infected with chronic HBV and human immunodeficiency virus 1 (HIV-1)

    Science.gov (United States)

    2013-01-01

    Background Little is known about HBV-specific T-cell responses in chronic Hepatitis B patients (HBV) that are co-infected with Human immunodeficiency virus type 1 (HIV-1), especially those with normal alanine aminotransferase (ALT) levels. Methods Twenty-five patients with chronic HBV (11 hepatitis B e antigen [HBeAg]-positive, 14 HBeAg-negative) were enrolled in a cross-sectional study. A longitudinal study as also conducted in which follow-up was done at 3, 12, and 24 months, after acute HIV-1 infection, in 11 individuals who also had chronic HBV. Peripheral blood mononuclear cells were stimulated with recombinant HBV surface protein (S protein), core protein (C protein) or gag peptide. IFN-γ-secreting T cells were identified by ELISPOT assay. Results In the cross-sectional study, co-infected chronic HBV patients had lower C protein-specific T-cell responses compared with mono-infected individuals, though the difference was not significant. In co-infected, chronic HBV patients, the magnitude of C protein-specific T-cell responses was significantly greater in HBeAg-positive subjects compared to HBeAg-negative subjects (p = 0.011). C protein-specific T-cell responses were positively correlated with HBV viral load (rs = 0.40, p = 0.046). However, gag-specific T-cell responses were negatively correlated with HIV viral load (rs = −0.44, p = 0.026) and positively correlated with CD4+ count (rs = 0.46, p = 0.021). The results were different in mono-infected individuals. PBMCs from co-infected HBeAg-positive patients secreted more specific-IFN-γ in cultured supernatants compared with PBMCs from co-infected HBeAg-negative patients (p = 0.019). In the longitudinal study, S protein- and C protein-specific T-cell responses were decreased as the length of follow-up increased (p = 0.034, for S protein; p = 0.105, for C protein). Additionally, the S protein- and C protein-specific T-cell responses were significantly higher in HBe

  15. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  16. Number of infection events per cell during HIV-1 cell-free infection.

    Science.gov (United States)

    Ito, Yusuke; Remion, Azaria; Tauzin, Alexandra; Ejima, Keisuke; Nakaoka, Shinji; Iwasa, Yoh; Iwami, Shingo; Mammano, Fabrizio

    2017-07-26

    HIV-1 accumulates changes in its genome through both recombination and mutation during the course of infection. For recombination to occur, a single cell must be infected by two HIV strains. These coinfection events were experimentally demonstrated to occur more frequently than would be expected for independent infection events and do not follow a random distribution. Previous mathematical modeling approaches demonstrated that differences in target cell susceptibility can explain the non-randomness, both in the context of direct cell-to-cell transmission, and in the context of free virus transmission (Q. Dang et al., Proc. Natl. Acad. Sci. USA 101:632-7, 2004: K. M. Law et al., Cell reports 15:2711-83, 2016). Here, we build on these notions and provide a more detailed and extensive quantitative framework. We developed a novel mathematical model explicitly considering the heterogeneity of target cells and analysed datasets of cell-free HIV-1 single and double infection experiments in cell culture. Particularly, in contrast to the previous studies, we took into account the different susceptibility of the target cells as a continuous distribution. Interestingly, we showed that the number of infection events per cell during cell-free HIV-1 infection follows a negative-binomial distribution, and our model reproduces these datasets.

  17. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    2008-04-01

    Full Text Available HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  18. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults

    OpenAIRE

    Gaudinski, Martin R.; Coates, Emily E.; Houser, Katherine V.; Chen, Grace L.; Yamshchikov, Galina; Saunders, Jamie G.; Holman, LaSonji A.; Gordon, Ingelise; Plummer, Sarah; Hendel, Cynthia S.; Conan-Cibotti, Michelle; Lorenzo, Margarita Gomez; Sitar, Sandra; Carlton, Kevin; Laurencot, Carolyn

    2018-01-01

    Background VRC01 is a human broadly neutralizing monoclonal antibody (bnMAb) against the CD4-binding site of the HIV-1 envelope glycoprotein (Env) that is currently being evaluated in a Phase IIb adult HIV-1 prevention efficacy trial. VRC01LS is a modified version of VRC01, designed for extended serum half-life by increased binding affinity to the neonatal Fc receptor. Methods and findings This Phase I dose-escalation study of VRC01LS in HIV-negative healthy adults was conducted by the Vaccin...

  19. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    International Nuclear Information System (INIS)

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture

  20. Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures

    International Nuclear Information System (INIS)

    Watson, A.J.; Klaniecki, J.; Hanson, C.V.

    1990-01-01

    A rapid procedure for the inactivation of HIV-1-infected cells using psoralen and ultraviolet (UV) light is described. Exposure of HIV-1-infected cells to 5 micrograms/ml psoralen followed by UV irradiation (320-380 nm) for 5 minutes yields cells that are noninfectious as assessed by extended infectivity assays. The psoralen/UV inactivation procedure described is effective with cells chronically or acutely infected with HIV-1 and is unaffected by cell densities up to 12 x 10(6)/ml. At 5 micrograms/ml psoralen does little damage to cellular permeability as shown by the ability of treated cells to exclude trypan blue and propidium iodide. Psoralen/UV treatment of HIV-1-infected cells does not cause a significant decrease in the reactivity of HIV-1 core and envelope antigens or cellular antigens to monoclonal antibodies. Experiments are presented demonstrating the use of these cells for flow cytometry studies and for cell surface labeling using the lactoperoxidase 125 I iodination procedure

  1. Neutralization of X4- and R5-tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins

    Directory of Open Access Journals (Sweden)

    Schwalbe Birco

    2010-06-01

    Full Text Available Abstract Background Myeloperoxidase (MPO, an important element of the microbicidal activity of neutrophils, generates hypochlorous acid (HOCl from H2O2 and chloride, which is released into body fluids. Besides its direct microbicidal activity, HOCl can react with amino acid residues and HOCl-modified proteins can be detected in vivo. Findings This report is based on binding studies of HOCl-modified serum albumins to HIV-1 gp120 and three different neutralization assays using infectious virus. The binding studies were carried out by surface plasmon resonance spectroscopy and by standard ELISA techniques. Virus neutralization assays were carried out using HIV-1 NL4-3 virus and recombinant strains with CXCR4 and CCR5 coreceptor usage. Viral infection was monitored by a standard p24 or X-gal staining assay. Our data demonstrate that HOCl-modified mouse-, bovine- and human serum albumins all bind to the HIV-1 NL4-3 gp120 (LAV glycoprotein in contrast to non-modified albumin. Binding of HOCl-modified albumin to gp120 correlated to the blockade of CD4 as well as that of V3 loop specific monoclonal antibody binding. In neutralization experiments, HOCl-modified serum albumins inhibited replication and syncytium formation of the X4- and R5-tropic NL4-3 isolates in a dose dependent manner. Conclusions Our data indicate that HOCl-modified serum albumin veils the binding site for CD4 and the V3 loop on gp120. Such masking of the viral gp120/gp41 envelope complex might be a simple but promising strategy to inactivate HIV-1 and therefore prevent infection when HOCl-modified serum albumin is applied, for example, as a topical microbicide.

  2. HIV-1 Genetic Variability in Cuba and Implications for Transmission and Clinical Progression.

    Science.gov (United States)

    Blanco, Madeline; Machado, Liuber Y; Díaz, Héctor; Ruiz, Nancy; Romay, Dania; Silva, Eladio

    2015-10-01

    INTRODUCTION Serological and molecular HIV-1 studies in Cuba have shown very low prevalence of seropositivity, but an increasing genetic diversity attributable to introduction of many HIV-1 variants from different areas, exchange of such variants among HIV-positive people with several coinciding routes of infection and other epidemiologic risk factors in the seropositive population. The high HIV-1 genetic variability observed in Cuba has possible implications for transmission and clinical progression. OBJECTIVE Study genetic variability for the HIV-1 env, gag and pol structural genes in Cuba; determine the prevalence of B and non-B subtypes according to epidemiologic and behavioral variables and determine whether a relationship exists between genetic variability and transmissibility, and between genetic variability and clinical disease progression in people living with HIV/AIDS. METHODS Using two molecular assays (heteroduplex mobility assay and nucleic acid sequencing), structural genes were characterized in 590 people with HIV-1 (480 men and 110 women), accounting for 3.4% of seropositive individuals in Cuba as of December 31, 2013. Nonrandom sampling, proportional to HIV prevalence by province, was conducted. Relationships between molecular results and viral factors, host characteristics, and patients' clinical, epidemiologic and behavioral variables were studied for molecular epidemiology, transmission, and progression analyses. RESULTS Molecular analysis of the three HIV-1 structural genes classified 297 samples as subtype B (50.3%), 269 as non-B subtypes (45.6%) and 24 were not typeable. Subtype B prevailed overall and in men, mainly in those who have sex with men. Non-B subtypes were prevalent in women and heterosexual men, showing multiple circulating variants and recombinant forms. Sexual transmission was the predominant form of infection for all. B and non-B subtypes were encountered throughout Cuba. No association was found between subtypes and

  3. Phylogenetic characteristics of HIV-1 among travelers entering China from Myanmar: A retrospective study.

    Science.gov (United States)

    Zhang, Li; Wang, Binhui; Liang, Yaobo; Feng, Yue; Dong, Shuwei; Wang, Yajuan; Li, Yaping; Zhang, A-Mei; Liu, Li; Qin, Weihong; Xia, Xueshan

    2017-08-01

    Due to the open policy of the Chinese government, a large number of Burmese individuals enter China at land ports in Yunnan province for travel or business. However, the situation of HIV-1 infection and its phylogenetic characteristics among these travelers remains unclear, which is a potential threat to public health. From January 2003 to December 2012, a total of 1,961 travelers were detected to be positive for HIV-1 infection at land ports between Myanmar and Yunnan province, China. From 1153 (58.8%) Burmese of them, we randomly collected 489 serum samples for HIV-1 subtype/recombinant analysis. Based on successfully obtained 223 gag-RT sequences, 187 of them were genotyped as 2 subtypes and 3 CRFs. CRF01_AE was showed to be the most prevalent genotype (54.3%), followed by subtypes C (13.5%) and B (10.8%). Notably, CRF07_BC (1.3%) and CRF08_BC (4.0%) were mainly distributed in travelers from Shan state and Kachin (91.7%, 11/12), but was not found in travelers from the capital city of Yangon (0/16). Additionally, there were 36 samples (16.1%) were preliminary determined as unique recombinant forms (URFs). The higher HIV-1 infection among entering travelers from Myanmar and its diverse and complex genotypes distribution suggest this bridge population may facilitate the transmission of HIV-1. It is necessary to have the strict monitoring on this population for prevention of HIV-1 cross-border transmission. © 2017 Wiley Periodicals, Inc.

  4. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus

    Directory of Open Access Journals (Sweden)

    Zhu Bibo

    2012-07-01

    Full Text Available Abstract Background West Nile Virus (WNV is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM and envelope (E proteins under the cytomegalovirus (CMV promoter with or without vesicular stomatitis virus glycoprotein (VSV/G were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.

  5. Molecular and phylogenetic analysis of HIV-1 variants circulating in Italy

    Directory of Open Access Journals (Sweden)

    Sbreglia Costanza

    2008-10-01

    Full Text Available Abstract Objective The continuous identification of HIV-1 non-B subtypes and recombinant forms in Italy indicates the need of constant molecular epidemiology survey of genetic forms circulating and transmitted in the resident population. Methods The distribution of HIV-1 subtypes has been evaluated in 25 seropositive individuals residing in Italy, most of whom were infected through a sexual route during the 1995–2005 period. Each sample has been characterized by detailed molecular and phylogenetic analyses. Results 18 of the 25 samples were positive at HIV-1 PCR amplification. Three samples showed a nucleotide divergence compatible with a non-B subtype classification. The phylogenetic analysis, performed on both HIV-1 env and gag regions, confirms the molecular sub-typing prediction, given that 1 sample falls into the C subtype and 2 into the G subtype. The B subtype isolates show high levels of intra-subtype nucleotide divergence, compatible with a long-lasting epidemic and a progressive HIV-1 molecular diversification. Conclusion The Italian HIV-1 epidemic is still mostly attributable to the B subtype, regardless the transmission route, which shows an increasing nucleotide heterogeneity. Heterosexual transmission and the interracial blending, however, are slowly introducing novel HIV-1 subtypes. Therefore, a molecular monitoring is needed to follow the constant evolution of the HIV-1 epidemic.

  6. Selected HIV-1 Env trimeric formulations act as potent immunogens in a rabbit vaccination model

    DEFF Research Database (Denmark)

    Heyndrickx, Leo; Stewart-Jones, Guillaume; Jansson, Marianne Bendixen

    2013-01-01

    Ten to 30% of HIV-1 infected subjects develop broadly neutralizing antibodies (bNAbs) during chronic infection. We hypothesized that immunizing rabbits with viral envelope glycoproteins (Envs) from these patients may induce bNAbs, when formulated as a trimeric protein and in the presence of an ad...

  7. Selected HIV-1 Env Trimeric Formulations Act as Potent Immunogens in a Rabbit Vaccination Model

    NARCIS (Netherlands)

    Heyndrickx, Leo; Stewart-Jones, Guillaume; Jansson, Marianne; Schuitemaker, Hanneke; Bowles, Emma; Buonaguro, Luigi; Grevstad, Berit; Vinner, Lasse; Vereecken, Katleen; Parker, Joe; Ramaswamy, Meghna; Biswas, Priscilla; Vanham, Guido; Scarlatti, Gabriella; Fomsgaard, Anders

    2013-01-01

    Ten to 30% of HIV-1 infected subjects develop broadly neutralizing antibodies (bNAbs) during chronic infection. We hypothesized that immunizing rabbits with viral envelope glycoproteins (Envs) from these patients may induce bNAbs, when formulated as a trimeric protein and in the presence of an

  8. Chemokine (C-C motif) receptor 5-using envelopes predominate in dual/mixed-tropic HIV from the plasma of drug-naive individuals.

    Science.gov (United States)

    Irlbeck, David M; Amrine-Madsen, Heather; Kitrinos, Kathryn M; Labranche, Celia C; Demarest, James F

    2008-07-31

    HIV-1 utilizes CD4 and either chemokine (C-C motif) receptor 5 (CCR5) or chemokine (C-X-C motif) receptor 4 (CXCR4) to gain entry into host cells. Small molecule CCR5 antagonists are currently being developed for the treatment of HIV-1 infection. Because HIV-1 may also use CXCR4 for entry, the use of CCR5 entry inhibitors is controversial for patients harboring CCR5-using and CXCR4-using (dual/mixed-tropic) viruses. The goal of the present study was to determine the proportion of CCR5-tropic and CXCR4-tropic viruses in dual/mixed-tropic virus isolates from drug-naïve patients and the phenotypic and genotypic relationships of viruses that use CCR5 or CXCR4 or both. Fourteen antiretroviral-naive HIV-1-infected patients were identified as having population coreceptor tropism readout of dual/mixed-tropic viruses. Intrapatient comparisons of coreceptor tropism and genotype of env clones were conducted on plasma virus from each patient. Population HIV-1 envelope tropism and susceptibility to the CCR5 entry inhibitor, aplaviroc, were performed using the Monogram Biosciences Trofile Assay. Twelve env clones from each patient were analyzed for coreceptor tropism, aplaviroc sensitivity, genotype, and intrapatient phylogenetic relationships. Viral populations from antiretroviral-naive patients with dual/mixed-tropic virus are composed primarily of CCR5-tropic env clones mixed with those that use both coreceptors (R5X4-tropic) and, occasionally, CXCR4-tropic env clones. Interestingly, the efficiency of CXCR4 use by R5X4-tropic env clones varied with their genetic relationships to CCR5-tropic env clones from the same patient. These data show that the majority of viruses in these dual/mixed-tropic populations use CCR5 and suggest that antiretroviral-naive patients may benefit from combination therapy that includes CCR5 entry inhibitors.

  9. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    Science.gov (United States)

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  11. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    Science.gov (United States)

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Phylodynamics of the HIV-1 epidemic in Cuba.

    Science.gov (United States)

    Delatorre, Edson; Bello, Gonzalo

    2013-01-01

    Previous studies have shown that the HIV-1 epidemic in Cuba displayed a complex molecular epidemiologic profile with circulation of several subtypes and circulating recombinant forms (CRF); but the evolutionary and population history of those viral variants remains unknown. HIV-1 pol sequences of the most prevalent Cuban lineages (subtypes B, C and G, CRF18_cpx, CRF19_cpx, and CRFs20/23/24_BG) isolated between 1999 and 2011 were analyzed. Maximum-likelihood analyses revealed multiple introductions of subtype B (n≥66), subtype C (n≥10), subtype G (n≥8) and CRF18_cpx (n≥2) viruses in Cuba. The bulk of HIV-1 infections in this country, however, was caused by dissemination of a few founder strains probably introduced from North America/Europe (clades B(CU-I) and B(CU-II)), east Africa (clade C(CU-I)) and central Africa (clades G(CU), CRF18(CU) and CRF19(CU)), or locally generated (clades CRFs20/23/24_BG). Bayesian-coalescent analyses show that the major HIV-1 founder strains were introduced into Cuba during 1985-1995; whereas the CRFs_BG strains emerged in the second half of the 1990s. Most HIV-1 Cuban clades appear to have experienced an initial period of fast exponential spread during the 1990s and early 2000s, followed by a more recent decline in growth rate. The median initial growth rate of HIV-1 Cuban clades ranged from 0.4 year⁻¹ to 1.6 year⁻¹. Thus, the HIV-1 epidemic in Cuba has been a result of the successful introduction of a few viral strains that began to circulate at a rather late time of the AIDS pandemic, but then were rapidly disseminated through local transmission networks.

  13. Transmission of single and multiple viral variants in primary HIV-1 subtype C infection.

    Directory of Open Access Journals (Sweden)

    Vladimir Novitsky

    2011-02-01

    Full Text Available To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80% cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64% cases, and transmission of multiple variants was evident in 8 of 25 (32% cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96% cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.

  14. Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core

    International Nuclear Information System (INIS)

    Hammonds, Jason; Chen Xuemin; Ding Lingmei; Fouts, Timothy; De Vico, Anthony; Megede, Jan zur; Barnett, Susan; Spearman, Paul

    2003-01-01

    Human immunodeficiency virus type-1 (HIV-1) particles incorporate a trimeric envelope complex (Env) made of gp120 (SU) and gp41 (TM) heterodimers. It has been previously established that soluble CD4 (sCD4) interaction leads to shedding of gp120 from viral particles, and that gp120 may also be easily lost from virions during incubation or particle purification procedures. In the design of HIV particle or pseudovirion-based HIV vaccines, it may be important to develop strategies to maximize the gp120 content of particles. We analyzed the gp120 retention of HIV-1 laboratory-adapted isolates and primary isolates following incubation with sCD4 and variations in temperature. NL4-3 shed gp120 readily in a temperature- and sCD4-dependent manner. Surprisingly, inactivation of the viral protease led to markedly reduced shedding of gp120. Gp120 shedding was shown to vary markedly between HIV-1 strains, and was not strictly determined by whether the isolate was adapted to growth on immortalized T cell lines or was a primary isolate. Pseudovirions produced by expression of codon-optimized gag and env genes also demonstrated enhanced gp120 retention when an immature core structure was maintained. Pseudovirions of optimal stability were produced through a combination of an immature Gag protein core and a primary isolate Env. These results support the feasibility of utilizing pseudovirion particles as immunogens for the induction of humoral responses directed against native envelope structures

  15. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway

    Science.gov (United States)

    Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun

    2016-12-01

    HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.

  16. Antibody-dependent enhancement of HIV-1 infection in human term syncytiotrophoblast cells cultured in vitro.

    Science.gov (United States)

    Tóth, F D; Mosborg-Petersen, P; Kiss, J; Aboagye-Mathiesen, G; Zdravkovic, M; Hager, H; Aranyosi, J; Lampé, L; Ebbesen, P

    1994-06-01

    We examined if Fc receptor-mediated antibody-dependent enhancement (FcR-ADE) or complement-mediated antibody-dependent enhancement (C'-ADE) of virus infection can contribute to increasing replication of HIV-1 in human syncytiotrophoblast (ST) cells. Here we report that both FcR-ADE and C'-ADE may result in enhanced virus release from HIV-1-infected ST cells. We show that FcR-ADE of HIV-1 infection in ST cells is mediated by FcRIII and other FcR(s) belonging to undetermined Fc classes and does not require CD4 receptors, whereas C'-ADE uses both CD4 and CR2-like receptors. FcR-ADE seems to be more efficient in enhancing HIV-1 replication than C'-ADE. While FcR-ADE leads to increased internalization of HIV-1, C'-ADE does not result in enhanced endocytosis of the virus. In addition, antibodies mediating FcR-ADE are reactive with the gp120 viral envelope antigen, whereas antibodies involved in C'-ADE react with the viral transmembrane glycoprotein gp41. Data suggest that both FcR-ADE and C'-ADE may contribute to the spread of HIV-1 from mother to the fetus.

  17. Short Communication Phylogenetic Characterization of HIV Type 1 CRF01_AE V3 Envelope Sequences in Pregnant Women in Northern Vietnam

    Science.gov (United States)

    Caridha, Rozina; Ha, Tran Thi Thanh; Gaseitsiwe, Simani; Hung, Pham Viet; Anh, Nguyen Mai; Bao, Nguyen Huy; Khang, Dinh Duy; Hien, Nguyen Tran; Cam, Phung Dac; Chiodi, Francesca

    2012-01-01

    Abstract Characterization of HIV-1 strains is important for surveillance of the HIV-1 epidemic. In Vietnam HIV-1-infected pregnant women often fail to receive the care they are entitled to. Here, we analyzed phylogenetically HIV-1 env sequences from 37 HIV-1-infected pregnant women from Ha Noi (n=22) and Hai Phong (n=15), where they delivered in 2005–2007. All carried CRF01_AE in the gp120 V3 region. In 21 women CRF01_AE was also found in the reverse transcriptase gene. We compared their env gp120 V3 sequences phylogenetically in a maximum likelihood tree to those of 198 other CRF01_AE sequences in Vietnam and 229 from neighboring countries, predominantly Thailand, from the HIV-1 database. Altogether 464 sequences were analyzed. All but one of the maternal sequences colocalized with sequences from northern Vietnam. The maternal sequences had evolved the least when compared to sequences collected in Ha Noi in 2002, as shown by analysis of synonymous and nonsynonymous changes, than to other Vietnamese sequences collected earlier and/or elsewhere. Since the HIV-1 epidemic in women in Vietnam may still be underestimated, characterization of HIV-1 in pregnant women is important to observe how HIV-1 has evolved and follow its molecular epidemiology. PMID:21936713

  18. Multiple proviral integration events after virological synapse-mediated HIV-1 spread

    International Nuclear Information System (INIS)

    Russell, Rebecca A.; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J.

    2013-01-01

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes

  19. Functional characteristics of HIV-1 subtype C compatible with increased heterosexual transmissibility

    DEFF Research Database (Denmark)

    Walter, Brandon L; Armitage, Andrew E; Graham, Stephen C

    2009-01-01

    BACKGROUND: Despite the existence of over 50 subtypes and circulating recombinant forms of HIV-1, subtype C dominates the heterosexual pandemic causing approximately 56% of all infections. OBJECTIVE: To evaluate whether viral genetic factors may contribute to the observed subtype-C predominance. ....... CONCLUSION: As CD4-CCR5-T cells are key targets for genital HIV infection and cervical selection can favor compact V1-V2 loops and 316T, which increase viral infectivity, we propose that these conserved subtype-C motifs may contribute to transmission and spread of this subtype....

  20. Immunodominant B-cell clones responsive to an HIV-1 neutralization and cell fusion inhibition epitope in chimpanzee-to-chimpanzee passages of HTLV-IIIB and LAV-1

    NARCIS (Netherlands)

    Goudsmit, J.; Bakker, M.; Smit, L.

    1989-01-01

    Chimpanzees infected with the HIV-1 strains HTLV-IIIB or LAV-1 in primary, secondary or tertiary passages developed neutralizing antibodies binding to variable domain V3 in the carboxyl terminal half of the external envelope (amino acids 309-317). Nonapeptide antigens reflecting either the

  1. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  2. [Studies on antigencity of human immunodeficiency virus type 1 (HIV-1) external glycoprotein as well as its expression in Pichia pastoris].

    Science.gov (United States)

    Zhao, Li-Hui; Yu, Xiang-Hui; Jiang, Chun-Lai; Wu, Yong-Ge; Shen, Jia-Cong; Kong, Wei

    2007-05-01

    Based on the computer simulation, we analyzed hydrophobicity, potential epitope of recombined subtypes HIV-1 Env protein (851 amino acids) from Guangxi in China. Compared with conservative peptides of other subtypes in env protein, three sequences (469-511aa, 538-674aa, 700-734aa) were selected to recombine into a chimeric gene that codes three conservative epitope peptides with stronger antigencity, and was constructed in the yeast expression plasmid pPICZB. Chimeric proteins were expressed in Pichia pastoris under the induction of methanol, and were analyzed by SDS-PAGE and Westernblot. The results showed that fusion proteins of three-segment antigen were expressed in Pichia pastoris and that specific protein band at the site of 40kD was target protein, which is interacted with HIV-1 serum. The target proteins were purified by metal Ni-sepharose 4B, and were demonstrated to possess good antigenic specificity from the data of ELISA. This chimeric antigen may be used as research and developed into HIV diagnostic reagents.

  3. that Bind Specifically to Recombinant Envelope Protein of Dengue

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research June 2015; 14 (6): 997-1003 ... Revised accepted: 30 April 2015. Abstract ... Results: The 45 KDa, 43 KDa and 30 KDa plasma membrane proteins were identified as viral envelope targets.

  4. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry.

    Directory of Open Access Journals (Sweden)

    Rachid Sougrat

    2007-05-01

    Full Text Available The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV, are heterodimers of a transmembrane glycoprotein (usually gp41, and a surface glycoprotein (gp120, which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.

  5. HIV-1 transmission between MSM and heterosexuals, and increasing proportions of circulating recombinant forms in the Nordic Countries

    Science.gov (United States)

    Esbjörnsson, Joakim; Mild, Mattias; Audelin, Anne; Fonager, Jannik; Skar, Helena; Bruun Jørgensen, Louise; Liitsola, Kirsi; Björkman, Per; Bratt, Göran; Gisslén, Magnus; Sönnerborg, Anders; Nielsen, Claus; Medstrand, Patrik; Albert, Jan

    2016-01-01

    Increased knowledge about HIV-1 transmission dynamics in different transmission groups and geographical regions is fundamental for assessing and designing prevention efforts against HIV-1 spread. Since the first reported cases of HIV infection during the early 1980s, the HIV-1 epidemic in the Nordic countries has been dominated by HIV-1 subtype B and MSM transmission. HIV-1 pol sequences and clinical data of 51 per cent of all newly diagnosed HIV-1 infections in Sweden, Denmark, and Finland in the period 2000–2012 (N = 3,802) were analysed together with a large reference sequence dataset (N = 4,537) by trend analysis and phylogenetics. Analysis of the eight dominating subtypes and CRFs in the Nordic countries (A, B, C, D, G, CRF01_AE, CRF02_AG, and CRF06_cpx) showed that the subtype B proportion decreased while the CRF proportion increased over the study period. A majority (57 per cent) of the Nordic sequences formed transmission clusters, with evidence of mixing both geographically and between transmission groups. Detailed analyses showed multiple occasions of transmissions from MSM to heterosexuals and that active transmission clusters more often involved single than multiple Nordic countries. The strongest geographical link was between Denmark and Sweden. Finally, Denmark had a larger proportion of heterosexual domestic spread of HIV-1 subtype B (75 per cent) compared with Sweden (49 per cent) and Finland (57 per cent). We describe different HIV-1 transmission patterns between countries and transmission groups in a large geographical region. Our results may have implications for public health interventions in targeting HIV-1 transmission networks and identifying where to introduce such interventions. PMID:27774303

  6. HIV-1 group O infection in Cameroon from 2006 to 2013: Prevalence, genetic diversity, evolution and public health challenges

    Science.gov (United States)

    Villabona-Arenas, Christian Julian; Domyeum, Jenny; Mouacha, Fatima; Butel, Christelle; Delaporte, Eric; Peeters, Martine; Mpoudi-Ngole, Eitel; Aghokeng, Avelin Fobang

    2015-01-01

    The human immunodeficiency virus, HIV, is characterized by a tremendously high genetic diversity, leading to the currently known circulating HIV types, groups, subtypes, and recombinant forms. HIV-1 group O is one of the most diverse forms of HIV-1 and has been so far related to Cameroon or individuals originating from Cameroon. In this study, we investigated in Cameroon, the evolution of this viral group from 2006 to 2013, in terms of prevalence, genetic diversity and public health implications. Our results confirmed the predominance of HIV-1 group M (98.5%), a very low prevalence (O was found at around 0.6% (95% confidence interval: 0.4–0.8%), indicating that the frequency of this virus in Cameroon has remained stable over the last decades. However, we found an extensive high genetic diversity within this HIV-1 group, that resulted from previous steady increase on the effective number of HIV-1 group O infections through time, and the current distribution of the circulating viral strains still does not allow classification as subtypes. The frequency of dual infections with HIV-1 group M and group O was 0.8% (95% confidence interval: 0.6–1.0%), but we found no recombinant forms in co-infected patients. Natural resistance to integrase inhibitors was not identified, although we found several mutations considered as natural polymorphisms. Our study shows that infections with HIV-1 group O can be adequately managed in countries where the virus circulates, but this complex virus still represents a challenge for diagnostics and monitoring strategies. PMID:26371064

  7. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    Science.gov (United States)

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be <0.3 log 10 cp/mL for VERIS HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and <0.5 log 10 cp/mL versus VERSANT HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of a novel splice acceptor in the HIV-1 genome: independent expression of the cytoplasmic tail of the envelope protein

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J. L.

    1996-01-01

    Multiple splicing sites exist in the RNA genome of the human immunodeficiency virus type 1 (HIV-1). In a screen for subgenomic forms of the HIV-1 genome that could be transferred to fresh cells by virus infection, we identified a novel spliced variant of HIV-1 RNA that uses a hitherto unknown splice

  9. Envelope proteins of bovine herpesvirus 1: immunological and biochemical studies

    International Nuclear Information System (INIS)

    Rodriguez Roque, L.L.

    1986-01-01

    The authors studied immunological and biochemical properties of the bovid herpesvirus 1 (BHV-1) envelope proteins in order to understand the pathogenesis of BHV-1 infection and to provide basic information for the production of effective subunit vaccines against BHV-1. Ten glycoproteins MW 180, 150, 130, 115, 97, 77, 74, 64, 55, and 45 kilodaltons (K), and a single non-glycosylated 108 K protein were quantitatively removed from purified BHV-1 virions by detergent treatment. These glycoproteins were present on the virion envelope and on the surface of BHV-1 infected cells. The quantitative removal from virions by treatment with nonionic detergents and their presence on the surface of infected cells indicate that 180/97, 150/77, and 130/74/55 K are major components of the BHV-1 envelope and are also the targets of virus neutralizing humoral immune response. Envelope glycoproteins of herpes simplex type 1 (HSV-1) bind immunoglobulin by the Fc end and it is suggested this may increase pathogenicity of this virus. They searched for a similar function in BVH-1 by measuring the ability of BHV-1 infected cells and viral envelope proteins to bind radiolabelled rabbit and bovine IgG. Binding activity for rabbit IgG or bovine IgG-Fc could not be demonstrated by BHV-1 infected MDBK cells, whereas, MDBK cells infected with HSV-1 bound rabbit IgG and bovine IgG-Fc. None of the three major envelope proteins of BHV-1 bound to rabbit or bovine IgG. The results of this study indicate that BHV-1, unlike some other herpesviruses, lack Fc binding activity

  10. HIV-1 Variants and Drug Resistance in Pregnant Women from Bata (Equatorial Guinea): 2012-2013.

    Science.gov (United States)

    Alvarez, Patricia; Fernández McPhee, Carolina; Prieto, Luis; Martín, Leticia; Obiang, Jacinta; Avedillo, Pedro; Vargas, Antonio; Rojo, Pablo; Benito, Agustín; Ramos, José Tomás; Holguín, África

    2016-01-01

    This is the first study describing drug resistance mutations (DRM) and HIV-1 variants among infected pregnant women in Equatorial Guinea (GQ), a country with high (6.2%) and increasing HIV prevalence. Dried blood spots (DBS) were collected from November 2012 to December 2013 from 69 HIV-1 infected women participating in a prevention of mother-to-child transmission program in the Hospital Regional of Bata and Primary Health Care Centre María Rafols, Bata, GQ. The transmitted (TDR) or acquired (ADR) antiretroviral drug resistance mutations at partial pol sequence among naive or antiretroviral therapy (ART)-exposed women were defined following WHO or IAS USA 2015 lists, respectively. HIV-1 variants were identified by phylogenetic analyses. A total of 38 of 69 HIV-1 specimens were successfully amplified and sequenced. Thirty (79%) belonged to ART-experienced women: 15 exposed to nucleoside reverse transcriptase inhibitors (NRTI) monotherapy, and 15 to combined ART (cART) as first regimen including two NRTI and one non-NRTI (NNRTI) or one protease inhibitor (PI). The TDR rate was only found for PI (3.4%). The ADR rate was 37.5% for NNRTI, 8.7% for NRTI and absent for PI or NRTI+NNRTI. HIV-1 group M non-B variants caused most (97.4%) infections, mainly (78.9%) recombinants: CRF02_AG (55.2%), CRF22_A101 (10.5%), subtype C (10.5%), unique recombinants (5.3%), and A3, D, F2, G, CRF06_cpx and CRF11_cpx (2.6% each). The high rate of ADR to retrotranscriptase inhibitors (mainly to NNRTIs) observed among pretreated pregnant women reinforces the importance of systematic DRM monitoring in GQ to reduce HIV-1 resistance transmission and to optimize first and second-line ART regimens when DRM are present.

  11. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  12. An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1.

    Directory of Open Access Journals (Sweden)

    Sergei L Kosakovsky Pond

    2009-11-01

    Full Text Available Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1 are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5% fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance

  13. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  14. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  15. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    International Nuclear Information System (INIS)

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC 50 s ranging from 0.1 to 7.4 μg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: →Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. →MVCs inhibited infection by T cell line-adapted viruses. →MVCs inhibited infection by primary isolates of HIV-1. →MVCs inhibited Env-mediated membrane fusion.

  16. Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis.

    Science.gov (United States)

    Wang, Lina; Tu, Zhaowei; Liu, Chao; Liu, Hongbin; Kaldis, Philipp; Chen, Zijiang; Li, Wei

    2018-01-08

    Telomeres integrity is indispensable for chromosomal stability by preventing chromosome erosion and end-to-end fusions. During meiosis, telomeres attach to the inner nuclear envelope and cluster into a highly crowded microenvironment at the bouquet stage, which requires specific mechanisms to protect the telomeres from fusion. Here, we demonstrate that germ cell-specific knockout of a shelterin complex subunit, Trf1, results in arrest of spermatocytes at two different stages. The obliterated telomere-nuclear envelope attachment in Trf1-deficient spermatocytes impairs homologue synapsis and recombination, resulting in a pachytene-like arrest, while the meiotic division arrest might stem from chromosome end-to-end fusion due to the failure of recruiting meiosis specific telomere associated proteins. Further investigations uncovered that TRF1 could directly interact with Speedy A, and Speedy A might work as a scaffold protein to further recruit Cdk2, thus protecting telomeres from fusion at this stage. Together, our results reveal a novel mechanism of TRF1, Speedy A, and Cdk2 in protecting telomere from fusion in a highly crowded microenvironment during meiosis.

  17. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    Science.gov (United States)

    Borges, Andrew Rosa; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3’-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 – 7.4 µg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. PMID:20880566

  18. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  19. Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection.

    Directory of Open Access Journals (Sweden)

    Teresa H Evering

    2012-02-01

    Full Text Available Mucosal mononuclear (MMC CCR5+CD4+ T cells of the gastrointestinal (GI tract are selectively infected and depleted during acute HIV-1 infection. Despite early initiation of combination antiretroviral therapy (cART, gut-associated lymphoid tissue (GALT CD4+ T cell depletion and activation persist in the majority of HIV-1 positive individuals studied. This may result from ongoing HIV-1 replication and T-cell activation despite effective cART. We hypothesized that ongoing viral replication in the GI tract during cART would result in measurable viral evolution, with divergent populations emerging over time. Subjects treated during early HIV-1 infection underwent phlebotomy and flexible sigmoidoscopy with biopsies prior to and 15-24 months post initiation of cART. At the 2(nd biopsy, three GALT phenotypes were noted, characterized by high, intermediate and low levels of immune activation. A representative case from each phenotype was analyzed. Each subject had plasma HIV-1 RNA levels <50 copies/ml at 2(nd GI biopsy and CD4+ T cell reconstitution in the peripheral blood. Single genome amplification of full-length HIV-1 envelope was performed for each subject pre- and post-initiation of cART in GALT and PBMC. A total of 280 confirmed single genome sequences (SGS were analyzed for experimental cases. For each subject, maximum likelihood phylogenetic trees derived from molecular sequence data showed no evidence of evolved forms in the GALT over the study period. During treatment, HIV-1 envelope diversity in GALT-derived SGS did not increase and post-treatment GALT-derived SGS showed no substantial genetic divergence from pre-treatment sequences within transmitted groups. Similar results were obtained from PBMC-derived SGS. Our results reveal that initiation of cART during acute/early HIV-1 infection can result in the interruption of measurable viral evolution in the GALT, suggesting the absence of de-novo rounds of HIV-1 replication in this compartment

  20. Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection.

    Science.gov (United States)

    Evering, Teresa H; Mehandru, Saurabh; Racz, Paul; Tenner-Racz, Klara; Poles, Michael A; Figueroa, Amir; Mohri, Hiroshi; Markowitz, Martin

    2012-02-01

    Mucosal mononuclear (MMC) CCR5+CD4+ T cells of the gastrointestinal (GI) tract are selectively infected and depleted during acute HIV-1 infection. Despite early initiation of combination antiretroviral therapy (cART), gut-associated lymphoid tissue (GALT) CD4+ T cell depletion and activation persist in the majority of HIV-1 positive individuals studied. This may result from ongoing HIV-1 replication and T-cell activation despite effective cART. We hypothesized that ongoing viral replication in the GI tract during cART would result in measurable viral evolution, with divergent populations emerging over time. Subjects treated during early HIV-1 infection underwent phlebotomy and flexible sigmoidoscopy with biopsies prior to and 15-24 months post initiation of cART. At the 2(nd) biopsy, three GALT phenotypes were noted, characterized by high, intermediate and low levels of immune activation. A representative case from each phenotype was analyzed. Each subject had plasma HIV-1 RNA levels <50 copies/ml at 2(nd) GI biopsy and CD4+ T cell reconstitution in the peripheral blood. Single genome amplification of full-length HIV-1 envelope was performed for each subject pre- and post-initiation of cART in GALT and PBMC. A total of 280 confirmed single genome sequences (SGS) were analyzed for experimental cases. For each subject, maximum likelihood phylogenetic trees derived from molecular sequence data showed no evidence of evolved forms in the GALT over the study period. During treatment, HIV-1 envelope diversity in GALT-derived SGS did not increase and post-treatment GALT-derived SGS showed no substantial genetic divergence from pre-treatment sequences within transmitted groups. Similar results were obtained from PBMC-derived SGS. Our results reveal that initiation of cART during acute/early HIV-1 infection can result in the interruption of measurable viral evolution in the GALT, suggesting the absence of de-novo rounds of HIV-1 replication in this compartment during

  1. Frequency and site mapping of HIV-1/SIVcpz, HIV- 2/SIVsmm and ...

    African Journals Online (AJOL)

    Administrator

    2007-05-16

    May 16, 2007 ... Other issues of safety are dependant upon choice of enzyme gene deli- very, and although various ex vivo and in vivo gene transfer techniques exist, we believe that a recom-binant. HIV viral vector whose pathogenesis gene, NEF has been removed to render it impotent, could offer a more targeted delivery ...

  2. Fluorescent reporter signals, EGFP and DsRed, encoded in HIV-1 facilitate the detection of productively infected cells and cell-associated viral replication levels

    Directory of Open Access Journals (Sweden)

    Kazutaka eTerahara

    2012-01-01

    Full Text Available Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1 strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4+ T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4+ T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively-infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.

  3. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  4. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  5. Broad antibody mediated cross-neutralization and preclinical immunogenicity of new codon-optimized HIV-1 clade CRF02_AG and G primary isolates.

    Directory of Open Access Journals (Sweden)

    Simon M Agwale

    Full Text Available Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary "street strain" isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G. Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G and consensus tat (CRF02_AG and G antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G.

  6. Broad antibody mediated cross-neutralization and preclinical immunogenicity of new codon-optimized HIV-1 clade CRF02_AG and G primary isolates.

    Science.gov (United States)

    Agwale, Simon M; Forbi, Joseph C; Notka, Frank; Wrin, Terri; Wild, Jens; Wagner, Ralf; Wolf, Hans

    2011-01-01

    Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary "street strain" isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA) to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G). Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G) and consensus tat (CRF02_AG and G) antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G.

  7. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-11-01

    Full Text Available Abstract Background We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1 variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY, creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. Results Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R. This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. Conclusion The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY can be corrected by a second site mutation in Env (GIA-SKY-G431R that affects the interaction with the CD4 receptor.

  8. Role of Gag and lipids during HIV-1 assembly in CD4 T cells and Macrophages

    Directory of Open Access Journals (Sweden)

    Charlotte eMariani

    2014-06-01

    Full Text Available HIV-1 is an RNA enveloped virus that preferentiallyinfects CD4+ T lymphocytes andalso macrophages. In CD4+ T cells, HIV-1mainly buds from the host cell plasma membrane.The viral Gag polyprotein targets theplasma membrane and is the orchestrator ofthe HIV assembly as its expression is sufficientto promote the formation of virus-likeparticles particles carrying a lipidic envelopederiving from the host cell membrane. Certainlipids are enriched in the viral membraneand are thought to play a key role in theassembly process and the envelop composition.A large body of work performed oninfected CD4+ T cells has provided importantknowledge about the assembly process andthe membrane virus lipid composition. WhileHIV assembly and budding in macrophages isthought to follow the same general Gag-drivenmechanism as in T-lymphocytes, the HIV cyclein macrophage exhibits specific features.In these cells, new virions bud from the limitingmembrane of seemingly intracellular compartments,where they accumulate while remaininginfectious. These structures are now oftenreferred to as Virus Containing Compartments(VCCs. Recent studies suggest that VCCsrepresent intracellularly sequestered regionsof the plasma membrane, but their precisenature remains elusive. The proteomic andlipidomic characterization of virions producedby T cells or macrophages has highlightedthe similarity between their composition andthat of the plasma membrane of producercells, as well as their enrichment in acidiclipids, some components of raft lipids andin tetraspanin-enriched microdomains. Greatchances are that Gag promotes the coalescenceof these components into an assemblyplatform from which viral budding takesplace. How Gag exactly interacts with membranelipids and what are the mechanisms involvedin the interaction between the differentmembrane nanodomains within the assemblyplatform remains unclear. Here we review recentliterature regarding the role of Gag andlipids

  9. Evolution of HIV-1 coreceptor usage and coreceptor switching during pregnancy.

    Science.gov (United States)

    Ransy, Doris G; Motorina, Alena; Merindol, Natacha; Akouamba, Bertine S; Samson, Johanne; Lie, Yolanda; Napolitano, Laura A; Lapointe, Normand; Boucher, Marc; Soudeyns, Hugo

    2014-03-01

    Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predicted in nine of 19 subjects (X4 subjects) independent of HIV-1 clade. Six of nine X4 subjects exhibited CD4(+) T cell counts pregnancy, invariably accompanied by progressive increases in the PSSMX4R5 score, the net charge of V3, and the relative representation of X4 sequences. Evolution toward X4 tropism was also echoed in the primary structure of V2, as an accumulation of substitutions associated with CXCR4 tropism was seen in X4 subjects. Results from these experiments provide the first evidence of the ongoing evolution of coreceptor utilization from CCR5 to CXCR4 during pregnancy in a significant fraction of HIV-infected women. These results inform changes in host-pathogen interactions that lead to a directional shaping of viral populations and viral tropism during pregnancy, and provide insights into the biology of HIV transmission from mother to child.

  10. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    Science.gov (United States)

    Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter

    2013-01-01

    Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different

  11. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    Science.gov (United States)

    Haynes, Barton F [Durham, NC; Gao, Feng [Durham, NC; Korber, Bette T [Los Alamos, NM; Hahn, Beatrice H [Birmingham, AL; Shaw, George M [Birmingham, AL; Kothe, Denise [Birmingham, AL; Li, Ying Ying [Hoover, AL; Decker, Julie [Alabaster, AL; Liao, Hua-Xin [Chapel Hill, NC

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  12. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    2011-09-01

    Full Text Available Here we have identified HIV-1 B clade Envelope (Env amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.

  13. Human antibody response to a strain-specific HIV-1 gp120 epitope associated with cell fusion inhibition

    NARCIS (Netherlands)

    Goudsmit, J.; Boucher, C. A.; Meloen, R. H.; Epstein, L. G.; Smit, L.; van der Hoek, L.; Bakker, M.

    1988-01-01

    PEPSCAN analysis, performed using 536 overlapping nonapeptides derived from the HTLV-III B nucleotide sequence of the region encoding the external envelope protein of 120 kDa (gp120), identified in the V3 region of gp120 a major binding site for antibodies of HIV-1-infected humans. The minimal amino

  14. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    Science.gov (United States)

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants

  15. NGS combined with phylogenetic analysis to detect HIV-1 dual infection in Romanian people who inject drugs.

    Science.gov (United States)

    Popescu, Bogdan; Banica, Leontina; Nicolae, Ionelia; Radu, Eugen; Niculescu, Iulia; Abagiu, Adrian; Otelea, Dan; Paraschiv, Simona

    2018-04-04

    Dual HIV infections are possible and likely in people who inject drugs (PWID). Thirty-eight newly diagnosed patients, 19 PWID and 19 heterosexually HIV infected were analysed. V2-V3 loop of HIV-1 env gene was sequenced on the NGS platform 454 GSJunior (Roche). HIV-1 dual/multiple infections were identified in five PWID. For three of these patients, the reconstructed variants belonged to pure F1 subtype and CRF14_BG strains according to phylogenetic analysis. New recombinant forms between these parental strains were identified in two PWID samples. NGS data can provide, with the help of phylogenetic analysis, important insights about the intra-host sub-population structure. Copyright © 2018. Published by Elsevier Masson SAS.

  16. Interplay of HIV-1 phenotype and neutralizing antibody response in pathogenesis of AIDS.

    Science.gov (United States)

    Scarlatti, G; Leitner, T; Hodara, V; Jansson, M; Karlsson, A; Wahlberg, J; Rossi, P; Uhlén, M; Fenyö, E M; Albert, J

    1996-06-01

    A majority of human immunodeficiency virus type 1 (HIV-1) infected individuals display a rapid loss of CD4+ lymphocytes with fast progression towards overt acquired immunodeficiency syndrome (AIDS). However, a small proportion of individuals infected by HIV-1 remain immunologically intact for many years. In order to identify factors that might influence the pathogenesis of HIV-1 infection, 21 Italian mothers and 11 Swedish homosexual men were studied for the presence of autologous neutralizing antibodies in serum, biological phenotype of virus isolates and envelope variable region 3 (V3) sequences. The results were compared to the risk of mother-to-child transmission and progression of the disease. The presence of a neutralizing antibody response to the autologous virus as well as a virus with slow replicative capacity were linked both to low risk of mother-to-child transmission and non-progression of the disease. Patients whose peripheral blood mononuclear cells contained a mutation in the tip of the V3 loop (Arg318 to serine, lysine or leucine) significantly more often had neutralizing antibodies to autologous virus isolates containing arginine at this position. Thus, it appears that the interplay and balance between neutralizing antibody response of the host and the biological phenotype of HIV-1 strongly influence pathogenesis.

  17. HIV-1 Genetic Diversity and Transmitted Drug Resistance Mutations among Patients from the North, Central and South Regions of Angola

    Science.gov (United States)

    Afonso, Joana Morais; Bello, Gonzalo; Guimarães, Monick L.; Sojka, Marta; Morgado, Mariza G.

    2012-01-01

    Background Angola presents a very complex HIV-1 epidemic characterized by the co-circulation of several HIV-1 group M subtypes, intersubtype recombinants and unclassified (U) variants. The viral diversity outside the major metropolitan regions (Luanda and Cabinda) and the prevalence of transmitted drug resistance mutations (DRM) since the introduction of HAART in 2004, however, has been barely studied. Methods One hundred and one individuals from the Central (n = 44), North (n = 35), and South (n = 22) regions of Angola were diagnosed as HIV-1 positive and had their blood collected between 2008 and 2010, at one of the National Referral Centers for HIV diagnosis, the Kifangondo Medical Center, located in the border between the Luanda and Bengo provinces. Angolan samples were genotyped based on phylogenetic and bootscanning analyses of the pol (PR/RT) gene and their drug resistance profile was analyzed. Results Among the 101 samples analyzed, 51% clustered within a pure group M subtype, 42% were classified as intersubtype recombinants, and 7% were denoted as U. We observed an important variation in the prevalence of different HIV-1 genetic variants among country regions, with high frequency of subtype F1 in the North (20%), intersubtype recombinants in the Central (42%), and subtype C in the South (45%). Statistically significant difference in HIV-1 clade distribution was only observed in subtype C prevalence between North vs South (p = 0.0005) and Central vs South (p = 0.0012) regions. DRM to NRTI and/or NNRTI were detected in 16.3% of patients analyzed. Conclusions These results demonstrate a heterogeneous distribution of HIV-1 genetic variants across different regions in Angola and also revealed an unexpected high frequency of DRM to RT inhibitors in patients that have reported no antiretroviral usage, which may decrease the efficiency of the standard first-line antiretroviral regimens currently used in the country. PMID:22952625

  18. Effect of Recombinant Human Growth Hormone and Rosiglitazone for HIV-Associated Abdominal Fat Accumulation on Adiponectin and other Markers of Inflammation

    Science.gov (United States)

    Leung, Vivien; Chiu, Ya-Lin; Kotler, Donald P.; Albu, Jeanine; Zhu, Yuan-Shan; Ham, Kirsis; Engelson, Ellen S.; Hammad, Hoda; Christos, Paul; Donovan, Daniel S.; Ginsberg, Henry N.; Glesby, Marshall J.

    2016-01-01

    Background/Objective In a previous report of HIV-infected patients with fat redistribution, we found that recombinant human growth hormone (rhGH) therapy reduced visceral adipose tissue (VAT) but increased insulin resistance, and that the addition of rosiglitazone reversed the negative effects of rhGH on insulin sensitivity. In this study, we sought to determine the effects of recombinant human growth hormone (rhGH) and rosiglitazone therapy on an array of inflammatory and fibrinolytic markers. Methods 72 patients with HIV-associated abdominal obesity and insulin resistance were randomized to treatment with rhGH, rosiglitazone, the combination of rhGH and rosiglitazone, or placebo for 12 weeks. Subjects with plasma and serum samples available at weeks 0 (n = 63) and 12 (n = 46-48) were assessed for adiponectin, C-reactive protein (CRP), homocysteine, interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), fibrinogen, plasminogen activator inhibitor-1 (PAI-1) antigen, and tissue plasminogen activator (tPA) antigen. Results Treatment with both rosiglitazone alone and the combination of rosiglitazone and rhGH for 12 weeks resulted in significant increases in adiponectin levels from baseline. Adiponectin levels did not change significantly in the rhGH alone arm. There were no significant changes in the other biomarkers amongst the different treatment groups. Discussion In this study of HIV-infected patients with altered fat distribution, treatment with rosiglitazone had beneficial effects on adiponectin concentrations, an effect that was also seen with combination rosiglitazone and rhGH. RhGH administration alone, however, did not demonstrate any significant impact on adiponectin levels despite reductions in VAT. PMID:27077672

  19. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B

    2015-10-29

    HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.

  20. Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity

    NARCIS (Netherlands)

    Hu, Joyce K.; Crampton, Jordan C.; Cupo, Albert; Ketas, Thomas; van Gils, Marit J.; Sliepen, Kwinten; de Taeye, Steven W.; Sok, Devin; Ozorowski, Gabriel; Deresa, Isaiah; Stanfield, Robyn; Ward, Andrew B.; Burton, Dennis R.; Klasse, Per Johan; Sanders, Rogier W.; Moore, John P.; Crotty, Shane

    2015-01-01

    Generating neutralizing antibodies (nAbs) is a major goal of many current HIV-1 vaccine efforts. To be of practical value, these nAbs must be both potent and cross-reactive in order to be capable of preventing the transmission of the highly diverse and generally neutralization resistant (Tier-2)

  1. Phenotype and envelope gene diversity of nef-deleted HIV-1 isolated from long-term survivors infected from a single source

    Directory of Open Access Journals (Sweden)

    Sullivan John S

    2007-07-01

    Full Text Available Abstract Background The Sydney blood bank cohort (SBBC of long-term survivors consists of multiple individuals infected with attenuated, nef-deleted variants of human immunodeficiency virus type 1 (HIV-1 acquired from a single source. Long-term prospective studies have demonstrated that the SBBC now comprises slow progressors (SP as well as long-term nonprogressors (LTNP. Convergent evolution of nef sequences in SBBC SP and LTNP indicates the in vivo pathogenicity of HIV-1 in SBBC members is dictated by factors other than nef. To better understand mechanisms underlying the pathogenicity of nef-deleted HIV-1, we examined the phenotype and env sequence diversity of sequentially isolated viruses (n = 2 from 3 SBBC members. Results The viruses characterized here were isolated from two SP spanning a three or six year period during progressive HIV-1 infection (subjects D36 and C98, respectively and from a LTNP spanning a two year period during asymptomatic, nonprogressive infection (subject C18. Both isolates from D36 were R5X4 phenotype and, compared to control HIV-1 strains, replicated to low levels in peripheral blood mononuclear cells (PBMC. In contrast, both isolates from C98 and C18 were CCR5-restricted. Both viruses isolated from C98 replicated to barely detectable levels in PBMC, whereas both viruses isolated from C18 replicated to low levels, similar to those isolated from D36. Analysis of env by V1V2 and V3 heteroduplex tracking assay, V1V2 length polymorphisms, sequencing and phylogenetic analysis showed distinct intra- and inter-patient env evolution. Conclusion Independent evolution of env despite convergent evolution of nef may contribute to the in vivo pathogenicity of nef-deleted HIV-1 in SBBC members, which may not necessarily be associated with changes in replication capacity or viral coreceptor specificity.

  2. Tandem bispecific broadly neutralizing antibody - a novel approach to HIV-1 treatment.

    Science.gov (United States)

    Ferrari, Guido

    2018-04-23

    The last decade has led to a significant advance in our knowledge of HIV-1 latency and immunity. However, we are still not close to finding a cure for HIV-1. Although combination antiretroviral therapy (cART) has led to increased survival, almost close to that of the general population, it is still not curative. In the current issue of the JCI, Wu et al. studied the prophylactic and therapeutic potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb), BiIA-SG. This bnAb's breadth and potency were highly effective in protection and treatment settings, as measured by complete viremia control following direct infusion, as well as elimination of infected cells and delay in viral rebound when delivered with a recombinant vector. These observations underscore the need for the clinical development of BiIA-SG for the prevention of HIV-1.

  3. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Thomas [Los Alamos National Laboratory; Campbell, Mary S [UNIV OF WASHINGTON; Mullins, James I [UNIV OF WASHINGTON; Hughes, James P [UNIV OF WASHINGTON; Wong, Kim G [UNIV OF WASHINGTON; Raugi, Dana N [UNIV OF WASHINGTON; Scrensen, Stefanie [UNIV OF WASHINGTON

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  4. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice.

    Science.gov (United States)

    Wu, Xilin; Guo, Jia; Niu, Mengyue; An, Minghui; Liu, Li; Wang, Hui; Jin, Xia; Zhang, Qi; Lam, Ka Shing; Wu, Tongjin; Wang, Hua; Wang, Qian; Du, Yanhua; Li, Jingjing; Cheng, Lin; Tang, Hang Ying; Shang, Hong; Zhang, Linqi; Zhou, Paul; Chen, Zhiwei

    2018-04-23

    The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.

  5. Evidence for possible biological advantages of the newly emerging HIV-1 circulating recombinant form from Malaysia - CRF33_01B in comparison to its progenitors - CRF01_AE and subtype B.

    Science.gov (United States)

    Lau, Katherine A; Wang, Bin; Miranda-Saksena, Monica; Boadle, Ross; Kamarulzaman, Adeeba; Ng, Kee-Peng; Saksena, Nitin K

    2010-04-01

    In Malaysia, co-circulation of CRF01_AE and subtype B has resulted in the emergence of the second generation derivative; CRF33_01B in approximately 20% of its HIV-1 infected individuals. Our objective was to identify possible biological advantages that CRF33_01B possesses over its progenitors. Biological and molecular comparisons of CRF33_01B against its parental subtypes clearly show that CRF33_01B replicated better in activated whole peripheral blood mononuclear cells (PBMCs) and CD4+ T-lymphocytes, but not monocyte-derived macrophages (MDMs). Also, its acquired fitness was greater than CRF01_AE but not subtype B. Moreover, CRF33_01B has higher rate of apoptotic cell death and syncytia induction compared to subtype B. These adaptive and survival abilities could have been acquired by CRF33_01B due to the incorporation of subtype B fragments into the gag-RT region of its full-length genome. Our studies confirm the previously held belief that HIV-1 strains may harbor enhanced biological fitness upon recombination. We therefore estimate a possible gradual replacement of the current predominance of CRF01_AE, as well as wider dissemination of CRF33_01B, together with the identification of other new CRF01_AE/B inter-subtype recombinants in Malaysia.

  6. An advanced BLT-humanized mouse model for extended HIV-1 cure studies.

    Science.gov (United States)

    Lavender, Kerry J; Pace, Craig; Sutter, Kathrin; Messer, Ronald J; Pouncey, Dakota L; Cummins, Nathan W; Natesampillai, Sekar; Zheng, Jim; Goldsmith, Joshua; Widera, Marek; Van Dis, Erik S; Phillips, Katie; Race, Brent; Dittmer, Ulf; Kukolj, George; Hasenkrug, Kim J

    2018-01-02

    Although bone marrow, liver, thymus (BLT)-humanized mice provide a robust model for HIV-1 infection and enable evaluation of cure strategies dependent on endogenous immune responses, most mice develop graft versus host disease (GVHD), limiting their utility for extended HIV cure studies. This study aimed to: evaluate the GVHD-resistant C57 black 6 (C57BL/6) recombination activating gene 2 (Rag2)γcCD47 triple knockout (TKO)-BLT mouse as a model to establish HIV-1 latency. Determine whether TKO-BLT mice could be maintained on antiretroviral therapy (ART) for extended periods of time. Assess the rapidity of viral rebound following therapy interruption. TKO-BLT mice were HIV-1 infected, treated with various ART regimens over extended periods of time and assayed for viral rebound following therapy interruption. Daily subcutaneous injection and oral ART-mediated suppression of HIV-1 infection was tested at various doses in TKO-BLT mice. Mice were monitored for suppression of viremia and cellular HIV-1 RNA and DNA prior to and following therapy interruption. Mice remained healthy for 45 weeks posthumanization and could be treated with ART for up to 18 weeks. Viremia was suppressed to less than 200 copies/ml in the majority of mice with significant reductions in cellular HIV-1 RNA and DNA. Treatment interruption resulted in rapid viral recrudescence. HIV-1 latency can be maintained in TKO-BLT mice over extended periods on ART and rapid viral rebound occurs following therapy removal. The additional 15-18 weeks of healthy longevity compared with other BLT models provides sufficient time to examine the decay kinetics of the latent reservoir as well as observe delays in recrudescence in HIV-1 cure studies.

  7. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  8. cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites.

    Science.gov (United States)

    Xu, Shuting; Ducroux, Aurélie; Ponnurangam, Aparna; Vieyres, Gabrielle; Franz, Sergej; Müsken, Mathias; Zillinger, Thomas; Malassa, Angelina; Ewald, Ellen; Hornung, Veit; Barchet, Winfried; Häussler, Susanne; Pietschmann, Thomas; Goffinet, Christine

    2016-10-12

    Upon sensing cytoplasmic retroviral DNA in infected cells, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide cGAMP, which activates STING to trigger a type I interferon (IFN) response. We find that membrane fusion-inducing contact between donor cells expressing the HIV envelope (Env) and primary macrophages endogenously expressing the HIV receptor CD4 and coreceptor enable intercellular transfer of cGAMP. This cGAMP exchange results in STING-dependent antiviral IFN responses in target macrophages and protection from HIV infection. Furthermore, under conditions allowing cell-to-cell transmission of HIV-1, infected primary T cells, but not cell-free virions, deliver cGAMP to autologous macrophages through HIV-1 Env and CD4/coreceptor-mediated membrane fusion sites and induce a STING-dependent, but cGAS-independent, IFN response in target cells. Collectively, these findings identify an infection-specific mode of horizontal transfer of cGAMP between primary immune cells that may boost antiviral responses, particularly in infected tissues in which cell-to-cell transmission of virions exceeds cell-free infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Appreciating HIV-1 diversity: subtypic differences in ENV

    Energy Technology Data Exchange (ETDEWEB)

    Gnanakaran, S [Los Alamos National Laboratory; Shen, Tongye [Los Alamos National Laboratory; Lynch, Rebecca M [NON LANL; Derdeyn, Cynthia A [NON LANL

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) group M is responsible for the current AIDS pandemic and exhibits exceedingly high levels of viral genetic diversity around the world, necessitating categorization of viruses into distinct lineages, or subtypes. These subtypes can differ by around 35% in the envelope (Env) glycoproteins of the virus, which are displayed on the surface of the virion and are targets for both neutralizing antibody and cell-mediated immune responses. This diversity reflects the remarkable ability of the virus to adapt to selective pressures, the bulk of which is applied by the host immune response, and represents a serious obstacle for developing an effective vaccine with broad coverage. Thus, it is important to understand the underlying biological consequences of inter-subtype diversity. Recent studies have revealed that the HIV-1 subtypes exhibit phenotypic differences that result from subtle differences in Env structure, particularly within the highly immunogenic V3 domain, which participates directly in viral entry. This review will therefore explore current research that describes subtypic differences in Env at the genetic and phenotypic level, focusing in particular on V3, and highlighting recent discoveries about the unique features of subtype C Env, which is the most prevalent subtype globally.

  10. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  11. HIV-1 specific IgA detected in vaginal secretions of HIV uninfected women participating in a microbicide trial in Southern Africa are primarily directed toward gp120 and gp140 specificities.

    Directory of Open Access Journals (Sweden)

    Kelly E Seaton

    Full Text Available Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines.We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035. We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women.Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.

  12. Decreased HIV diversity after allogeneic stem cell transplantation of an HIV-1 infected patient: a case report

    Directory of Open Access Journals (Sweden)

    Thielen Alexander

    2010-03-01

    Full Text Available Abstract The human immunodeficiency virus type 1 (HIV-1 coreceptor use and viral evolution were analyzed in blood samples from an HIV-1 infected patient undergoing allogeneic stem cell transplantation (SCT. Coreceptor use was predicted in silico from sequence data obtained from the third variable loop region of the viral envelope gene with two software tools. Viral diversity and evolution was evaluated on the same samples by Bayesian inference and maximum likelihood methods. In addition, phenotypic analysis was done by comparison of viral growth in peripheral blood mononuclear cells and in a CCR5 (R5-deficient T-cell line which was controlled by a reporter assay confirming viral tropism. In silico coreceptor predictions did not match experimental determinations that showed a consistent R5 tropism. Anti-HIV directed antibodies could be detected before and after the SCT. These preexisting antibodies did not prevent viral rebound after the interruption of antiretroviral therapy during the SCT. Eventually, transplantation and readministration of anti-retroviral drugs lead to sustained increase in CD4 counts and decreased viral load to undetectable levels. Unexpectedly, viral diversity decreased after successful SCT. Our data evidence that only R5-tropic virus was found in the patient before and after transplantation. Therefore, blocking CCR5 receptor during stem cell transplantation might have had beneficial effects and this might apply to more patients undergoing allogeneic stem cell transplantation. Furthermore, we revealed a scenario of HIV-1 dynamic different from the commonly described ones. Analysis of viral evolution shows the decrease of viral diversity even during episodes with bursts in viral load.

  13. [Study on the molecular-epidemiological characteristics of HIV-1 in Shenzhen, 1992-2008].

    Science.gov (United States)

    Zhao, Guang-lu; Yu, Wei; Zhang, Juan-juan; Chen, Lin; Feng, Tie-jian; Wang, Feng; Hong, Fu-chang; Wang, Xiao-hui; Li, Qing

    2012-01-01

    To investigate the epidemiological characteristics of HIV-1 subtype in Shenzhen from 1992 to 2008. 489 HIV-1 positive plasma samples were collected from 1992 to 2008 in Shenzhen. HIV-1 env genes were amplified by nested-PCR from RNA. Phylogenetic analysis was performed on data regarding the nucleotide sequence. A total of 464 sequences were amplified and genotyped. Data from this study revealed that CRF01_AE was a predominant HIV-1 subtype in Shenzhen (64.4%, 299/464), followed by subtypes CRF_BC (17.5%, 81/464), B' (14.7%, 68/464) and B (2.4%, 11/464). Subtype C (0.4%, 2/464), A1 (0.2%, 1/464), CRF02_AG (0.2%, 1/464) and CRF06_cpx (0.2%, 1/464) were also prevalent in Shenzhen. CRF01_AE and CRF_BC were predominant among heterosexuals, homosexuals and injection drug users, while B' was predominant among blood donors. Results from phylogenetic tree analysis showed that some of the HIV-1 clusters had been defined in CRF01_AE strains at different time or groups with different transmission routes. Cross-infections were also seen. CRF01_AE was the predominant HIV-1 subtype in Shenzhen while CRF_BC, B, B', C, A1, CRF02_AG and a small amount of CRF06_cpx or recombinant subtypes were prevalent in this city. Different subtypes showed great variation in the process of epidemics.

  14. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.

    Science.gov (United States)

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.

  15. Clinical presentation and opportunistic infections in HIV-1, HIV-2 and HIV-1/2 dual seropositive patients in Guinea-Bissau

    DEFF Research Database (Denmark)

    Sørensen, Allan; Jespersen, Sanne; Katzenstein, Terese L

    2016-01-01

    HIV-2 is prevalent. In this study, we aimed to characterize the clinical presentations among HIV-1, HIV-2 and HIV-1/2 dual seropositive patients. Methods: In a cross-sectional study, newly diagnosed HIV patients attending the HIV outpatient clinic at Hospital Nacional Sim~ao Mendes in Guinea......-Bissau were enrolled. Demographical and clinical data were collected and compared between HIV-1, HIV-2 and HIV-1/2 dual seropositive patients. Results: A total of 169 patients (76% HIV-1, 17% HIV-2 and 6% HIV 1/2) were included in the study between 21 March 2012 and 14 December 2012. HIV-1 seropositive...... antigen. Conclusion: HIV-1 and HIV-1/2 seropositive patients have lower CD4 cell counts than HIV-2 seropositive patients when diagnosed with HIV with only minor clinical and demographic differences among groups. Few patients were diagnosed with TB and cryptococcal disease was not found to be a major...

  16. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function

    International Nuclear Information System (INIS)

    Hollier, Mark J.; Dimmock, Nigel J.

    2005-01-01

    In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, β-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules - those destined for incorporation into virions - has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell

  17. μ-opioid modulation of HIV-1 coreceptor expressionand HIV-1 replication

    International Nuclear Information System (INIS)

    Steele, Amber D.; Henderson, Earl E.; Rogers, Thomas J.

    2003-01-01

    A substantial proportion of HIV-1-infected individuals are intravenous drug users (IVDUs) who abuse opiates. Opioids induce a number of immunomodulatory effects that may directly influence HIV-1 disease progression. In the present report, we have investigated the effect of opioids on the expression of the major HIV-1 coreceptors CXCR4 and CCR5. For these studies we have focused on opiates which are ligands for the μ-opioid receptor. Our results show that DAMGO, a selective μ-opioid agonist, increases CXCR4 and CCR5 expression in both CD3 + lymphoblasts and CD14 + monocytes three- to fivefold. Furthermore, DAMGO-induced elevation of HIV-1 coreceptor expression translates into enhanced replication of both X4 and R5 viral strains of HIV-1. We have confirmed the role of the μ-opioid receptor based on the ability of a μ-opioid receptor-selective antagonist to block the effects of DAMGO. We have also found that morphine enhances CXCR4 and CCR5 expression and subsequently increases both X4 and R5 HIV-1 infection. We suggest that the capacity of μ-opioids to increase HIV-1 coreceptor expression and replication may promote viral binding, trafficking of HIV-1-infected cells, and enhanced disease progression

  18. eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients.

    Directory of Open Access Journals (Sweden)

    Meredith E Davis-Gardner

    2017-12-01

    Full Text Available Antibody-dependent cell-mediated cytotoxity (ADCC can eliminate HIV-1 infected cells, and may help reduce the reservoir of latent virus in infected patients. Sera of HIV-1 positive individuals include a number of antibodies that recognize epitopes usually occluded on HIV-1 envelope glycoprotein (Env trimers. We have recently described eCD4-Ig, a potent and exceptionally broad inhibitor of HIV-1 entry that can be used to protect rhesus macaques from multiple high-dose challenges with simian-human immunodeficiency virus AD8 (SHIV-AD8. Here we show that eCD4-Ig bearing an IgG1 Fc domain (eCD4-IgG1 can mediate efficient ADCC activity against HIV-1 isolates with differing tropisms, and that it does so at least 10-fold more efficiently than CD4-Ig, even when more CD4-Ig molecules bound cell surface-expressed Env. An ADCC-inactive IgG2 form of eCD4-Ig (eCD4-IgG2 exposes V3-loop and CD4-induced epitopes on cell-expressed trimers, and renders HIV-1-infected cells susceptible to ADCC mediated by antibodies of these classes. Moreover, eCD4-IgG2, but not IgG2 forms of the broadly neutralizing antibodies VRC01 and 10-1074, enhances the ADCC activities of serum antibodies from patients by 100-fold, and significantly enhanced killing of two latently infected T-cell lines reactivated by vorinostat or TNFα. Thus eCD4-Ig is qualitatively different from CD4-Ig or neutralizing antibodies in its ability to mediate ADCC, and it may be uniquely useful in treating HIV-1 infection or reducing the reservoir of latently infected cells.

  19. Comprehensive Characterization of HIV-1 Molecular Epidemiology and Demographic History in the Brazilian Region Most Heavily Affected by AIDS.

    Science.gov (United States)

    Gräf, Tiago; Machado Fritsch, Hegger; de Medeiros, Rúbia Marília; Maletich Junqueira, Dennis; Esteves de Matos Almeida, Sabrina; Pinto, Aguinaldo Roberto

    2016-09-15

    The high incidence of AIDS cases and the dominance of HIV-1 subtype C infections are two features that distinguish the HIV-1 epidemic in the two southernmost Brazilian states (Rio Grande do Sul [RS] and Santa Catarina [SC]) from the epidemic in other parts of the country. Nevertheless, previous studies on HIV molecular epidemiology were conducted mainly in capital cities, and a more comprehensive understanding of factors driving this unique epidemic in Brazil is necessary. Blood samples were collected from individuals in 13 municipalities in the Brazilian southern region. HIV-1 env and pol genes were submitted to phylogenetic analyses for assignment of subtype, and viral population phylodynamics were reconstructed by applying Skygrid and logistic coalescent models in a Bayesian analysis. A high prevalence of subtype C was observed in all sampled locations; however, an increased frequency of recombinant strains was found in RS, with evidence for new circulating forms (CRFs). In the SC state, subtype B and C epidemics were associated with distinct exposure groups. Although logistic models estimated similar growth rates for HIV-1 subtype C (HIV-1C) and HIV-1B, a Skygrid plot reveals that the former epidemic has been expanding for a longer time. Our results highlight a consistent expansion of HIV-1C in south Brazil, and we also discuss how heterosexual and men who have sex with men (MSM) transmission chains might have impacted the current prevalence of HIV-1 subtypes in this region. The AIDS epidemic in south Brazil is expanding rapidly, but the circumstances driving this condition are not well known. A high prevalence of HIV-1 subtype C was reported in the capital cities of this region, in contrast to the subtype B dominance in the rest of the country. This study sought to comparatively investigate the HIV-1 subtype B and C epidemics by sampling individuals from several cities in the two states with the highest AIDS incidences in Brazil. Our analyses showed distinct

  20. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

    International Nuclear Information System (INIS)

    Koch, Markus; Pancera, Marie; Kwong, Peter D.; Kolchinsky, Peter; Grundner, Christoph; Wang Liping; Hendrickson, Wayne A.; Sodroski, Joseph; Wyatt, Richard

    2003-01-01

    The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization

  1. Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag▿

    Science.gov (United States)

    Datta, Siddhartha A. K.; Zuo, Xiaobing; Clark, Patrick K.; Campbell, Stephen J.; Wang, Yun-Xing; Rein, Alan

    2011-01-01

    Immature retrovirus particles are assembled from the multidomain Gag protein. In these particles, the Gag proteins are arranged radially as elongated rods. We have previously characterized the properties of HIV-1 Gag in solution. In the absence of nucleic acid, HIV-1 Gag displays moderately weak interprotein interactions, existing in monomer-dimer equilibrium. Neutron scattering and hydrodynamic studies suggest that the protein is compact, and biochemical studies indicate that the two ends can approach close in three-dimensional space, implying the need for a significant conformational change during assembly. We now describe the properties of the Gag protein of Moloney murine leukemia virus (MLV), a gammaretrovirus. We found that this protein is very different from HIV-1 Gag: it has much weaker protein-protein interaction and is predominantly monomeric in solution. This has allowed us to study the protein by small-angle X-ray scattering and to build a low-resolution molecular envelope for the protein. We found that MLV Gag is extended in solution, with an axial ratio of ∼7, comparable to its dimensions in immature particles. Mutational analysis suggests that runs of prolines in its matrix and p12 domains and the highly charged stretch at the C terminus of its capsid domain all contribute to this extended conformation. These differences between MLV Gag and HIV-1 Gag and their implications for retroviral assembly are discussed. PMID:21917964

  2. ANALYSIS OF HIV SUBTYPES AND CLINICAL STAGING OF HIV DISEASE/AIDS IN EAST JAVA

    Directory of Open Access Journals (Sweden)

    Yulia Ismail

    2012-04-01

    Full Text Available Human Immunodeficiency Virus type 1 (HIV-1 known to cause Acquired Immune Deficiency Syndrome (AIDS disease are divided into several subtypes (A, B, C, D, F, G, H, J, K and Circulating Recombinant Form (CRF. Different characteristics of subtype of the virus and its interaction with the host can affect the severity of the disease. This study was to analyze HIV-1 subtypes circulating in HIV/AIDS patients from the East Java region descriptively and to analyze its relationship with clinical stadiums of HIV/AIDS. Information from this research was expected to complement the data of mocular epidemiology of HIV in Indonesia. This study utilited blood plasma from patients who had been tested to be HIV positive who sected treatment to or were reffered to the Intermediate Care Unit of Infectious Disease (UPIPI Dr. Soetomo Hospital Surabaya from various area representing the East Java regions. Plasma was separated from blood samples by centrifugation for use in the the molecular biology examination including RNA extraction, nested PCR using specific primer for HIV gp120 env gene region, DNA purifying, DNA sequencing, and homology and phylogenetic analysis. Based on the nucleotide sequence of the HIV gp120 env gene, it was found that the most dominant subtypes in East Java were in one group of Circulating Recombinant Form (CRF that is CRF01_AE, CRF33_01B and CRF34_01B which was also found in Southeast Asia. In the phylogenetic tree, most of HIV samples (30 samples are in the same branch with CRF01_AE, CRF33_01B and CRF34_01B, except for one sample (HIV40 which is in the same branch with subtype B. HIV subtypes are associated with clinical stadiums (disease severity since samples from different stages of HIV disease have the same subtype.

  3. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Letitia D Jones

    Full Text Available The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND is increasing. In these individuals, the integrity of the blood-brain barrier (BBB is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1. As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  4. Assessing the HIV-1 Epidemic in Brazilian Drug Users: A Molecular Epidemiology Approach.

    Directory of Open Access Journals (Sweden)

    Monick Lindenmeyer Guimarães

    Full Text Available Person who inject illicit substances have an important role in HIV-1 blood and sexual transmission and together with person who uses heavy non-injecting drugs may have less than optimal adherence to anti-retroviral treatment and eventually could transmit resistant HIV variants. Unfortunately, molecular biology data on such key population remain fragmentary in most low and middle-income countries. The aim of the present study was to assess HIV infection rates, evaluate HIV-1 genetic diversity, drug resistance, and to identify HIV transmission clusters in heavy drug users (DUs. For this purpose, DUs were recruited in the context of a Respondent-Driven Sampling (RDS study in different Brazilian cities during 2009. Overall, 2,812 individuals were tested for HIV, and 168 (6% of them were positive, of which 19 (11.3% were classified as recent seroconverters, corresponding to an estimated incidence rate of 1.58%/year (95% CI 0.92-2.43%. Neighbor joining phylogenetic trees from env and pol regions and bootscan analyses were employed to subtype the virus from132 HIV-1-infected individuals. HIV-1 subtype B was prevalent in most of the cities under analysis, followed by BF recombinants (9%-35%. HIV-1 subtype C was the most prevalent in Curitiba (46% and Itajaí (86% and was also detected in Brasília (9% and Campo Grande (20%. Pure HIV-1F infections were detected in Rio de Janeiro (9%, Recife (6%, Salvador (6% and Brasília (9%. Clusters of HIV transmission were assessed by Maximum likelihood analyses and were cross-compared with the RDS network structure. Drug resistance mutations were verified in 12.2% of DUs. Our findings reinforce the importance of the permanent HIV-1 surveillance in distinct Brazilian cities due to viral resistance and increasing subtype heterogeneity all over Brazil, with relevant implications in terms of treatment monitoring, prophylaxis and vaccine development.

  5. C–C Chemokines Released by Lipopolysaccharide (LPS)-stimulated Human Macrophages Suppress HIV-1 Infection in Both Macrophages and T Cells

    Science.gov (United States)

    Verani, Alessia; Scarlatti, Gabriella; Comar, Manola; Tresoldi, Eleonora; Polo, Simona; Giacca, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Vercelli, Donata

    1997-01-01

    Human immunodeficiency virus-1 (HIV-1) expression in monocyte-derived macrophages (MDM) infected in vitro is known to be inhibited by lipopolysaccharide (LPS). However, the mechanisms are incompletely understood. We show here that HIV-1 suppression is mediated by soluble factors released by MDM stimulated with physiologically significant concentrations of LPS. LPS-conditioned supernatants from MDM inhibited HIV-1 replication in both MDM and T cells. Depletion of C–C chemokines (RANTES, MIP-1α, and MIP-1β) neutralized the ability of LPS-conditioned supernatants to inhibit HIV-1 replication in MDM. A combination of recombinant C–C chemokines blocked HIV-1 infection as effectively as LPS. Here, we report an inhibitory effect of C–C chemokines on HIV replication in primary macrophages. Our results raise the possibility that monocytes may play a dual role in HIV infection: while representing a reservoir for the virus, they may contribute to the containment of the infection by releasing factors that suppress HIV replication not only in monocytes but also in T lymphocytes. PMID:9120386

  6. Immune defence against HIV-1 infection in HIV-1-exposed seronegative persons.

    Science.gov (United States)

    Schmechel, S C; Russell, N; Hladik, F; Lang, J; Wilson, A; Ha, R; Desbien, A; McElrath, M J

    2001-11-01

    Rare individuals who are repeatedly exposed to HIV-1 through unprotected sexual contact fail to acquire HIV-1 infection. These persons represent a unique study population to evaluate mechanisms by which HIV-1 replication is either prevented or controlled. We followed longitudinally a group of healthy HIV-1 seronegative persons each reporting repeated high-risk sexual activities with their HIV-1-infected partner at enrollment. The volunteers were primarily (90%) male homosexuals, maintaining high risk activities with their known infected partner (45%) or multiple other partners (61%). We evaluated the quantity and specificity of HIV-1-specific T cells in 31 exposed seronegatives (ES) using a IFN-gamma ELISPOT assay to enumerate T cells recognizing epitopes within HIV-1 Env, Gag, Pol and Nef. PBMC from only three of the 31 volunteers demonstrated ex vivo HIV-1-specific IFN-gamma secretion, in contrast to nearly 30% exhibiting cytolytic responses in previous studies. These findings suggest that if T cell responses in ES are induced by HIV-1 exposure, the frequency is at low levels in most of them, and below the level of detection using the ELISPOT assay. Alternative approaches to improve the sensitivity of detection may include use of dendritic cells as antigen-presenting cells in the ex vivo assay and more careful definition of the risk behavior and extent of HIV-1 exposure in conjunction with the evaluation of T cell responses.

  7. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  8. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  9. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  10. Construction and characterisation of a full-length infectious molecular clone from a fast replicating, X4-tropic HIV-1 CRF02.AG primary isolate

    International Nuclear Information System (INIS)

    Tebit, Denis M.; Zekeng, Leopold; Kaptue, Lazare; Kraeusslich, Hans-Georg; Herchenroeder, Ottmar

    2003-01-01

    Based on our previous analysis of HIV-1 isolates from Cameroon, we constructed a full-length infectious molecular clone from a primary isolate belonging to the CRF02.AG group of recombinant viruses which dominate the HIV-epidemic in West and Central Africa. The virus derived by transfection of the proviral clone pBD6-15 replicated with similar efficiency compared to its parental isolate and used CXCR4 as coreceptor as well. Furthermore, HIV-1 BD6-15 exhibited similar replication properties and virus yield as the reference B-type HIV-1 strain NL4-3. Sequence analysis revealed open reading frames for all structural and accessory genes apart from vpr. Phylogenetic and bootscanning analyses confirmed that BD6-15 clusters with CRF02.AG recombinant strains from West and Central Africa with similar cross-over points as described for the CRF02.AG prototype strain lbNG. Thus, pBD6-15 represents the first non-subtype B infectious molecular clone of a fast replicating, high producer, X4-tropic primary HIV-1 isolate, which had only been briefly passaged in primary cells

  11. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif.

    Science.gov (United States)

    Britan-Rosich, Elena; Nowarski, Roni; Kotler, Moshe

    2011-07-29

    In the absence of human immunodeficiency virus type 1 (HIV-1) Vif protein, the host antiviral deaminase apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) restricts the production of infectious HIV-1 by deamination of dC residues in the negative single-stranded DNA produced by reverse transcription. The Vif protein averts the lethal threat of deamination by precluding the packaging of A3G into assembling virions by mediating proteasomal degradation of A3G. In spite of this robust Vif activity, residual A3G molecules that escape degradation and incorporate into newly assembled virions are potentially deleterious to the virus. We hypothesized that virion-associated Vif inhibits A3G enzymatic activity and therefore prevents lethal mutagenesis of the newly synthesized viral DNA. Here, we show that (i) Vif-proficient HIV-1 particles released from H9 cells contain A3G with lower specific activity compared with Δvif-virus-associated A3G, (ii) encapsidated HIV-1 Vif inhibits the deamination activity of recombinant A3G, and (iii) purified HIV-1 Vif protein and the Vif-derived peptide Vif25-39 inhibit A3G activity in vitro at nanomolar concentrations in an uncompetitive manner. Our results manifest the potentiality of Vif to control the deamination threat in virions or in the pre-integration complexes following entry to target cells. Hence, virion-associated Vif could serve as a last line of defense, protecting the virus against A3G antiviral activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. HIV takes double hit before entry

    NARCIS (Netherlands)

    Sanders, Rogier W.

    2012-01-01

    In the absence of a vaccine or a cure, identification of novel HIV-1 inhibitors remains important. A paper in Retrovirology describes a rationally designed bi-specific protein that irreversibly damages the viral envelope glycoprotein complex via a two-punch mechanism. In contrast to traditional

  13. The multi-epitope polypeptide approach in HIV-1 vaccine development.

    Science.gov (United States)

    Cano, C A

    1999-11-01

    The application of a preventive HIV vaccine is the only hope for most developing countries to halt the AIDS pandemic. A project aimed to develop a preventive AIDS vaccine is being carried out since 1992 by three Cuban research institutions: Centro de Ingeniería Genética y Biotecnologia de La Habana, Instituto de Medicina Tropical 'Pedro Kouri' and Laboratorio de Investigaciones de SIDA de La Habana. The project includes two main strategies: (a) generation of recombinant multi-epitope polypeptides (MEPs) bearing several copies of the V3 loop from different HIV-1 isolates; and (b) development of immunogens capable of inducing a cytotoxic T cell response (CTL) specific for human immunodeficiency virus type 1 (HIV-1) antigens. This article summarizes the work in the first of these strategies. Based on the sequence of the V3 loop of HIV-1 we constructed a series of MEPs and evaluated their immunogenicity in mice, rabbits and macaques. The MEP TAB9, containing six V3 epitopes from isolates LR10, JY1, RF, MN, BRVA and IIIB, was selected together with the oil adjuvant Montanide ISA720 (SEPPIC, France) to perform a Phase I clinical trial in HIV seronegative Cuban volunteers. The trial was double blinded, randomized, and fulfilled all ethical and regulatory requirements. All TAB9 vaccinated volunteers developed a strong immune response and neutralizing antibodies were observed in the 50% of the subjects. However the second and third inoculations of the vaccine were not well tolerated because transient severe local reactions appeared in some individuals. A new formulation of TAB9 is currently in pre-clinical studies and is expected to enter clinical trials in 1999.

  14. Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.

    Science.gov (United States)

    Murphy, R Elliot; Samal, Alexandra B; Vlach, Jiri; Saad, Jamil S

    2017-11-07

    The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time.

    Science.gov (United States)

    Hake, Anna; Pfeifer, Nico

    2017-10-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient's viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population.

  16. Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter

    International Nuclear Information System (INIS)

    Dahabieh, Matthew S.; Ooms, Marcel; Malcolm, Tom; Simon, Viviana; Sadowski, Ivan

    2011-01-01

    Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutations in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.

  17. Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry

    Science.gov (United States)

    Moller-Tank, Sven; Kondratowicz, Andrew S.; Davey, Robert A.; Rennert, Paul D.

    2013-01-01

    The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence. PMID:23698310

  18. Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages.

    Science.gov (United States)

    Immonen, Taina T; Leitner, Thomas

    2014-10-16

    HIV-1 can persist for the duration of a patient's life due in part to its ability to hide from the immune system, and from antiretroviral drugs, in long-lived latent reservoirs. Latent forms of HIV-1 may also be disproportionally involved in transmission. Thus, it is important to detect and quantify latency in the HIV-1 life cycle. We developed a novel molecular clock-based phylogenetic tool to investigate the prevalence of HIV-1 lineages that have experienced latency. The method removes alternative sources that may affect evolutionary rates, such as hypermutation, recombination, and selection, to reveal the contribution of generation-time effects caused by latency. Our method was able to recover latent lineages with high specificity and sensitivity, and low false discovery rates, even on relatively short branches on simulated phylogenies. Applying the tool to HIV-1 sequences from 26 patients, we show that the majority of phylogenetic lineages have been affected by generation-time effects in every patient type, whether untreated, elite controller, or under effective or failing treatment. Furthermore, we discovered extensive effects of latency in sequence data (gag, pol, and env) from reservoirs as well as in the replicating plasma population. To better understand our phylogenetic findings, we developed a dynamic model of virus-host interactions to investigate the proportion of lineages in the actively replicating population that have ever been latent. Assuming neutral evolution, our dynamic modeling showed that under most parameter conditions, it is possible for a few activated latent viruses to propagate so that in time, most HIV-1 lineages will have been latent at some time in their past. These results suggest that cycling in and out of latency plays a major role in the evolution of HIV-1. Thus, no aspect of HIV-1 evolution can be fully understood without considering latency - including treatment, drug resistance, immune evasion, transmission, and pathogenesis.

  19. eCD4-Ig variants that more potently neutralize HIV-1.

    Science.gov (United States)

    Fetzer, Ina; Gardner, Matthew R; Davis-Gardner, Meredith E; Prasad, Neha R; Alfant, Barnett; Weber, Jesse A; Farzan, Michael

    2018-03-28

    The HIV-1 entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralizes all HIV-1, HIV-2 and SIV isolates that it has been tested against, suggesting that it may be useful in clinical settings where antibody escape is a concern. Here we characterize three new eCD4-Ig variants, each with different architectures and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig, and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications. IMPORTANCE HIV-1 bNAbs have properties different from antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral lifecycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the

  20. Distinct patterns of HIV-1 evolution within metastatic tissues in patients with non-Hodgkins lymphoma.

    Directory of Open Access Journals (Sweden)

    Marco Salemi

    2009-12-01

    Full Text Available Despite highly active antiretroviral therapy (HAART, AIDS related lymphoma (ARL occurs at a significantly higher rate in patients infected with the Human Immunodeficiency Virus (HIV than in the general population. HIV-infected macrophages are a known viral reservoir and have been shown to have lymphomagenic potential in SCID mice; therefore, there is an interest in determining if a viral component to lymphomagenesis also exists. We sequenced HIV-1 envelope gp120 clones obtained post mortem from several tumor and non-tumor tissues of two patients who died with AIDS-related Non-Hodgkin's lymphoma (ARL-NH. Similar results were found in both patients: 1 high-resolution phylogenetic analysis showed a significant degree of compartmentalization between lymphoma and non-lymphoma viral sub-populations while viral sub-populations from lymph nodes appeared to be intermixed within sequences from tumor and non-tumor tissues, 2 a 100-fold increase in the effective HIV population size in tumor versus non-tumor tissues was associated with the emergence of lymphadenopathy and aggressive metastatic ARL, and 3 HIV gene flow among lymph nodes, normal and metastatic tissues was non-random. The different population dynamics between the viruses found in tumors versus the non-tumor associated viruses suggest that there is a significant relationship between HIV evolution and lymphoma pathogenesis. Moreover, the study indicates that HIV could be used as an effective marker to study the origin and dissemination of lymphomas in vivo.

  1. The changing HIV-1 genetic characteristics and transmitted drug resistance among recently infected population in Yunnan, China.

    Science.gov (United States)

    Chen, M; Jia, M H; Ma, Y L; Luo, H B; Chen, H C; Yang, C J; Dai, J; Yang, L; Dong, L J; Lu, R; Song, L J; Han, Y; Lu, J Y; Cheung, A K L; Chen, Z W; Lu, L

    2018-04-01

    Multiple human immunodeficiency virus (HIV)-1 genotypes in China were first discovered in Yunnan Province before disseminating throughout the country. As the HIV-1 epidemic continues to expand in Yunnan, genetic characteristics and transmitted drug resistance (TDR) should be further investigated among the recently infected population. Among 2828 HIV-positive samples newly reported in the first quarter of 2014, 347 were identified as recent infections with BED-captured enzyme immunoassay (CEIA). Of them, 291 were successfully genotyped and identified as circulating recombinant form (CRF)08_BC (47.4%), unique recombinant forms (URFs) (18.2%), CRF01_AE (15.8%), CRF07_BC (14.4%), subtype C (2.7%), CRF55_01B (0.7%), subtype B (0.3%) and CRF64_BC (0.3%). CRF08_BC and CRF01_AE were the predominant genotypes among heterosexual and homosexual infections, respectively. CRF08_BC, URFs, CRF01_AE and CRF07_BC expanded with higher prevalence in central and eastern Yunnan. The recent common ancestor of CRF01_AE, CRF07_BC and CRF08_BC dated back to 1983.1, 1992.1 and 1989.5, respectively. The effective population sizes (EPS) for CRF01_AE and CRF07_BC increased exponentially during 1991-1999 and 1994-1999, respectively. The EPS for CRF08_BC underwent two exponential growth phases in 1994-1998 and 2001-2002. Lastly, TDR-associated mutations were identified in 1.8% of individuals. These findings not only enhance our understanding of HIV-1 evolution in Yunnan but also have implications for vaccine design and patient management strategies.

  2. Double-labelled HIV-1 particles for study of virus-cell interaction

    International Nuclear Information System (INIS)

    Lampe, Marko; Briggs, John A.G.; Endress, Thomas; Glass, Baerbel; Riegelsberger, Stefan; Kraeusslich, Hans-Georg; Lamb, Don C.; Braeuchle, Christoph; Mueller, Barbara

    2007-01-01

    Human immunodeficiency virus (HIV) delivers its genome to a host cell through fusion of the viral envelope with a cellular membrane. While the viral and cellular proteins involved in entry have been analyzed in detail, the dynamics of virus-cell fusion are largely unknown. Single virus tracing (SVT) provides the unique opportunity to visualize viral particles in real time allowing direct observation of the dynamics of this stochastic process. For this purpose, we developed a double-coloured HIV derivative carrying a green fluorescent label attached to the viral matrix protein combined with a red label fused to the viral Vpr protein designed to distinguish between complete virions and subviral particles lacking MA after membrane fusion. We present here a detailed characterization of this novel tool together with exemplary live cell imaging studies, demonstrating its suitability for real-time analyses of HIV-cell interaction

  3. A monocyte chemotaxis inhibiting factor in serum of HIV infected men shares epitopes with the HIV transmembrane protein gp41

    NARCIS (Netherlands)

    Tas, M.; Drexhage, H. A.; Goudsmit, J.

    1988-01-01

    This report describes that gp41, the transmembranous envelope protein of HIV, is able to inhibit monocyte chemotaxis (measured as FMLP-induced polarization). To study the presence of such immunosuppressive HIV env proteins in the circulation of HIV-infected men, fractions were prepared from serum

  4. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    OpenAIRE

    Somayeh Kadkhodayan; Shiva Irani; Seyed Mehdi Sadat; Fatemeh Fotouhi; Azam Bolhassani

    2016-01-01

    Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa) could act as a cell penetrating peptide (CPP). In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confi...

  5. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Science.gov (United States)

    Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria

    2010-01-01

    Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151

  6. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Directory of Open Access Journals (Sweden)

    Joan Joseph

    2010-01-01

    Full Text Available Mycobacterium bovis Bacillus Calmette-Guérin (BCG as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261 and Mycobacteria spp. α-antigen promoter (in plasmid pJH222. Among 14 rBCG:HIV-1gp120 (pMV261 colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222 colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.

  7. Recombination of HIV type 1C (C'/C") in Ethiopia: possible link of EthHIV-1C' to subtype C sequences from the high-prevalence epidemics in India and Southern Africa

    NARCIS (Netherlands)

    Pollakis, Georgios; Abebe, Almaz; Kliphuis, Aletta; Rinke de Wit, Tobias F.; Fisseha, Bitew; Tegbaru, Belete; Tesfaye, Girma; Negassa, Hailu; Mengistu, Yohannes; Fontanet, Arnaud L.; Cornelissen, Marion; Goudsmit, Jaap

    2003-01-01

    The magnitude and complexity of the HIV-1 genetic diversity are major challenges for vaccine development. Investigation of the genotypes circulating in areas of high incidence, as well as their interactions, will be a milestone in the development of an efficacious vaccine. Because HIV-1 subtype C

  8. W-curve alignments for HIV-1 genomic comparisons.

    Directory of Open Access Journals (Sweden)

    Douglas J Cork

    2010-06-01

    Full Text Available The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly.We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison.The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE.Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison

  9. W-curve alignments for HIV-1 genomic comparisons.

    Science.gov (United States)

    Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H

    2010-06-01

    The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of

  10. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    Science.gov (United States)

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is

  11. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai

    2006-01-01

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  12. Synergistic activity profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C

    International Nuclear Information System (INIS)

    Ferir, Geoffrey; Palmer, Kenneth E.; Schols, Dominique

    2011-01-01

    Griffithsin (GRFT) is possibly the most potent anti-HIV peptide found in natural sources. Due to its potent and broad-spectrum antiviral activity and unique safety profile it has great potential as topical microbicide component. Here, we evaluated various combinations of GRFT against HIV-1 clade B and clade C isolates in primary peripheral blood mononuclear cells (PBMCs) and in CD4 + MT-4 cells. In all combinations tested, GRFT showed synergistic activity profile with tenofovir, maraviroc and enfuvirtide based on the median effect principle with combination indices (CI) varying between 0.34 and 0.79 at the calculated EC 95 level. Furthermore, the different glycosylation patterns on the viral envelope of clade B and clade C gp120 had no observable effect on the synergistic interactions. Overall, we can conclude that the evaluated two-drug combination increases their antiviral potency and supports further clinical investigations in pre-exposure prophylaxis for GRFT combinations in the context of HIV-1 clade C infection.

  13. Cocirculation of Two env Molecular Variants, of Possible Recombinant Origin, in Gorilla and Chimpanzee Simian Foamy Virus Strains from Central Africa.

    Science.gov (United States)

    Richard, Léa; Rua, Réjane; Betsem, Edouard; Mouinga-Ondémé, Augustin; Kazanji, Mirdad; Leroy, Eric; Njouom, Richard; Buseyne, Florence; Afonso, Philippe V; Gessain, Antoine

    2015-12-01

    Simian foamy virus (SFV) is a ubiquitous retrovirus in nonhuman primates (NHPs) that can be transmitted to humans, mostly through severe bites. In the past few years, our laboratory has identified more than 50 hunters from central Africa infected with zoonotic SFVs. Analysis of the complete sequences of five SFVs obtained from these individuals revealed that env was the most variable gene. Furthermore, recombinant SFV strains, some of which involve sequences in the env gene, were recently identified. Here, we investigated the variability of the env genes of zoonotic SFV strains and searched for possible recombinants. We sequenced the complete env gene or its surface glycoprotein region (SU) from DNA amplified from the blood of (i) a series of 40 individuals from Cameroon or Gabon infected with a gorilla or chimpanzee foamy virus (FV) strain and (ii) 1 gorilla and 3 infected chimpanzees living in the same areas as these hunters. Phylogenetic analyses revealed the existence of two env variants among both the gorilla and chimpanzee FV strains that were present in zoonotic and NHP strains. These variants differ greatly (>30% variability) in a 753-bp-long region located in the receptor-binding domain of SU, whereas the rest of the gene is very conserved. Although the organizations of the Env protein sequences are similar, the potential glycosylation patterns differ between variants. Analysis of recombination suggests that the variants emerged through recombination between different strains, although all parental strains could not be identified. SFV infection in humans is a great example of a zoonotic retroviral infection that has not spread among human populations, in contrast to human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). Recombination was a major mechanism leading to the emergence of HIV. Here, we show that two SFV molecular envelope gene variants circulate among ape populations in Central Africa and that both can be transmitted to

  14. Influenza vaccination of HIV-1-positive and HIV-1-negative former intravenous drug users.

    Science.gov (United States)

    Amendola, A; Boschini, A; Colzani, D; Anselmi, G; Oltolina, A; Zucconi, R; Begnini, M; Besana, S; Tanzi, E; Zanetti, A R

    2001-12-01

    The immunogenicity of an anti-influenza vaccine was assessed in 409 former intravenous drug user volunteers and its effect on the levels of HIV-1 RNA, proviral DNA and on CD4+ lymphocyte counts in a subset HIV-1-positive subjects was measured. HIV-1-positive individuals (n = 72) were divided into three groups on the basis of their CD4+ lymphocyte counts, while the 337 HIV-1-negative participants were allocated into group four. Haemagglutination inhibiting (HI) responses varied from 45.8 to 70% in the HIV-1-positive subjects and were significantly higher in group four (80.7% responses to the H1N1 strain, 81.6% to the H3N2 strain, and 83% to the B strain). The percentage of subjects with HI protective antibody titres (> or = 1:40) increased significantly after vaccination, especially in HIV-1 uninfected subjects. Immunization caused no significant changes in CD4+ counts and in neither plasma HIV-1 RNA nor proviral DNA levels. Therefore, vaccination against influenza may benefit persons infected by HIV-1. Copyright 2001 Wiley-Liss, Inc.

  15. HIV classification using coalescent theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming [Los Alamos National Laboratory; Letiner, Thomas K [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory

    2008-01-01

    Algorithms for subtype classification and breakpoint detection of HIV-I sequences are based on a classification system of HIV-l. Hence, their quality highly depend on this system. Due to the history of creation of the current HIV-I nomenclature, the current one contains inconsistencies like: The phylogenetic distance between the subtype B and D is remarkably small compared with other pairs of subtypes. In fact, it is more like the distance of a pair of subsubtypes Robertson et al. (2000); Subtypes E and I do not exist any more since they were discovered to be composed of recombinants Robertson et al. (2000); It is currently discussed whether -- instead of CRF02 being a recombinant of subtype A and G -- subtype G should be designated as a circulating recombination form (CRF) nd CRF02 as a subtype Abecasis et al. (2007); There are 8 complete and over 400 partial HIV genomes in the LANL-database which belong neither to a subtype nor to a CRF (denoted by U). Moreover, the current classification system is somehow arbitrary like all complex classification systems that were created manually. To this end, it is desirable to deduce the classification system of HIV systematically by an algorithm. Of course, this problem is not restricted to HIV, but applies to all fast mutating and recombining viruses. Our work addresses the simpler subproblem to score classifications of given input sequences of some virus species (classification denotes a partition of the input sequences in several subtypes and CRFs). To this end, we reconstruct ancestral recombination graphs (ARG) of the input sequences under restrictions determined by the given classification. These restritions are imposed in order to ensure that the reconstructed ARGs do not contradict the classification under consideration. Then, we find the ARG with maximal probability by means of Markov Chain Monte Carlo methods. The probability of the most probable ARG is interpreted as a score for the classification. To our

  16. Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Jennifer J Wanat

    2008-09-01

    Full Text Available Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit dynamic movements, led by nuclear envelope (NE-associated telomeres, throughout the zygotene and pachytene stages. Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a "bouquet." In this study, we identify Csm4 as a new molecular participant in these processes and show that, unlike the two previously identified components, Ndj1 and Mps3, Csm4 is not required for meiosis-specific telomere/NE association. Instead, it acts to couple telomere/NE ensembles to a force generation mechanism. Mutants lacking Csm4 and/or Ndj1 display the following closely related phenotypes: (i elevated crossover (CO frequencies and decreased CO interference without abrogation of normal pathways; (ii delayed progression of recombination, and recombination-coupled chromosome morphogenesis, with resulting delays in the MI division; and (iii nondisjunction of homologs at the MI division for some reason other than absence of (the obligatory CO(s. The recombination effects are discussed in the context of a model where the underlying defect is chromosome movement, the absence of which results in persistence of inappropriate chromosome relationships that, in turn, results in the observed mutant phenotypes.

  17. Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing.

    Directory of Open Access Journals (Sweden)

    Zhitao Wan

    Full Text Available The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline. Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 envelope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach.

  18. A high HIV-1 strain variability in London, UK, revealed by full-genome analysis: Results from the ICONIC project

    Science.gov (United States)

    Frampton, Dan; Gallo Cassarino, Tiziano; Raffle, Jade; Hubb, Jonathan; Ferns, R. Bridget; Waters, Laura; Tong, C. Y. William; Kozlakidis, Zisis; Hayward, Andrew; Kellam, Paul; Pillay, Deenan; Clark, Duncan; Nastouli, Eleni; Leigh Brown, Andrew J.

    2018-01-01

    Background & methods The ICONIC project has developed an automated high-throughput pipeline to generate HIV nearly full-length genomes (NFLG, i.e. from gag to nef) from next-generation sequencing (NGS) data. The pipeline was applied to 420 HIV samples collected at University College London Hospitals NHS Trust and Barts Health NHS Trust (London) and sequenced using an Illumina MiSeq at the Wellcome Trust Sanger Institute (Cambridge). Consensus genomes were generated and subtyped using COMET, and unique recombinants were studied with jpHMM and SimPlot. Maximum-likelihood phylogenetic trees were constructed using RAxML to identify transmission networks using the Cluster Picker. Results The pipeline generated sequences of at least 1Kb of length (median = 7.46Kb, IQR = 4.01Kb) for 375 out of the 420 samples (89%), with 174 (46.4%) being NFLG. A total of 365 sequences (169 of them NFLG) corresponded to unique subjects and were included in the down-stream analyses. The most frequent HIV subtypes were B (n = 149, 40.8%) and C (n = 77, 21.1%) and the circulating recombinant form CRF02_AG (n = 32, 8.8%). We found 14 different CRFs (n = 66, 18.1%) and multiple URFs (n = 32, 8.8%) that involved recombination between 12 different subtypes/CRFs. The most frequent URFs were B/CRF01_AE (4 cases) and A1/D, B/C, and B/CRF02_AG (3 cases each). Most URFs (19/26, 73%) lacked breakpoints in the PR+RT pol region, rendering them undetectable if only that was sequenced. Twelve (37.5%) of the URFs could have emerged within the UK, whereas the rest were probably imported from sub-Saharan Africa, South East Asia and South America. For 2 URFs we found highly similar pol sequences circulating in the UK. We detected 31 phylogenetic clusters using the full dataset: 25 pairs (mostly subtypes B and C), 4 triplets and 2 quadruplets. Some of these were not consistent across different genes due to inter- and intra-subtype recombination. Clusters involved 70 sequences, 19.2% of the dataset. Conclusions

  19. Frequent Cross-Resistance to Dapivirine in HIV-1 Subtype C-Infected Individuals after First-Line Antiretroviral Therapy Failure in South Africa.

    Science.gov (United States)

    Penrose, Kerri J; Wallis, Carole L; Brumme, Chanson J; Hamanishi, Kristen A; Gordon, Kelley C; Viana, Raquel V; Harrigan, P Richard; Mellors, John W; Parikh, Urvi M

    2017-02-01

    A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1 LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC 50 ) from 12 recombinant subtype C HIV-1 LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC 50 s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC 50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC 500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring. Copyright © 2017 American Society for Microbiology.

  20. New sensitive and specific assay for human immunodeficiency virus antibodies using labeled recombinant fusion protein and time-resolved fluoroimmunoassay.

    OpenAIRE

    Siitari, H; Turunen, P; Schrimsher, J; Nunn, M

    1990-01-01

    A new, rapid method for the detection of human immunodeficiency virus type 1 (HIV-1) antibody by time-resolved fluoroimmunoassay (TR-FIA) was developed. In this assay format, microtitration strips were coated with a recombinant fusion protein, and the same protein was labeled with europium and added into the wells simultaneously with the test specimens. The recombinant fusion protein contained the HIV-1 p24 gag protein sequence that carried an insertion, near the carboxyl terminus, of a 23-am...

  1. Epitope mapping and characterization of a novel CD4-induced human monoclonal antibody capable of neutralizing primary HIV-1 strains

    International Nuclear Information System (INIS)

    Xiang Shihua; Wang Liping; Abreu, Mariam; Huang, C.-C.; Kwong, Peter D.; Rosenberg, Eric; Robinson, James E.; Sodroski, Joseph

    2003-01-01

    Human immunodeficiency virus (HIV-1) enters target cells by binding its gp120 exterior envelope glycoprotein to CD4 and one of the chemokine receptors, CCR5 or CXCR4. CD4-induced (CD4i) antibodies bind gp120 more efficiently after CD4 binding and block the interaction with the chemokine receptor. Examples of CD4i antibodies are limited, and the prototypes of the CD4i antibodies exhibit only weak neutralizing activity against primary, clinical HIV-1 isolates. Here we report the identification of a novel antibody, E51, that exhibits CD4-induced binding to gp120 and neutralizes primary HIV-1 more efficiently than the prototypic CD4i antibodies. The E51 antibody blocks the interaction of gp120-CD4 complexes with CCR5 and binds to a highly conserved, basic gp120 element composed of the β19-strand and surrounding structures. Thus, on primary HIV-1 isolates, this gp120 region, which has been previously implicated in chemokine receptor binding, is accessible to a subset of CD4i antibodies

  2. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning

    Directory of Open Access Journals (Sweden)

    Martin Darren P

    2009-04-01

    Full Text Available Abstract Background Recombination has a profound impact on the evolution of viruses, but characterizing recombination patterns in molecular sequences remains a challenging endeavor. Despite its importance in molecular evolutionary studies, identifying the sequences that exhibit such patterns has received comparatively less attention in the recombination detection framework. Here, we extend a quartet-mapping based recombination detection method to enable identification of recombinant sequences without prior specifications of either query and reference sequences. Through simulations we evaluate different recombinant identification statistics and significance tests. We compare the quartet approach with triplet-based methods that employ additional heuristic tests to identify parental and recombinant sequences. Results Analysis of phylogenetic simulations reveal that identifying the descendents of relatively old recombination events is a challenging task for all methods available, and that quartet scanning performs relatively well compared to the triplet based methods. The use of quartet scanning is further demonstrated by analyzing both well-established and putative HIV-1 recombinant strains. In agreement with recent findings, we provide evidence that the presumed circulating recombinant CRF02_AG is a 'pure' lineage, whereas the presumed parental lineage subtype G has a recombinant origin. We also demonstrate HIV-1 intrasubtype recombination, confirm the hybrid origin of SIV in chimpanzees and further disentangle the recombinant history of SIV lineages in a primate immunodeficiency virus data set. Conclusion Quartet scanning makes a valuable addition to triplet-based methods for identifying recombinant sequences without prior specifications of either query and reference sequences. The new method is available in the VisRD v.3.0 package http://www.cmp.uea.ac.uk/~vlm/visrd.

  3. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  4. A competitive-inhibiton radioimmunoassay for influenza virus envelope antigens

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Vareckova, E.; Polakova, K.

    1976-01-01

    A double-antibody competitive-inhibition radioimmunoassay for influenza virus envelope antigens is described. A viral antigen preparation from influenza A virus recombinant MRC11 [antigenically identical to A/Port Chalmers/1/73 (H3N2)] consisting of haemagglutinin and neuraminidase was labelled with radioiodine. Rabbit antisera were allowed to react with the labelled antigen and the resultant antigen-antibody complexes were precipitated with the appropriate antiglobulin. The competitive-inhibition radioimmunoassay very sensitively elucidated differences even among closely related influenza virus strains. Attempts have been made to eliminate neuraminidase from radioimmunoprecipitation to obtain a competitive-inhibition radioimmunoassay system for haemagglutinin alone. (author)

  5. Varied sensitivity to therapy of HIV-1 strains in CD4+ lymphocyte sub-populations upon ART initiation

    Directory of Open Access Journals (Sweden)

    Paxton William A

    2010-12-01

    Full Text Available Abstract Background Although antiretroviral therapy (ART has proven its success against HIV-1, the long lifespan of infected cells and viral latency prevent eradication. In this study we analyzed the sensitivity to ART of HIV-1 strains in naïve, central memory and effector memory CD4+ lymphocyte subsets. Methods From five patients cellular HIV-1 infection levels were quantified before and after initiation of therapy (2-5 weeks. Through sequencing the C2V3 region of the HIV-1 gp120 envelope, we studied the effect of short-term therapy on virus variants derived from naïve, central memory and effector memory CD4+ lymphocyte subsets. Results During short-term ART, HIV-1 infection levels declined in all lymphocyte subsets but not as much as RNA levels in serum. Virus diversity in the naïve and central memory lymphocyte populations remained unchanged, whilst diversity decreased in serum and the effector memory lymphocytes. ART differentially affected the virus populations co-circulating in one individual harboring a dual HIV-1 infection. Changes in V3 charge were found in all individuals after ART initiation with increases within the effector memory subset and decreases found in the naïve cell population. Conclusions During early ART virus diversity is affected mainly in the serum and effector memory cell compartments. Differential alterations in V3 charge were observed between effector memory and naïve populations. While certain cell populations can be targeted preferentially during early ART, some virus strains demonstrate varied sensitivity to therapy, as shown from studying two strains within a dual HIV-1 infected individual.

  6. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo

    Directory of Open Access Journals (Sweden)

    Littman Dan R

    2009-01-01

    Full Text Available Abstract Background Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1. Results Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. Conclusion Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity.

  7. Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression.

    Science.gov (United States)

    Kiguoya, Marion W; Mann, Jaclyn K; Chopera, Denis; Gounder, Kamini; Lee, Guinevere Q; Hunt, Peter W; Martin, Jeffrey N; Ball, T Blake; Kimani, Joshua; Brumme, Zabrina L; Brockman, Mark A; Ndung'u, Thumbi

    2017-07-01

    There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates ( r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases ( P identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes. IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that

  8. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  9. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1-Seropositive Kenyan Men.

    Science.gov (United States)

    Korhonen, Christine J; Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L; Sanders, Eduard J; Peshu, Norbert M; Krieger, John N; Muller, Charles H; Coombs, Robert W; Fredricks, David N; Graham, Susan M

    2017-03-01

    HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. We analyzed semen samples from 42 HIV-1-seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: -0.77, 95% CI: -1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Most of these HIV-1-infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission.

  10. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Science.gov (United States)

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  11. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport.

    Science.gov (United States)

    Francis, Ashwanth C; Melikyan, Gregory B

    2018-04-11

    The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Antigen-driven C–C Chemokine-mediated HIV-1 Suppression by CD4+ T Cells from Exposed Uninfected Individuals Expressing the Wild-type CCR-5 Allele

    Science.gov (United States)

    Furci, Lucinda; Scarlatti, Gabriella; Burastero, Samuele; Tambussi, Giuseppe; Colognesi, Claudia; Quillent, Caroline; Longhi, Renato; Loverro, Patrizia; Borgonovo, Barbara; Gaffi, Davide; Carrow, Emily; Malnati, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Lazzarin, Adriano; Beretta, Alberto

    1997-01-01

    Despite repeated exposure to HIV-1, certain individuals remain persistently uninfected. Such exposed uninfected (EU) people show evidence of HIV-1–specific T cell immunity and, in rare cases, selective resistance to infection by macrophage-tropic strains of HIV-1. The latter has been associated with a 32–base pair deletion in the C–C chemokine receptor gene CCR-5, the major coreceptor of macrophage-tropic strains of HIV-1. We have undertaken an analysis of the HIV-specific T cell responses in 12 EU individuals who were either homozygous for the wild-type CCR-5 allele or heterozygous for the deletion allele (CCR-5Δ32). We have found evidence of an oligoclonal T cell response mediated by helper T cells specific for a conserved region of the HIV-1 envelope. These cells produce very high levels of C–C chemokines when stimulated by the specific antigen and suppress selectively the replication of macrophage-tropic, but not T cell–tropic, strains of HIV-1. These chemokine-producing helper cells may be part of a protective immune response that could be potentially exploited for vaccine development. PMID:9236198

  13. High-resolution deep sequencing reveals biodiversity, population structure, and persistence of HIV-1 quasispecies within host ecosystems

    Directory of Open Access Journals (Sweden)

    Yin Li

    2012-12-01

    Full Text Available Abstract Background Deep sequencing provides the basis for analysis of biodiversity of taxonomically similar organisms in an environment. While extensively applied to microbiome studies, population genetics studies of viruses are limited. To define the scope of HIV-1 population biodiversity within infected individuals, a suite of phylogenetic and population genetic algorithms was applied to HIV-1 envelope hypervariable domain 3 (Env V3 within peripheral blood mononuclear cells from a group of perinatally HIV-1 subtype B infected, therapy-naïve children. Results Biodiversity of HIV-1 Env V3 quasispecies ranged from about 70 to 270 unique sequence clusters across individuals. Viral population structure was organized into a limited number of clusters that included the dominant variants combined with multiple clusters of low frequency variants. Next generation viral quasispecies evolved from low frequency variants at earlier time points through multiple non-synonymous changes in lineages within the evolutionary landscape. Minor V3 variants detected as long as four years after infection co-localized in phylogenetic reconstructions with early transmitting viruses or with subsequent plasma virus circulating two years later. Conclusions Deep sequencing defines HIV-1 population complexity and structure, reveals the ebb and flow of dominant and rare viral variants in the host ecosystem, and identifies an evolutionary record of low-frequency cell-associated viral V3 variants that persist for years. Bioinformatics pipeline developed for HIV-1 can be applied for biodiversity studies of virome populations in human, animal, or plant ecosystems.

  14. [Genetic subtype and epidemiological feature of HIV-1 circulating strains among recently infected patients in Fujian province].

    Science.gov (United States)

    Deng, Yongyue; Zhang, Chunyang; Yan, Yansheng; Yan, Pingping; Wu, Shouli

    2014-06-01

    In order to evaluate the distribution of genetic subtypes and epidemiological feature of HIV-1 circulating strains in Fujian province. Blood samples and epidemiological data were collected from 104 newly infected patients who were distinguished by BED-CEIA methodology, during 2011-2012. Viral sequences(n = 81) of HIV-1 gag, env, and pol segments were amplified by nested PCR. Subtypes B and four Circulating Recombinant Forms, (CRF01_AE, CRF07_BC, CRF08_BC and CRF55_01B) were found in the samples, CRF01_AE(45.68%)and CRF07_BC(35.80%) were the two main HIV-1 strains in Fujian province. Compared with previous data, the proportion of CRF07_BC rose significantly while it gradually decreased in CRF01_AE. Heterosexual contact was still the principal transmission route in Fujian province, but the number of infection among men-who-have-sex-with- men grew rapidly. Results from this study suggested that different subtypes of HIV-1 strain existed in Fujian province. The distribution of subtypes and the mode of transmission were changing with the progress of epidemic. Dynamic monitoring of the molecular epidemiology trends of HIV-1 infection should be enhanced.

  15. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Perfettini

    Full Text Available DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM, which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env of human immunodeficiency virus-1 (HIV-1 in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein, as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.

  16. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain

    International Nuclear Information System (INIS)

    Lee, Kyun Oh; Luu, Nga; Kaneski, Christine R.; Schiffmann, Raphael; Brady, Roscoe O.; Murray, Gary J.

    2005-01-01

    Enzyme replacement therapy (ERT) for Gaucher disease designed to target glucocerebrosidase (GC) to macrophages via mannose-specific endocytosis is very effective in reversing hepatosplenomegaly, and normalizing hematologic parameters but is less effective in improving bone and lung involvement and ineffective in brain. Recombinant GCs containing an in-frame fusion to the HIV-1 trans-activator protein transduction domain (TAT) were expressed in eukaryotic cells in order to obtain active, normally glycosylated GC fusion proteins for enzyme uptake studies. Despite the absence of mannose-specific endocytic receptors on the plasma membranes of various fibroblasts, the recombinant GCs with C-terminal TAT fusions were readily internalized by these cells. Immunofluorescent confocal microscopy demonstrated the recombinant TAT-fusion proteins with a mixed endosomal and lysosomal localization. Thus, TAT-modified GCs represent a novel strategy for a new generation of therapeutic enzymes for ERT for Gaucher disease

  17. Neutralisation of HIV-1 cell-cell spread by human and llama antibodies.

    Science.gov (United States)

    McCoy, Laura E; Groppelli, Elisabetta; Blanchetot, Christophe; de Haard, Hans; Verrips, Theo; Rutten, Lucy; Weiss, Robin A; Jolly, Clare

    2014-10-02

    Direct cell-cell spread of HIV-1 is a very efficient mode of viral dissemination, with increasing evidence suggesting that it may pose a considerable challenge to controlling viral replication in vivo. Much current vaccine research involves the study of broadly neutralising antibodies (bNabs) that arise during natural infection with the aims of eliciting such antibodies by vaccination or incorporating them into novel therapeutics. However, whether cell-cell spread of HIV-1 can be effectively targeted by bNabs remains unclear, and there is much interest in identifying antibodies capable of efficiently neutralising virus transmitted by cell-cell contact. In this study we have tested a panel of bNAbs for inhibition of cell-cell spread, including some not previously evaluated for inhibition of this mode of HIV-1 transmission. We found that three CD4 binding site antibodies, one from an immunised llama (J3) and two isolated from HIV-1-positive patients (VRC01 and HJ16) neutralised cell-cell spread between T cells, while antibodies specific for glycan moieties (2G12, PG9, PG16) and the MPER (2F5) displayed variable efficacy. Notably, while J3 displayed a high level of potency during cell-cell spread we found that the small size of the llama heavy chain-only variable region (VHH) J3 is not required for efficient neutralisation since recombinant J3 containing a full-length human heavy chain Fc domain was significantly more potent. J3 and J3-Fc also neutralised cell-cell spread of HIV-1 from primary macrophages to CD4+ T cells. In conclusion, while bNabs display variable efficacy at preventing cell-cell spread of HIV-1, we find that some CD4 binding site antibodies can inhibit this mode of HIV-1 dissemination and identify the recently described llama antibody J3 as a particularly potent inhibitor. Effective neutralisation of cell-cell spread between physiologically relevant cell types by J3 and J3-Fc supports the development of VHH J3 nanobodies for therapeutic or

  18. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape.

    Directory of Open Access Journals (Sweden)

    Katharine J Bar

    Full Text Available Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50 selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical

  19. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4

    Directory of Open Access Journals (Sweden)

    Andrea eGross

    2013-09-01

    Full Text Available We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1. Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.

  20. The effect of recombinant human growth hormone with or without rosiglitazone on hepatic fat content in HIV-1-infected individuals: a randomized clinical trial.

    Science.gov (United States)

    Kotler, Donald P; He, Qing; Engelson, Ellen S; Albu, Jeanine B; Glesby, Marshall J

    2016-01-01

    Hepatic fat is related to insulin resistance (IR) and visceral adipose tissue (VAT) in HIV+ and uninfected individuals. Growth hormone (GH) reduces VAT but increases IR. We evaluated the effects of recombinant human GH (rhGH) and rosiglitazone (Rosi) on hepatic fat in a substudy of a randomized controlled trial. HIV+ subjects with abdominal obesity and IR (QUICKI≤0.33) were randomized to rhGH 3 mg daily, Rosi 4 mg twice daily, the combination or double placebo. Hepatic fat was measured by magnetic resonance spectroscopy, visceral fat by MRI and IR by frequently sampled intravenous glucose tolerance tests at baseline and week 12. 31 subjects were studied at both time points. Significant correlations between hepatic fat and VAT (r=0.41; P=0.02) and QUICKI (r=0.39; P<0.05) were seen at baseline. IR rose with rhGH but not Rosi. When rhGH treatment groups were combined, hepatic fat expressed as percentage change decreased significantly (P<0.05) but did not change in Rosi (P=0.71). There were no correlations between changes in hepatic fat and VAT (P=0.4) or QUICKI (P=0.6). In a substudy of 21 subjects, a trend was noticed between changes in hepatic fat and serum insulin-like growth factor-1 (IGF-1; P=0.09). Hepatic fat correlates significantly with both VAT and IR, but changes in hepatic fat do not correlate with changes in VAT and glucose metabolism. Hepatic fat content is reduced by rhGH but Rosi has no effect. These results suggest an independent effect of GH or IGF-1 on hepatic fat. The study was registered at Clinicaltrials.gov (NCT00130286).

  1. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A

    1994-01-01

    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation...... in the V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor...... affecting viral infectivity in cell culture. We found that the mutated virus lacking an N-linked glycan in the V1-loop of gp120 was more resistant to neutralization by monoclonal antibodies to the V3-loop and neutralization by soluble recombinant CD4 (sCD4). Both viruses were equally well neutralized by Con...

  2. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  3. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Imamichi, Hiromi; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark [NIH

    2015-10-15

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 μg ml-1. The median IC50 of neutralized viruses was 0.033 μg ml-1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.

  4. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  5. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir.

    Science.gov (United States)

    Chiozzini, Chiara; Arenaccio, Claudia; Olivetta, Eleonora; Anticoli, Simona; Manfredi, Francesco; Ferrantelli, Flavia; d'Ettorre, Gabriella; Schietroma, Ivan; Andreotti, Mauro; Federico, Maurizio

    2017-09-01

    Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4 + T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4 + T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4 + T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4 + T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4 + T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4 + T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.

  6. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  7. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    Science.gov (United States)

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  8. APOBEC3G Variants and Protection against HIV-1 Infection in Burkina Faso.

    Science.gov (United States)

    Compaore, Tegwinde Rebeca; Soubeiga, Serge Theophile; Ouattara, Abdoul Karim; Obiri-Yeboah, Dorcas; Tchelougou, Damehan; Maiga, Mamoudou; Assih, Maleki; Bisseye, Cyrille; Bakouan, Didier; Compaore, Issaka Pierre; Dembele, Augustine; Martinson, Jeremy; Simpore, Jacques

    2016-01-01

    Studies on host factors, particularly the APOBEC3G gene, have previously found an association with AIDS progression in some populations and against some HIV-1 strains but not others. Our study had two main objectives: firstly, to screen a population from Burkina Faso for three variants of APOBEC3G previously described, and secondly to analyze the effect of these three variants and their haplotypes on HIV-1 infection with Circulating Recombinant Forms (CRFs) present in Burkina Faso. This case control study involved 708 seropositive and seronegative individuals. Genotyping was done by the TaqMan allelic discrimination method. Minor allele frequencies of rs6001417 (p<0.05), rs8177832 (P<0.05), and rs35228531 (P<0.001) were higher in seronegative subjects. The rs6001417 and rs8177832 SNPs were associated with HIV-1 infection in an additive model (P<0.01). Furthermore the SNP rs35228531 was also associated with HIV-1 infection in a dominant model (P<0.001). Odds ratio analysis of genotypes and alleles of the different APOBEC3G variants showed that there is a strong association between the minor genetic variants, genotype of the three SNPs, and HIV-1 status. Haplotype analysis demonstrated that rs6001417, rs8177832, and rs35228531 are in linkage disequilibrium. The haplotype GGT from the rs6001417, rs8177832 and rs35228531 respectively has a protective effect OR = 0.54 [0.43-0.68] with P<0.001. There was also associations between the haplotypes GGC OR = 1.6 [1.1;-2.3] P<0.05, and CGC OR = 5.21 [2.4-11.3] P<0.001, which increase the risk of infection by HIV-1 from almost two (2) to five (5) fold. This study demonstrates an association of rs6001417, rs8177832, and rs35228531 of APOBEC3G with HIV-1 infection in a population from Burkina Faso.

  9. APOBEC3G Variants and Protection against HIV-1 Infection in Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Tegwinde Rebeca Compaore

    Full Text Available Studies on host factors, particularly the APOBEC3G gene, have previously found an association with AIDS progression in some populations and against some HIV-1 strains but not others. Our study had two main objectives: firstly, to screen a population from Burkina Faso for three variants of APOBEC3G previously described, and secondly to analyze the effect of these three variants and their haplotypes on HIV-1 infection with Circulating Recombinant Forms (CRFs present in Burkina Faso. This case control study involved 708 seropositive and seronegative individuals. Genotyping was done by the TaqMan allelic discrimination method. Minor allele frequencies of rs6001417 (p<0.05, rs8177832 (P<0.05, and rs35228531 (P<0.001 were higher in seronegative subjects. The rs6001417 and rs8177832 SNPs were associated with HIV-1 infection in an additive model (P<0.01. Furthermore the SNP rs35228531 was also associated with HIV-1 infection in a dominant model (P<0.001. Odds ratio analysis of genotypes and alleles of the different APOBEC3G variants showed that there is a strong association between the minor genetic variants, genotype of the three SNPs, and HIV-1 status. Haplotype analysis demonstrated that rs6001417, rs8177832, and rs35228531 are in linkage disequilibrium. The haplotype GGT from the rs6001417, rs8177832 and rs35228531 respectively has a protective effect OR = 0.54 [0.43-0.68] with P<0.001. There was also associations between the haplotypes GGC OR = 1.6 [1.1;-2.3] P<0.05, and CGC OR = 5.21 [2.4-11.3] P<0.001, which increase the risk of infection by HIV-1 from almost two (2 to five (5 fold. This study demonstrates an association of rs6001417, rs8177832, and rs35228531 of APOBEC3G with HIV-1 infection in a population from Burkina Faso.

  10. Rapid High-Level Production of Functional HIV Broadly Neutralizing Monoclonal Antibodies in Transient Plant Expression Systems

    Science.gov (United States)

    Rosenberg, Yvonne; Sack, Markus; Montefiori, David; Forthal, Donald; Mao, Lingjun; -Abanto, Segundo Hernandez; Urban, Lori; Landucci, Gary; Fischer, Rainer; Jiang, Xiaoming

    2013-01-01

    Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production. PMID:23533588

  11. Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems.

    Directory of Open Access Journals (Sweden)

    Yvonne Rosenberg

    Full Text Available Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT of simian/human immunodeficiency virus (SHIV in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01 or a single chain antibody construct (m9, for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production.

  12. Developing strategies for HIV-1 eradication

    Science.gov (United States)

    Durand, Christine M.; Blankson, Joel N.; Siliciano, Robert F.

    2014-01-01

    Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication, transforming the outlook for infected patients. However, reservoirs of replication-competent forms of the virus persist during HAART, and when treatment is stopped, high rates of HIV-1 replication return. Recent insights into HIV-1 latency, as well as a report that HIV-1 infection was eradicated in one individual, have renewed interest in finding a cure for HIV-1 infection. Strategies for HIV-1 eradication include gene therapy and hematopoietic stem cell transplantation, stimulating host immunity to control HIV-1 replication, and targeting latent HIV-1 in resting memory CD4+ T cells. Future efforts should aim to provide better understanding of how to reconstitute the CD4+ T cell compartment with genetically engineered cells, exert immune control over HIV-1 replication, and identify and eliminate all viral reservoirs. PMID:22867874

  13. Semen Bacterial Concentrations and HIV-1 RNA Shedding Among HIV-1–Seropositive Kenyan Men

    Science.gov (United States)

    Srinivasan, Sujatha; Huang, Dandi; Ko, Daisy L.; Sanders, Eduard J.; Peshu, Norbert M.; Krieger, John N.; Muller, Charles H.; Coombs, Robert W.; Fredricks, David N.; Graham, Susan M.

    2017-01-01

    Introduction: HIV-1 is transmitted through semen from men to their sexual partners. Genital infections can increase HIV-1 RNA shedding in semen, but shedding also occurs in the absence of typical pathogens. We hypothesized that higher bacterial concentrations in semen would be associated with higher HIV-1 RNA levels. Methods: We analyzed semen samples from 42 HIV-1–seropositive Kenyan men using quantitative polymerase chain reaction (PCR) to assess bacterial concentrations and real-time PCR to measure HIV-1 RNA levels. Generalized estimation equations were used to evaluate associations between these 2 measures. Broad-range 16S rRNA gene PCR with pyrosequencing was performed on a subset of 13 samples to assess bacterial community composition. Results: Bacteria were detected in 96.6% of 88 samples by quantitative PCR. Semen bacterial concentration and HIV-1 RNA levels were correlated 0.30 (P = 0.01). The association between bacterial concentration and HIV-1 RNA detection was not significant after adjustment for antiretroviral therapy (ART) (adjusted odds ratio: 1.27, 95% CI: 0.84 to 1.91). Factors associated with semen bacterial concentration included insertive anal sex (adjusted beta 0.92, 95% CI: 0.12 to 1.73) and ART use (adjusted beta: −0.77, 95% CI: −1.50 to 0.04). Among 13 samples with pyrosequencing data, Corynebacterium spp., Staphylococcus spp., and Streptococcus spp. were most frequently detected. Conclusion: Most of these HIV-1–infected men had bacteria in their semen. ART use was associated with undetectable semen HIV-1 RNA and lower semen bacterial concentrations, whereas insertive anal sex was associated with higher bacterial concentrations. Additional studies evaluating the relationship between semen bacteria, inflammation, mucosal immunity, and HIV-1 shedding are needed to understand implications for HIV-1 transmission. PMID:27861240

  14. Increased Risk of HIV-1 Transmission in Pregnancy: A Prospective Study among African HIV-1 Serodiscordant Couples

    Science.gov (United States)

    MUGO, Nelly R.; HEFFRON, Renee; DONNELL, Deborah; WALD, Anna; WERE, Edwin O.; REES, Helen; CELUM, Connie; KIARIE, James N.; COHEN, Craig R.; KAYINTEKORE, Kayitesi; BAETEN, Jared M.

    2011-01-01

    Background Physiologic and behavioral changes during pregnancy may alter HIV-1 susceptibility and infectiousness. Prospective studies exploring pregnancy and HIV-1 acquisition risk in women have found inconsistent results. No study has explored the effect of pregnancy on HIV-1 transmission risk from HIV-1 infected women to male partners. Methods In a prospective study of African HIV-1 serodiscordant couples, we evaluated the relationship between pregnancy and the risk of 1) HIV-1 acquisition among women and 2) HIV-1 transmission from women to men. Results 3321 HIV-1 serodiscordant couples were enrolled, 1085 (32.7%) with HIV-1 susceptible female partners and 2236 (67.3%) with susceptible male partners. HIV-1 incidence in women was 7.35 versus 3.01 per 100 person-years during pregnant and non-pregnant periods (hazard ratio [HR] 2.34, 95% confidence interval [CI] 1.33–4.09). This effect was attenuated and not statistically significant after adjusting for sexual behavior and other confounding factors (adjusted HR 1.71, 95% CI 0.93–3.12). HIV-1 incidence in male partners of infected women was 3.46 versus 1.58 per 100 person-years when their partners were pregnant versus not pregnant (HR 2.31, 95% CI 1.22–4.39). This effect was not attenuated in adjusted analysis (adjusted HR 2.47, 95% CI 1.26–4.85). Conclusions HIV-1 risk increased two-fold during pregnancy. Elevated risk of HIV-1 acquisition in pregnant women appeared in part to be explained by behavioral and other factors. This is the first study to show pregnancy increased the risk of female-to-male HIV-1 transmission, which may reflect biological changes of pregnancy that could increase HIV-1 infectiousness. PMID:21785321

  15. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Science.gov (United States)

    Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  16. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Directory of Open Access Journals (Sweden)

    Samuele E Burastero

    Full Text Available To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  17. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+ T cell responses in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Núria Climent

    Full Text Available Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B in human monocyte-derived dendritic cells (MDDC and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α. MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

  18. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    International Nuclear Information System (INIS)

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-01-01

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  19. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses

    Czech Academy of Sciences Publication Activity Database

    Hodek, Jan; Zajícová, V.; Lovětinská-Šlamborová, I.; Stibor, I.; Müllerová, J.; Weber, Jan

    2016-01-01

    Roč. 16, Apr 1 (2016), č. článku 56. ISSN 1471-2180 R&D Projects: GA MŠk(CZ) LK11207 Institutional support: RVO:61388963 Keywords : hybrid coating * virucidal effect * HIV * enveloped viruses Subject RIV: EE - Microbiology, Virology Impact factor: 2.644, year: 2016 http://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-016-0675-x

  20. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial.

    Science.gov (United States)

    Viegas, Edna Omar; Tembe, Nelson; Nilsson, Charlotta; Meggi, Bindiya; Maueia, Cremildo; Augusto, Orvalho; Stout, Richard; Scarlatti, Gabriella; Ferrari, Guido; Earl, Patricia L; Wahren, Britta; Andersson, Sören; Robb, Merlin L; Osman, Nafissa; Biberfeld, Gunnel; Jani, Ilesh; Sandström, Eric

    2017-11-27

    We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 10 8 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.

  1. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  2. [Molecular epidemiological study on HIV/AIDS under the follow-up program in Zhejiang province in 2009].

    Science.gov (United States)

    Zhang, Jia-feng; Pan, Xiao-hong; Ding, Xiao-bei; Chen, Lin; Guo, Zhi-hong; Xu, Yun; Huang, Jing-jing

    2013-01-01

    To analyze the molecular epidemiological characteristics on HIV infectors/AIDS patients (HIV/AIDS) under a follow-up program in Zhejiang province in 2009. 303 cases were randomly sampled. Information on the cases was collected and followed by genomic DNA extraction. Gag gene fragments were amplified by nested PCR, followed by sequencing and bio-informatic analysis. The rate of success for sequence acquisition was 74.3% (225/303). Distributions of HIV subtypes were as follows: CRF01_AE (58.7%), CRF07_BC (13.8%), CRF08_BC (9.8%), B' (15.1%), C (1.8%), G (0.4%) and unassigned BC (unique recombinant form 0.4%). from the HIV BLAST analysis showed that the sources of strains with the highest homology involved in 10 provinces/municipalities (Liaoning, Guangxi, Yunnan, Henan, etc.) and five other countries (Thailand, Vietnam, India, South Africa and Libya). The CRF01_AE phylogenetic tree was divided into four clusters. The sequences of HIV/AIDS with homosexual transmission showed a gather in cluster 1, and mix with those infected through heterosexual contact. Circulating recombinant forms of HIV seemed to play a dominant role in Zhejiang province. Unique recombinant form and new subtype of HIV were found. People living with HIV under homosexual transmission and heterosexual transmission had a trend of interwoven with each other. Increase of both the diversity and complexity of HIV strains were also noticed in Zhejiang province.

  3. Drug-resistant molecular mechanism of CRF01_AE HIV-1 protease due to V82F mutation

    Science.gov (United States)

    Liu, Xiaoqing; Xiu, Zhilong; Hao, Ce

    2009-05-01

    Human immunodeficiency virus type 1 protease (HIV-1 PR) is one of the major targets of anti-AIDS drug discovery. The circulating recombinant form 01 A/E (CRF01_AE, abbreviated AE) subtype is one of the most common HIV-1 subtypes, which is infecting more humans and is expanding rapidly throughout the world. It is, therefore, necessary to develop inhibitors against subtype AE HIV-1 PR. In this work, we have performed computer simulation of subtype AE HIV-1 PR with the drugs lopinavir (LPV) and nelfinavir (NFV), and examined the mechanism of resistance of the V82F mutation of this protease against LPV both structurally and energetically. The V82F mutation at the active site results in a conformational change of 79's loop region and displacement of LPV from its proper binding site, and these changes lead to rotation of the side-chains of residues D25 and I50'. Consequently, the conformation of the binding cavity is deformed asymmetrically and some interactions between PR and LPV are destroyed. Additionally, by comparing the interactive mechanisms of LPV and NFV with HIV-1 PR we discovered that the presence of a dodecahydroisoquinoline ring at the P1' subsite, a [2-(2,6-dimethylphenoxy)acetyl]amino group at the P2' subsite, and an N2 atom at the P2 subsite could improve the binding affinity of the drug with AE HIV-1 PR. These findings are helpful for promising drug design.

  4. Divergent transcriptional regulation of HIV-1: Structural and Functional Analysis of the LTR Promoter Activity of Group M, N and O

    OpenAIRE

    Somogyi, Sybille

    2010-01-01

    HIV-1 is classified into three distinct genetic groups: M (major), N (non-M; non-O) and O (outlier). Within the group M actually nine subtypes and an increasing number of circulating recombinant forms have been identified. The global spread of subtypes and CRF (circulating recombinant form) differs with respect to geographic regions and the routes of transmission. Besides sociodemographic factors, biological properties of the host and the virus may influence the different prevalences of the s...

  5. Acyclovir and Transmission of HIV-1 from Persons Infected with HIV-1 and HSV-2

    Science.gov (United States)

    Celum, Connie; Wald, Anna; Lingappa, Jairam R.; Magaret, Amalia S.; Wang, Richard S.; Mugo, Nelly; Mujugira, Andrew; Baeten, Jared M.; Mullins, James I.; Hughes, James P.; Bukusi, Elizabeth A.; Cohen, Craig R.; Katabira, Elly; Ronald, Allan; Kiarie, James; Farquhar, Carey; Stewart, Grace John; Makhema, Joseph; Essex, Myron; Were, Edwin; Fife, Kenneth H.; de Bruyn, Guy; Gray, Glenda E.; McIntyre, James A.; Manongi, Rachel; Kapiga, Saidi; Coetzee, David; Allen, Susan; Inambao, Mubiana; Kayitenkore, Kayitesi; Karita, Etienne; Kanweka, William; Delany, Sinead; Rees, Helen; Vwalika, Bellington; Stevens, Wendy; Campbell, Mary S.; Thomas, Katherine K.; Coombs, Robert W.; Morrow, Rhoda; Whittington, William L.H.; McElrath, M. Juliana; Barnes, Linda; Ridzon, Renee; Corey, Lawrence

    2010-01-01

    BACKGROUND Most persons who are infected with human immunodeficiency virus type 1 (HIV-1) are also infected with herpes simplex virus type 2 (HSV-2), which is frequently reactivated and is associated with increased plasma and genital levels of HIV-1. Therapy to suppress HSV-2 reduces the frequency of reactivation of HSV-2 as well as HIV-1 levels, suggesting that suppression of HSV-2 may reduce the risk of transmission of HIV-1. METHODS We conducted a randomized, placebo-controlled trial of suppressive therapy for HSV-2 (acyclovir at a dose of 400 mg orally twice daily) in couples in which only one of the partners was seropositive for HIV-1 (CD4 count, ≥250 cells per cubic millimeter) and that partner was also infected with HSV-2 and was not taking antiretroviral therapy at the time of enrollment. The primary end point was transmission of HIV-1 to the partner who was not initially infected with HIV-1; linkage of transmissions was assessed by means of genetic sequencing of viruses. RESULTS A total of 3408 couples were enrolled at 14 sites in Africa. Of the partners who were infected with HIV-1, 68% were women, and the baseline median CD4 count was 462 cells per cubic millimeter. Of 132 HIV-1 seroconversions that occurred after randomization (an incidence of 2.7 per 100 person-years), 84 were linked within couples by viral sequencing: 41 in the acyclovir group and 43 in the placebo group (hazard ratio with acyclovir, 0.92, 95% confidence interval [CI], 0.60 to 1.41; P = 0.69). Suppression with acyclovir reduced the mean plasma concentration of HIV-1 by 0.25 log10 copies per milliliter (95% CI, 0.22 to 0.29; P<0.001) and the occurrence of HSV-2–positive genital ulcers by 73% (risk ratio, 0.27; 95% CI, 0.20 to 0.36; P<0.001). A total of 92% of the partners infected with HIV-1 and 84% of the partners not infected with HIV-1 remained in the study for 24 months. The level of adherence to the dispensed study drug was 96%. No serious adverse events related to acyclovir

  6. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Charlotta Nilsson

    Full Text Available We compared safety and immunogenicity of intradermal (ID vaccination with and without electroporation (EP in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers.HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet with (n=16 or without (n=9 ID EP (Dermavax. Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA.The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33% and HIV-DNA ID recipients (1/7, 14%, p=0.6158. The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%. CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients.Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use.International Standard Randomised Controlled Trial Number (ISRCTN 60284968.

  7. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial.

    Science.gov (United States)

    Nilsson, Charlotta; Hejdeman, Bo; Godoy-Ramirez, Karina; Tecleab, Teghesti; Scarlatti, Gabriella; Bråve, Andreas; Earl, Patricia L; Stout, Richard R; Robb, Merlin L; Shattock, Robin J; Biberfeld, Gunnel; Sandström, Eric; Wahren, Britta

    2015-01-01

    We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. International Standard Randomised Controlled Trial Number (ISRCTN) 60284968.

  8. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    Science.gov (United States)

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Recombinant Envelope-Proteins with Mutations in the Conserved Fusion Loop Allow Specific Serological Diagnosis of Dengue-Infections.

    Directory of Open Access Journals (Sweden)

    Alexandra Rockstroh

    2015-11-01

    Full Text Available Dengue virus (DENV is a mosquito-borne flavivirus and a major international public health concern in many tropical and sub-tropical areas worldwide. DENV is divided into four major serotypes, and infection with one serotype leads to immunity against the same, but not the other serotypes. The specific diagnosis of DENV-infections via antibody-detection is problematic due to the high degree of cross-reactivity displayed by antibodies against related flaviviruses, such as West Nile virus (WNV, Yellow Fever virus (YFV or Tick-borne encephalitis virus (TBEV. Especially in areas where several flaviviruses co-circulate or in the context of vaccination e.g. against YFV or TBEV, this severely complicates diagnosis and surveillance. Most flavivirus cross-reactive antibodies are produced against the highly conserved fusion loop (FL domain in the viral envelope (E protein. We generated insect-cell derived recombinant E-proteins of the four DENV-serotypes which contain point mutations in the FL domain. By using specific mixtures of these mutant antigens, cross-reactivity against heterologous flaviviruses was strongly reduced, enabling sensitive and specific diagnosis of the DENV-infected serum samples in IgG and IgM-measurements. These results have indications for the development of serological DENV-tests with improved specificity.

  10. Transient nature of long-term nonprogression and broad virus-specific proliferative T-cell responses with sustained thymic output in HIV-1 controllers.

    Directory of Open Access Journals (Sweden)

    Samantha J Westrop

    Full Text Available HIV-1(+ individuals who, without therapy, conserve cellular anti-HIV-1 responses, present with high, stable CD4(+ T-cell numbers, and control viral replication, facilitate analysis of atypical viro-immunopathology. In the absence of universal definition, immune function in such HIV controllers remains an indication of non-progression.CD4 T-cell responses to a number of HIV-1 proteins and peptide pools were assessed by IFN-gamma ELISpot and lymphoproliferative assays in HIV controllers and chronic progressors. Thymic output was assessed by sjTRECs levels. Follow-up of 41 HIV-1(+ individuals originally identified as "Long-term non-progressors" in 1996 according to clinical criteria, and longitudinal analysis of two HIV controllers over 22 years, was also performed. HIV controllers exhibited substantial IFN-gamma producing and proliferative HIV-1-specific CD4 T-cell responses to both recombinant proteins and peptide pools of Tat, Rev, Nef, Gag and Env, demonstrating functional processing and presentation. Conversely, HIV-specific T-cell responses were limited to IFN-gamma production in chronic progressors. Additionally, thymic output was approximately 19 fold higher in HIV controllers than in age-matched chronic progressors. Follow-up of 41 HIV-1(+ patients identified as LTNP in 1996 revealed the transitory characteristics of this status. IFN-gamma production and proliferative T-cell function also declines in 2 HIV controllers over 22 years.Although increased thymic output and anti-HIV-1 T-cell responses are observed in HIV controllers compared to chronic progressors, the nature of nonprogressor/controller status appears to be transitory.

  11. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available The vaccinia virus TianTan (VTT has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  12. Adding an Artificial Tail—Anchor to a Peptide-Based HIV-1 Fusion Inhibitor for Improvement of Its Potency and Resistance Profile

    Directory of Open Access Journals (Sweden)

    Shan Su

    2017-11-01

    Full Text Available Peptides derived from the C-terminal heptad repeat (CHR of human immunodeficiency virus type 1 (HIV-1 envelope protein transmembrane subunit gp41, such as T20 (enfuvirtide, can bind to the N-terminal heptad repeat (NHR of gp41 and block six-helix bundle (6-HB formation, thus inhibiting HIV-1 fusion with the target cell. However, clinical application of T20 is limited because of its low potency and genetic barrier to resistance. HP23, the shortest CHR peptide, exhibits better anti-HIV-1 activity than T20, but the HIV-1 strains with E49K mutations in gp41 will become resistant to it. Here, we modified HP23 by extending its C-terminal sequence using six amino acid residues (E6 and adding IDL (Ile-Asp-Leu to the C-terminus of E6, which is expected to bind to the shallow pocket in the gp41 NHR N-terminal region. The newly designed peptide, designated HP23-E6-IDL, was about 2- to 16-fold more potent than HP23 against a broad spectrum of HIV-1 strains and more than 12-fold more effective against HIV-1 mutants resistant to HP23. These findings suggest that addition of an anchor–tail to the C-terminus of a CHR peptide will allow binding with the pocket in the gp41 NHR that may increase the peptide’s antiviral efficacy and its genetic barrier to resistance.

  13. Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.

    Science.gov (United States)

    Klug, Yoel A; Ashkenazi, Avraham; Viard, Mathias; Porat, Ziv; Blumenthal, Robert; Shai, Yechiel

    2014-07-15

    Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus-cell and cell-cell contact sites. Overall, the findings of the present study may suggest lipid-protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.

  14. Protective plasma envelope

    International Nuclear Information System (INIS)

    Bocharov, V.N.; Konstantinov, S.G.; Kudryavtsev, A.M.; Myskin, O.K.; Panasyuk, V.M.; Tsel'nik, F.A.

    1984-06-01

    A method of creating an annular plasma envelope used to protect the hot plasma from flows of impurities and gases from the walls of the vacuum chamber is described. The diameter of the envelope is 30 cm, the thickness of the wall is 1.5 cm, the length is 2.5 m, and its density is from 10 13 to 10 14 cm -3 . The envelope attenuates the incident (from outside) flow of helium 10-fold and the low of hydrogen 20-fold

  15. Worldwide molecular epidemiology of HIV

    Directory of Open Access Journals (Sweden)

    Henry I Z Requejo

    2006-04-01

    Full Text Available Human immunodeficiency virus (HIV is the worldwide disseminated causative agent of acquired immunodeficiency syndrome (AIDS. HIV is a member of the Lentivirus genus of Retroviridae family and is grouped in two types named HIV-1 and HIV-2. These viruses have a notable ability to mutate and adapt to the new conditions of human environment. A large incidence of errors at the transcriptional level results in changes on the genetic bases during the reproductive cycle. The elevated genomic variability of HIV has carried important implications for the diagnosis, treatment and prevention as well as epidemiologic investigations. The present review describes important definitions and geographical distribution of subtypes, circulating recombinant forms and other genomic variations of HIV. The present study aimed at leading students of Biomedical Sciences and public health laboratory staff guidance to general and specific knowledge about the genomic variability of the HIV.

  16. Frequency of subtype B and F1 dual infection in HIV-1 positive, Brazilian men who have sex with men

    Directory of Open Access Journals (Sweden)

    Soares de Oliveira Ana

    2012-09-01

    Full Text Available Abstract Background Because various HIV vaccination studies are in progress, it is important to understand how often inter- and intra-subtype co/superinfection occurs in different HIV-infected high-risk groups. This knowledge would aid in the development of future prevention programs. In this cross-sectional study, we report the frequency of subtype B and F1 co-infection in a clinical group of 41 recently HIV-1 infected men who have sex with men (MSM in São Paulo, Brazil. Methodology Proviral HIV-1 DNA was isolated from subject's peripheral blood polymorphonuclear leukocytes that were obtained at the time of enrollment. Each subject was known to be infected with a subtype B virus as determined in a previous study. A small fragment of the integrase gene (nucleotide 4255–4478 of HXB2 was amplified by nested polymerase chain reaction (PCR using subclade F1 specific primers. The PCR results were further confirmed by phylogenetic analysis. Viral load (VL data were extrapolated from the medical records of each patient. Results For the 41 samples from MSM who were recently infected with subtype B virus, it was possible to detect subclade F1 proviral DNA in five patients, which represents a co-infection rate of 12.2%. In subjects with dual infection, the median VL was 5.3 × 104 copies/ML, whereas in MSM that were infected with only subtype B virus the median VL was 3.8 × 104 copies/ML (p > 0.8. Conclusions This study indicated that subtype B and F1 co-infection occurs frequently within the HIV-positive MSM population as suggested by large number of BF1 recombinant viruses reported in Brazil. This finding will help us track the epidemic and provide support for the development of immunization strategies against the HIV.

  17. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    Science.gov (United States)

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  18. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method.

    Science.gov (United States)

    Kim, Eun-Young; Stanton, Jennifer; Korber, Bette T M; Krebs, Kendall; Bogdan, Derek; Kunstman, Kevin; Wu, Samuel; Phair, John P; Mirkin, Chad A; Wolinsky, Steven M

    2008-06-01

    Detection of HIV-1 in patients is limited by the sensitivity and selectivity of available tests. The nanotechnology-based bio-barcode-amplification method offers an innovative approach to detect specific HIV-1 antigens from diverse HIV-1 subtypes. We evaluated the efficacy of this protein-detection method in detecting HIV-1 in men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). The method relies on magnetic microparticles with antibodies that specifically bind the HIV-1 p24 Gag protein and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the microparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes (hundreds per target) were identified by a nanoparticle-based detection method that does not rely on PCR. Of 112 plasma samples from HIV-1-infected subjects, 111 were positive for HIV-1 p24 Gag protein (range: 0.11-71.5 ng/ml of plasma) by the bio-barcode-amplification method. HIV-1 p24 Gag protein was detected in only 23 out of 112 men by the conventional ELISA. A total of 34 uninfected subjects were negative by both tests. Thus, the specificity of the bio-barcode-amplification method was 100% and the sensitivity 99%. The bio-barcode-amplification method detected HIV-1 p24 Gag protein in plasma from all study subjects with less than 200 CD4(+) T cells/microl of plasma (100%) and 19 out of 20 (95%) HIV-1-infected men who had less than 50 copies/ml of plasma of HIV-1 RNA. In a separate group of 60 diverse international isolates, representative of clades A, B, C and D and circulating recombinant forms CRF01_AE and CRF02_AG, the bio-barcode-amplification method identified the presence of virus correctly. The bio-barcode-amplification method was superior to the conventional ELISA assay for the detection of HIV-1 p24 Gag protein in plasma with a breadth of coverage for diverse

  19. Characterization of partial and near full-length genomes of HIV-1 strains sampled from recently infected individuals in São Paulo, Brazil.

    Directory of Open Access Journals (Sweden)

    Sabri Saeed Sanabani

    Full Text Available BACKGROUND: Genetic variability is a major feature of human immunodeficiency virus type 1 (HIV-1 and is considered the key factor frustrating efforts to halt the HIV epidemic. A proper understanding of HIV-1 genomic diversity is a fundamental prerequisite for proper epidemiology, genetic diagnosis, and successful drugs and vaccines design. Here, we report on the partial and near full-length genomic (NFLG variability of HIV-1 isolates from a well-characterized cohort of recently infected patients in São Paul, Brazil. METHODOLOGY: HIV-1 proviral DNA was extracted from the peripheral blood mononuclear cells of 113 participants. The NFLG and partial fragments were determined by overlapping nested PCR and direct sequencing. The data were phylogenetically analyzed. RESULTS: Of the 113 samples (90.3% male; median age 31 years; 79.6% homosexual men studied, 77 (68.1% NFLGs and 32 (29.3% partial fragments were successfully subtyped. Of the successfully subtyped sequences, 88 (80.7% were subtype B sequences, 12 (11% BF1 recombinants, 3 (2.8% subtype C sequences, 2 (1.8% BC recombinants and subclade F1 each, 1 (0.9% CRF02 AG, and 1 (0.9% CRF31 BC. Primary drug resistance mutations were observed in 14/101 (13.9% of samples, with 5.9% being resistant to protease inhibitors and nucleoside reverse transcriptase inhibitors (NRTI and 4.9% resistant to non-NRTIs. Predictions of viral tropism were determined for 86 individuals. X4 or X4 dual or mixed-tropic viruses (X4/DM were seen in 26 (30.2% of subjects. The proportion of X4 viruses in homosexuals was detected in 19/69 (27.5%. CONCLUSIONS: Our results confirm the existence of various HIV-1 subtypes circulating in São Paulo, and indicate that subtype B account for the majority of infections. Antiretroviral (ARV drug resistance is relatively common among recently infected patients. The proportion of X4 viruses in homosexuals was significantly higher than the proportion seen in other study populations.

  20. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles

    International Nuclear Information System (INIS)

    Peretti, Silvia; Schiavoni, Ilaria; Pugliese, Katherina; Federico, Maurizio

    2006-01-01

    We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies

  1. Replicating Rather than Nonreplicating Adenovirus-Human Immunodeficiency Virus Recombinant Vaccines Are Better at Eliciting Potent Cellular Immunity and Priming High-Titer Antibodies

    OpenAIRE

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C.; Kalyanaraman, V. S.; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J.; Murthy, Krishna K.; Srivastava, Indresh; Barnett, Susan W.; Robert-Guroff, Marjorie

    2005-01-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1MNenv/rev recombinants and boosting wit...

  2. The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway.

    Science.gov (United States)

    Zhou, Tao; Dang, Ying; Zheng, Yong-Hui

    2014-03-01

    The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins

  3. Structural and functional adaptations of the mammalian nuclear envelope to meet the meiotic requirements.

    Science.gov (United States)

    Link, Jana; Jahn, Daniel; Alsheimer, Manfred

    2015-01-01

    Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.

  4. The Origin and Evolutionary History of HIV-1 Subtype C in Senegal

    Science.gov (United States)

    Jung, Matthieu; Leye, Nafissatou; Vidal, Nicole; Fargette, Denis; Diop, Halimatou; Toure Kane, Coumba; Gascuel, Olivier; Peeters, Martine

    2012-01-01

    Background The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses. PMID:22470456

  5. Absence of SUN-domain protein Slp1 blocks karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids

    Science.gov (United States)

    Vasnier, Christelle; de Muyt, Arnaud; Zhang, Liangran; Tessé, Sophie; Kleckner, Nancy E.; Zickler, Denise; Espagne, Eric

    2014-01-01

    Karyogamy, the process of nuclear fusion is required for two haploid gamete nuclei to form a zygote. Also, in haplobiontic organisms, karyogamy is required to produce the diploid nucleus/cell that then enters meiosis. We identify sun like protein 1 (Slp1), member of the mid–Sad1p, UNC-84–domain ubiquitous family, as essential for karyogamy in the filamentous fungus Sordaria macrospora, thus uncovering a new function for this protein family. Slp1 is required at the last step, nuclear fusion, not for earlier events including nuclear movements, recognition, and juxtaposition. Correspondingly, like other family members, Slp1 localizes to the endoplasmic reticulum and also to its extensions comprising the nuclear envelope. Remarkably, despite the absence of nuclear fusion in the slp1 null mutant, meiosis proceeds efficiently in the two haploid “twin” nuclei, by the same program and timing as in diploid nuclei with a single dramatic exception: the normal prophase program of recombination and synapsis between homologous chromosomes, including loading of recombination and synaptonemal complex proteins, occurs instead between sister chromatids. Moreover, the numbers of recombination-initiating double-strand breaks (DSBs) and ensuing recombinational interactions, including foci of the essential crossover factor Homo sapiens enhancer of invasion 10 (Hei10), occur at half the diploid level in each haploid nucleus, implying per-chromosome specification of DSB formation. Further, the distribution of Hei10 foci shows interference like in diploid meiosis. Centromere and spindle dynamics, however, still occur in the diploid mode during the two meiotic divisions. These observations imply that the prophase program senses absence of karyogamy and/or absence of a homolog partner and adjusts the interchromosomal interaction program accordingly. PMID:25210014

  6. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  7. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  8. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Identification of gene products suppressed by human immunodeficiency virus type 1 infection or gp120 exposure of primary human astrocytes by rapid subtraction hybridization.

    Science.gov (United States)

    Su, Zao-Zhong; Kang, Dong-Chul; Chen, Yinming; Pekarskaya, Olga; Chao, Wei; Volsky, David J; Fisher, Paul B

    2003-06-01

    Neurodegeneration and human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) are the major disease manifestations of HIV-1 colonization of the central nervous system (CNS). In the brain, HIV-1 replicates in microglial cells and infiltrating macrophages and it persists in a low-productive, noncytolytic state in astrocytes. Astrocytes play critical roles in the maintenance of the brain microenvironment, responses to injury, and in neuronal signal transmission, and disruption of these functions by HIV-1 could contribute to HAD. To better understand the potential effects of HIV-1 on astrocyte biology, the authors investigated changes in gene expression using an efficient and sensitive rapid subtraction hybridization approach, RaSH. Primary human astrocytes were isolated from abortus brain tissue, low-passage cells were infected with HIV-1 or mock infected, and total cellular RNAs were isolated at multiple time points over a period of 1 week. This approach is designed to identify gene products modulated early and late after HIV-1 infection and limits the cloning of genes displaying normal cell-cycle fluctuations in astrocytes. By subtracting temporal cDNAs derived from HIV-1-infected astrocytes from temporal cDNAs made from uninfected cells, 10 genes displaying reduced expression in infected cells, termed astrocyte suppressed genes (ASGs), were identified and their suppression was confirmed by Northern blot hybridization. Both known and novel ASGs, not reported in current DNA databases, that are down-regulated by HIV-1 infection are described. Northern blotting confirms suppression of the same panel of ASGs by treatment of astrocytes with recombinant HIV-1 envelope glycoprotein, gp120. These results extend our previous analysis of astrocyte genes induced or enhanced by HIV-1 infection and together they suggest that HIV-1 and viral proteins have profound effects on astrocyte physiology, which may influence their function in the CNS.

  10. Similarity of recombinant human perlecan domain 1 by alternative expression systems bioactive heterogenous recombinant human perlecan D1

    DEFF Research Database (Denmark)

    Ellis, April L; Pan, Wensheng; Yang, Guang

    2010-01-01

    BACKGROUND: Heparan sulfate glycosaminoglycans are diverse components of certain proteoglycans and are known to interact with growth factors as a co-receptor necessary to induce signalling and growth factor activity. In this report we characterize heterogeneously glycosylated recombinant human...... perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology. RESULTS: By SDS-PAGE analysis following anion exchange chromatography, the recombinant proteoglycans appeared to possess...... glycosaminoglycan chains ranging, in total, from 6 kDa to >90 kDa per recombinant. Immunoblot analysis of enzyme-digested high Mr rhPln.D1 demonstrated that the rhPln.D1 was synthesized as either a chondroitin sulfate or heparan sulfate proteoglycan, in an approximately 2:1 ratio, with negligible hybrids. Secondary...

  11. Evidence of recombination in intrapatient populations of hepatitis C virus.

    Science.gov (United States)

    Sentandreu, Vicente; Jiménez-Hernández, Nuria; Torres-Puente, Manuela; Bracho, María Alma; Valero, Ana; Gosalbes, María José; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2008-09-18

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and a potential cause of substantial morbidity and mortality in the future. HCV is characterized by a high level of genetic heterogeneity. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there are only a few studies reporting recombination on natural populations of HCV, suggesting that these events are rare in vivo. Furthermore, these few studies have focused on recombination between different HCV genotypes/subtypes but there are no reports on the extent of intra-genotype or intra-subtype recombination between viral strains infecting the same patient. Given the important implications of recombination for RNA virus evolution, our aim in this study has been to assess the existence and eventually the frequency of intragenic recombination on HCV. For this, we retrospectively have analyzed two regions of the HCV genome (NS5A and E1-E2) in samples from two different groups: (i) patients infected only with HCV (either treated with interferon plus ribavirin or treatment naïve), and (ii) HCV-HIV co-infected patients (with and without treatment against HIV). The complete data set comprised 17712 sequences from 136 serum samples derived from 111 patients. Recombination analyses were performed using 6 different methods implemented in the program RDP3. Recombination events were considered when detected by at least 3 of the 6 methods used and were identified in 10.7% of the amplified samples, distributed throughout all the groups described and the two genomic regions studied. The resulting recombination events were further verified by detailed phylogenetic analyses. The complete experimental procedure was applied to an artificial mixture of relatively closely viral populations and the ensuing analyses failed to reveal artifactual recombination. From these results we conclude that recombination should be considered as a potentially

  12. Characterization of the virus-cell interactions by HIV-1 subtype C variants from an antiretroviral therapy-naïve subject with baseline resistance to the CCR5 inhibitor maraviroc

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard

    The CCR5 inhibitor maraviroc (MVC) exerts its antiviral activity by binding to- and altering the conformation of the CCR5 extracellular loops such that HIV-1 gp120 no longer recognizes CCR5. Viruses that have become resistant to MVC through long-term in vitro culture, or from treatment failure...... in vivo, can use the MVCbound form of CCR5 for HIV-1 entry via adaptive alterations in gp120. Partial baseline resistance to another CCR5 inhibitor through this mechanism, AD101, has been noted recently in one subject (1). Here, we identified and characterized envelope (Env) clones with baseline...

  13. The effect of recombinant human growth hormone with or without rosiglitazone on hepatic fat content in HIV-1 infected individuals; a randomized clinical trial

    Science.gov (United States)

    Kotler, Donald P; He, Qing; Engelson, Ellen S; Albu, Jeanine B; Glesby, Marshall J

    2016-01-01

    Background Hepatic fat is related to insulin resistance (IR) and visceral adipose tissue (VAT) in HIV+ and uninfected individuals. Growth hormone (GH) reduces VAT but increases IR. We evaluated the effects of recombinant human GH (rhGH) and rosiglitazone (Rosi) on hepatic fat in a substudy of a randomized controlled trial. Methods HIV+ subjects with abdominal obesity and IR (QUICKI ≤ 0.33) were randomized to rhGH 3 mg daily, Rosi 4 mg twice daily, the combination, or double placebo. Hepatic fat was measured by magnetic resonance spectroscopy (MRS), visceral fat by MRI, and IR by frequently sampled IV glucose tolerance tests at baseline and week 12. Results 31 subjects were studied at both time points. Significant correlations between hepatic fat and VAT (r = 0.41, p=0.02) and QUICKI (r = 0.39, p<0.05) were seen at baseline. Insulin resistance rose with rhGH but not Rosi. When rhGH treatment groups were combined, hepatic fat expressed as percent change decreased significantly (p<0.05) but did not change in Rosi (p=0.71). There were no correlations between changes in hepatic fat and VAT (p=0.4) or QUICKI (p=0.6). In a substudy of 21 subjects, a trend was noticed between changes in hepatic fat and serum IGF-1 (p=0.09). Conclusions Hepatic fat correlates significantly with both VAT and IR, but changes in hepatic fat do not correlate with changes in VAT and glucose metabolism. Hepatic fat content is reduced by rhGH but Rosi has no effect. These results suggest an independent effect of growth hormone or IGF-1 on hepatic fat. The study was registered at Clinicaltrials.gov (NCT00130286). PMID:25536669

  14. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.

    Science.gov (United States)

    Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I

    1994-11-25

    The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away

  15. Interferon-β induced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier.

    Science.gov (United States)

    Nazli, Aisha; Dizzell, Sara; Zahoor, Muhammad Atif; Ferreira, Victor H; Kafka, Jessica; Woods, Matthew William; Ouellet, Michel; Ashkar, Ali A; Tremblay, Michel J; Bowdish, Dawn Me; Kaushic, Charu

    2018-03-19

    More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.Cellular and Molecular Immunology advance online publication, 19 March 2018; doi:10.1038/cmi.2017.168.

  16. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    Science.gov (United States)

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Co-administration of recombinant major envelope proteins (rA27L and rH3L) of buffalopox virus provides enhanced immunogenicity and protective efficacy in animal models.

    Science.gov (United States)

    Kumar, Amit; Yogisharadhya, Revanaiah; Venkatesan, Gnanavel; Bhanuprakash, Veerakyathappa; Pandey, Awadh Bihari; Shivachandra, Sathish Bhadravati

    2017-05-01

    Buffalopox virus (BPXV) and other vaccinia-like viruses (VLVs) are causing an emerging/re-emerging zoonosis affecting buffaloes, cattle and humans in India and other countries. A27L and H3L are immuno-dominant major envelope proteins of intracellular mature virion (IMV) of orthopoxviruses (OPVs) and are highly conserved with an ability to elicit neutralizing antibodies. In the present study, two recombinant proteins namely; rA27L ( 21 S to E 110 ; ∼30 kDa) and rH3L( 1 M to I 280 ; ∼50 kDa) of BPXV-Vij/96 produced from Escherichia coli were used in vaccine formulation. A combined recombinant subunit vaccine comprising rA27L and rH3L antigens (10 μg of each) was used for active immunization of adult mice (20μg/dose/mice) with or without adjuvant (FCA/FIA) by intramuscular route. Immune responses revealed a gradual increase in antigen specific serum IgG as well as neutralizing antibody titers measured by using indirect-ELISA and serum neutralization test (SNT) respectively, which were higher as compared to that elicited by individual antigens. Suckling mice passively administered with combined anti-A27L and anti-H3L sera showed a complete (100%) pre-exposure protection upon challenge with virulent BPXV. Conclusively, this study highlights the potential utility of rA27L and rH3L proteins as safer candidate prophylactic antigens in combined recombinant subunit vaccine for buffalopox as well as passive protective efficacy of combined sera in employing better pre-exposure protection against virulent BPXV. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cortical processing of dynamic sound envelope transitions.

    Science.gov (United States)

    Zhou, Yi; Wang, Xiaoqin

    2010-12-08

    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  19. High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men.

    Directory of Open Access Journals (Sweden)

    Hui Li

    2010-05-01

    Full Text Available Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM and found that a high proportion (10 of 28; 36% had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38% versus 34 of 175 subjects (19%; Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5' and 3' half genome or env-only sequences from plasma viral RNA (vRNA and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3-6 days before symptom onset and 14-17 days before peak plasma viremia (47,600,000 vRNA molecules/ml. All 239 sequences coalesced to a single transmitted/founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1

  20. Utility of the heteroduplex assay (HDA) as a simple and cost-effective tool for the identification of HIV type 1 dual infections in resource-limited settings.

    Science.gov (United States)

    Powell, Rebecca L R; Urbanski, Mateusz M; Burda, Sherri; Nanfack, Aubin; Kinge, Thompson; Nyambi, Phillipe N

    2008-01-01

    The predominance of unique recombinant forms (URFs) of HIV-1 in Cameroon suggests that dual infection, the concomitant or sequential infection with genetically distinct HIV-1 strains, occurs frequently in this region; yet, identifying dual infection among large HIV cohorts in local, resource-limited settings is uncommon, since this generally relies on labor-intensive and costly sequencing methods. Consequently, there is a need to develop an effective, cost-efficient method appropriate to the developing world to identify these infections. In the present study, the heteroduplex assay (HDA) was used to verify dual or single infection status, as shown by traditional sequence analysis, for 15 longitudinally sampled study subjects from Cameroon. Heteroduplex formation, indicative of a dual infection, was identified for all five study subjects shown by sequence analysis to be dually infected. Conversely, heteroduplex formation was not detectable for all 10 HDA reactions of the singly infected study subjects. These results suggest that the HDA is a simple yet powerful and inexpensive tool for the detection of both intersubtype and intrasubtype dual infections, and that the HDA harbors significant potential for reliable, high-throughput screening for dual infection. As these infections and the recombinants they generate facilitate leaps in HIV-1 evolution, and may present major challenges for treatment and vaccine design, this assay will be critical for monitoring the continuing pandemic in regions of the world where HIV-1 viral diversity is broad.