WorldWideScience

Sample records for hiv-1 co-receptor cxcr4

  1. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection

    International Nuclear Information System (INIS)

    Ding Yun; Zhang Li; Goodwin, J. Shawn; Wang Ziqing; Liu Bingdong; Zhang Jingwu; Fan Guohuang

    2008-01-01

    The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection

  2. Determination of HIV-1 co-receptor usage.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly the β-chemokine receptor 5 (CCR5) and the α-chemokine receptor 4 (CXCR4). Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. In this chapter, methods to determine the co-receptor usage of HIV-1 variants are described.

  3. Anti-HIV Effect of Liposomes Bearing CXCR4 Receptor Antagonist ...

    African Journals Online (AJOL)

    Keywords: Antagonist, CXCR4, Liposomes, Receptor, Inflammation, HIV. Tropical Journal of ... receptors and inhibits HIV-1 entry mediated through CCR3, CCR5, and ..... circulation, facilitating HIV-targeted drug delivery. By tissue distribution ...

  4. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    Science.gov (United States)

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  5. HIV Co-receptor usage in HIV-related non-hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Reid Erin

    2012-03-01

    Full Text Available Abstract In this study 15 banked samples of HIV-related Non-Hodgkin's Lymphoma (NHL cases were tested for HIV co-receptor usage and SDF1 3'A polymorphism. Reportable tropism from 9 plasma samples had 1 (11.1% HIV case with CXCR4 and 8 (88.9% with CCR5 usage, even though most of the cases occurred at a late stage of HIV (2/3 had CD4 counts below 200, where expected CXCR4 usage would be 60%. Based on the expected proportion of less than 50% CCR5 in chronically infected individuals, this would suggest that in NHL may be associated with CCR5 usage (P = 0.04.

  6. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  7. Specific interaction of CXCR4 with CD4 and CD8α: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion

    International Nuclear Information System (INIS)

    Basmaciogullari, Stephane; Pacheco, Beatriz; Bour, Stephan; Sodroski, Joseph

    2006-01-01

    We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8α in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8α/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8α molecules

  8. The puzzling role of CXCR4 in human immunodeficiency virus infection.

    Science.gov (United States)

    Vicenzi, Elisa; Liò, Pietro; Poli, Guido

    2013-01-01

    The human immunodeficiency virus type-1 (HIV-1) is the etiological agent of the acquired immunodeficiency syndrome (AIDS), a disease highly lethal in the absence of combination antiretroviral therapy. HIV infects CD4(+) cells of the immune system (T cells, monocyte-macrophages and dendritic cells) via interaction with a universal primary receptor, the CD4 molecule, followed by a mandatory interaction with a second receptor (co-receptor) belonging to the chemokine receptor family. Apart from some rare cases, two chemokine receptors have been evolutionarily selected to accomplish this need for HIV-1: CCR5 and CXCR4. Yet, usage of these two receptors appears to be neither casual nor simply explained by their levels of cell surface expression. While CCR5 use is the universal rule at the start of every infection regardless of the transmission route (blood-related, sexual or mother to child), CXCR4 utilization emerges later in disease coinciding with the immunological deficient phase of infection. Moreover, in most instances CXCR4 use as viral entry co-receptor is associated with maintenance of CCR5 use. Since antiviral agents preventing CCR5 utilization by the virus are already in use, while others targeting either CCR5 or CXCR4 (or both) are under investigation, understanding the biological correlates of this "asymmetrical" utilization of HIV entry co-receptors bears relevance for the clinical choice of which therapeutics should be administered to infected individuals. We will here summarize the basic knowledge and the hypotheses underlying the puzzling and yet unequivocal role of CXCR4 in HIV-1 infection.

  9. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4

    Directory of Open Access Journals (Sweden)

    Andrea eGross

    2013-09-01

    Full Text Available We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1. Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.

  10. Targeting CXCR4 in HIV Cell-Entry Inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Schwartz, T W; Rosenkilde, M M

    2010-01-01

    CXCR4 and CCR5 constitute the two major coreceptors for HIV-1 entry into host cells. In the course of an HIV-infection, a coreceptor switch takes place in approximately half of the patients - from R5 HIV-1 (CCR5 utilizing) strains to X4 HIV-1 (CXCR4 utilizing) strains. Treatment of HIV......-infected individuals with CXCR4 antagonists delays the onset of AIDS by preventing the CCR5 to CXCR4 coreceptor switch. In addition to the endogenous CXCR4 and CCR5 ligands, other chemokines, for example the human herpesvirus 8 encoded CC-chemokine, vCCL2, and modifications hereof, have proven efficient HIV-1 cell...... no oral bioavailability. The hunt for orally active small-molecule CXCR4 antagonists led to the development of monocyclam-based compounds, and recently to the non-cyclam antagonist AMD070, which is orally active and currently in Phase II clinical trial as anti-HIV treatment. Current review provides...

  11. HIV-1 with multiple CCR5/CXCR4 chimeric receptor use is predictive of immunological failure in infected children.

    Science.gov (United States)

    Cavarelli, Mariangela; Karlsson, Ingrid; Zanchetta, Marisa; Antonsson, Liselotte; Plebani, Anna; Giaquinto, Carlo; Fenyö, Eva Maria; De Rossi, Anita; Scarlatti, Gabriella

    2008-09-29

    HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5(broad) viruses), was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT) of HIV-1 and pediatric disease progression. Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting) and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5(narrow) phenotype (n = 20), but R5(broad) and R5X4 viruses were also found in seven and one case, respectively. The presence of R5(broad) and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3) or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5(broad) phenotype, however, the presence of the R5(broad) virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5(broad) viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5(broad) phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn's viral variant. Our results show that R5(broad) viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5(narrow) phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.

  12. HIV-1 with multiple CCR5/CXCR4 chimeric receptor use is predictive of immunological failure in infected children.

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    Full Text Available BACKGROUND: HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5(broad viruses, was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT of HIV-1 and pediatric disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5(narrow phenotype (n = 20, but R5(broad and R5X4 viruses were also found in seven and one case, respectively. The presence of R5(broad and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3 or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5(broad phenotype, however, the presence of the R5(broad virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5(broad viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5(broad phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn's viral variant. CONCLUSIONS/SIGNIFICANCE: Our results show that R5(broad viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5(narrow phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.

  13. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; De Clercq, Erik

    2005-01-01

    The chemokine receptors CCR5 and CXCR4 function as coreceptors for human immunodeficiency virus (HIV) and are attractive targets for the development of anti-HIV drugs. The most potent CXCR4 antagonists described until today are the bicyclams. The prototype compound, AMD3100, exhibits potent and s...

  14. Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration.

    Science.gov (United States)

    Hunger, Conny; Ödemis, Veysel; Engele, Jürgen

    2012-10-15

    The chemokine, SDF-1/CXCL12, and its receptor, CXCR4, have been implied to play major roles during limb myogenesis. This concept was recently challenged by the identification of CXCR7 as an alternative SDF-1 receptor, which can either act as a scavenger receptor, a modulator of CXCR4, or an active chemokine receptor. We have now re-examined this issue by determining whether SDF-1 would signal to C2C12 myoblasts and subsequently influence their differentiation via CXCR4 and/or CXCR7. In addition, we have analyzed CXCR7, CXCR4, and SDF-1 expression in developing and injured mouse limb muscles. We demonstrate that in undifferentiated C2C12 cells, SDF-1-dependent cell signaling and resulting inhibitory effects on myogenic differentiation are entirely mediated by CXCR4. We further demonstrate that CXCR7 expression increases in differentiating C2C12 cells, which in turn abrogates CXCR4 signaling. Moreover, consistent with the view that CXCR4 and CXCR7 control limb myogenesis in vivo by similar mechanisms, we found that CXCR4 expression is the highest in late embryonic hindlimb muscles and drops shortly after birth when secondary muscle growth terminates. Vice versa, CXCR7 expression increased perinatally and persisted into adult life. Finally, underscoring the role of the SDF-1 system in muscle regeneration, we observed that SDF-1 is continuously expressed by endomysial cells of postnatal and adult muscle fibers. Analysis of dystrophin-deficient mdx mice additionally revealed that muscle regeneration is associated with muscular re-expression of CXCR4. The apparent tight control of limb muscle development and regeneration by CXCR4 and CXCR7 points to these chemokine receptors as promising therapeutic targets for certain muscle disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Trofile HIV co-receptor usage assay.

    Science.gov (United States)

    Low, Andrew J; McGovern, Rachel A; Harrigan, P Richard

    2009-03-01

    The introduction of CCR5 antagonists increases the options available for constructing therapeutic drug regimens for HIV-positive patients. However, as these drugs do not inhibit HIV variants that use the CXCR4 co-receptor, a pretreatment test is required to determine accurately HIV co-receptor usage (tropism) before initiating CCR5 antagonist-based therapy. To discuss the Monogram Trofile assay as a diagnostic tool for determining HIV tropism by critically reviewing reported literature and available data. Monogram Trofile has become, largely by default, the de facto standard for HIV tropism assay. However, there is significant room for improvement in the speed, cost and availability of the test. Furthermore, the test is not quantitative, requires high-input HIV RNA viral loads, and produces results that are less biologically stable than expected. These technical considerations may limit the use of CCR5 antagonists in therapy. Nevertheless, this test is likely to remain the most widely used tropism diagnostic for the short term. We expect that a more practical and possibly more accurate method for measuring HIV tropism can be developed.

  16. V3-independent competitive resistance of a dual-X4 HIV-1 to the CXCR4 inhibitor AMD3100.

    Directory of Open Access Journals (Sweden)

    Yosuke Maeda

    Full Text Available A CXCR4 inhibitor-resistant HIV-1 was isolated from a dual-X4 HIV-1 in vitro. The resistant variant displayed competitive resistance to the CXCR4 inhibitor AMD3100, indicating that the resistant variant had a higher affinity for CXCR4 than that of the wild-type HIV-1. Amino acid sequence analyses revealed that the resistant variant harbored amino acid substitutions in the V2, C2, and C4 regions, but no remarkable changes in the V3 loop. Site-directed mutagenesis confirmed that the changes in the C2 and C4 regions were principally involved in the reduced sensitivity to AMD3100. Furthermore, the change in the C4 region was associated with increased sensitivity to soluble CD4, and profoundly enhanced the entry efficiency of the virus. Therefore, it is likely that the resistant variant acquired the higher affinity for CD4/CXCR4 by the changes in non-V3 regions. Taken together, a CXCR4 inhibitor-resistant HIV-1 can evolve using a non-V3 pathway.

  17. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  18. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4.

    NARCIS (Netherlands)

    Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H.

    2011-01-01

    The chemokine receptor CXCR4 is a critical regulator of inflammation and immune surveillance, and it is specifically implicated in cancer metastasis and HIV-1 infection. On the basis of the observation that several of the known antagonists remarkably share a C(2) symmetry element, we constructed

  19. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Science.gov (United States)

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  20. Comparison of cell-based assays for the identification and evaluation of competitive CXCR4 inhibitors.

    Directory of Open Access Journals (Sweden)

    Anneleen Van Hout

    Full Text Available The chemokine receptor CXCR4 is activated by its unique chemokine ligand CXCL12 and regulates many physiological and developmental processes such as hematopoietic cell trafficking. CXCR4 is also one of the main co-receptors for human immunodeficiency virus (HIV entry. Dysfunction of the CXCL12/CXCR4 axis contributes to several human pathologies, including cancer and inflammatory diseases. Consequently, inhibition of CXCR4 activation is recognized as an attractive target for therapeutic intervention. In this regard, numerous agents modifying CXCR4 activity have been evaluated in in vitro experimental studies and pre-clinical models. Here, we evaluated a CXCL12 competition binding assay for its potential as a valuable initial screen for functional and competitive CXCR4 inhibitors. In total, 11 structurally diverse compounds were included in a side-by-side comparison of in vitro CXCR4 cell-based assays, such as CXCL12 competition binding, CXCL12-induced calcium signaling, CXCR4 internalization, CXCL12-guided cell migration and CXCR4-specific HIV-1 replication experiments. Our data indicated that agents that inhibit CXCL12 binding, i.e. the anti-CXCR4 peptide analogs T22, T140 and TC14012 and the small molecule antagonists AMD3100, AMD3465, AMD11070 and IT1t showed inhibitory activity with consistent relative potencies in all further applied CXCR4-related assays. Accordingly, agents exerting no or very weak receptor binding (i.e., CTCE-9908, WZ811, Me6TREN and gambogic acid showed no or very poor anti-CXCR4 inhibitory activity. Thus, CXCL12 competition binding studies were proven to be highly valuable as an initial screening assay and indicative for the pharmacological and functional profile of competitive CXCR4 antagonists, which will help the design of new potent CXCR4 inhibitors.

  1. Peripheral Blood CCR4+CCR6+ and CXCR3+CCR6+ CD4+ T Cells Are Highly Permissive to HIV-1 Infection

    OpenAIRE

    Gosselin, Annie; Monteiro, Patricia; Chomont, Nicolas; Diaz-Griffero, Felipe; Said, Elias A.; Fonseca, Simone; Wacleche, Vanessa; El-Far, Mohamed; Boulassel, Mohamed-Rachid; Routy, Jean-Pierre; Sekaly, Rafick-Pierre; Ancuta, Petronela

    2009-01-01

    There is limited knowledge on the identity of primary CD4+ T cell subsets selectively targeted by HIV-1 in vivo. In this study, we established a link between HIV permissiveness, phenotype/homing potential, and lineage commitment in primary CD4+ T cells. CCR4+CCR6+, CCR4+CCR6−, CXCR3+CCR6+, and CXCR3+CCR6− T cells expressed cytokines and transcription factors specific for Th17, Th2, Th1Th17, and Th1 lineages, respectively. CCR4+CCR6+ and CXCR3+CCR6+ T cells expressed the HIV coreceptors CCR5 a...

  2. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  3. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Directory of Open Access Journals (Sweden)

    Cédric de Poorter

    Full Text Available Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  4. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    Science.gov (United States)

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Current V3 genotyping algorithms are inadequate for predicting X4 co-receptor usage in clinical isolates.

    Science.gov (United States)

    Low, Andrew J; Dong, Winnie; Chan, Dennison; Sing, Tobias; Swanstrom, Ronald; Jensen, Mark; Pillai, Satish; Good, Benjamin; Harrigan, P Richard

    2007-09-12

    Integrating CCR5 antagonists into clinical practice would benefit from accurate assays of co-receptor usage (CCR5 versus CXCR4) with fast turnaround and low cost. Published HIV V3-loop based predictors of co-receptor usage were compared with actual phenotypic tropism results in a large cohort of antiretroviral naive individuals to determine accuracy on clinical samples and identify areas for improvement. Aligned HIV envelope V3 loop sequences (n = 977), derived by bulk sequencing were analyzed by six methods: the 11/25 rule; a neural network (NN), two support vector machines, and two subtype-B position specific scoring matrices (PSSM). Co-receptor phenotype results (Trofile Co-receptor Phenotype Assay; Monogram Biosciences) were stratified by CXCR4 relative light unit (RLU) readout and CD4 cell count. Co-receptor phenotype was available for 920 clinical samples with V3 genotypes having fewer than seven amino acid mixtures (n = 769 R5; n = 151 X4-capable). Sensitivity and specificity for predicting X4 capacity were evaluated for the 11/25 rule (30% sensitivity/93% specificity), NN (44%/88%), PSSM(sinsi) (34%/96%), PSSM(x4r5) (24%/97%), SVMgenomiac (22%/90%) and SVMgeno2pheno (50%/89%). Quantitative increases in sensitivity could be obtained by optimizing the cut-off for methods with continuous output (PSSM methods), and/or integrating clinical data (CD4%). Sensitivity was directly proportional to strength of X4 signal in the phenotype assay (P < 0.05). Current default implementations of co-receptor prediction algorithms are inadequate for predicting HIV X4 co-receptor usage in clinical samples, particularly those X4 phenotypes with low CXCR4 RLU signals. Significant improvements can be made to genotypic predictors, including training on clinical samples, using additional data to improve predictions and optimizing cutoffs and increasing genotype sensitivity.

  6. CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7.

    Directory of Open Access Journals (Sweden)

    Nathaniel L Coggins

    Full Text Available Chemokine CXCL12 promotes growth and metastasis of more than 20 different human cancers, as well as pathogenesis of other common diseases. CXCL12 binds two different receptors, CXCR4 and CXCR7, both of which recruit and signal through the cytosolic adapter protein β-arrestin 2. Differences in CXCL12-dependent recruitment of β-arrestin 2 in cells expressing one or both receptors remain poorly defined. To quantitatively investigate parameters controlling association of β-arrestin 2 with CXCR4 or CXCR7 in cells co-expressing both receptors, we used a systems biology approach combining real-time, multi-spectral luciferase complementation imaging with computational modeling. Cells expressing only CXCR4 maintain low basal association with β-arrestin 2, and CXCL12 induces a rapid, transient increase in this interaction. In contrast, cells expressing only CXCR7 have higher basal association with β-arrestin 2 and exhibit more gradual, prolonged recruitment of β-arrestin 2 in response to CXCL12. We developed and fit a data-driven computational model for association of either CXCR4 or CXCR7 with β-arrestin 2 in cells expressing only one type of receptor. We then experimentally validated model predictions that co-expression of CXCR4 and CXCR7 on the same cell substantially decreases both the magnitude and duration of CXCL12-regulated recruitment of β-arrestin 2 to CXCR4. Co-expression of both receptors on the same cell only minimally alters recruitment of β-arrestin 2 to CXCR7. In silico experiments also identified β-arrestin 2 as a limiting factor in cells expressing both receptors, establishing that CXCR7 wins the "competition" with CXCR4 for CXCL12 and recruitment of β-arrestin 2. These results reveal how competition for β-arrestin 2 controls integrated responses to CXCL12 in cells expressing both CXCR4 and CXCR7. These results advance understanding of normal and pathologic functions of CXCL12, which is critical for developing effective

  7. μ-opioid modulation of HIV-1 coreceptor expressionand HIV-1 replication

    International Nuclear Information System (INIS)

    Steele, Amber D.; Henderson, Earl E.; Rogers, Thomas J.

    2003-01-01

    A substantial proportion of HIV-1-infected individuals are intravenous drug users (IVDUs) who abuse opiates. Opioids induce a number of immunomodulatory effects that may directly influence HIV-1 disease progression. In the present report, we have investigated the effect of opioids on the expression of the major HIV-1 coreceptors CXCR4 and CCR5. For these studies we have focused on opiates which are ligands for the μ-opioid receptor. Our results show that DAMGO, a selective μ-opioid agonist, increases CXCR4 and CCR5 expression in both CD3 + lymphoblasts and CD14 + monocytes three- to fivefold. Furthermore, DAMGO-induced elevation of HIV-1 coreceptor expression translates into enhanced replication of both X4 and R5 viral strains of HIV-1. We have confirmed the role of the μ-opioid receptor based on the ability of a μ-opioid receptor-selective antagonist to block the effects of DAMGO. We have also found that morphine enhances CXCR4 and CCR5 expression and subsequently increases both X4 and R5 HIV-1 infection. We suggest that the capacity of μ-opioids to increase HIV-1 coreceptor expression and replication may promote viral binding, trafficking of HIV-1-infected cells, and enhanced disease progression

  8. [99mTc]O2-AMD3100 as a SPECT tracer for CXCR4 receptor imaging

    International Nuclear Information System (INIS)

    Hartimath, Siddesh V.; Domanska, Urszula M.; Walenkamp, Annemiek M.E.; Dierckx, Rudi A.J.O.; Vries, Erik F.J. de

    2013-01-01

    Purpose: CXCR4 plays an important role in HIV infection, tumor progression, neurogenesis, and inflammation. In-vivo imaging of CXCR4 could provide more insight in the role of this receptor in health and disease. The aim of this study was to investigate [ 99m Tc]O 2 -AMD3100 as a potential SPECT tracer for imaging of CXCR4. Method: AMD3100 was labelled with [ 99m Tc]pertechnetate. A cysteine challenge assay was performed to test the tracer stability. Heterologous and homologous receptor binding assay and internalization assay were performed in CXCR4 expressing Jurkat-T cells. Ex vivo biodistribution was studied in healthy mice at 30, 60, and 120 min after tracer injection. Tumor uptake of the tracer was determined by microSPECT imaging in nude mice xenografted with human PC-3 prostate tumor. Specificity of tracer uptake was determined by blocking studies using an excess of unlabelled AMD3100. Results: AMD3100 was labelled with technetium-99 m with a radiochemical yield of > 98%. The tracer was stable in PBS and mouse plasma for at least 6 h at 37 °C. Heterologous and homologous binding assays with AMD3100 showed IC 50 values of 240 ± 10 μM, and 92 ± 5 μM for [ 125 I]SDF-1α and [ 99m Tc]O 2 -AMD3100 respectively, with negligible receptor internalisation. The tracer showed high uptake in liver, lungs, spleen, thymus, intestine and bone. Blocking dose of AMD3100.8HCl (20 mg/kg) decreased the uptake in these organs (p 99m Tc]O 2 -AMD3100 showed specific tumor accumulation in mice bearing PC-3 xenografts model. Time activity curves (TAC) in AMD3100 pre-treated animals tracer showed 1.7 times less tumor uptake as compared to control animals (p 99m Tc]O 2 -AMD3100 is readily labelled, is stable in plasma and displays a favourable binding affinity for the CXCR4 receptors. [ 99m Tc O 2 -AMD3100 shows specific binding in organs with high CXCR4 expression and in CXCR4 positive tumors. These results justify further evaluation of this radiopharmaceutical as a potential

  9. Accurate and efficient gp120 V3 loop structure based models for the determination of HIV-1 co-receptor usage

    Directory of Open Access Journals (Sweden)

    Vaisman Iosif I

    2010-10-01

    Full Text Available Abstract Background HIV-1 targets human cells expressing both the CD4 receptor, which binds the viral envelope glycoprotein gp120, as well as either the CCR5 (R5 or CXCR4 (X4 co-receptors, which interact primarily with the third hypervariable loop (V3 loop of gp120. Determination of HIV-1 affinity for either the R5 or X4 co-receptor on host cells facilitates the inclusion of co-receptor antagonists as a part of patient treatment strategies. A dataset of 1193 distinct gp120 V3 loop peptide sequences (989 R5-utilizing, 204 X4-capable is utilized to train predictive classifiers based on implementations of random forest, support vector machine, boosted decision tree, and neural network machine learning algorithms. An in silico mutagenesis procedure employing multibody statistical potentials, computational geometry, and threading of variant V3 sequences onto an experimental structure, is used to generate a feature vector representation for each variant whose components measure environmental perturbations at corresponding structural positions. Results Classifier performance is evaluated based on stratified 10-fold cross-validation, stratified dataset splits (2/3 training, 1/3 validation, and leave-one-out cross-validation. Best reported values of sensitivity (85%, specificity (100%, and precision (98% for predicting X4-capable HIV-1 virus, overall accuracy (97%, Matthew's correlation coefficient (89%, balanced error rate (0.08, and ROC area (0.97 all reach critical thresholds, suggesting that the models outperform six other state-of-the-art methods and come closer to competing with phenotype assays. Conclusions The trained classifiers provide instantaneous and reliable predictions regarding HIV-1 co-receptor usage, requiring only translated V3 loop genotypes as input. Furthermore, the novelty of these computational mutagenesis based predictor attributes distinguishes the models as orthogonal and complementary to previous methods that utilize sequence

  10. Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available CD4(+ T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+ cells, and (ii that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+ compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+ T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p and disappearance (d* rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul participated. CCR5-expression defined a CD4(+ subpopulation of predominantly CD45R0(+ memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+ vs CCR5(-; healthy controls; P<0.01. Conversely, CXCR4 expression defined CD4(+ T-cells (predominantly CD45RA(+ naive cells with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+CD45R0(+CD4(+ memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05, naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9 or X4-tropic (n = 4. Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively. Our data are most consistent with models in which CD4(+ T-cell loss is primarily driven by non-specific immune activation.

  11. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  12. CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment.

    Science.gov (United States)

    Han, Yan; Wu, Chunlei; Wang, Jing; Liu, Na

    2017-05-01

    The major cause of death in osteosarcoma is the invasion and metastasis. Better understanding of the molecular mechanism of osteosarcoma invasion is essential in developing effective tumor-suppressive therapies. Interaction between chemokine receptors plays a crucial role in regulating osteosarcoma invasion. Here, we investigated the relationship between CXCR7 and CXCR4 in osteosarcoma invasion induced by bone marrow microenvironment. Human bone marrow mesenchymal stem cells were co-cultured with osteosarcoma cells to mimic actual bone marrow microenvironment. Osteosarcoma cell invasion and CXCL12/CXCR4 activation were observed within this co-culture model. Interestingly, in this co-culture model, osteosarcoma cell invasion was not inhibited by suppressing CXCR4 expression with neutralizing antibody or specific inhibitor AMD3100. Downstream signaling extracellular signal-regulated kinase and signal transducer and activator of transcription 3 were not significantly affected by CXCR4 inhibition. However, suppressing CXCR4 led to CXCR7 upregulation. Constitutive expression of CXCR7 could maintain osteosarcoma cell invasion when CXCR4 was suppressed. Simultaneously, inhibiting CXCR4 and CXCR7 compromised osteosarcoma invasion in co-culture system and suppressed extracellular signal-regulated kinase and signal transducer and activator of transcription 3 signals. Moreover, bone marrow microenvironment, not CXCL12 alone, is required for CXCR7 activation after CXCR4 suppression. Taken together, suppressing CXCR4 is not enough to impede osteosarcoma invasion in bone marrow microenvironment since CXCR7 is activated to sustain invasion. Therefore, inhibiting both CXCR4 and CXCR7 could be a promising strategy in controlling osteosarcoma invasion.

  13. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when

  14. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.

    Science.gov (United States)

    Otsuka, Shannon; Bebb, Gwyn

    2008-12-01

    Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.

  15. Depletion of naive CD4 T cells by CXCR4-using HIV-1 variants occurs mainly through increased T-cell death and activation

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Otto, Sigrid A.; Hamann, Dörte; Roos, Marijke Th L.; Schuitemaker, Hanneke; de Boer, Rob J.; Miedema, Frank

    2003-01-01

    Objective: Using SCID-Hu mice models and in vitro culture systems, it has been shown that syncytium inducing/CXCR4 using (X4) HIV-1 variants affect thymic function through infection and killing of CXCR4 thymocytes. The effect of X4-emergence on naive, memory and effector T-cell subset kinetics in

  16. Two distinct CXC chemokine receptors (CXCR3 and CXCR4) from the big-belly seahorse Hippocampus abdominalis: Molecular perspectives and immune defensive role upon pathogenic stress.

    Science.gov (United States)

    Priyathilaka, Thanthrige Thiunuwan; Oh, Minyoung; Bathige, S D N K; De Zoysa, Mahanama; Lee, Jehee

    2017-06-01

    CXC chemokine receptor 3 (CXCR3) and 4 (CXCR4) are members of the seven transmembrane G protein coupled receptor family, involved in pivotal physiological functions. In this study, seahorse CXCR3 and CXCR4 (designated as HaCXCR3 and HaCXCR4) cDNA sequences were identified from the transcriptome library and subsequently molecularly characterized. HaCXCR3 and HaCXCR4 encoded 363 and 373 amino acid long polypeptides, respectively. The HaCXCR3 and HaCXCR4 deduced proteins have typical structural features of chemokine receptors, including seven transmembrane domains and a G protein coupled receptors family 1 profile with characteristic DRY motifs. Amino acid sequence comparison and phylogenetic analysis of these two CXC chemokine receptors revealed a close relationship to their corresponding teleost counterparts. Quantitative real time PCR analysis revealed that HaCXCR3 and HaCXCR4 were ubiquitously expressed in all the tested tissues, with highest expression levels in blood cells. The seahorse blood cells and kidney HaCXCR3 and HaCXCR4 mRNA expressions were differently modulated when challenged with Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid, confirming their involvement in post immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fine definition of the CXCR4-binding region on the V3 loop of feline immunodeficiency virus surface glycoprotein.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    2010-05-01

    Full Text Available The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions.

  18. HIV-1 Nef down-modulates C-C and C-X-C chemokine receptors via ubiquitin and ubiquitin-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Prabha Chandrasekaran

    Full Text Available Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs. Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1 degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.

  19. Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Directory of Open Access Journals (Sweden)

    Onofrio Zirafi

    2015-05-01

    Full Text Available CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.

  20. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities.

    Science.gov (United States)

    Zhang, Heng; Kang, Dongwei; Huang, Boshi; Liu, Na; Zhao, Fabao; Zhan, Peng; Liu, Xinyong

    2016-05-23

    CXCR4 plays vital roles in HIV-1 life cycle for it's essential in mediating the interaction of host and virus and completing the entry process in the lifecycle of HIV-1 infection. Compared with some traditional targets, CXCR4 provides a novel and less mutated drug target in the battle against AIDS. Its antagonists have no cross resistance with other antagonists. Great achievements have been made recent years and a number of small molecular CXCR4 antagonists with diversity scaffolds have been discovered. In this review, recent advances in the discovery of CXCR4 antagonists with special attentions on their evolution and structure-activity relationships of representative CXCR4 antagonists are described. Moreover, some classical medicinal chemistry strategies and novel methodologies are also introduced. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases.

    Science.gov (United States)

    Zeelenberg, Ingrid S; Ruuls-Van Stalle, Lisette; Roos, Ed

    2003-07-01

    CXCR4, the receptor for the chemokine stromal cell-derived factor (SDF)-1 (CXCL12), is involved in lymphocyte trafficking. We have demonstrated previously that it is required for invasion of lymphoma cells into tissues and therefore essential for lymphoma metastasis. CXCR4 is also expressed by carcinoma cells, and CXCR4 antibodies were recently shown to reduce metastasis of a mammary carcinoma cell line. This was also ascribed to impaired invasion. We have blocked CXCR4 function in CT-26 colon carcinoma cells by transfection of SDF-1, extended with a KDEL sequence. The SDF-KDEL protein is retained in the endoplasmic reticulum by the KDEL-receptor and binds CXCR4, which is thus prevented from reaching the cell surface. We found that metastasis of these cells to liver and lungs was greatly reduced and often completely blocked. Surprisingly, however, our observations indicate that this was not attributable to inhibition of invasion but rather to impairment of outgrowth of micrometastases: (a) in contrast to the lymphoma cells, metastasis was not affected by the transfected S1 subunit of pertussis toxin. S1 completely inhibited Gi protein signaling, which is required for SDF-1-induced invasion; (b) CXCR4 levels were very low in CT-26 cells grown in vitro but strongly up-regulated in vivo. Strong up-regulation was not seen in the lungs until 7 days after tail vein injection. CXCR4 can thus have no role in initial invasion in the lungs; and (c) CXCR4-deficient cells did colonize the lungs to the same extent as control cells and survived. However, they did not expand, whereas control cells proliferated rapidly after a lag period of > or = 7 days. We conclude that CXCR4 is up-regulated by the microenvironment and that isolated metastatic cells are likely to require CXCR4 signals to initiate proliferation. Our results suggest that CXCR4 inhibitors have potential as anticancer agents to suppress outgrowth of micrometastases.

  2. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma

    International Nuclear Information System (INIS)

    Gockel, Ines; Galle, Peter R; Junginger, Theodor; Moehler, Markus; Schimanski, Carl C; Heinrich, Christian; Wehler, T; Frerichs, K; Drescher, Daniel; Langsdorff, Christian von; Domeyer, Mario; Biesterfeld, Stefan

    2006-01-01

    Prognosis of esophageal cancer is poor despite curative surgery. The chemokine receptor CXCR4 has been proposed to distinctly contribute to tumor growth, dissemination and local immune escape in a limited number of malignancies. The aim of our study was to evaluate the role of CXCR4 in tumor spread of esophageal cancer with a differentiated view of the two predominant histologic types – squamous cell and adenocarcinoma. Esophageal cancer tissue samples were obtained from 102 consecutive patients undergoing esophageal resection for cancer with curative intent. The LSAB+ System was used to detect the protein CXCR4. Tumor samples were classified into two groups based on the homogeneous staining intensity. A cut-off between CXCR4w (= weak expression) and CXCR4s (= strong expression) was set at 1.5 (grouped 0 – 1.5 versus 2.0 – 3). Long-term survival rates were calculated using life tables and the Kaplan-Meier method. Using the Cox's proportional hazards analysis, a model of survival prediction was established. The overall expression rate for CXCR4 in esophageal squamous cell carcinoma was 94.1%. Subdividing these samples, CXCR4w was found in 54.9% and CXCR4s in 45.1%. In adenocarcinoma, an overall expression rate of 89.1% was detected with a weak intensitiy in 71.7% compared to strong staining in 29.3% (p = 0.066 squamous cell versus adenocarcinoma). The Cox's proportional hazards analysis identified the pM-category with a hazard ratio (HR) of 1.860 (95% CI: 1.014–3.414) (p = 0.045), the histologic tumor type (HR: 0.334; 95% CI: 0.180–0.618) (p = 0.0001) and the operative approach (transthoracic > transhiatal esophageal resection) (HR: 0.546; 95% CI: 0.324–0.920) (p = 0.023) as independent factors with a possible influence on the long-term prognosis in patients with esophageal carcinoma, whereas CXCR4 expression was statistically not significant (>0.05). Expression of the chemokine receptor CXCR4 in esophageal cancer is of major relevance in both

  3. CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo.

    Directory of Open Access Journals (Sweden)

    Nadia T Sebastian

    2017-07-01

    Full Text Available Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells.

  4. CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo.

    Science.gov (United States)

    Sebastian, Nadia T; Zaikos, Thomas D; Terry, Valeri; Taschuk, Frances; McNamara, Lucy A; Onafuwa-Nuga, Adewunmi; Yucha, Ryan; Signer, Robert A J; Riddell, James; Bixby, Dale; Markowitz, Norman; Morrison, Sean J; Collins, Kathleen L

    2017-07-01

    Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells.

  5. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Directory of Open Access Journals (Sweden)

    Mattias N E Forsell

    2008-10-01

    Full Text Available The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3. Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4 rabbits with envelope glycoprotein (Env trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  6. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Science.gov (United States)

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  7. The expression of chemokine receptors CXCR3 and CXCR4 in predicting postoperative tumour progression in stages I-II colon cancer: a retrospective study.

    Science.gov (United States)

    Du, Changzheng; Yao, Yunfeng; Xue, Weicheng; Zhu, Wei-Guo; Peng, Yifan; Gu, Jin

    2014-01-01

    The prognostic significance of chemokine receptors in stage I/II colon cancer is unclear. We assessed the prognostic value of chemokine receptor CXCR3 and CXCR4 in stage I/II colon cancer. 145 patients with stage I/II colon cancer who underwent curative surgery alone from 2000 to 2007 were investigated. Chemokine receptor expression was assessed by immunohistochemistry. The associations between CXCR3, CXCR4 and clinicopathological variables were analysed using the χ2 test, and the relationships between chemokine receptors and a 5-year disease-free survival were analysed by univariate and multivariate analyses. The high-expression rates of CXCR3 and CXCR4 were 17.9% (26/145) and 38.6% (56/145), respectively. There were no significant associations between the expressions of CXCR3, CXCR4 and clinicopathological factors including gender, age, tumour location, histological differentiation, pathological stage, lymphovascular invasion and pretreatment serum carcinoembryonic antigen (CEA). The 5-year disease-free survival was not significantly different between low-expression groups and high-expression groups of CXCR3 and CXCR4. Multivariate analysis revealed that serum CEA and a number of retrieved lymph nodes, rather than chemokine receptors, were independent prognosticators. CXCR3 and CXCR4 are not independent prognosticators for stage I/II colon cancer after curative surgery.

  8. A computational study of the chemokine receptor CXCR1 bound with interleukin-8

    Science.gov (United States)

    Wang, Yang; Severin Lupala, Cecylia; Wang, Ting; Li, Xuanxuan; Yun, Ji-Hye; Park, Jae-hyun; Jin, Zeyu; Lee, Weontae; Tan, Leihan; Liu, Haiguang

    2018-03-01

    CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-II crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213).

  9. Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; Vermeire, Kurt

    2003-01-01

    The interaction of the CXCR4 antagonist AMD3100 with its target is greatly influenced by specific aspartate residues in the receptor protein, including Asp(171) and Asp(262). We have now found that aspartate-to-asparagine substitutions at these positions differentially affect the binding of four...

  10. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    Science.gov (United States)

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    Science.gov (United States)

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  12. Flexible use of CCR5 in the absence of CXCR4 use explains the immune deficiency in HIV-1 infected children.

    Science.gov (United States)

    Cavarelli, Mariangela; Karlsson, Ingrid; Ripamonti, Chiara; Plebani, Anna; Fenyo, Eva Maria; Scarlatti, Gabriella

    2010-10-23

    CCR5-using HIV-1 (R5 viruses) are usually isolated during acute infection from both adults and children. We have recently demonstrated that R5 viruses with a flexible use of CCR5 (called R5broad) can be detected in children close to birth and are predictive of a fast immunological failure. The aim of the present work was to investigate viral phenotype variation during disease progression in HIV-1 infected children, six slow and eight fast progressors. A total of 74 viral isolates obtained sequentially from 14 HIV-1 infected children were tested for their ability to infect U87.CD4 cells expressing a set of six different CCR5/CXCR4 chimeric receptors or wild-type coreceptors. The sensitivity of 35 R5 viruses to inhibition with the CC-chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted) was evaluated in a peripheral blood mononuclear cells based assay. Viral evolution to R5broad or to R5X4 phenotype occurred with one exception, in all children, although at a different time point according to rate of disease progression. Immune deficiency in the children was significantly associated with the appearance of R5broad phenotype or R5X4 viruses. Analysis of the sensitivity to inhibition by RANTES revealed a significant correlation between the R5broad phenotype and an augmented resistance to this CC-chemokine. We demonstrate that the viral evolution to a more flexible CCR5-use is sufficient to explain the immunological failure in the absence of CXCR4 usage. These results warrant detailed analysis of the R5 phenotype in forthcoming clinical studies introducing CCR5 inhibitors for the treatment of pediatric HIV-1 infection.

  13. Influence of the CCR2-V64I Polymorphism on Human Immunodeficiency Virus Type 1 Coreceptor Activity and on Chemokine Receptor Function of CCR2b, CCR3, CCR5, and CXCR4

    OpenAIRE

    Lee, Benhur; Doranz, Benjamin J.; Rana, Shalini; Yi, Yanji; Mellado, Mario; Frade, Jose M. R.; Martinez-A., Carlos; O’Brien, Stephen J.; Dean, Michael; Collman, Ronald G.; Doms, Robert W.

    1998-01-01

    The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism in CCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor ...

  14. Phenotypic characterization of lymphocytes in HCV/HIV co-infected patients.

    LENUS (Irish Health Repository)

    Roe, Barbara

    2009-02-01

    While hepatitis C virus (HCV)-specific immune responses are attenuated in HCV\\/HIV co-infected patients compared to those infected with HCV alone, the reasons for this remain unclear. In this study, the proportions of regulatory, naïve, and memory T cells, along with chemokine receptor expression, were measured in co-infected and mono-infected patients to determine if there is an alteration in the phenotypic profile of lymphocytes in these patients. HCV\\/HIV co-infected patients had increased proportions of CD4(+) naïve cells and decreased proportions of CD4(+) effector cells when compared to HCV mono-infected patients. The proportions of CD4(+) Tregs and CD4(+) CXCR3(+) T cells were also significantly lower in co-infected patients. A decrease in CD4(+) Tregs and subsequent loss of immunosuppressive function may contribute to the accelerated progression to liver disease in co-infected individuals. Dysregulation of immune responses following reduction in the proportions of CD4(+) CXCR3(+) Th-1 cells may contribute to the reduced functional capacity of HCV-specific immune responses in co-infected patients. The findings of this study provide new information on the T-cell immunophenotype in HCV\\/HIV co-infected patients when compared to those infected with HCV alone, and may provide insight into why cell-mediated immune responses are diminished during HCV infection.

  15. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A radiogallium-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Masuda, Ryo; Hisada, Hayato; Oishi, Shinya; Shimokawa, Kenta; Ono, Masahiro; Fujii, Nobutaka; Saji, Hideo; Mukai, Takahiro

    2014-03-01

    We have developed a novel radiogallium (Ga)-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. A CXCR4 imaging probe with two CXCR4 antagonists (Ac-TZ14011) on Ga-DOTA core, Ga-DOTA-TZ2, was synthesized, and the affinity and binding to CXCR4 was evaluated in CXCR4 expressing cells in vitro. The affinity of Ga-DOTA-TZ2 for CXCR4 was 20-fold greater than the corresponding monovalent probe, Ga-DOTA-TZ1. (67)Ga-DOTA-TZ2 showed the significantly higher accumulation in CXCR4-expressing tumor cells compared with (67)Ga-DOTA-TZ1, suggesting the bivalent effect enhances its binding to CXCR4. The incorporation of two CXCR4 antagonists to Ga-DOTA could be effective in detecting CXCR4-expressing tumors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    Science.gov (United States)

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  18. CXC chemokine receptor 7 (CXCR7 regulates CXCR4 protein expression and capillary tuft development in mouse kidney.

    Directory of Open Access Journals (Sweden)

    Sammy Haege

    Full Text Available BACKGROUND: The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. METHODOLOGY/PRINCIPAL FINDINGS: We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. CONCLUSIONS/SIGNIFICANCE: We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.

  19. CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney

    Science.gov (United States)

    Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115

  20. Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Julie Liberman

    Full Text Available Neuroblastoma (NB is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a

  1. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    Science.gov (United States)

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  2. Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    2009-01-01

    Full Text Available Human immunodeficiency virus type I (HIV-1 infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  3. Phenotype variation in human immunodeficiency virus type 1 transmission and disease progression.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2009-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.

  4. Circulating Cxcr5-Expressing Cd8+T-Cells are Major Producers of Il-21 and Associate with Limited Hiv Replication.

    Science.gov (United States)

    Perdomo-Celis, Federico; Taborda, Natalia A; Rugeles, Maria T

    2018-04-10

    Despite advances made with the highly active anti-retroviral therapy (HAART) in the control of the human immunodeficiency virus 1 (HIV) infection, a cure has not been achieved due to the persistence of viral reservoirs. The major HIV reservoirs remain in the lymphoid follicles due to, among other factors, the partial absence of CD8T-cells in these structures. Recently, lymphoid follicle-confined and circulating CD8T-cells expressing the C-X-C chemokine receptor type 5 (CXCR5) were described, possessing antiviral mechanisms which could help to control HIV replication. and methods: By flow cytometry, we characterized the phenotype and function of circulating CXCR5-expressing CD8T-cells in HIV-infected patients with natural or HAART-induced control of HIV replication. Circulating CXCR5-expressing CD8T-cells exhibited low or null expression of the C-C chemokine receptor type 7 (CCR7) and had a transitional memory phenotype. Particular redistributions of CXCR5-expressing CD8T-cells were found in HIV-infected patients, and they were partially restored by HAART. The frequency of CXCR5CCR7CD8T-cells was higher in spontaneous HIV controllers and negatively correlated with plasma HIV RNA levels. Total and HIV-specific CXCR5CD8T-cells were major producers of interleukin-21, and this function was positively associated with their interferon-γ production. Circulating CXCR5-expressing CD8T-cells are associated with low level HIV replication, could be novel correlates of protection and potentially useful in the eradication of HIV reservoirs.

  5. Expression of the chemokine receptor CXCR4 on lymphocytes of leprosy patients

    Directory of Open Access Journals (Sweden)

    V.A. Mendonça

    2011-12-01

    Full Text Available Leprosy is caused by Mycobacterium leprae, which induces chronic granulomatous infection of the skin and peripheral nerves. The disease ranges from the tuberculoid to the lepromatous forms, depending on the cellular immune response of the host. Chemokines are thought to be involved in the immunopathogenesis of leprosy, but few studies have investigated the expression of chemokine receptors on leukocytes of leprosy patients. In the present study, we evaluated 21 leprosy patients (M/F: 16/5 with a new diagnosis from the Dermatology Outpatient Clinic of the University Hospital, Federal University of Minas Gerais. The control group was composed of 20 healthy members (M/F: 15/5 of the community recruited by means of announcements. The expression of CCR2, CCR3, CCR5, and CXCR4 was investigated by flow cytometry on the surface of peripheral blood lymphocytes. There was a decrease in percentage of CD3+CXCR4+ and CD4+CXCR4+ lymphocytes in the peripheral blood of leprosy patients (median [range], 17.6 [2.7-41.9] and 65.3 [3.9-91.9], respectively compared to the control group (median [range], 43.0 [3.7-61.3] and 77.2 [43.6-93.5], respectively. The percentage of CD4+CXCR4+ was significantly lower in patients with the tuberculoid form (median [range], 45.7 [0.0-83.1] of the disease, but not in lepromatous patients (median [range], 81.5 [44.9-91.9]. The CXCR4 chemokine receptor may play a role in leprosy immunopathogenesis, probably directing cell migration to tissue lesions in tuberculoid leprosy patients.

  6. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Ferrari Angelo

    2012-03-01

    Full Text Available Abstract Background Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. Results A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas, 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did

  7. Critical role in CXCR4 signaling and internalization of the polypeptide main chain in the amino terminus of SDF-1α probed by novel N-methylated synthetically and modularly modified chemokine analogues.

    Science.gov (United States)

    Dong, Chang-Zhi; Tian, Shaomin; Choi, Won-Tak; Kumar, Santhosh; Liu, Dongxiang; Xu, Yan; Han, Xiaofeng; Huang, Ziwei; An, Jing

    2012-07-31

    The replication of human immunodeficiency virus type 1 (HIV-1) can be profoundly inhibited by the natural ligands of two major HIV-1 coreceptors, CXCR4 and CCR5. Stromal cell-derived factor-1α (SDF-1α) is a natural ligand of CXCR4. We have recently developed a synthetic biology approach of using synthetically and modularly modified (SMM)-chemokines to dissect various aspects of the structure-function relationship of chemokines and their receptors. Here, we used this approach to design novel SMM-SDF-1α analogues containing unnatural N-methylated residues in the amino terminus to investigate whether the polypeptide main chain amide bonds in the N-terminus of SDF-1α play a role in SDF-1α signaling via CXCR4 and/or receptor internalization. The results show that SDF-1α analogues with a modified N-methylated main chain at position 2, 3, or 5 retain significant CXCR4 binding and yet completely lose signaling activities. Furthermore, a representative N-methylated analogue has been shown to be incapable of causing CXCR4 internalization. These results suggest that the ability of SDF-1α to activate CXCR4 signaling and internalization is dependent upon the main chain amide bonds in the N-terminus of SDF-1α. This study demonstrates the feasibility and value of applying a synthetic biology approach to chemically engineer natural proteins and peptide ligands as probes of important biological functions that are not addressed by other biological techniques.

  8. Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals.

    Science.gov (United States)

    Banga, Riddhima; Procopio, Francesco A; Ruggiero, Alessandra; Noto, Alessandra; Ohmiti, Khalid; Cavassini, Matthias; Corpataux, Jean-Marc; Paxton, William A; Pollakis, Georgios; Perreau, Matthieu

    2018-01-01

    We recently demonstrated that lymph nodes (LNs) PD-1 + /T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1 + CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1 + CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals.

  9. Interaction of chemokine receptor CXCR4 in monomeric and dimeric state with its endogenous ligand CXCL12: coarse-grained simulations identify differences.

    Science.gov (United States)

    Cutolo, Pasquale; Basdevant, Nathalie; Bernadat, Guillaume; Bachelerie, Françoise; Ha-Duong, Tâp

    2017-02-01

    Despite the recent resolutions of the crystal structure of the chemokine receptor CXCR4 in complex with small antagonists or viral chemokine, a description at the molecular level of the interactions between the full-length CXCR4 and its endogenous ligand, the chemokine CXCL12, in relationship with the receptor recognition and activation, is not yet completely elucidated. Moreover, since CXCR4 is able to form dimers, the question of whether the CXCR4-CXCL12 complex has a 1:1 or 2:1 preferential stoichiometry is still an open question. We present here results of coarse-grained protein-protein docking and molecular dynamics simulations of CXCL12 in association with CXCR4 in monomeric and dimeric states. Our proposed models for the 1:1 and 2:1 CXCR4-CXCL12 quaternary structures are consistent with recognition and activation motifs of both partners provided by the available site-directed mutagenesis data. Notably, we observed that in the 2:1 complex, the chemokine N-terminus makes more steady contacts with the receptor residues critical for binding and activation than in the 1:1 structure, suggesting that the 2:1 stoichiometry would favor the receptor signaling activity with respect to the 1:1 association.

  10. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy

    Science.gov (United States)

    Kaemmerer, Daniel; Träger, Tina; Hoffmeister, Maike; Sipos, Bence; Hommann, Merten; Sänger, Järg; Schulz, Stefan; Lupp, Amelie

    2015-01-01

    Introduction Somatostatin receptors (SSTR) are widely distributed in well-differentiated neuroendocrine neoplasms (NEN) and serve as primary targets for diagnostics and treatment. An overexpression of the chemokine receptor CXCR4, in contrast, is considered to be present mainly in highly proliferative and advanced tumors. Comparative data are still lacking, however, for neuroendocrine carcinomas (NEC). Methods SSTR subtype (1, 2A, 3, 5) and CXCR4 expression was evaluated in G1 (n = 31), G2 (n = 47), and low (G3a; Ki-67: 21–49%; n = 21) and highly proliferative (G3b; Ki-67: >50%, n = 22) G3 (total n = 43) gastroenteropancreatic NEN samples by performing immunohistochemistry with monoclonal rabbit anti-human anti-SSTR and anti-CXCR4 antibodies, respectively, and was correlated with clinical data. Results Both CXCR4 and SSTR were widely expressed in all tumors investigated. CXCR4 expression differed significantly between the G1 and G3 specimens and within the G3 group (G3a to G3b), and was positively correlated with Ki-67 expression. SSTR2A, in contrast, exhibited an inverse association with Ki-67. SSTR2A was highly expressed in G1 and G2 tumors, but was significantly less abundant in G3 carcinomas. Additionally, SSTR1 expression was higher in G3a than in G3b tumors. Conclusion We observed an elevation in CXCR4 and a decrease in SSTR2A expression with increasing malignancy. Interestingly, 23% of the G3 specimens had strong SSTR2A expression. Because CXCR4 was strongly expressed in highly proliferative G3 carcinomas, it is an interesting new target and needs to be validated in larger studies. PMID:26259237

  11. Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms

    Science.gov (United States)

    Specht, Elisa; Wirtz, Ralph M.; Sayeg, Manal; Baum, Richard P.; Schulz, Stefan; Lupp, Amelie

    2015-01-01

    Introduction For many tumors, the overexpression of the chemokine receptor CXCR4 is associated with increased malignancy and poor patient outcomes. However, comprehensive data for neuroendocrine neoplasms of the lung are still lacking. Methods CXCR4 expression was evaluated in a panel of bronchopulmonary neuroendocrine neoplasms (BP-NEN) comprising typical carcinoids (n = 26), atypical carcinoids (n = 30), and small cell lung cancers (SCLC, n = 34). Samples were analyzed by immunohistochemistry using the novel monoclonal rabbit anti-human CXCR4 antibody UMB-2 and by qRT-PCR. The expression was correlated with clinical data and overall patient survival. Results CXCR4 was predominantly localized at the plasma membrane of the tumor cells. CXCR4 was expressed with a high intensity in almost all of the 30 SCLC samples. In contrast, it was detected infrequently and with low intensity in the typical carcinoid and atypical carcinoid samples. There was a significant correlation between the immunohistochemistry and qRT-PCR data. Additionally, there was a significant negative relationship between CXCR4 expression and overall survival. Conclusions With increasing malignancy, BP-NEN clearly differ in the extent of CXCR4 expression. As in other tumor entities, CXCR4 overexpression significantly correlates with negative patient outcome. Due to its particular high expression rate in SCLC, CXCR4 may serve as a promising new target for diagnostic and pharmacological intervention as well as for peptide receptor-based radionuclide therapy. PMID:25671300

  12. Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma.

    Science.gov (United States)

    Zeelenberg, I S; Ruuls-Van Stalle, L; Roos, E

    2001-07-01

    The dissemination of T cell hybridomas to multiple nonhematopoietic tissues is blocked by pertussis toxin, suggesting the involvement of a chemokine. To study whether this chemokine is SDF-1, we employed a strategy proposed previously for gene therapy of AIDS, whereby the SDF-1 receptor CXCR4 (also a coreceptor for HIV) is retained in the endoplasmic reticulum (ER) and fails to reach the cell surface. We transfected SDF-1, carrying an ER retention sequence, into a T cell hybridoma. This altered chemokine is retained in the ER, where it binds CXCR4 and prevents the latter protein from reaching the surface. These cells failed to migrate toward SDF-1 or to invade fibroblast monolayers, although they could still migrate toward thymus and activation-regulated chemokine (TARC) and invade TARC-treated monolayers. Furthermore, the ability of the transfected cells to disseminate to multiple organs upon intravenous injection into mice was abolished. This dissemination reflects the in vivo migration patterns of activated and memory T cells into nonhematopoietic tissues, which is thus likely to depend on CXCR4. Attempts to block CXCR4 function as a therapy for AIDS may affect this migration with consequences for T cell function. Our results also suggest a decisive role for CXCR4 in the dissemination of hematopoietic malignancies expressing this receptor.

  13. Up-regulation of the Neuronal Nicotinic Receptor α7 by HIV Glycoprotein 120

    Science.gov (United States)

    Ballester, Leomar Y.; Capó-Vélez, Coral M.; García-Beltrán, Wilfredo F.; Ramos, Félix M.; Vázquez-Rosa, Edwin; Ríos, Raymond; Mercado, José R.; Meléndez, Roberto I.; Lasalde-Dominicci, José A.

    2012-01-01

    Approximately 30–50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV+ individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120IIIB on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca2+, we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV+ patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection. PMID:22084248

  14. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  15. HIV-1 co-receptor usage:influence on mother-to-child transmission and pediatric infection

    Directory of Open Access Journals (Sweden)

    Cavarelli Mariangela

    2010-01-01

    Full Text Available Abstract Viral CCR5 usage is not a predictive marker of mother to child transmission (MTCT of HIV-1. CXCR4-using viral variants are little represented in pregnant women, have an increased although not significant risk of transmission and can be eventually also detected in the neonates. Genetic polymorphisms are more frequently of relevance in the child than in the mother. However, specific tissues as the placenta or the intestine, which are involved in the prevalent routes of infection in MTCT, may play an important role of selective barriers. The virus phenotype of the infected children, like that of adults, can evolve from R5 to CXCR4-using phenotype or remain R5 despite clinical progression to overt immune deficiency. The refined classification of R5 viruses into R5narrow and R5broad resolves the enigma of the R5 phenotype being associated with the state of immune deficiency. Studies are needed to address more in specific the relevance of these factors in HIV-1 MTCT and pediatric infection of non-B subtypes.

  16. HIV-1 co-receptor usage: influence on mother-to-child transmission and pediatric infection.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2011-01-27

    Viral CCR5 usage is not a predictive marker of mother to child transmission (MTCT) of HIV-1. CXCR4-using viral variants are little represented in pregnant women, have an increased although not significant risk of transmission and can be eventually also detected in the neonates. Genetic polymorphisms are more frequently of relevance in the child than in the mother. However, specific tissues as the placenta or the intestine, which are involved in the prevalent routes of infection in MTCT, may play an important role of selective barriers. The virus phenotype of the infected children, like that of adults, can evolve from R5 to CXCR4-using phenotype or remain R5 despite clinical progression to overt immune deficiency. The refined classification of R5 viruses into R5(narrow) and R5(broad) resolves the enigma of the R5 phenotype being associated with the state of immune deficiency. Studies are needed to address more in specific the relevance of these factors in HIV-1 MTCT and pediatric infection of non-B subtypes.

  17. Chemokine (C-C motif) receptor 5-using envelopes predominate in dual/mixed-tropic HIV from the plasma of drug-naive individuals.

    Science.gov (United States)

    Irlbeck, David M; Amrine-Madsen, Heather; Kitrinos, Kathryn M; Labranche, Celia C; Demarest, James F

    2008-07-31

    HIV-1 utilizes CD4 and either chemokine (C-C motif) receptor 5 (CCR5) or chemokine (C-X-C motif) receptor 4 (CXCR4) to gain entry into host cells. Small molecule CCR5 antagonists are currently being developed for the treatment of HIV-1 infection. Because HIV-1 may also use CXCR4 for entry, the use of CCR5 entry inhibitors is controversial for patients harboring CCR5-using and CXCR4-using (dual/mixed-tropic) viruses. The goal of the present study was to determine the proportion of CCR5-tropic and CXCR4-tropic viruses in dual/mixed-tropic virus isolates from drug-naïve patients and the phenotypic and genotypic relationships of viruses that use CCR5 or CXCR4 or both. Fourteen antiretroviral-naive HIV-1-infected patients were identified as having population coreceptor tropism readout of dual/mixed-tropic viruses. Intrapatient comparisons of coreceptor tropism and genotype of env clones were conducted on plasma virus from each patient. Population HIV-1 envelope tropism and susceptibility to the CCR5 entry inhibitor, aplaviroc, were performed using the Monogram Biosciences Trofile Assay. Twelve env clones from each patient were analyzed for coreceptor tropism, aplaviroc sensitivity, genotype, and intrapatient phylogenetic relationships. Viral populations from antiretroviral-naive patients with dual/mixed-tropic virus are composed primarily of CCR5-tropic env clones mixed with those that use both coreceptors (R5X4-tropic) and, occasionally, CXCR4-tropic env clones. Interestingly, the efficiency of CXCR4 use by R5X4-tropic env clones varied with their genetic relationships to CCR5-tropic env clones from the same patient. These data show that the majority of viruses in these dual/mixed-tropic populations use CCR5 and suggest that antiretroviral-naive patients may benefit from combination therapy that includes CCR5 entry inhibitors.

  18. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    Science.gov (United States)

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  19. Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100

    DEFF Research Database (Denmark)

    Hatse, S; Princen, K; Gerlach, L O

    2001-01-01

    by mutational analysis. We established a set of stably transfected U87.CD4 cell lines expressing different mutant forms of CXCR4 (i.e., CXCR4[WT], CXCR4[D171N], CXCR4[D262N], CXCR4[D171N,D262N], and CXCR4[H281A]), to compare the activity of the compound against mutated versus wild-type CXCR4. We found...... by substitution of Asp(171) and/or Asp(262) by neutral asparagine residue(s). Both aspartates, but most particularly Asp(262), also proved essential for the anti-HIV-1 activity of AMD3100 against the viruses NL4.3, IIIB, and HE. In contrast, substitution of His(281) by a neutral alanine potentiated...

  20. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells.

    Science.gov (United States)

    Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2012-04-01

    The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.

  1. Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV type 1.

    Science.gov (United States)

    Moyle, Graeme; DeJesus, Edwin; Boffito, Marta; Wong, Rebecca S; Gibney, Colleen; Badel, Karin; MacFarland, Ron; Calandra, Gary; Bridger, Gary; Becker, Stephen

    2009-03-15

    The X4 Antagonist Concept Trial investigates the safety and antiviral activity of AMD11070, a potent inhibitor of X4-tropic human immunodeficiency virus (HIV) in vitro in HIV-infected patients harboring X4-tropic virus. Patients enrolled in the study had an X4 virus population 2000 relative luminescence units (rlu; by the Monogram Trofile Assay) and an HIV-1 RNA level 5000 copies/mL. Patients received AMD11070 monotherapy for 10 days. Coreceptor tropism, plasma HIV-1 RNA level, and CD4 cell count were measured at study entry, on day 5, and on day 10. Daily predose and serial samples on the last day of treatment were obtained for determination of plasma AMD11070 concentration. Ten patients were given AMD11070 monotherapy (200 mg to 8 patients and 100 mg to 2 patients) twice daily for 10 days. The median baseline CD4 cell count was 160 cells/mm(3), and the median HIV-1 RNA level was 91,447 copies/mL. Four of 9 evaluable patients achieved a reduction in X4 virus population of >or= rlu. The median change in X4 virus population at the end of treatment was -0.22 log(10) rlu (range, -1.90 to 0.23 log(10) rlu). Three of 4 patients who responded to therapy showed a tropism shift from dual- or mixed-tropic viruses to exclusively R5 virus by day 10. There were no drug-related serious adverse events, adverse events of greater than grade 2, or laboratory abnormalities. These results demonstrate the activity of AMD11070, the first oral CXCR4 antagonist, against X4-tropic HIV-1. The drug was well tolerated, with no serious safety concerns. AMD11070 is on clinical hold because of histologic changes to the liver observed in long-term animal studies; additional preclinical safety assessments are pending.

  2. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  3. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells.

    Science.gov (United States)

    Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus

    2018-01-01

    Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.

  4. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2016-01-01

    Full Text Available Dipeptidyl peptidase 4 (DPP4 inhibitors(oral hypoglycemic agentshave beneficial effects during the early stages of diabetes. In this study, we evaluated the role of DPP4inhibitorsonthe biological functions of cultured human endothelial progenitor cells (EPCs. After treating EPCs with the DPP4 inhibitors sitagliptin and vildagliptin, we examined the mRNA expression of DPP4, vascular endothelial growth factor (VEGF,VEGF receptor 2 (VEGFR-2,endothelial nitric oxide synthase (eNOS, caspase-3,stromal cell-derived factor-1 (SDF-1, chemokine (C-X-C motif receptor 4 (CXCR4 were measured by RT-PCR. The protein expression of SDF-1 and CXCR4 was determined by Western blot; cell proliferation was tested by the MTT method, and DPP4 activity was determined by a DPP4 assay. Our results revealed that DPP4 expression and activity were inhibited following the treatment with various doses of DPP4 inhibitors. Cell proliferation and the expression of VEGF, VEGFR-2andeNOS were up regulated, while cell apoptosis was inhibited by DPP4 inhibitors in a dose-dependent manner. DPP4 inhibitors activated the SDF-1/CXCR4 signaling pathway, shown by the elevated expression of SDF-1/CXCR4. This further proved that after the SDF-1/CXCR4 signaling pathway was blocked by its inhibitor ADM3100, the effects of DPP4 inhibitors on the proliferation and apoptosis, and the expression of VEGF, VEGFR-2and eNOS of EPCs were significantly reduced. These findings suggest that DPP4 inhibitors promote the biological functions of human EPCs by up regulating the SDF-1/CXCR4 signaling pathway.

  5. Expression of Human CD4 and chemokine receptors in cotton rat cells confers permissiveness for productive HIV infection

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2009-05-01

    Full Text Available Abstract Background Current small animal models for studying HIV-1 infection are very limited, and this continues to be a major obstacle for studying HIV-1 infection and pathogenesis, as well as for the urgent development and evaluation of effective anti-HIV-1 therapies and vaccines. Previously, it was shown that HIV-1 can infect cotton rats as indicated by development of antibodies against all major proteins of the virus, the detection of viral cDNA in spleen and brain of challenged animals, the transmission of infectious virus, albeit with low efficiency, from animal to animal by blood, and an additional increase in the mortality in the infected groups. Results Using in vitro experiments, we now show that cotton rat cell lines engineered to express human receptor complexes for HIV-1 (hCD4 along with hCXCR4 or hCCR5 support virus entry, viral cDNA integration, and the production of infectious virus. Conclusion These results further suggest that the development of transgenic cotton rats expressing human HIV-1 receptors may prove to be useful small animal model for HIV infection.

  6. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease.

    Science.gov (United States)

    Bosco, Munyemana Jean; Wei, Ming; Hou, Hongyan; Yu, Jing; Lin, Qun; Luo, Ying; Sun, Ziyong; Wang, Feng

    2018-06-21

    The CD4 + CXCR5 + T cells have been previously established. However, their decreased frequency during tuberculosis (TB) disease is partially understood. The aim of this study was to explore the depletion of CD4 + CXCR5 + T cells in human TB. The frequency and function of CD4 + CXCR5 + T cells were evaluated in active TB (ATB) patients and healthy control (HC) individuals. The function of CD4 + CXCR5 + T cells was determined after blockade of inhibitory receptors. The frequency of CD4 + CXCR5 + T cells was decreased in ATB patients. The expression of activation markers (HLA-DR and ICOS) and inhibitory receptors (Tim-3 and PD-1) on CD4 + CXCR5 + T cells was increased in ATB group. TB-specific antigen stimulation induced higher expression of inhibitory receptors than phytohemagglutinin stimulation in ATB group. In contrast, TB antigen stimulation did not induce a significantly increased expression of IL-21 and Ki-67 on CD4 + CXCR5 + T cells. However, blockade of inhibitory receptors Tim-3 and PD-1 not only increased the frequency of CD4 + CXCR5 + T cells, but also restored their proliferation and cytokine secretion potential. An increased expression of inhibitory receptors involves the depletion of CD4 + CXCR5 + T cells, and blockade of inhibitory receptors can restore the function of CD4 + CXCR5 + T cells in ATB patients. Copyright © 2018. Published by Elsevier Ltd.

  7. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143 in chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Manoj K. Kashyap

    2017-05-01

    Full Text Available Abstract Background The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. Methods Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. Results PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD. PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC and complement-dependent cytotoxicity activity (CDC. PF-06747143 had significant combinatorial effect with standard of care (SOC agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A, ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy

  8. Generation and Characterization of Inhibitory Antibodies Specific to Guinea Pig CXCR1 and CXCR2.

    Science.gov (United States)

    Tanaka, Kento; Yoshimura, Chigusa; Shiina, Tetsuo; Terauchi, Tomoko; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-04-01

    CXCR1 and CXCR2 are chemokine receptors that have different selectivity of chemokine ligands, but the distinct role of each receptor is not clearly understood. This is due to the absence of specific inhibitors in guinea pigs, which are the appropriate species for investigation of CXCR1 and CXCR2 because of their functional similarity to humans. In this study, we generated and evaluated monoclonal antibodies that specifically bound to guinea pig CXCR1 (gpCXCR1) and guinea pig CXCR2 (gpCXCR2) for acquisition of specific inhibitors. To assess the activity of antibodies, we established CHO-K1 cells stably expressing either gpCXCR1 or gpCXCR2 (CHO/gpCXCR1 or CHO/gpCXCR2). CHO/gpCXCR1 showed migration in response to guinea pig interleukin (IL)-8, and CHO/gpCXCR2 showed migration in response to both guinea pig IL-8 and guinea pig growth-regulated oncogene α. The receptor selectivities of the chemokines of guinea pigs were the same as the human orthologs. The inhibitory activities of the anti-gpCXCR1 and anti-gpCXCR2 monoclonal antibodies on cell migration were observed in a concentration-dependent manner. In conclusion, we successfully obtained inhibitory antibodies specific to gpCXCR1 and gpCXCR2. These inhibitory antibodies will be useful to clarify the physiological roles of CXCR1 and CXCR2 in guinea pigs.

  9. Lignosulfonic acid exhibits broadly anti-HIV-1 activity--potential as a microbicide candidate for the prevention of HIV-1 sexual transmission.

    Directory of Open Access Journals (Sweden)

    Min Qiu

    Full Text Available Some secondary metabolites from plants show to have potent inhibitory activities against microbial pathogens, such as human immunodeficiency virus (HIV, herpes simplex virus (HSV, Treponema pallidum, Neisseria gonorrhoeae, etc. Here we report that lignosulfonic acid (LSA, a polymeric lignin derivative, exhibits potent and broad activity against HIV-1 isolates of diverse subtypes including two North America strains and a number of Chinese clinical isolates values ranging from 21.4 to 633 nM. Distinct from other polyanions, LSA functions as an entry inhibitor with multiple targets on viral gp120 as well as on host receptor CD4 and co-receptors CCR5/CXCR4. LSA blocks viral entry as determined by time-of-drug addiction and cell-cell fusion assays. Moreover, LSA inhibits CD4-gp120 interaction by blocking the binding of antibodies specific for CD4-binding sites (CD4bs and for the V3 loop of gp120. Similarly, LSA interacts with CCR5 and CXCR4 via its inhibition of specific anti-CCR5 and anti-CXCR4 antibodies, respectively. Interestingly, the combination of LSA with AZT and Nevirapine exhibits synergism in viral inhibition. For the purpose of microbicide development, LSA displays low in vitro cytotoxicity to human genital tract epithelial cells, does not stimulate NF-κB activation and has no significant up-regulation of IL-1α/β and IL-8 as compared with N-9. Lastly, LSA shows no adverse effect on the epithelial integrity and the junctional protein expression. Taken together, our findings suggest that LSA can be a potential candidate for tropical microbicide.

  10. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Gerlach, Lars-Ole; Jakobsen, Janus S

    2004-01-01

    , respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build......-up in the rather distinct CXCR3 receptor, for which the compound normally had no effect. Introduction of only a Glu at position VII:06 and the removal of a neutralizing Lys residue at position VII:02 resulted in a 1000-fold increase in affinity of AMD3100 to within 10-fold of its affinity in CXCR4. We conclude...

  11. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL

    DEFF Research Database (Denmark)

    Staller, Peter; Sulitkova, Jitka; Lisztwan, Joanna

    2003-01-01

    Organ-specific metastasis is governed, in part, by interactions between chemokine receptors on cancer cells and matching chemokines in target organs. For example, malignant breast cancer cells express the chemokine receptor CXCR4 and commonly metastasize to organs that are an abundant source of t...

  12. IQGAP1 is a novel CXCR2-interacting protein and essential component of the "chemosynapse".

    Directory of Open Access Journals (Sweden)

    Nicole F Neel

    Full Text Available Chemotaxis is essential for a number of physiological processes including leukocyte recruitment. Chemokines initiate intracellular signaling pathways necessary for chemotaxis through binding seven transmembrane G protein-couple receptors. Little is known about the proteins that interact with the intracellular domains of chemokine receptors to initiate cellular signaling upon ligand binding. CXCR2 is a major chemokine receptor expressed on several cell types, including endothelial cells and neutrophils. We hypothesize that multiple proteins interact with the intracellular domains of CXCR2 upon ligand stimulation and these interactions comprise a "chemosynapse", and play important roles in transducing CXCR2 mediated signaling processes.In an effort to define the complex of proteins that assemble upon CXCR2 activation to relay signals from activated chemokine receptors, a proteomics approach was employed to identify proteins that co-associate with CXCR2 with or without ligand stimulation. The components of the CXCR2 "chemosynapse" are involved in processes ranging from intracellular trafficking to cytoskeletal modification. IQ motif containing GTPase activating protein 1 (IQGAP1 was among the novel proteins identified to interact directly with CXCR2. Herein, we demonstrate that CXCR2 co-localizes with IQGAP1 at the leading edge of polarized human neutrophils and CXCR2 expressing differentiated HL-60 cells. Moreover, amino acids 1-160 of IQGAP1 directly interact with the carboxyl-terminal domain of CXCR2 and stimulation with CXCL8 enhances IQGAP1 association with Cdc42.Our studies indicate that IQGAP1 is a novel essential component of the CXCR2 "chemosynapse".

  13. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR.

    Science.gov (United States)

    Circelli, Luisa; Sciammarella, Concetta; Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-04-05

    To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant.

  14. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  15. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    Science.gov (United States)

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  16. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4

    LENUS (Irish Health Repository)

    Cronin, Patricia A

    2010-05-21

    Abstract Background Chemokine SDF1α and its unique receptor CXCR4 have been implicated in organ-specific metastases of many cancers including breast cancer. Hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. We hypothesized that hypoxia would upregulate CXCR4 expression and lead to increased chemotactic responsiveness to its specific ligand SDF1α. Methods Three breast cancer cell lines MDA-MB-231, MCF7 and 4T1 were subjected to 48 hrs of hypoxia or normoxia. Cell surface receptor expression was evaluated using flow cytometry. An extracellular matrix invasion assay and microporous migration assay was used to assess chemotactic response and metastatic ability. Results CXCR4 surface expression was significantly increased in the two human breast cancer cell lines, MDA-MB-231 and MCF7, following exposure to hypoxia. This upregulation of CXCR4 cell surface expression corresponded to a significant increase in migration and invasion in response to SDF1-α in vitro. The increase in metastatic potential of both the normoxic and the hypoxic treated breast cancer cell lines was attenuated by neutralization of CXCR4 with a CXCR4 neutralizing mAb, MAB172 or a CXCR4 antagonist, AMD3100, showing the relationship between CXCR4 overexpression and increased chemotactic responsiveness. Conclusions CXCR4 expression can be modulated by the tissue microenvironment such as hypoxia. Upregulation of CXCR4 is associated with increased migratory and invasive potential and this effect can be abrogated by CXCR4 inhibition. Chemokine receptor CXCR4 is a potential therapeutic target in the adjuvant treatment of breast cancer.

  17. Comparison of chemokines (CCL-5 and SDF-1), chemokine receptors (CCR-5 and CXCR-4) and IL-6 levels in patients with different severities of depression.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna; Just, Marek J; Moś, Danuta; Araszkiewicz, Aleksander

    2014-10-01

    Depression can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the body's neurochemical and neuroendocrine functions play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 160 men and women were enrolled in the study. 120 of them were diagnosed with various types of depression. The mean age was 45.2 ± 4.5 years (range: 19-47 years). The control group consisted of 40 healthy individuals. The average age in this group was 42.4 ± 4.1 years. Plasma levels of chemokines and their receptors (CCL-5 - RANTES and CXCR-5, SDF-1 and CXCR-4), as well as of IL-6, were assessed by ELISA. There was an increase in SDF-1 and CCL-5 levels in women and men with different severities of depression, versus the control group. Also, an increase in the IL-6 levels, CXCR4 and CCR-5 receptors was observed in both women and men with all types of depression. Levels of SDF-1 and CCL-5 chemokines, as well as of CCR-5 and CXCR4 chemokine receptors, were higher in women than in men. The results of this study indicate the need for assessment of CCL-5 and SDF-1 chemokines levels, as they are likely markers of developing depression. Early measurement of these chemokines levels may be helpful in choosing the best pharmacotherapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF ...

    Indian Academy of Sciences (India)

    Polymorphic allelic variants of chemokine receptors CCR2 and CCR5, as well as of stromal-derived factor-1 SDF-1, the ligand for the chemokine receptor CXCR4, are known to have protective effects against HIV-1 infection and to be involved with delay in disease progression. We have studied the DNA polymorphisms at ...

  19. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Science.gov (United States)

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  20. Epitope mapping and characterization of a novel CD4-induced human monoclonal antibody capable of neutralizing primary HIV-1 strains

    International Nuclear Information System (INIS)

    Xiang Shihua; Wang Liping; Abreu, Mariam; Huang, C.-C.; Kwong, Peter D.; Rosenberg, Eric; Robinson, James E.; Sodroski, Joseph

    2003-01-01

    Human immunodeficiency virus (HIV-1) enters target cells by binding its gp120 exterior envelope glycoprotein to CD4 and one of the chemokine receptors, CCR5 or CXCR4. CD4-induced (CD4i) antibodies bind gp120 more efficiently after CD4 binding and block the interaction with the chemokine receptor. Examples of CD4i antibodies are limited, and the prototypes of the CD4i antibodies exhibit only weak neutralizing activity against primary, clinical HIV-1 isolates. Here we report the identification of a novel antibody, E51, that exhibits CD4-induced binding to gp120 and neutralizes primary HIV-1 more efficiently than the prototypic CD4i antibodies. The E51 antibody blocks the interaction of gp120-CD4 complexes with CCR5 and binds to a highly conserved, basic gp120 element composed of the β19-strand and surrounding structures. Thus, on primary HIV-1 isolates, this gp120 region, which has been previously implicated in chemokine receptor binding, is accessible to a subset of CD4i antibodies

  1. HIV type 1 chemokine receptor usage in mother-to-child transmission.

    Science.gov (United States)

    Salvatori, F; Scarlatti, G

    2001-07-01

    To investigate the role of the HIV-1 phenotype in mother-to-child HIV-1 transmission, we evaluated coreceptor usage and replication kinetics in chemokine receptor-expressing U87MG.CD4 cells of primary isolates from 32 HIV-1-infected mothers of Italian origin, none under preventive antiretroviral therapy, and from their infected infants. Five of 15 mothers of infected children and 2 of 17 mothers of uninfected children harbored viruses able to use CXCR4 as coreceptor. However, all isolates used CCR5, alone or in association with CXCR4. The replicative capacity in coreceptor-expressing cells of the viral isolates did not differ between the two groups of mothers. All mothers with an R5 virus transmitted a virus with the same coreceptor usage, whereas those four with a multitropic virus transmitted such a virus in one case. Although the presence of a mixed viral population was documented in the mothers, we did not observe transmission solely of X4 viruses. Interestingly, the only child infected with a multitropic virus carried a defective CCR5 allele. Analysis of the env V3 region of the provirus from this child revealed infection with multiple viral variants with a predominance of R5-type over X4-type sequences. These findings show that CCR5 usage of a viral isolate is not a discriminating risk factor for vertical transmission. Furthermore, X4 viruses can be transmitted to the newborn, although less frequently. In particular, we document the transmission of multiple viral variants with different coreceptor usage in a Delta32 CCR5 heterozygous child, and demonstrate that the heterozygous genotype per se does not contribute to the restriction of R5-type virus spread.

  2. Human Breast Adipose-Derived Stem Cells Transfected with the Stromal Cell-Derived Factor-1 Receptor CXCR4 Exhibit Enhanced Viability in Human Autologous Free Fat Grafts

    Directory of Open Access Journals (Sweden)

    Fang-tian Xu

    2014-11-01

    Full Text Available Background: The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1 and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4 are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. Methods: Human breast adipose-derived stem cells (HBASCs were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A, GFP-labeled HBASCs (group B, the known vascularization-promoting agent VEGF (group C, or medium (group D and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR. Results: The data revealed that the control (group D transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A and untransfected (group B HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively, whereas VEGF-transfected HBASCs (group C were less effective (41.2 ± 5.1%. Histological

  3. Influence of Acyclic Nucleoside Phosphonate Antivirals on Gene Expression of Chemokine Receptors CCR5 and CXCR4

    Czech Academy of Sciences Publication Activity Database

    Potměšil, P.; Holý, Antonín; Zídek, Zdeněk

    2015-01-01

    Roč. 61, č. 1 (2015), s. 1-7 ISSN 0015-5500 R&D Projects: GA ČR GA305/03/1470; GA MŠk 1M0508 Institutional support: RVO:61388963 ; RVO:68378041 Keywords : acyclic nucleoside phosphonate * HIV * CCR5 * CXCR4 * cytokine * RT-PCR Subject RIV: CC - Organic Chemistry; FR - Pharmacology ; Medidal Chemistry (UEM-P) Impact factor: 0.833, year: 2015

  4. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression.

    Directory of Open Access Journals (Sweden)

    Robert M Paris

    Full Text Available The role of PD-1 expression on CD4 T cells during HIV infection is not well understood. Here, we describe the differential expression of PD-1 in CD127high CD4 T cells within the early/intermediate differentiated (EI (CD27highCD45RAlow T cell population among uninfected and HIV-infected subjects, with higher expression associated with decreased viral replication (HIV-1 viral load. A significant loss of circulating PD-1highCTLA-4low CD4 T cells was found specifically in the CD127highCD27highCD45RAlow compartment, while initiation of antiretroviral treatment, particularly in subjects with advanced disease, reversed these dynamics. Increased HIV-1 Gag DNA was also found in PD-1high compared to PD-1low ED CD4 T cells. In line with an increased susceptibility to HIV infection, PD-1 expression in this CD4 T cell subset was associated with increased activation and expression of the HIV co-receptor, CCR5. Rather than exhaustion, this population produced more IFN-g, MIP1-a, IL-4, IL-10, and IL-17a compared to PD-1low EI CD4 T cells. In line with our previous findings, PD-1high EI CD4 T cells were also characterized by a high expression of CCR7, CXCR5 and CCR6, a phenotype associated with increased in vitro B cell help. Our data show that expression of PD-1 on early-differentiated CD4 T cells may represent a population that is highly functional, more susceptible to HIV infection and selectively lost in chronic HIV infection.

  5. New dimensions in CXCR4 and Rac1 regulation

    NARCIS (Netherlands)

    Zoughlami, Y.

    2013-01-01

    To gain more insights in the molecular mechanisms regulating cellular migration, which is an important process involved in beneficial biological processes as well as in pathological conditions, we focused our research on two crucial proteins, i,e. the chemokine receptor CXCR4 and the small GTPase

  6. The Puzzling Role of CXCR4 in Human Immunodeficiency Virus Infection

    OpenAIRE

    Elisa Vicenzi, Pietro Liò, Guido Poli

    2013-01-01

    The human immunodeficiency virus type-1 (HIV-1) is the etiological agent of the acquired immunodeficiency syndrome (AIDS), a disease highly lethal in the absence of combination antiretroviral therapy. HIV infects CD4+ cells of the immune system (T cells, monocyte-macrophages and dendritic cells) via interaction with a universal primary receptor, the CD4 molecule, followed by a mandatory interaction with a second receptor (co-receptor) belonging to the chemokine receptor family. Apart from som...

  7. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  8. The N-terminal domain of APJ, a CNS-based coreceptor for HIV-1, is essential for its receptor function and coreceptor activity

    International Nuclear Information System (INIS)

    Zhou Naiming; Zhang Xiaoling; Fan Xuejun; Argyris, Elias; Fang Jianhua; Acheampong, Edward; DuBois, Garrett C.; Pomerantz, Roger J.

    2003-01-01

    The human APJ, a G protein-coupled seven-transmembrane receptor, has been found to be dramatically expressed in the human central nervous system (CNS) and also to serve as a coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV). Studies with animal models suggested that APJ and its natural ligand, apelin, play an important role in the central control of body fluid homeostasis, and in regulation of blood pressure and cardiac contractility. In this study, we characterize the structural and functional determinants of the N-terminal domain of APJ in interactions with its natural ligand and HIV-1 envelope glycoprotein. We demonstrate that the second 10 residues of the N-terminal domain of APJ are critical for association with apelin, while the first 20 amino acids play an important role in supporting cell-cell fusion mediated by HIV-1 gp120. With site-directed mutagenesis, we have identified that the negatively charged amino acid residues Glu20 and Asp23 are involved in receptor and coreceptor functions, but residues Tyr10 and Tyr11 substantially contribute to coreceptor function for both T-tropic (CXCR4) and dual-tropic (CXCR4 and CCR5) HIV-1 isolates. Thus, this study provides potentially important information for further characterizing APJ-apelin functions in vitro and in vivo and designing small molecules for treatment of HIV-1 infection in the CNS

  9. HIV Nef-M1 Effects on Colorectal Cancer Growth in Tumor-induced Spleens and Hepatic Metastasis

    Science.gov (United States)

    Harrington, Willie; Bond, Vincent; Huang, Ming Bo; Powell, Michael; Lillard, James; Manne, Upender; Bumpers, Harvey

    2010-01-01

    CXCR4 receptors have been implicated in tumorigenesis and proliferation, making it a potential target for colorectal cancer therapy. Expression of this chemokine receptor on cellular surfaces appears to promote metastasis by directly stimulating tumor cell migration and invasion. The receptor/ligand, CXCR4/SDF-1α, pair are critically important to angiogenesis and vascular remodeling which supports cancer proliferation. Our work has shown that a novel apoptotic peptide of HIV-1, Nef-M1, can act as a CXCR4 antagonist, inducing apoptosis in CXCR4 containing cells. Four colorectal tumor cell lines (HT-29, LS174t, SW480, WiDr), were evaluated for their response to Nef-M1 peptide via in vivo and in vitro. The presence of CXCR4 receptors on tumor cells was determined using immunohistochemical and RT-PCR analyses. Solid xenografts derived from tumor cell lines grown in SCID mice, were evaluated for the persistence of the receptor. Xenografts propagated in SCID mice from each of the four cell lines demonstrated high levels of receptor expression as well. The effects of Nef-M1 in vivo via splenic injected mice and subsequent hepatic metastasis also demonstrated dramatic reduction of primary tumor growth in the spleen and secondary invasion of the liver. We concluded that Nef-M1 peptide, through physical interaction(s) with CXCR4, drives apoptotic reduction in in vivo primary tumor growth and metastasis. PMID:20383296

  10. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    Science.gov (United States)

    Stax, Martijn J; Mouser, Emily E I M; van Montfort, Thijs; Sanders, Rogier W; de Vries, Henry J C; Dekker, Henk L; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A

    2015-01-01

    Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

  11. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    Science.gov (United States)

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  12. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng, E-mail: jinps2006@163.com

    2013-11-22

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  13. The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer

    Directory of Open Access Journals (Sweden)

    Marta Łukaszewicz-Zając

    2016-01-01

    Full Text Available Objectives. Recent investigations have suggested that upregulated levels of inflammatory biomarkers, such as chemokines, may be associated with development of many malignancies, including esophageal cancer (EC. Based on our knowledge, this study is the first to assess the serum concentration of chemokine CXCL12 and its specific receptor CXCR4 in the diagnosis of EC patients. Material and Methods. The present study included 79 subjects: 49 patients with EC and 30 healthy volunteers. The serum concentrations of CXCL12 and CXCR4 and classical tumor markers such as carcinoembryonal antigen (CEA and squamous cell cancer antigen (SCC-Ag were measured using immunoenzyme assays, while C-reactive protein (CRP levels were assessed by immunoturbidimetric method. Moreover, diagnostic criteria of all proteins tested and the survival of EC patients were assessed. Results. The serum concentrations of CXCL12 were significantly higher, while those of its receptor CXCR4 were significantly lower in EC patients compared to healthy controls. The diagnostic sensitivity, negative predictive value, and accuracy of CXCR4 were the highest among all analyzed proteins and increased for combined analysis with classical tumor markers and CRP levels. Conclusion. Our findings suggest that serum CXCR4 may improve the diagnosis of EC patients, especially in combination with classical tumor markers.

  14. CXCR4-specific Nanobodies as potential therapeutics for WHIM syndrome

    DEFF Research Database (Denmark)

    de Wit, Raymond H; Heukers, Raimond; Brink, Hendrik

    2017-01-01

    WHIM syndrome is a rare congenital immunodeficiency disease, named after its main clinical manifestations: Warts, Hypogammaglobulinemia, Infections and Myelokathexis. The disease is primarily caused by C-terminal truncation mutations of the chemokine receptor CXCR4. Consequently, these CXCR4-WHIM...... as alternative therapeutics for CXCR4-associated diseases like WHIM syndrome....

  15. The virus–receptor interaction in the replication of feline immunodeficiency virus (FIV)☆

    Science.gov (United States)

    Willett, Brian J; Hosie, Margaret J

    2013-01-01

    The feline and human immunodeficiency viruses (FIV and HIV) target helper T cells selectively, and in doing so they induce a profound immune dysfunction. The primary determinant of HIV cell tropism is the expression pattern of the primary viral receptor CD4 and co-receptor(s), such as CXCR4 and CCR5. FIV employs a distinct strategy to target helper T cells; a high affinity interaction with CD134 (OX40) is followed by binding of the virus to its sole co-receptor, CXCR4. Recent studies have demonstrated that the way in which FIV interacts with its primary receptor, CD134, alters as infection progresses, changing the cell tropism of the virus. This review examines the contribution of the virus–receptor interaction to replication in vivo as well as the significance of these findings to the development of vaccines and therapeutics. PMID:23992667

  16. Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes.

    Directory of Open Access Journals (Sweden)

    Karine Haurogné

    Full Text Available In humans, CXCR1 and CXCR2 are two homologous proteins that bind ELR+ chemokines. Both receptors play fundamental roles in neutrophil functions such as migration and reactive oxygen species production. Mouse Cxcr1 and Cxcr2 genes are located in an insulin-dependent diabetes genetic susceptibility locus. The non obese diabetic (NOD mouse is a spontaneous well-described animal model for insulin-dependent type 1 diabetes. In this disease, insulin deficiency results from the destruction of insulin-producing beta cells by autoreactive T lymphocytes. This slow-progressing disease is dependent on both environmental and genetic factors. Here, we report descriptive data about the Cxcr1 gene in NOD mice. We demonstrate decreased expression of mRNA for Cxcr1 in neutrophils and CD4+ lymphocytes isolated from NOD mice compared to other strains, related to reduced NOD Cxcr1 gene promoter activity. Looking for Cxcr1 protein, we next analyze the membrane proteome of murine neutrophils by mass spectrometry. Although Cxcr2 protein is clearly found in murine neutrophils, we did not find evidence of Cxcr1 peptides using this method. Nevertheless, in view of recently-published experimental data obtained in NOD mice, we argue for possible Cxcr1 involvement in type 1 diabetes pathogenesis.

  17. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Science.gov (United States)

    Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  18. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Directory of Open Access Journals (Sweden)

    Samuele E Burastero

    Full Text Available To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  19. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury.

    Science.gov (United States)

    Gheisari, Yousof; Azadmanesh, Kayhan; Ahmadbeigi, Naser; Nassiri, Seyed Mahdi; Golestaneh, Azadeh Fahim; Naderi, Mahmood; Vasei, Mohammad; Arefian, Ehsan; Mirab-Samiee, Siamak; Shafiee, Abbas; Soleimani, Masoud; Zeinali, Sirous

    2012-11-01

    The therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in kidney failure has been examined in some studies. However, recent findings indicate that after transplantation, these cells home to kidneys at very low levels. Interaction of stromal derived factor-1 (SDF-1) with its receptor, CXCR4, is of pivotal importance in migration and homing. Recently, CXCR7 has also been recognized as another SDF-1 receptor that interacts with CXCR4 and modulates its functions. In this study, CXCR4 and CXCR7 were separately and simultaneously overexpressed in BALB/c bone marrow MSCs by using a lentiviral vector system and the homing and renoprotective potentials of these cells were evaluated in a mouse model of cisplatin-induced acute kidney injury. Using flow cytometry, immunohistochemistry, and real-time PCR methods for detection of GFP-labeled MSCs, we found that although considerably entrapped in lungs, native MSCs home very rarely to kidneys and bone marrow and this rate cannot be significantly affected by CXCR4 and/or CXCR7 upregulation. Transplantation of neither native nor genetically engineered MSCs ameliorated kidney failure. We concluded that overexpression of CXCR4 and CXCR7 receptors in murine MSCs cannot improve the homing and therapeutic potentials of these cells and it can be due to severe chromosomal abnormalities that these cells bear during ex vivo expansion.

  20. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles

    International Nuclear Information System (INIS)

    Peretti, Silvia; Schiavoni, Ilaria; Pugliese, Katherina; Federico, Maurizio

    2006-01-01

    We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies

  1. N-[C-11]Methyl-AMD3465 PET as a Tool for In Vivo Measurement of Chemokine Receptor 4 (CXCR4) Occupancy by Therapeutic Drugs

    NARCIS (Netherlands)

    Hartimath, Siddanna; Doorduin, Janine; Dierckx, Rudi; van Waarde, Aren; de Vries, Erik

    Chemokine receptor 4 (CXCR4) is overexpressed in many cancers and a potential drug target. We have recently developed the tracer N-[C-11]methyl-AMD3465 for imaging of CXCR4 expression by positron emission tomography (PET). We investigated the pharmacokinetics of N-[C-11]methyl-AMD3465 in rats

  2. Increased levels of CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells, and associated factors Bcl-6, CXCR5, IL-21 and IL-6 contribute to repeated implantation failure.

    Science.gov (United States)

    Gong, Qiaoqiao; Zhu, Yuejie; Pang, Nannan; Ai, Haiquan; Gong, Xiaoyun; La, Xiaolin; Ding, Jianbing

    2017-12-01

    In vitro fertilization-embryo transfer (IVF-ET) can be used by infertile couples to assist with reproduction; however, failure of the embryo to implant into the endometrial lining results in failure of the IVF treatment. The present study investigated the expression of chemokine receptor 7 (CCR7)(lo) programmed death-1(PD-1)(hi) chemokine receptor type 5 (CXCR5) + cluster of differentiation 4 (CD4) + T cells and associated factors in patients with repeated implantation failure (RIF). A total of 30 females with RIF and 30 healthy females were enrolled in the current study. Flow cytometry was used to detect the proportion of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells in the peripheral blood. Cytokine bead arrays were performed to detect the levels of interleukin (IL)-6, -4 and -2 in the serum. ELISAs were used to detect the level of IL-21 in the serum. Quantitative real time polymerase chain reaction analysis and immunohistochemistry were used to investigate the expression of B-cell lymphoma 6 (Bcl-6), chemokine receptor type 5 (CXCR5) and IL-21 in the endometrium. The results revealed that the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells was increased in the RIF group compared with the control group during the mid luteal phase. The mRNA and protein levels of Bcl-6, IL-21 and CXCR5 in the endometrium and the concentrations of IL-21 and IL-6 in the serum were significantly increased in the RIF group; however, no significant difference was observed between the two groups in regards to the expression of IL-4 and IL-2. Furthermore, a significant positive correlation was identified between the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and IL-21 and IL-6 levels. The expression of IL-21 also had a positive correlation with Bcl-6 and CXCR5 expression in the RIF group. These results suggest that increased levels of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and associated factors contribute to RIF and could therefore be a potential therapeutic target.

  3. TCR-CXCR4 signaling stabilizes cytokine mRNA transcripts via a PREX1-Rac1 pathway: implications for CTCL.

    Science.gov (United States)

    Kremer, Kimberly N; Dinkel, Brittney A; Sterner, Rosalie M; Osborne, Douglas G; Jevremovic, Dragan; Hedin, Karen E

    2017-08-24

    As with many immunopathologically driven diseases, the malignant T cells of cutaneous T-cell lymphomas (CTCLs), such as Sézary syndrome, display aberrant cytokine secretion patterns that contribute to pathology and disease progression. Targeting this disordered release of cytokines is complicated by the changing cytokine milieu that drives the phenotypic changes of CTCLs. Here, we characterize a novel signaling pathway that can be targeted to inhibit the secretion of cytokines by modulating either CXCR4 or CXCR4-mediated signaling. We demonstrate that upon ligation of the T-cell antigen receptor (TCR), the TCR associates with and transactivates CXCR4 via phosphorylation of S339-CXCR4 in order to activate a PREX1-Rac1-signaling pathway that stabilizes interleukin-2 (IL-2) , IL-4 , and IL-10 messenger RNA (mRNA) transcripts. Pharmacologic inhibition of either TCR-CXCR4 complex formation or PREX1-Rac1 signaling in primary human T cells decreased mRNA stability and inhibited secretion of IL-2, IL-4, and IL-10. Applying this knowledge to Sézary syndrome, we demonstrate that targeting various aspects of this signaling pathway blocks both TCR-dependent and TCR-independent cytokine secretion from a Sézary syndrome-derived cell line and patient isolates. Together, these results identify multiple aspects of a novel TCR-CXCR4-signaling pathway that could be targeted to inhibit the aberrant cytokine secretion that drives the immunopathogenesis of Sézary syndrome and other immunopathological diseases. © 2017 by The American Society of Hematology.

  4. Omega-3 Fatty Acids Supplementation Differentially Modulates the SDF-1/CXCR-4 Cell Homing Axis in Hypertensive and Normotensive Rats.

    Science.gov (United States)

    Halmenschlager, Luiza; Lehnen, Alexandre Machado; Marcadenti, Aline; Markoski, Melissa Medeiros

    2017-08-01

    We assessed the effect of acute and chronic dietary supplementation of ω-3 on lipid metabolism and cardiac regeneration, through its influence on the Stromal Derived Factor-1 (SDF-1) and its receptor (CXCR4) axis in normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were allocated in eight groups (of eight animals each), which received daily orogastric administration of ω-3 (1 g) for 24 h, 72 h or 2 weeks. Blood samples were collected for the analysis of the lipid profile and SDF-1 systemic levels (ELISA). At the end of the treatment period, cardiac tissue was collected for CXCR4 expression analysis (Western blot). The use of ω-3 caused a reduction in total cholesterol levels ( p = 0.044), and acutely activated the SDF-1/CXCR4 axis in normotensive animals ( p = 0.037). In the presence of the ω-3, after 72 h, SDF-1 levels decreased in WKY and increased in SHR ( p = 0.017), and tissue expression of the receptor CXCR4 was higher in WKY than in SHR ( p = 0.001). The ω-3 fatty acid supplementation differentially modulates cell homing mediators in normotensive and hypertensive animals. While WKY rats respond acutely to omega-3 supplementation, showing increased release of SDF-1 and CXCR4, SHR exhibit a weaker, delayed response.

  5. CXCR4 Ligands : The Next Big Hit?

    NARCIS (Netherlands)

    Walenkamp, Annemiek M. E.; Lapa, Constantin; Herrmann, Ken; Wester, Hans-Juergen

    2017-01-01

    The G protein-coupled protein receptor C-X-C chemokine receptor 4 (CXCR4) is an attractive target for cancer diagnosis and treatment, as it is overexpressed in many solid and hematologic cancers. Binding of its ligand, C-X-C chemokine ligand 12 (CXCL12), results in receptor internalization and

  6. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    Science.gov (United States)

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed.

  7. Lymphoid follicle cells in chronic obstructive pulmonary disease overexpress the chemokine receptor CXCR3.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-05-01

    The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.

  8. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  9. Complement-Opsonized HIV-1 Alters Cross Talk Between Dendritic Cells and Natural Killer (NK Cells to Inhibit NK Killing and to Upregulate PD-1, CXCR3, and CCR4 on T Cells

    Directory of Open Access Journals (Sweden)

    Rada Ellegård

    2018-04-01

    Full Text Available Dendritic cells (DCs, natural killer (NK cells, and T cells play critical roles during primary HIV-1 exposure at the mucosa, where the viral particles become coated with complement fragments and mucosa-associated antibodies. The microenvironment together with subsequent interactions between these cells and HIV at the mucosal site of infection will determine the quality of immune response that ensues adaptive activation. Here, we investigated how complement and immunoglobulin opsonization influences the responses triggered in DCs and NK cells, how this affects their cross talk, and what T cell phenotypes are induced to expand following the interaction. Our results showed that DCs exposed to complement-opsonized HIV (C-HIV were less mature and had a poor ability to trigger IFN-driven NK cell activation. In addition, when the DCs were exposed to C-HIV, the cytotolytic potentials of both NK cells and CD8 T cells were markedly suppressed. The expression of PD-1 as well as co-expression of negative immune checkpoints TIM-3 and LAG-3 on PD-1 positive cells were increased on both CD4 as well as CD8 T cells upon interaction with and priming by NK–DC cross talk cultures exposed to C-HIV. In addition, stimulation by NK–DC cross talk cultures exposed to C-HIV led to the upregulation of CD38, CXCR3, and CCR4 on T cells. Together, the immune modulation induced during the presence of complement on viral surfaces is likely to favor HIV establishment, dissemination, and viral pathogenesis.

  10. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Antecka Emilia

    2007-11-01

    Full Text Available Abstract Purpose The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1 such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed. Methods Immunocytochemistry was performed against CXCR4 to confirm expression of this chemokine receptor in all five UM cell lines. Flow cytometry was preformed to evaluate CXCR4 cell surface expression on all five UM cell lines. A proliferation assay was also used to test effects TN14003 would have on cellular proliferation. Inhibition of cellular migration by specifically inhibiting the CXCR4/CXCL12 axis with TN14003 was also investigated. The binding efficacy of TN14003 to the CXCR4 receptor was assessed through flow cytometric methods. Results The CXCR4 receptor was present on all five UM cell lines. All five cell lines expressed different relative levels of surface CXCR4. TN14003 did not affect the proliferation of the five cell lines (p > 0.05. All cell lines migrated towards the chemokine CXCL12 at a level greater than the negative control (p Conclusion Interfering with the CXCR4/CXCL12 axis, using TN14003 was shown to effectively down regulate UM cell migration in vitro. Knowing that UM expresses the CXCR4 receptor, these CXCR4+ cells may be less likely to colonize distant organs that secrete the CXCL12 ligand, if treated with an inhibitor that binds CXCR4. Further studies should be pursued in order to test TN14003 efficacy in vivo.

  11. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist

    DEFF Research Database (Denmark)

    Princen, Katrien; Hatse, Sigrid; Vermeire, Kurt

    2004-01-01

    Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5...... at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did...... not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4...

  12. Elucidation of Distinct Roles of Guinea Pig CXCR1 and CXCR2 in Neutrophil Migration toward IL-8 and GROα by Specific Antibodies.

    Science.gov (United States)

    Tanaka, Kento; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-01-01

    Chemokine receptors CXCR1 and CXCR2 are conserved between guinea pigs and humans, but the distinct role of each receptor in chemotactic responses of neutrophils against chemokine ligands has not been elucidated due in part to the lack of specific inhibitors against these receptors in guinea pigs. In this study, we investigated the roles of guinea pig CXCR1 and CXCR2 on neutrophils in chemotactic responses to guinea pig interleukin (IL)-8 and growth-regulated oncogene (GRO)α by using specific inhibitory antibodies against these receptors. Neutrophil migration induced by IL-8 was partially inhibited by either anti-CXCR1 antibody or anti-CXCR2 antibody. In addition, the migration was inhibited completely when both anti-CXCR1 and anti-CXCR2 antibodies were combined. On the other hand, neutrophil migration induced by GROα was not inhibited by anti-CXCR1 antibody while inhibited profoundly by anti-CXCR2 antibody. These results indicated that CXCR1 and CXCR2 mediated migration induced by the IL-8 synergistically and only CXCR2 mediated migration induced by GROα in guinea pig neutrophils. Our findings on ligand selectivity of CXCR1 and CXCR2 in guinea pigs are consistent with those in humans.

  13. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Martijn J Stax

    Full Text Available Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa, heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments and its receptor (intelectin-1 as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

  14. Polymorphisms of the Kappa Opioid Receptor and Prodynorphin Genes: HIV risk and HIV Natural History

    Science.gov (United States)

    Proudnikov, Dmitri; Randesi, Matthew; Levran, Orna; Yuferov, Vadim; Crystal, Howard; Ho, Ann; Ott, Jurg; Kreek, Mary Jeanne

    2013-01-01

    Objective Studies indicate cross-desensitization between opioid receptors (e.g., kappa opioid receptor, OPRK1), and chemokine receptors (e.g., CXCR4) involved in HIV infection. We tested whether gene variants of OPRK1 and its ligand, prodynorphin (PDYN), influence the outcome of HIV therapy. Methods Three study points, admission to the Women’s Interagency HIV Study (WIHS), initiation of highly active antiretroviral therapy (HAART) and the most recent visit were chosen for analysis as crucial events in the clinical history of the HIV patients. Regression analyses of 17 variants of OPRK1, and 11 variants of PDYN with change of viral load (VL) and CD4 count between admission and initiation of HAART, and initiation of HAART to the most recent visit to WIHS were performed in 598 HIV+ subjects including African Americans, Hispanics and Caucasians. Association with HIV status was done in 1009 subjects. Results Before HAART, greater VL decline (improvement) in carriers of PDYN IVS3+189C>T, and greater increase of CD4 count (improvement) in carriers of OPRK1 −72C>T, were found in African Americans. Also, greater increase of CD4 count in carriers of OPRK1 IVS2+7886A>G, and greater decline of CD4 count (deterioration) in carriers of OPRK1 −1205G>A, were found in Caucasians. After HAART, greater decline of VL in carriers of OPRK1 IVS2+2225G>A, and greater increase of VL in carriers of OPRK1 IVS2+10658G>T and IVS2+10963A>G, were found in Caucasians. Also, a lesser increase of CD4 count was found in Hispanic carriers of OPRK1 IVS2+2225G>A. Conclusion OPRK1 and PDYN polymorphisms may alter severity of HIV infection and response to treatment. PMID:23392455

  15. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  16. submitter Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases

    CERN Document Server

    Altara, R; Brandao, R D; Zeidan, A; Booz, G W; Zouein, F A

    2016-01-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the deve...

  17. In silico analysis reveals sequential interactions and protein conformational changes during the binding of chemokine CXCL-8 to its receptor CXCR1.

    Directory of Open Access Journals (Sweden)

    Je-Wen Liou

    Full Text Available Chemokine CXCL-8 plays a central role in human immune response by binding to and activate its cognate receptor CXCR1, a member of the G-protein coupled receptor (GPCR family. The full-length structure of CXCR1 is modeled by combining the structures of previous NMR experiments with those from homology modeling. Molecular docking is performed to search favorable binding sites of monomeric and dimeric CXCL-8 with CXCR1 and a mutated form of it. The receptor-ligand complex is embedded into a lipid bilayer and used in multi ns molecular dynamics (MD simulations. A multi-steps binding mode is proposed: (i the N-loop of CXCL-8 initially binds to the N-terminal domain of receptor CXCR1 driven predominantly by electrostatic interactions; (ii hydrophobic interactions allow the N-terminal Glu-Leu-Arg (ELR motif of CXCL-8 to move closer to the extracellular loops of CXCR1; (iii electrostatic interactions finally dominate the interaction between the N-terminal ELR motif of CXCL-8 and the EC-loops of CXCR1. Mutation of CXCR1 abrogates this mode of binding. The detailed binding process may help to facilitate the discovery of agonists and antagonists for rational drug design.

  18. Chemokines and Chemokine Receptors in Susceptibility to HIV-1 Infection and Progression to AIDS

    Directory of Open Access Journals (Sweden)

    Animesh Chatterjee

    2012-01-01

    Full Text Available A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals.

  19. Risk of Breast Cancer with CXCR4-using HIV Defined by V3-Loop Sequencing

    Science.gov (United States)

    Goedert, James J.; Swenson, Luke C.; Napolitano, Laura A.; Haddad, Mojgan; Anastos, Kathryn; Minkoff, Howard; Young, Mary; Levine, Alexandra; Adeyemi, Oluwatoyin; Seaberg, Eric C.; Aouizerat, Bradley; Rabkin, Charles S.; Harrigan, P. Richard; Hessol, Nancy A.

    2014-01-01

    Objective Evaluate the risk of female breast cancer associated with HIV-CXCR4 (X4) tropism as determined by various genotypic measures. Methods A breast cancer case-control study, with pairwise comparisons of tropism determination methods, was conducted. From the Women's Interagency HIV Study repository, one stored plasma specimen was selected from 25 HIV-infected cases near the breast cancer diagnosis date and 75 HIV-infected control women matched for age and calendar date. HIVgp120-V3 sequences were derived by Sanger population sequencing (PS) and 454-pyro deep sequencing (DS). Sequencing-based HIV-X4 tropism was defined using the geno2pheno algorithm, with both high-stringency DS [False-Positive-Rate (FPR 3.5) and 2% X4 cutoff], and lower stringency DS (FPR 5.75, 15% X4 cut-off). Concordance of tropism results by PS, DS, and previously performed phenotyping was assessed with kappa (κ) statistics. Case-control comparisons used exact P-values and conditional logistic regression. Results In 74 women (19 cases, 55 controls) with complete results, prevalence of HIV-X4 by PS was 5% in cases vs 29% in controls (P=0.06, odds ratio 0.14, confidence interval 0.003-1.03). Smaller case-control prevalence differences were found with high-stringency DS (21% vs 36%, P=0.32), lower-stringency DS (16% vs 35%, P=0.18), and phenotyping (11% vs 31%, P=0.10). HIV-X4-tropism concordance was best between PS and lower-stringency DS (93%, κ=0.83). Other pairwise concordances were 82%-92% (κ=0.56-0.81). Concordance was similar among cases and controls. Conclusions HIV-X4 defined by population sequencing (PS) had good agreement with lower stringency deep sequencing and was significantly associated with lower odds of breast cancer. PMID:25321183

  20. Improved detection of CXCR4-using HIV by V3 genotyping: application of population-based and "deep" sequencing to plasma RNA and proviral DNA.

    Science.gov (United States)

    Swenson, Luke C; Moores, Andrew; Low, Andrew J; Thielen, Alexander; Dong, Winnie; Woods, Conan; Jensen, Mark A; Wynhoven, Brian; Chan, Dennison; Glascock, Christopher; Harrigan, P Richard

    2010-08-01

    Tropism testing should rule out CXCR4-using HIV before treatment with CCR5 antagonists. Currently, the recombinant phenotypic Trofile assay (Monogram) is most widely utilized; however, genotypic tests may represent alternative methods. Independent triplicate amplifications of the HIV gp120 V3 region were made from either plasma HIV RNA or proviral DNA. These underwent standard, population-based sequencing with an ABI3730 (RNA n = 63; DNA n = 40), or "deep" sequencing with a Roche/454 Genome Sequencer-FLX (RNA n = 12; DNA n = 12). Position-specific scoring matrices (PSSMX4/R5) (-6.96 cutoff) and geno2pheno[coreceptor] (5% false-positive rate) inferred tropism from V3 sequence. These methods were then independently validated with a separate, blinded dataset (n = 278) of screening samples from the maraviroc MOTIVATE trials. Standard sequencing of HIV RNA with PSSM yielded 69% sensitivity and 91% specificity, relative to Trofile. The validation dataset gave 75% sensitivity and 83% specificity. Proviral DNA plus PSSM gave 77% sensitivity and 71% specificity. "Deep" sequencing of HIV RNA detected >2% inferred-CXCR4-using virus in 8/8 samples called non-R5 by Trofile, and <2% in 4/4 samples called R5. Triplicate analyses of V3 standard sequence data detect greater proportions of CXCR4-using samples than previously achieved. Sequencing proviral DNA and "deep" V3 sequencing may also be useful tools for assessing tropism.

  1. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Mungalpara, J; Steen, A

    2014-01-01

    have previously been suggested based on molecular docking guided by structure-activity relationship (SAR) data; however, none of these have been verified by in vitro experiments. EXPERIMENTAL APPROACH: Heterologous (125) I-12G5-competition binding and functional assays (inhibition of CXCL12-mediated...... activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. KEY RESULTS: The Arg(2) and 2-Nal(3) side chains of FC131 interact with residues in TM-3 (His(113) , Asp(171) ) and TM-5 (hydrophobic......-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. CONCLUSIONS AND IMPLICATIONS: Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding modes...

  2. Synthesis and evaluation of an 18F-labeled pyrimidine-pyridine amine for targeting CXCR4 receptors in gliomas

    International Nuclear Information System (INIS)

    Demoin, Dustin Wayne; Shindo, Masahiro; Zhang, Hanwen; Edwards, Kimberly J.; Serganova, Inna; Pillarsetty, Naga Vara Kishore; Lewis, Jason S.; Blasberg, Ronald G.

    2016-01-01

    Introduction: Chemokine receptor-4 (CXCR4, fusin, CD184) is expressed on several tissues involved in immune regulation and is upregulated in many diseases including malignant gliomas. A radiolabeled small molecule that readily crosses the blood–brain barrier can aid in identifying CXCR4-expressing gliomas and monitoring CXCR4-targeted therapy. In the current work, we have synthesized and evaluated an [ 18 F]-labeled small molecule based on a pyrimidine–pyridine amine for its ability to target CXCR4. Experimental: The nonradioactive standards and the nitro precursor used in this study were prepared using established methods. An HPLC method was developed to separate the nitro-precursor from the nonradioactive standard and radioactive product. The nitro-precursor was radiolabeled with 18 F under inert, anhydrous conditions using the [ 18 F]-kryptofix 2.2.2 complex to form the desired N-(4-(((6-[ 18 F]fluoropyridin-2-yl)amino)methyl)benzyl)pyrimidin-2-amine ([ 18 F]-3). The purified radiolabeled compound was used in serum stability, partition coefficient, cellular uptake, and in vivo cancer targeting studies. Results: [ 18 F]-3 was synthesized in 4–10% decay-corrected yield (to start of synthesis). [ 18 F]-3 (t R ≈ 27 min) was separated from the precursor (t R ≈ 30 min) using a pentafluorophenyl column with an isocratic solvent system. [ 18 F]-3 displayed acceptable serum stability over 2 h. The amount of [ 18 F]-3 bound to the plasma proteins was determined to be > 97%. The partition coefficient (LogD 7.4 ) is 1.4 ± 0.5. Competitive in vitro inhibition indicated 3 does not inhibit uptake of 67 Ga-pentixafor. Cell culture media incubation and ex vivo urine analysis indicate rapid metabolism of [ 18 F]-3 into hydrophilic metabolites. Thus, in vitro uptake of [ 18 F]-3 in CXCR4 overexpressing U87 cells (U87 CXCR4) and U87 WT indicated no specific binding. In vivo studies in mice bearing U87 CXCR4 and U87 WT tumors on the left and right shoulders were carried

  3. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  4. Fluorescent imaging of high-grade bladder cancer using a specific antagonist for chemokine receptor CXCR4.

    Science.gov (United States)

    Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu

    2010-09-01

    We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.

  5. Genetic architecture of HIV-1 genes circulating in north India & their functional implications.

    Science.gov (United States)

    Neogi, Ujjwal; Sood, Vikas; Ronsard, Larence; Singh, Jyotsna; Lata, Sneh; Ramachandran, V G; Das, S; Wanchu, Ajay; Banerjea, Akhil C

    2011-12-01

    This review presents data on genetic and functional analysis of some of the HIV-1 genes derived from HIV-1 infected individuals from north India (Delhi, Punjab and Chandigarh). We found evidence of novel B/C recombinants in HIV-1 LTR region showing relatedness to China/Myanmar with 3 copies of Nfκb sites; B/C/D mosaic genomes for HIV-1 Vpr and novel B/C Tat. We reported appearance of a complex recombinant form CRF_02AG of HIV-1 envelope sequences which is predominantly found in Central/Western Africa. Also one Indian HIV-1 envelope subtype C sequence suggested exclusive CXCR4 co-receptor usage. This extensive recombination, which is observed in about 10 per cent HIV-1 infected individuals in the Vpr genes, resulted in remarkably altered functions when compared with prototype subtype B Vpr. The Vpu C was found to be more potent in causing apoptosis when compared with Vpu B when analyzed for subG1 DNA content. The functional implications of these changes as well as in other genes of HIV-1 are discussed in detail with possible implications for subtype-specific pathogenesis highlighted.

  6. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  7. [68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model - comparison with [18F]FDG PET/CT, MRI and ex vivo receptor expression.

    Science.gov (United States)

    Schwarzenböck, Sarah M; Stenzel, Jan; Otto, Thomas; Helldorff, Heike V; Bergner, Carina; Kurth, Jens; Polei, Stefan; Lindner, Tobias; Rauer, Romina; Hohn, Alexander; Hakenberg, Oliver W; Wester, Hans J; Vollmar, Brigitte; Krause, Bernd J

    2017-11-10

    The aim was to characterize the properties of [ 68 Ga]Pentixafor as tracer for prostate cancer imaging in a PC-3 prostate cancer xenograft mouse model and to investigate its correlation with [ 18 F]FDG PET/CT, magnetic resonance imaging (MRI) and ex vivo analyses. Static [ 68 Ga]Pentixafor and [ 18 F]FDG PET as well as morphological/ diffusion weighted MRI and 1 H MR spectroscopy was performed. Imaging data were correlated with ex vivo biodistribution and CXCR4 expression in PC-3 tumors (immunohistochemistry (IHC), mRNA analysis). Flow cytometry was performed for evaluation of localization of CXCR4 receptors ( in vitro PC-3 cell experiments). Tumor uptake of [ 68 Ga]Pentixafor was significantly lower compared to [ 18 F]FDG. Ex vivo CXCR4 mRNA expression of tumors was shown by PCR. Only faint tumor CXCR4 expression was shown by IHC (immuno reactive score of 3). Accordingly, flow cytometry of PC-3 cells revealed only a faint signal, cell membrane permeabilisation showed a slight signal increase. There was no significant correlation of [ 68 Ga]Pentixafor tumor uptake and ex vivo receptor expression. Spectroscopy showed typical spectra of prostate cancer. PC-3 tumor uptake of [ 68 Ga]Pentixafor was existent but lower compared to [ 18 F]FDG. No significant correlation of ex vivo tumor CXCR4 receptor expression and [ 68 Ga]Pentixafor tumor uptake was shown. CXCR4 receptor expression on the surface of PC-3 cells was existent but rather low possibly explaining the limited [ 68 Ga]Pentixafor tumor uptake; receptor localization in the interior of PC-3 cells is presumable as shown by cell membrane permeabilisation. Further studies are necessary to define the role of [ 68 Ga]Pentixafor in prostate cancer imaging.

  8. Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Buchanan David J

    2009-08-01

    Full Text Available Abstract Painful distal sensory polyneuropathy (DSP is the most common neurological complication of HIV1 infection. Although infection with the virus itself is associated with an incidence of DSP, patients are more likely to become symptomatic following initiation of nucleoside reverse transcriptase inhibitor (NRTI treatment. The chemokines monocyte chemoattractant protein-1 (MCP1/CCL2 and stromal derived factor-1 (SDF1/CXCL12 and their respective receptors, CCR2 and CXCR4, have been implicated in HIV1 related neuropathic pain mechanisms including NRTI treatment in rodents. Utilizing a rodent model that incorporates the viral coat protein, gp120, and the NRTI, 2'3'-dideoxycytidine (ddC, we examined the degree to which chemokine receptor signaling via CCR2 and CXCR4 potentially influences the resultant chronic hypernociceptive behavior. We observed that following unilateral gp120 sciatic nerve administration, rats developed profound tactile hypernociception in the hindpaw ipsilateral to gp120 treatment. Behavioral changes were also present in the hindpaw contralateral to the injury, albeit delayed and less robust. Using immunohistochemical studies, we demonstrated that MCP1 and CCR2 were upregulated by primary sensory neurons in lumbar ganglia by post-operative day (POD 14. The functional nature of these observations was confirmed using calcium imaging in acutely dissociated lumbar dorsal root ganglion (DRG derived from gp120 injured rats at POD 14. Tactile hypernociception in gp120 treated animals was reversed following treatment with a CCR2 receptor antagonist at POD 14. Some groups of animals were subjected to gp120 sciatic nerve injury in combination with an injection of ddC at POD 14. This injury paradigm produced pronounced bilateral tactile hypernociception from POD 14–48. More importantly, functional MCP1/CCR2 and SDF1/CXCR4 signaling was present in sensory neurons. In contrast to gp120 treatment alone, the hypernociceptive behavior

  9. Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma.

    Science.gov (United States)

    Ozawa, Patricia Midori Murobushi; Ariza, Carolina Batista; Ishibashi, Cintya Mayumi; Fujita, Thiago Cezar; Banin-Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Watanabe, Maria Angelica Ehara

    2016-01-01

    Chemokines and its receptors have significant impact on physiological and pathological processes and studies concerning their association with tumor biology are subject of great interest in scientific community. CXCL12/CXCR4 axis has been widely studied due to its significant role in tumor microenvironment, but it is also important to development and maintenance of tissues and organs, for example, in the brain and cerebellum. Studies have demonstrated that CXCL12 and CXCR4 are required for normal cerebellar development and that dysfunction in this pathway may be involved with medulloblastoma pathogenesis. In this context, a new molecular subgroup has been suggested based on the importance of the association between CXCR4 overexpression and sonic hedgehog subgroup. Treatment using CXCR4 antagonists showed significant results, evidencing the important role and possible therapeutic capacity of CXCR4 in MB. This review summarizes studies on MB cell biology, focusing on a chemokine-receptor axis, CXCL12/CXCR4, that may have implications for treatment strategies once it can improve life expectancy and reduce neurocognitive sequelae of patients with this neoplasia. © 2014 UICC.

  10. Downregulation of CXCR4 Expression and Functionality After Zoledronate Exposure in Canine Osteosarcoma.

    Science.gov (United States)

    Byrum, M L; Pondenis, H C; Fredrickson, R L; Wycislo, K L; Fan, T M

    2016-07-01

    The establishment and progression of metastases remains the life-limiting factor for dogs diagnosed with osteosarcoma (OS). The pattern of metastases is likely regulated through interactions between chemokine receptors and chemokines, and perturbations in these signaling cascades responsible for cytoskeletal organization and directional migration have the potential to alter metastatic cell trafficking behaviors. Zoledronate will impair directional migration of OS cells through downregulation of chemokine (C-X-C motif) receptor 4 (CXCR4) expression and functionality. Nineteen archived tumor specimens and plasma from 20 dogs with OS. Prospectively, the expressions of CXCR4 were studied in OS cell lines and spontaneous tumor samples. The effect of zoledronate on CXCR4 expression and functionality was investigated by characterizing responses in 3 OS cell lines. In 19 OS specimens and 20 dogs with OS, changes in CXCR4 expression and circulating CXCR4 concentrations were characterized in response to zoledronate therapy respectively. All canine OS cells express CXCR4, and zoledronate reduces CXCR4 expression and functionality by 27.7% (P < .0001), through augmented proteasome degradation and reduced prenylation of heterotrimeric G-proteins in 33% of tumor cell lines evaluated. In OS-bearing dogs, zoledronate reduces CXCR4 expressions by 40% within the primary tumor compared to untreated controls (P = .03) and also decreases the circulating concentrations of CXCR4 in 18 of 20 dogs with OS. Zoledronate can alter CXCR4 expression and functionality in OS cells, and consequent perturbations in CXCR4 intracellular signaling cascades might influence patterns of metastases. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    International Nuclear Information System (INIS)

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-01

    Research highlights: → CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. → CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. → HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. → H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. → HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56 Lck , ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56 Lck , ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new antireservoir therapy.

  12. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Chang [National Institute of Health, Chungbuk (Korea, Republic of); School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Hyeon Guk [National Institute of Health, Chungbuk (Korea, Republic of); Roh, Tae-Young [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Park, Jihwan [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Jung, Kyung-Min; Lee, Joo-Shil [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Sang-Yun [School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Sung Soon [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Byeong-Sun, E-mail: byeongsun@korea.kr [National Institute of Health, Chungbuk (Korea, Republic of)

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  13. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α

    International Nuclear Information System (INIS)

    Esencay, Mine; Sarfraz, Yasmeen; Zagzag, David

    2013-01-01

    Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell migration and invasion. In order to perform the studies, we employed optimal cell culture methods and hypoxic conditions, lentivirus-mediated knockdown of protein expression, Western Blot analysis, migration assays and immunoprecipitation. We determined statistical significance by unpaired t-test. In this report, we show that U87MG, LN229 and LN308 glioma cells express CXCR7 and that exposure to hypoxia upregulates CXCR7 protein expression in these cell lines. CXCR7-expressing U87MG, LN229 and LN308 glioma cells migrated towards stromal-derived factor (SDF)-1α/CXCL12 in hypoxic conditions in the Boyden chamber assays. While shRNA-mediated knockdown of CXCR7 expression did not affect the migration of any of the three cell lines in normoxic conditions, we observed a reduction in the migration of LN229 and LN308, but not U87MG, glioma cells towards SDF-1α in hypoxic conditions. In addition, knockdown of CXCR7 expression in LN229 and LN308 glioma cells decreased levels of SDF-1α-induced phosphorylation of ERK1/2 and Akt. Inhibiting CXCR4 in LN229 and LN308 glioma cells that were knocked down for CXCR7 did not further reduce migration towards SDF-1α in hypoxic conditions and did not affect the levels of phosphorylated ERK1/2 and Akt. Analysis of immunoprecipitated CXCR4 from LN229 and LN308 glioma cells revealed co-precipitated CXCR7. Taken together, our findings indicate that both CXCR4 and CXCR7 mediate glioma cell migration towards SDF-1α in hypoxic conditions and support the development of therapeutic agents targeting these receptors

  14. CXCL12/CXCR4-Axis Dysfunctions: Markers of the Rare Immunodeficiency Disorder WHIM Syndrome

    Directory of Open Access Journals (Sweden)

    Françoise Bachelerie

    2010-01-01

    Full Text Available The WHIM syndrome features susceptibility to human Papillomavirus infection-induced warts and carcinomas, hypogammaglobulinemia, recurrent bacterial infections, B and T-cell lymphopenia, and neutropenia associated with retention of senescent neutrophils in the bone marrow (i.e. myelokathexis. This rare disorder is mostly linked to inherited heterozygous autosomal dominant mutations in the gene encoding CXCR4, a G protein coupled receptor with a unique ligand, the chemokine CXCL12/SDF-1. Some individuals who have full clinical forms of the syndrome carry a wild type CXCR4 gene. In spite of this genetic heterogeneity, leukocytes from WHIM patients share in common dysfunctions of the CXCR4-mediated signaling pathway upon exposure to CXCL12. Dysfunctions are characterized by impaired desensitization and receptor internalization, which are associated with enhanced responses to the chemokine. Our increasing understanding of the mechanisms that account for the aberrant CXCL12/CXCR4-mediated responses is beginning to provide insight into the pathogenesis of the disorder. As a result we can expect to identify markers of the WHIM syndrome, as well as other disorders with WHIM-like features that are associated with dysfunctions of the CXCL12/CXCR4 axis.

  15. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4

    International Nuclear Information System (INIS)

    Zhao Qian; Ma Liying; Jiang Shibo; Lu Hong; Liu Shuwen; He Yuxian; Strick, Nathan; Neamati, Nouri; Debnath, Asim Kumar

    2005-01-01

    We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors

  16. Coexpression of EGFR and CXCR4 predicts poor prognosis in resected pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Huanwen Wu

    Full Text Available Epidermal growth factor receptor (EGFR is highly expressed in pancreatic ductal adenocarcinoma (PDAC and is involved in tumorigenesis and development. However, EGFR expression alone has limited clinical and prognostic significance. Recently, the cross-talk between EGFR and G-protein-coupled chemokine receptor CXCR4 has become increasingly recognized.In the present study, immunohistochemical staining of EGFR and CXCR4 was performed on paraffin-embedded specimens from 131 patients with surgically resected PDAC. Subsequently, the associations between EGFR expression, CXCR4 expression, EGFR/CXCR4 coexpression and clinicopathologic factors were assessed, and survival analyses were performed.In total, 64 (48.9% patients expressed EGFR, 68 (51.9% expressed CXCR4, and 33 (25.2% coexpressed EGFR and CXCR4. No significant association between EGFR and CXCR4 expression was observed (P = 0.938. EGFR expression significantly correlated with tumor differentiation (P = 0.031, whereas CXCR4 expression significantly correlated with lymph node metastasis (P = 0.001. EGFR/CXCR4 coexpression was significantly associated with lymph node metastasis (P = 0.026, TNM stage (P = 0.048, and poor tumor differentiation (P = 0.004. By univariate survival analysis, both CXCR4 expression and EGFR/CXCR4 coexpression were significant prognostic factors for poor disease-free survival (DFS and overall survival (OS. Moreover, EGFR/CXCR4 coexpression significantly increased the hazard ratio for both recurrence and death compared with EGFR or CXCR4 protein expression alone. Multivariate survival analysis demonstrated that EGFR/CXCR4 coexpression was an independent prognostic factor for DFS (HR = 2.33, P<0.001 and OS (HR = 2.48, P = 0.001.In conclusion, our data indicate that although EGFR expression alone has limited clinical and prognostic significance, EGFR/CXCR4 coexpression identified a subset of PDAC patients with more aggressive tumor characteristics and a significantly worse

  17. Development of a Unique Small Molecule Modulator of CXCR4

    Science.gov (United States)

    Yoon, Younghyoun; Lin, Songbai; Sasaki, Maiko; Klapproth, Jan-Michael A.; Yang, Hua; Grossniklaus, Hans E.; Xu, Jianguo; Rojas, Mauricio; Voll, Ronald J.; Goodman, Mark M.; Arrendale, Richard F.; Liu, Jin; Yun, C. Chris; Snyder, James P.; Liotta, Dennis C.; Shim, Hyunsuk

    2012-01-01

    Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for

  18. Development of a unique small molecule modulator of CXCR4.

    Directory of Open Access Journals (Sweden)

    Zhongxing Liang

    Full Text Available Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4 and its ligand stromal cell-derived factor-1 (CXCL12 interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites.We describe the actions of N,N'-(1,4-phenylenebis(methylenedipyrimidin-2-amine (designated MSX-122, a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using (18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles.We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for long-term blockade of metastasis than other reported CXCR4

  19. Appraising the performance of genotyping tools in the prediction of coreceptor tropism in HIV-1 subtype C viruses

    Directory of Open Access Journals (Sweden)

    Crous Saleema

    2012-09-01

    Full Text Available Abstract Background In human immunodeficiency virus type 1 (HIV-1 infection, transmitted viruses generally use the CCR5 chemokine receptor as a coreceptor for host cell entry. In more than 50% of subtype B infections, a switch in coreceptor tropism from CCR5- to CXCR4-use occurs during disease progression. Phenotypic or genotypic approaches can be used to test for the presence of CXCR4-using viral variants in an individual’s viral population that would result in resistance to treatment with CCR5-antagonists. While genotyping approaches for coreceptor-tropism prediction in subtype B are well established and verified, they are less so for subtype C. Methods Here, using a dataset comprising V3 loop sequences from 349 CCR5-using and 56 CXCR4-using HIV-1 subtype C viruses we perform a comparative analysis of the predictive ability of 11 genotypic algorithms in their prediction of coreceptor tropism in subtype C. We calculate the sensitivity and specificity of each of the approaches as well as determining their overall accuracy. By separating the CXCR4-using viruses into CXCR4-exclusive (25 sequences and dual-tropic (31 sequences we evaluate the effect of the possible conflicting signal from dual-tropic viruses on the ability of a of the approaches to correctly predict coreceptor phenotype. Results We determined that geno2pheno with a false positive rate of 5% is the best approach for predicting CXCR4-usage in subtype C sequences with an accuracy of 94% (89% sensitivity and 99% specificity. Contrary to what has been reported for subtype B, the optimal approaches for prediction of CXCR4-usage in sequence from viruses that use CXCR4 exclusively, also perform best at predicting CXCR4-use in dual-tropic viral variants. Conclusions The accuracy of genotyping approaches at correctly predicting the coreceptor usage of V3 sequences from subtype C viruses is very high. We suggest that genotyping approaches can be used to test for coreceptor tropism in HIV-1

  20. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

    Science.gov (United States)

    Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S

    2013-01-01

    CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.

  1. Chemokine Receptors CCR6 and CXCR3 Are Necessary for CD4+ T Cell Mediated Ocular Surface Disease in Experimental Dry Eye Disease

    Science.gov (United States)

    Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818

  2. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei Zhang; Xian-Fu Sun; Ya-Ning He; Jun-Tao Li; Xu-Hui Guo; Hui Liu

    2013-01-01

    Objective: To analyze breast cancer bone metastasis related gene-CXCR4. Methods: This research screened breast cancer bone metastasis related genes by high-flux gene chip. Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations. The expression of chemokine receptor CXCR4 was obviously up-regulated in the tissue with breast cancer bone metastasis. Compared with the tissue without bone metastasis, there was significant difference, which indicated that CXCR4 played a vital role in breast cancer bone metastasis. Conclusions: The bioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis, target gene therapy and evaluation of prognosis.

  3. Punica granatum (Pomegranate juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2004-10-01

    Full Text Available Abstract Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1 infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2 binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored.

  4. Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2009-05-01

    Full Text Available Abstract Background The human placenta-derived cell line BeWo has been demonstrated to be restrictive to cell-free HIV-1 infection. BeWo cells are however permissive to infection by VSV-G pseudotyped HIV-1, which enters cells by a receptor-independent mechanism, and to infection by HIV-1 via a cell-to-cell route. Results Here we analysed viral entry in wild type BeWo (CCR5+, CXCR4+ and BeWo-CD4+ (CD4+, CCR5+, CXCR4+ cells. We report that HIV-1 internalisation is not restricted in either cell line. Levels of internalised p24 antigen between VSV-G HIV-1 pseudotypes and R5 or X4 virions were comparable. We next analysed the fate of internalised virions; X4 and R5 HIV-1 virions were less stable over time in BeWo cells than VSV-G HIV-1 pseudotypes. We then investigated the role of the proteasome in restricting cell-free HIV-1 infection in BeWo cells using proteasome inhibitors. We observed an increase in the levels of VSV-G pseudotyped HIV-1 infection in proteasome-inhibitor treated cells, but the infection by R5-Env or X4-Env pseudotyped virions remains restricted. Conclusion Collectively these results suggest that cell-free HIV-1 infection encounters a surface block leading to a non-productive entry route, which either actively targets incoming virions for non-proteasomal degradation, and impedes their release into the cytoplasm, or causes the inactivation of mechanisms essential for viral replication.

  5. The SDF-1CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis

    Science.gov (United States)

    Petit, Isabelle; Jin, David; Rafii, Shahin

    2010-01-01

    Pro-angiogenic bone marrow (BM) cells include subsets of hematopoietic cells that provide vascular support and endothelial progenitor cells (EPCs), which under certain permissive conditions could differentiate into functional vascular cells. Recent evidence demonstrates that the chemokine stromal-cell derived factor-1 (SDF-1, also known as CXCL12) has a major role in the recruitment and retention of CXCR4+ BM cells to the neo-angiogenic niches supporting revascularization of ischemic tissue and tumor growth. However, the precise mechanism by which activation of CXCR4 modulates neo-angiogenesis is not clear. SDF-1 not only promotes revascularization by engaging with CXCR4 expressed on the vascular cells but also supports mobilization of pro-angiogenic CXCR4+VEGFR1+ hematopoietic cells, thereby accelerating revascularization of ischemic organs. Here, we attempt to define the multiple functions of the SDF-1CXCR4 signaling pathway in the regulation of neo-vascularization during acute ischemia and tumor growth. In particular, we introduce the concept that, by modulating plasma SDF-1 levels, the CXCR4 antagonist AMD3100 acutely promotes, while chronic AMD3100 treatment inhibits, mobilization of pro-angiogenic cells. We will also discuss strategies to modulate the mobilization of essential subsets of BM cells that participate in neo-angiogenesis, setting up the stage for enhancing revascularization or targeting tumor vessels by exploiting CXCR4 agonists and antagonists, respectively. PMID:17560169

  6. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    International Nuclear Information System (INIS)

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika

    2007-01-01

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1 IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent

  7. Complexity and dynamics of HIV-1 chemokine receptor usage in a multidrug-resistant adolescent.

    Science.gov (United States)

    Cavarelli, Mariangela; Mainetti, Lara; Pignataro, Angela Rosa; Bigoloni, Alba; Tolazzi, Monica; Galli, Andrea; Nozza, Silvia; Castagna, Antonella; Sampaolo, Michela; Boeri, Enzo; Scarlatti, Gabriella

    2014-12-01

    Maraviroc (MVC) is licensed in clinical practice for patients with R5 virus and virological failure; however, in anecdotal reports, dual/mixed viruses were also inhibited. We retrospectively evaluated the evolution of HIV-1 coreceptor tropism in plasma and peripheral blood mononuclear cells (PBMCs) of an infected adolescent with a CCR5/CXCR4 Trofile profile who experienced an important but temporary immunological and virological response during a 16-month period of MVC-based therapy. Coreceptor usage of biological viral clones isolated from PBMCs was investigated in U87.CD4 cells expressing wild-type or chimeric CCR5 and CXCR4. Plasma and PBMC-derived viral clones were sequenced to predict coreceptor tropism using the geno2pheno algorithm from the V3 envelope sequence and pol gene-resistant mutations. From start to 8.5 months of MVC treatment only R5X4 viral clones were observed, whereas at 16 months the phenotype enlarged to also include R5 and X4 clones. Chimeric receptor usage suggested the preferential usage of the CXCR4 coreceptor by the R5X4 biological clones. According to phenotypic data, R5 viruses were susceptible, whereas R5X4 and X4 viruses were resistant to RANTES and MVC in vitro. Clones at 16 months, but not at baseline, showed an amino acidic resistance pattern in protease and reverse transcription genes, which, however, did not drive their tropisms. The geno2pheno algorithm predicted at baseline R5 viruses in plasma, and from 5.5 months throughout follow-up only CXCR4-using viruses. An extended methodological approach is needed to unravel the complexity of the phenotype and variation of viruses resident in the different compartments of an infected individual. The accurate evaluation of the proportion of residual R5 viruses may guide therapeutic intervention in highly experienced patients with limited therapeutic options.

  8. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Directory of Open Access Journals (Sweden)

    Unzueta U

    2012-08-01

    Full Text Available Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–31Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, UruguayBackground: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4 is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles

  9. Association of gene polymorphism of SDF1(CXCR12 with susceptibility to HIV-1 infection and AIDS disease progression: A meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jiwei Ding

    Full Text Available Genetic polymorphism of viral receptors is relevant to risks of HIV-1 infection, while it is still under debated whether the polymorphism of SDF1, a unique ligand for HIV-1 coreceptor CXCR4, is associated with HIV susceptibility and AIDS disease progression. Therefore, we provided an updated quantitative assessment by meta-analysis from 16 case-control and 7 cohort studies.Articles reporting the relationship between SDF1 polymorphism and HIV susceptibility or AIDS progression were retrieved from PubMed, Embase and Ovid electronic databases up to Apr 2017. Data were pooled by odds ratios (ORs for HIV-1 infection with 95% confidence intervals (CIs and summary relative hazards (RHs for AIDS progression with 95% CIs using 1987 Center for Disease Control (CDC case definition of AIDS (CDC87 and 1993 Center for Disease Control (CDC case definition of AIDS (CDC93 and death as endpoints.As a result, 16 studies regarding susceptibility to HIV-1 infection with 2803 HIV-infected patients and 3697 healthy individuals and 7 studies regarding disease progression with 4239 subjects were included in the meta-analysis. For risks of infection, no evidences indicated SDF1 polymorphism was associated with the risk of HIV-1 infection in all genetic models (recessive model: OR = 0.94, 95% Cl: 0.75-1.17; homozygous model: OR = 0.89, 95% Cl: 0.70-1.15; heterozygous model: OR = 1.06, 95% Cl: 0.83-1.35; allele model: OR = 0.95, 95% Cl: 0.79-1.13, Furthermore, we failed to find an delayed AIDS progression except in some specific cohorts including MACS cohorts (RH = 0.38, 95% Cl: 0.17-0.59 for time to AIDS; RH = 0.27, 95% Cl: 0.07-0.46 for time to death at the study entry.Overall, no significant association was found between SDF1 polymorphism and HIV susceptibility. A protective effect of SDF1 on AIDS progression and death was seen especially in two studies based on the same cohorts. In conclusion, SDF1 polymorphism exerts a moderate protective effect against AIDS disease

  10. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice.

    Directory of Open Access Journals (Sweden)

    Gene-Errol E Ringpis

    Full Text Available Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA. However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR. Here, we report that human CD4(+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4(+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4(+ T-cells ex vivo. Furthermore, levels of gene-marked CD4(+ T-cells in peripheral blood increased despite systemic infection with either

  11. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    Science.gov (United States)

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  12. Copy number variation of Fc gamma receptor genes in HIV-infected and HIV-tuberculosis co-infected individuals in sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Lee R Machado

    Full Text Available AIDS, caused by the retrovirus HIV, remains the largest cause of morbidity in sub-Saharan Africa yet almost all genetic studies have focused on cohorts from Western countries. HIV shows high co-morbidity with tuberculosis (TB, as HIV stimulates the reactivation of latent tuberculosis (TB. Recent clinical trials suggest that an effective anti-HIV response correlates with non-neutralising antibodies. Given that Fcγ receptors are critical in mediating the non-neutralising effects of antibodies, analysis of the extensive variation at Fcγ receptor genes is important. Single nucleotide variation and copy number variation (CNV of Fcγ receptor genes affects the expression profile, activatory/inhibitory balance, and IgG affinity of the Fcγ receptor repertoire of each individual. In this study we investigated whether CNV of FCGR2C, FCGR3A and FCGR3B as well as the HNA1 allotype of FCGR3B is associated with HIV load, response to highly-active antiretroviral therapy (HAART and co-infection with TB. We confirmed an effect of TB-co-infection status on HIV load and response to HAART, but no conclusive effect of the genetic variants we tested. We observed a small effect, in Ethiopians, of FCGR3B copy number, where deletion was more frequent in HIV-TB co-infected patients than those infected with HIV alone.

  13. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  14. Peptide-Functionalized Luminescent Iridium Complexes for Lifetime Imaging of CXCR4 Expression

    NARCIS (Netherlands)

    Kuil, J.; Steunenberg, P.; Chin, P.T.K.; Oldenburg, J.; Jalink, K.; Velders, A.H.; Leeuwen, F.W.B. van

    2011-01-01

    The chemokine receptor 4 (CXCR4) is over-expressed in 23 types of cancer in which it plays a role in, among others, the metastatic spread. For this reason it is a potential biomarker for the field of diagnostic oncology. The antagonistic Ac-TZ14011 peptide, which binds to CXCR4, has been conjugated

  15. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System

    Directory of Open Access Journals (Sweden)

    Federica Barbieri

    2014-01-01

    Full Text Available Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.

  16. HIV/HTLV-1 co-infection

    African Journals Online (AJOL)

    result of a lymphoproliferative disorder. In the context of HIV co-infection, lympho- cytosis has been described during early sero- conversion associated with CMV, as well as in HIV/HTLV-1 co-infection where CD4+ lymphocytosis can be caused by both a reactive or clonal expansion. Consequently, patients with untreated ...

  17. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-01-01

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-κB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis

  18. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    Science.gov (United States)

    Ramonell, Kimberly M; Zhang, Wenxiao; Hadley, Annette; Chen, Ching-Wen; Fay, Katherine T; Lyons, John D; Klingensmith, Nathan J; McConnell, Kevin W; Coopersmith, Craig M; Ford, Mandy L

    2017-01-01

    Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  19. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    Directory of Open Access Journals (Sweden)

    Kimberly M Ramonell

    Full Text Available Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  20. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  1. CXCR4-using HIV variants in a cohort of Black men who have sex with men: HIV Prevention Trials Network 061.

    Science.gov (United States)

    Chen, Iris; Huang, Wei; Connor, Matthew B; Frantzell, Arne; Cummings, Vanessa; Beauchamp, Geetha G; Griffith, Sam; Fields, Sheldon D; Scott, Hyman M; Shoptaw, Steven; Del Rio, Carlos; Magnus, Manya; Mannheimer, Sharon; Tieu, Hong-Van; Wheeler, Darrell P; Mayer, Kenneth H; Koblin, Beryl A; Eshleman, Susan H

    2016-07-01

    To evaluate factors associated with HIV tropism among Black men who have sex with men (MSM) in the United States enrolled in a clinical study (HIV Prevention Trials Network 061). HIV tropism was analyzed using a phenotypic assay (Trofile assay, Monogram Biosciences). Samples were analyzed from 43 men who were HIV infected at enrollment and reported either exclusive insertive intercourse or exclusive receptive intercourse; samples were also analyzed from 20 men who were HIV uninfected at enrollment and seroconverted during the study. Clonal analysis of individual viral variants was performed for seroconverters who had dual/mixed (DM) viruses. DM viruses were detected in samples from 11 (26%) of the 43 HIV-infected men analyzed at the enrollment visit; HIV tropism did not differ between those reporting exclusive insertive vs receptive intercourse. DM viruses were also detected in five (25%) of the 20 seroconverters. DM viruses were associated with lower CD4 cell counts. Seroconverters with DM viruses had dual-tropic viruses only or mixed populations of CCR5- and dual-tropic viruses. DM viruses were frequently detected among Black MSM in this study, including seroconverters. Further studies are needed to understand factors driving transmission and selection of CXCR4- and dual-tropic viruses among Black MSM.

  2. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF.

    Science.gov (United States)

    Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An

    2013-10-01

    Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.

  3. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    Science.gov (United States)

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  4. Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells overexpressing CXCR4 (MSC(CXCR4.

    Directory of Open Access Journals (Sweden)

    Jialiang Liang

    Full Text Available BACKGROUND: Our previous studies indicated that MSC(CXCR4 improved cardiac function after myocardial infarction (MI. This study was aimed to investigate the specific role of MSC(CXCR4 in neovascularization of infarcted myocardium using a suicide gene approach. METHODS: MSCs were transduced with either lentivirus-null vector/GFP (MSC(Null as control or vector encoding for overexpressing CXCR4/GFP. The MSC derived-endothelial cell (EC differentiation was assessed by a tube formation assay, Dil-ac-LDL uptake, EC marker expression, and VE-cadherin promoter activity assay. Gene expression was analyzed by quantitative RT-PCR or Western blot. The suicide gene approach was under the control of VE-cadherin promoter. In vivo studies: Cell patches containing MSC(Null or MSC(CXCR4 were transduced with suicide gene and implanted into the myocardium of MI rat. Rats received either ganciclovir (GCV or vehicle after cell implantation. After one month, the cardiac functional changes and neovascularization were assessed by echocardiography, histological analysis, and micro-CT imaging. RESULTS: The expression of VEGF-A and HIF-1α was significantly higher in MSC(CXCR4 as compared to MSC(Null under hypoxia. Additionally, MSC(CXCR4 enhanced new vessel formation and EC differentiation, as well as STAT3 phosphorylation under hypoxia. STAT3 participated in the transcription of VE-cadherin in MSC(CXCR4 under hypoxia, which was inhibited by WP1066 (a STAT3 inhibitor. In addition, GCV specifically induced death of ECs with suicide gene activation. In vivo studies: MSC(CXCR4 implantation promoted cardiac functional restoration, reduced infarct size, improved cardiac remodeling, and enhanced neovascularization in ischemic heart tissue. New vessels derived from MSC(CXCR4 were observed at the injured heart margins and communicated with native coronary arteries. However, the derived vessel networks were reduced by GCV, reversing improvement of cardiac function. CONCLUSION: The

  5. SDF1-CXCR4 Signaling Contributes to the Transition from Acute to Chronic Pain State.

    Science.gov (United States)

    Yang, Fei; Sun, Wei; Luo, Wen-Jun; Yang, Yan; Yang, Fan; Wang, Xiao-Liang; Chen, Jun

    2017-05-01

    Emerging evidence has demonstrated the involvement of stromal cell-derived factor 1 (SDF1, also known as CXCL12)-CXCR4 signaling in a variety of pain state. However, the underlying mechanisms of SDF1-CXCR4 signaling leading to the maintenance of chronic pain states are poorly understood. In the present study, we sought to explore the role of SDF1-CXCR4 signaling in the forming of neuroplasticity by applying a model of the transition from acute to chronic pain state, named as hyperalgesic priming. Utilizing intraplantar bee venom (BV) injection, we successfully established hyperalgesic priming state and found that peripheral treating with AMD3100, a CXCR4 antagonist, or knocking down CXCR4 by intraganglionar CXCR4 small interfering RNA (siRNA) injection could prevent BV-induced primary mechanical hyperalgesia and hyperalgesic priming. Moreover, we showed that single intraplantar active SDF1 protein injection is sufficient to induce acute mechanical hyperalgesia and hyperalgesic priming through CXC4. Intraplantar coinjection of ERK inhibitor, U0126, and PI3K inhibitor, LY294002, as well as two protein translation inhibitors, temsirolimus and cordycepin, prevented the development of SDF1-induced acute mechanical hyperalgesia and hyperalgesic priming. Finally, on the models of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain and spared nerve injury (SNI)-induced chronic neuropathic pain, we observed that knock-down of CXCR4 could both prevent the development and reverse the maintenance of chronic pain state. In conclusion, our present data suggested that through regulating ERK and PI3K-AKT pathways-mediated protein translation SDF1-CXCR4 signaling mediates the transition from acute pain to chronic pain state and finally contributes to the development and maintenance of chronic pain.

  6. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    International Nuclear Information System (INIS)

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E.

    2006-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1α to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors

  7. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes

    Science.gov (United States)

    Jin, David K; Shido, Koji; Kopp, Hans-Georg; Petit, Isabelle; Shmelkov, Sergey V; Young, Lauren M; Hooper, Andrea T; Amano, Hideki; Avecilla, Scott T; Heissig, Beate; Hattori, Koichi; Zhang, Fan; Hicklin, Daniel J; Wu, Yan; Zhu, Zhenping; Dunn, Ashley; Salari, Hassan; Werb, Zena; Hackett, Neil R; Crystal, Ronald G; Lyden, David; Rafii, Shahin

    2009-01-01

    The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+VEGFR1+ hematopoietic progenitors, ‘hemangiocytes,’ constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induced the release of SDF-1 from platelets, enhancing neovascularization through mobilization of CXCR4+VEGFR1+ hemangiocytes. Although revascularization of ischemic hindlimbs was partially diminished in mice deficient in both GM-CSF and G-CSF (Csf2−/−Csf3−/−), profound impairment in neovascularization was detected in sKitL-deficient Mmp9−/− as well as thrombocytopenic Thpo−/− and TPO receptor–deficient (Mpl−/−) mice. SDF-1–mediated mobilization and incorporation of hemangiocytes into ischemic limbs were impaired in Thpo−/−, Mpl−/− and Mmp9−/− mice. Transplantation of CXCR4+VEGFR1+ hemangiocytes into Mmp9−/− mice restored revascularization, whereas inhibition of CXCR4 abrogated cytokine- and VEGF-A–mediated mobilization of CXCR4+VEGFR1+ cells and suppressed angiogenesis. In conclusion, hematopoietic cytokines, through graded deployment of SDF-1 from platelets, support mobilization and recruitment of CXCR4+VEGFR1+ hemangiocytes, whereas VEGFR1 is essential for their angiogenic competency for augmenting revascularization. Delivery of SDF-1 may be effective in restoring angiogenesis in individuals with vasculopathies. PMID:16648859

  8. CXCR3-dependent CD4⁺ T cells are required to activate inflammatory monocytes for defense against intestinal infection.

    Directory of Open Access Journals (Sweden)

    Sara B Cohen

    Full Text Available Chemokines and their receptors play a critical role in orchestrating immunity to microbial pathogens, including the orally acquired Th1-inducing protozoan parasite Toxoplasma gondii. Chemokine receptor CXCR3 is associated with Th1 responses, and here we use bicistronic CXCR3-eGFP knock-in reporter mice to demonstrate upregulation of this chemokine receptor on CD4⁺ and CD8⁺ T lymphocytes during Toxoplasma infection. We show a critical role for CXCR3 in resistance to the parasite in the intestinal mucosa. Absence of the receptor in Cxcr3⁻/⁻ mice resulted in selective loss of ability to control T. gondii specifically in the lamina propria compartment. CD4⁺ T cells were impaired both in their recruitment to the intestinal lamina propria and in their ability to secrete IFN-γ upon stimulation. Local recruitment of CD11b⁺Ly6C/G⁺ inflammatory monocytes, recently reported to be major anti-Toxoplasma effectors in the intestine, was not impacted by loss of CXCR3. However, inflammatory monocyte activation status, as measured by dual production of TNF-α and IL-12, was severely impaired in Cxcr3⁻/⁻ mice. Strikingly, adoptive transfer of wild-type but not Ifnγ⁻/⁻ CD4⁺ T lymphocytes into Cxcr3⁻/⁻ animals prior to infection corrected the defect in inflammatory macrophage activation, simultaneously reversing the susceptibility phenotype of the knockout animals. Our results establish a central role for CXCR3 in coordinating innate and adaptive immunity, ensuring generation of Th1 effectors and their trafficking to the frontline of infection to program microbial killing by inflammatory monocytes.

  9. HIV tropism and decreased risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Nancy A Hessol

    2010-12-01

    to CXCR4-using variants of HIV. These variants are thought to exclusively bind to and signal through a receptor that is commonly expressed on hyperplastic and neoplastic breast duct cells. Additional studies are needed to confirm these observations and to understand how CXCR4 might reduce breast cancer risk.

  10. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Science.gov (United States)

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  11. Differential evolution of a CXCR4-using HIV-1 strain in CCR5wt/wt and CCR5∆32/∆32 hosts revealed by longitudinal deep sequencing and phylogenetic reconstruction.

    Science.gov (United States)

    Le, Anh Q; Taylor, Jeremy; Dong, Winnie; McCloskey, Rosemary; Woods, Conan; Danroth, Ryan; Hayashi, Kanna; Milloy, M-J; Poon, Art F Y; Brumme, Zabrina L

    2015-12-03

    Rare individuals homozygous for a naturally-occurring 32 base pair deletion in the CCR5 gene (CCR5∆32/∆32) are resistant to infection by CCR5-using ("R5") HIV-1 strains but remain susceptible to less common CXCR4-using ("X4") strains. The evolutionary dynamics of X4 infections however, remain incompletely understood. We identified two individuals, one CCR5wt/wt and one CCR5∆32/∆32, within the Vancouver Injection Drug Users Study who were infected with a genetically similar X4 HIV-1 strain. While early-stage plasma viral loads were comparable in the two individuals (~4.5-5 log10 HIV-1 RNA copies/ml), CD4 counts in the CCR5wt/wt individual reached a nadir of 250 cells/mm(3) in the CCR5∆32/∆32 individual. Ancestral phylogenetic reconstructions using longitudinal envelope-V3 deep sequences suggested that both individuals were infected by a single transmitted/founder (T/F) X4 virus that differed at only one V3 site (codon 24). While substantial within-host HIV-1 V3 diversification was observed in plasma and PBMC in both individuals, the CCR5wt/wt individual's HIV-1 population gradually reverted from 100% X4 to ~60% R5 over ~4 years whereas the CCR5∆32/∆32 individual's remained consistently X4. Our observations illuminate early dynamics of X4 HIV-1 infections and underscore the influence of CCR5 genotype on HIV-1 V3 evolution.

  12. The Cytomegalovirus UL146 Gene Product vCXCL1 Targets Both CXCR1 and CXCR2 as an Agonist

    DEFF Research Database (Denmark)

    Luttichau, H.R.

    2010-01-01

    Large DNA viruses, such as herpesvirus and poxvirus, encode proteins that target and exploit the chemokine system of their host. UL146 and UL147 in the cytomegalovirus (CMV) genome encode the two CXC chemokines vCXCL1 and vCXCL2. In this study, vCXCL1 was probed against a panel of the 18 classified...... human chemokine receptors. In calcium mobilization assays vCXCL1 acted as an agonist on both CXCR1 and CXCR2 but did not activate or block any of the other 16 chemokine receptors. vCXCL1 was characterized and compared with CXCL1/GRO alpha, CXCL2/GRO beta, CXCL3/GRO gamma, CXCL5/ENA-78, CXCL6/GCP2, CXCL7...

  13. Identification and characterization of HIV-2 strains obtained from asymptomatic patients that do not use CCR5 or CXCR4 coreceptors

    International Nuclear Information System (INIS)

    Azevedo-Pereira, J.M.; Santos-Costa, Q.; Mansinho, K.; Moniz-Pereira, J.

    2003-01-01

    In vivo, human immunodeficiency virus type 2 (HIV-2) infection reveals several unique characteristics when compared to HIV-1 infection, the most remarkable of which is the extraordinarily long asymptomatic period. Here we describe two HIV-2 primary isolates, obtained from asymptomatic individuals, which do not infect any coreceptor-expressing cell lines tested. In those cells, we show that the absence of replication is directly related to cell entry events. Furthermore, productive infection observed in peripheral blood mononuclear cells (PBMC) was not inhibited by natural ligands and monoclonal antibodies directed to CCR5 and CXCR4. Finally, viral entry efficiency and viral progeny production of these viruses are markedly impaired in PBMC, indicating a reduced replicative fitness of both viruses. In conclusion, our data suggest that in some HIV-2 asymptomatic individuals, the circulating viruses are unable to use the major coreceptors to infect PBMC. This fact should have important implications in HIV-2 pathogenesis and transmission

  14. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  15. Nuclear Pattern of CXCR4 Expression Is Associated with a Better Overall Survival in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Bahram Nikkhoo

    2014-01-01

    Full Text Available Introduction. Previous studies have shown that stromal-derived factor-1 (CXCL12 and its receptor, CXCR4, play a crucial role in metastasis of various tumors. Similarly, it has been cleared that CXCR4 is expressed on the cell surface of gastric cancers. However, nuclear expression of CXCR4 and its clinical importance have not been yet studied. Materials and Methods. Herein, we studied the expression of CXCR4 in gastric samples from patients with gastric adenocarcinoma as well as human gastric carcinoma cell line, AGS, by employing RT-PCR, immunohistochemistry, and flow cytometry techniques. Results. RT-PCR data showed that CXCR4 is highly expressed on AGS cells. This was confirmed by IHC and FACS as CXCR4 was detected on cell membrane, in cytoplasm, and in nucleus of AGS cells. Moreover, we found that both cytoplasmic and nuclear CXCR4 are strongly expressed in primary gastric cancer and the cytoplasmic pattern of CXCR4 tends to be associated with a shorter overall survival than nuclear staining. In conclusion, we present evidence for the first time that both cytoplasmic and nuclear expression of CXCR4 are detectable in gastric cancer tissues. However, the role of both cytoplasmic and nuclear CXCR4 needs to be further elucidated.

  16. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma.

    Science.gov (United States)

    Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan

    2014-03-01

    To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (philar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.

  17. ِIncreased expression of T- cell- surface CXCR4 in asthmatic children.

    African Journals Online (AJOL)

    Ehab

    Background: Signals delivered through the chemokine receptor CXCR4 upon interaction with its ..... El-Gamal et al. 84 mediated signals contribute to lung inflammation ... receptors in asthma suggests that targeting the correct chemokine ...

  18. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  19. Persistent CXCR4 expression after preoperative chemoradiotherapy predicts early recurrence and poor prognosis in esophageal cancer

    Science.gov (United States)

    Koishi, Kenji; Yoshikawa, Reigetsu; Tsujimura, Tohru; Hashimoto-Tamaoki, Tomoko; Kojima, Syoudou; Yanagi, Hidenori; Yamamura, Takehira; Fujiwara, Yoshinori

    2006-01-01

    AIM: To study the effect of CXC chemokine receptor-4 (CXCR4) expression on disease progression and prognosis in esophageal cancer. METHODS: CXCR4 expression was evaluated in 37 patients with histologically confirmed esophageal squamous carcinomas (ESCC) undergoing preoperative chemoradiotherapy (CRT) by immunohistochemical staining. RESULTS: Eleven out of 37 ESCC patients showed a pathological complete response (CR) after CRT. CXCR4 protein expression was observed in cell cytoplasms of 13 tumors, and null expression was seen in 13 tumors. Distant recurrence was significantly more common in patients with positive CXCR4 expression (P = 0.0318). After a median follow-up time of 31.6 mo, 19 patients progressed (12 of 19 expressed positive CXCR4) and 11 died (10 of 11 expressed positive CXCR4). Overall survival was significantly correlated with lymph node metastasis (952.1 ± 53.8 d in negative group vs 475.1 ± 56.2 d in positive group, P = 0.023), distant metastasis (874.0 ± 60.4 d in negative group vs 434.9 ± 75.2 d in positive group, P = 0.014) and CRT (811.5 ± 51.2 d in responder group vs 459.6 ± 94.0 d in non-responder group, P = 0.00038) and further with an absence of CXCR4 expression or no residual tumor (959.8 ± 51.0 d in null expression or no tumor group vs 412.0 ± 57.1 d in positive expression group, P = 0.0001). CONCLUSION: Persistent positive CXCR4 expression is implicated in tumor aggressiveness and poor prognosis in ESCC after CRT, and preoperative CRT may improve the prognosis of ESCC via CXCL12-CXCR4 signaling pathway. PMID:17171785

  20. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    Science.gov (United States)

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  1. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    2010-09-01

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  2. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    Science.gov (United States)

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  3. Synthesis of AMD3100 for antagonist of CXCR4 and labeled with 99Tcm

    International Nuclear Information System (INIS)

    Gui Yuan; Xu Zhihong; Zhang Xiaojun; Zhang Shuwen; Liu Jian; Tian Jiahe; Zhang Jinming

    2013-01-01

    Most of human tumors over-express CXCR4. AMD3100, a nonpeptide antagonist for CXCR4 receptor, can be used for therapy of those tumors. It was found that metal ion complex, such as Cu 2+ , with AMD3100 enhanced its binding affinity to the receptor 10-fold higher as compared to AMD3100 alone. AMD3100 was synthesis from 3-aminopropyl ethylene diamine. 99 Tc m -AMD3100 was labeled directly. Biodistribution studies were carried out in NH mice. SPECT imaging was performed in Hep-G2 tumor bearing mouse. The synthetic yield was 5.8% from 3-aminopropyl ethylene diamine to AMD3100. The labeling yield of 99 Tc m -AMD3100 was over 98%. Biodistribution studies showed high accumulation of radio- tracer in liver which had high-expression of CXCR4. SPECT imaging results showed that uptake in Hep-G2 tumor was high. The results showed that 99 Tc m -AMD3100 was an attractive candidate for further development of SPECT radiotracer potentially suitable for CXCR4. (authors)

  4. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Cojoc M

    2013-09-01

    Full Text Available Monica Cojoc,1 Claudia Peitzsch,1 Franziska Trautmann,1 Leo Polishchuk,2 Gennady D Telegeev,2 Anna Dubrovska11OncoRay National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany; 2Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: The chemokine CXCL12 (SDF-1 and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs, plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management.Keywords: epithelial-to-mesenchymal transition, cancer stem cells, metastasis

  5. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression

    Science.gov (United States)

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-01-01

    Aims Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Methods and results Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1CXCR2 and CX3CL1–CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. Conclusion CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. PMID:25765938

  6. Molecular Pharmacology of CXCR4 inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Rosenkilde, Mette Marie

    2012-01-01

    pharmacology of well-known CXCR4 antagonists in order to augment the potency and affinity and to increase the specificity of future CXCR4-targeting compounds. In this chapter, binding modes of CXCR4 antagonists that have been shown to mobilize stem cells are discussed. In addition, comparisons between results...

  7. Dual-mixed HIV-1 coreceptor tropism and HIV-associated neurocognitive deficits.

    Science.gov (United States)

    Morris, Sheldon R; Woods, Steven Paul; Deutsch, Reena; Little, Susan J; Wagner, Gabriel; Morgan, Erin E; Heaton, Robert K; Letendre, Scott L; Grant, Igor; Smith, Davey M

    2013-10-01

    HIV coreceptor usage of CXCR4 (X4) is associated with decreased CD4+ T-cell counts and accelerated disease progression, but the role of X4 tropism in HIV-associated neurocognitive disorders (HAND) has not previously been described. This longitudinal study evaluated data on 197 visits from 72 recently HIV-infected persons who had undergone up to four sequential neurocognitive assessments over a median of 160 days (IQR, 138–192). Phenotypic tropism testing (Trofile ES, Monogram, Biosciences) was performed on stored blood samples. Multivariable mixed model repeated measures regression was used to determine the association between HAND and dual-mixed (DM) viral tropism, estimated duration of infection (EDI), HIV RNA, CD4 count, and problematic methamphetamine use. Six subjects (8.3 %) had DM at their first neurocognitive assessment and four converted to DM in subsequent sampling (for total of 10 DM) at a median EDI of 10.1 months (IQR, 7.2–12.2). There were 44 (61.1 %) subjects who demonstrated HAND on at least one study visit. HAND was associated with DM tropism (odds ratio, 4.4; 95 % CI, 0.9–20.5) and shorter EDI (odds ratio 1.1 per month earlier; 95 % CI, 1.0–1.2). This study found that recency of HIV-1 infection and the development of DM tropism may be associated with HAND in the relatively early stage of infection. Together, these data suggest that viral interaction with cellular receptors may play an important role in the early manifestation of HAND.

  8. Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and regulation of CXCR4 expression

    International Nuclear Information System (INIS)

    Yasuoka, Hironao; Kodama, Rieko; Tsujimoto, Masahiko; Yoshidome, Katsuhide; Akamatsu, Hiroki; Nakahara, Masaaki; Inagaki, Michiya; Sanke, Tokio; Nakamura, Yasushi

    2009-01-01

    Neuropilin-2 (Nrp2) is a receptor for vascular endothelial growth factor-C (VEGF-C), which is a well-known lymphangiogenic factor and plays an important role in lymph node metastasis of various human cancers, including breast cancer. Recently, Nrp2 was shown to play a role in cancer by promoting tumor cell metastasis. CXC chemokine receptor 4 (CXCR4) also promotes tumor metastasis. In the previous studies, we demonstrated that VEGF-C and cytoplasmic CXCR4 expressions were correlated with poorer patient prognosis (BMC Cancer 2008,8:340; Breast Cancer Res Treat 2005, 91:125–132). The relationship between Nrp2 expression and lymph node metastasis, VEGF-C expression, CXCR4 expression, and other established clinicopathological variables (these data were cited in our previous papers), including prognosis, was analyzed in human breast cancer. Effects of neutralizing anti-Nrp2 antibody on CXCR4 expression and chemotaxis were assessed in MDA-MB-231 breast cancer cells. Nrp2 expression was observed in 53.1% (60 of 113) of the invasive breast carcinomas. Nrp2 expression was significantly correlated with lymph node metastasis, VEGF-C expression, and cytoplasmic CXCR4 expression. Survival curves determined by the Kaplan-Meier method showed that Nrp2 expression was associated with reduced overall survival. In multivariate analysis, Nrp2 expression emerged as a significant independent predictor for overall survival. Neutralizing anti-Nrp2 antibody blocks cytoplasmic CXCR4 expression and CXCR4-induced migration in MDA-MB-231 cells. Nrp2 expression was correlated with lymph node metastasis, VEGF-C expression, and cytoplasmic CXCR4 expression. Nrp2 expression may serve as a significant prognostic factor for long-term survival in breast cancer. Our data also showed a role for Nrp2 in regulating cytoplasmic CXCR4 expression in vitro

  9. Transfusion of CXCR4-primed endothelial progenitor cells reduces cerebral ischemic damage and promotes repair in db/db diabetic mice.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available This study investigated the role of stromal cell-derived factor-1α (SDF-1α/CXC chemokine receptor 4 (CXCR4 axis in brain and endothelial progenitor cells (EPCs, and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO. In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null or CXCR4 (Ad-CXCR4 followed with high glucose (HG treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1 The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2 The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3 Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4 Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4 Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.

  10. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    International Nuclear Information System (INIS)

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8 + T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8 + T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8 + T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24 Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8 + T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8 + T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8 + T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8 + T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8 + T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8 + T cells from HIV-1 infection suppresses its cytopathic effect

  11. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator

    Directory of Open Access Journals (Sweden)

    Mehla Rajeev

    2012-10-01

    Full Text Available Abstract Background More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF of HIV-demented (HIV-D and HIV-nondemented (HIV-ND patients and studied their affect on neuroglial toxicity. Methods and results Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF in the CSF of HIV-D patients (n = 7 but not in that of HIV-ND patients (n = 7. Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1-activated human fetal astrocytes, HIV-1 (Ba-L-infected macrophages, and HIV-1 (NLENG1-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold for activated peripheral blood mononuclear cells (PBMC, suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting

  12. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Laura Mercurio

    Full Text Available The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM, the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC, a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells.Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH activity were analyzed by colorimetric assay.Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity.Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression.

  13. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    Science.gov (United States)

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non

  14. Spinoculation Triggers Dynamic Actin and Cofilin Activity That Facilitates HIV-1 Infection of Transformed and Resting CD4 T Cells▿

    Science.gov (United States)

    Guo, Jia; Wang, Weifeng; Yu, Dongyang; Wu, Yuntao

    2011-01-01

    Centrifugal inoculation, or spinoculation, is widely used in virology research to enhance viral infection. However, the mechanism remained obscure. Using HIV-1 infection of human T cells as a model, we demonstrate that spinoculation triggers dynamic actin and cofilin activity, probably resulting from cellular responses to centrifugal stress. This actin activity also leads to the upregulation of the HIV-1 receptor and coreceptor, CD4 and CXCR4, enhancing viral binding and entry. We also demonstrate that an actin inhibitor, jasplakinolide, diminishes spin-mediated enhancement. In addition, small interfering RNA (siRNA) knockdown of LIMK1, a cofilin kinase, decreases the enhancement. These results suggest that spin-mediated enhancement cannot be explained simply by a virus-concentrating effect; rather, it is coupled with spin-induced cytoskeletal dynamics that promote receptor mobilization, viral entry, and postentry processes. Our results highlight the importance of cofilin and a dynamic cytoskeleton for the initiation of viral infection. Our results also indicate that caution needs to be taken in data interpretation when cells are spinoculated; some of the spin-induced cellular permissiveness may be beyond the natural capacity of an infecting virus. PMID:21795326

  15. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rave-Fraenk, Margret; Tehrany, Narges; Leu, Martin; Weber, Hanne Elisabeth; Wolff, Hendrik Andreas [University Medical Center Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Kitz, Julia [University Medical Center Goettingen, Department of Pathology, Goettingen (Germany); Burfeind, Peter [University Medical Center Goettingen, Department of Human Genetics, Goettingen (Germany); Schliephake, Henning [University Medical Center Goettingen, Department of Oral and Maxillofacial Surgery, Goettingen (Germany); Canis, Martin [University Medical Center Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Beissbarth, Tim [University Medical Center Goettingen, Institute of Medical Statistics, Goettingen (Germany); Reichardt, Holger Michael [University Medical Center Goettingen, Institute for Cellular and Molecular Immunology, Goettingen (Germany)

    2016-01-15

    The chemokine CXCL12 and its receptor CXCR4 can affect tumor growth, recurrence, and metastasis. We tested the hypothesis that the CXCL12 and CXCR4 expression influences the prognosis of patients with inoperable head and neck cancer treated with definite radiotherapy or chemoradiotherapy. Formalin-fixed paraffin-embedded pretreatment tumor tissue from 233 patients with known HPV/p16{sup INK4A} status was analyzed. CXCL12 and CXCR4 expressions were correlated with pretreatment parameters and survival data by univariate and multivariate Cox regression. CXCL12 was expressed in 43.3 % and CXCR4 in 66.1 % of the samples and both were correlated with HPV/p16{sup INK4A} positivity. A high CXCL12 expression was associated with increased overall survival (p = 0.036), while a high CXCR4 expression was associated with decreased metastasis-free survival (p = 0.034). A high CXCR4 expression could be regarded as a negative prognostic factor in head and neck cancer because it may foster metastatic spread. This may recommend CXCR4 as therapeutic target for combating head and neck cancer metastasis. (orig.) [German] Das Chemokin CXCL12 und sein Rezeptor CXCR4 beeinflussen Tumorwachstum, Auftreten von Rezidiven und Metastasierung. Es wurde die Hypothese geprueft, dass ein Zusammenhang der CXCL12- und CXCR4-Expression mit der Prognose von Patienten bestehe, die wegen eines inoperablen Kopf-Hals-Tumors eine primaere Radio- oder Radiochemotherapie erhielten. Dabei wurde auch der HPV-Status der Patienten beruecksichtigt. Formalinfixierte Proben aus unbehandelten Tumoren von 233 Patienten mit bekanntem HPV/p16{sup INK4A}-Status wurden ausgewertet. Die CXCL12- und CXCR4-Expression wurde mit klinischen Parametern und Ueberlebensdaten mittels uni- und multivariater Cox Regression analysiert. CXCL12 wurde von 43,3 %, CXCR4 von 66,1 % der Tumoren exprimiert, und beide Marker korrelierten mit einer HPV/p16{sup INK4A}-Expression. Eine hohe CXCL12-Expression war mit einem verbesserten

  16. Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration.

    Science.gov (United States)

    Scarlett, Kisha A; White, El-Shaddai Z; Coke, Christopher J; Carter, Jada R; Bryant, Latoya K; Hinton, Cimona V

    2018-04-01

    G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. Effect of integrin α5β1 inhibition on SDF-l/CXCR4- mediated choroidal neovascularization

    Directory of Open Access Journals (Sweden)

    Yang Lyu

    2018-05-01

    Full Text Available AIM: To investigate the roles of integrins in choroidal neovascularization (CNV and their associations with the stromal cell-derived factor-1 (SDF-1/CXCR4 axis. METHODS: CNV lesions were induced in mice using laser photocoagulation. After CNV induction, all animals were randomly assigned to: control, SDF-1, SDF-1+age-related macular degeneration (AMD 3100 (CXCR4 inhibitor, and SDF-1+ATN161 (integrin α5β1 inhibitor groups; their effects on CNV progression were observed using hematoxylin eosin (HE staining, fundus fluorescein angiography (FFA grading and optical coherence tomography (OCT, and their effects on CXCR4/integrin α5 expression were evaluated using Western blot and double immunofluorescence staining. Hypoxia-exposed endothelial cells (ECs were used to simulate CNV in vitro, they were treated with SDF-1, combined with CXCR4 siRNA/AMD3100 or ATN161, and expression of integrin α5, cell migration and tube formation were analyzed. RESULTS: Integrin subunit α5 increased at 3rd and 7th day and decreased at 14th day in CNV mice, with no significant change of β1-integrin. CXCR4 expression in CNV mice had persistent increase within 14d after induction. SDF-1 treatment significantly promoted the CNV progression during 3-14d. The mean CNV length in AMD3100 and ATN161 group at day 7 was 270.13 and 264.23 μm in HE images, significantly lower than the mean length in SDF-1 (345.70 μm group. AMD3100 and ATN161 also significantly reduced thickness and leakage of CNV induced by SDF-1. Mean integrin α5 positive area in SDF-1 group reached 2.31×104 μm2, significantly higher than control (1.25×104 μm2, which decreased to 1.78×104 μm2 after AMD3100 treatment. About 61.36% of ECs in CNV lesions expressed α5 in SDF-1 group, which significantly decreased to 43.12% after AMD3100 treatment. In vitro, integrin α5 peaked by 6 folds after 6h of hypoxia exposure and CXCR4 gradually increased by up to 2.3 folds after 24h of hypoxia. Approximately 25

  18. Association between depressive symptoms, CD4 count and HIV viral suppression among HIV-HCV co-infected people.

    Science.gov (United States)

    Aibibula, Wusiman; Cox, Joseph; Hamelin, Anne-Marie; Moodie, Erica E M; Anema, Aranka; Klein, Marina B; Brassard, Paul

    2018-05-01

    Depressive symptoms are associated with poor HIV viral control and immune recovery among people living with HIV. However, no prior studies assessed this association exclusively among people co-infected with HIV-hepatitis C virus (HCV). While people with HIV only and those with HIV-HCV co-infection share many characteristics, co-infected people may become more susceptible to the effects of depressive symptoms on health outcomes. We assessed this association exclusively among people co-infected with HIV-HCV in Canada using data from the Food Security & HIV-HCV Sub-Study (FS Sub-Study) of the Canadian Co-Infection Cohort (CCC). Stabilized inverse probability weighted marginal structural model was used to account for potential time-varying confounders. A total of 725 participants were enrolled between 2012 and 2015. At baseline, 52% of participants reported depressive symptoms, 75% had undetectable HIV viral load, and median CD4 count was 466 (IQR 300-665). People experiencing depressive symptoms had 1.32 times (95% CI: 1.07, 1.63) the risk of having detectable HIV viral load, but had comparable CD4 count to people who did not experience depressive symptoms (fold change of CD4 = 0.96, 95% CI: 0.91, 1.03). Presence of depressive symptoms is a risk factor for incomplete short-term HIV viral suppression among people co-infected with HIV-HCV. Therefore, depressive symptoms screening and related counseling may improve HIV related health outcomes and reduce HIV transmission.

  19. Circulating CXCR5+CD4+ T cells participate in the IgE accumulation in allergic asthma.

    Science.gov (United States)

    Gong, Fang; Zhu, Hua-Yan; Zhu, Jie; Dong, Qiao-Jing; Huang, Xuan; Jiang, Dong-Jin

    2018-05-01

    The pathogenesis of allergic asthma is primarily characterized by abnormality in immunoglobin(Ig)E pathway, suggesting a possible role for follicular helper T cells (Tfh) in the genesis of excessive IgE accumulation. The blood chemokine (C-X-C motif) receptor 5 (CXCR)5 + CD4 + T cells, known as "circulating" Tfh, share common functional characteristics with Tfh cells from germinal centers. The aim of this study was to determine the phenotypes and functions of circulating CXCR5 + CD4 + T cells in allergic asthmatics. Here we found the frequency of the circulating CXCR5 + CD4 + T cells was raised in allergic asthma compared with healthy control (HC). Phenotypic assays showed that activated circulating CXCR5 + CD4 + T cells display the key features of Tfh cells, including invariably coexpressed programmed cell death (PD)-1 and inducible costimulator (ICOS). The frequency of interleukin IL-4 + -, IL-21 + -producing CXCR5 + CD4 + T cells was increased in allergic asthma patients compared with HC. Furthermore, sorted circulating CXCR5 + CD4 + T cells from allergic asthma patients boosted IgE production in coculture assay which could be inhibited by IL-4 or IL-21 blockage. Interestingly, IL-4 + -, IL-21 + -CXCR5 + CD4 + T cells positively correlated with total IgE in the blood. Our data indicated that circulating CXCR5 + CD4 + T cells may have a significant role in facilitating IgE production in allergic asthma patients. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Kim, Patrick Y. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ng, Hwee L. [Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O' Connor, Sean [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Yang, Otto O. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States); AIDS Healthcare Foundation, Los Angeles, CA (United States); Chen, Irvin S.Y. [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States)

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  1. Impaired CXCR1-dependent oxidative defence in active tuberculosis patients.

    Science.gov (United States)

    Alaridah, Nader; Winqvist, Niclas; Håkansson, Gisela; Tenland, Erik; Rönnholm, Anna; Sturegård, Erik; Björkman, Per; Godaly, Gabriela

    2015-12-01

    Much of the pronounced host inflammatory response that occurs in tuberculosis (TB) is related to failed immunity against the invading pathogen. The G-protein coupled receptors CXCR1 and CXCR2 are implicated in important signal transduction pathways in lung inflammatory responses. We investigated the expression and function of these receptors in a simple whole blood model from 24 patients with pulmonary TB and in subjects with latent TB infection (LTBI). Healthy controls were recruited from close contacts to the pulmonary index patients. We found that pulmonary TB patients had significantly increased CXCR1 expression on blood cells compared to LTBI subjects and controls (p microRNA-223 was increased in pulmonary TB patients compared to LTBI (p tuberculosis (Mtb). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy

    Directory of Open Access Journals (Sweden)

    Marcin P Komorowski

    2016-01-01

    Full Text Available Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.

  3. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases.

    Directory of Open Access Journals (Sweden)

    Luigi Portella

    Full Text Available The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X in CXCL12, also found in the reverse orientation (X-Ar-Ar in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in in vivo models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.

  4. Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice

    Science.gov (United States)

    Ye, Chaobaihui; Wang, Weiming; Cheng, Liang; Li, Guangming; Wen, Michael; Wang, Qi; Zhang, Qing; Li, Dan

    2016-01-01

    ABSTRACT Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo. In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. IMPORTANCE Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo. In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5

  5. Genetically divergent strains of feline immunodeficiency virus from the domestic cat (Felis catus) and the African lion (Panthera leo) share usage of CD134 and CXCR4 as entry receptors.

    Science.gov (United States)

    McEwan, William A; McMonagle, Elizabeth L; Logan, Nicola; Serra, Rodrigo C; Kat, Pieter; Vandewoude, Sue; Hosie, Margaret J; Willett, Brian J

    2008-11-01

    The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.

  6. Rac1 plays a role in CXCL12 but not CCL3-induced chemotaxis and Rac1 GEF inhibitor NSC23766 has off target effects on CXCR4.

    Science.gov (United States)

    Mills, Shirley C; Howell, Lesley; Beekman, Andrew; Stokes, Leanne; Mueller, Anja

    2018-01-01

    Cell migration towards a chemotactic stimulus relies on the re-arrangement of the cytoskeleton, which is triggered by activation of small G proteins RhoA, Rac1 and Cdc42, and leads to formation of lamellopodia and actin polymerisation amongst other effects. Here we show that Rac1 is important for CXCR4 induced chemotaxis but not for CCR1/CCR5 induced chemotaxis. For CXCL12-induced migration via CXCR4, breast cancer MCF-7 cells are reliant on Rac1, similarly to THP-1 monocytes and Jurkat T-cells. For CCL3-induced migration via CCR1 and/or CCR5, Rac1 signalling does not regulate cell migration in either suspension or adherent cells. We have confirmed the involvement of Rac1 with the use of a specific Rac1 blocking peptide. We also used a Rac1 inhibitor EHT 1864 and a Rac1-GEF inhibitor NSC23766 to probe the importance of Rac1 in chemotaxis. Both inhibitors did not block CCL3-induced chemotaxis, but they were able to block CXCL12-induced chemotaxis. This confirms that Rac1 activation is not essential for CCL3-induced migration, however NSC23766 might have secondary effects on CXCR4. This small molecule exhibits agonistic features in internalisation and cAMP assays, whereas it acts as an antagonist for CXCR4 in migration and calcium release assays. Our findings strongly suggest that Rac1 activation is not necessary for CCL3 signalling, and reveal that NSC23766 could be a novel CXCR4 receptor ligand. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Deng Liting

    2012-09-01

    Full Text Available Abstract Background Chemotherapeutic agents produce dose-limiting peripheral neuropathy through mechanisms that remain poorly understood. We previously showed that AM1710, a cannabilactone CB2 agonist, produces antinociception without producing central nervous system (CNS-associated side effects. The present study was conducted to examine the antinociceptive effect of AM1710 in rodent models of neuropathic pain evoked by diverse chemotherapeutic agents (cisplatin and paclitaxel. A secondary objective was to investigate the potential contribution of alpha-chemokine receptor (CXCR4 signaling to both chemotherapy-induced neuropathy and CB2 agonist efficacy. Results AM1710 (0.1, 1 or 5 mg/kg i.p. suppressed the maintenance of mechanical and cold allodynia in the cisplatin and paclitaxel models. Anti-allodynic effects of AM1710 were blocked by the CB2 antagonist AM630 (3 mg/kg i.p., but not the CB1 antagonist AM251 (3 mg/kg i.p., consistent with a CB2-mediated effect. By contrast, blockade of CXCR4 signaling with its receptor antagonist AMD3100 (10 mg/kg i.p. failed to attenuate mechanical or cold hypersensitivity induced by either cisplatin or paclitaxel. Moreover, blockade of CXCR4 signaling failed to alter the anti-allodynic effects of AM1710 in the paclitaxel model, further suggesting distinct mechanisms of action. Conclusions Our results indicate that activation of cannabinoid CB2 receptors by AM1710 suppresses both mechanical and cold allodynia in two distinct models of chemotherapy-induced neuropathic pain. By contrast, CXCR4 signaling does not contribute to the maintenance of chemotherapy-induced established neuropathy or efficacy of AM1710. Our studies suggest that CB2 receptors represent a promising therapeutic target for the treatment of toxic neuropathies produced by cisplatin and paclitaxel chemotherapeutic agents.

  8. Evolution of HIV-1 coreceptor usage and coreceptor switching during pregnancy.

    Science.gov (United States)

    Ransy, Doris G; Motorina, Alena; Merindol, Natacha; Akouamba, Bertine S; Samson, Johanne; Lie, Yolanda; Napolitano, Laura A; Lapointe, Normand; Boucher, Marc; Soudeyns, Hugo

    2014-03-01

    Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predicted in nine of 19 subjects (X4 subjects) independent of HIV-1 clade. Six of nine X4 subjects exhibited CD4(+) T cell counts pregnancy, invariably accompanied by progressive increases in the PSSMX4R5 score, the net charge of V3, and the relative representation of X4 sequences. Evolution toward X4 tropism was also echoed in the primary structure of V2, as an accumulation of substitutions associated with CXCR4 tropism was seen in X4 subjects. Results from these experiments provide the first evidence of the ongoing evolution of coreceptor utilization from CCR5 to CXCR4 during pregnancy in a significant fraction of HIV-infected women. These results inform changes in host-pathogen interactions that lead to a directional shaping of viral populations and viral tropism during pregnancy, and provide insights into the biology of HIV transmission from mother to child.

  9. Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes

    DEFF Research Database (Denmark)

    Janssens, Rik; Mortier, Anneleen; Boff, Daiane

    2017-01-01

    The chemokine CXCL12 or stromal cell-derived factor 1/SDF-1 attracts hematopoietic progenitor cells and mature leukocytes through the G protein-coupled CXC chemokine receptor 4 (CXCR4). In addition, it interacts with atypical chemokine receptor 3 (ACKR3 or CXCR7) and glycosaminoglycans. CXCL12 ac...

  10. Infection and depletion of CD4+ group-1 innate lymphoid cells by HIV-1 via type-I interferon pathway.

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2018-01-01

    Full Text Available Innate lymphoid cells (ILCs are severely depleted during chronic HIV-1 infection by unclear mechanisms. We report here that human ILC1s comprising of CD4+ and CD4- subpopulations were present in various human lymphoid organs but with different transcription programs and functions. Importantly, CD4+ ILC1s expressed HIV-1 co-receptors and were productively infected by HIV-1 in vitro and in vivo. Furthermore, chronic HIV-1 infection activated and depleted both CD4+ and CD4- ILC1s, and impaired their cytokine production activity. Highly active antiretroviral (HAART therapy in HIV-1 patients efficiently rescued the ILC1 numbers and reduced their activation, but failed to restore their functionality. We also found that blocking type-I interferon (IFN-I signaling during HIV-1 infection in vivo in humanized mice prevented HIV-1 induced depletion or apoptosis of ILC1 cells. Therefore, we have identified the CD4+ ILC1 cells as a new target population for HIV-1 infection, and revealed that IFN-I contributes to the depletion of ILC1s during HIV-1 infection.

  11. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation.

    Science.gov (United States)

    Kahn, Joy; Byk, Tamara; Jansson-Sjostrand, Lottie; Petit, Isabelle; Shivtiel, Shoham; Nagler, Arnon; Hardan, Izhar; Deutsch, Varda; Gazit, Zulma; Gazit, Dan; Karlsson, Stefan; Lapidot, Tsvee

    2004-04-15

    A major limitation to clinical stem cell-mediated gene therapy protocols is the low levels of engraftment by transduced progenitors. We report that CXCR4 overexpression on human CD34+ progenitors using a lentiviral gene transfer technique helped navigate these cells to the murine bone marrow and spleen in response to stromal-derived factor 1 (SDF-1) signaling. Cells overexpressing CXCR4 exhibited significant increases in SDF-1-mediated chemotaxis and actin polymerization compared with control cells. A major advantage of CXCR4 overexpression was demonstrated by the ability of transduced CD34+ cells to respond to lower, physiologic levels of SDF-1 when compared to control cells, leading to improved SDF-1-induced migration and proliferation/survival, and finally resulting in significantly higher levels of in vivo repopulation of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice including primitive CD34+/CD38(-/low) cells. Importantly, no cellular transformation was observed following transduction with the CXCR4 vector. Unexpectedly, we documented lack of receptor internalization in response to high levels of SDF-1, which can also contribute to increased migration and proliferation by the transduced CD34+ cells. Our results suggest CXCR4 overexpression for improved definitive human stem cell motility, retention, and multilineage repopulation, which could be beneficial for in vivo navigation and expansion of hematopoietic progenitors.

  12. Synaptotagmin 3 deficiency in T cells impairs recycling of the chemokine receptor CXCR4 and thereby inhibits CXCL12 chemokine-induced migration.

    Science.gov (United States)

    Masztalerz, Agnieszka; Zeelenberg, Ingrid S; Wijnands, Yvonne M; de Bruijn, Rosalie; Drager, Angelika M; Janssen, Hans; Roos, Ed

    2007-01-15

    Synaptotagmins regulate vesicle trafficking and fusion of vesicles with membranes - processes that have been implicated in cell migration. We therefore hypothesized that synaptotagmins play a role in T-cell migration. Amongst synaptotagmins 1-11, we found synaptotagmin 3 (SYT3) to be the only one that is expressed in T cells. CXCR4-triggered migration was inhibited by antisense synaptotagmin 3 mRNA and by the isolated C2B domain, known to impair oligomerization of all synaptotagmins, but not by a C2B mutant that binds Ca(2+) but does not block oligomerization. The C2B domain also blocked CXCR4-triggered actin polymerization and invasion. However, CXCR4-dependent adhesion in flow was not affected. Surprisingly, we found that little or no SYT3 is present near the plasma membrane but that it is mainly localized in multivesicular bodies, which also contained much of the CXCR4. Impaired SYT3 function blocked CXCR4 recycling and thus led to reduced surface levels of CXCR4. Migration was restored by overexpression of CXCR4. We conclude that STT3 is essential for CXCR4 recycling in T cells and thereby for the maintenance of high CXCR4 surface levels required for migration.

  13. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems

    Directory of Open Access Journals (Sweden)

    Alice eGuyon

    2014-03-01

    Full Text Available The chemokine CXCL12/SDF1a has first been described in the immune system where it functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Among other chemokines, CXCL12 has recently attracted much attention in the brain as it has been shown that it can be produced not only by glial cells but also by neurons. In addition, its receptors CXCR4 and CXCR7, which are belonging to the G-protein coupled receptors family, are abundantly expressed in diverse brain area, CXCR4 being a major co-receptor for human immunodeficiency virus (HIV-1 entry. This chemokine system has been shown to play important roles in brain plasticity processes occurring during development but also in the physiology of the brain in normal and pathological conditions. For example, in neurons, CXCR4 stimulation has been shown regulate the synaptic release of glutamate and GABA. It can also act post-synaptically by activating a G-protein Inward Rectifier K+ (GIRK, a voltage-gated K channel Kv2.1 associated to neuronal survival, and by increasing high voltage activated (HVA Ca2+ currents. In addition, it has been recently evidenced that there are several crosstalks between the CXCL12/CXCR4-7 system and other neurotransmitter systems in the brain (such as GABA, glutamate, opioids ans cannabinoids. Overall, this chemokine system could be one of the key players of the neuro-immune interface that participates in shaping the brain in response to changes in the environment.

  14. RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4.

    Directory of Open Access Journals (Sweden)

    Dominic P Golec

    Full Text Available T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4(-CD8(- 'double negative' (DN thymocytes, pass through a checkpoint termed "β-selection" before maturing into CD4(+CD8(+ 'double positive' (DP thymocytes. β-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive β-selection. Additionally, it has long been known that ERK is activated during β-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the β-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRβ chain. As a result of impaired β-selection, the pool of TCRβ(+ DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of β-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the β-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.

  15. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers.

    Directory of Open Access Journals (Sweden)

    Merav Darash-Yahana

    2009-08-01

    Full Text Available Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes.

  16. Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Abedini F

    2012-07-01

    Full Text Available Fatemeh Abedini,1 Hossein Hosseinkhani,2 Maznah Ismail,1,3 Abraham J Domb,4 Abdul Rahman Omar,1,5 Pei Pei Chong,1,2 Po-Da Hong,3 Dah-Shyong Yu,6 Ira-Yudovin Farber41Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 3Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia, 4Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel, 5Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia, 6Nanomedicine Research Center, National Defense Medical Center, Taipei, TaiwanPurpose: The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.Methods: Colorectal cancer was established in BALB/C mice following injection of mouse colon carcinoma cells CT.26WT through the tail vein. CXCR4 siRNA for two sites of the target gene was administered following injection of naked siRNA or siRNA encapsulated into nanoparticles.Results: In vivo animal data revealed that CXCR4 silencing by dextran-spermine nanoparticles significantly downregulated CXCR4 expression compared with naked CXCR4 siRNA. Furthermore, there was

  17. Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection.

    Directory of Open Access Journals (Sweden)

    Kristin L Boswell

    2014-01-01

    Full Text Available The interaction between follicular T helper cells (TFH and B cells in the lymph nodes and spleen has a major impact on the development of antigen-specific B cell responses during infection or vaccination. Recent studies described a functional equivalent of these cells among circulating CD4 T cells, referred to as peripheral TFH cells. Here, we characterize the phenotype and in vitro B cell helper activity of peripheral TFH populations, as well as the effect of HIV infection on these populations. In co-culture experiments we confirmed CXCR5+ cells from HIV-uninfected donors provide help to B cells and more specifically, we identified a CCR7(highCXCR5(highCCR6(highPD-1(high CD4 T cell population that secretes IL-21 and enhances isotype-switched immunoglobulin production. This population is significantly decreased in treatment-naïve, HIV-infected individuals and can be recovered after anti-retroviral therapy. We found impaired immunoglobulin production in co-cultures from HIV-infected individuals and found no correlation between the frequency of peripheral TFH cells and memory B cells, or with neutralization activity in untreated HIV infection in our cohort. Furthermore, we found that within the peripheral TFH population, the expression level of TFH-associated genes more closely resembles a memory, non-TFH population, as opposed to a TFH population. Overall, our data identify a heterogeneous population of circulating CD4 T cells that provides in vitro help to B cells, and challenges the origin of these cells as memory TFH cells.

  18. CXCR4 Is Required by a Nonprimate Lentivirus: Heterologous Expression of Feline Immunodeficiency Virus in Human, Rodent, and Feline Cells

    Science.gov (United States)

    Poeschla, Eric M.; Looney, David J.

    1998-01-01

    A heterologous feline immunodeficiency virus (FIV) expression system permitted high-level expression of FIV proteins and efficient production of infectious FIV in human cells. These results identify the FIV U3 element as the sole restriction to the productive phase of replication in nonfeline cells. Heterologous FIV expression in a variety of human cell lines resulted in profuse syncytial lysis that was FIV env specific, CD4 independent, and restricted to cells that express CXCR4, the coreceptor for T-cell-line-adapted strains of human immunodeficiency virus. Stable expression of human CXCR4 in CXCR4-negative human and rodent cell lines resulted in extensive FIV Env-mediated, CXCR4-dependent cell fusion and infection. In feline cells, stable overexpression of human CXCR4 resulted in increased FIV infectivity and marked syncytium formation during FIV replication or after infection with FIV Env-expressing vectors. The use of CXCR4 is a fundamental feature of lentivirus biology independent of CD4 and a shared cellular link to infection and cytopathicity for distantly related lentiviruses that cause AIDS. Their conserved use implicates chemokine receptors as primordial lentivirus receptors. PMID:9658135

  19. HIV-1 subtype C unproductively infects human cardiomyocytes in vitro and induces apoptosis mitigated by an anti-Gp120 aptamer.

    Science.gov (United States)

    Lopes de Campos, Walter R; Chirwa, Nthato; London, Grace; Rotherham, Lia S; Morris, Lynn; Mayosi, Bongani M; Khati, Makobetsa

    2014-01-01

    HIV-associated cardiomyopathy (HIVCM) is of clinical concern in developing countries because of a high HIV-1 prevalence, especially subtype C, and limited access to highly active antiretroviral therapy (HAART). For these reasons, we investigated the direct and indirect effects of HIV-1 subtype C infection of cultured human cardiomyocytes and the mechanisms leading to cardiomyocytes damage; as well as a way to mitigate the damage. We evaluated a novel approach to mitigate HIVCM using a previously reported gp120 binding and HIV-1 neutralizing aptamer called UCLA1. We established a cell-based model of HIVCM by infecting human cardiomyocytes with cell-free HIV-1 or co-culturing human cardiomyocytes with HIV-infected monocyte derived macrophages (MDM). We discovered that HIV-1 subtype C unproductively (i.e. its life cycle is arrested after reverse transcription) infects cardiomyocytes. Furthermore, we found that HIV-1 initiates apoptosis of cardiomyocytes through caspase-9 activation, preferentially via the intrinsic or mitochondrial initiated pathway. CXCR4 receptor-using viruses were stronger inducers of apoptosis than CCR5 utilizing variants. Importantly, we discovered that HIV-1 induced apoptosis of cardiomyocytes was mitigated by UCLA1. However, UCLA1 had no protective effective on cardiomyocytes when apoptosis was triggered by HIV-infected MDM. When HIV-1 was treated with UCLA1 prior to infection of MDM, it failed to induce apoptosis of cardiomyocytes. These data suggest that HIV-1 causes a mitochondrial initiated apoptotic cascade, which signal through caspase-9, whereas HIV-1 infected MDM causes apoptosis predominantly via the death-receptor pathway, mediated by caspase-8. Furthermore the data suggest that UCLA1 protects cardiomyocytes from caspase-mediated apoptosis, directly by binding to HIV-1 and indirectly by preventing infection of MDM.

  20. Genetic diversification of chemokine CXCL16 and its receptor CXCR6 in primates.

    Science.gov (United States)

    Xu, Feifei; He, Dan; Liu, Jiabin; Ni, Qingyong; Lyu, Yongqing; Xiong, Shiqiu; Li, Yan

    2018-08-01

    Chemokine CXCL16 and its receptor CXCR6 are associated with a series of physiological and pathological processes in cooperative and stand-alone fashions. To shed insight into their versatile nature, we studied genetic variations of CXCL16 and CXCR6 in primates. Evolutionary analyses revealed that these genes underwent a similar evolutionary fate. Both genes experienced adaptive diversification with the phylogenetic division of cercopithecoids (Old World monkeys) and hominoids (humans, great apes, and gibbons) from their common ancestor. In contrast, they were conserved in the periods preceding and following the dividing process. In terms of the adaptive diversification between cercopithecoids and hominoids, the adaptive genetic changes have occurred in the mucin-like and chemokine domains of CXCL16 and the N-terminus and transmembrane helixes of CXCR6. In combination with currently available structural and functional information for CXCL16 and CXCR6, the parallels between the evolutionary footprints and the co-occurrence of adaptive diversification at some evolutionary stage suggest that interplay could exist between the diversification-related amino acid sites, or between the domains on which the identified sites are located, in physiological processes such as chemotaxis and/or cell adhesion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo.

    Science.gov (United States)

    Maussang, David; Mujić-Delić, Azra; Descamps, Francis J; Stortelers, Catelijne; Vanlandschoot, Peter; Stigter-van Walsum, Marijke; Vischer, Henry F; van Roy, Maarten; Vosjan, Maria; Gonzalez-Pajuelo, Maria; van Dongen, Guus A M S; Merchiers, Pascal; van Rompaey, Philippe; Smit, Martine J

    2013-10-11

    The chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the "Nanobody platform" to target CXCR7. Previously we showed that Nanobodies, i.e. immunoglobulin single variable domains derived from naturally occurring heavy chain-only camelids antibodies, represent new biological tools to efficiently tackle difficult drug targets such as G protein-coupled receptors. In this study we developed and characterized highly selective and potent Nanobodies against CXCR7. Interestingly, the CXCR7-targeting Nanobodies displayed antagonistic properties in contrast with previously reported CXCR7-targeting agents. Several high affinity CXCR7-specific Nanobodies potently inhibited CXCL12-induced β-arrestin2 recruitment in vitro. A wide variety of tumor biopsies was profiled, showing for the first time high expression of CXCR7 in head and neck cancer. Using a patient-derived CXCR7-expressing head and neck cancer xenograft model in nude mice, tumor growth was inhibited by CXCR7-targeting Nanobody therapy. Mechanistically, CXCR7-targeting Nanobodies did not inhibit cell cycle progression but instead reduced secretion of the angiogenic chemokine CXCL1 from head and neck cancer cells in vitro, thus acting here as inverse agonists, and subsequent angiogenesis in vivo. Hence, with this novel class of CXCR7 inhibitors, we further substantiate the therapeutic relevance of targeting CXCR7 in head and neck cancer.

  2. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo.

    Science.gov (United States)

    Strizki, J M; Xu, S; Wagner, N E; Wojcik, L; Liu, J; Hou, Y; Endres, M; Palani, A; Shapiro, S; Clader, J W; Greenlee, W J; Tagat, J R; McCombie, S; Cox, K; Fawzi, A B; Chou, C C; Pugliese-Sivo, C; Davies, L; Moreno, M E; Ho, D D; Trkola, A; Stoddart, C A; Moore, J P; Reyes, G R; Baroudy, B M

    2001-10-23

    We describe here the identification and properties of SCH-C (SCH 351125), a small molecule inhibitor of HIV-1 entry via the CCR5 coreceptor. SCH-C, an oxime-piperidine compound, is a specific CCR5 antagonist as determined in multiple receptor binding and signal transduction assays. This compound specifically inhibits HIV-1 infection mediated by CCR5 in U-87 astroglioma cells but has no effect on infection of CXCR4-expressing cells. SCH-C has broad and potent antiviral activity in vitro against primary HIV-1 isolates that use CCR5 as their entry coreceptor, with mean 50% inhibitory concentrations ranging between 0.4 and 9 nM. Moreover, SCH-C strongly inhibits the replication of an R5-using HIV-1 isolate in SCID-hu Thy/Liv mice. SCH-C has a favorable pharmacokinetic profile in rodents and primates with an oral bioavailability of 50-60% and a serum half-life of 5-6 h. On the basis of its novel mechanism of action, potent antiviral activity, and in vivo pharmacokinetic profile, SCH-C is a promising new candidate for therapeutic intervention of HIV infection.

  3. A role for the CXCR4-CXCL12 axis in the little skate, Leucoraja erinacea.

    Science.gov (United States)

    Hersh, Taylor A; Dimond, Alexandria L; Ruth, Brittany A; Lupica, Noah V; Bruce, Jacob C; Kelley, John M; King, Benjamin L; Lutton, Bram V

    2018-04-11

    The interaction between C-X-C chemokine receptor type 4 (CXCR4) and its cognate ligand, C-X-C motif chemokine ligand 12 (CXCL12), plays a critical role in regulating hematopoietic stem cell activation and subsequent cellular mobilization. Extensive studies of these genes have been conducted in mammals, but much less is known about the expression and function of CXCR4 and CXCL12 in non-mammalian vertebrates. In the present study, we identify simultaneous expression of CXCR4 and CXCL12 orthologues in the epigonal organ (the primary hematopoietic tissue) of the little skate, Leucoraja erinacea. Genetic and phylogenetic analyses were functionally supported by significant mobilization of leukocytes following administration of Plerixafor: a CXCR4 antagonist and clinically important drug. Our results provide evidence that, as in humans, Plerixafor disrupts CXCR4/CXCL12 binding in the little skate, facilitating release of leukocytes into the bloodstream. Our study illustrates the value of the little skate as a model organism, particularly in studies of hematopoiesis, and potentially for pre-clinical research on hematological and vascular disorders.

  4. Transfection of CXCR-4 using microbubble-mediated ultrasound irradiation and liposomes improves the migratory ability of bone marrow stromal cells.

    Science.gov (United States)

    Wang, Gong; Zhuo, Zhongxiong; Zhang, Qian; Xu, Yali; Wu, Shengzheng; Li, Lu; Xia, Hongmei; Gao, Yunhua

    2015-01-01

    Bone marrow stromal cells (BMSCs) have proven useful for the treatment of various human diseases and injuries. However, their reparative capacity is limited by their poor migration and homing ability, which are primarily dependent on the SDF-1/CXCR4 axis. Most subcultured BMSCs lack CXCR4 receptor expression on the cell surface and exhibit impaired migratory capacity. To increase responsiveness to SDF-1 and promote cell migration and survival of cultured BMSCs, we used a combination of ultrasound-targeted microbubble destruction (UTMD) and liposomes to increase CXCR4 expression in vitro. We isolated and cultured rat BMSCs to their third passage and transduced them with recombinant plasmid pDsRed-CXCR4 using microbubble-mediated ultrasound irradiation and liposomes. Compared to some viral vectors, the method we employed here resulted in significantly better transfection efficiency, CXCR4 expression, and technical reproducibility. The benefits of this approach are likely due to the combination of "sonoporation" caused by shockwaves and microjet flow resulting from UTMD-generated cavitation. Following transfection, we performed a transwell migration assay and found that the migration ability of CXCR4-modified BMSCs was 9-fold higher than controls. The methods we describe here provide an effective, safe, non-viral means to achieve high levels of CXCR4 expression. This is associated with enhanced migration of subcultured BMSCs and may be useful for clinical application as well.

  5. SDF-1/CXCR4 expression in bladder cancer tissue and the correlation with negative costimulatory molecule PD-L1, cell apoptosis and invasion

    Directory of Open Access Journals (Sweden)

    Ming-Bao Ye

    2017-06-01

    Full Text Available Objective: To study the SDF-1/CXCR4 expression in bladder cancer tissue and the correlation with negative costimulatory molecule PD-L1, cell apoptosis and invasion. Methods: A total of 118 cases of bladder cancer tissue and para-carcinoma tissue surgically removed in our hospital between May 2014 and May 2016 were selected as the research samples, the RNA was extracted and then reverse-transcribed into cDNA, and the expression levels of SDF-1/ CXCR4, PD-L1/PD-1, cell apoptosis-related molecules and cell invasion-related molecules were detected. Results: SDF-1 and CXCR4 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue; PD-L1, PD-1, Rec1, Survivin, MRPS5, Nanog, BCAPP2Ac, TRPM8, TRPV2, ILK, β-catenin and GUGBP1 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue and positively correlated with SDF-1 and CXCR4 mRNA expression. Conclusion: Highly expressed SDF-1/CXCR4 in bladder cancer tissue are closely related to the high expression of negative costimulatory molecule PD-L1, pro-proliferation molecules and proinvasion molecules, and SDF-1/CXCR4 can promote the immune escape, proliferation and invasion of bladder cancer cells.

  6. Over-expression of CXCR4, a stemness enhancer, in human blastocysts by low level laser irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tahmasbi

    2013-09-01

    Full Text Available The key role of chemokine receptor CXCR4 in the maintenance of stemness property of stem cells has been shown recently. The low level laser irradiation (LLLI is being used currently in a wide variety of clinical cases as a therapeutic tool for wound healing, relieving pain and destroying tumor cells. The aim of this study was to evaluate the effect of LLLI mimicking low level laser therapy (LLLT on the expression level of CXCR4 gene a few hours after irradiation on human blastocysts. After the development of human embryos to the first grade blastocyst stage, they were irradiated with a low power Ga-Al-As laser at a continuous wavelength of 650 nm and a power output of 30 mW. The total RNA of the irradiated blastocysts and control groups were isolated in groups of 1x2 J/cm2, 2x2 J/cm2, 1x4 J/cm2 and 2x4 J/cm2 LLLI. Specific Real-Time PCR primers were designed to amplify all the two CXCR4 isoforms yet identified. RNA amplifications were done for all the groups. We showed for the first time that LLLI makes the human blastocysts to increase the expression level of CXCR4 a few hours after irradiation. Moreover, it was shown that two irradiation doses with one day interval can cause a significant increase in CXCR4 expression level in human blastocysts. This study revealed that LLLI could be a proliferation motivator for embryonic cell divisions through enhanced over-expression of CXCR4 level.

  7. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Science.gov (United States)

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung

  8. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Hui-Kuo G Shu

    Full Text Available A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12 may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.CXCR4 inhibition by drugs such as MSX-122 may alleviate potential

  9. CXCR7 functions as a scavenger for CXCL12 and CXCL11.

    Directory of Open Access Journals (Sweden)

    Ulrike Naumann

    2010-02-01

    Full Text Available CXCR7 (RDC1, the recently discovered second receptor for CXCL12, is phylogenetically closely related to chemokine receptors, but fails to couple to G-proteins and to induce typical chemokine receptor mediated cellular responses. The function of CXCR7 is controversial. Some studies suggest a signaling activity in mammalian cells and zebrafish embryos, while others indicate a decoy activity in fish. Here we investigated the two propositions in human tissues.We provide evidence and mechanistic insight that CXCR7 acts as specific scavenger for CXCL12 and CXCL11 mediating effective ligand internalization and targeting of the chemokine cargo for degradation. Consistently, CXCR7 continuously cycles between the plasma membrane and intracellular compartments in the absence and presence of ligand, both in mammalian cells and in zebrafish. In accordance with the proposed activity as a scavenger receptor CXCR7-dependent chemokine degradation does not become saturated with increasing ligand concentrations. Active CXCL12 sequestration by CXCR7 is demonstrated in adult mouse heart valves and human umbilical vein endothelium.The finding that CXCR7 specifically scavenges CXCL12 suggests a critical function of the receptor in modulating the activity of the ubiquitously expressed CXCR4 in development and tumor formation. Scavenger activity of CXCR7 might also be important for the fine tuning of the mobility of hematopoietic cells in the bone marrow and lymphoid organs.

  10. Simian Immunodeficiency Virus (SIV-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication

    Directory of Open Access Journals (Sweden)

    Kumudhini Preethi Haran

    2018-03-01

    Full Text Available There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh cells using antiviral chimeric antigen receptor (CAR T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure of HIV and SIV infections.

  11. Identification of dual-tropic HIV-1 using evolved neural networks.

    Science.gov (United States)

    Fogel, Gary B; Lamers, Susanna L; Liu, Enoch S; Salemi, Marco; McGrath, Michael S

    2015-11-01

    Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however, it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1 isolates that assist in the biological understanding of dual-tropism and develop an approach for their detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence was represented by 73 structural, biochemical and regional features. These features were provided to an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Association between HIV-1 coreceptor usage and resistance to broadly neutralizing antibodies.

    Science.gov (United States)

    Pfeifer, Nico; Walter, Hauke; Lengauer, Thomas

    2014-10-01

    Recently discovered broadly neutralizing antibodies have revitalized hopes of developing a universal vaccine against HIV-1. Mainly responsible for new infections are variants only using CCR5 for cell entry, whereas CXCR4-using variants can become dominant in later infection stages. We performed a statistical analysis on two different previously published data sets. The first data set was a panel of 199 diverse HIV-1 isolates for which IC50 neutralization titers were determined for the broadly neutralizing antibodies VRC01, VRC-PG04, PG9, and PG16. The second data set contained env sequences of viral variants extracted from HIV-1-infected humanized mice treated with the antibody PGT128 and from untreated control mice. For the panel of 199 diverse HIV-1 isolates, we found a statistically significant association between viral resistance to PG9 and PG16 and CXCR4 coreceptor usage (P = 0.0011 and P = 0.0010, respectively). Our analysis of viral variants from HIV-1-infected humanized mice under treatment with the broadly neutralizing antibody PGT128 indicated that certain antibodies might drive a viral population toward developing CXCR4 coreceptor usage capability (P = 0.0011 for the comparison between PGT128 and control measurement). These analyses highlight the importance of accounting for a possible coreceptor usage bias pertaining to the effectiveness of an HIV vaccine and to passive antibody transfer as therapeutic approach.

  13. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia

    Directory of Open Access Journals (Sweden)

    Yung-Che Kuo

    2018-02-01

    Full Text Available Summary: Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs. However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R, and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. : In this article, Huang and colleagues demonstrate that niche hypoxia promotes symmetric self-renewal proliferation and migration of PGC-like CD49f+AP+GSCs through IGF-IR regulation. Using a serum-free culture system, the crosstalk between IGF-1R and CXCR4 signaling was discovered. This work demonstrated that embryonic hypoxia synergistically cooperated with IGF-1R signaling to regulate the symmetric self-renewal and migration of PGC-like GSCs through a HIF-2α–OCT4/CXCR4 loop. Keywords: hypoxia, niche, germline stem cells, self-renewal, migration, IGF-1R, HIF-2α, OCT4, SDF-1, CXCR4

  14. Molecular characterization of sdf1 and cxcr4 in the Mozambique tilapia, Oreochromis mossambicus.

    Science.gov (United States)

    Amat-Fernandez, Jorge; Hammond, Michael J; Liang, Di; Wang, Tianfang; Ventura, Tomer; Elizur, Abigail; Cummins, Scott F

    2017-01-01

    Animal sexual reproduction relies on primordial germ cells (PGCs), the predecessors of the germ cell lineage, giving rise to either spermatogonia or oogonia after the completion of gonadal differentiation. There is limited information on the mechanism of PGC migration leading to the formation of the primordial gonad in Perciform fish. Oreochromis mossambicus, a tilapiine species, was investigated that is a commercially important aquaculture species in many parts of the world while in other areas it has become an invasive pest. Key components involved in PGC migration were identified, including the stromal-cell derived factor 1 (Om-sdf1a, Om-sdf1b) and the CXC receptor 4 (Om-cxcr4): both share conservation with existing model species. The spatial gene expression profiles were determined through transcript and protein analysis and displayed distinct localisation within the region of the developing gonad in larvae and within the adult gonads of certain cell populations. A recombinant Om-sdf1a was produced in Escherichia coli that activates Om-cxcr4 using a BRET-based yeast in vitro assay system, suggesting that it is structurally similar to the native Om-sdf1a and is appropriate for further structural studies. This study has improved understanding of the molecular basis of tilapia reproduction through investigation of gonad development, which may be important in the progression towards reproductive suppression methods to control tilapia populations in the wild. In addition, this research will facilitate developments in germ cell transplantation, an innovative technique that harnesses germ cell migration and allows the uptake of foreign germ cells, which differentiate to produce sperm or ova. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia.

    Science.gov (United States)

    Cao, Y; Hunter, Z R; Liu, X; Xu, L; Yang, G; Chen, J; Patterson, C J; Tsakmaklis, N; Kanan, S; Rodig, S; Castillo, J J; Treon, S P

    2015-01-01

    CXCR4(WHIM) somatic mutations are common Waldenstrom's Macroglobulinemia (WM), and are associated with clinical resistance to ibrutinib. We engineered WM cells to express the most common WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis), CXCR(S338X) mutation in WM. Following SDF-1a stimulation, CXCR4(S338X) WM cells exhibited decreased receptor internalization, enhanced and sustained AKT kinase (AKT) and extracellular regulated kinase (ERK) signaling, decreased poly (ADP-ribose) polymerase and caspase 3 cleavage, and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4(S338X)-related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1a-treated CXCR4(S338X) WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4(WT) cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1a-treated CXCR4(S338X) WM cells demonstrating their role in SDF-1a-mediated ibrutinib resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4(WHIM) versus CXCR4(WT) WM patients, and remained active despite ibrutinib therapy in CXCR4(WHIM) patients. Last, CXCR4(S338X) WM cells showed varying levels of resistance to other WM relevant therapeutics, including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1a. These studies demonstrate a functional role for CXCR4(WHIM) mutations, and provide a framework for investigation of CXCR4 inhibitors in WM.

  16. Dual R3R5 tropism characterizes cerebrospinal fluid HIV-1 isolates from individuals with high cerebrospinal fluid viral load.

    Science.gov (United States)

    Karlsson, Ulf; Antonsson, Liselotte; Ljungberg, Bengt; Medstrand, Patrik; Esbjörnsson, Joakim; Jansson, Marianne; Gisslen, Magnus

    2012-09-10

    To study the use of major and alternative coreceptors by HIV-1 isolates obtained from paired plasma and cerebrospinal fluid (CSF) samples. Paired plasma and CSF isolates from HIV-1-infected individuals with varying clinical, virologic, and immunologic parameters were assessed for the ability to infect indicator cells expressing a panel of coreceptors with documented expression in the central nervous system (CNS). HIV-1 isolates obtained from plasma and CSF in 28 individuals with varying viral load, CD4 T-cell counts, and with or without AIDS-defining disease were analyzed for the ability to infect NP2.CD4 cells stably expressing a panel of HIV coreceptors (CCR5, CXCR4, CCR3, CXCR6, GPR1, APJ, ChemR23, RDC-1 or BLT1). All isolates from both plasma and CSF utilized CCR5 and/or CXCR4. However, the ability to use both CCR3 and CCR5 (R3R5) was more pronounced in CSF isolates and correlated with high CSF viral load and low CD4 T-cell count. Notably, four out of five CSF isolates of subtype C origin exhibited CXCR6 use, which coincided with high CSF viral load despite preserved CD4 T-cell counts. The use of other alternative coreceptors was less pronounced. Dual-tropic R3R5 HIV-1 isolates in CSF coincide with high CSF viral load and low CD4 T-cell counts. Frequent CXCR6 use by CSF-derived subtype C isolates indicates that subtype-specific differences in coreceptor use may exist that will not be acknowledged when assessing plasma virus isolates. The findings may also bare relevance for HIV-1 replication within the CNS, and consequently, for the neuropathogenesis of AIDS.

  17. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes1

    Science.gov (United States)

    Duhen, Thomas; Campbell, Daniel J

    2014-01-01

    In humans, Th1/17 cells, identified by co-expression of the chemokine receptors CCR6 and CXCR3, have been proposed to be highly pathogenic in several autoimmune disorders due in part to their expression of the pro-inflammatory cytokines IL-17, IFN-γ and GM-CSF. However, their developmental requirements, relationship with “classic” Th17 and Th1 cells and physiological role in normal immune responses are not well understood. Here, we examined CCR6+CXCR3+ Th1/17 cells from healthy individuals, and found that ex vivo those cells produced the effector cytokines IL-17, IL-22 and IFN-γ in all possible combinations, and were highly responsive to both IL-12 and IL-23. Moreover, although the antigen specificity of CCR6+CXCR3+ Th1/17 cells showed substantial overlap with that of Th1 and Th17 cells, this population was enriched in cells recognizing certain extracellular bacteria and expressing the intestinal homing receptor integrin β7. Finally, we identified IL-1β as a key cytokine that renders Th17 cells sensitive to IL-12, and both cytokines together potently induced the differentiation of cells that produce IL-17, IFN-γ and GM-CSF. Therefore, interfering with IL-1β and IL-12 signaling in Th17 cells during inflammation may be a promising therapeutic approach to reduce their differentiation into “pathogenic” CCR6+CXCR3+ Th1/17 cells in patients with autoimmune diseases. PMID:24890729

  18. McCoy cell line as a possible model containing CD4+ receptors for the study of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Nogueira Yeda L.

    2003-01-01

    Full Text Available Several studies have recently shown the use of recombinant rabies virus as potential vector-viral vaccine for HIV-1. The sequence homology between gp 120 and rabies virus glycoprotein has been reported. The McCoy cell line has therefore been used to show CD4+ or CD4+ like receptors. Samples of HIV-1 were isolated, when plasma of HIV-1 positive patients was inoculated in the McCoy cell line. The virus infection was then studied during successive virus passages. The proteins released in the extra cellular medium were checked for protein activity, by exposure to SDS Electrophoresis and blotting to nitro-cellulose filter, then reacting with sera of HIV positive and negative patients. Successive passages were performed, and showed viral replication, membrane permeabilization, the syncytium formation, and the cellular lysis (cytopathic effect. Flow cytometry analysis shows clear evidence that CD4+ receptors are present in this cell line, which enhances the likelihood of easy isolation and replication of HIV. The results observed allow the use of this cell line as a possible model for isolating HIV, as well as for carrying out studies of the dynamics of viral infection in several situations, including exposure to drugs in pharmacological studies, and possibly studies and analyses of the immune response in vaccine therapies.

  19. Increased CD56(bright) NK cells in HIV-HCV co-infection and HCV mono-infection are associated with distinctive alterations of their phenotype.

    Science.gov (United States)

    Bhardwaj, Suvercha; Ahmad, Fareed; Wedemeyer, Heiner; Cornberg, Marcus; Schulze Zur Wiesch, Julian; van Lunzen, Jan; Sarin, Shiv K; Schmidt, Reinhold E; Meyer-Olson, Dirk

    2016-04-18

    HIV-HCV co-infection is associated with accelerated progression to hepatic fibrosis, cirrhosis and hepatocellular carcinoma than HCV mono-infection. The contribution of innate immunity during HIV-HCV co-infection has been a relatively under-investigated area. Natural killer (NK) cells are pivotal sentinels of innate immunity against viruses and tumour cells. In this study we evaluated the effect of HIV-HCV co-infection on peripheral blood NK cell subsets with emphasis on the phenotype of CD56(bright) NK cells. Sixty patients were included in the study; HIV mono-infected (n = 12), HCV mono-infected (n = 15), HCV-HIV co-infected (n = 21) and healthy controls (n = 16). PBMCs were isolated and immunophenotyping of NK cells was performed by flowcytometry. We observed an expansion of CD56(bright) NK cell subset in HIV-HCV co-infection as compared to healthy controls and HIV mono-infected group. All the infected groups had an upregulated expression of the activating receptor NKG2D on CD56(bright) NK cells in comparison to healthy controls while not differing amongst themselves. The expression of NKp46 in HIV-HCV co-infected group was significantly upregulated as compared to both HIV as well as HCV mono-infections while NKp30 expression in the HIV-HCV co-infected group significantly differed as compared to HIV mono-infection. The CD56(bright) NK cell subset was activated in HIV-HCV co-infection as assessed by the expression of CD69 as compared to healthy controls but was significantly downregulated in comparison to HIV mono-infection. CD95 expression on CD56(bright) NK cells followed the same pattern where there was an increased expression of CD95 in HIV mono-infection and HIV-HCV co-infection as compared to healthy controls. In contrast to CD69 expression, CD95 expression in HCV mono-infection was decreased when compared to HIV mono-infection and HIV-HCV co-infection. Finally, expression of CXCR3 on CD56(bright) NK cells was increased in HIV-HCV co-infection in comparison

  20. pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma

    DEFF Research Database (Denmark)

    Struckmann, K; Mertz, Kd; Steu, S

    2008-01-01

    Loss of pVHL function, characteristic for clear-cell renal cell carcinoma (ccRCC), causes increased expression of CXCR4 chemokine receptor, which triggers expression of metastasis-associated MMP2/MMP9 in different human cancers. The impact of pVHL on MMP2/MMP9 expression and their relationship to...

  1. Preferential susceptibility of Th9 and Th2 CD4+ T cells to X4-tropic HIV-1 infection.

    Science.gov (United States)

    Orlova-Fink, Nina; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-10-23

    The functional polarization of CD4 T cells determines their antimicrobial effector profile, but may also impact the susceptibility to infection with HIV-1. Here, we analyzed the susceptibility of CD4 T cells with different functional polarization to infection with X4 and R5-tropic HIV-1. CD4 T cells with a Th1, Th2, Th17, and Th9 polarization were subjected to in-vitro infection assays with X4, R5, or vesicular stomatitis virus-G protein-pseudotyped HIV-1. In addition, we sorted differentially polarized CD4 T-cell subsets from individuals treated with antiretroviral therapy and analyzed the tropism of viral env sequences. Th9-polarized CD4 T cells and, to a lesser extent, Th2-polarized CD4 T cells expressed higher surface levels of CXCR4, and are more permissive to X4-tropic infection in vitro. In contrast, Th1 and Th17 CD4 T cells exhibited stronger surface expression of CCR5, and were more susceptible to infection with R5-tropic viruses. Correspondingly, the distribution of X4-tropic viral sequences in antiretroviral therapy-treated HIV-1-infected patients was biased toward Th9/Th2 cells, whereas R5-tropic sequences were more frequently observed in Th17 cells. CD4 T-cell polarization is associated with a distinct susceptibility to X4 and R5-tropic HIV-1 infection.

  2. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    Directory of Open Access Journals (Sweden)

    Claudia Tulotta

    2016-02-01

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC.

  3. 2B4 expression on natural killer cells increases in HIV-1 infected patients followed prospectively during highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Ostrowski, S R; Ullum, H; Pedersen, Bente Klarlund

    2005-01-01

    Human immunodeficiency virus (HIV)-1 infection influences natural killer (NK) cell expression of inhibitory NK receptors and activating natural cytotoxicity receptors. It is unknown whether expression of the co-stimulatory NK cell receptor 2B4 (CD244) on NK cells and CD3+ CD8+ cells are affected ...

  4. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    Directory of Open Access Journals (Sweden)

    Kuai Xiao Ling

    2016-01-01

    Full Text Available The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1 participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.

  5. Profound blockage of CXCR4 signaling at multiple points using the synergy between plerixafor, mirtazapine, and clotrimazole as a new glioblastoma treatment adjunct.

    Science.gov (United States)

    Kast, Richard E

    2010-10-01

    CXCL12 signaling at CXCR4 is important in glioblastoma growth promotion as a migration-directing chemokine and as a mitosis-stimulating cytokine system. Recent developments in other areas of medicine may have made it now possible to comprehensively block glioblastoma's use of CXCL12 signaling. CXCL12 signaling at CXCR4 requires an active intermediate conductance Ca2+-activated K+ channel to function. Plerixafor (AMD3100) is a new small molecular weight inhibitor of CXCR4, FDA approved to aid in stem cell mobilization. Inhibition of CXCR4 by plerixafor is expected to inhibit particularly the glioblastoma stem cell population by inhibiting that sub-population's homing to the protective hypoxic niche. Histamine signals through the H1 receptor in glioblastoma cells to activate the intermediate conductance Ca2+-activated K+ channel also, thereby forming a potential bypass for inhibition of CXCR4-initiated signaling. The antidepressant mirtazapine is perhaps the most potent H1 antagonist in common clinical use. By inhibiting H1 stimulation of intermediate conductance Ca2+-activated K+ channels, it could prevent circumvention of CXCR4 inhibition by that path. The anti-fungal clotrimazole directly inhibits the intermediate conductance Ca2+- activated K+ channel at clinically achievable and well-tolerated doses. These three drugs used simultaneously are potential low morbidity paths to deeply inhibit CXCR4/CXCL12 signaling during cytotoxic glioblastoma treatment.

  6. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Science.gov (United States)

    Archer, John; Weber, Jan; Henry, Kenneth; Winner, Dane; Gibson, Richard; Lee, Lawrence; Paxinos, Ellen; Arts, Eric J; Robertson, David L; Mimms, Larry; Quiñones-Mateu, Miguel E

    2012-01-01

    HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  7. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5 viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences and genotypic (e.g., population sequencing linked to bioinformatic algorithms assays are the most widely used. Although several next-generation sequencing (NGS platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences, Illumina®, and Ion Torrent™ (Life Technologies. Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used, compared to Trofile (80% and population sequencing (70%. In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  8. HIV-1 subtype C unproductively infects human cardiomyocytes in vitro and induces apoptosis mitigated by an anti-Gp120 aptamer

    CSIR Research Space (South Africa)

    Rangel Lopes de Campos, W

    2014-10-01

    Full Text Available - surface receptors, the CXCR4 chemokine receptor and the TNF- R1 death receptor. The predominant apoptotic pathway varied from CXCR4-triggered, mitochondrion-initiated to CD95/Fas- ligand initiated, depending on the culture conditions as previously reported... virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c- mediated apoptosis independently of Fas signaling. J Virol 75: 7637–7650. 26. Bottarel F, Feito MJ, Bragardo M, Bonissoni S, Buonfiglio D, et al. (1999...

  9. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Xiang, Jingyu; Hurchla, Michelle A; Fontana, Francesca; Su, Xinming; Amend, Sarah R; Esser, Alison K; Douglas, Garry J; Mudalagiriyappa, Chidananda; Luker, Kathryn E; Pluard, Timothy; Ademuyiwa, Foluso O; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L; Dembowsky, Klaus; Weilbaecher, Katherine N

    2015-11-01

    The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. ©2015 American Association for Cancer Research.

  10. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia.

    Science.gov (United States)

    Kuo, Yung-Che; Au, Heng-Kien; Hsu, Jue-Liang; Wang, Hsiao-Feng; Lee, Chiung-Ju; Peng, Syue-Wei; Lai, Ssu-Chuan; Wu, Yu-Chih; Ho, Hong-Nerng; Huang, Yen-Hua

    2018-02-13

    Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs). However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R), and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation) and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    Science.gov (United States)

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  12. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  13. Construction and Quantitative Validation of Chicken CXCR4 Expression Reporter.

    Science.gov (United States)

    Es-Haghi, Masoumeh; Bassami, Mohammadreza; Dehghani, Hesam

    2016-03-01

    Site directional migration is an important biological event and an essential behavior for latent migratory cells. A migratory cell maintains its motility, survival, and proliferation abilities by a network of signaling pathways where CXCR4/SDF signaling route plays crucial role for directed homing of a polarized cell. The chicken embryo due to its specific vasculature modality has been used as a valuable model for organogenesis, migration, cancer, and metastasis. In this research, the regulatory regions of chicken CXCR4 gene have been characterized in a chicken hematopoietic lymphoblast cell line (MSB1). A region extending from -2000 bp upstream of CXCR4 gene to +68 after its transcriptional start site, in addition to two other mutant fragments were constructed and cloned in a promoter-less reporter vector. Promoter activity was analyzed by quantitative real-time RT-PCR and flow cytometry techniques. Our findings show that the full sequence from -2000 to +68 bp of CXCR4 regulatory region is required for maximum promoter functionality, while the mutant CXCR4 promoter fragments show a partial promoter activity. The chicken CXCR4 promoter validated in this study could be used for characterization of directed migratory cells in chicken development and disease models.

  14. Epigenetic Silencing of CXCR4 Promotes Loss of Cell Adhesion in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Suresh Singh Yadav

    2014-01-01

    Full Text Available In the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples. DNA hypomethylating drug 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor Trichostatin A treatments in cell lines reactivate both CXCR4 transcription and protein expression. Cell adhesion assay demonstrated that autocrine SDF-1α promotes the loss of cell adhesion while paracrine SDF-1α predominantly protects the normal cervical cells from loss of cell adhesion. Cervical cancer cell line C-33A having increased expression of CXCR4 after TSA treatment showed increased cell adhesion by paracrine source of SDF-1α in comparison to untreated C-33A. These findings demonstrate the first evidence that epigenetic silencing of CXCR4 makes the cells inefficient to respond to the paracrine source of SDF-1α leading to loss of cell adhesion, one of the key events in metastases and progression of the disease. Our results provide novel insight of SDF-1α/CXCR4 signaling in tumor microenvironment which may be promising to further delineate molecular mechanism of cervical carcinogenesis.

  15. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7.

    Science.gov (United States)

    Feng, Yifan; Wang, Jing; Yuan, Yuanzhi; Zhang, Xi; Shen, Minqian; Yuan, Fei

    2018-03-01

    Stromal cell-derived factor-1 (SDF-1) has been previously confirmed to participate in the formation of choroidal neovascularization (CNV) via its receptor, CXC chemokine receptor (CXCR) 4; CXCR7 is a recently identified receptor for SDF-1. The molecular mechanisms and therapeutic value of CXCR7 in CNV remain undefined. In this study, experimental CNV was induced by laser photocoagulation in Brown-Norway pigmented rats, and aberrant CXCR7 overexpression was detected in the retinal pigment epithelial/choroid/sclera tissues of laser-injured eyes. Blockade of CXCR7 activation via CXCR7 knockdown or neutralizing Ab administration inhibited SDF-1-induced cell survival and the tubular formation of human retinal microvascular endothelial cells (HRMECs) in vitro and reduced CNV leakage and lesion size in vivo. By using microRNA array screening and bioinformatic analyses, we identified miR-539-5p as a regulator of CXCR7. Transfection of HRMECs and choroid-retinal endothelial (RF/6A) cells with the miR-539-5p mimic inhibited their survival and tube formation, whereas CXCR7 overexpression rescued the suppressive effect of miR-539-5p. The antiangiogenic activities of the miR-539-5p mimic were additionally demonstrated in vivo by intravitreal injection. ERK1/2 and AKT signaling downstream of CXCR7 is involved in the miR-539-5p regulation of endothelial cell behaviors. These findings suggest that the manipulation of miR-539-5p/CXCR7 levels may have important therapeutic implications in CNV-associated diseases.-Feng, Y., Wang, J., Yuan, Y., Zhang, X., Shen, M., Yuan, F. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7.

  16. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Moś, Danuta M; Araszkiewicz, Aleksander; Szromek, Adam R

    2015-12-01

    Posttraumatic stress disorder (PTSD) can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the neurochemical and neuroendocrine functions of the body play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 220 men and women were enrolled in the study. 180 of them constituted the study group. The studied groups consisted of: 60 patients with a diagnosed avoidant personality disorders (APD), 60 patients with a diagnosed APD and with PTSD and of 60 patients with PTSD but without a APD. There were 30 women and 30 men in each group of 60 subjects. The control group consisted of 40 healthy individuals. The plasma levels of chemokines and their receptors (CCL-5, CXCR-5, CXCL-12 and CXCR-4), as well as IL-6, were assessed by ELISA. There was an increase in the CXCL-12 and CCL-5 levels in women and men with the PTSD versus the control group. Also, increased levels of IL-6 and the receptors CXCR-4, CCR-5 were observed in women and men with PTSD. The levels of CXCL-12 and CCL-5 chemokines, as well as CCR-5 and CXCR4 receptors were higher in women than in men. The results of this study indicate a need for assessment of the CCL-5 and CXCL-12 chemokine levels, as they are likely markers of PTSD. Measurement of the concentrations of chemokines, chemokine receptors and IL-6 in women and men with PTSD along with concomittant APD may be useful for early detection of mental disorders. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  18. Correlating HIV tropism with immunological response under combination antiretroviral therapy.

    Science.gov (United States)

    Bader, J; Schöni-Affolter, F; Böni, J; Gorgievski-Hrisoho, M; Martinetti, G; Battegay, M; Klimkait, T

    2016-09-01

    A significant percentage of patients infected with HIV-1 experience only suboptimal CD4 cell recovery while treated with combination therapy (cART). It is still unclear whether viral properties such as cell tropism play a major role in this incomplete immune response. This study therefore intended to follow the tropism evolution of the HIV-1 envelope during periods of suppressive cART. Viruses from two distinct patient groups, one with good and another one with poor CD4 recovery after 5 years of suppressive cART, were genotypically analysed for viral tropism at baseline and at the end of the study period. Patients with CCR5-tropic CC-motif chemokine receptor 5 viruses at baseline tended to maintain this tropism to the study end. Patients who had a CXCR4-tropic CXC-motif chemokine receptor 4 virus at baseline were overrepresented in the poor CD4 recovery group. Overall, however, the majority of patients presented with CCR5-tropic viruses at follow-up. Our data lend support to the hypothesis that tropism determination can be used as a parameter for disease progression even if analysed long before the establishment of a poorer immune response. Moreover, the lasting predominating CCR5-tropism during periods of full viral control suggests the involvement of cellular mechanisms that preferentially reduce CXCR4-tropic viruses during cART. © 2016 British HIV Association.

  19. Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists.

    Directory of Open Access Journals (Sweden)

    Victoria Vinader

    Full Text Available Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds.

  20. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    Science.gov (United States)

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR5 and CXCR3 and are the most permissive to HIV-1 infection. A single low-dose intravaginal HIV-1 challenge of humanized DRAG mice results in 100% infectivity with accumulation of TFH-cells mainly in the Peyer’s patches and FRT. The novel finding of TFH-cells in the FRT may contribute to the high susceptibility of DRAG mice to HIV-1 infection. This mouse model thus provides new opportunities to study TFH-cells and to evaluate HIV-1 vaccines. PMID:26034905

  1. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4 Induced Hepatic Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Leola N Chow

    Full Text Available Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM-induced pulmonary fibrosis and carbon tetrachloride (CCl4-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC, the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  2. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  3. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.

    Directory of Open Access Journals (Sweden)

    Rajeev Mehla

    2010-06-01

    Full Text Available HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC involving stress induced AMP Kinase (AMPK inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.

  4. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  5. Cytoplasmic CXCR4 expression in breast cancer: induction by nitric oxide and correlation with lymph node metastasis and poor prognosis

    International Nuclear Information System (INIS)

    Yasuoka, Hironao; Tsujimoto, Masahiko; Yoshidome, Katsuhide; Nakahara, Masaaki; Kodama, Rieko; Sanke, Tokio; Nakamura, Yasushi

    2008-01-01

    Lymph nodes constitute the first site of metastasis for most malignancies, and the extent of lymph node involvement is a major criterion for evaluating patient prognosis. The CXC chemokine receptor 4 (CXCR4) has been shown to play an important role in lymph node metastasis. Nitric oxide (NO) may also contribute to induction of metastatic ability in human cancers. CXCR4 expression was analyzed in primary human breast carcinoma with long-term follow-up. The relationship between nitrotyrosine levels (a biomarker for peroxynitrate formation from NO in vivo) and lymph node status, CXCR4 immunoreactivity, and other established clinico-pathological parameters, as well as prognosis, was analyzed. Nitrite/nitrate levels and CXCR4 expressions were assessed in MDA-MB-231 and SK-BR-3 breast cancer cell lines after induction and/or inhibition of NO synthesis. CXCR4 staining was predominantly cytoplasmic; this was observed in 50%(56/113) of the tumors. Cytoplasmic CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis. Kaplan-Meier survival curves showed that cytoplasmic CXCR4 expression was associated with reduced disease-free and overall survival. In multivariate analysis, cytoplasmic CXCR4 expression emerged as a significant independent predictor for overall and disease-free survival. Cytoplasmic expression of functional CXCR4 in MDA-MB-231 and SK-BR-3 cells was increased by treatment with the NO donor DETA NONOate. This increase was abolished by L-NAME, an inhibitor of NOS. Our data showed a role for NO in stimulating cytoplasmic CXCR4 expression in vitro. Formation of the biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in vivo. In addition, cytoplasmic CXCR4 expression may serve as a significant prognostic factor for long-term survival in breast cancer

  6. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available The latent membrane protein 1 (LMP1, which is encoded by the Epstein-Barr virus (EBV, is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC, a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1, an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

  7. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium.

    Science.gov (United States)

    Vidal, Vincent; Potterat, Olivier; Louvel, Séverine; Hamy, François; Mojarrab, Mahdi; Sanglier, Jean-Jacques; Klimkait, Thomas; Hamburger, Matthias

    2012-03-23

    Despite the existence of an extended armamentarium of effective synthetic drugs to treat HIV, there is a continuing need for new potent and affordable drugs. Given the successful history of natural product based drug discovery, a library of close to one thousand plant and fungal extracts was screened for antiretroviral activity. A dichloromethane extract of the aerial parts of Daphne gnidium exhibited strong antiretroviral activity and absence of cytotoxicity. With the aid of HPLC-based activity profiling, the antiviral activity could be tracked to four daphnane derivatives, namely, daphnetoxin (1), gnidicin (2), gniditrin (3), and excoecariatoxin (4). Detailed anti-HIV profiling revealed that the pure compounds were active against multidrug-resistant viruses irrespective of their cellular tropism. Mode of action studies that narrowed the site of activity to viral entry events suggested a direct interference with the expression of the two main HIV co-receptors, CCR5 and CXCR4, at the cell surface by daphnetoxin (1).

  8. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    Science.gov (United States)

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  9. Hierarchy Low CD4+/CD8+ T-Cell Counts and IFN-γ Responses in HIV-1+ Individuals Correlate with Active TB and/or M.tb Co-Infection.

    Science.gov (United States)

    Shao, Lingyun; Zhang, Xinyun; Gao, Yan; Xu, Yunya; Zhang, Shu; Yu, Shenglei; Weng, Xinhua; Shen, Hongbo; Chen, Zheng W; Jiang, Weimin; Zhang, Wenhong

    2016-01-01

    Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue. 164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses. There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (PHierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.

  10. CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein-Coupled Receptor CXCR2.

    Science.gov (United States)

    Boro, Monoranjan; Balaji, Kithiganahalli Narayanaswamy

    2017-09-01

    Inflammation is an extensively concerted process that confers protection to the host encountering immune insult. The major inflammatory mediators include IL-1 family members, such as IL-1β, and the functional activation of such molecules is arbitrated by their regulated cleavage brought about by components of a multiprotein complex called inflammasome. In this context, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation often acts as a rate-limiting step in regulating critical cell-fate decisions in various inflammatory scenarios. In this study, we identify the G-protein-coupled receptor CXCR2 (recognizing chemokines CXCL1 and CXCL2) as another arm feeding into the regulated activation of NLRP3 inflammasome in macrophages. We demonstrate that in vivo blocking of CXCL1 and CXCL2 can significantly reduce the Mycobacterium tuberculosis -induced bioactive IL-1β production. Further, CXCL1 could amplify the inflammasome activation in in vivo mouse models of carrageenan-induced inflammation in footpads and air pouches. The mechanistic insights revealed CXCR2-driven protein kinase C μ-dependent integrin-linked kinase to be essential for CXCL1-mediated activation of NLRP3 inflammasome. Blocking the activity of integrin-linked kinase or protein kinase C μ either by small interfering RNA-mediated knockdown or pharmacological inhibitor compromised inflammasome activation and subsequent production of bioactive IL-1β. Taken together, our study demonstrates CXCR2-driven activation of NLRP3 inflammasome in macrophages and indicates a potential host-directed therapeutic target to limit the damaging inflammation associated with overt production of proinflammatory IL-1β. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Yonghui Dong

    2016-06-01

    Full Text Available Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA. Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA mice models were prepared by transecting the anterior cruciate ligament (ACLT, or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS or AMD3100 (an inhibitor of CXCR4 and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT. Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I were quantified by ELISA. Bone marrow mononuclear cells (BMMCs were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP, cathepsin K (CK, and matrix metalloproteinase (MMP-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage

  12. Reanalysis of Coreceptor Tropism in HIV-1–Infected Adults Using a Phenotypic Assay with Enhanced Sensitivity

    Science.gov (United States)

    Goetz, Mathew Bidwell; Leduc, Robert; Skowron, Gail; Su, Zhaohui; Chan, Ellen S.; Heera, Jayyant; Chapman, Doug; Spritzler, John; Reeves, Jacqueline D.; Gulick, Roy M.; Coakley, Eoin

    2011-01-01

    The enhanced-sensitivity Trofile assay (TF-ES; Monogram Biosciences) was used to retest coreceptor tropism samples from 4 different cohorts of HIV-1–infected patients. Nine percent to 26% of patients with CCR5-tropic virus by the original Trofile assay had CXCR4-using virus by TF-ES. Lower CD4 cell counts were associated with CXCR4-using virus in all cohorts. PMID:21427401

  13. mDia2 and CXCL12/CXCR4 chemokine signaling intersect to drive tumor cell amoeboid morphological transitions.

    Science.gov (United States)

    Wyse, Meghan M; Goicoechea, Silvia; Garcia-Mata, Rafael; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M

    2017-03-04

    Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling. F-actin disruption is initiated by a CXCL12-dependent mechanism. Downstream CXCL12 signaling partners inducing mDia2-dependent amoeboid conversions remain enigmatic. We found in MDA-MB-231 tumor cells CXCL12 induces DIP and mDia2 interaction in blebs, and engages its receptor CXCR4 to induce RhoA-dependent blebbing. mDia2 and CXCR4 associate in blebs upon CXCL12 stimulation. Both CXCR4 and RhoA are required for CXCL12-induced blebbing. Neither CXCR7 nor other Rho GTPases that activate mDia2 are required for CXCL12-induced blebbing. The Rho Guanine Nucleotide Exchange Factor (GEF) Net1 is required for CXCL12-driven RhoA activation and subsequent blebbing. These results reveal CXCL12 signaling, through CXCR4, directs a Net1/RhoA/mDia-dependent signaling hub to drive cytoskeleton rearrangements to regulate morphological plasticity in tumor cells. These signaling hubs may be conserved during normal and cancer cells responding to chemotactic cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Bae, Yoon-Kyung; Kim, Gee-Hye; Lee, Jae Cheoun; Seo, Byoung-Moo; Joo, Kyeung-Min; Lee, Gene; Nam, Hyun

    2017-06-30

    Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

  15. Oral CCR5 inhibitors: will they make it through?

    Science.gov (United States)

    Biswas, Priscilla; Nozza, Silvia; Scarlatti, Gabriella; Lazzarin, Adriano; Tambussi, Giuseppe

    2006-05-01

    The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.

  16. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio; Schettini, Gennaro

    2005-01-01

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  17. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    Science.gov (United States)

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  18. The prognostic value of CXC-chemokine receptor 2 (CXCR2) in gastric cancer patients

    International Nuclear Information System (INIS)

    Wang, Zhenglin; Liu, Hao; Shen, Zhenbin; Wang, Xuefei; Zhang, Heng; Qin, Jing; Xu, Jiejie; Sun, Yihong; Qin, Xinyu

    2015-01-01

    CXC chemokine receptor 2 (CXCR2) has been reported to play an important role in the proliferation and invasion of gastric cancer cells. The present study aims to investigate the impact of CXCR2 expression on the overall survival (OS) of gastric cancer patients after radical resection. Intratumoral CXCR2 expression was evaluated with immunohistochemistry on tissue microarrays containing tumor samples of 357 gastric cancer patients from a single center. CXCR2 expression levels were correlated to clinicopathological variables and OS. CXCR2 expression was mainly located in the cytoplasm of gastric carcinoma cells. High CXCR2 expression was associated with poor tumor differentiation (p = 0.021), increased tumor depth (p < 0.001), lymph node metastasis (p < 0.001), advanced TNM stage (p < 0.001) and short OS (p = 0.001). CXCR2 expression was an independent prognostic factor for OS (p = 0.001) in multivariate analysis, and could be combined with TNM stage to generate a predictive nomogram for clinical outcome in patients with gastric cancer. Intratumoral CXCR2 expression is a novel independent predictor for survival in gastric cancer patients. CXCR2 might be a promising therapeutic target of postoperative adjuvant treatment. The online version of this article (doi:10.1186/s12885-015-1793-9) contains supplementary material, which is available to authorized users

  19. Novel anti-metastatic action of cidofovir mediated by inhibition of E6/E7, CXCR4 and Rho/ROCK signaling in HPV tumor cells.

    Directory of Open Access Journals (Sweden)

    Abdessamad Amine

    Full Text Available Cervical cancer is frequently associated with HPV infection. The expression of E6 and E7 HPV oncoproteins is a key factor in its carcinogenicity and might also influence its virulence, including metastatic conversion. The cellular mechanisms involved in metastatic spread remain elusive, but pro-adhesive receptors and their ligands, such as SDF-1alpha and CXCR4 are implicated. In the present study, we assessed the possible relationship between SDF-1alpha/CXCR4 signaling, E6/E7 status and the metastatic process. We found that SDF-1alpha stimulated the invasion of E6/E7-positive cancer cell lines (HeLa and TC-1 in Matrigel though CXCR4 and subsequent Rho/ROCK activation. In pulmonary metastatic foci generated by TC-1 cells IV injection a high proportion of cells expressed membrane-associated CXCR4. In both cases models (in vitro and in vivo cell adhesion and invasion was abrogated by CXCR4 immunological blockade supporting a contribution of SDF-1alpha/CXCR4 to the metastatic process. E6 and E7 silencing using stable knock-down and the approved anti-viral agent, Cidofovir decreased CXCR4 gene expression as well as both, constitutive and SDF-1alpha-induced cell invasion. In addition, Cidofovir inhibited lung metastasis (both adhesion and invasion supporting contribution of E6 and E7 oncoproteins to the metastatic process. Finally, potential signals activated downstream SDF-1alpha/CXCR4 and involved in lung homing of E6/E7-expressing tumor cells were investigated. The contribution of the Rho/ROCK pathway was suggested by the inhibitory effect triggered by Cidofovir and further confirmed using Y-27632 (a small molecule ROCK inhibitor. These data suggest a novel and highly translatable therapeutic approach to cervix cancer, by inhibition of adhesion and invasion of circulating HPV-positive tumor cells, using Cidofovir and/or ROCK inhibition.

  20. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells.

    Science.gov (United States)

    Offersen, Rasmus; Nissen, Sara Konstantin; Rasmussen, Thomas A; Østergaard, Lars; Denton, Paul W; Søgaard, Ole Schmeltz; Tolstrup, Martin

    2016-05-01

    Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family

  1. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    Science.gov (United States)

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  2. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  3. Control of humoral immunity and auto-immunity by the CXCR4/CXCL12 axis in lupus patients following influenza vaccine.

    Science.gov (United States)

    Launay, Odile; Paul, Stéphane; Servettaz, Amélie; Roguet, Gwénaëlle; Rozenberg, Flore; Lucht, Frédéric; Lambert, Claude; Presles, Emilie; Goulvestre, Claire; Méritet, Jean-François; Galtier, Florence; Dubray, Claude; Lebon, Pierre; Weill, Bernard; Batteux, Frédéric

    2013-08-02

    CXCR4 is a chemokine receptor with multiple effects on the immune system, upregulated in patients with SLE, and correlated with disease severity. This study has investigated whether the levels of CXCR4 expressed on leucocyte subsets in lupus patients are correlated with the efficacy and the safety of the influenza vaccine. Twenty-seven patients were vaccinated and vaccine immunogenicity and tolerance were evaluated. CXCR4 was assayed on leucocyte subsets and correlated with clinical and immunological signs of diseases activity. A significant increase in the titres of antibodies to the three viral strains was observed along with trends towards an increased vaccine efficacy in patients with quiescent disease vs patients with active disease. Recent flu vaccine history and, to a lesser extent, immunosuppressive treatment may influence vaccine immunogenicity. Influenza immunization was not associated with clinical side-effects or clinical lupus flare but with an increase in rheumatoid factor levels. Our study also confirms the correlation of CXCR4 expression with biological autoimmunity as shown by the correlation between the percentage of CXCR4-positive T cells and the ANA titres at D0, and the reverse correlation between CXCR4 expression and vaccine immunogenicity as demonstrated by the higher percentage of CXCR4-positive T cells at D0 and D30 in non-responders vs responders. Altogether, our study confirms the efficacy and the safety of flu vaccine in SLE patients, highlights the role of CXCR4 as a surrogate marker for autoimmunity in lupus and shows that CXCR4 expression on T cells is predictive of vaccine efficacy in SLE patients. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    International Nuclear Information System (INIS)

    Pham, Son; Tabarin, Thibault; Garvey, Megan; Pade, Corinna; Rossy, Jérémie; Monaghan, Paul; Hyatt, Alex; Böcking, Till; Leis, Andrew; Gaus, Katharina; Mak, Johnson

    2015-01-01

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  5. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  6. Expression of chemokine receptor CXCR3 in female patients with dry eye at perimenopause

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-09-01

    Full Text Available AIM: To explore the expression and clinical significance of chemotactic factor receptor-3(CXCR3of female patients conjunctival with dry eye at perimenopause. METHODS: Thirty dry eye case(60 eyesin the patient at perimenopause of the First Affiliated Hospital of Xinjiang Medical University and thirty dry eye cases(60 eyesin patient at non-perimenopause were selected. The conjunctival epithelial cells at perimenopause and non-perimenopause in dry eye cases were obtained by impression cytology methods, and then immersed into the centrifugal tube with corresponding number respectively and the expression of CXCR3 in conjunctival epithelium of at perimenopause and non-perimenopause in dry eye cases were detected by flow cytometry. RESULTS: The break-up time(BUTand Schirmer Ⅰ test result of perimenopause was significantly lower than those of non-perimenopause(F=4.076, 5.023; PPr=-0.753, r=-0.684; PP>0.05.CONCLUSION: CXCR3 plays an inflammatory mediators role in dry eye mechanism and its expression level reflects the progress of dry eye at perimenopause.

  7. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  8. High levels of T lymphocyte activation in Leishmania-HIV-1 co-infected individuals despite low HIV viral load

    Directory of Open Access Journals (Sweden)

    Grinsztejn Beatriz

    2010-12-01

    Full Text Available Abstract Background Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL and tegumentary leishmaniasis (ATL have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function. Methods To address this issue we analyzed CD4+ T absolute counts and the proportion of CD8+ T cells expressing CD38 in Leishmania/HIV co-infected patients that recovered after anti-leishmanial therapy. Results We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4+ T cell counts under 200 cells/mm3, differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm3. Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4+ T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8+ T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects. Conclusions Leishmania infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4+ T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.

  9. Expression characteristic of CXCR1 in different breast tissues and the relevance between its expression and efficacy of neo-adjuvant chemotherapy in breast cancer.

    Science.gov (United States)

    Xue, Miao-Qun; Liu, Jun; Sang, Jian-Feng; Su, Lei; Yao, Yong-Zhong

    2017-07-25

    To investigate chemokine receptor CXCR1 expression characteristic in different breast tissues and analyze the relationship between CXCR1 expression changes in breast cancer tissue and efficacy of neo-adjuvant chemotherapy. Chemokine receptor CXCR1 was lowly expressed in normal breast tissues and breast fibroadenoma, but highly expressed in breast cancer. It was significantly correlated with pathological stage, tumor cell differentiation, and lymph node metastasis (P breast cancer tissues decreased. Among these 104 breast cancer patients with different molecular subtypes, the survival rate with Luminal A was the highest, followed by the Luminal B breast cancer, TNBC was the worst. 104 cases with breast carcinoma, 20 cases with normal breast and 20 cases with breast fibroadenoma were included and followed up. Immunohistochemistry was used to detect the expression of CXCR1 in the various tissues. The relationship between the CXCR1 expression changes in breast cancer biopsies and surgical specimens, as well as the efficacy of neo-adjuvant chemotherapy, was analyzed. Chemokine receptor CXCR1 could be used as an indicator to predict benign or malignant breast disease, and it can even predict the malignancy degree of breast cancer, as well as its invasive ability and prognosis.

  10. HIV-1 intersection with CD4 T cell vesicle exocytosis: intercellular communication goes viral

    Directory of Open Access Journals (Sweden)

    Helena eSoares

    2014-09-01

    Full Text Available In cells of the immune system the secretion of extracellular vesicles is modulated through cellular activation. In particular, T cell activation is achieved through cell-cell contacts with antigen presenting cells and the consequent formation of a specialized signaling junction called the immunological synapse. Recent works on CD4 T cells have elucidated that cognate antigen recognition by the T cell receptor (TCR engages two distinct exocytic events. The first, involves the exocytic targeting of signaling molecules at the synaptic membrane and drives the functional architecture of the immunological synapse. The second, enlists the extracellular secretion of the TCR itself, once the functional architecture of the immunological synapse is accomplished. HIV-1, a human lymphotropic virus, has evolved sophisticated mechanisms to co-opt CD4 T cell physiology. Notably, it has become apparent that HIV-1 intersects the regulated secretory system of CD4 T cells in order to bud from the plasma membrane of the infected cell and to promote bystander cell death. Here, I review the relevance of CD4 vesicle exocytosis to immune regulation and to HIV-1 pathogenesis and discuss their potential therapeutic applications.

  11. Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-01-01

    Full Text Available Mesenchymal stem cell (MSC therapy shows considerable promise for the treatment of myocardial infarction (MI. However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.

  12. Exposure to apoptotic activated CD4+ T cells induces maturation and APOBEC3G-mediated inhibition of HIV-1 infection in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Venkatramanan Mohanram

    Full Text Available Dendritic cells (DCs are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+ T cells (ApoInf or apoptotic uninfected activated CD4(+ T cells (ApoAct induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+ T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+ T cells (ApoRest. Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.

  13. A novel CD4-conjugated ultraviolet light-activated photocatalyst inactivates HIV-1 and SIV efficiently.

    Science.gov (United States)

    Yamaguchi, Koushi; Sugiyama, Takahiro; Kato, Shinji; Kondo, Yoichi; Ageyama, Naohide; Kanekiyo, Masaru; Iwata, Misao; Koyanagi, Yoshio; Yamamoto, Naoki; Honda, Mitsuo

    2008-08-01

    In this study, we found that the electric potential derived from the redox reaction of ultraviolet (UV)-illuminated CD4-conjugated titanium dioxide (TiO2) inactivated a wide range of high-titered primary HIV-1 isolates, regardless of virus co-receptor usage or genetic clade. In vitro incubation of HIV-1 isolates with CD4-conjugated TiO2 (CD4-TiO2) followed by UV illumination led to inhibition of viral infectivity in both H9 cells and peripheral blood mononuclear cells as well as to the complete inactivation of plasma virions from HIV-1-infected individuals. Treatment with a newly established extra-corporeal circulation system with the photocatalyst in rhesus macaques completely inactivated plasma virus in the system and effectively reduced the infectious plasma viral load. Furthermore, plasma viremia and infectious viral loads were controlled following a second therapeutic photocatalyst treatment during primary SIV(mac239) infection of macaques. Our findings suggest that this therapeutic immunophysical strategy may help control human immunodeficiency viral infection in vivo.

  14. Synthesis of a novel tripeptidomimetic scaffold and biological evaluation for CXC chemokine receptor 4 (CXCR4) antagonism

    DEFF Research Database (Denmark)

    Baumann, Markus; Nome, Lina Marie; Zachariassen, Zack G.

    2017-01-01

    We here report the preparation of a new 2,6,8-trisubstituted bicyclic tripeptidomimetic scaffold through TFA-mediated cyclization of a linear precursor containing three side chains. The introduction of a triphenylmethyl-protected thiol into carboxylic acid containing building blocks through sulfa...... the stereochemical outcome of the cyclization differently when the R1 side chain is positioned on C2 in the bicycles (present work) instead of C3 (previous work). Tripeptidomimetic compounds based on the new scaffold were synthesized and evaluated for antagonistic potency toward CXCR4, and one compound (45a...

  15. Expression and Function of the Chemokine, CXCL13, and Its Receptor, CXCR5, in Aids-Associated Non-Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Daniel P. Widney

    2010-01-01

    Full Text Available Background. The homeostatic chemokine, CXCL13 (BLC, BCA-1, helps direct the recirculation of mature, resting B cells, which express its receptor, CXCR5. CXCL13/CXCR5 are expressed, and may play a role, in some non-AIDS-associated B cell tumors. Objective. To determine if CXCL13/CXCR5 are associated with AIDS-related non-Hodgkin's lymphoma (AIDS-NHL. Methods. Serum CXCL13 levels were measured by ELISA in 46 subjects who developed AIDS-NHL in the Multicenter AIDS Cohort Study and in controls. The expression or function of CXCL13 and CXCR5 was examined on primary AIDS-NHL specimens or AIDS-NHL cell lines. Results. Serum CXCL13 levels were significantly elevated in the AIDS-NHL group compared to controls. All primary AIDS-NHL specimens showed CXCR5 expression and most also showed CXCL13 expression. AIDS-NHL cell lines expressed CXCR5 and showed chemotaxis towards CXCL13. Conclusions. CXCL13/CXCR5 are expressed in AIDS-NHL and could potentially be involved in its biology. CXCL13 may have potential as a biomarker for AIDS-NHL.

  16. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis

    International Nuclear Information System (INIS)

    Yasuoka, Hironao; Kodama, Rieko; Hirokawa, Mitsuyoshi; Takamura, Yuuki; Miyauchi, Akira; Sanke, Tokio; Nakamura, Yasushi

    2008-01-01

    Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary human PTC. The relationship between nitrotyrosine levels, which are a biomarker for peroxynitrate formation from NO in vivo, CXCR4 expression, and lymph node status was also analyzed. Production of nitrite/nitrate and functional CXCR4 expression in both cell lines was increased by treatment with the NO donor DETA NONOate. The NOS inhibitor L-NAME eliminated this increase. Positive CXCR4 immunostaining was observed in 60.7% (34/56) of PTCs. CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis in human PTC. Our data indicate that NO stimulates CXCR4 expression in vitro. Formation of the NO biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in human PTC. NO may induce lymph node metastasis via CXCR4 induction in papillary thyroid carcinoma

  17. Replacement of the murine leukemia virus (MLV) envelope gene with a truncated HIV envelope gene in MLV generates a virus with impaired replication capacity

    International Nuclear Information System (INIS)

    Nack, Ursula; Schnierle, Barbara S.

    2003-01-01

    Murine leukemia virus (MLV) capsid particles can be efficiently pseudotyped with a variant of the HIV-1 envelope protein (Env) containing the surface glycoprotein gp120-SU and a carboxyl-terminally truncated transmembrane (TM) protein, with only seven cytoplasmic amino acids. MLV/HIV pseudotyped vector particles acquire the natural host tropism of HIV-1 and their entry is dependent on the presence of CD4 and an appropriate co-receptor on the surface of the target cell. We describe here the construction of chimeric MLV/HIV proviruses containing the truncated HIV envelope gene. The MLV/HIV provirus was generated by direct replacement of the MLV envelope gene with HIV Env coding sequences either with or without the additional inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Chimeric MLV/HIV particles could be generated from transfected 293T cells and were able to infect CD4/CXCR4-positive target cells. However, the second round of infection of target cells was severely impaired, despite the fact that the WPRE element enhanced the amount of viral mRNA detected. Viral particles released from infected cells showed reduced HIV Env incorporation, indicating that additional factors required for efficient replication of MLV/HIV pseudotyped viruses are missing

  18. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.

    Science.gov (United States)

    Lammers, Karen M; Lu, Ruliang; Brownley, Julie; Lu, Bao; Gerard, Craig; Thomas, Karen; Rallabhandi, Prasad; Shea-Donohue, Terez; Tamiz, Amir; Alkan, Sefik; Netzel-Arnett, Sarah; Antalis, Toni; Vogel, Stefanie N; Fasano, Alessio

    2008-07-01

    Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.

  19. T CD4+ cells count among patients co-infected with human immunodeficiency virus type 1 (HIV-1 and human T-cell leukemia virus type 1 (HTLV-1: high prevalence of tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM Contagens de células T CD4+ na co-infecção HIV-1 e HTLV-1: alta prevalência da paraparesia espástica tropical/mielopatia associada ao HTLV-1

    Directory of Open Access Journals (Sweden)

    Jorge Casseb

    2007-08-01

    Full Text Available INTRODUCTION: HIV positive patients co-infected with HTLV-1 may have an increase in their T CD4+ cell counts, thus rendering this parameter useless as an AIDS-defining event. OBJECTIVE: To study the effects induced by the co-infection of HIV-1 and HTLV-1 upon CD4+ cells. MATERIAL AND METHODS: Since 1997, our group has been following a cohort of HTLV-1-infected patients, in order to study the interaction of HTLV-1 with HIV and/or with hepatitis C virus (HCV, as well as HTLV-1-only infected asymptomatic carriers and those with tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM. One hundred and fifty HTLV-1-infected subjects have been referred to our clinic at the Institute of Infectious Diseases "Emílio Ribas", São Paulo. Twenty-seven of them were also infected with HIV-1 and HTLV-1-infection using two ELISAs and confirmed and typed by Western Blot (WB or polymerase chain reaction (PCR. All subjects were evaluated by two neurologists, blinded to the patient's HTLV status, and the TSP/HAM diagnostic was based on the World Health Organization (WHO classification. AIDS-defining events were in accordance with the Centers for Disease Control (CDC classification of 1988. The first T CD4+ cells count available before starting anti-retroviral therapy are shown compared to the HIV-1-infected subjects at the moment of AIDS defining event. RESULTS: A total of 27 HIV-1/HTLV-1 co-infected subjects were identified in this cohort; 15 already had AIDS and 12 remained free of AIDS. The median of T CD4+ cell counts was 189 (98-688 cells/mm³ and 89 (53-196 cells/mm³ for co-infected subjects who had an AIDS-defining event, and HIV-only infected individuals, respectively (p = 0.036. Eight of 27 co-infected subjects (30% were diagnosed as having a TSP/HAM simile diagnosis, and three of them had opportunistic infections but high T CD4+ cell counts at the time of their AIDS- defining event. DISCUSSION: Our results indicate that higher T CD4+ cells

  20. Circulating CD4+CXCR5+ T cells contribute to proinflammatory responses in multiple ways in coronary artery disease.

    Science.gov (United States)

    Ding, Ru; Gao, Wenwu; He, Zhiqing; Wu, Feng; Chu, Yang; Wu, Jie; Ma, Lan; Liang, Chun

    2017-11-01

    Coronary artery disease (CAD) is a common subtype of cardiovascular disease. The major contributing event is atherosclerosis, which is a progressive inflammatory condition resulting in the thickening of the arterial wall and the formation of atheromatous plaques. Recent evidence suggests that circulating CD4 + CXCR5 + T cells can contribute to inflammatory reactions. In this study, the frequency, phenotype, and function of circulating CD4 + CXCR5 + T cells in CAD patients were examined. Data showed that circulating CD4 + CXCR5 + T cells in CAD patients were enriched with a PD-1 + CCR7 - subset, which was previously identified as the most potent in B cell help. The CD4 + CXCR5 + T cells in CAD patients also secreted significantly higher levels of IFN-γ, IL-17A, and IL-21 than those from healthy controls. Depleting the PD-1 + population significantly reduced the cytokine secretion. Interestingly, the CD4 + CXCR5 + PD-1 - T cells significantly upregulated PD-1 following anti-CD3/CD28 or SEB stimulation. CD4 + CXCR5 + T cells from CAD patients also demonstrated more potent capacity to stimulate B cell inflammation than those from healthy individuals. The phosphorylation of STAT1 and STAT3 were significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD than controls. The IL-6 and IFN-γ expression were also significantly higher in B cells incubated with CD4 + CXCR5 + T cells from CAD. Together, this study demonstrated that CAD patients presented a highly activated CD4 + CXCR5 + T cell subset that could contribute to proinflammatory responses in multiple ways. The possibility of using CD4 + CXCR5 + T cells as a therapeutic target should therefore be examined in CAD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Wu Qian

    2012-01-01

    Full Text Available Abstract Background Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. Results Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1, CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. Conclusion These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.

  2. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    Science.gov (United States)

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  3. Reanalysis of coreceptor tropism in HIV-1-infected adults using a phenotypic assay with enhanced sensitivity.

    Science.gov (United States)

    Wilkin, Timothy J; Goetz, Mathew Bidwell; Leduc, Robert; Skowron, Gail; Su, Zhaohui; Chan, Ellen S; Heera, Jayyant; Chapman, Doug; Spritzler, John; Reeves, Jacqueline D; Gulick, Roy M; Coakley, Eoin

    2011-04-01

    The enhanced-sensitivity Trofile assay (TF-ES; Monogram Biosciences) was used to retest coreceptor tropism samples from 4 different cohorts of HIV-1-infected patients. Nine percent to 26% of patients with CCR5-tropic virus by the original Trofile assay had CXCR4-using virus by TF-ES. Lower CD4 cell counts were associated with CXCR4-using virus in all cohorts. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.

  4. Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4.

    Science.gov (United States)

    Barhanpurkar-Naik, Amruta; Mhaske, Suhas T; Pote, Satish T; Singh, Kanupriya; Wani, Mohan R

    2017-07-14

    Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy. Previously, we have reported that interleukin-3 (IL-3) prevents bone and cartilage damage in animal models of rheumatoid arthritis and osteoarthritis. Also, IL-3 promotes the differentiation of human MSCs into functional osteoblasts and increases their in-vivo bone regenerative potential in immunocompromised mice. However, the role of IL-3 in migration of MSCs is not yet known. In the present study, we investigated the role of IL-3 in migration of human MSCs under both in-vitro and in-vivo conditions. MSCs isolated from human bone marrow, adipose and gingival tissues were used for in-vitro cell migration, motility and wound healing assays in the presence or absence of IL-3. The effect of IL-3 preconditioning on expression of chemokine receptors and integrins was examined by flow cytometry and real-time PCR. The in-vivo migration of IL-3-preconditioned MSCs was investigated using a subcutaneous matrigel-releasing stromal cell-derived factor-1 alpha (SDF-1α) model in immunocompromised mice. We observed that human MSCs isolated from all three sources express IL-3 receptor-α (IL-3Rα) both at gene and protein levels. IL-3 significantly enhances in-vitro migration, motility and wound healing abilities of MSCs. Moreover, IL-3 preconditioning upregulates expression of chemokine (C-X-C motif) receptor 4 (CXCR4) on MSCs, which leads to increased migration of cells towards SDF-1α. Furthermore, CXCR4 antagonist AMD3100 decreases the migration of IL-3-treated MSCs towards SDF-1α. Importantly, IL-3 also induces in-vivo migration of MSCs towards

  5. Response assessment with the CXCR4-directed positron emission tomography tracer [68Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities.

    Science.gov (United States)

    Herhaus, Peter; Habringer, Stefan; Vag, Tibor; Steiger, Katja; Slotta-Huspenina, Julia; Gerngroß, Carlos; Wiestler, Benedikt; Wester, Hans-Jürgen; Schwaiger, Markus; Keller, Ulrich

    2017-12-01

    CXCR4 belongs to the family of chemokine receptors. Together with its sole known ligand CXCL12 (SDF-1alpha), it has a pivotal role during organogenesis and for homing of hematopoietic stem cells. CXCR4 is overexpressed in various malignancies, and this is often associated with poor prognosis. Therefore, molecular imaging of CXCR4 bears a great potential for diagnostics and selecting patients for CXCR4-directed therapies. The CXCR4-directed positron emission tomography (PET) tracer [ 68 Ga]Pentixafor has been shown to visualize CXCR4 expression in various malignancies in vivo. Whereas this tracer has limitations compared to 18 F-Fluorodeoxyglucose ([ 18 F]FDG) in diagnostic PET imaging in peripheral tumour lesions, it might add valuable information in routine diagnostics and response assessment of tumours in close proximity to the central nervous system (CNS) and malignancies within this organ. As a proof-of-concept, we performed [ 68 Ga]Pentixafor PET imaging in a patient with extranodal marginal zone lymphoma (MZL) of the orbital cavities at diagnosis and for post-therapy response assessment. Compared to routinely conducted [ 18 F]FDG PET, the lymphoma lesions determined by magnetic resonance imaging (MRI) showed high tracer accumulation at diagnosis, which decreased upon treatment. We therefore propose that imaging of CXCR4 with [ 68 Ga]Pentixafor is a potential diagnostic tool for tumours close to or within the CNS and suggest this being studied in clinical trials.

  6. Onbaekwon Suppresses Colon Cancer Cell Invasion by Inhibiting Expression of the CXC Chemokine Receptor 4.

    Science.gov (United States)

    Kim, Buyun; Yoon, Jaewoo; Yoon, Seong Woo; Park, Byoungduck

    2017-06-01

    Cysteine X cysteine (CXC) chemokine receptor 4 (CXCR4) and C-X-C motif chemokine 12 (CXCL12) were originally identified as chemoattractants between immune cells and sites of inflammation. Since studies have validated an increased level of CXCL12 and its receptor in patients with colorectal cancers, CXCL12/CXCR4 axis has been considered as a valuable marker of cancer metastasis. Therefore, identification of CXCR4 inhibitors has great potential to abrogate tumor metastasis. Onbaekwon (OBW) is a complex herbal formula that is derived from the literature of traditional Korean medicine Dongeuibogam. In this study, we demonstrated that OBW suppressed CXCR4 expression in various cancer cell types in a concentration- and time-dependent manner. Both proteasomal and lysosomal inhibitors had no effect to prevent the OBW-induced suppression of CXCR4, suggesting that the inhibitory effect of OBW was not due to proteolytic degradation but occurred at the transcriptional level. Electrophoretic mobility shift assay further confirmed that OBW could block endogenous activation of nuclear factor kappa B, a key transcription factor that regulates the expression of CXCR4 in colon cancer cells. Consistent with the aforementioned molecular basis, OBW abolished cell invasion induced by CXCL12 in colon cancer cells. Together, our results suggest that OBW, as a novel inhibitor of CXCR4, could be a promising therapeutic agent contributing to cancer treatment.

  7. Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway

    International Nuclear Information System (INIS)

    Chen, Fang-Hsin; Fu, Sheng-Yung; Yang, Ying-Chieh; Wang, Chun-Chieh; Chiang, Chi-Shiun; Hong, Ji-Hong

    2013-01-01

    Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumor microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor

  8. Syphilis and HIV-1 co-infection: influence on CD4 T cell count, HIV-1 viral load and treatment response

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Gerstoft, Jan; Mathiesen, Lars Reinhardt

    2006-01-01

    OBJECTIVES: To assess the effect of human immunodeficiency virus (HIV)-1 and syphilis coinfection on HIV-ribonucleic acid (RNA) viral load, CD4 cell count, and the response in rapid plasmin reagin (RPR) to treatment of the syphilis infection. STUDY DESIGN: Cases of syphilis diagnosed during 1 year...... in HIV-infected patients in Copenhagen were included. HIV-RNA, CD4 cell counts, and RPR-serology were measured before, during, and after syphilis. RESULTS: Forty-one patients were included. CD4 cell count decreased significantly during infection in patients with primary and secondary stages of syphilis...... (mean 106 cells/mm, P = 0.03). Treatment of syphilis was associated with an increase in the CD4 cell count and a decrease in HIV-RNA in the overall group (mean 66 cells/mm and -0.261 RNA log10 copies/ml, P = 0.02 and 0.04). The serological response rates for 15 patients treated with penicillin and 25...

  9. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    International Nuclear Information System (INIS)

    López de Victoria, Aliana; Kieslich, Chris A; Rizos, Apostolos K; Krambovitis, Elias; Morikis, Dimitrios

    2012-01-01

    The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N 6 X 7 T 8 |S 8 X 9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3 loop with coreceptors CCR5/CXCR4, whereas the charge

  10. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    Directory of Open Access Journals (Sweden)

    López de Victoria Aliana

    2012-02-01

    Full Text Available Abstract Background The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Results Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. Conclusions We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3

  11. Point mutations associated with HIV-1 drug resistance, evasion of the immune response and AIDS pathogenesis

    CSIR Research Space (South Africa)

    Khati, M

    2012-03-01

    Full Text Available RNA and Vpr, respectively pol Protease (PR) gag/pol cleavage pol Reverse Transcriptase (RT) Reverse transcription pol RNase H RNase H activity pol Integrase (IN) DNA provirus integration env Env (gp120 and gp41) gp120 binds CD4 receptor and CXCR4.../CCR5 co-receptors , gp41 mediates fusion tat Tat Viral transcription activator rev Rev RNA transport, stability and utilization factor (phosphoprotein) vif Vif Promotes virion maturation and infectivity vpr Vpr Promotes nuclear localization...

  12. CHEMOKINE RECEPTORS AT DISTINCT DIFFERENTIATION STAGES OF T-HELPERS FROM PERIPHERAL BLOOD

    Directory of Open Access Journals (Sweden)

    I. V. Kudryavtsev

    2016-01-01

    Full Text Available Expression of chemokine receptors (CCR4, CCR6, CXCR3 and CXCR5 on T-helper (Th cells at various levels of differentiation in a group of healthy volunteers (n = 52 was assessed on the basis of CD45RA and CD62L expression, using the eight-color flow cytometry. It was found that the “naive” T helper cells (N with CD45RA+CD62L+ phenotype express CXCR3 (4.94±0.39%, and CXCR5 (3.63±0.25%. About 50% of central memory T helpers (CD45RA–CD62L+, CM were CXCR3 positive, and 43.72±1.27% of CM cells expressed CCR6, whereas CXCR5 and CCR4 levels were about 30%. Furthermore, CXCR3 was expressed by 76.76±0.75% of the CD3+CD4+CD45RA–CD62L– (EM population, and similar values were obtained for CCR6, while the relative abundance of CXCR5+ cells decreased to 13.68±0.50%, and CCR4 levels did not change and accounted for 33.26±1.13% positive cells. Likewise, co-expression of the chemokine receptors was studied for the abovementioned subpopulations of T helper cells. Among the CXCR5– Th, Th1 cells were identified as CXCR3+CCR6–CCR4– (this subset also contained Th9, and CXCR3+CCR6+CCR4– subsets, referred to as Th1/Th17. Th2 were detected on the basis of CCR4 expression in absence of all other chemokine receptors. In addition to the mentioned Th1/Th17 populations, Th 17 cells were found in the subsets of Th17 CXCR3–CCR6+CCR4– and CXCR3–CR6+CCR4+. The latter also contained a Th22 population. Follicular Th cell populations (CXCR5+ consisted of, at least, six different subsets: CXCR3–CCR6–CCR4– (Tfh/Tfh2, CXCR3–CCR6–CCR4+ (Tfh2, CXCR3-CCR6+CCR4–(Tfh17, CXCR3–CCR6+CCR4+ (Tfh17, CXCR3+CCR6–CCR4– (Tfh1 and CXCR3+CCR6+CCR4–(Tfh1/Tfh17. The cells with Th1/Th9 and Th1/Th17 phenotypes dominated among CM (about 13%, whereas their relative abundance within EM increased to 22.37±1.69% and 31.69±1.52%, respectively. The amounts of Th2 were 8.15±0.46% within CM, and only 1.72±0.15% for EM population. For the cells

  13. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor.

    Directory of Open Access Journals (Sweden)

    Rachel S Leibman

    2017-10-01

    Full Text Available HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy.

  14. Pathogen-group specific association between CXCR1 polymorphisms and subclinical mastitis in dairy heifers.

    Science.gov (United States)

    Verbeke, Joren; Piepers, Sofie; Peelman, Luc; Van Poucke, Mario; De Vliegher, Sarne

    2012-08-01

    The chemokine (C-X-C motif) receptor 1 (CXCR1) gene encodes the homonymous receptor for interleukin 8 (IL8) on polymorphonuclear neutrophilic leucocytes (PMNL). Binding causes migration from blood to milk, activation and prolonged survival of PMNL, a crucial process in the innate immune defence of the bovine mammary gland against invading mastitis-causing pathogens. The main objective of this study was to screen the entire coding region of the CXCR1 gene for polymorphisms and to analyse their association with udder health of dairy heifers. One-hundred-and-forty Belgian Holstein heifers originating from 20 commercial dairy farms were genotyped by DNA sequencing. Detailed phenotypic data on udder health was available including quarter bacteriological culture results and somatic cell count (SCC) in early lactation and composite milk SCC during first lactation. In total, 16 polymorphisms (including 8 missense mutations) were detected. Polymorphism c.980A>G was associated with pathogen-group specific IMI: heifers with genotype AG were less likely to have an IMI due to major mastitis pathogens compared with heifers with genotype GG but did not have less IMI by coagulase-negative staphylococci, so-called minor pathogens. CXCR1 genotype was neither associated with quarter SCC in early lactation nor with composite SCC during lactation. Although mastitis susceptibility is influenced by many factors, some genetic polymorphisms potentially have major effects on udder health of heifers, as was shown here. These results trigger us to further study the relationship between CXCR1 polymorphisms and mastitis susceptibility in both observational and experimental trials.

  15. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    International Nuclear Information System (INIS)

    Mori, Mayuko; Liu Dongxiang; Kumar, Santosh; Huang Ziwei

    2005-01-01

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4

  16. SDF-1/CXCR4 expression in head and neck cancer and outcome after postoperative radiochemotherapy

    Directory of Open Access Journals (Sweden)

    Chiara De-Colle

    2017-08-01

    Conclusions: Our exploratory data support the hypothesis that overexpression of intracellular SDF-1 is an independent negative prognostic biomarker for LRC after postoperative RT-CT in high-risk HNSCC. Prospective validation is warranted and further exploration of SDF-1/CXCR4 as a potential therapeutic target to overcome treatment resistance in HNSCC appears promising.

  17. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  18. Short Communication: Evolution of HIV-1 Coreceptor Usage and Coreceptor Switching During Pregnancy

    OpenAIRE

    Ransy, Doris G.; Motorina, Alena; Merindol, Natacha; Akouamba, Bertine S.; Samson, Johanne; Lie, Yolanda; Napolitano, Laura A.; Lapointe, Normand; Boucher, Marc; Soudeyns, Hugo

    2014-01-01

    Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predi...

  19. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver.

    Science.gov (United States)

    Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed

    2006-10-01

    The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.

  20. Neutralization of X4- and R5-tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins

    Directory of Open Access Journals (Sweden)

    Schwalbe Birco

    2010-06-01

    Full Text Available Abstract Background Myeloperoxidase (MPO, an important element of the microbicidal activity of neutrophils, generates hypochlorous acid (HOCl from H2O2 and chloride, which is released into body fluids. Besides its direct microbicidal activity, HOCl can react with amino acid residues and HOCl-modified proteins can be detected in vivo. Findings This report is based on binding studies of HOCl-modified serum albumins to HIV-1 gp120 and three different neutralization assays using infectious virus. The binding studies were carried out by surface plasmon resonance spectroscopy and by standard ELISA techniques. Virus neutralization assays were carried out using HIV-1 NL4-3 virus and recombinant strains with CXCR4 and CCR5 coreceptor usage. Viral infection was monitored by a standard p24 or X-gal staining assay. Our data demonstrate that HOCl-modified mouse-, bovine- and human serum albumins all bind to the HIV-1 NL4-3 gp120 (LAV glycoprotein in contrast to non-modified albumin. Binding of HOCl-modified albumin to gp120 correlated to the blockade of CD4 as well as that of V3 loop specific monoclonal antibody binding. In neutralization experiments, HOCl-modified serum albumins inhibited replication and syncytium formation of the X4- and R5-tropic NL4-3 isolates in a dose dependent manner. Conclusions Our data indicate that HOCl-modified serum albumin veils the binding site for CD4 and the V3 loop on gp120. Such masking of the viral gp120/gp41 envelope complex might be a simple but promising strategy to inactivate HIV-1 and therefore prevent infection when HOCl-modified serum albumin is applied, for example, as a topical microbicide.

  1. Biological and genetic evolution of HIV type 1 in two siblings with different patterns of disease progression.

    Science.gov (United States)

    Ripamonti, Chiara; Leitner, Thomas; Laurén, Anna; Karlsson, Ingrid; Pastore, Angela; Cavarelli, Mariangela; Antonsson, Liselotte; Plebani, Anna; Fenyö, Eva Maria; Scarlatti, Gabriella

    2007-12-01

    To investigate the immunological and virological factors that may lead to different patterns of disease progression characteristic of HIV-1-infected children, two HIV-1-infected siblings, a slow and a fast progressor, were followed prospectively before the onset of highly active antiretroviral therapy. Viral coreceptor usage, including the use of CCR5/CXCR4 chimeric receptors, macrophage tropism, and sensitivity to the CC-chemokine RANTES, has been studied. An autologous and heterologous neutralizing antibody response has been documented using peripheral blood mononuclear cells- and GHOST(3) cell line-based assays. Viral evolution was investigated by env C2-V3 region sequence analysis. Although both siblings were infected with HIV-1 of the R5 phenotype, their viruses showed important biological differences. In the fast progressor there was a higher RANTES sensitivity of the early virus, an increased trend to change the mode of CCR5 receptor use, and a larger genetic evolution. Both children developed an autologous neutralizing antibody response starting from the second year with evidence of the continuous emergence of resistant variants. A marked viral genetic and phenotypic evolution was documented in the fast progressor sibling, which is accompanied by a high viral RANTES sensitivity and persistent neutralizing antibodies.

  2. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  3. Identification of cell surface targets for HIV-1 therapeutics using genetic screens

    International Nuclear Information System (INIS)

    Dunn, Stephen J.; Khan, Imran H.; Chan, Ursula A.; Scearce, Robin L.; Melara, Claudia L.; Paul, Amber M.; Sharma, Vikram; Bih, Fong-Yih; Holzmayer, Tanya A.; Luciw, Paul A.; Abo, Arie

    2004-01-01

    Human immunodeficiency virus (HIV) drugs designed to interfere with obligatory utilization of certain host cell factors by virus are less likely to encounter development of resistant strains than drugs directed against viral components. Several cellular genes required for productive infection by HIV were identified by the use of genetic suppressor element (GSE) technology as potential targets for anti-HIV drug development. Fragmented cDNA libraries from various pools of human peripheral blood mononuclear cells (PBMC) were expressed in vitro in human immunodeficiency virus type 1 (HIV-1)-susceptible cell lines and subjected to genetic screens to identify GSEs that interfered with viral replication. After three rounds of selection, more than 15 000 GSEs were sequenced, and the cognate genes were identified. The GSEs that inhibited the virus were derived from a diverse set of genes including cell surface receptors, cytokines, signaling proteins, transcription factors, as well as genes with unknown function. Approximately 2.5% of the identified genes were previously shown to play a role in the HIV-1 life cycle; this finding supports the biological relevance of the assay. GSEs were derived from the following 12 cell surface proteins: CXCR4, CCR4, CCR7, CD11C, CD44, CD47, CD68, CD69, CD74, CSF3R, GABBR1, and TNFR2. Requirement of some of these genes for viral infection was also investigated by using RNA interference (RNAi) technology; accordingly, 10 genes were implicated in early events of the viral life cycle, before viral DNA synthesis. Thus, these cell surface proteins represent novel targets for the development of therapeutics against HIV-1 infection and AIDS

  4. The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4+ cells

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2012-02-01

    Full Text Available It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor binds the virus and mediates its transfer to CD4(+) cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN) inhibit...

  5. Production of Autoantibodies in Chronic Hepatitis B Virus Infection Is Associated with the Augmented Function of Blood CXCR5+CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Lei

    Full Text Available T follicular helper cells (Tfh provide help to B cells to support their activation, expansion and differentiation. However, the role of Tfh cells in chronic HBV infection is poorly defined. The aim of this research was to examine the function of Tfh cells and whether they are involved in HBV related disease. Blood CXCR5+CD4+T cells and B cells in 85 patients with chronic HBV infection (HBV patients and health controls (HC were examined by flow cytometry. The molecule expression in blood CXCR5+CD4+ T cells was detected by real-time PCR. Blood CXCR5+CD4+ T cells and B cells were co-cultured and the production of Ig and cytokines was detected by ELISA. Autoantibodies were detected by indirect immunofluorescence and immunospot assay. We found that blood CXCR5+CD4+ T cells in patients with chronic HBV infection (HBV patients expressed higher level of activation related molecules and cytokines than that from health controls (HC.In HBV patients, the frequency of blood CXCR5+CD4+ T cells was significantly correlated with serum ALT and AST. We also found that blood CXCR5+CD4+ T cells from HBV patients could induce B cells to secret higher level of immunoglobulin than that from HC. Several autoantibodies, including ANA, ss-A, ss-B, Scl-70, Jo-1, ect, were indeed positive in 65% HBV patients. Among HBV patients, expression of function related molecules was significantly higher in blood CXCR5+CD4+ T cells from patients with autoantibodies than that without autoantibodies. Our research indicated that blood CXCR5+CD4+ T cells from HBV patients were over activated and show augmented capacity to help B cells for antibody secreting, which might correlated with liver inflammation and the production of autoantibodies in extrahepatic manifestations.

  6. IL-10 mediated by herpes simplex virus vector reduces neuropathic pain induced by HIV gp120 combined with ddC in rats.

    Science.gov (United States)

    Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin

    2014-07-30

    HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state. Neuropathic pain was induced by peripheral HIV coat protein gp120 combined with 2',3'-dideoxycytidine (ddC, one of the nucleoside reverse transcriptase inhibitors (NRTIs)). Mechanical threshold was tested using von Frey filament fibers. Non-replicating herpes simplex virus (HSV) vectors expressing interleukin 10 (IL10) were inoculated into the hindpaws of rats. The expression of TNFα, SDF1α, and CXCR4 in the lumbar spinal cord and L4/5 dorsal root ganglia (DRG) was examined using western blots. IL-10 expression mediated by the HSV vectors resulted in a significant elevation of mechanical threshold. The anti-allodynic effect of IL-10 expression mediated by the HSV vectors lasted more than 3 weeks. The area under the effect-time curves (AUC) in mechanical threshold in rats inoculated with the HSV vectors expressing IL-10, was increased compared with the control vectors, indicating antinociceptive effect of the IL-10 vectors. The HSV vectors expressing IL-10 also concomitantly reversed the upregulation of p-p38, TNFα, SDF1α, and CXCR4 induced by gp120 in the lumbar spinal dorsal horn and/or the DRG at 2 and/or 4 weeks. The blocking of the signaling of these proinflammatory molecules is able to reduce HIV-related neuropathic pain, which provide a novel

  7. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1.

    Science.gov (United States)

    Telwatte, Sushama; Moore, Katie; Johnson, Adam; Tyssen, David; Sterjovski, Jasminka; Aldunate, Muriel; Gorry, Paul R; Ramsland, Paul A; Lewis, Gareth R; Paull, Jeremy R A; Sonza, Secondo; Tachedjian, Gilda

    2011-06-01

    Topical microbicides for use by women to prevent the transmission of human immunodeficiency virus (HIV) and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. SPL7013 is a dendrimer with broad-spectrum activity against HIV type I (HIV-1) and -2 (HIV-2), herpes simplex viruses type-1 (HSV-1) and -2 (HSV-2) and human papillomavirus. SPL7013 [3% (w/w)] has been formulated in a mucoadhesive carbopol gel (VivaGel®) for use as a topical microbicide. Previous studies showed that SPL7013 has similar potency against CXCR4-(X4) and CCR5-using (R5) strains of HIV-1 and that it blocks viral entry. However, the ability of SPL7013 to directly inactivate HIV-1 is unknown. We examined whether SPL7013 demonstrates virucidal activity against X4 (NL4.3, MBC200, CMU02 clade EA and 92UG046 clade D), R5 (Ba-L, NB25 and 92RW016 clade A) and dual-tropic (R5X4; MACS1-spln) HIV-1 using a modified HLA-DR viral capture method and by polyethylene glycol precipitation. Evaluation of virion integrity was determined by ultracentrifugation through a sucrose cushion and detection of viral proteins by Western blot analysis. SPL7013 demonstrated potent virucidal activity against X4 and R5X4 strains, although virucidal activity was less potent for the 92UG046 X4 clade D isolate. Where potent virucidal activity was observed, the 50% virucidal concentrations were similar to the 50% effective concentrations previously reported in drug susceptibility assays, indicating that the main mode of action of SPL7013 is by direct viral inactivation for these strains. In contrast, SPL7013 lacked potent virucidal activity against R5 HIV-1 strains. Evaluation of the virucidal mechanism showed that SPL7013-treated NL4.3, 92UG046 and MACS1-spln virions were intact with no significant decrease in gp120 surface protein with respect to p24 capsid content compared to the corresponding untreated virus. These studies demonstrate that SPL

  8. Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids

    Directory of Open Access Journals (Sweden)

    Geissmann Frederic

    2005-01-01

    Full Text Available We examined the in vivo behavior of liver natural killer T cells (NKT cells by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10-20 µm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.

  9. Interleukin-27 is differentially associated with HIV viral load and CD4+ T cell counts in therapy-naive HIV-mono-infected and HIV/HCV-co-infected Chinese.

    Directory of Open Access Journals (Sweden)

    Lai He

    Full Text Available Human Immunodeficiency Virus (HIV infection and the resultant Acquired Immunodeficiency Syndrome (AIDS epidemic are major global health challenges; hepatitis C virus (HCV co-infection has made the HIV/AIDS epidemic even worse. Interleukin-27 (IL-27, a cytokine which inhibits HIV and HCV replication in vitro, associates with HIV infection and HIV/HCV co-infection in clinical settings. However, the impact of HIV and HCV viral loads on plasma IL-27 expression levels has not been well characterized. In this study, 155 antiretroviral therapy-naïve Chinese were recruited. Among them 80 were HIV- and HCV-negative healthy controls, 45 were HIV-mono-infected and 30 were HIV/HCV-co-infected. Plasma level HIV, HCV, IL-27 and CD4+ number were counted and their correlation, regression relationships were explored. We show that: plasma IL-27 level was significantly upregulated in HIV-mono-infected and HIV/HCV-co-infected Chinese; HIV viral load was negatively correlated with IL-27 titer in HIV-mono-infected subjects whereas the relationship was opposite in HIV/HCV-co-infected subjects; and the relationships between HIV viral loads, IL-27 titers and CD4+ T cell counts in the HIV mono-infection and HIV/HCV co-infection groups were dramatically different. Overall, our results suggest that IL-27 differs in treatment-naïve groups with HIV mono-infections and HIV/HCV co-infections, thereby providing critical information to be considered when caring and treating those with HIV mono-infection and HIV/HCV co-infection.

  10. Infection of human and non-human cells by a highly fusogenic primary CD4-independent HIV-1 isolate with a truncated envelope cytoplasmic tail

    International Nuclear Information System (INIS)

    Saha, Kunal; Yan Hui; Nelson, Julie A.E.; Zerhouni-Layachi, Bouchra

    2005-01-01

    Truncation of the envelope cytoplasmic tail has enabled FIV, SIV, and some laboratory HIV-1 strains to acquire broader cellular tropism and enhanced fusogenicity. Here we have characterized a primary CD4-independent HIV-1 isolate (92UG046-T8) with a truncated cytoplasmic tail that was able to infect and induce syncytia in primary lymphocytes from human, chimpanzee, and monkey, as well as CD4-negative cell lines from human and monkey. Increased syncytia were also noticeable with 293 cells expressing the cloned envelope from the 92UG046-T8 isolate suggesting envelope-mediated cellular fusion. Except pooled serum from HIV-1-infected individuals, monoclonal anti-envelope antibodies or antibodies/antagonists against CD4, CXCR4, and CCR5 were not able to prevent infection by the 92UG046-T8 isolate. This is the first report showing a primary HIV-1 variant with truncated cytoplasmic tail which is highly fusogenic and can infect a broad range of cells from human and non-human origins. In vivo evolution of similar HIV-1 mutants may have important implications in AIDS pathogenesis

  11. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue

    OpenAIRE

    Carlsen, H S; Baekkevold, E S; Johansen, F-E; Haraldsen, G; Brandtzaeg, P

    2002-01-01

    Background and aims: In mice, the B lymphocyte chemoattractant (BLC) CXC chemokine ligand 13 (CXCL13) is sufficient to induce a series of events leading to the formation of organised lymphoid tissue. Its receptor, CXCR5, is required for normal development of secondary lymphoid tissue. However, the human counterpart, B cell attracting chemokine 1 (BCA-1) has only been detected in the stomach and appendix and not in other parts of normal or diseased gut. Hence to elucidate the potential role of...

  12. HIV-1 Vpr Induces Adipose Dysfunction in Vivo Through Reciprocal Effects on PPAR/GR Co-Regulation

    Science.gov (United States)

    Agarwal, Neeti; Iyer, Dinakar; Patel, Sanjeet G.; Sekhar, Rajagopal V.; Phillips, Terry M.; Schubert, Ulrich; Oplt, Toni; Buras, Eric D.; Samson, Susan L.; Couturier, Jacob; Lewis, Dorothy E.; Rodriguez-Barradas, Maria C.; Jahoor, Farook; Kino, Tomoshige; Kopp, Jeffrey B.; Balasubramanyam, Ashok

    2014-01-01

    Viral infections, such as HIV, have been linked to obesity, but mechanistic evidence that they cause adipose dysfunction in vivo is lacking. We investigated a pathogenic role for the HIV-1 accessory protein viral protein R (Vpr), which can coactivate the glucocorticoid receptor (GR) and co-repress peroxisome proliferator–activated receptor γ (PPARγ) in vitro, in HIV-associated adipose dysfunction. Vpr circulated in the blood of most HIV-infected patients tested, including those on antiretroviral therapy (ART) with undetectable viral load. Vpr-mediated mechanisms were dissected in vivo using mouse models expressing the Vpr transgene in adipose tissues and liver (Vpr-Tg) or infused with synthetic Vpr. Both models demonstrated accelerated whole-body lipolysis, hyperglycemia and hypertriglyceridemia, and tissue-specific findings. Fat depots in these mice had diminished mass, macrophage infiltration, and blunted PPARγ target gene expression but increased GR target gene expression. In liver, we observed blunted PPARα target gene expression, steatosis with decreased adenosine monophosphate– activated protein kinase activity, and insulin resistance. Similar to human HIV-infected patients, Vpr circulated in the serum of Vpr-Tg mice. Vpr blocked differentiation in preadipocytes through cell cycle arrest, whereas in mature adipocytes, it increased lipolysis with reciprocally altered association of PPARγ and GR with their target promoters. These results delineate a distinct pathogenic sequence: Vpr, released from HIV-1 in tissue reservoirs after ART, can disrupt PPAR/GR co-regulation and cell cycle control to produce adipose dysfunction and hepatosteatosis. Confirmation of these mechanisms in HIV patients could lead to targeted treatment of the metabolic complications with Vpr inhibitors, GR antagonists, or PPARγ/PPARα agonists. PMID:24285483

  13. Noncompetitive antagonism and inverse agonism as mechanism of action of nonpeptidergic antagonists at primate and rodent CXCR3 chemokine receptors

    NARCIS (Netherlands)

    Verzijl, D.; Storelli, S.; Scholten, D.J.; Bosch, L.; Reinhart, T.A.; Streblow, D.N.; Tensen, C.P.; Fitzsimons, C.P.; Zaman, G.J.; Pease, J.E.; de Esch, I.J.P.; Smit, M.J.; Leurs, R.

    2008-01-01

    The chemokine receptor CXCR3 is involved in various inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, and allograft rejection in transplantation patients. The CXCR3 ligands CXCL9, CXCL10, and CXCL11 are expressed at sites of inflammation, and they attract

  14. Involvement of both the V2 and V3 Regions of the CCR5-Tropic Human Immunodeficiency Virus Type 1 Envelope in Reduced Sensitivity to Macrophage Inflammatory Protein 1α

    Science.gov (United States)

    Maeda, Yosuke; Foda, Mohamed; Matsushita, Shuzo; Harada, Shinji

    2000-01-01

    To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1α-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1α (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat–β-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1β (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1α. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1α, MIP-1β, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors. PMID:10644351

  15. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    Science.gov (United States)

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    Science.gov (United States)

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  17. Pharmacological characterization of [3H]VUF11211, a novel radiolabeled small-molecule inverse agonist for the chemokine receptor CXCR3

    NARCIS (Netherlands)

    Scholten, Danny J; Wijtmans, M.; van Senten, Jeffrey R; Custers, Hans; Stunnenberg, Ailas; de Esch, Iwan J P; Smit, Martine J; Leurs, Rob

    Chemokine receptor CXCR3 has attracted much attention, as it is thought to be associated with a wide range of immune-related diseases. As such, several small molecules with different chemical structures targeting CXCR3 have been discovered. Despite limited clinical success so far, these compounds

  18. Expression Profiles of Ligands for Activating Natural Killer Cell Receptors on HIV Infected and Uninfected CD4⁺ T Cells.

    Science.gov (United States)

    Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F

    2017-10-12

    Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4⁺ cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.

  19. The colocalization potential of HIV-specific CD8+ and CD4+ T-cells is mediated by integrin β7 but not CCR6 and regulated by retinoic acid.

    Directory of Open Access Journals (Sweden)

    Vanessa Sue Wacleche

    Full Text Available CD4(+ T-cells from gut-associated lymphoid tissues (GALT are major targets for HIV-1 infection. Recruitment of excess effector CD8(+ T-cells in the proximity of target cells is critical for the control of viral replication. Here, we investigated the colocalization potential of HIV-specific CD8(+ and CD4(+ T-cells into the GALT and explored the role of retinoic acid (RA in regulating this process in a cohort of HIV-infected subjects with slow disease progression. The expression of the gut-homing molecules integrin β7, CCR6, and CXCR3 was identified as a "signature" for HIV-specific but not CMV-specific CD4(+ T-cells thus providing a new explanation for their enhanced permissiveness to infection in vivo. HIV-specific CD8(+ T-cells also expressed high levels of integrin β7 and CXCR3; however CCR6 was detected at superior levels on HIV-specific CD4(+ versus CD8(+ T-cells. All trans RA (ATRA upregulated the expression of integrin β7 but not CCR6 on HIV-specific T-cells. Together, these results suggest that HIV-specific CD8(+ T-cells may colocalize in excess with CD4(+ T-cells into the GALT via integrin β7 and CXCR3, but not via CCR6. Considering our previous findings that CCR6(+CD4(+ T-cells are major cellular targets for HIV-DNA integration in vivo, a limited ability of CD8(+ T-cells to migrate in the vicinity of CCR6(+CD4(+ T-cells may facilitate HIV replication and dissemination at mucosal sites.

  20. Structural and Functional Analysis of HIV-1 Coreceptors: Roles of Charged Residues and Posttranslational Modifications on Coreceptor Activity

    National Research Council Canada - National Science Library

    Chabot, Donald

    2000-01-01

    .... To define these regions we have employed an alanine-scanning mutagenesis strategy of the extracellular domains of CXCR4 coupled with a highly sensitive reporter-gene assay for HIV-1 Env-mediated membrane fusion...

  1. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis and vaginal shedding of HIV-1 RNA.

    Science.gov (United States)

    Fastring, Danielle R; Amedee, Angela; Gatski, Megan; Clark, Rebecca A; Mena, Leandro A; Levison, Judy; Schmidt, Norine; Rice, Janet; Gustat, Jeanette; Kissinger, Patricia

    2014-03-01

    Trichomonas vaginalis (TV) and bacterial vaginosis (BV) are independently associated with increased risk of vaginal shedding in HIV-positive women. Because these 2 conditions commonly co-occur, this study was undertaken to examine the association between TV/BV co-occurrence and vaginal shedding of HIV-1 RNA. HIV-positive women attending outpatient HIV clinics in 3 urban US cities underwent a clinical examination; were screened for TV, BV, Neisseria gonorrhoeae, Chlamydia trachomatis, and vulvovaginal candidiasis; and completed a behavioral survey. Women shedding HIV-1 RNA vaginally (≥50 copies/mL) were compared with women who had an undetectable (women who were TV positive and BV positive or had co-occurrence of TV/BV had higher odds of shedding vaginally when compared with women who did not have these conditions. In this sample of 373 HIV-positive women, 43.1% (n = 161) had co-occurrence of TV/BV and 33.2% (n = 124) were shedding HIV-1 RNA vaginally. The odds of shedding HIV vaginally in the presence of TV alone or BV alone and when TV/BV co-occurred were 4.07 (95% confidence interval [CI], 1.78-9.37), 5.65 (95% CI, 2.64-12.01), and 18.63 (95% CI, 6.71-51.72), respectively, when compared with women with no diagnosis of TV or BV, and after adjusting for age, antiretroviral therapy status, and plasma viral load. T. vaginalis and BV were independently and synergistically related to vaginal shedding of HIV-1 RNA. Screening and prompt treatment of these 2 conditions among HIV-positive women are important not only clinically but for HIV prevention, as well.

  2. Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in ...

    African Journals Online (AJOL)

    Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in a tertiary health facility in Maiduguri, Northeastern Nigeria. ... This study aims to estimate the HIV-1 RNA viral load and impact of anti TB therapy (ATT) ... HOW TO USE AJOL.

  3. Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Pierson, Theodore; Hoffman, Trevor L.; Blankson, Joel; Finzi, Diana; Chadwick, Karen; Margolick, Joseph B.; Buck, Christopher; Siliciano, Janet D.; Doms, Robert W.; Siliciano, Robert F.

    2000-01-01

    Latently infected resting CD4+ T cells provide a long-term reservoir for human immunodeficiency virus type 1 (HIV-1) and are likely to represent the major barrier to virus eradication in patients on combination antiretroviral therapy. The mechanisms by which viruses enter the latent reservoir and the nature of the chemokine receptors involved have not been determined. To evaluate the phenotype of the virus in this compartment with respect to chemokine receptor utilization, full-length HIV-1 env genes were cloned from latently infected cells and assayed functionally. We demonstrate that the majority of the viruses in the latent reservoir utilize CCR5 during entry, although utilization of several other receptors, including CXCR4, was observed. No alternative coreceptors were shown to be involved in a systematic fashion. Although R5 viruses are present in the latent reservoir, CCR5 was not expressed at high levels on resting CD4+ T cells. To understand the mechanism by which R5 viruses enter latent reservoir, the ability of an R5 virus, HIV-1 Ba-L, to infect highly purified resting CD4+ T lymphocytes from uninfected donors was evaluated. Entry of Ba-L could be observed when virus was applied at a multiplicity approaching 1. However, infection was limited to a subset of cells expressing low levels of CCR5 and markers of immunologic memory. Naive cells could not be infected by an R5 virus even when challenged with a large inoculum. Direct cell fractionation studies showed that latent virus is present predominantly in resting memory cells but also at lower levels in resting naive cells. Taken together, these findings provide support for the hypothesis that the direct infection of naive T cells is not the major mechanism by which the latent infection of resting T cells is established. PMID:10933689

  4. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection.

    Science.gov (United States)

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent; Tremblay, Michel J

    2017-02-15

    In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4 + T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4 + T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6 + CD4 + T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6 + CD4 + T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6 + CD4 + T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4 + T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6 + CD4 + T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6 + CD4 + T cells to productive HIV-1 infection. Copyright © 2017 American Society for Microbiology.

  5. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Unknown

    progressive multiple symptoms of motor, cognitive dys- function and behavioural ..... using different types of neurons such as rodent cortical, hippocampal and ..... in the neocortex of rat via a mechanism involving CXCR4 chemokine receptor ...

  6. HIV-1 induces DCIR expression in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alexandra A Lambert

    2010-11-01

    Full Text Available The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4(+ T cells found in the synovial tissue from rheumatoid arthritis (RA patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4(+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4(+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons and cells acutely infected in vitro (seen in both virus-infected and uninfected cells. Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4(+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals and -independent intrinsic apoptotic pathways (involving the death effector AIF. Finally, we demonstrate that the higher surface expression of DCIR in CD4(+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4(+ T cells, a process that might promote virus dissemination throughout the infected organism.

  7. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    OpenAIRE

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR...

  8. Construction and characterisation of a full-length infectious molecular clone from a fast replicating, X4-tropic HIV-1 CRF02.AG primary isolate

    International Nuclear Information System (INIS)

    Tebit, Denis M.; Zekeng, Leopold; Kaptue, Lazare; Kraeusslich, Hans-Georg; Herchenroeder, Ottmar

    2003-01-01

    Based on our previous analysis of HIV-1 isolates from Cameroon, we constructed a full-length infectious molecular clone from a primary isolate belonging to the CRF02.AG group of recombinant viruses which dominate the HIV-epidemic in West and Central Africa. The virus derived by transfection of the proviral clone pBD6-15 replicated with similar efficiency compared to its parental isolate and used CXCR4 as coreceptor as well. Furthermore, HIV-1 BD6-15 exhibited similar replication properties and virus yield as the reference B-type HIV-1 strain NL4-3. Sequence analysis revealed open reading frames for all structural and accessory genes apart from vpr. Phylogenetic and bootscanning analyses confirmed that BD6-15 clusters with CRF02.AG recombinant strains from West and Central Africa with similar cross-over points as described for the CRF02.AG prototype strain lbNG. Thus, pBD6-15 represents the first non-subtype B infectious molecular clone of a fast replicating, high producer, X4-tropic primary HIV-1 isolate, which had only been briefly passaged in primary cells

  9. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism.

    Science.gov (United States)

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-11-20

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.

  10. Development of CXCR4 modulators by virtual HTS of a novel amide-sulfamide compound library.

    Science.gov (United States)

    Bai, Renren; Shi, Qi; Liang, Zhongxing; Yoon, Younghyoun; Han, Yiran; Feng, Amber; Liu, Shuangping; Oum, Yoonhyeun; Yun, C Chris; Shim, Hyunsuk

    2017-01-27

    CXCR4 plays a crucial role in recruitment of inflammatory cells to inflammation sites at the beginning of the disease process. Modulating CXCR4 functions presents a new avenue for anti-inflammatory strategies. However, using CXCR4 antagonists for a long term usage presents potential serious side effect due to their stem cell mobilizing property. We have been developing partial CXCR4 antagonists without such property. A new computer-aided drug design program, the FRESH workflow, was used for anti-CXCR4 lead compound discovery and optimization, which coupled both compound library building and CXCR4 docking screens in one campaign. Based on the designed parent framework, 30 prioritized amide-sulfamide structures were obtained after systemic filtering and docking screening. Twelve compounds were prepared from the top-30 list. Most synthesized compounds exhibited good to excellent binding affinity to CXCR4. Compounds Ig and Im demonstrated notable in vivo suppressive activity against xylene-induced mouse ear inflammation (with 56% and 54% inhibition). Western blot analyses revealed that Ig significantly blocked CXCR4/CXCL12-mediated phosphorylation of Akt. Moreover, Ig attenuated the amount of TNF-α secreted by pathogenic E. coli-infected macrophages. More importantly, Ig had no observable cytotoxicity. Our results demonstrated that FRESH virtual high throughput screening program of targeted chemical class could successfully find potent lead compounds, and the amide-sulfamide pharmacophore was a novel and effective framework blocking CXCR4 function. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Chemokine receptor CCR2b 64I polymorphism and its relation to CD4 T-cell counts and disease progression in a Danish cohort of HIV-infected individuals. Copenhagen AIDS cohort

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Iversen, Anton; Benfield, Thomas

    1998-01-01

    We have investigated the role of the recently described mutation in CCR2b named 64I in relation to HIV resistance, CD4 T-cell counts, and disease progression in Danish individuals by polymerase chain reaction (PCR)-based methods as well as sequenced full-length CXCR4 and CCR5 genes from HIV...... of AIDS, in AIDS-free survival as well as survival with AIDS, between 64I allele carriers and wild-type individuals. Among 9 long-term nonprogressors, 2 carried the 64I allele, while none of 9 fast progressors carried the 64I allele. However, this was not significantly different (p=.47). Long......-term nonprogression could not be explained by CXCR4 polymorphism or other polymorphisms in the CCR5 gene than the CCR5delta32 allele. Furthermore, we were not able to detect any significant independent effect of the 64I allele on development to AIDS, overall survival, and annual CD4 T-cell decline in this cohort....

  12. Pharmacological targeting of chemokine (C-X-C motif) receptor 4 in porcine polytrauma and hemorrhage models

    Science.gov (United States)

    Bach, Harold H.; Wong, Yee M.; LaPorte, Heather M.; Gamelli, Richard L.; Majetschak, Matthias

    2016-01-01

    BACKGROUND Recent evidence suggests that chemokine receptor CXCR4 regulates vascular α1-adrenergic receptor function and that the noncognate CXCR4 agonist ubiquitin has therapeutic potential after trauma/hemorrhage. Pharmacologic properties of ubiquitin in large animal trauma models, however, are poorly characterized. Thus, the aims of the present study were to determine the effects of CXCR4 modulation on resuscitation requirements after polytrauma, to assess whether ubiquitin influences survival times after lethal polytrauma-hemorrhage, and to characterize its dose-effect profile in porcine models. METHODS Anesthetized pigs underwent polytrauma (PT, femur fractures/lung contusion) alone (Series 1) or PT/hemorrhage (PT/H) to a mean arterial blood pressure of 30 mmHg with subsequent fluid resuscitation (Series 2 and 3) or 40% blood volume hemorrhage within 15 minutes followed by 2.5% blood volume hemorrhage every 15 minutes without fluid resuscitation (Series 4). In Series 1, ubiquitin (175 and 350 nmol/kg), AMD3100 (CXCR4 antagonist, 350 nmol/kg), or vehicle treatment 60 minutes after PT was performed. In Series 2, ubiquitin (175, 875, and 1,750 nmol/kg) or vehicle treatment 60 minutes after PT/H was performed. In Series 3, ubiquitin (175 and 875 nmol/kg) or vehicle treatment at 60 and 180 minutes after PT/H was performed. In Series 4, ubiquitin (875 nmol/kg) or vehicle treatment 30 minutes after hemorrhage was performed. RESULTS In Series 1, resuscitation fluid requirements were significantly reduced by 40% with 350-nmol/kg ubiquitin and increased by 25% with AMD3100. In Series 2, median survival time was 190 minutes with vehicle, 260 minutes with 175-nmol/kg ubiquitin, and longer than 420 minutes with 875-nmol/kg and 1,750-nmol/kg ubiquitin (p 0.05). CONCLUSION These findings further suggest CXCR4 as a drug target after PT/H. Ubiquitin treatment reduces resuscitation fluid requirements and provides survival benefits after PT/H. The pharmacological effects of

  13. Reprogramming Medulloblastoma-Propagating Cells by a Combined Antagonism of Sonic Hedgehog and CXCR4.

    Science.gov (United States)

    Ward, Stacey A; Warrington, Nicole M; Taylor, Sara; Kfoury, Najla; Luo, Jingqin; Rubin, Joshua B

    2017-03-15

    The CXCR4 chemokine and Sonic Hedgehog (SHH) morphogen pathways are well-validated therapeutic targets in cancer, including medulloblastoma. However, single-agent treatments with SHH or CXCR4 antagonists have not proven efficacious in clinical trials to date. Here, we discovered that dual inhibition of the SHH and CXCR4 pathways in a murine model of SHH-subtype medulloblastoma exerts potent antitumor effects. This therapeutic synergy resulted in the suppression of tumor-propagating cell function and correlated with increased histone H3 lysine 27 trimethylation within the promoters of stem cell genes, resulting in their decreased expression. These results demonstrate that CXCR4 contributes to the epigenetic regulation of a tumor-propagating cell phenotype. Moreover, they provide a mechanistic rationale to evaluate the combination of SHH and CXCR4 inhibitors in clinical trials for the treatment of medulloblastoma, as well as other cancers driven by SHH that coexpress high levels of CXCR4. Cancer Res; 77(6); 1416-26. ©2016 AACR . ©2016 American Association for Cancer Research.

  14. BAG3 promotes stem cell-like phenotype in breast cancer by upregulation of CXCR4 via interaction with its transcript.

    Science.gov (United States)

    Liu, Bao-Qin; Zhang, Song; Li, Si; An, Ming-Xin; Li, Chao; Yan, Jing; Wang, Jia-Mei; Wang, Hua-Qin

    2017-07-13

    BAG3 is an evolutionarily conserved co-chaperone expressed at high levels and has a prosurvival role in many tumor types. The current study reported that BAG3 was induced under specific floating culture conditions that enrich breast cancer stem cell (BCSC)-like cells in spheres. Ectopic BAG3 overexpression increased CD44 + /CD24 - CSC subpopulations, first-generation and second-generation mammosphere formation, indicating that BAG3 promotes CSC self-renewal and maintenance in breast cancer. We further demonstrated that mechanically, BAG3 upregulated CXCR4 expression at the post-transcriptional level. Further studies showed that BAG3 interacted with CXCR4 mRNA and promoted its expression via its coding and 3'-untranslational regions. BAG3 was also found to be positively correlated with CXCR4 expression and unfavorable prognosis in patients with breast cancer. Taken together, our data demonstrate that BAG3 promotes BCSC-like phenotype through CXCR4 via interaction with its transcript. Therefore, this study establishes BAG3 as a potential adverse prognostic factor and a therapeutic target of breast cancer.

  15. Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression.

    Science.gov (United States)

    Oda, Yoshinao; Ohishi, Yoshihiro; Basaki, Yuji; Kobayashi, Hiroaki; Hirakawa, Toshio; Wake, Norio; Ono, Mayumi; Nishio, Kazuto; Kuwano, Michihiko; Tsuneyoshi, Masazumi

    2007-07-01

    The nuclear localization of Y-box-binding protein-1 (YB-1) is known to be a poor prognostic factor in several human malignancies, including ovarian carcinoma. Following on from our basic study dealing with microarray analyses of YB-1-associated gene expression in ovarian cancer cells, we examined whether nuclear localization of YB-1 is associated with the expression of CXCR4, a vault protein named lung resistance-related vault protein (LRP/MVP), phosphorylated Akt (p-Akt) or P-glycoprotein (P-gp) in human ovarian carcinoma. Fifty-three surgically resected ovarian carcinomas treated with paclitaxel and carboplatin were examined immunohistochemically for nuclear YB-1 expression and intrinsic expression of p-Akt, P-gp, LRP/MVP and CXCR4. Nuclear expression of YB-1 demonstrated significant correlation with p-Akt, P-gp and LRP expression, but no relationship with CXCR4 expression. By multivariate analysis, only YB-1 nuclear expression and CXCR4 expression were independent prognostic factors with regard to overall survival. These results indicate that YB-1 nuclear expression and CXCR4 expression are important prognostic factors in ovarian carcinoma.

  16. Stromal cell derived factor-1α (SDF-1α) directed chemoattraction of transiently CXCR4 overexpressing mesenchymal stem cells into functionalized three-dimensional biomimetic scaffolds

    DEFF Research Database (Denmark)

    Thieme, S; Ryser, Martin; Gentsch, Marcus

    2009-01-01

    Three-dimensional (3D) bone substitute material should not only serve as scaffold in large bone defects but also attract mesenchymal stem cells, a subset of bone marrow stromal cells (BMSCs) that are able to form new bone tissue. An additional crucial step is to attract BMSCs from the surface int...... invaded up to 250 mum into SDF-1alpha-releasing 3D scaffolds, whereas CXCR4-overexpressing BMSC invaded up to 500 mum within 5 days. Thus, the SDF-1alpha/CXCR4 chemoattraction system can be used to efficiently recruit BMSCs into SDF-1alpha-releasing 3D scaffolds in vitro and in vivo....

  17. Induction of Th1-Biased T Follicular Helper (Tfh) Cells in Lymphoid Tissues during Chronic Simian Immunodeficiency Virus Infection Defines Functionally Distinct Germinal Center Tfh Cells.

    Science.gov (United States)

    Velu, Vijayakumar; Mylvaganam, Geetha Hanna; Gangadhara, Sailaja; Hong, Jung Joo; Iyer, Smita S; Gumber, Sanjeev; Ibegbu, Chris C; Villinger, Francois; Amara, Rama Rao

    2016-09-01

    Chronic HIV infection is associated with accumulation of germinal center (GC) T follicular helper (Tfh) cells in the lymphoid tissue. The GC Tfh cells can be heterogeneous based on the expression of chemokine receptors associated with T helper lineages, such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17). However, the heterogeneous nature of GC Tfh cells in the lymphoid tissue and its association with viral persistence and Ab production during chronic SIV/HIV infection are not known. To address this, we characterized the expression of CXCR3, CCR4, and CCR6 on GC Tfh cells in lymph nodes following SIVmac251 infection in rhesus macaques. In SIV-naive rhesus macaques, only a small fraction of GC Tfh cells expressed CXCR3, CCR4, and CCR6. However, during chronic SIV infection, the majority of GC Tfh cells expressed CXCR3, whereas the proportion of CCR4(+) cells did not change, and CCR6(+) cells decreased. CXCR3(+), but not CXCR3(-), GC Tfh cells produced IFN-γ (Th1 cytokine) and IL-21 (Tfh cytokine), whereas both subsets expressed CD40L following stimulation. Immunohistochemistry analysis demonstrated an accumulation of CD4(+)IFN-γ(+) T cells within the hyperplastic follicles during chronic SIV infection. CXCR3(+) GC Tfh cells also expressed higher levels of ICOS, CCR5, and α4β7 and contained more copies of SIV DNA compared with CXCR3(-) GC Tfh cells. However, CXCR3(+) and CXCR3(-) GC Tfh cells delivered help to B cells in vitro for production of IgG. These data demonstrate that chronic SIV infection promotes expansion of Th1-biased GC Tfh cells, which are phenotypically and functionally distinct from conventional GC Tfh cells and contribute to hypergammaglobulinemia and viral reservoirs. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  19. CXCR1/2 Antagonism Is Protective during Influenza and Post-Influenza Pneumococcal Infection

    Directory of Open Access Journals (Sweden)

    Luciana P. Tavares

    2017-12-01

    Full Text Available RationaleInfluenza A infections are a leading cause of morbidity and mortality worldwide especially when associated with secondary pneumococcal infections. Inflammation is important to control pathogen proliferation but may also cause tissue injury and death. CXCR1/2 are chemokine receptors relevant for the recruitment of neutrophils. We investigated the role of CXCR1/2 during influenza, pneumococcal, and post-influenza pneumococcal infections.MethodsMice were infected with influenza A virus (IAV or Streptococcus pneumoniae and then treated daily with the CXCR1/2 antagonist DF2162. To study secondary pneumococcal infection, mice were infected with a sublethal inoculum of IAV then infected with S. pneumoniae 14 days later. DF2162 was given in a therapeutic schedule from days 3 to 6 after influenza infection. Lethality, weight loss, inflammation, virus/bacteria counts, and lung injury were assessed.ResultsCXCL1 and CXCL2 were produced at high levels during IAV infection. DF2162 treatment decreased morbidity and this was associated with decreased infiltration of neutrophils in the lungs and reduced pulmonary damage and viral titers. During S. pneumoniae infection, DF2162 treatment decreased neutrophil recruitment, pulmonary damage, and lethality rates, without affecting bacteria burden. Therapeutic treatment with DF2162 during sublethal IAV infection reduced the morbidity associated with virus infection and also decreased the magnitude of inflammation, lung damage, and number of bacteria in the blood of mice subsequently infected with S. pneumoniae.ConclusionModulation of the inflammatory response by blocking CXCR1/2 improves disease outcome during respiratory influenza and pneumococcal infections, without compromising the ability of the murine host to deal with infection. Altogether, inhibition of CXCR1/2 may be a valid therapeutic strategy for treating lung infections caused by these pathogens, especially controlling secondary bacterial

  20. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway.

    Science.gov (United States)

    Xia, Rongmu; Xu, Gang; Huang, Yue; Sheng, Xin; Xu, Xianlin; Lu, Hongling

    2018-05-15

    The present study aimed to investigate the ability of hesperidin to suppress the migration and invasion of A549 cells, and to investigate the role of the SDF-1/CXCR-4 cascade in this suppression. We performed a Transwell migration assay to measure the migratory capability of A549 cells treated with 0.5% DMSO, SDF-1α, AMD3100 or hesperidin. The SDF-1 level in the culture medium was determined by an enzyme-linked immunosorbent assay (ELISA) to detect whether different concentrations of hesperidin affected SDF-1 secretion. A wound-healing assay was performed to determine the effects of different concentrations of hesperidin on the migration inhibition of A549, H460 and H1975 cells. Additionally, the effect of various hesperidin concentrations on the rate of A549 cell invasion and migration was examined with and without Matrigel in Transwell assays, respectively. Western blot analysis was used to evaluate the protein levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, p-p65, p-IκB, IκB, p-Akt and Akt. RT-qPCR was used to detect the mRNA levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, IκB, SDF-1 and Akt. The Transwell migration assay indicated that SDF-1α promoted A549 cell migration, while AMD3100 and hesperidin significantly inhibited the migratory capability. The wound-healing assay demonstrated that hesperidin treatment significantly reduced the rate of wound closure compared with the control group in a dose-dependent manner. Similarly, the migration and invasive abilities of A549 cells, H460 and H1975 cells treated with hesperidin were significantly decreased compared with the control group. The ELISA data suggested that hesperidin attenuated the secretion of SDF-1 from A549 cells in a dose-dependent manner. Furthermore, western blot analysis indicated that SDF-1α treatment significantly increased the levels of CXCR-4, p-p65, p-IκB and p-Akt in A549 cells. In contrast, AMD3100 or hesperidin reversed the effect induced by SDF-1α through decreasing the expression

  1. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection

    Directory of Open Access Journals (Sweden)

    Assunta Venuti

    2017-10-01

    Full Text Available The CC chemokine receptor 5 (CCR5 is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV. Natural reactive antibodies (Abs recognizing first loop (ECL1 of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN or HIV-infected individuals who control disease progression (LTNP as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2 of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days. The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.

  2. Analysis of serum adenosine deaminase (ADA) and ADA1 and ADA2 isoenzyme activities in HIV positive and HIV-HBV co-infected patients.

    Science.gov (United States)

    Khodadadi, Iraj; Abdi, Mohammad; Ahmadi, Abbas; Wahedi, Mohammad Saleh; Menbari, Shahoo; Lahoorpour, Fariba; Rahbari, Rezgar

    2011-08-01

    To determine adenosine deaminase (ADA) activity as a possible diagnostic marker in HIV and HIV-HBV co-infected patients. Blood samples were collected from 72 healthy, 33 HIV positive and 30 HIV-HBV co-infected subjects. Blood CD4+ cell count was recorded and serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total ADA, and ADA1 and ADA2 isoenzyme activities were determined. Serum ALT, AST, total ADA and ADA2 isoenzyme activities were significantly higher in HIV positive and HIV-HBV co-infected groups compare to the control (pADA activities (R(2)=0.589, pADA was significantly increased in HIV and HIV-HBV co-infections. Therefore, because of its low cost and simplicity to perform, ADA activity might be considered as a useful diagnostic tool among the other markers in these diseases. Copyright © 2011 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity

    International Nuclear Information System (INIS)

    Gatti, Monica; Pattarozzi, Alessandra; Bajetto, Adriana; Würth, Roberto; Daga, Antonio; Fiaschi, Pietro; Zona, Gianluigi; Florio, Tullio; Barbieri, Federica

    2013-01-01

    Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor

  4. eCD4-Ig variants that more potently neutralize HIV-1.

    Science.gov (United States)

    Fetzer, Ina; Gardner, Matthew R; Davis-Gardner, Meredith E; Prasad, Neha R; Alfant, Barnett; Weber, Jesse A; Farzan, Michael

    2018-03-28

    utility of antibodies as a treatment for HIV-1 infection or part of an effort to eradicate latently infected cells. eCD4-Ig is an antibody-like entry inhibitor that closely mimics HIV-1's obligate receptors. eCD4-Ig appears to be qualitatively different from antibodies since it neutralizes all HIV-1, HIV-2, and SIV isolates. Here we characterize three new structurally distinct eCD4-Ig variants, and show that each excels in a key property useful to prevent, treat or cure an HIV-1 infection. For example, one variant neutralized HIV-1 most efficiently, while others best enlisted natural killer cells to eliminate infected cells. These observations will help generate eCD4-Ig variants optimized for different clinical applications. Copyright © 2018 American Society for Microbiology.

  5. Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1-infected CD4+ T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Ting Pan

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection is characterized by progressive depletion of CD4+ T lymphocytes and dysfunction of the immune system. The numbers of CD4+ T lymphocytes in the human body are maintained constantly by homeostatic mechanisms that failed during HIV-1 infection, resulting in progressive loss of CD4+ T cells mainly via apoptosis. Recently, a non-apoptotic form of necrotic programmed cell death, named necroptosis, has been investigated in many biological and pathological processes. We then determine whether HIV-1-infected cells also undergo necroptosis. In this report, we demonstrate that HIV-1 not only induces apoptosis, but also mediates necroptosis in the infected primary CD4+ T lymphocytes and CD4+ T-cell lines. Necroptosis-dependent cytopathic effects are significantly increased in HIV-1-infected Jurkat cells that is lack of Fas-associated protein-containing death domain (FADD, indicating that necroptosis occurs as an alternative cell death mechanism in the absence of apoptosis. Unlike apoptosis, necroptosis mainly occurs in HIV-infected cells and spares bystander damage. Treatment with necrostatin-1(Nec-1, a RIP1 inhibitor that specifically blocks the necroptosis pathway, potently restrains HIV-1-induced cytopathic effect and interestingly, inhibits the formation of HIV-induced syncytia in CD4+ T-cell lines. This suggests that syncytia formation is mediated, at least partially, by necroptosis-related processes. Furthermore, we also found that the HIV-1 infection-augmented tumor necrosis factor-alpha (TNF-α plays a key role in inducing necroptosis and HIV-1 Envelope and Tat proteins function as its co-factors. Taken together,necroptosis can function as an alternative cell death pathway in lieu of apoptosis during HIV-1 infection, thereby also contributing to HIV-1-induced cytopathic effects. Our results reveal that in addition to apoptosis, necroptosis also plays an important role in HIV-1-induced pathogenesis.

  6. Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis.

    Science.gov (United States)

    Yellowhair, Tracylyn R; Noor, Shahani; Maxwell, Jessie R; Anstine, Christopher V; Oppong, Akosua Y; Robinson, Shenandoah; Milligan, Erin D; Jantzie, Lauren L

    2018-03-01

    In the United States, perinatal brain injury (PBI) is a major cause of infant mortality and childhood disability. For a large proportion of infants with PBI, central nervous system (CNS) injury begins in utero with inflammation (chorioamnionitis/CHORIO) and/or hypoxia-ischemia. While studies show CHORIO contributes to preterm CNS injury and is also a common independent risk factor for brain injury in term infants, the molecular mechanisms mediating inflammation in the placental-fetal-brain axis that result in PBI remain a gap in knowledge. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been clinically implicated in CHORIO and in mature CNS injury, although their specific role in PBI pathophysiology is poorly defined. Given CXCL1/CXCR2 signaling is essential to neural cell development and neutrophil recruitment, a key pathological hallmark of CHORIO, we hypothesized CHORIO would upregulate CXCL1/CXCR2 expression in the placenta and fetal circulation, concomitant with increased CXCL1/CXCR2 signaling in the developing brain, immune cell activation, neutrophilia, and microstructural PBI. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague Dawley rats to induce CHORIO. Specifically, uterine arteries were occluded for 60min to induce placental transient systemic hypoxia-ischemia (TSHI), followed by intra-amniotic injection of lipopolysaccharide (LPS). Pups were born at E22. Placentae, serum and brain were collected along an extended time course from E19 to postnatal day (P)15 and analyzed using multiplex electrochemiluminescence (MECI), Western blot, qPCR, flow cytometry (FC) and diffusion tensor imaging (DTI). Results demonstrate that compared to sham, CHORIO increases placental CXCL1 and CXCR2 mRNA levels, concomitant with increased CXCR2 + neutrophils. Interestingly, pup serum CXCL1 expression in CHORIO parallels this increase, with sustained elevation through P15. Analyses of CHORIO brains reveal similarly

  7. CD4-independent use of the CCR5 receptor by sequential primary SIVsm isolates

    Directory of Open Access Journals (Sweden)

    Thorstensson Rigmor

    2007-07-01

    Full Text Available Abstract Background CD4-independence has been taken as a sign of a more open envelope structure that is more accessible to neutralizing antibodies and may confer altered cell tropism. In the present study, we analyzed SIVsm isolates for CD4-independent use of CCR5, mode of CCR5-use and macrophage tropism. The isolates have been collected sequentially from 13 experimentally infected cynomolgus macaques and have previously been shown to use CCR5 together with CD4. Furthermore, viruses obtained early after infection were neutralization sensitive, while neutralization resistance appeared already three months after infection in monkeys with progressive immunodeficiency. Results Depending whether isolated early or late in infection, two phenotypes of CD4-independent use of CCR5 could be observed. The inoculum virus (SIVsm isolate SMM-3 and reisolates obtained early in infection often showed a pronounced CD4-independence since virus production and/or syncytia induction could be detected directly in NP-2 cells expressing CCR5 but not CD4 (CD4-independent-HIGH. Conversely, late isolates were often more CD4-dependent in that productive infection in NP-2/CCR5 cells was in most cases weak and was revealed only after cocultivation of infected NP-2/CCR5 cells with peripheral blood mononuclear cells (CD4-independent-LOW. Considering neutralization sensitivity of these isolates, newly infected macaques often harbored virus populations with a CD4-independent-HIGH and neutralization sensitive phenotype that changed to a CD4-independent-LOW and neutralization resistant virus population in the course of infection. Phenotype changes occurred faster in progressor than long-term non-progressor macaques. The phenotypes were not reflected by macrophage tropism, since all isolates replicated efficiently in macrophages. Infection of cells expressing CCR5/CXCR4 chimeric receptors revealed that SIVsm used the CCR5 receptor in a different mode than HIV-1. Conclusion Our

  8. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    Science.gov (United States)

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  9. Histologic and inflammatory lamellar changes in horses with oligofructose-induced laminitis treated with a CXCR1/2 antagonist

    OpenAIRE

    Lima, Leonardo R. de; Mendes, Heloisa M.F.; Soriani, Frederico M.; Souza, Danielle G. de; Alves, Geraldo Eleno S.; Teixeira, Mauro M.; Faleiros, Rafael R.

    2016-01-01

    Abstract: With the hypothesis that blocking chemokine signaling can ameliorate acute laminitis, the aim was to evaluate the therapeutic effect of intravenous DF1681B, a selective antagonist for CXCR1 and CXCR2 (chemokine receptors), in an oligofructose equine laminitis model. To twelve mixed breed clinically healthy hoses with no previous history of hoof-related lameness was administered oligofructose (10g/kg given by nasogastric tube) and divided into two groups: treated (intravenous DF1681B...

  10. Circulating CXCR5+CD4+ T Follicular-Like Helper Cell and Memory B Cell Responses to Human Papillomavirus Vaccines

    Science.gov (United States)

    Matsui, Ken; Adelsberger, Joseph W.; Kemp, Troy J.; Baseler, Michael W.; Ledgerwood, Julie E.; Pinto, Ligia A.

    2015-01-01

    Through the interaction of T follicular helper (Tfh) cells and B cells, efficacious vaccines can generate high-affinity, pathogen-neutralizing antibodies, and memory B cells. Using CXCR5, CXCR3, CCR6, CCR7, PD1, and ICOS as markers, Tfh-like cells can be identified in the circulation and be classified into three functionally distinct subsets that are PD1+ICOS+, PD1+ ICOS-, or PD1-ICOS-. We used these markers to identify different subsets of CXCR5+CD4+ Tfh-like cells in response to highly immunogenic and efficacious vaccines for human papillomaviruses (HPV): Cervarix and Gardasil. In this small study, we used PBMC samples from 11 Gardasil recipients, and 8 Cervarix recipients from the Vaccine Research Center 902 Study to examine the induction of circulating Tfh-like cells and IgD-CD38HiCD27+ memory B cells by flow cytometry. PD1+ICOS+ CXCR3+CCR6-CXCR5+CD4+ (Tfh1-like) cells were induced and peaked on Day (D) 7 post-first vaccination, but not as much on D7 post-third vaccination. We also observed a trend toward increase in PD1+ICOS+ CXCR3-CCR6-CXCR5+CD4+ (Tfh2-like) cells for both vaccines, and PD1+ICOS+ CXCR3-CCR6+CXCR5+CD4+ (Tfh17-like) subset was induced by Cervarix post-first vaccination. There were also minimal changes in the other cellular subsets. In addition, Cervarix recipients had more memory B cells post-first vaccination than did Gardasil recipients at D14 and D30. We found frequencies of memory B cells at D30 correlated with anti-HPV16 and 18 antibody titers from D30, and the induction levels of memory B cells at D30 and PD1+ICOS+Tfh1-like cells at D7 post-first vaccination correlated for Cervarix. Our study showed that induction of circulating CXCR5+CD4+ Tfh-like subsets can be detected following immunization with HPV vaccines, and potentially be useful as a marker of immunogenicity of vaccines. However, further investigations should be extended to different cohorts with larger sample size to better understand the functions of these T cells, as well as

  11. HIV-1-infected macrophages induce astrogliosis by SDF-1α and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Okamoto, Mika; Wang, Xin; Baba, Masanori

    2005-01-01

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1α or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1α production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1α was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1α and MMP production, which implies a mechanism of astrogliosis in HAD

  12. MicroRNA-146a and AMD3100, two ways to control CXCR4 expression in acute myeloid leukemias

    Energy Technology Data Exchange (ETDEWEB)

    Spinello, I; Quaranta, M T; Riccioni, R; Riti, V; Pasquini, L; Boe, A; Pelosi, E [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy); Vitale, A; Foà, R [Department of Cellular Biotechnologies and Hematology, Division of Hematology, ‘Sapienza' University, Rome (Italy); Testa, U; Labbaye, C [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy)

    2011-06-01

    CXCR4 is a negative prognostic marker in acute myeloid leukemias (AMLs). Therefore, it is necessary to develop novel ways to inhibit CXCR4 expression in leukemia. AMD3100 is an inhibitor of CXCR4 currently used to mobilize cancer cells. CXCR4 is a target of microRNA (miR)-146a that may represent a new tool to inhibit CXCR4 expression. We then investigated CXCR4 regulation by miR-146a in primary AMLs and found an inverse correlation between miR-146a and CXCR4 protein expression levels in all AML subtypes. As the lowest miR-146a expression levels were observed in M5 AML, we analyzed the control of CXCR4 expression by miR-146a in normal and leukemic monocytic cells and showed that the regulatory miR-146a/CXCR4 pathway operates during monocytopoiesis, but is deregulated in AMLs. AMD3100 treatment and miR-146a overexpression were used to inhibit CXCR4 in leukemic cells. AMD3100 treatment induces the decrease of CXCR4 protein expression, associated with miR-146a increase, and increases sensitivity of leukemic blast cells to cytotoxic drugs, this effect being further enhanced by miR-146a overexpression. Altogether our data indicate that miR-146a and AMD3100, acting through different mechanism, downmodulate CXCR4 protein levels, impair leukemic cell proliferation and then may be used in combination with anti-leukemia drugs, for development of new therapeutic strategies.

  13. MicroRNA-146a and AMD3100, two ways to control CXCR4 expression in acute myeloid leukemias

    International Nuclear Information System (INIS)

    Spinello, I; Quaranta, M T; Riccioni, R; Riti, V; Pasquini, L; Boe, A; Pelosi, E; Vitale, A; Foà, R; Testa, U; Labbaye, C

    2011-01-01

    CXCR4 is a negative prognostic marker in acute myeloid leukemias (AMLs). Therefore, it is necessary to develop novel ways to inhibit CXCR4 expression in leukemia. AMD3100 is an inhibitor of CXCR4 currently used to mobilize cancer cells. CXCR4 is a target of microRNA (miR)-146a that may represent a new tool to inhibit CXCR4 expression. We then investigated CXCR4 regulation by miR-146a in primary AMLs and found an inverse correlation between miR-146a and CXCR4 protein expression levels in all AML subtypes. As the lowest miR-146a expression levels were observed in M5 AML, we analyzed the control of CXCR4 expression by miR-146a in normal and leukemic monocytic cells and showed that the regulatory miR-146a/CXCR4 pathway operates during monocytopoiesis, but is deregulated in AMLs. AMD3100 treatment and miR-146a overexpression were used to inhibit CXCR4 in leukemic cells. AMD3100 treatment induces the decrease of CXCR4 protein expression, associated with miR-146a increase, and increases sensitivity of leukemic blast cells to cytotoxic drugs, this effect being further enhanced by miR-146a overexpression. Altogether our data indicate that miR-146a and AMD3100, acting through different mechanism, downmodulate CXCR4 protein levels, impair leukemic cell proliferation and then may be used in combination with anti-leukemia drugs, for development of new therapeutic strategies

  14. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2011-09-01

    Full Text Available of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 onto plates coated with anti-CD4bs antibodies b12, b6 or the CD4 receptor mimetic, CD4-IgG2...

  15. Clinicopathologic Significance of CXCL12 and CXCR4 Expressions in Patients with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Naomi Yoshuantari

    2018-01-01

    Full Text Available Background. Colorectal cancer (CRC is both a global and national burden, being the third most common malignancy in men and the second in women, worldwide. The prognosis of CRC is affected by various factors like the histological grade, angiolymphatic invasion, and distant metastases. Metastasis is an intricate process; one of the possible mechanisms is through the interaction of the chemokines CXCL12 and CXCR4. This study aims to reveal the expression patterns of CXCL12 and CXCR4 in CRC. Methods. The quantitative expressions of CXCL12 and CXCR4 messenger RNA (mRNA were evaluated in 32 patients with adenocarcinoma-type CRC. Real-time polymerase chain reaction (qRT-PCR was performed on formalin-fixed tissues. CXCL12 and CXCR4’s expressions, clinicopathologic features, and the treatment response to the CRC were analysed. Results. All tumour tissues showed higher levels of both chemokines compared to normal colonic tissue. The expression of CXCL12 mRNA was higher in rectal location (p=0.04 with a tendency to be higher in later stages (p=0.15, while the expression of CXCR4 was lower in tumours with a lymphatic invasion (p=0.02, compared to their counterparts. There was no difference in the expression of CXCL12 and CXCR4 according to the patients’ ages, gender, tumour differentiation, or response to chemotherapy. Conclusion. Our study demonstrated that the mRNA expression of CXCL12 was significantly correlated with rectal location. CXCR4 mRNA expression was inversely correlated in tumours with a lymphatic invasion.

  16. Altered Toll-Like Receptor-4 Response to Lipopolysaccharides in Infants Exposed to HIV-1 and Its Preventive Therapy

    Directory of Open Access Journals (Sweden)

    Anicet Christel Maloupazoa Siawaya

    2018-02-01

    Full Text Available Pathogen sensing and recognition through pattern recognition receptors, and subsequent production of pro-inflammatory cytokines, is the cornerstone of the innate immune system. Despite the fact that HIV-exposed uninfected (HEU infants are prone to serious bacterial infections, no study has focused on the functionality of their bacteria recognition system. This is the first study to investigate baseline levels of three critically important immune response molecules in this population: complement component (C-3, toll-like receptor (TLR-4, and C-reactive protein (CRP. We enrolled 16 HEU and 6 HIV-unexposed (HU infants. TLR4 function was investigated by stimulating whole blood with increasing concentrations of TLR4-agonist ultrapure lipopolysaccharides. TLR4/TLR4-agonist dose response were assessed by measuring IL-6 secretion. Complement C3 and CRP were measured by photo spectrometry. Data showed no significant differences in baseline concentration of CRP between HEU and HU infants. Complement C3 was significantly higher in HEU infants than HU infants. TLR4 anergy was observed in 7 of 12 HEU infants, whereas the rest of HEU infants (n = 4 and the control HU infants tested (n = 3 showed responsive TLR4. None of the HEU infants investigated in this study had severe infections in the year after their birth. In conclusion, TLR4 anergy can occur in HEU infants without necessarily translating to increased vulnerability to infectious diseases.

  17. Csk Homologous Kinase, a Potential Regulator of CXCR4-Medicated Breast Cancer Cell Metastasis

    Science.gov (United States)

    2011-08-01

    is a non-receptor tyrosine kinase and a second member of the Csk family. Like Csk, CHK has Src homology 2 ( SH2 ) and SH3 domains and lacks the...MSCV-retroviral vectors encoding either wild-type CHK or kinase -dead CHK or wild type SH2 domain or SH2 -R147A or SH2 -G129A. All these constructs were... Kinase , a Potential Regulator of CXCR4-Medicated Breast Cancer Cell Metastasis Byeong-Chel Lee The University of Pittsburgh Pittsburgh, PA 15213

  18. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    Martin-Garcia, Julio; Cao, Wei; Varela-Rohena, Angel; Plassmeyer, Matthew L.; Gonzalez-Scarano, Francisco

    2006-01-01

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  19. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor

    International Nuclear Information System (INIS)

    Schols, D.; Baba, M.; Pauwels, R.; Desmyter, J.; De Clercq, E.

    1989-01-01

    The triphenylmethane derivative aurintricarboxylic acid (ATA), but not aurin, selectively prevented the binding of OKT4A/Leu-3a monoclonal antibody (mAb) and, to a lesser extent, OKT4 mAb to the CD4 cell receptor for human immunodeficiency virus type 1 (HIV-1). The effect was seen within 1 min at an ATA concentration of 10 μM in various T4 + cells (MT-4, U-937, peripheral blood lymphocytes, and monocytes). It was dose-dependent and reversible. ATA prevented the attachment of radiolabeled HIV-1 particles to MT-4 cells, which could be expected as the result of its specific binding to the HIV/CD4 receptor. Other HIV inhibitors such as suramin, fuchsin acid, azidothymidine, dextran sulfate, heparin, and pentosan polysulfate did not affect OKT4A/Leu-3a mAb binding to the CD4 receptor, although the sulfated polysaccharides suppressed HIV-1 adsorption to the cells at concentrations required for complete protection against HIV-1 cytopathogenicity. Thus, ATA is a selective marker molecule for the CD4 receptor. ATA also interfered with the staining of membrane-associated HIV-1 glycoprotein gp120 by a mAb against it. These unusual properties of a small molecule of nonimmunological origin may have important implications for the study of CD4/HIV/AIDS pathogenesis and possibly treatment

  20. Tuberculosis and HIV co-infection in Vietnam.

    Science.gov (United States)

    Trinh, Q M; Nguyen, H L; Do, T N; Nguyen, V N; Nguyen, B H; Nguyen, T V A; Sintchenko, V; Marais, B J

    2016-05-01

    Tuberculosis (TB) and human immunodeficiency virus (HIV) infection are leading causes of disease and death in Vietnam, but TB/HIV disease trends and the profile of co-infected patients are poorly described. We examined national TB and HIV notification data to provide a geographic overview and describe relevant disease trends within Vietnam. We also compared the demographic and clinical profiles of TB patients with and without HIV infection. During the past 10 years (2005-2014) cumulative HIV case numbers and deaths increased to 298,151 and 71,332 respectively, but access to antiretroviral therapy (ART) improved and new infections and deaths declined. From 2011-2014 routine HIV testing of TB patients increased from 58.9% to 72.5% and of all TB patients diagnosed with HIV in 2014, 2,803 (72.4%) received ART. The number of multidrug resistant (MDR)-TB cases enrolled for treatment increased almost 3-fold (578 to 1,532) from 2011-2014. The rate of HIV co-infection in MDR and non-MDR TB cases (51/1,532; 3.3% vs 3,774/100,555; 3.8%; OR 0.77, 95% CI 0.7-1.2) was similar in 2014. The care of TB/HIV co-infected patients have shown sustained improvement in Vietnam. Rising numbers of MDR-TB cases is a concern, but this is not "driven" by HIV co-infection. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Organization of cellular receptors into a nanoscale junction during HIV-1 adhesion.

    Directory of Open Access Journals (Sweden)

    Terrence M Dobrowsky

    2010-07-01

    Full Text Available The fusion of the human immunodeficiency virus type 1 (HIV-1 with its host cell is the target for new antiretroviral therapies. Viral particles interact with the flexible plasma membrane via viral surface protein gp120 which binds its primary cellular receptor CD4 and subsequently the coreceptor CCR5. However, whether and how these receptors become organized at the adhesive junction between cell and virion are unknown. Here, stochastic modeling predicts that, regarding binding to gp120, cellular receptors CD4 and CCR5 form an organized, ring-like, nanoscale structure beneath the virion, which locally deforms the plasma membrane. This organized adhesive junction between cell and virion, which we name the viral junction, is reminiscent of the well-characterized immunological synapse, albeit at much smaller length scales. The formation of an organized viral junction under multiple physiopathologically relevant conditions may represent a novel intermediate step in productive infection.

  2. The Isolation of Novel Phage Display-Derived Human Recombinant Antibodies Against CCR5, the Major Co-Receptor of HIV

    OpenAIRE

    Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai; Hizi, Amnon

    2013-01-01

    Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening s...

  3. Seroprevalence and molecular epidemiology of HTLV-1 isolates from HIV-1 co-infected women in Feira de Santana, Bahia, Brazil.

    Science.gov (United States)

    de Almeida Rego, Filipe Ferreira; Mota-Miranda, Aline; de Souza Santos, Edson; Galvão-Castro, Bernardo; Alcantara, Luiz Carlos

    2010-12-01

    HTLV-1/HIV-1 co-infection is associated with severe clinical manifestations, marked immunodeficiency, and opportunistic pathogenic infections, as well as risk behavior. Salvador, the capital of the State of Bahia, Brazil, has the highest HTLV-1 prevalence (1.74%) found in Brazil. Few studies exist which describe this co-infection found in Salvador and its surrounding areas, much less investigate how these viruses circulate or assess the relationship between them. To describe the epidemiological and molecular features of HTLV in HIV co-infected women. To investigate the prevalence of HTLV/HIV co-infection in surrounding areas, as well as the molecular epidemiology of HTLV, a cross sectional study was carried out involving 107 women infected with HIV-1 from the STD/HIV/AIDS Reference Center located in the neighboring City of Feira de Santana. Patient samples were submitted to ELISA, and HTLV infection was confirmed using Western Blot and Polymerase Chain Reaction (PCR). Phylogenetic analysis using Neighbor-Joining (NJ) and Maximum Likelihood (ML) was performed on HTLV LTR sequences in order to gain further insights about molecular epidemiology and the origins of this virus in Bahia. Four out of five reactive samples were confirmed to be infected with HTLV-1, and one with HTLV-2. The seroprevalence of HTLV among HIV-1 co-infected women was 4.7%. Phylogenetic analysis of the LTR region from four HTLV-1 sequences showed that all isolates were clustered into the main Latin American group within the Transcontinental subgroup of the Cosmopolitan subtype. The HTLV-2 sequence was classified as the HTLV-2c subtype. It was also observed that four HTLV/HIV-1 co-infected women exhibited risk behavior with two having parenteral exposure, while another two were sex workers. This article describes the characteristics of co-infected patients. This co-infection is known to be severe and further studies should be conducted to confirm the suggestion that HTLV-1 is spreading from

  4. HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    DEFF Research Database (Denmark)

    Vanangamudi, Murugesan; Poongavanam, Vasanthanathan; Namasivayam, Vigneshwaran

    2017-01-01

    BACKGROUND: Design of inhibitors for HIV-1 reverse transcriptase inhibition (HIV-1 RT) is one of the successful chemotherapies for the treatment of HIV infection. Among the inhibitors available for HIV-1 RT, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have shown to be very promising......: The conformation dependent-alignment based (CoMFA and CoMSIA) methods have been proven very successful ligand based strategy in the drug design. Here, CoMFA and CoMSIA studies reported for structurally distinct NNRTIs including thiazolobenzimidazole, dipyridodiazepinone, 1,1,3-trioxo [1,2,4]-thiadiazine...

  5. The Association of CXC Receptor 4 Mediated Signaling Pathway with Oxaliplatin-Resistant Human Colorectal Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Wen-Shih Huang

    Full Text Available The stromal cell-derived factor-1 (SDF-1/CXC receptor 4 (CXCR4 axis plays an important role in tumor angiogenesis and invasiveness in colorectal cancer (CRC progression. In addition, metastatic CRC remains one of the most difficult human malignancies to treat because of its chemoresistant behavior. However, the mechanism by which correlation occurs between CXCR4 and the clinical response of CRC to chemotherapy remains unknown. We generated chemoresistant cells with increasing doses of oxaliplatin (OXA and 5-Fluorouracil (5FU to develop resistance at a clinical dose. We found that the putative markers did not change in the parental cells, but HCT-116/OxR and HCT-116/5-FUR were more aggressive and had higher tumor growth (demonstrated by wound healing, chemotaxis assay, and a nude mice xenograft model with the use of oxaliplatin. Apoptosis induced by oxaliplatin treatment was significantly decreased in HCT-116/OxR compared to the parental cells. Moreover, HCT-116/OxR cells displayed increased levels of p-gp, p-Akt p-ERK, p-IKBβ, CXCR4, and Bcl-2, but they also significantly inhibited the apoptotic pathways when compared to the parental strain. We evaluated the molecular mechanism governing the signaling pathway associated with anti-apoptosis activity and the aggressive status of chemoresistant cells. Experiments involving specific inhibitors demonstrated that the activation of the pathways associated with CXCR4, ERK1/2 mitogen-activated protein kinase (MAPK, and phosphatidylinositol 3-kinase (PI3K/Akt is critical to the functioning of the HCT-116/OxR and HCT-116/5-FUR characteristics of chemosensitivity. These findings elucidate the mechanism of CXCR4/PI3K/Akt downstream signaling and provide strategies to inhibit CXCR4 mediated signaling pathway in order to overcome CRC's resistance to chemotherapy.

  6. Isolation and characterization of CXC receptor genes in a range of elasmobranchs.

    Science.gov (United States)

    Goostrey, Anna; Jones, Gareth; Secombes, Christopher J

    2005-01-01

    The CXC group of chemokines exert their cellular effects via the CXCR group of G-protein coupled receptors. Six CXCR genes have been identified in humans (CXCR1-6), and homologues to some of these have been isolated from a range of vertebrate species. Here we isolate and characterize CXCR genes from a range of elasmobranch species. One CXCR1/2 gene fragment isolated from Scyliorhinus caniculus (lesser spotted catshark), and two CXCR1/2 copies from each of the elasmobranchs, Cetorhinus maximus (basking shark), Carcharodon carcharias (great white shark), and Raja naevus (cuckoo ray), exhibit high similarity to both CXCR1 and CXCR2. The two copies evident in the cuckoo ray and lamniform sharks provide strong evidence of CXCR1/2 lineage specific duplication in rays and sharks. A CXCR fragment isolated from Lamna ditropis (salmon shark) shows high similarity to a range of CXCR4 genes and strong clustering with CXCR4 gene homologues was apparent during phylogenetic reconstruction.

  7. Relevance of P-glycoprotein on CXCR4+ B cells to organ manifestation in highly active rheumatoid arthritis.

    Science.gov (United States)

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Kawabe, Akio; Tanaka, Yoshiya

    2018-03-01

    In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4 + B cells to clinical manifestations in refractory RA. CD19 + B cells were analyzed using flow cytometry and immunohistochemistry. P-gp was highly expressed especially on CXCR4 + CD19 + B cells in RA. The proportion of P-gp-expressing CXCR4 + B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp + CXCR4 + CD19 + B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp + CXCR4 + CD19 + B cells. Adalimumab reduced P-gp + CXCR4 + CD19 + B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. Expansion of P-gp + CXCR4 + B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.

  8. CXC chemokine receptor 4 expression and stromal cell-derived factor-1alpha-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    -10. IL-4 and IL-10 up- or down-regulated CXCR4 mRNA expression in CD4+ T lymphocytes, respectively, as detected by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Scatchard analysis revealed a type of CXCR4 with affinity (Kd approximately 6.3 nM), and approximately 70....... The regulation of CXCR4 expression in CD4+ T lymphocytes by IL-4 and IL-10 could be blocked by a selective inhibitor of protein kinase (staurosporine) or by a selective inhibitor of cAMP- and cGMP-dependent protein kinase (H-8), indicating that these cytokines regulate CXCR4 on CD4+ T lymphocytes via both c......AMP and cGMP signalling pathways. The fact that cyclosporin A or ionomycin were able to independently change the CXCR4 expression and block the effects of IL-4 and IL-10 on CXCR4 expression implied that the capacity of IL-4 and IL-10 to regulate CXCR4 on CD4+ T lymphocytes is not linked to calcium...

  9. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    Science.gov (United States)

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  10. A study of chemokines, chemokine receptors and interleukin-6 in patients with panic disorder, personality disorders and their co-morbidity.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Szromek, Adam R; Araszkiewicz, Aleksander

    2016-08-01

    Stress may induce inflammatory changes in the immune system and activate pro-inflammatory cytokines and their receptors by activating the hypothalamic-pituitary-adrenal axis. 460 hospitalized patients with panic disorders (PD) and/or personality disorders (P) were studied. The study group comprised subjects with PD, avoidant personality disorder (APD), borderline personality disorder (BPD), obsessive-compulsive personality disorder (OCPD), and concomitant (PD+APD; PD+BPD; PD+OCPD). Each study group consisted of 60 subjects (30 females and 30 males). The control group included 20 females and 20 males without any history of mental disorder. ELISA was used to assess the levels of chemokines: CCL-5/RANTES (regulated on activation, normal T-cell expressed and secreted), CXCL-12/SDF-1 (stromal derived factor), their receptors CXCR-5 (C-C chemokine receptor type-5), CXCR-4 (chemokine C-X-C motif receptor-4), and IL-6. Statistically significant differences in the levels of CCL-5 and CCR-5 were revealed between all study groups. The greatest differences were found between the groups with PD+OCPD and PD+APD. Moreover, concomitance of PD with P significantly increased the level of chemokines and their receptors in all study groups versus the subjects with P alone. The results of the study show differences between the groups. To be specific, inflammatory markers were more elevated in the study groups than the controls. Therefore, chemokines and chemokine receptors may be used as inflammatory markers in patients with PD co-existent with P to indicate disease severity. PD was found to be a factor in maintaining inflammatory activity in the immune system in patients with P. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. XMRV: usage of receptors and potential co-receptors

    Directory of Open Access Journals (Sweden)

    Gaddam Durga

    2011-09-01

    Full Text Available Abstract Background XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS. Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors. Methods To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR. Results Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP. Conclusion XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.

  12. Fluctuations in Blood Marginal Zone B-Cell Frequencies May Reflect Migratory Patterns Associated with HIV-1 Disease Progression Status.

    Science.gov (United States)

    Gauvin, Julie; Chagnon-Choquet, Josiane; Poudrier, Johanne; Roger, Michel

    2016-01-01

    We have previously shown that overexpression of BLyS/BAFF was associated with increased relative frequencies of innate "precursor" marginal zone (MZ)-like B-cells in the blood of HIV-1-infected rapid and classic progressors. However, along with relatively normal BLyS/BAFF expression levels, these cells remain unaltered in elite-controllers (EC), rather, percentages of more mature MZ-like B-cells are decreased in the blood of these individuals. Fluctuations in frequencies of blood MZ-like B-cell populations may reflect migratory patterns associated with disease progression status, suggesting an important role for these cells in HIV-1 pathogenesis. We have therefore longitudinally measured plasma levels of B-tropic chemokines by ELISA-based technology as well as their ligands by flow-cytometry on blood B-cell populations of HIV-1-infected individuals with different rates of disease progression and uninfected controls. Migration potential of B-cell populations from these individuals were determined by chemotaxis assays. We found important modulations of CXCL13-CXCR5, CXCL12-CXCR4/CXCR7, CCL20-CCR6 and CCL25-CCR9 chemokine-axes and increased cell migration patterns in HIV progressors. Interestingly, frequencies of CCR6 expressing cells were significantly elevated within the precursor MZ-like population, consistent with increased migration in response to CCL20. Although we found little modulation of chemokine-axes in EC, cell migration was greater than that observed for uninfected controls, especially for MZ-like B-cells. Overall the immune response against HIV-1 may involve recruitment of MZ-like B-cells to peripheral sites. Moreover, our findings suggest that "regulated" attraction of these cells in a preserved BLyS/BAFF non-inflammatory environment, such as encountered in EC could be beneficial to the battle and even control of HIV.

  13. Hepatitis B and C Co-Infection in HIV Patients from the TREAT Asia HIV Observational Database: Analysis of Risk Factors and Survival

    Science.gov (United States)

    Chen, Marcelo; Wong, Wing-Wai; Law, Matthew G.; Kiertiburanakul, Sasisopin; Yunihastuti, Evy; Merati, Tuti Parwati; Lim, Poh Lian; Chaiwarith, Romanee; Phanuphak, Praphan; Lee, Man Po; Kumarasamy, Nagalingeswaran; Saphonn, Vonthanak; Ditangco, Rossana; Sim, Benedict L. H.; Nguyen, Kinh Van; Pujari, Sanjay; Kamarulzaman, Adeeba; Zhang, Fujie; Pham, Thuy Thanh; Choi, Jun Yong; Oka, Shinichi; Kantipong, Pacharee; Mustafa, Mahiran; Ratanasuwan, Winai; Durier, Nicolas; Chen, Yi-Ming Arthur

    2016-01-01

    Background We assessed the effects of hepatitis B (HBV) or hepatitis C (HCV) co-infection on outcomes of antiretroviral therapy (ART) in HIV-infected patients enrolled in the TREAT Asia HIV Observational Database (TAHOD), a multi-center cohort of HIV-infected patients in the Asia-Pacific region. Methods Patients testing HBs antigen (Ag) or HCV antibody (Ab) positive within enrollment into TAHOD were considered HBV or HCV co-infected. Factors associated with HBV and/or HCV co-infection were assessed by logistic regression models. Factors associated with post-ART HIV immunological response (CD4 change after six months) and virological response (HIV RNA <400 copies/ml after 12 months) were also determined. Survival was assessed by the Kaplan-Meier method and log rank test. Results A total of 7,455 subjects were recruited by December 2012. Of patients tested, 591/5656 (10.4%) were HBsAg positive, 794/5215 (15.2%) were HCVAb positive, and 88/4966 (1.8%) were positive for both markers. In multivariate analysis, HCV co-infection, age, route of HIV infection, baseline CD4 count, baseline HIV RNA, and HIV-1 subtype were associated with immunological recovery. Age, route of HIV infection, baseline CD4 count, baseline HIV RNA, ART regimen, prior ART and HIV-1 subtype, but not HBV or HCV co-infection, affected HIV RNA suppression. Risk factors affecting mortality included HCV co-infection, age, CDC stage, baseline CD4 count, baseline HIV RNA and prior mono/dual ART. Shortest survival was seen in subjects who were both HBV- and HCV-positive. Conclusion In this Asian cohort of HIV-infected patients, HCV co-infection, but not HBV co-infection, was associated with lower CD4 cell recovery after ART and increased mortality. PMID:26933963

  14. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    International Nuclear Information System (INIS)

    Kimura, Shuhei; Sawatsubashi, Shun; Ito, Saya; Kouzmenko, Alexander; Suzuki, Eriko; Zhao, Yue; Yamagata, Kaoru; Tanabe, Masahiko; Ueda, Takashi; Fujiyama, Sari; Murata, Takuya; Matsukawa, Hiroyuki; Takeyama, Ken-ichi; Yaegashi, Nobuo

    2008-01-01

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly

  15. Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Mieke Metzemaekers

    2017-07-01

    Full Text Available CXC chemokine ligand (CXCL9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.

  16. MicroRNA-381 Favors Repair of Nerve Injury Through Regulation of the SDF-1/CXCR4 Signaling Pathway via LRRC4 in Acute Cerebral Ischemia after Cerebral Lymphatic Blockage

    Directory of Open Access Journals (Sweden)

    Jian-Min Piao

    2018-04-01

    Full Text Available Background/Aims: Acute cerebral ischemia is a manifestation of cerebral vascular insufficiency and has a high mortality. However, the therapy for acute cerebral ischemia is still limited. This study aimed to investigate the effect of microRNA-381 (miR-381 on the repair of nerve injury in rats with acute cerebral ischemia after cerebral lymphatic blockage (CLB by targeting leucine-rich repeat C4 protein (LRRC4 through the Stromal cell-derived factor-1/CXC chemokine receptor-4 signaling pathway. Methods: Rat models of CLB and middle cerebral artery occlusion (MCAO were established, and 56 Wistar rats were divided into sham, MCAO, CLB + MCAO, CLB + MCAO + miR-381 inhibitor, CLB + MCAO + miR-381 mimic, CLB + MCAO + AMD3100 and CLB + MCAO + miR-381 mimic + AMD3100 groups. Modified neurological severity score (mNSS was used to determine nerve injury, TTC staining to measure infarction volume, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL staining and flow cytometry to evaluate cell apoptosis, immunofluorescence to measure BrdU-positive cell number, enzyme-linked immunosorbent assay (ELISA to determine contents of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, interleukin-10 (IL-10, nerve growth factor (NGF and neurite outgrowth inhibitor -A (Nogo-A, Reverse transcription quantitative polymerase chain reaction (RT-qPCR and Western blotting to evaluate expression of miR-381, LRRC4, SDF-1, CXCR4, pERK, Slit2 and vascular endothelial growth factor (VEGF. Results: LRRC4 was a target gene of miR-381. Compared with the results in the CLB + MCAO group, mNSS, infarction volume, apoptosis rate and TNF-α, IL-1β, IL-6 and Nogo-A contents as well as LRRC4 expression in the CLB + MCAO + miR-381 inhibitor and CLB + MCAO + AMD3100 groups were increased (those in the CLB + MCAO + AMD3100 group > those in the CLB + MCAO + miR-381 mimic + AMD3100 group, while BrdU-positive cell number, contents of NGF and

  17. Expression of chemokine receptor-4 in bone marrow mesenchymal stem cells on experimental rat abdominal aortic aneurysms and the migration of bone marrow mesenchymal stem cells with stromal-derived factor-1

    Directory of Open Access Journals (Sweden)

    Miao-Yun Long

    2014-05-01

    Full Text Available This study investigated the expression and role of chemokine receptor-4 (CXCR4 in bone marrow mesenchymal stem cells (BMSCs from experimental rats with abdominal aortic aneurysms (AAA for migration of BMSCs. Sprague–Dawley rats were divided into an experimental group and control group (n = 18 each. AAA was induced with 0.75 M solution infiltrate for 30 minutes, after which the abdomen was rinsed and closed. Saline was used in place of CaCl2 in the control group. CD34 and CD29 were detected by flow cytometry, the gene and protein expression of CXCR4 were detected by real-time polymerase chain reaction and western blot, respectively. The migration of BMSCs with stromal-derived factor-1 was detected by Transwell chamber. CD34 expression was negative and CD29 expression was positive. The gene and protein expression of CXCR4 were significantly higher in experimental group than them in control group (p < 0.05, the migration ability of BMSCs from the experimental group was significantly higher than that from the control group (p < 0.05. Stromal-derived factor -1/CXCR4 can enhance the migration of BMSCs in vitro in a rat AAA model.

  18. CD4-dependent characteristics of coreceptor use and HIV type 1 V3 sequence in a large population of therapy-naive individuals.

    Science.gov (United States)

    Low, Andrew J; Marchant, David; Brumme, Chanson J; Brumme, Zabrina L; Dong, Winnie; Sing, Tobias; Hogg, Robert S; Montaner, Julio S G; Gill, Vikram; Cheung, Peter K; Harrigan, P Richard

    2008-02-01

    We investigated the associations between coreceptor use, V3 loop sequence, and CD4 count in a cross-sectional analysis of a large cohort of chronically HIV-infected, treatment-naive patients. HIV coreceptor usage was determined in the last pretherapy plasma sample for 977 individuals initiating HAART in British Columbia, Canada using the Monogram Trofile Tropism assay. Relative light unit (RLU) readouts from the Trofile assay, as well as HIV V3 loop sequence data, were examined as a function of baseline CD4 cell count for 953 (97%) samples with both phenotype and genotype data available. Median CCR5 RLUs were high for both R5 and X4-capable samples, while CXCR4 RLUs were orders of magnitude lower for X4 samples (p < 0.001). CCR5 RLUs in R5 samples (N = 799) increased with decreasing CD4 count (p < 0.001), but did not vary with plasma viral load (pVL) (p = 0.74). In X4 samples (N = 178), CCR5 RLUs decreased with decreasing CD4 count (p = 0.046) and decreasing pVL (p = 0.097), while CXCR4 RLUs increased with decreasing pVL (p = 0.0008) but did not vary with CD4 (p = 0.96). RLUs varied with the presence of substitutions at V3 loop positions 11, 25, and 6-8. The prevalence and impact of substitutions at codons 25 and 6-8 were CD4 dependent as was the presence of amino acid mixtures in the V3; substitutions at position 11 were CD4 independent. Assay RLU measures predictably vary with both immunological and virological parameters. The ability to predict X4 virus using genotypic determinants at positions 25 and 6-8 of the V3 loop is CD4 dependent, while position 11 appears to be CD4 independent.

  19. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    International Nuclear Information System (INIS)

    Shang Liang; Hunter, Eric

    2010-01-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.

  20. Isolation and characterization of a replication-competent molecular clone of an HIV-1 circulating recombinant form (CRF33_01B.

    Directory of Open Access Journals (Sweden)

    Kok Keng Tee

    Full Text Available A growing number of emerging HIV-1 recombinants classified as circulating recombinant forms (CRFs have been identified in Southeast Asia in recent years, establishing a molecular diversity of increasing complexity in the region. Here, we constructed a replication-competent HIV-1 clone for CRF33_01B (designated p05MYKL045.1, a newly identified recombinant comprised of CRF01_AE and subtype B. p05MYKL045.1 was reconstituted by cloning of the near full-length HIV-1 sequence from a newly-diagnosed individual presumably infected heterosexually in Kuala Lumpur, Malaysia. The chimeric clone, which contains the 5' LTR (long terminal repeat region of p93JP-NH1 (a previously isolated CRF01_AE infectious clone, showed robust viral replication in the human peripheral blood mononuclear cells. This clone demonstrated robust viral propagation and profound syncytium formation in CD4+, CXCR4-expressing human glioma NP-2 cells, indicating that p05MYKL045.1 is a CXCR4-using virus. Viral propagation, however, was not detected in various human T cell lines including MT-2, M8166, Sup-T1, H9, Jurkat, Molt-4 and PM1. p05MYKL045.1 appears to proliferate only in restricted host range, suggesting that unknown viral and/or cellular host factors may play a role in viral infectivity and replication in human T cell lines. Availability of a CRF33_01B molecular clone will be useful in facilitating the development of vaccine candidates that match the HIV-1 strains circulating in Southeast Asia.

  1. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?

    Science.gov (United States)

    Hens, Jef; Jennes, Wim; Kestens, Luc

    2016-01-01

    Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1

  2. Hypovitaminosis D increases TB co-infection risk on HIV patients

    Science.gov (United States)

    Gayatri, Y. A. A. A.; Sukmawati, D. D.; Utama, S. M.; Somia, I. K. A.; Merati, T. P.

    2018-03-01

    Tuberculosis is causes of mortality and morbidity in patients with HIV. Hypovitaminosis D, a defective cell-mediated immune response to Mycobacterium tuberculosis infection has been extensively described in HIV patients, but studies assessing the role of vitamin D in TB-HIV co-infection are lacking. We, therefore, conducted a 1:1 pair- matched case-control study to verify hypovitaminosis D possible risk factor of TB- HIV co- infection. Consecutive HIV patients starting ARV and sex, age and CD4 cell count matched were by recruiting. Tuberculosis has confirmed by thepresence of acid-fast bacilli in sputum or mycobacterium detected in specimens culture/Gene Xpert/PCR. Vitamin D levels were by measuring direct chemiluminescent immunoassay on a LIAISON®25OH analyzer. The study comprised 25 cases and 25 controls, median (interquartile range) 25(OH)D3 serum concentration were 19.80 (12.15-27.45) ng/mL in cases and 33.30 (27.2-39.4) ng/mL in controls (PHIV patients.(OR 26.154 (90% CI: 4.371-156.541); p HIV co-infection.

  3. HIV-1 and its gp120 inhibits the influenza A(H1N1)pdm09 life cycle in an IFITM3-dependent fashion.

    Science.gov (United States)

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q; Abrantes, Juliana L; Costa, Eduardo; Temerozo, Jairo R; Siqueira, Marilda M; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.

  4. HIV-1 and its gp120 inhibits the influenza A(H1N1pdm09 life cycle in an IFITM3-dependent fashion.

    Directory of Open Access Journals (Sweden)

    Milene Mesquita

    Full Text Available HIV-1-infected patients co-infected with A(H1N1pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1pdm09 life cycle in vitro. We show here that exposure of A(H1N1pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA gene from in vitro experiments and from samples of HIV-1/A(H1N1pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1pdm09 co-infected patients during the recent influenza form 2009/2010.

  5. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  6. CD4 cell count recovery in HIV/TB co-infected patients versus TB uninfected HIV patients

    Directory of Open Access Journals (Sweden)

    Wanchu A

    2010-10-01

    Full Text Available Background: There is lack of data comparing the improvement in CD4 count following antitubercular (ATT and antiretroviral therapy (ART in patients presenting with Human Immunodeficiency Virus/Tuberculosis (HIV/TB dual infection compared with CD4 matched cohort of TB uninfected HIV patients initiated on ART. We sought to test the hypothesis; TB additionally contributes to reduction in CD4 count in HIV/TB co-infected patients and this would result in greater improvement in count following treatment compared with CD4 matched TB uninfected individuals. Materials and Methods: In a retrospective cohort study design we studied the change in CD4 cell counts in two groups of patients - those with CD4 cell count >100 cells / mm 3 (Group 1 and <100/mm 3 (Group 2 at presentation. In each group the change in CD4 cell count in dually infected patients following six-month ATT and ART was compared to cohorts of CD4 matched TB uninfected patients initiated on ART. Results: In Group 1 (52 patients dually infected subjects′ CD4 count improved from 150 cells/ mm 3 to 345 cells/mm 3 (P=0.001. In the control TB uninfected patients, the change was from 159 cells/mm 3 to 317 cells/mm 3 (P=0.001. Additional improvement in dually infected patients compared to the control group was not statistically significant (P=0.24. In Group 2 (65 patients dually infected subjects count improved from 49 cells/mm3 to 249 cells/mm 3 (P=0.001 where as in control TB uninfected patients improvement was from 50 cells/ mm 3 to 205 cells/mm 3 (P=0.001, there being statistically significant additional improvement in dually infected subjects (P=0.01. Conclusion: Greater increment in CD4 counts with ATT and ART in dually infected patients suggests that TB additionally influences the reduction of CD4 counts in HIV patients.

  7. CXCR3 expression and activation of eosinophils

    DEFF Research Database (Denmark)

    Jinquan, T; Jing, C; Jacobi, H H

    2000-01-01

    CXC chemokine receptor 3 (CXCR3), predominately expressed on memory/activated T lymphocytes, is a receptor for both IFN-gamma-inducible protein-10 (gamma IP-10) and monokine induced by IFN-gamma (Mig). We report a novel finding that CXCR3 is also expressed on eosinophils. gamma IP-10 and Mig induce...... in eosinophils are up- and down-regulated by IL-2 and IL-10, respectively, as detected using flow cytometry, immunocytochemical assay, and a real-time quantitative RT-PCR technique. gamma IP-10 and Mig act eosinophils to induce chemotaxis via the cAMP-dependent protein kinase A signaling pathways. The fact...

  8. Interferon lambda 4 (IFNL4 gene polymorphism is associated with spontaneous clearance of HCV in HIV-1 positive patients

    Directory of Open Access Journals (Sweden)

    Camila Fernanda da Silveira Alves

    Full Text Available Abstract Approximately one-third of the individuals infected with human immunodeficiency virus type 1 (HIV-1 are co-infected with hepatitis C virus (HCV. Co-infected patients have an increased risk for developing end-stage liver diseases. Variants upstream of the IFNL3 gene have been associated with spontaneous and treatment-induced clearance of HCV infection. Recently, a novel polymorphism was discovered, denoted IFNL4 ΔG > TT (rs368234815, which seems to be a better predictor of spontaneous clearance than the IFNL4 rs12979860 polymorphism. We aimed to determine the prevalence of the IFNL4 ΔG > TT variants and to evaluate the association with spontaneous clearance of HCV infection in Brazilian HIV-1 patients. The IFNL4 ΔG > TT genotypes were analyzed by polymerase chain reaction followed by restriction digestion in 138 HIV-1 positive patients who had an anti-HCV positive result. Spontaneous clearance of HCV was observed in 34 individuals (24.6%. IFNL4 genotype distribution was significantly different between individuals who had spontaneous clearance and chronic HCV patients (p=0.002. The probability of spontaneous clearance of HCV infection for patients with the IFNL4 TT/TT genotype was 3.6 times higher than for patients carrying the IFNL4 ΔG allele (OR=3.63, 95% CI:1.51-8.89, p=0.001. The IFNL4 ΔG > TT polymorphism seems to be better than IFNL4 rs12979860 to predict spontaneous clearance of the HCV in Brazilian HIV-1 positive patients.

  9. Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: A meta-analysis.

    Science.gov (United States)

    Wang, Fang; Li, Shanshan; Zhao, Yueguang; Yang, Kunxian; Chen, Minju; Niu, Heng; Yang, Jingyu; Luo, Ying; Tang, Wenru; Sheng, Miaomiao

    2016-08-01

    The overexpression of CXCR4, C-Met and VEGF-C present widely in breast tumors, they may be markers of resistance to treatment. However, the studies are still controversial. Thus, this meta-analysis aims to research the relationship between the overexpression of CXCR4, C-Met, VEGF-C and clinical prognosis among breast cancer patients. PubMed and EMBASE databases were searched for eligible literature. The outcomes of interest were progression-free survival (PFS), relapse-free survival (RFS) and overall survival (OS). All tests of statistical significance were two sided. A total of 7830 patients from 28 eligible studies were assessed. The overexpression of the CXCR4 and C-Met both implied significantly worse PFS compared with normal expression [HR = 2.56, 95% CI = 1.34-4.91, P = 0.005; and HR = 1.63 95% CI = 1.20-2.22, P = 0.002]. Meanwhile, if patients had high expression of CXCR4, they would have worse OS [HR = 2.56 95% CI = 1.52-4.31, P = 0.000]. However, the overexpression of C-Met did not relate to OS for breast cancer patients [HR = 1.16, 95% CI = 0.69-1.95, P = 0.570]. Meanwhile, no statistically significant different was observed with respect to PFS and OS between VEGF-C overexpression and normal expression [HR = 0.99, 95% CI = 0.64-1.52, P = 0.968; and HR = 0.76, 95% CI = 0.43-1.33, P = 0.333]. Our meta-analysis showed that CXCR4 and C-Met were efficient prognostic factors for breast cancer. Nevertheless, highly expressing VEGF-C was not related to progression-free survival and overall survival. Due to the small samples and insufficient date, further studies should be conducted to clarify the association between the overexpression of CXCR4 or C-Met or VEGF-C and the prognosis about breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1.

    Science.gov (United States)

    Banerjee, Camellia; Archin, Nancie; Michaels, Daniel; Belkina, Anna C; Denis, Gerald V; Bradner, James; Sebastiani, Paola; Margolis, David M; Montano, Monty

    2012-12-01

    The persistence of latent HIV-1 remains a major challenge in therapeutic efforts to eradicate infection. We report the capacity for HIV reactivation by a selective small molecule inhibitor of BET family bromodomains, JQ1, a promising therapeutic agent with antioncogenic properties. JQ1 reactivated HIV transcription in models of latent T cell infection and latent monocyte infection. We also tested the effect of exposure to JQ1 to allow recovery of replication-competent HIV from pools of resting CD4(+) T cells isolated from HIV-infected, ART-treated patients. In one of three patients, JQ1 allowed recovery of virus at a frequency above unstimulated conditions. JQ1 potently suppressed T cell proliferation with minimal cytotoxic effect. Transcriptional profiling of T cells with JQ1 showed potent down-regulation of T cell activation genes, including CD3, CD28, and CXCR4, similar to HDAC inhibitors, but JQ1 also showed potent up-regulation of chromatin modification genes, including SIRT1, HDAC6, and multiple lysine demethylases (KDMs). Thus, JQ1 reactivates HIV-1 while suppressing T cell activation genes and up-regulating histone modification genes predicted to favor increased Tat activity. Thus, JQ1 may be useful in studies of potentially novel mechanisms for transcriptional control as well as in translational efforts to identify therapeutic molecules to achieve viral eradication.

  11. Haematopoietic stem cell migration to the ischemic damaged kidney is not altered by manipulating the SDF-1/CXCR4-axis

    NARCIS (Netherlands)

    Stroo, Ingrid; Stokman, Geurt; Teske, Gwendoline J. D.; Florquin, Sandrine; Leemans, Jaklien C.

    2009-01-01

    Methods. HSC were isolated from mouse bone marrow and labelled with a cell tracker. Acceptor mice were subjected to unilateral ischemia and received HSC intravenously directly after reperfusion. In addition, in separate groups of acceptor mice, endogenous SDF-1 or HSC-associated CXCR4 was blocked or

  12. Chemotherapeutic agents attenuate CXCL12-mediated migration of colon cancer cells by selecting for CXCR4-negative cells and increasing peptidase CD26

    International Nuclear Information System (INIS)

    Cutler, Murray J.; Lowthers, Erica L.; Richard, Cynthia L.; Hajducek, Dagmar M.; Spagnuolo, Paul A.; Blay, Jonathan

    2015-01-01

    Recurrence of colorectal cancer (CRC) may arise due to the persistence of drug-resistant and cancer-initiating cells that survive exposure to chemotherapy. Proteins responsible for this recurrence include the chemokine receptor CXCR4, which is known to enable CRC metastasis, as well as the cancer-initiating cell marker and peptidase CD26, which terminates activity of its chemokine CXCL12. We evaluated the expression and function of CXCR4 and CD26 in colon cancer cell lines and xenografts following treatment with common chemotherapies using radioligand binding, flow cytometry, immunofluorescence, and enzymatic assays. 5-Fluorouracil, oxaliplatin and SN-38 (the active metabolite of irinotecan), as well as cisplatin, methotrexate and vinblastine, each caused decreases in cell-surface CXCR4 and concomitant increases in CD26 on HT-29, T84, HRT-18, SW480 and SW620 CRC cell lines. Flow cytometry indicated that the decline in CXCR4 was associated with a significant loss of CXCR4+/CD26- cells. Elevations in CD26 were paralleled by increases in both the intrinsic dipeptidyl peptidase activity of CD26 as well as its capacity to bind extracellular adenosine deaminase. Orthotopic HT-29 xenografts treated with standard CRC chemotherapeutics 5-fluorouracil, irinotecan, or oxaliplatin showed dramatic increases in CD26 compared to untreated tumors. Consistent with the loss of CXCR4 and gain in CD26, migratory responses to exogenous CXCL12 were eliminated in cells pretreated with cytotoxic agents, although cells retained basal motility. Analysis of cancer-initiating cell CD44 and CD133 subsets revealed drug-dependent responses of CD26/CD44/CD133 populations, suggesting that the benefits of combining standard chemotherapies 5-fluoruracil and oxaliplatin may be derived from their complementary elimination of cell populations. Our results indicate that conventional anticancer agents may act to inhibit chemokine-mediated migration through eradication of CXCR4+ cells and attenuation of

  13. Characteristics of co-infections by HCV and HBV among Brazilian patients infected by HIV-1 and/or HTLV-1

    Directory of Open Access Journals (Sweden)

    Marcia Moreira

    Full Text Available BACKGROUND: The human retroviruses HIV-1 and HTLV-1 share the routes of infection with hepatitis viruses B and C. Co-infection by these agents are a common event, but we have scarce knowledge on co-infection by two or more of these agents. OBJECTIVE: To evaluate the characteristics and risk factors for co-infections by HBV and HCV in patients infected by HIV-1 or/and HTLV-1, in Salvador, Brazil. METHODS: In a case-control study we evaluated patients followed in the AIDS and HTLV clinics of Federal University of Bahia Hospital. Clinical and epidemiological characteristics were reviewed, and patients were tested for the presence of serological markers of HBV and HCV infections. HCV-infected patients were tested by PCR to evaluate the presence of viremia. RESULTS: A total of 200 HIV-1, 213 HTLV-1-infected, and 38 HIV-HTLV-co-infected individuals were included. HIV-infected patients were more likely to have had more sexual partners in the lifetime than other patients' groups. HIV-HTLV-co-infected subjects were predominantly male. Patients infected by HTLV or co-infected had a significantly higher frequency of previous syphilis or gonorrhea, while HIV infection was mainly associated with HPV infection. Co-infection was significantly associated to intravenous drug use (IVDU. HBV and/or HCV markers were more frequently found among co-infected patients. HBV markers were more frequently detected among HIV-infected patients, while HCV was clearly associated with IVDU across all groups. AgHBs was strongly associated with co-infection by HIV-HTLV (OR = 22.03, 95% CI: 2.69-469.7, as well as confirmed HCV infection (p = 0.001. Concomitant HCV and HBV infection was also associated with retroviral co-infection. Patients infected by HTLV-1 had a lower chance of detectable HCV viremia (OR = 0.04, 95% CI: 0.002-0.85. CONCLUSIONS: Infection by HCV and/or HBV is frequent among patients presenting retroviral infection, but risk factors and prevalence for each

  14. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    Science.gov (United States)

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  15. Circulating CXCR5⁺CD4⁺ T Follicular-Like Helper Cell and Memory B Cell Responses to Human Papillomavirus Vaccines.

    Directory of Open Access Journals (Sweden)

    Ken Matsui

    Full Text Available Through the interaction of T follicular helper (Tfh cells and B cells, efficacious vaccines can generate high-affinity, pathogen-neutralizing antibodies, and memory B cells. Using CXCR5, CXCR3, CCR6, CCR7, PD1, and ICOS as markers, Tfh-like cells can be identified in the circulation and be classified into three functionally distinct subsets that are PD1+ICOS+, PD1+ ICOS-, or PD1-ICOS-. We used these markers to identify different subsets of CXCR5+CD4+ Tfh-like cells in response to highly immunogenic and efficacious vaccines for human papillomaviruses (HPV: Cervarix and Gardasil. In this small study, we used PBMC samples from 11 Gardasil recipients, and 8 Cervarix recipients from the Vaccine Research Center 902 Study to examine the induction of circulating Tfh-like cells and IgD-CD38HiCD27+ memory B cells by flow cytometry. PD1+ICOS+ CXCR3+CCR6-CXCR5+CD4+ (Tfh1-like cells were induced and peaked on Day (D 7 post-first vaccination, but not as much on D7 post-third vaccination. We also observed a trend toward increase in PD1+ICOS+ CXCR3-CCR6-CXCR5+CD4+ (Tfh2-like cells for both vaccines, and PD1+ICOS+ CXCR3-CCR6+CXCR5+CD4+ (Tfh17-like subset was induced by Cervarix post-first vaccination. There were also minimal changes in the other cellular subsets. In addition, Cervarix recipients had more memory B cells post-first vaccination than did Gardasil recipients at D14 and D30. We found frequencies of memory B cells at D30 correlated with anti-HPV16 and 18 antibody titers from D30, and the induction levels of memory B cells at D30 and PD1+ICOS+Tfh1-like cells at D7 post-first vaccination correlated for Cervarix. Our study showed that induction of circulating CXCR5+CD4+ Tfh-like subsets can be detected following immunization with HPV vaccines, and potentially be useful as a marker of immunogenicity of vaccines. However, further investigations should be extended to different cohorts with larger sample size to better understand the functions of these T

  16. CD4 T cells remain the major source of HIV-1 during end stage disease.

    NARCIS (Netherlands)

    M.E. van der Ende (Marchina); M. Schutten (Martin); B. Raschdorff; G. Grosschupff; P. Racz; A.D.M.E. Osterhaus (Albert); K. Tenner-Racz

    1999-01-01

    textabstractOBJECTIVE: To assess the source of HIV-1 production in lymphoid tissue biopsies from HIV-infected patients, with no prior anti-retroviral protease inhibitor treatment, with a CD4 cell count > 150 x 10(6)/l (group I) or < 50 x 10(6)/l (group II), co-infected with Mycobacterium

  17. Design and cellular kinetics of dansyl-labeled CADA derivatives with anti-HIV and CD4 receptor down-modulating activity.

    Science.gov (United States)

    Vermeire, Kurt; Lisco, Andrea; Grivel, Jean-Charles; Scarbrough, Emily; Dey, Kaka; Duffy, Noah; Margolis, Leonid; Bell, Thomas W; Schols, Dominique

    2007-08-15

    A new class of anti-retrovirals, cyclotriazadisulfonamide (CADA) and its derivatives, specifically down-regulate CD4, the main receptor of HIV, and prevent HIV infection in vitro. In this work, several CADA derivatives, chemically labeled with a fluorescent dansyl group, were evaluated for their biological features and cellular uptake kinetics. We identified a derivative KKD-016 with antiviral and CD4 down-modulating capabilities similar to those of the parental compound CADA. By using flow cytometry, we demonstrated that the dose-dependent cellular uptake of this derivative correlated with CD4 down-modulation. The uptake and activity of the dansyl-labeled compounds were not dependent on the level of expression of CD4 at the cell surface. Removal of the CADA compounds from the cell culture medium resulted in their release from the cells followed by a complete restoration of CD4 expression. The inability of several fluorescent CADA derivatives to down-modulate CD4 was not associated with their lower cellular uptake and was not reversed by facilitating their cell penetration by a surfactant. These results prove the successful integration of the dansyl fluorophore into the chemical structure of a CD4 down-modulating anti-HIV compound, and show the feasibility of tracking a receptor and its down-modulator simultaneously. These fluorescent CADA analogs with reversible CD4 down-regulating potency can now be applied in further studies on receptor modulation, and in the exploration of their potentials as preventive and therapeutic anti-HIV drugs.

  18. Hepatitis B virus and HIV co-infection among pregnant women in Rwanda.

    Science.gov (United States)

    Mutagoma, Mwumvaneza; Balisanga, Helene; Malamba, Samuel S; Sebuhoro, Dieudonné; Remera, Eric; Riedel, David J; Kanters, Steve; Nsanzimana, Sabin

    2017-09-11

    Hepatitis B virus (HBV) affects people worldwide but the local burden especially in pregnant women and their new born babies is unknown. In Rwanda HIV-infected individuals who are also infected with HBV are supposed to be initiated on ART immediately. HBV is easily transmitted from mother to child during delivery. We sought to estimate the prevalence of chronic HBV infection among pregnant women attending ante-natal clinic (ANC) in Rwanda and to determine factors associated with HBV and HIV co-infection. This study used a cross-sectional survey, targeting pregnant women in sentinel sites. Pregnant women were tested for hepatitis B surface antigen (HBsAg) and HIV infection. A series of tests were done to ensure high sensitivity. Multivariable logistic regression was used to identify independent predictors of HBV-HIV co-infection among those collected during ANC sentinel surveillance, these included: age, marital status, education level, occupation, residence, pregnancy and syphilis infection. The prevalence of HBsAg among 13,121 pregnant women was 3.7% (95% CI: 3.4-4.0%) and was similar among different socio-demographic characteristics that were assessed. The proportion of HIV-infection among HBsAg-positive pregnant women was 4.1% [95% CI: 2.5-6.3%]. The prevalence of HBV-HIV co-infection was higher among women aged 15-24 years compared to those women aged 25-49 years [aOR = 6.9 (95% CI: 1.8-27.0)]. Women residing in urban areas seemed having HBV-HIV co-infection compared with women residing in rural areas [aOR = 4.3 (95% CI: 1.2-16.4)]. Women with more than two pregnancies were potentially having the co-infection compared to those with two or less (aOR = 6.9 (95% CI: 1.7-27.8). Women with RPR-positive test were seemed associated with HBV-HIV co-infection (aOR = 24.9 (95% CI: 5.0-122.9). Chronic HBV infection is a public health problem among pregnant women in Rwanda. Understanding that HBV-HIV co-infection may be more prominent in younger women from urban

  19. Hiv/hbv, hiv/hcv and hiv/htlv-1 co infection among injecting drug user patients hospitalized at the infectious disease ward of a training hospital in iran

    International Nuclear Information System (INIS)

    Alavi, S.M.; Etemadi, A.

    2007-01-01

    To assess the prevalence and risk factors for HBV, HCV and HTLV-I co-infection in the Iranian HIV positive Injecting Drug Users (IDU) patients admitted in hospital. Analyses were based on 154 male IDU patients admitted in Infectious disease ward of Razi Hospital, Ahwaz, Iran, from April 2001 to March 2003. All of them had been tested for HIV infection (Elisa-antibody and Western blot), HBV surface antigen, HCV antibody and HTLV-1 antibody. One hundred and four patients (67.53%) were identified as HIV infected. Among HIV infected, HB surface antigen, HCV antibody and HTLV-I antibody were positive in 44.23% and 74.04% and 16.33% patients respectively. HCV/HBV/HIV and HCV/HBV/HIV/HTLV-1 co-infection were 20.20% and 8.65% respectively. Co-infection with HBV or HCV or HTLV-1 is common among hospitalized HIV-infected IDU patients in the region of study. HIV disease outcomes appear to be adversely affected by HBV/HCV/HTLV-I co-infection, so identification of these viral infections is recommended as routine tests for this population. (author)

  20. HIV-1 Env and Nef Cooperatively Contribute to Plasmacytoid Dendritic Cell Activation via CD4-Dependent Mechanisms.

    Science.gov (United States)

    Reszka-Blanco, Natalia J; Sivaraman, Vijay; Zhang, Liguo; Su, Lishan

    2015-08-01

    Plasmacytoid dendritic cells (pDCs) are the major source of type I IFN (IFN-I) in response to human immunodeficiency virus type 1 (HIV-1) infection. pDCs are rapidly activated during HIV-1 infection and are implicated in reducing the early viral load, as well as contributing to HIV-1-induced pathogenesis. However, most cell-free HIV-1 isolates are inefficient in activating human pDCs, and the mechanisms of HIV-1 recognition by pDCs and pDC activation are not clearly defined. In this study, we report that two genetically similar HIV-1 variants (R3A and R3B) isolated from a rapid progressor differentially activated pDCs to produce alpha interferon (IFN-α). The highly pathogenic R3A efficiently activated pDCs to induce robust IFN-α production, while the less pathogenic R3B did not. The viral determinant for efficient pDC activation was mapped to the V1V2 region of R3A Env, which also correlated with enhanced CD4 binding activity. Furthermore, we showed that the Nef protein was also required for the activation of pDCs by R3A. Analysis of a panel of R3A Nef functional mutants demonstrated that Nef domains involved in CD4 downregulation were necessary for R3A to activate pDCs. Our data indicate that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs, which contributes to pathogenesis. Plasmacytoid dendritic cells (pDCs) are the major type I interferon (IFN-I)-producing cells, and IFN-I actually contributes to pathogenesis during chronic viral infections. How HIV-1 activates pDCs and the roles of pDCs/IFN-I in HIV-1 pathogenesis remain unclear. We report here that the highly pathogenic HIV R3A efficiently activated pDCs to induce IFN-α production, while most HIV-1 isolates are inefficient in activating pDCs. We have discovered that R3A-induced pDC activation depends on

  1. Common Features of Regulatory T Cell Specialization During Th1 Responses

    Directory of Open Access Journals (Sweden)

    Katharina Littringer

    2018-06-01

    Full Text Available CD4+Foxp3+ Treg cells are essential for maintaining self-tolerance and preventing excessive immune responses. In the context of Th1 immune responses, co-expression of the Th1 transcription factor T-bet with Foxp3 is essential for Treg cells to control Th1 responses. T-bet-dependent expression of CXCR3 directs Treg cells to the site of inflammation. However, the suppressive mediators enabling effective control of Th1 responses at this site are unknown. In this study, we determined the signature of CXCR3+ Treg cells arising in Th1 settings and defined universal features of Treg cells in this context using multiple Th1-dominated infection models. Our analysis defined a set of Th1-specific co-inhibitory receptors and cytotoxic molecules that are specifically expressed in Treg cells during Th1 immune responses in mice and humans. Among these, we identified the novel co-inhibitory receptor CD85k as a functional predictor for Treg-mediated suppression specifically of Th1 responses, which could be explored therapeutically for selective immune suppression in autoimmunity.

  2. CXCR4 antagonist AMD3100 reverses the neurogenesis and behavioral recovery promoted by forced limb-use in stroke rats.

    Science.gov (United States)

    Zhao, Shanshan; Qu, Huiling; Zhao, Yi; Xiao, Ting; Zhao, Mei; Li, Yong; Jolkkonen, Jukka; Cao, Yunpeng; Zhao, Chuansheng

    2015-01-01

    Forced limb-use can enhance neurogenesis and behavioral recovery as well as increasing the level of stromal cell-derived factor-1 (SDF-1) in stroke rats. We examined whether the SDF-1/CXCR4 pathway is involved in the enhanced neurogenesis and promoted behavioral recovery induced by forced limb-use in the chronic phase of stroke. The CXCR4 antagonist, AMD3100, was used to block the SDF-1/CXCR4 pathway in the ischemic rats. Brain ischemia was induced by endothelin-1. One week after ischemia, the unimpaired forelimb of rats was immobilized for 3 weeks. The proliferation, migration, and survival of DCX-positive cells in the subventricular zone (SVZ), and the dendritic complexity of DCX-positive cells in the dentate gyrus (DG), as well as the inflammatory response in the infarcted striatum were analyzed by immunohistochemistry. Functional recovery was assessed in beam-walking and water maze tests. Forced limb-use enhanced the proliferation, migration, dendritic complexity and the survival of newborn neurons. Furthermore, forced limb-use suppressed the inflammatory response and improved both motor and cognitive functions after stroke. AMD3100 significantly abrogated the enhanced neurogenesis and behavioral recovery induced by forced limb-use without influencing the inflammatory response. SDF-1/CXCR4 pathway seems to be involved in the enhancement of neurogenesis and behavioral recovery induced by post-stroke forced limb-use.

  3. Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Kanjoormana Aryan Manu

    Full Text Available Accumulating evidence(s indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s, it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC.

  4. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    Science.gov (United States)

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not

  5. Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir.

    Science.gov (United States)

    Chiozzini, Chiara; Arenaccio, Claudia; Olivetta, Eleonora; Anticoli, Simona; Manfredi, Francesco; Ferrantelli, Flavia; d'Ettorre, Gabriella; Schietroma, Ivan; Andreotti, Mauro; Federico, Maurizio

    2017-09-01

    Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4 + T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4 + T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4 + T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4 + T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4 + T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4 + T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.

  6. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  7. Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Trebst, Corinna; Kivisäkk, Pia

    2002-01-01

    T-cell accumulation in the central nervous system (CNS) is considered crucial to the pathogenesis of multiple sclerosis (MS). We found that the majority of T cells within the cerebrospinal fluid (CSF) compartment expressed the CXC chemokine receptor 3 (CXCR), independent of CNS inflammation...

  8. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors

    Directory of Open Access Journals (Sweden)

    Andrabi Raiees

    2012-09-01

    Full Text Available Abstract Background Analysis of human monoclonal antibodies (mAbs developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3 is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5 binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females within the age range of 20–57 years (median = 33 years were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL, suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope

  9. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    Science.gov (United States)

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  11. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222.

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.

  12. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer.

    Science.gov (United States)

    Santagata, Sara; Napolitano, Maria; D'Alterio, Crescenzo; Desicato, Sonia; Maro, Salvatore Di; Marinelli, Luciana; Fragale, Alessandra; Buoncervello, Maria; Persico, Francesco; Gabriele, Lucia; Novellino, Ettore; Longo, Nicola; Pignata, Sandro; Perdonà, Sisto; Scala, Stefania

    2017-09-29

    With the intent to identify biomarkers in renal cell carcinoma (RCC) the functional status of T-regulatory cells (Tregs) was investigated in primary RCC. Tregs were isolated from tumoral-(TT), peritumoral tissue-(PT) and peripheral blood-(PB) of 42 primary RCC patients and function evaluated through effector T cells (Teff) proliferation, cytokines release and demethylation of Treg Specific Region (TSDR). The highest value of Tregs was detected in TT with the uppermost amount of effector-Tregs-(CD4 + CD25 hi FOXP3 hi CD45RA - ). PB-RCC Tregs efficiently suppress Teff proliferation compared to healthy donor (HD)-Tregs and, at the intrapatient evaluation, TT-derived Tregs were the most suppressive. Higher demethylation TSDR was detected in TT- and PB-RCC Tregs vs HD-Tregs ( P <0,001). CXCR4 is highly expressed on Tregs, thus we wished to modulate Tregs function through CXCR4 inhibition. CXCR4 antagonism, elicited by a new peptidic antagonist, Peptide-R29, efficiently reversed Tregs suppression of Teff proliferation. Thus Tregs functional evaluation precisely reflects Tregs status and may be a reliable biomarker of tumoral immune response. In addition, treatment with CXCR4 antagonist, impairing Tregs function, could improve the anticancer immune response, in combination with conventional therapy and/or immunotherapy such as checkpoints inhibitors.

  13. Epidemiological profile and risk factors of HIV and HBV/HCV co-infection in Fujian Province, southeastern China.

    Science.gov (United States)

    Wu, Shouli; Yan, Pingping; Yang, Tianfei; Wang, Zhenghua; Yan, Yansheng

    2017-03-01

    This study aimed to investigate the epidemiological features of HIV-infected subjects co-infected with HBV/HCV in Fujian Province, southeastern China, and identify the risk factors. Blood samples were collected from 2,028 HIV antibody-positive subjects in Fujian Province. Serum HBsAg and anti-HCV antibody were detected, and CD4 + T cell count was measured. Of the 2,028 subjects, the prevalence of HIV-HBV, HIV-HCV, and HIV-HBV-HCV co-infections was 16.22%, 3.7%, and 0.79%, respectively. Man (OR = 1.912, 95% CI: 1.371-2.667), key population (OR = 0.756, 95% CI: 0.57-0.976) and detainee (OR = 0.486, 95% CI: 0.259-0.909) were risk factors of HIV-HBV co-infection, and man (OR = 2.227, 95% CI: 1.096-4.525), minority (OR = 5.04, 95% CI: 1.696-14.98), junior high school or lower education (OR = 2.32, 95% CI: 1.071-5.025), intravenous drug use (OR = 38.46, 95% CI: 11.46-129.11) and detainee (OR = 5.687, 95% CI: 2.44-13.25) were risk factors of HIV-HCV co-infection. In addition, a lower mean CD4 + T cell count was measured in HIV/HBV and HIV/HCV co-infected subjects than in HIV-infected subjects among the untreated individuals, while in the treated populations, a higher mean CD4 + T cell count was detected in HIV/HBV and HIV/HCV co-infected subjects than in HIV-infected subjects. HIV co-infection with HBV or HCV, notably HIV-HBV co-infection, is widespread in southeastern China. Hepatitis virus screening should be included in monitoring of HIV infection, and HIV and hepatitis virus co-infection should be considered during the development of HIV antiretroviral therapy scheme. J. Med. Virol. 89:443-449, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...on through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. Authors Lee C, Liu QH, Tomkowicz B, Yi

  15. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes

    International Nuclear Information System (INIS)

    Ketas, Thomas J.; Schader, Susan M.; Zurita, Juan; Teo, Esther; Polonis, Victoria; Lu Min; Klasse, Per Johan; Moore, John P.

    2007-01-01

    Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 μM), the replication of most R5 isolates in human donor lymphocytes was inhibited by > 90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness

  16. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ohri, Chandra M; Shikotra, Aarti; Green, Ruth H; Waller, David A; Bradding, Peter

    2010-01-01

    We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES) in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC. We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression. There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS) patients (p = 0.007, 0.01, and 0.002, respectively). There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and <0.001, respectively) as well as stromal CXCR3 density (p = 0.003). There was a positive correlation between macrophage density and CXCR3 expression (r s = 0.520, p = 0.02) and between mast cell density and CXCR3 expression (r s = 0.499, p = 0.03) in the tumour islets. Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets

  17. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    Science.gov (United States)

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK

  18. The CXC Chemokine Receptor 3 Inhibits Autoimmune Cholangitis via CD8+ T Cells but Promotes Colitis via CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Qing-Zhi Liu

    2018-05-01

    Full Text Available CXC chemokine receptor 3 (CXCR3, a receptor for the C-X-C motif chemokines (CXCL CXCL9, CXCL10, and CXCL11, which not only plays a role in chemotaxis but also regulates differentiation and development of memory and effector T cell populations. Herein, we explored the function of CXCR3 in the modulation of different organ-specific autoimmune diseases in interleukin (IL-2 receptor deficiency (CD25−/− mice, a murine model for both cholangitis and colitis. We observed higher levels of CXCL9 and CXCL10 in the liver and colon and higher expression of CXCR3 on T cells of the CD25−/− mice compared with control animals. Deletion of CXCR3 resulted in enhanced liver inflammation but alleviated colitis. These changes in liver and colon pathology after CXCR3 deletion were associated with increased numbers of hepatic CD4+ and CD8+ T cells, in particular effector memory CD8+ T cells, as well as decreased T cells in mesenteric lymph nodes and colon lamina propria. In addition, increased interferon-γ response and decreased IL-17A response was observed in both liver and colon after CXCR3 deletion. CXCR3 modulated the functions of T cells involved in different autoimmune diseases, whereas the consequence of such modulation was organ-specific regarding to their effects on disease severity. Our findings emphasize the importance of extra caution in immunotherapy for organ-specific autoimmune diseases, as therapeutic interventions aiming at a target such as CXCR3 for certain disease could result in adverse effects in an unrelated organ.

  19. Prostaglandin F2α–F-Prostanoid Receptor Signalling Promotes Neutrophil Chemotaxis via Chemokine (CXC motif) Ligand-1 in Endometrial Adenocarcinoma

    Science.gov (United States)

    Wallace, Alison E; Sales, Kurt J; Catalano, Roberto D; Anderson, Richard A; Williams, Alistair RW; Wilson, Martin R; Schwarze, Jurgen; Wang, Hongwei; Rossi, Adriano G; Jabbour, Henry N

    2009-01-01

    The prostaglandin F2α (PGF2α) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF2α signalling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue as compared to normal endometrium and localised to glandular epithelium, endothelium and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100nM PGF2α increased CXCL1 promoter activity, mRNA and protein expression, and these effects were abolished by co-treatment of cells with FP antagonist or chemical inhibitors of Gq, EGFR and ERK. Similarly, CXCL1 was elevated in response to 100 nM PGF2α in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalised to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF2α-treated FPS cells stimulated neutrophil chemotaxis which could be abolished by CXCL1 protein immunoneutralisation of the conditioned media or antagonism of CXCR2. Finally, xenograft tumours in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared to tumours arising from wild-type cells or following treatment of mice bearing FPS tumours with CXCL1-neutralising antibody. In conclusion, our results demonstrate a novel PGF2α-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis. PMID:19549892

  20. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells. PMID:24717285

  1. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells.

    Science.gov (United States)

    Aravindan, Sheeja; Ramraj, Satishkumar; Kandasamy, Kathiresan; Thirugnanasambandan, Somasundaram S; Somasundaram, Dinesh Babu; Herman, Terence S; Aravindan, Natarajan

    2017-01-24

    Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells.

  2. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway.

    Science.gov (United States)

    Zheng, Xin; Zhao, Feng-Chao; Pang, Yong; Li, Dong-Ya; Yao, Sheng-Cheng; Sun, Shao-Song; Guo, Kai-Jin

    2017-06-01

    Osteoarthritis (OA) is characterized by degradation of chondrocyte extracellular matrix (ECM). Accumulating evidence suggests that microRNAs (miRNAs) are associated with OA, but little is known of their function in chondrocyte ECM degradation. The objective of this study was to investigate the expression and function of miRNAs in OA. miRNA expression profile was determined in OA cartilage tissues and controls, employing Solexa sequencing and reverse transcription quantitative PCR (RT-qPCR). According to a modified Mankin scale, cartilage degradation was evaluated. Functional analysis of the miRNAs on chondrocyte ECM degradation was performed after miRNA transfection and IL-1β treatment. Luciferase reporter assays and western blotting were employed to determine miRNA targets. Expression of miR-221-3p was downregulated in OA cartilage tissues, which was significantly correlated with a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-221-3p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28I2 cells, SDF1 was identified as a target of miR-221-3p. SDF1 overexpression resulted in increased expression of catabolic genes such as MMP-13 and ADAMTS-5 in response to IL-1β, but these effects were moderated by miR-221-3p. SDF1 treatment antagonized this effect, while knockdown of SDF1 by shSDF1 induced inhibitory effects on the expression of CXCR4 and its main target genes, similar to miR-221-3p. The results indicate that upregulation of miR-221-3p could prevent IL-1β-induced ECM degradation in chondrocytes. Targeting the SDF1/CXCR4 signaling pathway may be used as a therapeutic approach for OA. miR-221-3p is downregulated in human cartilage tissues. miR-221-3p levels are associated with cartilage degeneration grade. miR-221-3p upregulation prevents IL-1β-induced ECM degradation in chondrocytes. Protection of ECM degradation by miR-223-3p occurs via SDF1/CXCR4

  3. Overexpression of octamer transcription factors 1 or 2 alone has no effect on HIV-1 transcription in primary human CD4 T cells

    International Nuclear Information System (INIS)

    Zhang Mingce; Genin, Anna; Cron, Randy Q.

    2004-01-01

    We explored the binding of octamer (Oct) transcription factors to the HIV-1 long terminal repeat (LTR) by gel shift assays and showed none of the previously identified four potential Oct binding sites bound Oct-1 or Oct-2. Overexpression of Oct-1 or Oct-2 had no effect on HIV-1 LTR activity in transiently transfected primary human CD4 T cells. Next, primary human CD4 T cells were co-transfected with a green fluorescent protein (GFP)-expression vector and an Oct-1 or Oct-2 expression plasmid. The transfected cells were stimulated for 2 days and then infected with the NL4-3 strain of HIV-1. After 3 days of infection, there were no differences in HIV-1 p24 supernatant levels. Apoptosis of infected or bystander cells overexpressing Oct-1 or Oct-2 compared to control was also unaffected. Our studies demonstrate that Oct-1 and Oct-2 fail to bind to the HIV-1 LTR and have no effect on HIV-1 transcription in primary human CD4 T cells

  4. Maturation and Mip-1β Production of Cytomegalovirus-Specific T Cell Responses in Tanzanian Children, Adolescents and Adults: Impact by HIV and Mycobacterium tuberculosis Co-Infections.

    Directory of Open Access Journals (Sweden)

    Damien Portevin

    Full Text Available It is well accepted that aging and HIV infection are associated with quantitative and functional changes of CMV-specific T cell responses. We studied here the expression of Mip-1β and the T cell maturation marker CD27 within CMVpp65-specific CD4(+ and CD8(+ T cells in relation to age, HIV and active Tuberculosis (TB co-infection in a cohort of Tanzanian volunteers (≤ 16 years of age, n = 108 and ≥ 18 years, n = 79. Independent of HIV co-infection, IFNγ(+ CMVpp65-specific CD4(+ T cell frequencies increased with age. In adults, HIV co-infection further increased the frequencies of these cells. A high capacity for Mip-1β production together with a CD27(low phenotype was characteristic for these cells in children and adults. Interestingly, in addition to HIV co-infection active TB disease was linked to further down regulation of CD27 and increased capacity of Mip-1β production in CMVpp65-specific CD4+ T cells. These phenotypic and functional changes of CMVpp65-specific CD4 T cells observed during HIV infection and active TB could be associated with increased CMV reactivation rates.

  5. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  6. CXCR5+ CD8+ T Cells Indirectly Offer B Cell Help and Are Inversely Correlated with Viral Load in Chronic Hepatitis B Infection.

    Science.gov (United States)

    Jiang, Hang; Li, Linhai; Han, Jiang; Sun, Zhiwei; Rong, Yihui; Jin, Yun

    2017-04-01

    Treatment options for chronic hepatitis B (CHB) infection are extremely limited. CXCR5 + CD8 + T cell is a novel cell subtype and could possess strong cytotoxic properties in HIV infection. In this study, we investigated the role of CXCR5 + CD8 + T cells in CHB patients. Compared to healthy individuals, both CHB patients and hepatitis B virus (HBV)-infected hepatocellular carcinoma patients presented significant upregulation of CXCR5 + CD8 + T cells in peripheral blood, in which CXCR5 + CD8 + T cells were negatively correlated with the frequency of CXCR5 + CD4 + T cells in CHB patients. After PMA+ionomycin stimulation, CXCR5 + CD8 + T cells from CHB patients presented significantly higher transcription level of interferon gamma (IFN-γ), interleukin 10 (IL-10), and IL-21, as well as higher IL-10 and IL-21 protein secretion, than CXCR5 - CD8 + T cells. Unlike CXCR5 + CD4 + T cells, when incubated with naive CD19 + CD27 - B cells, CXCR5 + CD8 + T cells alone did not upregulate IgM, IgG, and IgA secretion. However, addition of CXCR5 + CD8 + T cells in B cell-CXCR5 + CD4 + T cell coculture significantly increased the levels of secreted IgG and IgA, demonstrating that CXCR5 + CD8 + T cell could indirectly offer B cell help. Furthermore, high frequencies of CXCR5 + CD8 + T cells tended to associate with low HBV DNA load, and the frequency of CXCR5 + CD8 + T cells was negatively correlated with alanine aminotransferase (ALT) level. Together, these results suggested that CXCR5 + CD8 + T cells were involved in the antiviral immune responses in CHB and could potentially serve as a therapeutic candidate.

  7. Circulating precursor CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure.

    Science.gov (United States)

    He, Jing; Tsai, Louis M; Leong, Yew Ann; Hu, Xin; Ma, Cindy S; Chevalier, Nina; Sun, Xiaolin; Vandenberg, Kirsten; Rockman, Steve; Ding, Yan; Zhu, Lei; Wei, Wei; Wang, Changqi; Karnowski, Alexander; Belz, Gabrielle T; Ghali, Joanna R; Cook, Matthew C; Riminton, D Sean; Veillette, André; Schwartzberg, Pamela L; Mackay, Fabienne; Brink, Robert; Tangye, Stuart G; Vinuesa, Carola G; Mackay, Charles R; Li, Zhanguo; Yu, Di

    2013-10-17

    Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Gene variation in IL-7 receptor (IL-7R)α affects IL-7R response in CD4+ T cells in HIV-infected individuals

    DEFF Research Database (Denmark)

    Hartling, Hans Jakob; Ryder, Lars P.; Ullum, Henrik

    2017-01-01

    Optimal CD4+ T cell recovery after initiating combination antiretroviral treatment (cART) in HIV infection reduces risk of morbidity and mortality. T-allele homozygosity (‘TT’) in the single nucleotide polymorphism, rs6897932(C/T), in the IL-7 receptor α (IL-7RA) is associated with faster CD4+ T...... cell recovery after cART initiation compared to C-allele homozygosity in rs6897932 (‘CC’). However, underlying mechanisms are unknown. We aimed to examine potential mechanisms explaining the association between rs6897932 and CD4+ T cell recovery. Ten ‘TT’ and 10 ‘CC’ HIV-infected individuals matched...... on gender, age, and nadir and current CD4+ T cell counts were included in a cross-sectional study. ‘TT’ individuals had higher proportion of CD4+ T cells expressing pSTAT5 compared to ‘CC’ individuals after stimulating with IL-7, especially when co-stimulated with soluble IL7-RA (sIL-7RA). Furthermore, ‘TT...

  9. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev

    International Nuclear Information System (INIS)

    Fang Jianhua; Kubota, Satoshi; Yang Bin; Zhou Naiming; Zhang Hui; Godbout, Roseline; Pomerantz, Roger J.

    2004-01-01

    HIV-1 Rev escorts unspliced viral mRNAs out of the nucleus of infected cells, which allows formation of infectious HIV-1 virions. We have identified a putative DEAD box (Asp-Glu-Ala-Asp) RNA helicase, DDX1, as a cellular co-factor of Rev, through yeast and mammalian two-hybrid systems using the N-terminal motif of Rev as 'bait'. DDX1 is not a functional homolog of HIV-1 Rev, but down-regulation of DDX1 resulted in an alternative splicing pattern of Rev-responsive element (RRE)-containing mRNA, and attenuation of Gag p24 antigen production from HLfb rev(-) cells rescued by exogenous Rev. Co-transfection of a DDX1 expression vector with HIV-1 significantly increased viral production. DDX1 binding to Rev, as well as to the RRE, strongly suggest that DDX1 affects Rev function through the Rev-RRE axis. Moreover, down-regulation of DDX1 altered the steady state subcellular distribution of Rev, from nuclear/nucleolar to cytoplasmic dominance. These findings indicate that DDX1 is a critical cellular co-factor for Rev function, which maintains the proper subcellular distribution of this lentiviral regulatory protein. Therefore, alterations in DDX1-Rev interactions could induce HIV-1 persistence and targeting DDX1 may lead to rationally designed and novel anti-HIV-1 strategies and therapeutics

  10. Functional impact of HIV coreceptor-binding site mutations

    International Nuclear Information System (INIS)

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W.; Reeves, Jacqueline D.

    2006-01-01

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner

  11. Psychiatric disorders, HIV infection and HIV/hepatitis co-infection in the correctional setting.

    Science.gov (United States)

    Baillargeon, J G; Paar, D P; Wu, H; Giordano, T P; Murray, O; Raimer, B G; Avery, E N; Diamond, P M; Pulvino, J S

    2008-01-01

    Psychiatric disorders such as bipolar disorder, schizophrenia and depression have long been associated with risk behaviors for HIV, hepatitis C virus (HCV) and hepatitis B virus (HBV). The US prison population is reported to have elevated rates of HIV, hepatitis and most psychiatric disorders. This study examined the association of six major psychiatric disorders with HIV mono-infection, HIV/HCV co-infection and HIV/HBV co-infection in one of the nation's largest prison populations. The study population consisted of 370,511 Texas Department of Criminal Justice inmates who were incarcerated for any duration between January 1, 2003 and July 1, 2006. Information on medical conditions and sociodemographic factors was obtained from an institution-wide electronic medical information system. Offenders diagnosed with HIV mono-infection, HIV/HCV, HIV/HBV and all HIV combined exhibited elevated rates of major depression, bipolar disorder, schizophrenia, schizoaffective disorder, non-schizophrenic psychotic disorder and any psychiatric disorder. In comparison to offenders with HIV mono-infection, those with HIV/HCV co-infection had an elevated prevalence of any psychiatric disorder. This cross-sectional study's finding of positive associations between psychiatric disease and both HIV infection and hepatitis co-infection among Texas prison inmates holds both clinical and public health relevance. It will be important for future investigations to examine the extent to which psychiatric disorders serve as a barrier to medical care, communication with clinicians and adherence to prescribed medical regimens among both HIV-mono-infected and HIV/hepatitis-co-infected inmates.

  12. Prediction of HIV-1 coreceptor usage (tropism) by sequence analysis using a genotypic approach.

    Science.gov (United States)

    Sierra, Saleta; Kaiser, Rolf; Lübke, Nadine; Thielen, Alexander; Schuelter, Eugen; Heger, Eva; Däumer, Martin; Reuter, Stefan; Esser, Stefan; Fätkenheuer, Gerd; Pfister, Herbert; Oette, Mark; Lengauer, Thomas

    2011-12-01

    Maraviroc (MVC) is the first licensed antiretroviral drug from the class of coreceptor antagonists. It binds to the host coreceptor CCR5, which is used by the majority of HIV strains in order to infect the human immune cells (Fig. 1). Other HIV isolates use a different coreceptor, the CXCR4. Which receptor is used, is determined in the virus by the Env protein (Fig. 2). Depending on the coreceptor used, the viruses are classified as R5 or X4, respectively. MVC binds to the CCR5 receptor inhibiting the entry of R5 viruses into the target cell. During the course of disease, X4 viruses may emerge and outgrow the R5 viruses. Determination of coreceptor usage (also called tropism) is therefore mandatory prior to administration of MVC, as demanded by EMA and FDA. The studies for MVC efficiency MOTIVATE, MERIT and 1029 have been performed with the Trofile assay from Monogram, San Francisco, U.S.A. This is a high quality assay based on sophisticated recombinant tests. The acceptance for this test for daily routine is rather low outside of the U.S.A., since the European physicians rather tend to work with decentralized expert laboratories, which also provide concomitant resistance testing. These laboratories have undergone several quality assurance evaluations, the last one being presented in 2011. For several years now, we have performed tropism determinations based on sequence analysis from the HIV env-V3 gene region (V3). This region carries enough information to perform a reliable prediction. The genotypic determination of coreceptor usage presents advantages such as: shorter turnover time (equivalent to resistance testing), lower costs, possibility to adapt the results to the patients' needs and possibility of analysing clinical samples with very low or even undetectable viral load (VL), particularly since the number of samples analysed with VL < 1000 copies/μl roughly increased in the last years (Fig. 3). The main steps for tropism testing (Fig. 4) demonstrated in

  13. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells.

    Science.gov (United States)

    Vacharaksa, Anjalee; Asrani, Anil C; Gebhard, Kristin H; Fasching, Claudine E; Giacaman, Rodrigo A; Janoff, Edward N; Ross, Karen F; Herzberg, Mark C

    2008-07-17

    Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Deltaenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  14. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Directory of Open Access Journals (Sweden)

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  15. How to engage Cofilin

    Directory of Open Access Journals (Sweden)

    Bukrinsky Michael

    2008-09-01

    Full Text Available Abstract In HIV-infected people, resting CD4+ T cells are the main reservoir of latent virus and the reason for the failure of drug therapy to cure HIV infection. Still, we do not have a complete understanding of the factors regulating HIV replication in these cells. A recent paper in Cell describes a new trick that the virus uses to infect resting T cells. Interaction between the viral gp120 and cellular HIV co-receptor, CXCR4, during viral entry initiates signaling that activates cofilin, the main regulator of actin polymerization. As a result of this activation, actin is depolymerized, thus destroying the natural barrier to HIV replication. I discuss implications of this study for our understanding of HIV biology and development of novel anti-HIV therapeutic approaches.

  16. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells.

    Science.gov (United States)

    Schinke, Carolina; Giricz, Orsolya; Li, Weijuan; Shastri, Aditi; Gordon, Shanisha; Barreyro, Laura; Barreryo, Laura; Bhagat, Tushar; Bhattacharyya, Sanchari; Ramachandra, Nandini; Bartenstein, Matthias; Pellagatti, Andrea; Boultwood, Jacqueline; Wickrema, Amittha; Yu, Yiting; Will, Britta; Wei, Sheng; Steidl, Ulrich; Verma, Amit

    2015-05-14

    Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML. © 2015 by The American Society of Hematology.

  17. The B-Cell Follicle in HIV Infection: Barrier to a Cure.

    Science.gov (United States)

    Bronnimann, Matthew P; Skinner, Pamela J; Connick, Elizabeth

    2018-01-01

    The majority of HIV replication occurs in secondary lymphoid organs (SLOs) such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA + cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA + cells in the B-cell follicle is mediated by several factors. Follicular CD4 + T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs) in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA + cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA + cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells that express

  18. The B-Cell Follicle in HIV Infection: Barrier to a Cure

    Directory of Open Access Journals (Sweden)

    Matthew P. Bronnimann

    2018-01-01

    Full Text Available The majority of HIV replication occurs in secondary lymphoid organs (SLOs such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA+ cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA+ cells in the B-cell follicle is mediated by several factors. Follicular CD4+ T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA+ cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA+ cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells

  19. CD4 lymphocyte dynamics in Tanzanian pulmonary tuberculosis patients with and without HIV co-infection

    DEFF Research Database (Denmark)

    Andersen, Aase B.; Range, Nyagosya; Changalucha, John

    2012-01-01

    ABSTRACT: BACKGROUND: The interaction of HIV and tuberculosis (TB) on CD4 levels over time has previously been divergently reported and only in small study populations with short or no follow-up. METHODS: CD4 counts were assessed from time of diagnosis till the end of TB treatment in a cohort...... of pulmonary TB patients with and without HIV co-infection and compared with cross-sectional data on age- and sex-matched non-TB controls from the same area. RESULTS: Of 1605 study participants, 1250 were PTB patients and 355 were non-TB controls. At baseline, HIV was associated with 246 (95% CI: 203; 279...

  20. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  1. Properties of HTLV-I transformed CD8+ T-cells in response to HIV-1 infection.

    Science.gov (United States)

    Gulzar, N; Shroff, A; Buberoglu, B; Klonowska, D; Kim, J E; Copeland, K F T

    2010-10-25

    HIV-1 infection studies of primary CD8(+) T-cells are hampered by difficulty in obtaining a significant number of targets for infection and low levels of productive infection. Further, there exists a paucity of CD8-expressing T-cell lines to address questions pertaining to the study of CD8(+) T-cells in the context of HIV-1 infection. In this study, a set of CD8(+) T-cell clones were originated through HTLV-I transformation in vitro, and the properties of these cells were examined. The clones were susceptible to T-cell tropic strains of the virus and exhibited HIV-1 production 20-fold greater than primary CD4(+) T-cells. Productive infection resulted in a decrease in expression of CD8 and CXCR4 molecules on the surface of the CD8(+) T-cell clones and antibodies to these molecules abrogated viral binding and replication. These transformed cells provide an important tool in the study of CD8(+) T-cells and may provide important insights into the mechanism(s) behind HIV-1 induced CD8(+) T-cell dysfunction. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Daniëlle van Manen

    2008-02-01

    Full Text Available The antiviral factor tripartite interaction motif 5alpha (Trim5alpha restricts a broad range of retroviruses in a species-specific manner. Although human Trim5alpha is unable to block HIV-1 infection in human cells, a modest inhibition of HIV-1 replication has been reported. Recently two polymorphisms in the Trim5 gene (H43Y and R136Q were shown to affect the antiviral activity of Trim5alpha in vitro. In this study, participants of the Amsterdam Cohort studies were screened for polymorphisms at amino acid residue 43 and 136 of the Trim5 gene, and the potential effects of these polymorphisms on the clinical course of HIV-1 infection were analyzed. In agreement with the reported decreased antiviral activity of Trim5alpha that contains a Y at amino acid residue 43 in vitro, an accelerated disease progression was observed for individuals who were homozygous for the 43Y genotype as compared to individuals who were heterozygous or homozygous for the 43H genotype. A protective effect of the 136Q genotype was observed but only after the emergence of CXCR4-using (X4 HIV-1 variants and when a viral load of 10(4.5 copies per ml plasma was used as an endpoint in survival analysis. Interestingly, naive CD4 T cells, which are selectively targeted by X4 HIV-1, revealed a significantly higher expression of Trim5alpha than memory CD4 T cells. In addition, we observed that the 136Q allele in combination with the -2GG genotype in the 5'UTR was associated with an accelerated disease progression. Thus, polymorphisms in the Trim5 gene may influence the clinical course of HIV-1 infection also underscoring the antiviral effect of Trim5alpha on HIV-1 in vivo.

  3. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  4. Csk Homologous Kinase, a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis

    Science.gov (United States)

    2010-08-31

    SH2 ) and SH3 domains and lacks the consensus tyrosine phosphorylation and myristylation sites found in Src family kinases . CHK has been shown to...0350 TITLE: Csk Homologous Kinase , a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis PRINCIPAL INVESTIGATOR: Byeong-Chel...1 AUG 2009 - 31 JUL 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-09-1-0350 Csk Homologous Kinase , a Potential Regulator

  5. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Directory of Open Access Journals (Sweden)

    Song Xinming

    2009-08-01

    HIV-1 interaction with target cells, i.e., the interaction between gp120 and CD4/CCR5 or gp120 and CD4/CXCR4 and point to the potential of developing these two extracts to be HIV-1 entry inhibitors.

  6. The Role of ERG and CXCR4 in Prostate Cancer Progression

    Science.gov (United States)

    2013-06-01

    NI, Koh -Paige AJ, Shim H, et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis...cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2005;20(2):318-29. 34. Ao M, Franco OE, Park D, Raman D, Williams K...Schneider A, Jung Y, Wang J, Dai J, Wang J, Cook K, Osman NI, Koh -Paige AJ, Shim H, et al: Skeletal localization and neutralization of the SDF- 1(CXCL12

  7. Nef does not contribute to replication differences between R5 pre-AIDS and AIDS HIV-1 clones from patient ACH142

    Directory of Open Access Journals (Sweden)

    Rekosh David

    2008-05-01

    Full Text Available Abstract AIDS-associated, CCR5-tropic (R5 HIV-1 clones, isolated from a patient that never developed CXCR4-tropic HIV-1, replicate to a greater extent and cause greater cytopathic effects than R5 HIV-1 clones isolated before the onset of AIDS. Previously, we showed that HIV-1 Env substantially contributed to the enhanced replication of an AIDS clone. In order to determine if Nef makes a similar contribution, we cloned and phenotypically analyzed nef genes from a series of patient ACH142 derived R5 HIV-1 clones. The AIDS-associated Nef contains a series of residues found in Nef proteins from progressors 1. In contrast to other reports 123, this AIDS-associated Nef downmodulated MHC-I to a greater extent and CD4 less than pre-AIDS Nef proteins. Additionally, all Nef proteins enhanced infectivity similarly in a single round of replication. Combined with our previous study, these data show that evolution of the HIV-1 env gene, but not the nef gene, within patient ACH142 significantly contributed to the enhanced replication and cytopathic effects of the AIDS-associated R5 HIV-1 clone.

  8. Influence of membrane fluidity on human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Harada, Shinji; Yusa, Keisuke; Monde, Kazuaki; Akaike, Takaaki; Maeda, Yosuke

    2005-01-01

    For penetration of human immunodeficiency virus type 1 (HIV-1), formation of fusion-pores might be required for accumulating critical numbers of fusion-activated gp41, followed by multiple-site binding of gp120 with receptors, with the help of fluidization of the plasma membrane and viral envelope. Correlation between HIV-1 infectivity and fluidity was observed by treatment of fluidity-modulators, indicating that infectivity was dependent on fluidity. A 5% decrease in fluidity suppressed the HIV-1 infectivity by 56%. Contrarily, a 5% increase in fluidity augmented the infectivity by 2.4-fold. An increased temperature of 40 deg C or treatment of 0.2% xylocaine after viral adsorption at room temperature enhanced the infectivity by 2.6- and 1.5-fold, respectively. These were inhibited by anti-CXCR4 peptide, implying that multiple-site binding was accelerated at 40 deg C or by xylocaine. Thus, fluidity of both the plasma membrane and viral envelope was required to form the fusion-pore and to complete the entry of HIV-1

  9. Analysis of the Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells to Discriminate Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals

    Directory of Open Access Journals (Sweden)

    Catherine Riou

    2017-08-01

    Full Text Available Several immune-based assays have been suggested to differentiate latent from active tuberculosis (TB. However, their relative performance as well as their efficacy in HIV-infected persons, a highly at-risk population, remains unclear. In a study of 81 individuals, divided into four groups based on their HIV-1 status and TB disease activity, we compared the differentiation (CD27 and KLRG1, activation (HLA-DR, homing potential (CCR4, CCR6, CXCR3, and CD161 and functional profiles (IFNγ, IL-2, and TNFα of Mycobacterium tuberculosis (Mtb-specific CD4+ T cells using flow cytometry. Active TB disease induced major changes within the Mtb-responding CD4+ T cell population, promoting memory maturation, elevated activation and increased inflammatory potential when compared to individuals with latent TB infection. Moreover, the functional profile of Mtb-specific CD4+ T cells appeared to be inherently related to their degree of differentiation. While these specific cell features were all capable of discriminating latent from active TB, irrespective of HIV status, HLA-DR expression showed the best performance for TB diagnosis [area-under-the-curve (AUC = 0.92, 95% CI: 0.82–1.01, specificity: 82%, sensitivity: 84% for HIV− and AUC = 0.99, 95% CI: 0.98–1.01, specificity: 94%, sensitivity: 93% for HIV+]. In conclusion, these data support the idea that analysis of T cell phenotype can be diagnostically useful in TB.

  10. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    Science.gov (United States)

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  11. CXCR4 expression varies significantly among different subtypes of glioblastoma multiforme (GBM) and its low expression or hypermethylation might predict favorable overall survival.

    Science.gov (United States)

    Ma, Xinlong; Shang, Feng; Zhu, Weidong; Lin, Qingtang

    2017-09-01

    CXCR4 is an oncogene in glioblastoma multiforme (GBM) but the mechanism of its dysregulation and its prognostic value in GBM have not been fully understood. Bioinformatic analysis was performed by using R2 and the UCSC Xena browser based on data from GSE16011 in GEO datasets and in GBM cohort in TCGA database (TCGA-GBM). Kaplan Meier curves of overall survival (OS) were generated to assess the association between CXCR4 expression/methylation and OS in patients with GBM. GBM patients with high CXCR4 expression had significantly worse 5 and 10 yrs OS (p GBM subtypes, there was an inverse relationship between overall DNA methylation and CXCR4 expression. CXCR4 expression was significantly lower in CpG island methylation phenotype (CIMP) group than in non CIMP group. Log rank test results showed that patients with high CXCR4 methylation (first tertile) had significantly better 5 yrs OS (p = 0.038). CXCR4 expression is regulated by DNA methylation in GBM and its low expression or hypermethylation might indicate favorable OS in GBM patients.

  12. Role of GPER1, EGFR and CXCR1 in differentiating between malignant follicular thyroid carcinoma and benign follicular thyroid adenoma

    Science.gov (United States)

    Zhao, Le; Zhu, Xiao-Yun; Jiang, Rong; Xu, Man; Wang, Ni; Chen, George G; Liu, Zhi-Min

    2015-01-01

    It is extremely difficult to discriminate between follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FTA) before surgery, because the morphologies of carcinoma cells and adenoma cells obtained by fine needle aspiration biopsy (FNAB) are similar. Molecular markers may be helpful on this issue. The purpose of this study was to assess the role of GPER1, EGFR and CXCR1 in differential diagnosis between FTC and FTA. GPER1, EGFR and CXCR1 mRNA expression levels were examined in 15 FTCs and 10 FTAs using real-time RT-PCR. FTC showed to have significantly increased mRNA levels of the three molecules compared to FTA (P FTA, respectively. Statistical analysis showed that GPER1, EGFR and CXCR1 protein expression were correlated with one another in FTC and concomitant high expression of the three molecules had stronger correlation with the occurrence of FTC than did each alone. The positive predictive values (PPV) for concomitant high expression of the three molecules for discriminating between FTC and FTA were 91.0% for GPER1/EGFR, 93.8% for GPER1/CXCR1, 92.3% for EGFR/CXCR1 and 98.2% for GPER1/EGFR/CXCR1, respectively. These results indicated that the evaluation of GPER1, EGFR and CXCR1 concomitant high expression may be helpful in differential diagnosis between FTC and FTA. PMID:26617848

  13. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  14. HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells

    Directory of Open Access Journals (Sweden)

    John Zaunders

    2017-04-01

    Full Text Available BackgroundT follicular helper (Tfh cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells.MethodologyTfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay.ResultsPhylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils.ConclusionThe major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population

  15. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  16. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  17. Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS

    Science.gov (United States)

    Limou, Sophie; Coulonges, Cédric; Herbeck, Joshua T.; van Manen, Daniëlle; An, Ping; Le Clerc, Sigrid; Delaneau, Olivier; Diop, Gora; Taing, Lieng; Montes, Matthieu; van't Wout, Angélique B.; Gottlieb, Geoffrey S.; Therwath, Amu; Rouzioux, Christine; Delfraissy, Jean-François; Lelièvre, Jean-Daniel; Lévy, Yves; Hercberg, Serge; Dina, Christian; Phair, John; Donfield, Sharyne; Goedert, James J.; Buchbinder, Susan; Estaquier, Jérôme; Schächter, François; Gut, Ivo; Froguel, Philippe; Mullins, James I.; Schuitemaker, Hanneke; Winkler, Cheryl; Zagury, Jean-François

    2010-01-01

    Background. The compilation of previous genomewide association studies of AIDS shows a major polymorphism in the HCP5 gene associated with both control of the viral load and long-term nonprogression (LTNP) to AIDS. Methods. To look for genetic variants that affect LTNP without necessary control of the viral load, we reanalyzed the genomewide data of the unique LTNP Genomics of Resistance to Immunodeficiency Virus (GRIV) cohort by excluding “elite controller” patients, who were controlling the viral load at very low levels (<100 copies/mL). Results. The rs2234358 polymorphism in the CXCR6 gene was the strongest signal (P = 2.5 × 10−7; odds ratio, 1.85) obtained for the genomewide association study comparing the 186 GRIV LTNPs who were not elite controllers with 697 uninfected control subjects. This association was replicated in 3 additional independent European studies, reaching genomewide significance of Pcombined = 9.7 × 10−10. This association with LTNP is independent of the combined CCR2-CCR5 locus and the HCP5 polymorphisms. Conclusion. The statistical significance, the replication, and the magnitude of the association demonstrate that CXCR6 is likely involved in the molecular etiology of AIDS and, in particular, in LTNP, emphasizing the power of extreme-phenotype cohorts. CXCR6 is a chemokine receptor that is known as a minor coreceptor in human immunodeficiency virus type 1 infection but could participate in disease progression through its role as a mediator of inflammation. PMID:20704485

  18. The Effect of Trim5 Polymorphisms on the Clinical Course of HIV-1 Infection

    Science.gov (United States)

    van Manen, Daniëlle; Rits, Maarten A. N; Beugeling, Corrine; van Dort, Karel; Schuitemaker, Hanneke; Kootstra, Neeltje A

    2008-01-01

    The antiviral factor tripartite interaction motif 5α (Trim5α) restricts a broad range of retroviruses in a species-specific manner. Although human Trim5α is unable to block HIV-1 infection in human cells, a modest inhibition of HIV-1 replication has been reported. Recently two polymorphisms in the Trim5 gene (H43Y and R136Q) were shown to affect the antiviral activity of Trim5α in vitro. In this study, participants of the Amsterdam Cohort studies were screened for polymorphisms at amino acid residue 43 and 136 of the Trim5 gene, and the potential effects of these polymorphisms on the clinical course of HIV-1 infection were analyzed. In agreement with the reported decreased antiviral activity of Trim5α that contains a Y at amino acid residue 43 in vitro, an accelerated disease progression was observed for individuals who were homozygous for the 43Y genotype as compared to individuals who were heterozygous or homozygous for the 43H genotype. A protective effect of the 136Q genotype was observed but only after the emergence of CXCR4-using (X4) HIV-1 variants and when a viral load of 104.5 copies per ml plasma was used as an endpoint in survival analysis. Interestingly, naive CD4 T cells, which are selectively targeted by X4 HIV-1, revealed a significantly higher expression of Trim5α than memory CD4 T cells. In addition, we observed that the 136Q allele in combination with the −2GG genotype in the 5′UTR was associated with an accelerated disease progression. Thus, polymorphisms in the Trim5 gene may influence the clinical course of HIV-1 infection also underscoring the antiviral effect of Trim5α on HIV-1 in vivo. PMID:18248091

  19. Histologic and inflammatory lamellar changes in horses with oligofructose-induced laminitis treated with a CXCR1/2 antagonist

    Directory of Open Access Journals (Sweden)

    Leonardo R. de Lima

    2016-01-01

    Full Text Available Abstract: With the hypothesis that blocking chemokine signaling can ameliorate acute laminitis, the aim was to evaluate the therapeutic effect of intravenous DF1681B, a selective antagonist for CXCR1 and CXCR2 (chemokine receptors, in an oligofructose equine laminitis model. To twelve mixed breed clinically healthy hoses with no previous history of hoof-related lameness was administered oligofructose (10g/kg given by nasogastric tube and divided into two groups: treated (intravenous DF1681B at 30mg/kg 6, 12, 18, and 24h after oligofructose and non-treated groups. Laminar biopsies were performed before and 12, 36, and 72h after administering oligofructose. Samples were stained with periodic acid-Schiff (PAS and scored from 0 to 6 according to epidermal cell and basal membrane changes. The IL-1β, IL-6, and CXCL1 RNA expressions were determined by RT-PCR. Parametric and non-parametric tests were used to compare times within each group (P<0.05. The PAS grades and IL-1β and IL-6 RNA expression increased in the non-treated group, but remained constant in the treated horses. In conclusion, DF1681B therapy reduced laminar inflammation and epidermal deterioration in treated horses. CXCR1/2 blockage should be considered therapeutically for equine acute laminitis.

  20. Interstitial Fluid Flow Increases Hepatocellular Carcinoma Cell Invasion through CXCR4/CXCL12 and MEK/ERK Signaling

    Science.gov (United States)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer (~80%), and it is one of the few cancer types with rising incidence in the United States. This highly invasive cancer is very difficult to detect until its later stages, resulting in limited treatment options and low survival rates. There is a dearth of knowledge regarding the mechanisms associated with the effects of biomechanical forces such as interstitial fluid flow (IFF) on hepatocellular carcinoma invasion. We hypothesized that interstitial fluid flow enhanced hepatocellular carcinoma cell invasion through chemokine-mediated autologous chemotaxis. Utilizing a 3D in vitro invasion assay, we demonstrated that interstitial fluid flow promoted invasion of hepatocellular carcinoma derived cell lines. Furthermore, we showed that autologous chemotaxis influences this interstitial fluid flow-induced invasion of hepatocellular carcinoma derived cell lines via the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12) signaling axis. We also demonstrated that mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling affects interstitial fluid flow-induced invasion; however, this pathway was separate from CXCR4/CXCL12 signaling. This study demonstrates, for the first time, the potential role of interstitial fluid flow in hepatocellular carcinoma invasion. Uncovering the mechanisms that control hepatocellular carcinoma invasion will aid in enhancing current liver cancer therapies and provide better treatment options for patients. PMID:26560447