WorldWideScience

Sample records for hiv-1 ccr5 coreceptor

  1. Chemokine co-receptor CCR5/CXCR4-dependent modulation of Kv2.1 channel confers acute neuroprotection to HIV-1 glycoprotein gp120 exposure.

    Directory of Open Access Journals (Sweden)

    Andrew J Shepherd

    Full Text Available Infection with human immunodeficiency virus-1 (HIV-1 within the brain has long been known to be associated with neurodegeneration and neurocognitive disorder (referred as HAND, a condition characterized in its early stages by declining cognitive function and behavioral disturbances. Mechanistically, the HIV-1 coat glycoprotein 120 (gp120 has been suggested to be a critical factor inducing apoptotic cell death in neurons via the activation of p38 mitogen-activated protein kinase (MAPK, upon chronic exposure to the virus. Here we show that acute exposure of neurons to HIV-1 gp120 elicits a homeostatic response, which provides protection against non-apoptotic cell death, involving the major somatodendritic voltage-gated K⁺ (Kv channel Kv2.1 as the key mediator. The Kv2.1 channel has recently been shown to provide homeostatic control of neuronal excitability under conditions of seizures, ischemia and neuromodulation/neuroinflammation. Following acute exposure to gp120, cultured rat hippocampal neurons show rapid dephosphorylation of the Kv2.1 protein, which ultimately leads to changes in specific sub-cellular localization and voltage-dependent channel activation properties of Kv2.1. Such modifications in Kv2.1 are dependent on the activation of the chemokine co-receptors CCR5 and CXCR4, and subsequent activation of the protein phosphatase calcineurin. This leads to the overall suppression of neuronal excitability and provides neurons with a homeostatic protective mechanism. Specific blockade of calcineurin and Kv2.1 channel activity led to significant enhancement of non-apoptotic neuronal death upon acute gp120 treatment. These observations shed new light on the intrinsic homeostatic mechanisms of neuronal resilience during the acute stages of neuro-HIV infections.

  2. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication.

    Science.gov (United States)

    Gong, W; Howard, O M; Turpin, J A; Grimm, M C; Ueda, H; Gray, P W; Raport, C J; Oppenheim, J J; Wang, J M

    1998-02-20

    Human immunodeficiency virus, type I (HIV-1) cell-type tropism is dictated by chemokine receptor usage: T-cell line tropic viruses use CXCR4, whereas monocyte tropic viruses primarily use CCR5 as fusion coreceptors. CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES (regulated on activation normal T cell expressed and secreted) inhibit CD4/CCR5-mediated HIV-1 cell fusion. MCP-2 is also a member of the CC chemokine subfamily and has the capacity to interact with at least two receptors including CCR-1 and CCR2B. In an effort to further characterize the binding properties of MCP-2 on leukocytes, we observed that MCP-2, but not MCP-1, effectively competed with MIP-1beta for binding to monocytes, suggesting that MCP-2 may interact with CCR5. As predicted, MCP-2 competitively inhibited MIP-1beta binding to HEK293 cells stably transfected with CCR5 (CCR5/293 cells). MCP-2 also bound to and induced chemotaxis of CCR5/293 cells with a potency comparable with that of MIP-1beta. Confocal microscopy indicates that MCP-2 caused remarkable and dose-dependent internalization of CCR5 in CCR5/293 cells. Furthermore, MCP-2 inhibited the entry/replication of HIV-1ADA in CCR5/293 cells coexpressing CD4. These results indicated that MCP-2 uses CCR5 as one of its functional receptors and is an additional potent natural inhibitor of HIV-1.

  3. CCR5 inhibitors in HIV-1 therapy.

    Science.gov (United States)

    Dorr, Patrick; Perros, Manos

    2008-11-01

    The human immunodeficiency virus 1 (HIV-1) is the causative pathogen of AIDS, the world's biggest infectious disease killer. About 33 million people are infected worldwide, with 2.1 million deaths a year as a direct consequence. The devastating nature of AIDS has prompted widespread research, which has led to an extensive array of therapies to suppress viral replication and enable recovery of the immune system to prolong and improve patient life substantially. However, the genetic plasticity and replication rate of HIV-1 are considerable, which has lead to rapid drug resistance. This, together with the need for reducing drug side effects and increasing regimen compliance, has led researchers to identify antiretroviral drugs with new modes of action. This review describes the discovery and clinical development of CCR5 antagonists and the recent approval of maraviroc as a breakthrough in anti-HIV-1 therapy. CCR5 inhibitors target a human cofactor to disable HIV-1 entry into the cells, and thereby provide a new hurdle for the virus to overcome. The status and expert opinion of CCR5 antagonists for the treatment of HIV-1 infection are detailed.

  4. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop.

    Directory of Open Access Journals (Sweden)

    Phanourios Tamamis

    Full Text Available The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13-21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.

  5. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry.

    Science.gov (United States)

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G H; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-07-04

    CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  7. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1......, the efficacy switch mutation (Leu203Phe) - converting small-molecule antagonists/inverse agonists to full agonists biased toward G-protein activation - uncovered that also small-molecule agonists can function as direct HIV-1 cell entry inhibitors. Importantly, no agonist-induced receptor internalization...

  8. Owl monkey CCR5 reveals synergism between CD4 and CCR5 in HIV-1 entry.

    Science.gov (United States)

    Nahabedian, John; Sharma, Amit; Kaczmarek, Maryska E; Wilkerson, Greg K; Sawyer, Sara L; Overbaugh, Julie

    2017-12-01

    Studying HIV-1 replication in the presence of functionally related proteins from different species has helped define host determinants of HIV-1 infection. Humans and owl monkeys, but not macaques, encode a CD4 receptor that permits entry of transmissible HIV-1 variants due to a single residue difference. However, little is known about whether divergent CCR5 receptor proteins act as determinants of host-range. Here we show that both owl monkey (Aotus vociferans) CD4 and CCR5 receptors are functional for the entry of transmitted HIV-1 when paired with human versions of the other receptor. By contrast, the owl monkey CD4/CCR5 pair is generally a suboptimal receptor combination, although there is virus-specific variation in infection with owl monkey receptors. Introduction of the human residues 15Y and 16T within a sulfation motif into owl monkey CCR5 resulted in a gain of function. These findings suggest there is cross-talk between CD4 and CCR5 involving the sulfation motif. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene.

    Science.gov (United States)

    Pandit, Aridaman; de Boer, Rob J

    2015-12-17

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART is gene therapy that targets the CCR5 co-receptor and creates a population of genetically modified host cells that are less susceptible to viral infection. With generic mathematical models we show that gene therapy that only targets the CCR5 co-receptor fails to suppress HIV-1 (which is in agreement with current data). We predict that the same gene therapy can be markedly improved if it is combined with a suicide gene that is only expressed upon HIV-1 infection.

  10. Relationship between CCR5(WT/Δ32)heterozygosity and HIV-1 reservoir size in adolescents and young adults with perinatally acquired HIV-1 infection.

    Science.gov (United States)

    Martínez-Bonet, M; González-Serna, A; Clemente, M I; Morón-López, S; Díaz, L; Navarro, M; Puertas, M C; Leal, M; Ruiz-Mateos, E; Martinez-Picado, J; Muñoz-Fernández, M A

    2017-05-01

    Several host factors contribute to human immunodeficiency virus (HIV) disease progression in the absence of combination antiretroviral therapy (cART). Among them, the CC-chemokine receptor 5 (CCR5) is known to be the main co-receptor used by HIV-1 to enter target cells during the early stages of an HIV-1 infection. We evaluated the association of CCR5 (WT/Δ32) heterozygosity with HIV-1 reservoir size, lymphocyte differentiation, activation and immunosenescence in adolescents and young adults with perinatally acquired HIV infection receiving cART. CCR5 genotype was analysed in 242 patients with vertically transmitted HIV-1 infection from Paediatric Spanish AIDS Research Network Cohort (coRISpe). Proviral HIV-1 DNA was quantified by digital-droplet PCR, and T-cell phenotype was evaluated by flow cytometry in a subset of 24 patients (ten with CCR5 (Δ32/WT) genotype and 14 with CCR5 (WT/WT) genotype). Twenty-three patients were heterozygous for the Δ32 genotype but none was homozygous for the mutated CCR5 allele. We observed no difference in the HIV-1 reservoir size (455 and 578 copies of HIV-1 DNA per million CD4 + T cells in individuals with CCR5 (WT/WT) and CCR5 (Δ32/WT) genotypes, respectively; p 0.75) or in the immune activation markers between both genotype groups. However, we found that total HIV-1 DNA in CD4 + T cells correlated with the percentage of memory CD4 + T cells: a direct correlation in CCR5 (WT/Δ32) patients but an inverse correlation in those with the CCR5 (WT/WT) genotype. This finding suggests a differential distribution of the viral reservoir compartment in CCR5 (WT/Δ32) patients with perinatal HIV infection, which is a characteristic that may affect the design of strategies for reservoir elimination. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Resistance to the CCR5 inhibitor 5P12-RANTES requires a difficult evolution from CCR5 to CXCR4 coreceptor use.

    Directory of Open Access Journals (Sweden)

    Rebecca Nedellec

    Full Text Available Viral resistance to small molecule allosteric inhibitors of CCR5 is well documented, and involves either selection of preexisting CXCR4-using HIV-1 variants or envelope sequence evolution to use inhibitor-bound CCR5 for entry. Resistance to macromolecular CCR5 inhibitors has been more difficult to demonstrate, although selection of CXCR4-using variants might be expected. We have compared the in vitro selection of HIV-1 CC1/85 variants resistant to either the small molecule inhibitor maraviroc (MVC or the macromolecular inhibitor 5P12-RANTES. High level resistance to MVC was conferred by the same envelope mutations as previously reported after 16-18 weeks of selection by increasing levels of MVC. The MVC-resistant mutants were fully sensitive to inhibition by 5P12-RANTES. By contrast, only transient and low level resistance to 5P12-RANTES was achieved in three sequential selection experiments, and each resulted in a subsequent collapse of virus replication. A fourth round of selection by 5P12-RANTES led, after 36 weeks, to a "resistant" variant that had switched from CCR5 to CXCR4 as a coreceptor. Envelope sequences diverged by 3.8% during selection of the 5P12-RANTES resistant, CXCR4-using variants, with unique and critical substitutions in the V3 region. A subset of viruses recovered from control cultures after 44 weeks of passage in the absence of inhibitors also evolved to use CXCR4, although with fewer and different envelope mutations. Control cultures contained both viruses that evolved to use CXCR4 by deleting four amino acids in V3, and others that maintained entry via CCR5. These results suggest that coreceptor switching may be the only route to resistance for compounds like 5P12-RANTES. This pathway requires more mutations and encounters more fitness obstacles than development of resistance to MVC, confirming the clinical observations that resistance to small molecule CCR5 inhibitors very rarely involves coreceptor switching.

  12. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene.

    Science.gov (United States)

    Samson, M; Libert, F; Doranz, B J; Rucker, J; Liesnard, C; Farber, C M; Saragosti, S; Lapoumeroulie, C; Cognaux, J; Forceille, C; Muyldermans, G; Verhofstede, C; Burtonboy, G; Georges, M; Imai, T; Rana, S; Yi, Y; Smyth, R J; Collman, R G; Doms, R W; Vassart, G; Parmentier, M

    1996-08-22

    HIV-1 and related viruses require co-receptors, in addition to CD4, to infect target cells. The chemokine receptor CCR-5 (ref.1) was recently demonstrated to be a co-receptor for macrophage-tropic (M-tropic) HIV-1 strains, and the orphan receptor LESTR (also called fusin) allows infection by strains adapted for growth in transformed T-cell lines (T-tropic strains). Here we show that a mutant allele of CCR-5 is present at a high frequency in caucasian populations (allele frequency, 0.092), but is absent in black populations from Western and Central Africa and Japanese populations. A 32-base-pair deletion within the coding region results in a frame shift, and generates a non-functional receptor that does not support membrane fusion or infection by macrophage- and dual-tropic HIV-1 strains. In a cohort of HIV-1 infected caucasian subjects, no individual homozygous for the mutation was found, and the frequency of heterozygotes was 35% lower than in the general population. White blood cells from an individual homozygous for the null allele were found to be highly resistant to infection by M-tropic HIV-1 viruses, confirming that CCR-5 is the major co-receptor for primary HIV-1 strains. The lower frequency of heterozygotes in seropositive patients may indicate partial resistance.

  13. Protection against human immunodeficiency virus type 1 infection in persons with repeated exposure: evidence for T cell immunity in the absence of inherited CCR5 coreceptor defects.

    Science.gov (United States)

    Goh, W C; Markee, J; Akridge, R E; Meldorf, M; Musey, L; Karchmer, T; Krone, M; Collier, A; Corey, L; Emerman, M; McElrath, M J

    1999-03-01

    It has been hypothesized that protection against human immunodeficiency virus (HIV)-1 infection may result from either acquired host immunity, inheritance of a dysfunctional CCR5 HIV-1 coreceptor, or a low or attenuated virus inoculum. Thirty-seven HIV-1-uninfected persons engaging in repeated high-risk sexual activity with an HIV-1-infected partner were prospectively studied to determine the contribution of these factors in protecting against HIV-1 transmission. More than one-third (13/36) demonstrated HIV-1-specific cytotoxicity, and this activity significantly correlated with the wild type CCR5 genotype (P=.03). Only 1 subject (3%) demonstrated the homozygous CCR5 32-bp deletion (Delta32/Delta32). Median plasma HIV-1 RNA levels from 18 HIV-1-infected sex partners were not statistically different from those of matched infected control patients. These results indicate that inheritance of the Delta32 CCR5 mutation does not account for the majority of persistently HIV-1-resistant cases, and the presence of cellular immunity in these persons suggests either undetected infection or protective immunity.

  14. Porphyromonas gingivalis induces CCR5-dependent transfer of infectious HIV-1 from oral keratinocytes to permissive cells

    Directory of Open Access Journals (Sweden)

    Dietrich Elizabeth A

    2008-03-01

    Full Text Available Abstract Background Systemic infection with HIV occurs infrequently through the oral route. The frequency of occurrence may be increased by concomitant bacterial infection of the oral tissues, since co-infection and inflammation of some cell types increases HIV-1 replication. A putative periodontal pathogen, Porphyromonas gingivalis selectively up-regulates expression of the HIV-1 coreceptor CCR5 on oral keratinocytes. We, therefore, hypothesized that P. gingivalis modulates the outcome of HIV infection in oral epithelial cells. Results Oral and tonsil epithelial cells were pre-incubated with P. gingivalis, and inoculated with either an X4- or R5-type HIV-1. Between 6 and 48 hours post-inoculation, P. gingivalis selectively increased the infectivity of R5-tropic HIV-1 from oral and tonsil keratinocytes; infectivity of X4-tropic HIV-1 remained unchanged. Oral keratinocytes appeared to harbor infectious HIV-1, with no evidence of productive infection. HIV-1 was harbored at highest levels during the first 6 hours after HIV exposure and decreased to barely detectable levels at 48 hours. HIV did not appear to co-localize with P. gingivalis, which increased selective R5-tropic HIV-1 trans infection from keratinocytes to permissive cells. When CCR5 was selectively blocked, HIV-1 trans infection was reduced. Conclusion P. gingivalis up-regulation of CCR5 increases trans infection of harbored R5-tropic HIV-1 from oral keratinocytes to permissive cells. Oral infections such as periodontitis may, therefore, increase risk for oral infection and dissemination of R5-tropic HIV-1.

  15. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes

    Science.gov (United States)

    Bleul, Conrad C.; Wu, Lijun; Hoxie, James A.; Springer, Timothy A.; Mackay, Charles R.

    1997-01-01

    The chemokine receptors CXCR4 and CCR5 function as coreceptors for HIV-1 entry into CD4+ cells. During the early stages of HIV infection, viral isolates tend to use CCR5 for viral entry, while later isolates tend to use CXCR4. The pattern of expression of these chemokine receptors on T cell subsets and their regulation has important implications for AIDS pathogenesis and lymphocyte recirculation. A mAb to CXCR4, 12G5, showed partial inhibition of chemotaxis and calcium influx induced by SDF-1, the natural ligand of CXCR4. 12G5 stained predominantly the naive, unactivated CD26low CD45RA+ CD45R0− T lymphocyte subset of peripheral blood lymphocytes. In contrast, a mAb specific for CCR5, 5C7, stained CD26high CD45RAlow CD45R0+ T lymphocytes, a subset thought to represent previously activated/memory cells. CXCR4 expression was rapidly up-regulated on peripheral blood mononuclear cells during phytohemagglutinin stimulation and interleukin 2 priming, and responsiveness to SDF-1 increased simultaneously. CCR5 expression, however, showed only a gradual increase over 12 days of culture with interleukin 2, while T cell activation with phytohemagglutinin was ineffective. Taken together, the data suggest distinct functions for the two receptors and their ligands in the migration of lymphocyte subsets through lymphoid and nonlymphoid tissues. Furthermore, the largely reciprocal expression of CXCR4 and CCR5 among peripheral blood T cells implies distinct susceptibility of T cell subsets to viral entry by T cell line-tropic versus macrophage-tropic strains during the course of HIV infection. PMID:9050881

  16. Evolution of HIV-1 coreceptor usage and coreceptor switching during pregnancy.

    Science.gov (United States)

    Ransy, Doris G; Motorina, Alena; Merindol, Natacha; Akouamba, Bertine S; Samson, Johanne; Lie, Yolanda; Napolitano, Laura A; Lapointe, Normand; Boucher, Marc; Soudeyns, Hugo

    2014-03-01

    Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predicted in nine of 19 subjects (X4 subjects) independent of HIV-1 clade. Six of nine X4 subjects exhibited CD4(+) T cell counts pregnancy, invariably accompanied by progressive increases in the PSSMX4R5 score, the net charge of V3, and the relative representation of X4 sequences. Evolution toward X4 tropism was also echoed in the primary structure of V2, as an accumulation of substitutions associated with CXCR4 tropism was seen in X4 subjects. Results from these experiments provide the first evidence of the ongoing evolution of coreceptor utilization from CCR5 to CXCR4 during pregnancy in a significant fraction of HIV-infected women. These results inform changes in host-pathogen interactions that lead to a directional shaping of viral populations and viral tropism during pregnancy, and provide insights into the biology of HIV transmission from mother to child.

  17. HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry

    National Research Council Canada - National Science Library

    Roche, Michael; Jakobsen, Martin R; Ellett, Anne; Salimiseyedabad, Hamid; Jubb, Becky; Westby, Mike; Lee, Benhur; Lewin, Sharon R; Churchill, Melissa J; Gorry, Paul R

    2011-01-01

    Maraviroc (MVC) and other CCR5 antagonists are HIV-1 entry inhibitors that bind to- and alter the conformation of CCR5, such that CCR5 is no longer recognized by the viral gp120 envelope (Env) glycoproteins...

  18. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  19. Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naïve Subjects with Progressive HIV-1 Subtype C Infection

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard; Cashin, Kieran; Roche, Michael

    2013-01-01

    -HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from......HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C...

  20. HIV-1 with multiple CCR5/CXCR4 chimeric receptor use is predictive of immunological failure in infected children.

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    Full Text Available BACKGROUND: HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5(broad viruses, was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT of HIV-1 and pediatric disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5(narrow phenotype (n = 20, but R5(broad and R5X4 viruses were also found in seven and one case, respectively. The presence of R5(broad and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3 or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5(broad phenotype, however, the presence of the R5(broad virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5(broad viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5(broad phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn's viral variant. CONCLUSIONS/SIGNIFICANCE: Our results show that R5(broad viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5(narrow phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.

  1. Impact of CCR5 Delta32/+ deletion on herpes zoster among HIV-1-infected homosexual men

    NARCIS (Netherlands)

    Krol, Anneke; Lensen, Ruud; Veenstra, Jan; Prins, Maria; Schuitemaker, Hanneke; Coutinho, Roel A.

    2006-01-01

    The association between the presence of CCR5 Delta32 heterozygosity and incidence of clinical herpes zoster was studied among 296 homosexual men from the Amsterdam cohort study (ACS) infected with human immunodeficiency virus type I (HIV-1) with an estimated date of seroconversion. Of them 63 were

  2. Short Communication: Evolution of HIV-1 Coreceptor Usage and Coreceptor Switching During Pregnancy

    Science.gov (United States)

    Ransy, Doris G.; Motorina, Alena; Merindol, Natacha; Akouamba, Bertine S.; Samson, Johanne; Lie, Yolanda; Napolitano, Laura A.; Lapointe, Normand; Boucher, Marc

    2014-01-01

    Abstract Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predicted in nine of 19 subjects (X4 subjects) independent of HIV-1 clade. Six of nine X4 subjects exhibited CD4+ T cell counts false-positive rate was observed during the course of pregnancy, invariably accompanied by progressive increases in the PSSMX4R5 score, the net charge of V3, and the relative representation of X4 sequences. Evolution toward X4 tropism was also echoed in the primary structure of V2, as an accumulation of substitutions associated with CXCR4 tropism was seen in X4 subjects. Results from these experiments provide the first evidence of the ongoing evolution of coreceptor utilization from CCR5 to CXCR4 during pregnancy in a significant fraction of HIV-infected women. These results inform changes in host–pathogen interactions that lead to a directional shaping of viral populations and viral tropism during pregnancy, and provide insights into the biology of HIV transmission from mother to child. PMID:24090041

  3. CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Hemant Kulkarni

    Full Text Available BACKGROUND: Whether vexing clinical decision-making dilemmas can be partly addressed by recent advances in genomics is unclear. For example, when to initiate highly active antiretroviral therapy (HAART during HIV-1 infection remains a clinical dilemma. This decision relies heavily on assessing AIDS risk based on the CD4+ T cell count and plasma viral load. However, the trajectories of these two laboratory markers are influenced, in part, by polymorphisms in CCR5, the major HIV coreceptor, and the gene copy number of CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine. Therefore, we determined whether accounting for both genetic and laboratory markers provided an improved means of assessing AIDS risk. METHODS AND FINDINGS: In a prospective, single-site, ethnically-mixed cohort of 1,132 HIV-positive subjects, we determined the AIDS risk conveyed by the laboratory and genetic markers separately and in combination. Subjects were assigned to a low, moderate or high genetic risk group (GRG based on variations in CCL3L1 and CCR5. The predictive value of the CCL3L1-CCR5 GRGs, as estimated by likelihood ratios, was equivalent to that of the laboratory markers. GRG status also predicted AIDS development when the laboratory markers conveyed a contrary risk. Additionally, in two separate and large groups of HIV+ subjects from a natural history cohort, the results from additive risk-scoring systems and classification and regression tree (CART analysis revealed that the laboratory and CCL3L1-CCR5 genetic markers together provided more prognostic information than either marker alone. Furthermore, GRGs independently predicted the time interval from seroconversion to CD4+ cell count thresholds used to guide HAART initiation. CONCLUSIONS: The combination of the laboratory and genetic markers captures a broader spectrum of AIDS risk than either marker alone. By tracking a unique aspect of AIDS risk distinct from that captured by the laboratory parameters

  4. HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells

    Directory of Open Access Journals (Sweden)

    John Zaunders

    2017-04-01

    Full Text Available BackgroundT follicular helper (Tfh cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells.MethodologyTfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay.ResultsPhylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils.ConclusionThe major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population

  5. Patients with active tuberculosis have increased expression of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells

    NARCIS (Netherlands)

    Juffermans, N. P.; Speelman, P.; Verbon, A.; Veenstra, J.; Jie, C.; van Deventer, S. J.; van der Poll, T.

    2001-01-01

    Expression of human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5 was found to be elevated on CD4(+) T cells (1) in blood samples obtained from patients with tuberculosis and (2) in blood samples obtained from healthy subjects and stimulated with mycobacterial lipoarabinomannan in vitro.

  6. Pace of Coreceptor Tropism Switch in HIV-1-Infected Individuals after Recent Infection.

    Science.gov (United States)

    Arif, Muhammad Shoaib; Hunter, James; Léda, Ana Rachel; Zukurov, Jean Paulo Lopes; Samer, Sadia; Camargo, Michelle; Galinskas, Juliana; Kallás, Esper Georges; Komninakis, Shirley Vasconcelos; Janini, Luiz Mario; Sucupira, Maria Cecilia; Diaz, Ricardo Sobhie

    2017-10-01

    HIV-1 entry into target cells influences several aspects of HIV-1 pathogenesis, including viral tropism, HIV-1 transmission and disease progression, and response to entry inhibitors. The evolution from CCR5- to CXCR4-using strains in a given human host is still unpredictable. Here we analyzed timing and predictors for coreceptor evolution among recently HIV-1-infected individuals. Proviral DNA was longitudinally evaluated in 66 individuals using Geno2pheno[coreceptor] Demographics, viral load, CD4+ and CD8+ T cell counts, CCR5Δ32 polymorphisms, GB virus C (GBV-C) coinfection, and HLA profiles were also evaluated. Ultradeep sequencing was performed on initial samples from 11 selected individuals. A tropism switch from CCR5- to CXCR4-using strains was identified in 9/49 (18.4%) individuals. Only a low baseline false-positive rate (FPR) was found to be a significant tropism switch predictor. No minor CXCR4-using variants were identified in initial samples of 4 of 5 R5/non-R5 switchers. Logistic regression analysis showed that patients with an FPR of >40.6% at baseline presented a stable FPR over time whereas lower FPRs tend to progressively decay, leading to emergence of CXCR4-using strains, with a mean evolution time of 27.29 months (range, 8.90 to 64.62). An FPR threshold above 40.6% determined by logistic regression analysis may make it unnecessary to further determine tropism for prediction of disease progression related to emergence of X4 strains or use of CCR5 antagonists. The detection of variants with intermediate FPRs and progressive FPR decay over time not only strengthens the power of Geno2pheno in predicting HIV tropism but also indirectly confirms a continuous evolution from earlier R5 variants toward CXCR4-using strains.IMPORTANCE The introduction of CCR5 antagonists in the antiretroviral arsenal has sparked interest in coreceptors utilized by HIV-1. Despite concentrated efforts, viral and human host features predicting tropism switch are still poorly

  7. Different Pathogenesis of CCR5-Using Primary HIV-1 Isolates from Non-Switch and Switch Virus Patients in Human Lymphoid Tissue Ex Vivo

    Science.gov (United States)

    Iarlsson, Ingrid; Grivel, Jean-Charles; Chen. Silvia; Karlsson, Anders; Albert, Jan; Fenyol, Eva Maria; Margolis, Leonid B.

    2005-01-01

    CCR5-utilizing HIV-1 variants (R5) typically transmit infection and dominate its early stages, whereas emergence of CXCR4-using (X4 or R5X4) HIV-1 is often associated with disease progression. However, such a switch in co-receptor usage can only be detected in approximately onehalf of HIV-infected patients (switch virus patients), and progression to immunodeficiency may also occur in patients without detectable switch in co-receptor usage (non-switch virus patients). Here, we used a system of ex vivo-infected tonsillar tissue to compare the pathogenesis of sequential primary R5 HIV-1 isolates from the switch and non-switch patients. Inoculation of ex vivo tissue with these R5 isolates resulted in viral replication and CCR5(+)CD4(+) T cell depletion. The levels of such depletion by HIV-1 isolated from non-switch virus patients were significantly higher than those by R5 HIV-1 isolates from switch virus patients. T cell depletion seemed to be controlled by viral factors and did not significantly vary between tissues from different donors. In contrast, viral replication did not correlate with the switch status of the patients; in tissues fiom different donors it varied 30-fold and seemed to be controlled by a combination of viral and tissue factors. Nevertheless, replication-level hierarchy among sequential isolates remained constant in tissues from various donors. Viral load in vivo was higher in switch virus patients compared to non-switch virus patients. The high cytopathogenicity of CCR5(+)CD4(+) T cells by R5 HIV-1 isolates from non-switch virus patients may explain the steady decline of CD4(+) T cells in the absence of CXCR4 using virus; elimination of target cells by these isolates may limit their own replication in vivo.

  8. HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels

    Directory of Open Access Journals (Sweden)

    Laviolette François

    2008-12-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infects cells by means of ligand-receptor interactions. This lentivirus uses the CD4 receptor in conjunction with a chemokine coreceptor, either CXCR4 or CCR5, to enter a target cell. HIV-1 is characterized by high sequence variability. Nonetheless, within this extensive variability, certain features must be conserved to define functions and phenotypes. The determination of coreceptor usage of HIV-1, from its protein envelope sequence, falls into a well-studied machine learning problem known as classification. The support vector machine (SVM, with string kernels, has proven to be very efficient for dealing with a wide class of classification problems ranging from text categorization to protein homology detection. In this paper, we investigate how the SVM can predict HIV-1 coreceptor usage when it is equipped with an appropriate string kernel. Results Three string kernels were compared. Accuracies of 96.35% (CCR5 94.80% (CXCR4 and 95.15% (CCR5 and CXCR4 were achieved with the SVM equipped with the distant segments kernel on a test set of 1425 examples with a classifier built on a training set of 1425 examples. Our datasets are built with Los Alamos National Laboratory HIV Databases sequences. A web server is available at http://genome.ulaval.ca/hiv-dskernel. Conclusion We examined string kernels that have been used successfully for protein homology detection and propose a new one that we call the distant segments kernel. We also show how to extract the most relevant features for HIV-1 coreceptor usage. The SVM with the distant segments kernel is currently the best method described.

  9. Partial protective effect of CCR5-Delta 32 heterozygosity in a cohort of heterosexual Italian HIV-1 exposed uninfected individuals

    Directory of Open Access Journals (Sweden)

    Cauda Roberto

    2006-09-01

    Full Text Available Abstract Despite multiple sexual exposure to HIV-1 virus, some individuals remain HIV-1 seronegative (exposed seronegative, ESN. The mechanisms underlying this resistance remain still unclear, although a multifactorial pathogenesis can be hypothesised. Although several genetic factors have been related to HIV-1 resistance, the homozigosity for a mutation in CCR5 gene (the 32 bp deletion, i.e. CCR5-Delta32 allele is presently considered the most relevant one. In the present study we analysed the genotype at CCR5 locus of 30 Italian ESN individuals (case group who referred multiple unprotected heterosexual intercourse with HIV-1 seropositive partner(s, for at least two years. One hundred and twenty HIV-1 infected patients and 120 individuals representative of the general population were included as control groups. Twenty percent of ESN individuals had heterozygous CCR5-Delta 32 genotype, compared to 7.5% of HIV-1 seropositive and 10% of individuals from the general population, respectively. None of the analysed individuals had CCR5-Delta 32 homozygous genotype. Sequence analysis of the entire open reading frame of CCR5 was performed in all ESN subjects and no polymorphisms or mutations were identified. Moreover, we determined the distribution of C77G variant in CD45 gene, which has been previously related to HIV-1 infection susceptibility. The frequency of the C77G variant showed no significant difference between ESN subjects and the two control groups. In conclusion, our data show a significantly higher frequency of CCR5-Delta 32 heterozygous genotype (p = 0.04 among the Italian heterosexual ESN individuals compared to HIV-1 seropositive patients, suggesting a partial protective role of CCR5-Delta 32 heterozygosity in this cohort.

  10. Thalidomide suppresses Up-regulation of human immunodeficiency virus coreceptors CXCR4 and CCR5 on CD4+ T cells in humans

    NARCIS (Netherlands)

    Juffermans, N. P.; Verbon, A.; Olszyna, D. P.; van Deventer, S. J.; Speelman, P.; van der Poll, T.

    2000-01-01

    Concurrent infection in patients with human immunodeficiency virus (HIV) infection increases the expression of HIV coreceptors CXCR4 and CCR5. Thalidomide has beneficial effects in a number of HIV-associated diseases. The effect of thalidomide on CXCR4 and CCR5 expression on CD4+ T cells was

  11. HIV-1 Tropism Dynamics and Phylogenetic Analysis from Longitudinal Ultra-Deep Sequencing Data of CCR5- and CXCR4-Using Variants

    Science.gov (United States)

    Sede, Mariano M.; Moretti, Franco A.; Laufer, Natalia L.

    2014-01-01

    Objective Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. The molecular and evolutionary mechanisms underlying the CCR5 to CXCR4 switch are the focus of intense recent research. We studied the HIV-1 tropism dynamics in relation to coreceptor usage, the nature of quasispecies from ultra deep sequencing (UDPS) data and their phylogenetic relationships. Methods Here, we characterized C2-V3-C3 sequences of HIV obtained from 19 patients followed up for 54 to 114 months using UDPS, with further genotyping and phylogenetic analysis for coreceptor usage. HIV quasispecies diversity and variability as well as HIV plasma viral load were measured longitudinally and their relationship with the HIV coreceptor usage was analyzed. The longitudinal UDPS data were submitted to phylogenetic analysis and sampling times and coreceptor usage were mapped onto the trees obtained. Results Although a temporal viral genetic structuring was evident, the persistence of several viral lineages evolving independently along the infection was statistically supported, indicating a complex scenario for the evolution of viral quasispecies. HIV X4-using variants were present in most of our patients, exhibiting a dissimilar inter- and intra-patient predominance as the component of quasispecies even on antiretroviral therapy. The viral populations from some of the patients studied displayed evidences of the evolution of X4 variants through fitness valleys, whereas for other patients the data favored a gradual mode of emergence. Conclusions CXCR4 usage can emerge independently, in multiple lineages, along the course of HIV infection. The mode of emergence, i.e. gradual or through fitness valleys seems to depend on both virus and patient factors. Furthermore, our analyses suggest that, besides becoming dominant after population-level switches, minor proportions of X4 viruses might exist along the infection, perhaps even at early stages of it. The fate of these minor

  12. HIV-1 tropism dynamics and phylogenetic analysis from longitudinal ultra-deep sequencing data of CCR5- and CXCR4-using variants.

    Science.gov (United States)

    Sede, Mariano M; Moretti, Franco A; Laufer, Natalia L; Jones, Leandro R; Quarleri, Jorge F

    2014-01-01

    Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. The molecular and evolutionary mechanisms underlying the CCR5 to CXCR4 switch are the focus of intense recent research. We studied the HIV-1 tropism dynamics in relation to coreceptor usage, the nature of quasispecies from ultra deep sequencing (UDPS) data and their phylogenetic relationships. Here, we characterized C2-V3-C3 sequences of HIV obtained from 19 patients followed up for 54 to 114 months using UDPS, with further genotyping and phylogenetic analysis for coreceptor usage. HIV quasispecies diversity and variability as well as HIV plasma viral load were measured longitudinally and their relationship with the HIV coreceptor usage was analyzed. The longitudinal UDPS data were submitted to phylogenetic analysis and sampling times and coreceptor usage were mapped onto the trees obtained. Although a temporal viral genetic structuring was evident, the persistence of several viral lineages evolving independently along the infection was statistically supported, indicating a complex scenario for the evolution of viral quasispecies. HIV X4-using variants were present in most of our patients, exhibiting a dissimilar inter- and intra-patient predominance as the component of quasispecies even on antiretroviral therapy. The viral populations from some of the patients studied displayed evidences of the evolution of X4 variants through fitness valleys, whereas for other patients the data favored a gradual mode of emergence. CXCR4 usage can emerge independently, in multiple lineages, along the course of HIV infection. The mode of emergence, i.e. gradual or through fitness valleys seems to depend on both virus and patient factors. Furthermore, our analyses suggest that, besides becoming dominant after population-level switches, minor proportions of X4 viruses might exist along the infection, perhaps even at early stages of it. The fate of these minor variants might depend on both viral and host

  13. A Maraviroc-Resistant HIV-1 with Narrow Cross-Resistance to Other CCR5 Antagonists Depends on both N-Terminal and Extracellular Loop Domains of Drug-Bound CCR5

    Science.gov (United States)

    Tilton, John C.; Wilen, Craig B.; Didigu, Chukwuka A.; Sinha, Rohini; Harrison, Jessamina E.; Agrawal-Gamse, Caroline; Henning, Elizabeth A.; Bushman, Frederick D.; Martin, Jeffrey N.; Deeks, Steven G.; Doms, Robert W.

    2010-01-01

    CCR5 antagonists inhibit HIV entry by binding to a coreceptor and inducing changes in the extracellular loops (ECLs) of CCR5. In this study, we analyzed viruses from 11 treatment-experienced patients who experienced virologic failure on treatment regimens containing the CCR5 antagonist maraviroc (MVC). Viruses from one patient developed high-level resistance to MVC during the course of treatment. Although resistance to one CCR5 antagonist is often associated with broad cross-resistance to other agents, these viruses remained sensitive to most other CCR5 antagonists, including vicriviroc and aplaviroc. MVC resistance was dependent upon mutations within the V3 loop of the viral envelope (Env) protein and was modulated by additional mutations in the V4 loop. Deep sequencing of pretreatment plasma viral RNA indicated that resistance appears to have occurred by evolution of drug-bound CCR5 use, despite the presence of viral sequences predictive of CXCR4 use. Envs obtained from this patient before and during MVC treatment were able to infect cells expressing very low CCR5 levels, indicating highly efficient use of a coreceptor. In contrast to previous reports in which CCR5 antagonist-resistant viruses interact predominantly with the N terminus of CCR5, these MVC-resistant Envs were also dependent upon the drug-modified ECLs of CCR5 for entry. Our results suggest a model of CCR5 cross-resistance whereby viruses that predominantly utilize the N terminus are broadly cross-resistant to multiple CCR5 antagonists, whereas viruses that require both the N terminus and antagonist-specific ECL changes demonstrate a narrow cross-resistance profile. PMID:20702642

  14. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5 viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences and genotypic (e.g., population sequencing linked to bioinformatic algorithms assays are the most widely used. Although several next-generation sequencing (NGS platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences, Illumina®, and Ion Torrent™ (Life Technologies. Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used, compared to Trofile (80% and population sequencing (70%. In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  15. Adverse effect of the CCR5 promoter -2459A allele on HIV-1 disease progression

    DEFF Research Database (Denmark)

    Knudsen, T B; Kristiansen, T B; Katzenstein, T L

    2001-01-01

    HIV positive individuals heterozygous for a 32 basepair deletion in the CCR5 encoding gene (CCR5 Delta32) have a reduced number of CCR5 receptors on the cell surface and a slower progression towards AIDS and death. Other human polymorphisms, such as the CCR2 64I and the CCR5 promoter -2459 A....../G transition that has been discovered recently, have also been shown to influence HIV progression. Since genetic linkages make these polymorphisms interdependent variables, the aim of the present study was to isolate and evaluate the effect on HIV disease progression for each of these mutations independently....... Genotypes were determined in 119 individuals enrolled in the Copenhagen AIDS Cohort. When including the concurrent effects of the CCR5 Delta32 and CCR2 64I mutations, homozygous carriers of the CCR5 promoter -2459A allele had a significantly faster progression towards death than heterozygous A/G individuals...

  16. V3 loop truncations in HIV-1 envelope impart resistance to coreceptor inhibitors and enhanced sensitivity to neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Meg M Laakso

    2007-08-01

    Full Text Available The V1/V2 region and the V3 loop of the human immunodeficiency virus type I (HIV-1 envelope (Env protein are targets for neutralizing antibodies and also play an important functional role, with the V3 loop largely determining whether a virus uses CCR5 (R5, CXCR4 (X4, or either coreceptor (R5X4 to infect cells. While the sequence of V3 is variable, its length is highly conserved. Structural studies indicate that V3 length may be important for interactions with the extracellular loops of the coreceptor. Consistent with this view, genetic truncation of the V3 loop is typically associated with loss of Env function. We removed approximately one-half of the V3 loop from three different HIV-1 strains, and found that only the Env protein from the R5X4 strain R3A retained some fusion activity. Loss of V1/V2 (DeltaV1/V2 was well tolerated by this virus. Passaging of virus with the truncated V3 loop resulted in the derivation of a virus strain that replicated with wild-type kinetics. This virus, termed TA1, retained the V3 loop truncation and acquired several adaptive changes in gp120 and gp41. TA1 could use CCR5 but not CXCR4 to infect cells, and was extremely sensitive to neutralization by HIV-1 positive human sera, and by antibodies to the CD4 binding site and to CD4-induced epitopes in the bridging sheet region of gp120. In addition, TA1 was completely resistant to CCR5 inhibitors, and was more dependent upon the N-terminal domain of CCR5, a region of the receptor that is thought to contact the bridging sheet of gp120 and the base of the V3 loop, and whose conformation may not be greatly affected by CCR5 inhibitors. These studies suggest that the V3 loop protects HIV from neutralization by antibodies prevalent in infected humans, that CCR5 inhibitors likely act by disrupting interactions between the V3 loop and the coreceptor, and that altered use of CCR5 by HIV-1 associated with increased sensitivity to changes in the N-terminal domain can be linked

  17. Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naive Subjects with Progressive HIV-1 Subtype C Infection.

    Directory of Open Access Journals (Sweden)

    Martin R Jakobsen

    Full Text Available HIV-1 subtype C (C-HIV is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5 strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4 variants emerge in subjects with progressive C-HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs (n = 300 cloned sequentially from plasma of 21 antiretroviral therapy (ART-naïve subjects who experienced progression from chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an "Ile-Gly" insertion in the gp120 V3 loop and replacement of the V3 "Gly-Pro-Gly" crown with a "Gly-Arg-Gly" motif, but that the accumulation of additional gp120 "scaffold" mutations was required for these V3 loop changes to confer functional effects. In this context, either of the V3 loop changes could confer possible transitional R5X4 phenotypes, but when present together they completely abolished CCR5 usage and conferred the X4 phenotype. Our results show that the emergence of CXCR4-using strains is rare in this cohort of untreated individuals with advanced C-HIV infection. In the subject where X4 variants did emerge, alterations in the gp120 V3 loop were necessary but not sufficient to confer CXCR4 usage.

  18. Appraising the performance of genotyping tools in the prediction of coreceptor tropism in HIV-1 subtype C viruses

    Directory of Open Access Journals (Sweden)

    Crous Saleema

    2012-09-01

    Full Text Available Abstract Background In human immunodeficiency virus type 1 (HIV-1 infection, transmitted viruses generally use the CCR5 chemokine receptor as a coreceptor for host cell entry. In more than 50% of subtype B infections, a switch in coreceptor tropism from CCR5- to CXCR4-use occurs during disease progression. Phenotypic or genotypic approaches can be used to test for the presence of CXCR4-using viral variants in an individual’s viral population that would result in resistance to treatment with CCR5-antagonists. While genotyping approaches for coreceptor-tropism prediction in subtype B are well established and verified, they are less so for subtype C. Methods Here, using a dataset comprising V3 loop sequences from 349 CCR5-using and 56 CXCR4-using HIV-1 subtype C viruses we perform a comparative analysis of the predictive ability of 11 genotypic algorithms in their prediction of coreceptor tropism in subtype C. We calculate the sensitivity and specificity of each of the approaches as well as determining their overall accuracy. By separating the CXCR4-using viruses into CXCR4-exclusive (25 sequences and dual-tropic (31 sequences we evaluate the effect of the possible conflicting signal from dual-tropic viruses on the ability of a of the approaches to correctly predict coreceptor phenotype. Results We determined that geno2pheno with a false positive rate of 5% is the best approach for predicting CXCR4-usage in subtype C sequences with an accuracy of 94% (89% sensitivity and 99% specificity. Contrary to what has been reported for subtype B, the optimal approaches for prediction of CXCR4-usage in sequence from viruses that use CXCR4 exclusively, also perform best at predicting CXCR4-use in dual-tropic viral variants. Conclusions The accuracy of genotyping approaches at correctly predicting the coreceptor usage of V3 sequences from subtype C viruses is very high. We suggest that genotyping approaches can be used to test for coreceptor tropism in HIV-1

  19. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV

    Directory of Open Access Journals (Sweden)

    Cicala Claudia

    2010-01-01

    Full Text Available Abstract It is well established that HIV-1 infection typically involves an interaction between the viral envelope protein gp120/41 and the CD4 molecule followed by a second interaction with a chemokine receptor, usually CCR5 or CXCR4. In the early stages of an HIV-1 infection CCR5 using viruses (R5 viruses predominate. In some viral subtypes there is a propensity to switch to CXCR4 usage (X4 viruses. The receptor switch occurs in ~ 40% of the infected individuals and is associated with faster disease progression. This holds for subtypes B and D, but occurs less frequently in subtypes A and C. There are several hypotheses to explain the preferential transmission of R5 viruses and the mechanisms that lead to switching of co-receptor usage; however, there is no definitive explanation for either. One important consideration regarding transmission is that signaling by R5 gp120 may facilitate transmission of R5 viruses by inducing a permissive environment for HIV replication. In the case of sexual transmission, infection by HIV requires the virus to breach the mucosal barrier to gain access to the immune cell targets that it infects; however, the immediate events that follow HIV exposure at genital mucosal sites are not well understood. Upon transmission, the HIV quasispecies that is replicating in an infected donor contracts through a “genetic bottleneck”, and often infection results from a single infectious event. Many details surrounding this initial infection remain unresolved. In mucosal tissues, CD4+ T cells express high levels of CCR5, and a subset of these CD4+/CCR5high cells express the integrin α4β7, the gut homing receptor. CD4+/CCR5high/ α4β7high T cells are highly susceptible to infection by HIV-1 and are ideal targets for an efficient productive infection at the point of transmission. In this context we have demonstrated that the HIV-1 envelope protein gp120 binds to α4β7 on CD4+ T cells. On CD4+/CCR5high/ α4β7high T cells,

  20. Co-receptor tropism prediction among 1045 Indian HIV-1 subtype C sequences: Therapeutic implications for India

    Directory of Open Access Journals (Sweden)

    Kuttiatt Vijesh S

    2010-07-01

    Full Text Available Abstract Background Understanding co-receptor tropism of HIV-1 strains circulating in India will provide key analytical leverage for assessing the potential usefulness of newer antiretroviral drugs such as chemokine co-receptor antagonists among Indian HIV-infected populations. The objective of this study was to determine using in silico methods, HIV-1 tropism among a large number of Indian isolates both from primary clinical isolates as well as from database-derived sequences. Results R5-tropism was seen in 96.8% of a total of 1045 HIV-1 subtype C Indian sequences. Co-receptor prediction of 15 primary clinical isolates detected two X4-tropic strains using the C-PSSM matrix. R5-tropic HIV-1 subtype C V3 sequences were conserved to a greater extent than X4-tropic strains. X4-tropic strains were obtained from subjects who had a significantly longer time since HIV diagnosis (96.5 months compared to R5-tropic strains (20.5 months. Conclusions High prevalence of R5 tropism and greater homogeneity of the V3 sequence among HIV-1 subtype C strains in India suggests the potential benefit of CCR5 antagonists as a therapeutic option in India.

  1. Expression of CCR5, CXCR4 and DC-SIGN in Cervix of HIV-1 Heterosexually Infected Mexican Women

    Science.gov (United States)

    Rivera-Morales, Lydia Guadalupe; Lopez-Guillen, Paulo; Vazquez-Guillen, Jose Manuel; Palacios-Saucedo, Gerardo C; Rosas-Taraco, Adrian G; Ramirez-Pineda, Antonio; Amaya-Garcia, Patricia Irene; Rodriguez-Padilla, Cristina

    2012-01-01

    Background: A number of studies have demonstrated that receptor and co-receptor expression levels which may affect viral entry, promoting cervical HIV infection. The aim was to evaluate the expression levels of CCR5, CXCR4and DC-SIGN mRNA in a sample of heterosexually HIV infected Mexican women. Methods: We enrolled twenty-six HIV heterosexual infected women attending a local infectious diseases medical unit.RNA was isolated from the cervix and gene expression analysis was performed using real-time PCR. Results: Expression rates for mRNA of CCR5 (median 1.82; range 0.003–2934) were higher than those observed for CXCR4 (0.79; 0.0061–3312) and DC-SIGN (0.33; 0.006–532) receptors (p < 0.05). A high correlation was found between the mRNA expression levels of these three receptors (rs = 0.52 to 0.85, p < 0.01). Conclusion: Levels of expression of the tested chemokine receptors in the cervix are different from each other and alsovary from woman to woman, and seem to support the suggestion that chemokine receptor expression in genital tissues may be playing a role in the HIV transmission. PMID:23115608

  2. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia.

    Science.gov (United States)

    Nedellec, Rebecca; Herbeck, Joshua T; Hunt, Peter W; Deeks, Steven G; Mullins, James I; Anton, Elizabeth D; Reeves, Jacqueline D; Mosier, Donald E

    2017-03-01

    Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.

  3. Effects of CCR5-Delta32 and CCR2-64I alleles on HIV-1 disease progression: the protection varies with duration of infection

    NARCIS (Netherlands)

    Mulherin, Stephanie A.; O'Brien, Thomas R.; Ioannidis, John P.; Goedert, James J.; Buchbinder, Susan P.; Coutinho, Roel A.; Jamieson, Beth D.; Meyer, Laurence; Michael, Nelson L.; Pantaleo, Giuseppe; Rizzardi, G. Paolo; Schuitemaker, Hanneke; Sheppard, Haynes W.; Theodorou, Ioannis D.; Vlahov, David; Rosenberg, Philip S.

    2003-01-01

    OBJECTIVE: To examine temporal variation in the effects of CCR5-Delta32 and CCR2-64I chemokine receptor gene polymorphisms on HIV-1 disease progression. DESIGN: Pooled analysis of individual patient data from 10 cohorts of HIV-1 seroconverters from the United States, Europe, and Australia. METHODS:

  4. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene

    NARCIS (Netherlands)

    Pandit, Aridaman; de Boer, Rob J

    2015-01-01

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART

  5. Covariance of charged amino acids at positions 322 and 440 of HIV-1 Env contributes to coreceptor specificity of subtype B viruses, and can be used to improve the performance of V3 sequence-based coreceptor usage prediction algorithms.

    Science.gov (United States)

    Cashin, Kieran; Sterjovski, Jasminka; Harvey, Katherine L; Ramsland, Paul A; Churchill, Melissa J; Gorry, Paul R

    2014-01-01

    The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1) strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env) determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a "440 rule" can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation of Env

  6. Covariance of charged amino acids at positions 322 and 440 of HIV-1 Env contributes to coreceptor specificity of subtype B viruses, and can be used to improve the performance of V3 sequence-based coreceptor usage prediction algorithms.

    Directory of Open Access Journals (Sweden)

    Kieran Cashin

    Full Text Available The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1 strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a "440 rule" can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation

  7. A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5 -μ- opioid receptor interactions in human astroglia and microglia

    Science.gov (United States)

    EL-HAGE, Nazira; DEVER, Seth M.; PODHAIZER, Elizabeth M.; ARNATT, Cristopher K.; ZHANG, Yan; HAUSER, Kurt F.

    2013-01-01

    Objective We explored whether the opiate, morphine, affects the actions of maraviroc, as well as a recently synthesized bivalent derivative of maraviroc linked to an opioid antagonist, naltrexone, on HIV-1 entry in primary human glia. Methods HIV-1 entry was monitored in glia transiently transfected with an LTR construct containing a luciferase reporter gene under control of a promoter for the HIV-1 transactivator protein Tat. The effect of maraviroc and the bivalent ligand ± morphine on CCR5 surface expression and cytokine release was also explored. Results Maraviroc inhibits HIV-1 entry into glial cells, while morphine negates the effects of maraviroc leading to a significant increase in viral entry. We also demonstrate that the maraviroc-containing bivalent ligand better inhibits R5-tropic viral entry in astrocytes than microglia compared to maraviroc when coadministered with morphine. Importantly, the inhibitory effects of the bivalent compound in astrocytes were not compromised by morphine. Exposure to maraviroc decreased the release of pro-inflammatory cytokines and restricted HIV-1-dependent increases in CCR5 expression in both astrocytes and microglia, while exposure to the bivalent had similar effect in astrocytes but not in microglia. CCR5-MOR stoichiometric ratio varied among the two cell types with CCR5 expressed at much higher levels than MOR in microglia, which could explain the effectiveness of the bivalent ligand in astrocytes compared to microglia. Conclusion A novel bivalent compound reveals fundamental differences in CCR5-MOR interactions and HIV-1 infectivity among glia, and has unique therapeutic potential in opiate abuse-HIV interactive comorbidity. PMID:23751259

  8. Impact of CCR5delta32 Host Genetic Background and Disease Progression on HIV-1 Intrahost Evolutionary Processes: Efficient Hypothesis Testing through Hierarchical Phylogenetic Models

    NARCIS (Netherlands)

    Edo-Matas, Diana; Lemey, Philippe; Tom, Jennifer A.; Serna-Bolea, Cèlia; van den Blink, Agnes E.; van 't Wout, Angélique B.; Schuitemaker, Hanneke; Suchard, Marc A.

    2011-01-01

    The interplay between C-C chemokine receptor type 5 (CCR5) host genetic background, disease progression, and intrahost HIV-1 evolutionary dynamics remains unclear because differences in viral evolution between hosts limit the ability to draw conclusions across hosts stratified into clinically

  9. Preclinical safety and efficacy of an anti–HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor

    Directory of Open Access Journals (Sweden)

    Orit Wolstein

    2014-01-01

    Full Text Available Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC. CCR5-targeted shRNA (sh5 and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

  10. Genotypes and polymorphisms of mutant CCR5-delta 32, CCR2-64I and SDF1-3' a HIV-1 resistance alleles in indigenous Han Chinese.

    Science.gov (United States)

    Wang, F; Jin, L; Lei, Z; Shi, H; Hong, W; Xu, D; Jiang, J; Wang, Y; Zhang, B; Liu, M; Li, Y

    2001-11-01

    To evaluate the frequencies and polymorphisms of CCR5-delta 32, CCR2-64I and SDF1-3' A alleles conferring resistance to HIV-1 infection in Chinese population from Han ethnic origin. This cohort was comprised of 1251 subjects (915 men and 336 women) aged 15-80 years and none was HIV-1 positive. Genotyping of allelic CCR5-delta 32, CCR2-64I and SDF1-3' A variants was performed using PCR or PCR/RFLP assay, and further confirmed by direct DNA sequencing. Our finding shows that the delta 32 deletion mutation in the CCR5 gene does occur in this population and can be inherited in a Mendelian fashion in indigenous Han Chinese at a very low frequency of 0.00119 (n = 1254). The frequencies of mutant CCR2-64I and SDF1-3' A alleles were 0.20023 (n = 1251) and 0.2873 (n = 893), in this population, which are higher than those found in American Caucasians. Furthermore the polymorphisms of CCR2-64I and SDF1-3' A alleles in the Han Chinese population were different from those in American Caucasians. Statistical analysis showed that the genotype distribution of CCR5-delta 32, CCR2-64I and SDF1-3' A alleles was in equilibrium according to the Hardy-Weinberg equation. The CCR5-delta 32 mutation may not be a major resistant factor against HIV-1 infection in indigenous Han Chinese. The significance of higher frequencies of CCR2-641 and SDF1-3' A alleles (0.20023 and 0.2791) in the Han population remains to be clarified in HIV-1-positive carriers and AIDS patients.

  11. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili [Scripps; (Chinese Aca. Sci.); (UCSD)

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  12. Statins disrupt CCR5 and RANTES expression levels in CD4(+ T lymphocytes in vitro and preferentially decrease infection of R5 versus X4 HIV-1.

    Directory of Open Access Journals (Sweden)

    Alexey A Nabatov

    Full Text Available BACKGROUND: Statins have previously been shown to reduce the in vitro infection of human immunodeficiency virus type 1 (HIV-1 through modulation of Rho GTPase activity and lipid raft formation at the cell surface, as well as by disrupting LFA-1 incorporation into viral particles. PRINCIPLE FINDINGS: Here we demonstrate that treatment of an enriched CD4(+ lymphocyte population with lovastatin (Lov, mevastatin (Mev and simvastatin (activated and non-activated, Sim(A and Sim(N, respectively can reduce the cell surface expression of the CC-chemokine receptor CCR5 (P<0.01 for Sim(A and Lov. The lowered CCR5 expression was associated with down-regulation of CCR5 mRNA expression. The CC-chemokine RANTES protein and mRNA expression levels were slightly increased in CD4(+ enriched lymphocytes treated with statins. Both R5 and X4 HIV-1 were reduced for their infection of statin-treated cells; however, in cultures where statins were removed and where a decrease in CCR5 expression was observed, there was a preferential inhibition of infection with an R5 versus X4 virus. CONCLUSIONS: The results indicate that the modulation of CC-chemokine receptor (CCR5 and CC-chemokine (RANTES expression levels should be considered as contributing to the anti-viral effects of statins, preferentially inhibiting R5 viruses. This observation, in combination with the immunomodulatory activity exerted by statins, suggests they may possess more potent anti-HIV-1 activity when applied during the early stages of infection or in lowering viral transmission. Alternatively, statin treatment could be considered as a way to modulate immune induction such as during vaccination protocols.

  13. Mice transgenic for CD4-specific human CD4, CCR5 and cyclin T1 expression: a new model for investigating HIV-1 transmission and treatment efficacy.

    Directory of Open Access Journals (Sweden)

    Kieran Seay

    Full Text Available Mice cannot be used to evaluate HIV-1 therapeutics and vaccines because they are not infectible by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 entry and replication including CD4, CCR5 and cyclin T1. We overcame this limitation by constructing mice with CD4 enhancer/promoter-regulated human CD4, CCR5 and cyclin T1 genes integrated as tightly linked transgenes (hCD4/R5/cT1 mice promoting their efficient co-transmission and enabling the murine CD4-expressing cells to support HIV-1 entry and Tat-mediated LTR transcription. All of the hCD4/R5/cT1 mice developed disseminated infection of tissues that included the spleen, small intestine, lymph nodes and lungs after intravenous injection with an HIV-1 infectious molecular clone (HIV-IMC expressing Renilla reniformis luciferase (LucR. Furthermore, localized infection of cervical-vaginal mucosal leukocytes developed after intravaginal inoculation of hCD4/R5/cT1 mice with the LucR-expressing HIV-IMC. hCD4/R5/cT1 mice reproducibly developed in vivo infection after inoculation with LucR-expressing HIV-IMC which could be bioluminescently quantified and visualized with a high sensitivity and specificity which enabled them to be used to evaluate the efficacy of HIV-1 therapeutics. Treatment with highly active anti-retroviral therapy or one dose of VRC01, a broadly neutralizing anti-HIV-1 antibody, almost completed inhibited acute systemic HIV-1 infection of the hCD4/R5/cT1 mice. hCD4/R5/cT1 mice could also be used to evaluate the capacity of therapies delivered by gene therapy to inhibit in vivo HIV infection. VRC01 secreted in vivo by primary B cells transduced with a VRC01-encoding lentivirus transplanted into hCD4/R5/cT1 mice markedly inhibited infection after intravenous challenge with LucR-expressing HIV-IMC. The reproducible infection of CD4/R5/cT1 mice with LucR-expressing HIV-IMC after intravenous or mucosal inoculation combined with the availability

  14. Integrated Computational Tools for Identification of CCR5 Antagonists as Potential HIV-1 Entry Inhibitors: Homology Modeling, Virtual Screening, Molecular Dynamics Simulations and 3D QSAR Analysis

    Directory of Open Access Journals (Sweden)

    Suri Moonsamy

    2014-04-01

    Full Text Available Using integrated in-silico computational techniques, including homology modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry inhibitors. Via validated docking calculations, binding free energies revealed that novel leads demonstrated better binding affinities with CCR5 compared to maraviroc, an FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy decomposition analysis on the averaged MD structure showed that hydrophobic active residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding. The validated 3D-QSAR model showed a high cross-validated rcv2 value of 0.84 using three principal components and non-cross-validated r2 value of 0.941. It was also revealed that almost all compounds in the test set and training set yielded a good predicted value. Information gained from this study could shed light on the activity of a new series of lead compounds as potential HIV entry inhibitors and serve as a powerful tool in the drug design and development machinery.

  15. A topical microbicide gel formulation of CCR5 antagonist maraviroc prevents HIV-1 vaginal transmission in humanized RAG-hu mice.

    Directory of Open Access Journals (Sweden)

    C Preston Neff

    Full Text Available For prevention of HIV infection many currently licensed anti-HIV drugs and new ones in the pipeline show potential as topically applied microbicides. While macaque models have been the gold standard for in vivo microbicide testing, they are expensive and sufficient numbers are not available. Therefore, a small animal model that facilitates rapid evaluation of potential candidates for their preliminary efficacy is urgently needed in the microbicide field. We previously demonstrated that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and that oral pre-exposure chemo-prophylactic strategies could be tested in this system. Here in these proof-of-concept studies, we extended this system for topical microbicide testing using HIV-1 as the challenge virus. Maraviroc, a clinically approved CCR5 inhibitor drug for HIV treatment, was formulated as a microbicide gel at 5 mM concentration in 2.2% hydroxyl ethyl cellulose. Female RAG-hu mice were challenged vaginally with HIV-1 an hour after intravaginal application of the maraviroc gel. Our results showed that maraviroc gel treated mice were fully protected against vaginal HIV-1 challenge in contrast to placebo gel treated mice which all became infected. These findings highlight the utility of the humanized mouse models for microbicide testing and, together with the recent data from macaque studies, suggest that maraviroc is a promising candidate for future microbicide clinical trials in the field.

  16. CoRSeqV3-C: a novel HIV-1 subtype C specific V3 sequence based coreceptor usage prediction algorithm.

    Science.gov (United States)

    Cashin, Kieran; Gray, Lachlan R; Jakobsen, Martin R; Sterjovski, Jasminka; Churchill, Melissa J; Gorry, Paul R

    2013-02-27

    The majority of HIV-1 subjects worldwide are infected with HIV-1 subtype C (C-HIV). Although C-HIV predominates in developing regions of the world such as Southern Africa and Central Asia, C-HIV is also spreading rapidly in countries with more developed economies and health care systems, whose populations are more likely to have access to wider treatment options, including the CCR5 antagonist maraviroc (MVC). The ability to reliably determine C-HIV coreceptor usage is therefore becoming increasingly more important. In silico V3 sequence based coreceptor usage prediction algorithms are a relatively rapid and cost effective method for determining HIV-1 coreceptor specificity. In this study, we elucidated the V3 sequence determinants of C-HIV coreceptor usage, and used this knowledge to develop and validate a novel, user friendly, and highly sensitive C-HIV specific coreceptor usage prediction algorithm. We characterized every phenotypically-verified C-HIV gp120 V3 sequence available in the Los Alamos HIV Database. Sequence analyses revealed that compared to R5 C-HIV V3 sequences, CXCR4-using C-HIV V3 sequences have significantly greater amino acid variability, increased net charge, increased amino acid length, increased frequency of insertions and substitutions within the GPGQ crown motif, and reduced frequency of glycosylation sites. Based on these findings, we developed a novel C-HIV specific coreceptor usage prediction algorithm (CoRSeqV3-C), which we show has superior sensitivity for determining CXCR4 usage by C-HIV strains compared to all other available algorithms and prediction rules, including Geno2pheno[coreceptor] and WebPSSMSINSI-C, which has been designed specifically for C-HIV. CoRSeqV3-C is now openly available for public use at http://www.burnet.edu.au/coreceptor. Our results show that CoRSeqV3-C is the most sensitive V3 sequence based algorithm presently available for predicting CXCR4 usage of C-HIV strains, without compromising specificity. CoRSeqV3

  17. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells

    Directory of Open Access Journals (Sweden)

    David L DiGiusto

    2016-01-01

    Full Text Available Gene therapy for HIV-1 infection is a promising alternative to lifelong combination antiviral drug treatment. Chemokine receptor 5 (CCR5 is the coreceptor required for R5-tropic HIV-1 infection of human cells. Deletion of CCR5 renders cells resistant to R5-tropic HIV-1 infection, and the potential for cure has been shown through allogeneic stem cell transplantation with naturally occurring homozygous deletion of CCR5 in donor hematopoietic stem/progenitor cells (HSPC. The requirement for HLA-matched HSPC bearing homozygous CCR5 deletions prohibits widespread application of this approach. Thus, a strategy to disrupt CCR5 genomic sequences in HSPC using zinc finger nucleases was developed. Following discussions with regulatory agencies, we conducted IND-enabling preclinical in vitro and in vivo testing to demonstrate the feasibility and (preclinical safety of zinc finger nucleases-based CCR5 disruption in HSPC. We report here the clinical-scale manufacturing process necessary to deliver CCR5-specific zinc finger nucleases mRNA to HSPC using electroporation and the preclinical safety data. Our results demonstrate effective biallelic CCR5 disruption in up to 72.9% of modified colony forming units from adult mobilized HSPC with maintenance of hematopoietic potential in vitro and in vivo. Tumorigenicity studies demonstrated initial product safety; further safety and feasibility studies are ongoing in subjects infected with HIV-1 (NCT02500849@clinicaltrials.gov.

  18. Characterization of the virus-cell interactions by HIV-1 subtype C variants from an antiretroviral therapy-naïve subject with baseline resistance to the CCR5 inhibitor maraviroc

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard

    resistance to MVC that persisted (as a subset of the viral quasispecies) for approximately 12 months in an antiretroviral therapy-naïve subject infected with HIV-1 subtype C (C-HIV). From a large, longitudinal study of C-HIV Envs (n=323) cloned from 21 subjects experiencing progressive C-HIV infection (see...... in vivo, can use the MVCbound form of CCR5 for HIV-1 entry via adaptive alterations in gp120. Partial baseline resistance to another CCR5 inhibitor through this mechanism, AD101, has been noted recently in one subject (1). Here, we identified and characterized envelope (Env) clones with baseline...... related abstract by Jakobsen et al., “Preferential CCR5-usage by R5X4 subtype C HIV-1 imparts sensitivity to maraviroc and tempers disease progression”), nine subjects persistently harboured CCR5-using (R5) Envs to late stages of infection. Virus inhibition assays in NP2-CD4/CCR5 cells using Env...

  19. Pre-clinical Modeling of CCR5 Knockout in Human Hematopoietic Stem Cells by Zinc Finger Nucleases Using Humanized Mice

    OpenAIRE

    Hofer, Ursula; Henley, Jill E.; Exline, Colin M.; Mulhern, Orla; Lopez, Evan; Cannon, Paula M

    2013-01-01

    Genetic strategies to block expression of CCR5, the major co-receptor of human immunodeficiency virus type 1 (HIV-1), are being developed as anti-HIV therapies. For example, human hematopoietic stem/precursor cells (HSPC) can be modified by the transient expression of CCR5-targeted zinc finger nucleases (ZFNs) to generate CCR5-negative cells, which could then give rise to HIV-resistant mature CD4+ T cells following transplantation into patients. The safety and anti-HIV effects of such treatme...

  20. Exploration of Bivalent Ligands Targeting Putative Mu Opioid Receptor and Chemokine Receptor CCR5 Dimerization

    Science.gov (United States)

    Arnatt, Christopher K.; Falls, Bethany A.; Yuan, Yunyun; Raborg, Thomas J.; Masvekar, Ruturaj R.; El-Hage, Nazira; Selley, Dana E.; Nicola, Anthony V.; Knapp, Pamela E.; Hauser, Kurt F.; Zhang, Yan

    2016-01-01

    Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation. PMID:27720326

  1. Cellular immunity and target cell susceptibility in persons with repeated HIV-1 exposure.

    Science.gov (United States)

    Akridge, R; Hladik, F; Markee, J; Alef, C; Kelley, H; Collier, A; Collier, A; McElrath, M J

    1999-03-01

    We prospectively studied 37 HIV-1 uninfected persons engaging in repeated high risk sexual activity with an HIV-1 infected partner, as well as 18 of their infected partners. Only one subject (3%) demonstrated the homozygous 32-bp deletion delta32delta32 of the HIV-1 co-receptor CCR5. CD4+ cells from all high risk subjects except the delta32delta32 CCR5 homozygote were susceptible in vitro to both CCR5-dependent and CXCR4-dependent HIV-1 strains. Median HIV-1 plasma RNA levels of the infected partners were not significantly different from levels of matched infected controls. Thirteen subjects demonstrated HIV-1 specific CTL at one or more visits, and these activities were more commonly observed in persons with the wild type CCR5 genotype. These results indicate that cellular immunity rather than inheritance of the delta32 CCR5 mutation accounts more often for persistently HIV-1-resistant cases.

  2. Accurate and efficient gp120 V3 loop structure based models for the determination of HIV-1 co-receptor usage

    Directory of Open Access Journals (Sweden)

    Vaisman Iosif I

    2010-10-01

    Full Text Available Abstract Background HIV-1 targets human cells expressing both the CD4 receptor, which binds the viral envelope glycoprotein gp120, as well as either the CCR5 (R5 or CXCR4 (X4 co-receptors, which interact primarily with the third hypervariable loop (V3 loop of gp120. Determination of HIV-1 affinity for either the R5 or X4 co-receptor on host cells facilitates the inclusion of co-receptor antagonists as a part of patient treatment strategies. A dataset of 1193 distinct gp120 V3 loop peptide sequences (989 R5-utilizing, 204 X4-capable is utilized to train predictive classifiers based on implementations of random forest, support vector machine, boosted decision tree, and neural network machine learning algorithms. An in silico mutagenesis procedure employing multibody statistical potentials, computational geometry, and threading of variant V3 sequences onto an experimental structure, is used to generate a feature vector representation for each variant whose components measure environmental perturbations at corresponding structural positions. Results Classifier performance is evaluated based on stratified 10-fold cross-validation, stratified dataset splits (2/3 training, 1/3 validation, and leave-one-out cross-validation. Best reported values of sensitivity (85%, specificity (100%, and precision (98% for predicting X4-capable HIV-1 virus, overall accuracy (97%, Matthew's correlation coefficient (89%, balanced error rate (0.08, and ROC area (0.97 all reach critical thresholds, suggesting that the models outperform six other state-of-the-art methods and come closer to competing with phenotype assays. Conclusions The trained classifiers provide instantaneous and reliable predictions regarding HIV-1 co-receptor usage, requiring only translated V3 loop genotypes as input. Furthermore, the novelty of these computational mutagenesis based predictor attributes distinguishes the models as orthogonal and complementary to previous methods that utilize sequence

  3. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2007-12-01

    Full Text Available Abstract Background CCR5-restricted (R5 human immunodeficiency virus type 1 (HIV-1 variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA and AIDS (A R5 Envs, respectively. Results Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362, a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. Conclusion Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.

  4. Discovery of a Novel CCR5 Antagonist Lead Compound Through Fragment Assembly

    Directory of Open Access Journals (Sweden)

    Hualiang Jiang

    2008-10-01

    Full Text Available CCR5, as the major co-receptor for HIV-1 entry, is an attractive novel target for the pharmaceutical industry in the HIV-1 therapeutic area. In this study, based on the structures of maraviroc and 1,4-bis(4-(7-chloroquinolin-4-ylpiperazin-1-ylbutane-1,4-dione (1, which was identified using structure-based virtual screening in conjunction with a calcium mobilization assay, a series of novel small molecule CCR5 antagonists have been designed and synthesized through fragment assembly. Preliminary SARs were obtained, which are in good agreement with the molecular binding model and should prove helpful for future antagonist design. The novel scaffold presented here might also be useful in the development of maraviroc-derived second generation CCR5 antagonists.

  5. Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy.

    Science.gov (United States)

    Chen, J D; Bai, X; Yang, A G; Cong, Y; Chen, S Y

    1997-10-01

    CXC-chemokine receptor (CXCR)-4/fusin, a newly discovered co-receptor for T-cell line (T)-tropic HIV-1 virus, plays a critical role in T-tropic virus fusion and entry into permissive cells. The occurrence of T-tropic HIV viruses is associated with CD4-positive cell decline and progression to AIDS, suggesting that the T-tropic HIV-1 contributes to AIDS pathogenesis. In this study, we used a novel strategy to inactivate CXCR-4 by targeting a modified CXC-chemokine to the endoplasmic reticulum (ER) to block the surface expression of newly synthesized CXCR-4. The genetically modified lymphocytes expressing this intracellular chemokine, termed "intrakine", are immune to T-tropic virus infection and appear to retain normal biological features. Thus, this genetic intrakine strategy is uniquely targeted at the conserved cellular receptor for the prevention of HIV-1 entry and may be developed into an effective treatment for HIV-1 infection and AIDS.

  6. CD4-independent use of the CCR5 receptor by sequential primary SIVsm isolates

    Directory of Open Access Journals (Sweden)

    Thorstensson Rigmor

    2007-07-01

    results show that SIVsm isolates use CCR5 independently of CD4. While the degree of CD4 independence and neutralization sensitivity vary over time, the ability to productively infect monocyte-derived macrophages remains at a steady high level throughout infection. The mode of CCR5 use differs between SIVsm and HIV-1, SIVsm appears to be more flexible than HIV-1 in its receptor requirement. We suggest that the mode of CCR5 coreceptor use and CD4-independence are interrelated properties.

  7. Closing two doors of viral entry: Intramolecular combination of a coreceptor- and fusion inhibitor of HIV-1

    Directory of Open Access Journals (Sweden)

    Cammack Nick

    2008-05-01

    Full Text Available Abstract We describe a novel strategy in which two inhibitors of HIV viral entry were incorporated into a single molecule. This bifunctional fusion inhibitor consists of an antibody blocking the binding of HIV to its co-receptor CCR5, and a covalently linked peptide which blocks envelope mediated virus-cell fusion. This novel bifunctional molecule is highly active on CCR5- and X4-tropic viruses in a single cycle assay and a reporter cell line with IC50 values of 0.03–0.05 nM. We demonstrated that both inhibitors contribute to the antiviral activity. In the natural host peripheral blood mononuclear cells (PBMC the inhibition of CXCR4-tropic viruses is dependant on the co-expression of CCR5 and CXCR4 receptors. This bifunctional inhibitor may offer potential for improved pharmacokinetic parameters for a fusion inhibitor in humans and the combination of two active antiviral agents in one molecule may provide better durability in controlling the emergence of resistant viruses.

  8. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  9. Stoichiometric parameters of HIV-1 entry.

    Science.gov (United States)

    Zarr, Melissa; Siliciano, Robert

    2015-01-01

    During HIV type 1 (HIV-1) entry, trimers of gp120 bind to CD4 and either the CCR5 or CXCR4 coreceptor on the target cell. The stoichiometric parameters associated with HIV-1 entry remain unclear. Important unanswered questions include: how many trimers must attach to CD4 molecules, how many must bind coreceptors, and how many functional gp120 subunits per trimer are required for entry? We performed single round infectivity assays with chimeric viruses and compared the experimental relative infectivity curves with curves generated by mathematical models. Our results indicate that HIV-1 entry requires only a small number of functional spikes (one or two), that Env trimers may function with fewer than three active subunits, and that there is no major difference in the stoichiometric requirements for CCR5 vs. CXCR4 mediated HIV-1 entry into host cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression

    DEFF Research Database (Denmark)

    Ioannidis, J P; Rosenberg, P S; Goedert, J J

    2001-01-01

    BACKGROUND: Studies relating certain chemokine and chemokine receptor gene alleles with the outcome of HIV-1 infection have yielded inconsistent results. OBJECTIVE: To examine postulated associations of genetic alleles with HIV-1 disease progression. DESIGN: Meta-analysis of individual-patient da...

  11. A Simplified Technique for Evaluating Human "CCR5" Genetic Polymorphism

    Science.gov (United States)

    Falteisek, Lukáš; Cerný, Jan; Janštová, Vanda

    2013-01-01

    To involve students in thinking about the problem of AIDS (which is important in the view of nondecreasing infection rates), we established a practical lab using a simplified adaptation of Thomas's (2004) method to determine the polymorphism of HIV co-receptor CCR5 from students' own epithelial cells. CCR5 is a receptor involved in inflammatory…

  12. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin α4β7.

    Directory of Open Access Journals (Sweden)

    Nicholas F Parrish

    Full Text Available Sexual transmission of human immunodeficiency virus type 1 (HIV-1 most often results from productive infection by a single transmitted/founder (T/F virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20 and chronic (n = 20 Env constructs as well as full-length T/F (n = 6 and chronic (n = 4 infectious molecular clones (IMCs. We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.

  13. Phenotypic expressions of CCR5-Delta 32/Delta 32 homozygosity

    NARCIS (Netherlands)

    Nguyen, GT; Carrington, M; Beeler, JA; Dean, M; Aledort, LM; Blatt, PM; Cohen, AR; DiMichele, D; Eyster, ME; Kessler, CM; Konkle, B; Leissinger, C; Luban, N; O'Brien, SJ; Goedert, JJ; O'Brien, TR

    1999-01-01

    Objective: As blockade of CC-chemokine receptor 5 (CCR5) has been proposed as therapy for HIV-1, we examined whether the CCR5-Delta 32/Delta 32 homozygous genotype has phenotypic expressions other than those related to HIV-1. Design: Study subjects were white homosexual men or men with hemophilia

  14. Intensification of antiretroviral therapy with a CCR5 antagonist in patients with chronic HIV-1 infection: effect on T cells latently infected.

    Directory of Open Access Journals (Sweden)

    Carolina Gutiérrez

    Full Text Available The primary objective was to assess the effect of MVC intensification on latently infected CD4(+ T cells in chronically HIV-1-infected patients receiving antiretroviral therapy.We performed an open-label pilot phase II clinical trial involving chronically HIV-1-infected patients receiving stable antiretroviral therapy whose regimen was intensified with 48 weeks of maraviroc therapy. We analyzed the latent reservoir, the residual viremia and episomal 2LTR DNA to examine the relationship between these measures and the HIV-1 latent reservoir, immune activation, lymphocyte subsets (including effector and central memory T cells, and markers associated with bacterial translocation.Overall a non significant reduction in the size of the latent reservoir was found (p = 0.068. A mean reduction of 1.82 IUPM was observed in 4 patients with detectable latent reservoir at baseline after 48 weeks of intensification. No effect on plasma residual viremia was observed. Unexpectedly, all the patients had detectable 2LTR DNA circles at week 24, while none of them showed those circles at the end of the study. No changes were detected in CD4(+ or CD8(+ counts, although a significant decrease was found in the proportion of HLA-DR(+/CD38(+ CD4(+ and CD8(+ T-cells. LPS and sCD14 levels increased.Intensification with MVC was associated with a trend to a decrease in the size of the latent HIV-1 reservoir in memory T cells. No impact on residual viremia was detected. Additional studies with larger samples are needed to confirm the results.ClinicalTrials.gov NCT00795444.

  15. Intensification of Antiretroviral Therapy with a CCR5 Antagonist in Patients with Chronic HIV-1 Infection: Effect on T Cells Latently Infected

    Science.gov (United States)

    Vallejo, Alejandro; Hernández-Novoa, Beatriz; Abad, María; Madrid, Nadia; Dahl, Viktor; Rubio, Rafael; Moreno, Ana M.; Dronda, Fernando; Casado, José Luis; Navas, Enrique; Pérez-Elías, María Jesús; Zamora, Javier; Palmer, Sarah; Muñoz, Eduardo; Muñoz-Fernández, María Ángeles; Moreno, Santiago

    2011-01-01

    Objective The primary objective was to assess the effect of MVC intensification on latently infected CD4+ T cells in chronically HIV-1-infected patients receiving antiretroviral therapy. Methods We performed an open-label pilot phase II clinical trial involving chronically HIV-1-infected patients receiving stable antiretroviral therapy whose regimen was intensified with 48 weeks of maraviroc therapy. We analyzed the latent reservoir, the residual viremia and episomal 2LTR DNA to examine the relationship between these measures and the HIV-1 latent reservoir, immune activation, lymphocyte subsets (including effector and central memory T cells), and markers associated with bacterial translocation. Results Overall a non significant reduction in the size of the latent reservoir was found (p = 0.068). A mean reduction of 1.82 IUPM was observed in 4 patients with detectable latent reservoir at baseline after 48 weeks of intensification. No effect on plasma residual viremia was observed. Unexpectedly, all the patients had detectable 2LTR DNA circles at week 24, while none of them showed those circles at the end of the study. No changes were detected in CD4+ or CD8+ counts, although a significant decrease was found in the proportion of HLA-DR+/CD38+ CD4+ and CD8+ T-cells. LPS and sCD14 levels increased. Conclusions Intensification with MVC was associated with a trend to a decrease in the size of the latent HIV-1 reservoir in memory T cells. No impact on residual viremia was detected. Additional studies with larger samples are needed to confirm the results. Trial Registration ClinicalTrials.gov NCT00795444 PMID:22174752

  16. A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Jinquan Chen

    Full Text Available Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils.Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2, can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM, in the presence or absence of EP2. Circular dichroism (CD spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells.Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection.

  17. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  18. Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available CD4(+ T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+ cells, and (ii that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+ compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+ T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p and disappearance (d* rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul participated. CCR5-expression defined a CD4(+ subpopulation of predominantly CD45R0(+ memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+ vs CCR5(-; healthy controls; P<0.01. Conversely, CXCR4 expression defined CD4(+ T-cells (predominantly CD45RA(+ naive cells with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+CD45R0(+CD4(+ memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05, naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9 or X4-tropic (n = 4. Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively. Our data are most consistent with models in which CD4(+ T-cell loss is primarily driven by non-specific immune activation.

  19. CCR5Δ32 mutation and HIV infection: basis for curative HIV therapy.

    Science.gov (United States)

    Allers, Kristina; Schneider, Thomas

    2015-10-01

    The C-C chemokine receptor 5 (CCR5) is expressed on potential human immunodeficiency virus (HIV) target cells and serves as the predominant co-receptor for viral entry during initial transmission and through the early stages of infection. A homozygous Δ32 mutation in the CCR5 gene prevents CCR5 cell surface expression and thus confers resistance to infection with CCR5-tropic HIV strains. Transplantation of hematopoietic stem cells from a CCR5Δ32/Δ32 donor was previously successful in eliminating HIV from the recipient's immune system, suggesting that targeted CCR5 disruption can lead to an HIV cure. Therefore, intense work is currently being carried out on CCR5 gene-editing tools to develop curative HIV therapy. Here, we review the natural function of CCR5, the progress made on CCR5 gene editing to date and discuss the current limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Use of Four Next-Generation Sequencing Platforms to Determine HIV-1 Coreceptor Tropism

    Czech Academy of Sciences Publication Activity Database

    Archer, J.; Weber, Jan; Henry, K.; Winner, D.; Gibson, R.; Lee, L.; Paxinos, E.; Arts, E. J.; Robertson, D. L.; Mimms, L.; Quinones-Mateu, M. E.

    2012-01-01

    Roč. 7, č. 11 (2012), e49602/1-e49602/17 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LK11207 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV -1 tropism * V3 region * deep sequencing Subject RIV: EE - Microbiology, Virology Impact factor: 3.730, year: 2012 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0049602

  1. Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors.

    Science.gov (United States)

    Wei, Bin; Han, Lei; Abbink, Truus E M; Groppelli, Elisabetta; Lim, Daina; Thaker, Youg Raj; Gao, Wei; Zhai, Rongrong; Wang, Jianhua; Lever, Andrew; Jolly, Clare; Wang, Hongyan; Rudd, Christopher E

    2013-09-18

    Immune cell adaptor protein ADAP (adhesion and degranulation-promoting adaptor protein) mediates aspects of T-cell adhesion and proliferation. Despite this, a connection between ADAP and infection by the HIV-1 (human immunodeficiency virus-1) has not been explored. In this paper, we show for the first time that ADAP and its binding to SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) regulate HIV-1 infection via two distinct mechanisms and co-receptors. siRNA down-regulation of ADAP, or expression of a mutant that is defective in associating to its binding partner SLP-76 (termed M12), inhibited the propagation of HIV-1 in T-cell lines and primary human T-cells. In one step, ADAP and its binding to SLP-76 were needed for the activation of NF-κB and its transcription of the HIV-1 long terminal repeat (LTR) in cooperation with ligation of co-receptor CD28, but not LFA-1. In a second step, the ADAP-SLP-76 module cooperated with LFA-1 to regulate conjugate formation between T-cells and dendritic cells or other T-cells as well as the development of the virological synapse (VS) and viral spread between immune cells. These findings indicate that ADAP regulates two steps of HIV-1 infection cooperatively with two distinct receptors, and as such, serves as a new potential target in the blockade of HIV-1 infection.

  2. Clinical use of CCR5 inhibitors in HIV and beyond

    Directory of Open Access Journals (Sweden)

    Gilliam Bruce

    2010-01-01

    Full Text Available Abstract Since the discovery of CCR5 as a coreceptor for HIV entry, there has been interest in blockade of the receptor for treatment and prevention of HIV infection. Although several CCR5 antagonists have been evaluated in clinical trials, only maraviroc has been approved for clinical use in the treatment of HIV-infected patients. The efficacy, safety and resistance profile of CCR5 antagonists with a focus on maraviroc are reviewed here along with their usage in special and emerging clinical situations. Despite being approved for use since 2007, the optimal use of maraviroc has yet to be well-defined in HIV and potentially in other diseases. Maraviroc and other CCR5 antagonists have the potential for use in a variety of other clinical situations such as the prevention of HIV transmission, intensification of HIV treatment and prevention of rejection in organ transplantation. The use of CCR5 antagonists may be potentiated by other agents such as rapamycin which downregulate CCR5 receptors thus decreasing CCR5 density. There may even be a role for their use in combination with other entry inhibitors. However, clinical use of CCR5 antagonists may have negative consequences in diseases such as West Nile and Tick-borne encephalitis virus infections. In summary, CCR5 antagonists have great therapeutic potential in the treatment and prevention of HIV as well as future use in novel situations such as organ transplantation. Their optimal use either alone or in combination with other agents will be defined by further investigation.

  3. Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection.

    Science.gov (United States)

    Dillon, Stephanie M; Lee, Eric J; Donovan, Andrew M; Guo, Kejun; Harper, Michael S; Frank, Daniel N; McCarter, Martin D; Santiago, Mario L; Wilson, Cara C

    2016-01-14

    Early HIV-1 infection is characterized by high levels of HIV-1 replication and substantial CD4 T cell depletion in the intestinal mucosa, intestinal epithelial barrier breakdown, and microbial translocation. HIV-1-induced disruption of intestinal homeostasis has also been associated with changes in the intestinal microbiome that are linked to mucosal and systemic immune activation. In this study, we investigated the impact of representative bacterial species that were altered in the colonic mucosa of viremic HIV-1 infected individuals (HIV-altered mucosal bacteria; HAMB) on intestinal CD4 T cell function, infection by HIV-1, and survival in vitro. Lamina propria (LP) mononuclear cells were infected with CCR5-tropic HIV-1BaL or mock infected, exposed to high (3 gram-negative) or low (2 gram-positive) abundance HAMB or control gram-negative Escherichia coli and levels of productive HIV-1 infection and CD4 T cell depletion assessed. HAMB-associated changes in LP CD4 T cell activation, proliferation and HIV-1 co-receptor expression were also evaluated. The majority of HAMB increased HIV-1 infection and depletion of LP CD4 T cells, but gram-negative HAMB enhanced CD4 T cell infection to a greater degree than gram-positive HAMB. Most gram-negative HAMB enhanced T cell infection to levels similar to that induced by gram-negative E. coli despite lower induction of T cell activation and proliferation by HAMB. Both gram-negative HAMB and E. coli significantly increased expression of HIV-1 co-receptor CCR5 on LP CD4 T cells. Lipopolysaccharide, a gram-negative bacteria cell wall component, up-regulated CCR5 expression on LP CD4 T cells whereas gram-positive cell wall lipoteichoic acid did not. Upregulation of CCR5 by gram-negative HAMB was largely abrogated in CD4 T cell-enriched cultures suggesting an indirect mode of stimulation. Gram-negative commensal bacteria that are altered in abundance in the colonic mucosa of HIV-1 infected individuals have the capacity to enhance

  4. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry.

    Science.gov (United States)

    Westby, Mike; Smith-Burchnell, Caroline; Mori, Julie; Lewis, Marilyn; Mosley, Michael; Stockdale, Mark; Dorr, Patrick; Ciaramella, Giuseppe; Perros, Manos

    2007-03-01

    Maraviroc is a CCR5 antagonist in clinical development as one of a new class of antiretrovirals targeting human immunodeficiency virus type 1 (HIV-1) coreceptor binding. We investigated the mechanism of HIV resistance to maraviroc by using in vitro sequential passage and site-directed mutagenesis. Serial passage through increasing maraviroc concentrations failed to select maraviroc-resistant variants from some laboratory-adapted and clinical isolates of HIV-1. However, high-level resistance to maraviroc was selected from three of six primary isolates passaged in peripheral blood lymphocytes (PBL). The SF162 strain acquired resistance to maraviroc in both treated and control cultures; all resistant variants were able to use CXCR4 as a coreceptor. In contrast, maraviroc-resistant virus derived from isolates CC1/85 and RU570 remained CCR5 tropic, as evidenced by susceptibility to the CCR5 antagonist SCH-C, resistance to the CXCR4 antagonist AMD3100, and an inability to replicate in CCR5 Delta32/Delta32 PBL. Strain-specific mutations were identified in the V3 loop of maraviroc-resistant CC1/85 and RU570. The envelope-encoding region of maraviroc-resistant CC1/85 was inserted into an NL4-3 background. This recombinant virus was completely resistant to maraviroc but retained susceptibility to aplaviroc. Reverse mutation of gp120 residues 316 and 323 in the V3 loop (numbering from HXB2) to their original sequence restored wild-type susceptibility to maraviroc, while reversion of either mutation resulted in a partially sensitive virus with reduced maximal inhibition (plateau). The plateaus are consistent with the virus having acquired the ability to utilize maraviroc-bound receptor for entry. This hypothesis was further corroborated by the observation that a high concentration of maraviroc blocks the activity of aplaviroc against maraviroc-resistant virus.

  5. Coincident natural selection of CCR5∆32 and C282Y in Europe: to ...

    Indian Academy of Sciences (India)

    Unknown

    CCR5 is a member of the G protein-coupled chemokine receptor superfamily which acts as one of the major co- receptors for HIV-1 infection. A 32-base pair deletion (∆32) in the CCR5 gene results in defective expression of the receptor on the cell surface and blocks entry of the virus. The inactive CCR5∆32 allele confers ...

  6. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins

    Directory of Open Access Journals (Sweden)

    Jonathan Richard

    2016-10-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env recognized by antibody-dependent cellular cytotoxicity (ADCC-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc able to “push” Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV+ sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS. Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1.

  7. Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data

    DEFF Research Database (Denmark)

    Ioannidis, J P; Rosenberg, Peter; Goedert, J J

    2001-01-01

    Studies relating certain chemokine and chemokine receptor gene alleles with the outcome of HIV-1 infection have yielded inconsistent results.......Studies relating certain chemokine and chemokine receptor gene alleles with the outcome of HIV-1 infection have yielded inconsistent results....

  8. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Directory of Open Access Journals (Sweden)

    Li Huang

    Full Text Available Highly active antiretroviral therapy (HAART has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  9. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Science.gov (United States)

    Huang, Li; Ho, Phong; Yu, Jie; Zhu, Lei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2011-01-01

    Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  10. DETERMINATION OF VIRAL TROPISM BY GENOTYPING AND PHENOTYPING ASSAYS IN BRAZILIAN HIV-1-INFECTED PATIENTS

    Directory of Open Access Journals (Sweden)

    Liã Bárbara Arruda

    2014-07-01

    Full Text Available The clinical application of CCR5 antagonists involves first determining the coreceptor usage by the infecting viral strain. Bioinformatics programs that predict coreceptor usage could provide an alternative method to screen candidates for treatment with CCR5 antagonists, particularly in countries with limited financial resources. Thus, the present study aims to identify the best approach using bioinformatics tools for determining HIV-1 coreceptor usage in clinical practice. Proviral DNA sequences and Trofile results from 99 HIV-1-infected subjects under clinical monitoring were analyzed in this study. Based on the Trofile results, the viral variants present were 81.1% R5, 21.4% R5X4 and 1.8% X4. Determination of tropism using a Geno2pheno[coreceptor] analysis with a false positive rate of 10% gave the most suitable performance in this sampling: the R5 and X4 strains were found at frequencies of 78.5% and 28.4%, respectively, and there was 78.6% concordance between the phenotypic and genotypic results. Further studies are needed to clarify how genetic diversity amongst virus strains affects bioinformatics-driven approaches for determining tropism. Although this strategy could be useful for screening patients in developing countries, some limitations remain that restrict the wider application of coreceptor usage tests in clinical practice.

  11. Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants.

    Science.gov (United States)

    Lin, Nina; Gonzalez, Oscar A; Registre, Ludy; Becerril, Carlos; Etemad, Behzad; Lu, Hong; Wu, Xueling; Lockman, Shahin; Essex, Myron; Moyo, Sikhulile; Kuritzkes, Daniel R; Sagar, Manish

    2016-06-01

    Although both C-C chemokine receptor 5 (CCR5)- and CXC chemokine receptor 4 (CXCR4)-using HIV-1 strains cause AIDS, the emergence of CXCR4-utilizing variants is associated with an accelerated decline in CD4+ T cells. It remains uncertain if CXCR4-using viruses hasten disease or if these variants only emerge after profound immunological damage. We show that exclusively CXCR4- as compared to cocirculating CCR5-utilizing variants are less sensitive to neutralization by both contemporaneous autologous plasma and plasma pools from individuals that harbor only CCR5-using HIV-1. The CXCR4-utilizing variants, however, do not have a global antigenic change because they remain equivalently susceptible to antibodies that do not target coreceptor binding domains. Studies with envelope V3 loop directed antibodies and chimeric envelopes suggest that the neutralization susceptibility differences are potentially influenced by the V3 loop. In vitro passage of a neutralization sensitive CCR5-using virus in the presence of autologous plasma and activated CD4+ T cells led to the emergence of a CXCR4-utilizing virus in 1 of 3 cases. These results suggest that in some but not necessarily all HIV-1 infected individuals humoral immune pressure against the autologous virus selects for CXCR4-using variants, which potentially accelerates disease progression. Our observations have implications for using antibodies for HIV-1 immune therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. RT-SHIV, an infectious CCR5-tropic chimeric virus suitable for evaluating HIV reverse transcriptase inhibitors in macaque models

    Directory of Open Access Journals (Sweden)

    Emau Peter

    2009-11-01

    Full Text Available Abstract Background Non-nucleoside reverse transcriptase inhibitors (NNRTIs are an important category of drugs for both chemotherapy and prevention of human immunodeficiency virus type 1 (HIV-1 infection. However, current non-human primate (NHP models utilizing simian immunodeficiency virus (SIV or commonly used chimeric SHIV (SIV expressing HIV-1 envelope are inadequate due to the insensitivity to NNRTIs. To develop a NHP model for evaluation of NNRTI compounds, we characterized a RT-SHIV virus that was assembled by replacing the SIVmac239 reverse transcriptase (RT with that of HIV-1HXB2. Since RT-SHIV exhibited in vitro characteristics of high infectivity, CCR5-usage, and sensitivity to HIV-1 specific NNRTIs, this virus was thought to be suitable for mucosal transmission and then was used to carry out a vaginal transmission study in pigtail macaques (Macaca nemestrina. Results RT-SHIV exhibited in vitro characteristics of an infectious CCR5-tropic chimeric virus. This virus was not only highly sensitive to HIV-1 RT specific NNRTIs; its replication was also inhibited by a variety of NRTIs and protease inhibitors. For in vivo vaginal transmission studies, macaques were either pretreated with a single dose of DMPA (depot medroxyprogesterone acetate or left untreated before intravaginal inoculation with 500 or 1,000 TCID50 of RT-SHIV. All macaques became systemically infected by 2 or 3 weeks post-inoculation exhibiting persistent high viremia, marked CD4+T cell depletion, and antiviral antibody response. DMPA-pretreated macaques showed a higher mean plasma viral load after the acute infection stage, highly variable antiviral antibody response, and a higher incidence of AIDS-like disease as compared with macaques without DMPA pretreatment. Conclusion This chimeric RT-SHIV has exhibited productive replication in both macaque and human PBMCs, predominantly CCR5-coreceptor usage for viral entry, and sensitivity to NNRTIs as well as other anti

  13. Chemokine receptor CCR5 antagonist maraviroc: medicinal chemistry and clinical applications.

    Science.gov (United States)

    Xu, Guoyan G; Guo, Jia; Wu, Yuntao

    2014-01-01

    The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc.

  14. HIV-1 Vpr Accelerates Viral Replication during Acute Infection by Exploitation of Proliferating CD4+ T Cells In Vivo

    Science.gov (United States)

    Sato, Kei; Misawa, Naoko; Iwami, Shingo; Satou, Yorifumi; Matsuoka, Masao; Ishizaka, Yukihito; Ito, Mamoru; Aihara, Kazuyuki; An, Dong Sung; Koyanagi, Yoshio

    2013-01-01

    The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5+ CD4+ T cells, which mainly consist of regulatory CD4+ T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4+ T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5+ CD4+ T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection. PMID:24339781

  15. Molecular engineering of RANTES peptide mimetics with potent anti-HIV-1 activity

    Science.gov (United States)

    Lusso, Paolo; Vangelista, Luca; Cimbro, Raffaello; Secchi, Massimiliano; Sironi, Francesca; Longhi, Renato; Faiella, Marina; Maglio, Ornella; Pavone, Vincenzo

    2011-01-01

    The chemokine receptor CCR5 is utilized as a critical coreceptor by most primary HIV-1 strains. While the lack of structural information on CCR5 has hampered the rational design of specific inhibitors, mimetics of the chemokines that naturally bind CCR5 can be molecularly engineered. We used a structure-guided approach to design peptide mimetics of the N-loop and β1-strand regions of regulated on activation normal T-cell-expressed and secreted (RANTES)/CCL5, which contain the primary molecular determinants of HIV-1 blockade. Rational modifications were sequentially introduced into the N-loop/β1-strand sequence, leading to the generation of mimetics with potent activity against a broad spectrum of CCR5-specific HIV-1 isolates (IC50 range: 104–640 nM) but lacking activity against CXCR4-specific HIV-1 isolates. Functional enhancement was initially achieved with the stabilization of the N loop in the β-extended conformation adopted in full-length RANTES, as confirmed by nuclear magnetic resonance (NMR) analysis. However, the most dramatic increase in antiviral potency resulted from the engraftment of an in silico-optimized linker segment designed using de novo structure-prediction algorithms to stabilize the C-terminal α-helix and experimentally validated by NMR. Our mimetics exerted CCR5-antagonistic effects, demonstrating that the antiviral and proinflammatory functions of RANTES can be uncoupled. RANTES peptide mimetics provide new leads for the development of safe and effective HIV-1 entry inhibitors.—Lusso, P., Vangelista, L., Cimbro, R., Secchi, M., Sironi, F., Longhi, R., Faiella, M., Maglio, O., Pavone, V. Molecular engineering of RANTES peptide mimetics with potent anti-HIV-1 activity. PMID:21199933

  16. Induction of Murine Mucosal CCR5-Reactive Antibodies as an Anti-Human Immunodeficiency Virus Strategy

    Science.gov (United States)

    Barassi, C.; Soprana, E.; Pastori, C.; Longhi, R.; Buratti, E.; Lillo, F.; Marenzi, C.; Lazzarin, A.; Siccardi, A. G.; Lopalco, L.

    2005-01-01

    The genital mucosa is the main site of initial human immunodeficiency virus type 1 (HIV-1) contact with its host. In spite of repeated sexual exposure, some individuals remain seronegative, and a small fraction of them produce immunoglobulin G (IgG) and IgA autoantibodies directed against CCR5, which is probably the cause of the CCR5-minus phenotype observed in the peripheral blood mononuclear cells of these subjects. These antibodies recognize the 89-to-102 extracellular loop of CCR5 in its native conformation. The aim of this study was to induce infection-preventing mucosal anti-CCR5 autoantibodies in individuals at high risk of HIV infection. Thus, we generated chimeric immunogens containing the relevant CCR5 peptide in the context of the capsid protein of Flock House virus, a presentation system in which it is possible to engineer conformationally constrained peptide in a highly immunogenic form. Administered in mice via the systemic or mucosal route, the immunogens elicited anti-CCR5 IgG and IgA (in sera and vaginal fluids). Analogous to exposed seronegative individuals, mice producing anti-CCR5 autoantibodies express significantly reduced levels of CCR5 on the surfaces of CD4+ cells from peripheral blood and vaginal washes. In vitro studies have shown that murine IgG and IgA (i) specifically bind human and mouse CD4+ lymphocytes and the CCR5-transfected U87 cell line, (ii) down-regulate CCR5 expression of CD4+ cells from both humans and untreated mice, (iii) inhibit Mip-1β chemotaxis of CD4+ CCR5+ lymphocytes, and (iv) neutralize HIV R5 strains. These data suggest that immune strategies aimed at generating anti-CCR5 antibodies at the level of the genital mucosa might be feasible and represent a strategy to induce mucosal HIV-protective immunity. PMID:15890924

  17. CCR5 Expression Levels in HIV-Uninfected Women Receiving Hormonal Contraception.

    Science.gov (United States)

    Sciaranghella, Gaia; Wang, Cuiwei; Hu, Haihong; Anastos, Kathryn; Merhi, Zaher; Nowicki, Marek; Stanczyk, Frank Z; Greenblatt, Ruth M; Cohen, Mardge; Golub, Elizabeth T; Watts, D Heather; Alter, Galit; Young, Mary A; Tsibris, Athe M N

    2015-11-01

    Human immunodeficiency virus (HIV) infectivity increases as receptor/coreceptor expression levels increase. We determined peripheral CD4, CCR5, and CXCR4 expression levels in HIV-uninfected women who used depot medroxyprogesterone acetate (DMPA; n = 32), the levonorgestrel-releasing intrauterine device (LNG-IUD; n = 27), oral contraceptive pills (n = 32), or no hormonal contraception (n = 33). The use of LNG-IUD increased the proportion of CD4(+) and CD8(+) T cells that expressed CCR5; increases in the magnitude of T-cell subset CCR5 expression were observed with DMPA and LNG-IUD use (P < .01 for all comparisons). LNG-IUD and, to a lesser extent, DMPA use were associated with increased peripheral T-cell CCR5 expression. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Investigation of structure-activity relationship between chemical structure and CCR5 anti HIV-1 activity in a class of 1-[N-(Methyl)-N- (phenylsulfonyl)amino]-2-(phenyl)-4-[4-(substituted)piperidin-1-yl]butane derivatives: the electronic-topological approach.

    Science.gov (United States)

    Saracoglu, Murat; Kandemirli, Sedat Giray; Başaran, Murat Alper; Sayiner, Hakan; Kandemirli, Fatma

    2011-07-01

    The relationship between chemical structure and CCR5 anti HIV-1 activity was investigated in the series of 1-[N-(Methyl)-N-(phenylsulfonyl)amino]-2-(phenyl)-4-[4-(substituted) piperidin-1-yl]butanes derivatives including 114 molecules by using the Electron-Topological Method (ETM). In the frameworks of this approach, its input data were taken as the results of conformational and quantum-mechanical calculations. Conformational analysis and quantum-chemical calculations were carried out for each molecule. Then molecular fragments being specific for active molecules and non-active molecules were revealed by using ETM. The result of testing showed the high ability of ETM in predicting the activity and inactivity investigated series. In order to classify and to develop a model for those molecules, cluster and discriminant analyses are conducted. First, cluster analysis is implemented in order to classify similar molecules into the groups. Then, discriminant analysis is used to construct models including descriptors. By doing so, two obtained discriminant functions segregate those molecules into three different groups by using the descriptors called EHOMO, Dipole Moment and SEZPE.

  19. The frequency of CCR5 promoter polymorphisms and CCR5 32 mutation in Iranian populations

    Directory of Open Access Journals (Sweden)

    Mohammad Zare-Bidaki

    2015-04-01

    Full Text Available Evidence showed that chemokines serve as pro-migratory factors for immune cells. CCL3, CCL4 and CCL5, as the main CC  chemokines subfamily members, activate immune cells through binding to CC chemokine receptor 5 or CCR5. Macrophages, NK cells and T lymphocytes express CCR5 and thus, affected CCR5 expression or functions could be associated with altered immune responses. Deletion of 32 base pairs (D 32 in the exon 1 of the CCR5 gene, which is known as CCR5 D 32 mutation causes down regulation and malfunction of the molecule. Furthermore, it has been evidenced that three polymorphisms in the promoter region of CCR5 modulate its expression. Altered CCR5 expression in microbial infection and immune related diseases have been reported by several researchers but the role of CCR5 promoter polymorphisms and CCR5 D 32 mutation in Iranian patients suffering from these diseases are controversial. Due to the fact that Iranian people have different genetic backgrounds compared to other ethnics, hence, CCR5 promoter polymorphisms and CCR5 D 32 mutation association with the diseases may be different in Iranian patients. Therefore, this review addresses the most recent information regarding the prevalence as well as association of the mutation and polymorphisms in Iranian patients with microbial infection and immune related diseases as along with normal population.

  20. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Science.gov (United States)

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  1. Maraviroc (Celsentri) for multidrug-resistant human immunodeficiency virus (HIV)-1.

    Science.gov (United States)

    Ndegwa, S

    2007-12-01

    (1) Maraviroc belongs to a new class of antiretroviral drugs designed to block entry of HIV-1 into CD4+ T-cells via the CCR5 coreceptor. It is indicated for combination therapy in treatment-experienced adults infected with CCR5-tropic HIV-1 that is resistant to multiple antiretroviral agents. (2) Results from two randomized controlled trials (RCTs) indicate that in treatment experienced patients, maraviroc, combined with optimized background therapy (OBT), significantly decreases the level of HIV-1 RNA in the blood (viral load) when compared with OBT alone. The number of patients achieving undetectable viral loads and CD4+ cell count increases were also significantly higher in those receiving maraviroc. (3) Most patients experiencing treatment failure with maraviroc exhibit tropism changes from CCR5-tropic to CXCR4-using virus, but there is no evidence of disease progression. (4) Adverse effects reported with maraviroc include cough, fever, upper respiratory tract infections, rash, muscle and joint pain, abdominal pain, and postural hypotension (dizziness). No significant increases in cardiovascular events, hepatotoxicity, infections or malignancies have been reported with short-term maraviroc therapy. Several post-marketing studies will assess maraviroc's long-term safety for immune function, liver function, malignancy, cardiac events, and risks associated with changes in tropism. (5) Results from an ongoing trial in treatment naive patients suggest that maraviroc may not be superior in terms of viral suppression to standard therapy, but may significantly increase the number of CD4+ T-cells.

  2. Punica granatum (Pomegranate juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2004-10-01

    Full Text Available Abstract Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1 infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2 binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored.

  3. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...

  4. Genotypic and functional properties of early infant HIV-1 envelopes

    Directory of Open Access Journals (Sweden)

    Sullivan John L

    2011-08-01

    Full Text Available Abstract Background Understanding the properties of HIV-1 variants that are transmitted from women to their infants is crucial to improving strategies to prevent transmission. In this study, 162 full-length envelope (env clones were generated from plasma RNA obtained from 5 HIV-1 Clade B infected mother-infant pairs. Following extensive genotypic and phylogenetic analyses, 35 representative clones were selected for functional studies. Results Infant quasispecies were highly homogeneous and generally represented minor maternal variants, consistent with transmission across a selective bottleneck. Infant clones did not differ from the maternal in env length, or glycosylation. All infant variants utilized the CCR5 co-receptor, but were not macrophage tropic. Relatively high levels (IC50 ≥ 100 μg/ml of autologous maternal plasma IgG were required to neutralize maternal and infant viruses; however, all infant viruses were neutralized by pooled sera from HIV-1 infected individuals, implying that they were not inherently neutralization-resistant. All infant viruses were sensitive to the HIV-1 entry inhibitors Enfuvirtide and soluble CD4; none were resistant to Maraviroc. Sensitivity to human monoclonal antibodies 4E10, 2F5, b12 and 2G12 varied. Conclusions This study provides extensive characterization of the genotypic and functional properties of HIV-1 env shortly after transmission. We present the first detailed comparisons of the macrophage tropism of infant and maternal env variants and their sensitivity to Maraviroc, the only CCR5 antagonist approved for therapeutic use. These findings may have implications for improving approaches to prevent mother-to-child HIV-1 transmission.

  5. Frequency of CCR5delta32 in Brazilian populations

    Directory of Open Access Journals (Sweden)

    A.E. Vargas

    2006-03-01

    Full Text Available A sample of 103 randomly chosen healthy individuals from Alegrete, RS, Brazil, was tested for the CCR5delta32 allele, which is known to influence susceptibility to HIV-1 infection. The CCR5delta32 allele was identified by PCR amplification using specific primers flanking the region of deletion, followed by electrophoresis on a 3% agarose gel. The data obtained were compared to those reported for other populations and interpreted in terms of Brazilian history. The individuals studied came from a highly admixed population. Most of them were identified as white (N = 59, while blacks and browns (mulattoes were N = 13 and N = 31, respectively. The observed frequencies, considering the white, black and brown samples (6.8, 3.8, and 6.4%, respectively, suggest an important European parental contribution, even in populations identified as black and brown. However, in Brazil as a whole, this allele shows gradients indicating a relatively good correlation with the classification based on skin color and other physical traits, used here to define major Brazilian population groups.

  6. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    Science.gov (United States)

    Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

    2013-10-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  7. Human immunodeficiency virus receptor and coreceptor expression on human uterine epithelial cells: regulation of expression during the menstrual cycle and implications for human immunodeficiency virus infection.

    Science.gov (United States)

    Yeaman, Grant R; Howell, Alexandra L; Weldon, Sally; Demian, Douglas J; Collins, Jane E; O'Connell, Denise M; Asin, Susana N; Wira, Charles R; Fanger, Michael W

    2003-05-01

    Human immunodeficiency virus-1 (HIV-1) is primarily a sexually transmitted disease. Identification of cell populations within the female reproductive tract that are initially infected, and the events involved in transmission of infection to other cells, remain to be established. In this report, we evaluated expression of HIV receptors and coreceptors on epithelial cells in the uterus and found they express several receptors critical for HIV infection including CD4, CXCR4, CCR5 and galactosylceramide (GalC). Moreover, expression of these receptors varied during the menstrual cycle. Expression of CD4 and CCR5 on uterine epithelial cells is high throughout the proliferative phase of the menstrual cycle when blood levels of oestradiol are high. In contrast, CXCR4 expression increased gradually throughout the proliferative phase. During the secretory phase of the cycle when both oestradiol and progesterone are elevated, CD4 and CCR5 expression decreased whereas CXCR4 expression remained elevated. Expression of GalC on endometrial glands is higher during the secretory phase than during the proliferative phase of the menstrual cycle. Because epithelial cells line the female reproductive tract and express HIV receptors and coreceptors, it is likely that they are one of the first cell types to become infected. The hormonal regulation of HIV receptor expression may affect a woman's susceptibility to HIV infection during her menstrual cycle. Moreover, selective coreceptor expression could account for the preferential transmission of R5-HIV-1 strains to women. In addition, these studies provide evidence that the uterus, and potentially the entire upper reproductive tract, are important sites for the initial events involved in HIV infection.

  8. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  9. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    Directory of Open Access Journals (Sweden)

    López de Victoria Aliana

    2012-02-01

    Full Text Available Abstract Background The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Results Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. Conclusions We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3

  10. Recent updates for designing CCR5 antagonists as anti-retroviral agents.

    Science.gov (United States)

    Shah, Harshil R; Savjani, Jignasa Ketan

    2018-03-10

    The healthcare system faces various challenges in human immunodeficiency virus (HIV) therapy due to resistance to Anti-Retroviral Therapy (ART) as a consequence of the evolutionary process. Despite the success of antiretroviral drugs like Zidovudine, Zalcitabine, Raltegravir WHO ranks HIV as one of the deadliest diseases with a mortality of one million lives in 2016. Thus, there emerges an urgency of developing a novel anti-retroviral agent that combat resistant HIV strains. The clinical development of ART from a single drug regimen to current triple drug combination is very slow. The progression in the structural biology of the viral envelope prompted the discovery of novel targets, which can be demonstrated a proficient approach for drug design of anti-retroviral agents. The current review enlightens the recent updates in the structural biology of the viral envelope and focuses on CCR5 as a validated target as well as ways to overcome CCR5 resistance. The article also throws light on the SAR studies and most prevalent mutations in the receptor for designing CCR5 antagonists that can combat HIV-1 infection. To conclude, the paper lists diversified scaffolds that are in pipeline by various pharmaceutical companies that could provide an aid for developing novel CCR5 antagonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. CCR1 and CCR5 expressions on peripheral blood mononuclear ...

    African Journals Online (AJOL)

    Chemokine receptors ( CCR1 and CCR5 ), have been implicated in hepatic inflammation and hepatocellular carcinoma (HCC). The present study aimed to investigate the expressions of CCR1, CCR5 on peripheral blood mononuclear cells (PBMCs) of Egyptian patients with liver cirrhosis (LC) and HCC and their correlation ...

  12. Genetic and epigenetic regulation of CCR5 transcription

    NARCIS (Netherlands)

    Wierda, R.J.; van den Elsen, P.J.

    2012-01-01

    The chemokine receptor CCR5 regulates trafficking of immune cells of the lymphoid and the myeloid lineage (such as monocytes, macrophages and immature dendritic cells) and microglia. Because of this, there is an increasing recognition of the important role of CCR5 in the pathology of (neuro-)

  13. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  14. Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Ren Wuze

    2013-01-01

    Full Text Available Abstract Background Mucosally transmissible and pathogenic CCR5 (R5-tropic simian-human immunodeficiency virus (SHIV molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection. Results We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. Expansion to CXCR4 usage was documented in one diseased macaque that mounted a neutralizing antibody response and in another that failed to do so, with the latter displaying a rapid progressor phenotype. V3 loop envelop glycoprotein gp120 sequence changes that are predictive of a CXCR4 (X4-using phenotype in HIV-1 subtype B primary isolates, specifically basic amino acid substations at positions 11 (S11R, 24 (G24R and 25 (D25K of the loop were detected in the two infected macaques. Functional assays showed that envelopes with V3 S11R or D25K mutation were dual-tropic, infecting CD4+ target cells that expressed either the CCR5 or CXCR4 coreceptor. And, consistent with findings of coreceptor switching in macaques infected with the pathogenic isolate, CXCR4-using variant was first detected in the lymph node of the chronically infected rhesus monkey several weeks prior to its presence in peripheral blood. Moreover, X4 emergence in this macaque coincided with persistent peripheral CD4+ T cell loss and a decline in neutralizing antibody titer that are suggestive of immune deterioration, with macrophages as the major virus-producing cells at the end-stage of disease. Conclusions The data showed that molecular clones derived from the R5 SHIVSF162P3N isolate are mucosally transmissible and induced disease in a manner similar to that observed in HIV-1 infected individuals, providing a relevant and useful animal infection model for in-depth analyses of host selection

  15. Protein kinase C-delta regulates HIV-1 replication at an early post-entry step in macrophages

    Directory of Open Access Journals (Sweden)

    Contreras Xavier

    2012-05-01

    Full Text Available Abstract Background Macrophages, which are CD4 and CCR5 positive, can sustain HIV-1 replication for long periods of time. Thus, these cells play critical roles in the transmission, dissemination and persistence of viral infection. Of note, current antiviral therapies do not target macrophages efficiently. Previously, it was demonstrated that interactions between CCR5 and gp120 stimulate PKC. However, the PKC isozymes involved were not identified. Results In this study, we identified PKC-delta as a major cellular cofactor for HIV-1 replication in macrophages. Indeed, PKC-delta was stimulated following the interaction between the virus and its target cell. Moreover, inhibition of PKC-delta blocked the replication of R5-tropic viruses in primary human macrophages. However, this inhibition did not have significant effects on receptor and co-receptor expression or fusion. Additionally, it did not affect the formation of the early reverse transcription product containing R/U5 sequences, but did inhibit the synthesis of subsequent cDNAs. Importantly, the inhibition of PKC-delta altered the redistribution of actin, a cellular cofactor whose requirement for the completion of reverse transcription was previously established. It also prevented the association of the reverse transcription complex with the cytoskeleton. Conclusion This work highlights the importance of PKC-delta during early steps of the replicative cycle of HIV-1 in human macrophages.

  16. Allelic distribution of CCR5 and CCR2 genes in an Italian population sample.

    Science.gov (United States)

    Romano-Spica, V; Ianni, A; Arzani, D; Cattarini, L; Majore, S; Dean, M

    2000-01-20

    Genetic polymorphisms of CCR5 and CCR2 human chemokine receptors have been associated with resistance during HIV-1 infection and disease progression. The protective effect of mutant alleles at these loci has important implications in AIDS pathogenesis. Chemokine receptors have a role in viral entry into target cells as well as in immune response modulation. In the present report, we studied the frequency of CCR5delta32 and CCR264I allelic variants among a representative sample of the Italian population. Observed allelic frequencies were 0.0454 and 0.0655, respectively. In both cases, genotype distribution was in equilibrium as predicted by the Hardy-Weinberg equation. Taken as a whole, about 21% of the population sample was found to be heterozygous for one or another of those two mutated alleles. Distribution of CCR5delta32 and CCR264I allelic variants within a population can be considered as a measure of genetic susceptibility to HIV infection and disease progression.

  17. The case for selection at CCR5-Delta32.

    Directory of Open Access Journals (Sweden)

    Pardis C Sabeti

    2005-11-01

    Full Text Available The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Delta32 allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Delta32 arose within the past 1,000 y and rose to its present high frequency (5%-14% in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Delta32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Delta32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5, they imply that the pattern of genetic variation seen at CCR5-Delta32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.

  18. The case for selection at CCR5-Delta32.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Delta32 allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Delta32 arose within the past 1,000 y and rose to its present high frequency (5%-14% in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Delta32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Delta32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5, they imply that the pattern of genetic variation seen atCCR5-Delta32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.

  19. Early steps of HIV-1 fusion define the sensitivity to inhibitory peptides that block 6-helix bundle formation.

    Directory of Open Access Journals (Sweden)

    Kosuke Miyauchi

    2009-09-01

    Full Text Available The HIV envelope (Env glycoprotein mediates membrane fusion through sequential interactions with CD4 and coreceptors, followed by the refolding of the transmembrane gp41 subunit into the stable 6-helix bundle (6HB conformation. Synthetic peptides derived from the gp41 C-terminal heptad repeat domain (C-peptides potently inhibit fusion by binding to the gp41 pre-bundle intermediates and blocking their conversion into the 6HB. Our recent work revealed that HIV-1 enters cells by fusing with endosomes, but not with the plasma membrane. These studies also showed that, for the large part, gp41 pre-bundles progress toward 6HBs in endosomal compartments and are thus protected from external fusion inhibitors. Here, we examined the consequences of endocytic entry on the gp41 pre-bundle exposure and on the virus' sensitivity to C-peptides. The rates of CD4 and coreceptor binding, as well as the rate of productive receptor-mediated endocytosis, were measured by adding specific inhibitors of these steps at varied times of virus-cell incubation. Following the CD4 binding, CCR5-tropic viruses recruited a requisite number of coreceptors much faster than CXCR4-tropic viruses. The rate of subsequent uptake of ternary Env-CD4-coreceptor complexes did not correlate with the kinetics of coreceptor engagement. These measurements combined with kinetic analyses enabled the determination of the lifetime of pre-bundle intermediates on the cell surface. Overall, these lifetimes correlated with the inhibitory potency of C-peptides. On the other hand, the basal sensitivity to peptides varied considerably among diverse HIV-1 isolates and ranked similarly with their susceptibility to inactivation by soluble CD4. We conclude that both the longevity of gp41 intermediates and the extent of irreversible conformational changes in Env upon CD4 binding determine the antiviral potency of C-peptides.

  20. APOBEC3D and APOBEC3F Potently Promote HIV-1 Diversification and Evolution in Humanized Mouse Model

    Science.gov (United States)

    Misawa, Naoko; Izumi, Taisuke; Kobayashi, Tomoko; Kimura, Yuichi; Iwami, Shingo; Takaori-Kondo, Akifumi; Hu, Wei-Shau; Aihara, Kazuyuki; Ito, Mamoru; An, Dong Sung; Pathak, Vinay K.; Koyanagi, Yoshio

    2014-01-01

    Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo. PMID:25330146

  1. The CCL3L1-CCR5 genotype influences the development of AIDS, but not HIV susceptibility or the response to HAART

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Tanmoy [Los Alamos National Laboratory; Stanton, Jennifer [NORTHWESTERN UNIV; Kim, Eun - Young [NORTHWESTERN UNIV; Kunstman, Kevin [NORTHWESTERN UNIV; Phair, John [NORTHWESTERN UNIV; Jacobson, Lisa P [JOHNS HOPKINS UNIV; Wolinsky, Steven M [NORTHWESTERN UNIV

    2008-01-01

    A selective advantage against infectious diseases such as HIV/AIDS is associated with differences in the genes relevant to immunity and virus replication. The CC chemokine receptor 5 (CCR5), the principal coreceptor for HIV, and its chemokine ligands, including CCL3L1, influences the CD4+ target cells susceptibility to infection. The CCL3L1 gene is in a region of segmental duplication on the q-arm of human chromosome 17. Increased numbers of CCL3L1 gene copies that affect the gene expression phenotype might have substantial protective effects. Here we show that the population-specific CCL3L1 gene copy number and the CCR5 {Delta}32 protein-inactivating deletion that categorizes the CCL3L1-CCR5 genotype do not influence HIV/AIDS susceptibility or the robustness of immune recovery after the initiation of highly active antiretroviral therapy (HAART).

  2. De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Suzanne Gartner

    Full Text Available Nurse cells are defined as those that provide for the development of other cells. We report here, that in vitro, human monocyte-derived macrophages can behave as nurse cells with functional capabilities that include de novo generation of CD4+ T-lymphocytes and a previously unknown small cell with monocytoid characteristics. We named these novel cells "self-renewing monocytoid cells" (SRMC, because they could develop into nurse macrophages that produced another generation of SRMC. SRMC were not detectable in blood. Their transition to nurse behavior was characterized by expression of CD10, a marker of thymic epithelium and bone marrow stroma, typically absent on macrophages. Bromodeoxyuridine labeling and immunostaining for cdc6 expression confirmed DNA synthesis within nurse macrophages. T-cell excision circles were detected in macrophages, along with expression of pre-T-cell receptor alpha and recombination activating gene 1, suggesting that genetic recombination events associated with generation of the T-cell receptor were occurring in these cells. SRMC expressed CCR5, the coreceptor for R5 HIV-1 isolates, and were highly susceptible to HIV-1 entry leading to productive infection. While expressing HIV-1, SRMC could differentiate into nurse macrophages that produced another generation of HIV-1-expressing SRMC. The infected nurse macrophage/SRMC cycle could continue in vitro for multiple generations, suggesting it might represent a mechanism whereby HIV-1 can maintain persistence in vivo. HIV-1 infection of nurse macrophages led to a decline in CD4+ T-cell production. There was severe, preferential loss of the CCR5+ CD4+ T-cell subpopulation. Confocal microscopy revealed individual HIV-1-expressing nurse macrophages simultaneously producing both HIV-1-expressing SRMC and non-expressing CD3+ cells, suggesting that nurse macrophages might be a source of latently infected CD4+ T-cells. Real-time PCR experiments confirmed this by demonstrating 10

  3. Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice.

    Science.gov (United States)

    Ye, Chaobaihui; Wang, Weiming; Cheng, Liang; Li, Guangming; Wen, Michael; Wang, Qi; Zhang, Qing; Li, Dan; Zhou, Paul; Su, Lishan

    2017-02-01

    Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5-transduced cells were

  4. Emergence of CXCR4-tropic HIV-1 variants followed by rapid disease progression in hemophiliac slow progressors.

    Directory of Open Access Journals (Sweden)

    Tsunefusa Hayashida

    Full Text Available The association between emergence of CXCR4-tropic HIV-1 variants (X4 variants and disease progression of HIV-1 infection has been reported. However, it is not known whether the emergence of X4 variants is the cause or result of HIV-1 disease progression. We tried to answer this question.HIV-1 env sequences around the V3 region were analyzed in serially stocked samples in order to determine whether X4 variants emerged before or after the fall in CD4+ T-cell count.The study subjects were five HIV-1-infected hemophiliac slow progressors. Deep sequencing around the HIV-1 env V3 region was conducted in duplicate. Tropism was predicted by geno2pheno [coreceptor] 2.5 with cutoff value of false positive ratio at <5%. When X4 variant was identified in the latest stocked sample before the introduction of antiretroviral therapy, we checked viral genotype in previously stocked samples to determine the time of emergence of X4 variants.Emergence of X4 variants was noted in two of the five patients when their CD4+ T-cell counts were still high. The rate of decrease of CD4+ T-cell count or of rise of HIV-1 load accelerated significantly after the emergence of X4 variants in these two cases. Phylogenetic analysis showed that these X4 variants emerged from CCR5-tropic HIV-1 viruses with several amino acid changes in the V3 region.The emergence of X4 variants preceded HIV-1 disease progression in two hemophiliac slow progressors.

  5. Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission

    NARCIS (Netherlands)

    Sarrami-Forooshani, Ramin; Mesman, Annelies W.; van Teijlingen, Nienke H.; Sprokholt, Joris K.; van der Vlist, Michiel; Ribeiro, Carla M. S.; Geijtenbeek, Teunis B. H.

    2014-01-01

    Sexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the

  6. Lignosulfonic acid exhibits broadly anti-HIV-1 activity--potential as a microbicide candidate for the prevention of HIV-1 sexual transmission.

    Directory of Open Access Journals (Sweden)

    Min Qiu

    Full Text Available Some secondary metabolites from plants show to have potent inhibitory activities against microbial pathogens, such as human immunodeficiency virus (HIV, herpes simplex virus (HSV, Treponema pallidum, Neisseria gonorrhoeae, etc. Here we report that lignosulfonic acid (LSA, a polymeric lignin derivative, exhibits potent and broad activity against HIV-1 isolates of diverse subtypes including two North America strains and a number of Chinese clinical isolates values ranging from 21.4 to 633 nM. Distinct from other polyanions, LSA functions as an entry inhibitor with multiple targets on viral gp120 as well as on host receptor CD4 and co-receptors CCR5/CXCR4. LSA blocks viral entry as determined by time-of-drug addiction and cell-cell fusion assays. Moreover, LSA inhibits CD4-gp120 interaction by blocking the binding of antibodies specific for CD4-binding sites (CD4bs and for the V3 loop of gp120. Similarly, LSA interacts with CCR5 and CXCR4 via its inhibition of specific anti-CCR5 and anti-CXCR4 antibodies, respectively. Interestingly, the combination of LSA with AZT and Nevirapine exhibits synergism in viral inhibition. For the purpose of microbicide development, LSA displays low in vitro cytotoxicity to human genital tract epithelial cells, does not stimulate NF-κB activation and has no significant up-regulation of IL-1α/β and IL-8 as compared with N-9. Lastly, LSA shows no adverse effect on the epithelial integrity and the junctional protein expression. Taken together, our findings suggest that LSA can be a potential candidate for tropical microbicide.

  7. Divergent Expression of CXCR5 and CCR5 on CD4+ T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection.

    Science.gov (United States)

    Zaunders, John; Xu, Yin; Kent, Stephen J; Koelsch, Kersten K; Kelleher, Anthony D

    2017-01-01

    Viral infection sets in motion a cascade of immune responses, including both CXCR5+CD4+ T follicular helper (Tfh) cells that regulate humoral immunity and CCR5+CD4+ T cells that mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of memory CD4+ T cells appear to fall into either of these two lineages, CCR5-CXCR5+ or CCR5+CXCR5-. Very high titers of anti-HIV IgG antibodies are a hallmark of infection, strongly suggesting that there is significant HIV-specific CD4+ T cell help to HIV-specific B cells. We now know that characteristic increases in germinal centers (GC) in lymphoid tissue (LT) during SIV and HIV-1 infections are associated with an increase in CXCR5+PD-1high Tfh, which expand to a large proportion of memory CD4+ T cells in LT, and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through infection of a subset of PD-1intermediateCCR5+Bcl-6+ pre-Tfh cells. In contrast, in human LT, a subset of PD-1high Tfh appears to express low levels of CCR5, as measured by flow cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in HIV infection are not completely normalized by antiretroviral therapy (ART), suggesting a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5+ Tfh, there is no accumulation of proliferating CCR5+ CD4 T HIV Gag-specific cells in peripheral blood that make IFN-γ. Altogether, CXCR5+CCR5- CD4 T cells that regulate humoral immunity are allowed greater freedom to operate and expand during HIV-1 infection, but at the same time can contain HIV DNA at levels at least as high as in other CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce the infected Tfh reservoir in LT and also interrupt cycles of antibody pressure driving virus

  8. Divergent Expression of CXCR5 and CCR5 on CD4+ T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection

    Directory of Open Access Journals (Sweden)

    John Zaunders

    2017-05-01

    Full Text Available Viral infection sets in motion a cascade of immune responses, including both CXCR5+CD4+ T follicular helper (Tfh cells that regulate humoral immunity and CCR5+CD4+ T cells that mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of memory CD4+ T cells appear to fall into either of these two lineages, CCR5−CXCR5+ or CCR5+CXCR5−. Very high titers of anti-HIV IgG antibodies are a hallmark of infection, strongly suggesting that there is significant HIV-specific CD4+ T cell help to HIV-specific B cells. We now know that characteristic increases in germinal centers (GC in lymphoid tissue (LT during SIV and HIV-1 infections are associated with an increase in CXCR5+PD-1high Tfh, which expand to a large proportion of memory CD4+ T cells in LT, and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through infection of a subset of PD-1intermediateCCR5+Bcl-6+ pre-Tfh cells. In contrast, in human LT, a subset of PD-1high Tfh appears to express low levels of CCR5, as measured by flow cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in HIV infection are not completely normalized by antiretroviral therapy (ART, suggesting a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5+ Tfh, there is no accumulation of proliferating CCR5+ CD4 T HIV Gag-specific cells in peripheral blood that make IFN-γ. Altogether, CXCR5+CCR5− CD4 T cells that regulate humoral immunity are allowed greater freedom to operate and expand during HIV-1 infection, but at the same time can contain HIV DNA at levels at least as high as in other CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce the infected Tfh reservoir in LT and also interrupt cycles of antibody

  9. Involvement of both the V2 and V3 Regions of the CCR5-Tropic Human Immunodeficiency Virus Type 1 Envelope in Reduced Sensitivity to Macrophage Inflammatory Protein 1α

    Science.gov (United States)

    Maeda, Yosuke; Foda, Mohamed; Matsushita, Shuzo; Harada, Shinji

    2000-01-01

    To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1α-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1α (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat–β-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1β (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1α. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1α, MIP-1β, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors. PMID:10644351

  10. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  11. Synergistic Inhibition of R5 HIV-1 by the Fusion Protein (FLSC) IgG1 Fc and Maraviroc in Primary Cells: Implications for Prevention and Treatment.

    Science.gov (United States)

    Latinovic, Olga S; Zhang, Jian; Tagaya, Yutaka; DeVico, Anthony L; Fouts, Timothy R; Schneider, K; Lakowicz, Joseph R; Heredia, Alonso; Redfield, Robert R

    2016-01-01

    Antiretroviral (ARV) drugs targeting retroviral enzymes have been extensively employed to treat HIV-1 infection. Drawbacks of this approach include cost, toxicity, and the eventual emergence of resistant strains that threaten prophylactic and/or therapeutic efficacy. Accordingly, efforts to develop next-generation ARV approaches are warranted, particularly if they can offer a higher threshold of resistance. We have previously shown that FLSC, a fusion protein containing gp120(BAL) and the D1 and D2 domains of human CD4, specifically binds CCR5, an important cellular co-receptor, and inhibits the entry of R5 HIV isolates. (FLSC) IgG1, a fusion of FLSC and the hinge-C(H)2-C(H)3 region of human IgG1, has an increased antiviral activity, likely due to the resultant bivalency. In this study, we show CCR5 reduction upon (FLSC) IgG1 treatment both by standard flow cytometry and visualized using a novel nanoparticle method. A β-lactamase virus-cell fusion assay was used to quantify (FLSC) IgG1 inhibition of HIV-1 entry into both cell lines and primary cells. Synergistic anti-viral activities of (FLSC) IgG1 and MVC in primary cells were evaluated by measuring supernatant p24 levels via ELISA and calculated using the MacSynergy™ II program. We previously reported that treatment with the CCR5 small molecule antagonist Maraviroc (MVC) increased the apparent exposure of the (FLSC) IgG1 binding sites on CCR5, leading us to wonder if the two compounds used in combination might synergize in their anti-viral activity. Here we show that this is indeed the case. We demonstrate that fusion protein (FLSC) IgG1, strongly synergizes with the CCR5 antagonist Maraviroc to successfully inhibit both MVC-sensitive and MVC-resistant R5 HIV-1. Observed synergy between (FLSC) IgG1 and MVC was high in both, cell lines and primary PBMCs. This has relevance for future in vivo studies. In addition, synergy occurred both with MVC-sensitive viruses and MVC-resistant viruses, partially restoring the

  12. Expansion and productive HIV-1 infection of Foxp3 positive CD4 T cells at pleural sites of HIV/TB co-infection.

    Science.gov (United States)

    Hirsch, Christina S; Baseke, Joy; Kafuluma, John Lusiba; Nserko, Mary; Mayanja-Kizza, Harriet; Toossi, Zahra

    2016-01-01

    CD4 T-cells expressing Foxp3 are expanded systemically during active tuberculosis (TB) regardless of HIV-1 co-infection. Foxp3+ CD4 T cells are targets of HIV-1 infection. However, expansion of HIV-1 infected Foxp3+ CD4 T cells at sites of HIV/TB co-infection, and whether they contribute to promotion of HIV-1 viral activity is not known. Pleural fluid mononuclear cells (PFMC) from HIV/TB co-infected patients with pleural TB were characterized by immune-staining and FACS analysis for surface markers CD4, CD127, CCR5, CXCR4, HLA-DR and intracellular expression of Foxp3, HIVp24, IFN-γ and Bcl-2. Whole PFMC and bead separated CD4+CD25+CD127- T cells were assessed for HIV-1 LTR strong stop (SS) DNA by real-time PCR, which represents viral DNA post cell entry and initiation of reverse transcription. High numbers of HIV-1 p24 positive Foxp3+ and Foxp3+CD127- CD4 T cells were identified in PFMC from HIV/TB co-infected subjects. CD4+Foxp3+CD127- T cells displayed high expression of the cellular activation marker, HLA-DR. Further, expression of the HIV-1 co-receptors, CCR5 and CXCR4, were higher on CD4+Foxp3+T cells compared to CD4+Foxp3- T cells. Purified CD4+CD25+CD127- T cells isolated from PFMC of HIV/TB co-infected patients, were over 90% CD4+Foxp3+T cells, and exhibited higher HIV-1 SS DNA as compared to whole PFMC, and as compared to CD4+CD25+CD127- T cells from an HIV-infected subject with pleural mesothelioma. HIV-1 p24+ Foxp3+ CD4+T cells from HIV/TB patients higher in Bcl-2 expression as compared to both HIV-1 p24+ Foxp3- CD4 T cells, and Foxp3+ CD4+T cells without HIV-p24 expression. Foxp3+ CD4 T cells in PFMC from HIV/TB co-infected subjects are predisposed to productive HIV-1 infection and have survival advantage as compared to Foxp3 negative CD4 T cells.

  13. Understanding the HIV coreceptor switch from a dynamical perspective

    Directory of Open Access Journals (Sweden)

    Kamp Christel

    2009-11-01

    Full Text Available Abstract Background The entry of HIV into its target cells is facilitated by the prior binding to the cell surface molecule CD4 and a secondary coreceptor, mostly the chemokine receptors CCR5 or CXCR4. In early infection CCR5-using viruses (R5 viruses are mostly dominant while a receptor switch towards CXCR4 occurs in about 50% of the infected individuals (X4 viruses which is associated with a progression of the disease. There are many hypotheses regarding the underlying dynamics without yet a conclusive understanding. Results While it is difficult to isolate key factors in vivo we have developed a minimal in silico model based on the approaches of Nowak and May to investigate the conditions under which the receptor switch occurs. The model allows to investigate the evolution of viral strains within a probabilistic framework along the three stages of disease from primary and latent infection to the onset of AIDS with a a sudden increase in viral load which goes along with the impairment of the immune response. The model is specifically applied to investigate the evolution of the viral quasispecies in terms of R5 and X4 viruses which directly translates into the composition of viral load and consequently the question of the coreceptor switch. Conclusion The model can explain the coreceptor switch as a result of a dynamical change in the underlying environmental conditions in the host. The emergence of X4 strains does not necessarily result in the dominance of X4 viruses in viral load which is more likely to occur in the model after some time of chronic infection. A better understanding of the conditions leading to the coreceptor switch is especially of interest as CCR5 blockers have recently been licensed as drugs which suppress R5 viruses but do not seem to necessarily induce a coreceptor switch.

  14. Using the distribution of the CCR5-Δ32 allele in third-generation Maltese citizens to disprove the Black Death hypothesis.

    Science.gov (United States)

    Baron, B; Schembri-Wismayer, P

    2011-04-01

    Malta was under Norman rule for over 400 years and has had three major documented plague outbreaks (and a number of minor ones) since the 14th century with death tolls of 5-15% of the population at the time. This makes the Maltese population ideal for testing the hypothesis that the Black Death (particularly that of 1346-52) was responsible for a genetic shift that spread the CCR5-Δ32 allele. By enrolling 300 blood donors to determine the percentage of the Maltese population resistant to HIV-1 (which uses the CCR5-receptor to infect cells), it was established that the CCR5-Δ32 allele frequency is almost zero in third-generation Maltese citizens and sequencing showed that the deletion observed in the region of interest is the 32-base deletion expected. Thus, despite the extensive Norman occupation and the repeated plague cullings, the CCR5-Δ32 allele frequency is extremely low. This provides a basis for the discussion of conflicting hypotheses regarding the possible origin, function and spread of the CCR5-Δ32 deletion. © 2010 Blackwell Publishing Ltd.

  15. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

    Science.gov (United States)

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony; Perros, Manos

    2005-11-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.

  16. Association of CCR5-59029 A/G and CCL3L1 copy number polymorphism with HIV type 1 transmission/progression among HIV type 1-seropositive and repeatedly sexually exposed HIV type 1-seronegative North Indians.

    Science.gov (United States)

    Rathore, Anurag; Chatterjee, Animesh; Sivarama, P; Yamamoto, Naohiko; Singhal, Pradeep K; Dhole, Tapan N

    2009-11-01

    The CCR5Delta32 mutation does not account for HIV-1 resistance in the majority of persons who are repeatedly exposed to HIV-1 by high-risk activities but remain seronegative and uninfected. Therefore, we investigated the impact of CCR5 59029 A/G and CCL3L1 copy number polymorphism on HIV-1 disease susceptibility and progression among HIV-1-infected and HIV-1-exposed seronegative North Indians. HIV-1-seropositive (HSP, n = 196) patients, stratified on the basis of disease severity (Stages I, II, and III) and HIV-1-exposed seronegative (HES, n = 47) individuals were genotyped for CCR5-59029 A/G polymorphism by PCR-RFLP and CCL3L1 copy number by the real-time TaqMan PCR method. A group of ethnically matched HIV-1-seronegative (HSN, n = 315) healthy volunteers were also genotyped as controls. Statistical analysis was done by SPSS software. The CCR5-59029 AG genotype was significantly higher in the HES compared with the HSP group (57.44% vs. 37.24%, p = 0.014). The CCL3L1 mean copy number of HES was higher compared with the HSP groups (3.148 +/- 0.291 vs. 2.795 +/- 0.122, p = 0.212), but was not significant when compared with independent samples t test. Possession of CCL3L1 copies 2 was not associated with enhanced or reduced risk of HIV-1 acquisition. Gene-gene interaction studies showed enrichment of the CCR5-59029AG*CCL3L1>2 genotype in the HES group when compared with the HSP group (31.91% vs. 15.81%, p = 0.021, OR = 0.401, CI = 0.194-0.826). The increased frequency of the CCR5-59029AG*CCL3L1>2 genotype among HES individuals led us to conclude that the CCR5-59029 AG genotype and CCL3L1 gene dose appeared to have synergistic or interactive effects and are expected to be involved in the host innate resistance to HIV-1 infection.

  17. Computational study of CCR5 antagonist with support vector machines and three dimensional quantitative structure activity relationship methods.

    Science.gov (United States)

    Chen, Yue; Li, Zeng; Chen, Hai-Feng

    2010-03-01

    CCR5 is the key receptor of HIV-1 virus entry into host cells and it becomes an attractive target for antiretroviral drug design. To date, six types of CCR5 antagonist were synthesized and evaluated. To search more potent bio-active compounds, non-linear support vector machine was used to construct the relationship models for 103 oximino-piperidino-piperidine CCR5 antagonists. Then, comparative molecular field analysis and comparative molecular similarity indices analysis models were constructed after alignment with their common substructure. Twenty-one structural diverse compounds, which were not included in the support vector machine, comparative molecular field analysis, and comparative molecular similarity indices analysis models, validated these models. The results show that these models possess good predictive ability. When comparing between support vector machine and 3D-quantitative structure activity relationship models, the results obtained from these two methods are compatible. However, 3D-quantitative structure activity relationship model is significantly better than support vector machine model and previous reported pharmacophore model. These models can help us to make quantitative prediction of their bio-activities before in vitro and in vivo stages.

  18. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma.

    Science.gov (United States)

    Umansky, Viktor; Blattner, Carolin; Gebhardt, Christoffer; Utikal, Jochen

    2017-08-01

    Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, leading to the accumulation of myeloid-derived suppressor cells (MDSCs). Using ret transgenic mouse melanoma model, we found a significant migration of MDSCs expressing C-C chemokine receptor (CCR)5 into primary tumors and metastatic lymph nodes, which was correlated with tumor progression. An increased CCR5 expression on MDSCs was associated with elevated concentrations of CCR5 ligands in melanoma microenvironment. In vitro experiments showed that the upregulation of CCR5 expression on CD11b+Gr1+ immature myeloid cells was induced by CCR5 ligands, IL-6, GM-CSF, and other inflammatory factors. Furthermore, CCR5+ MDSCs infiltrating melanoma lesions displayed a stronger immunosuppressive pattern than their CCR5- counterparts. Targeting CCR5/CCR5 ligand signaling via a fusion protein mCCR5-Ig, which selectively binds and neutralizes all three CCR5 ligands, increased the survival of tumor-bearing mice. This was associated with a reduced migration and immunosuppressive potential of tumor MDSCs. In melanoma patients, circulating CCR5+ MDSCs were increased as compared to healthy donors. Like in melanoma-bearing mice, we observed an enrichment of these cells and CCR5 ligands in tumors as compared to the peripheral blood. Our findings define a critical role for CCR5 not only in the recruitment but also in the activation of MDSCs in tumor lesions, suggesting that novel strategies of melanoma treatment could be based on blocking CCR5/CCR5 ligand interactions.

  19. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Madsen, Hans O; Jensen, Claus V

    2000-01-01

    Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5...

  20. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist

    DEFF Research Database (Denmark)

    Princen, Katrien; Hatse, Sigrid; Vermeire, Kurt

    2004-01-01

    - or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection...... not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4...... but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did...

  1. The evolutionary analysis of emerging low frequency HIV-1 CXCR4 using variants through time--an ultra-deep approach.

    Directory of Open Access Journals (Sweden)

    John Archer

    2010-12-01

    Full Text Available Large-scale parallel pyrosequencing produces unprecedented quantities of sequence data. However, when generated from viral populations current mapping software is inadequate for dealing with the high levels of variation present, resulting in the potential for biased data loss. In order to apply the 454 Life Sciences' pyrosequencing system to the study of viral populations, we have developed software for the processing of highly variable sequence data. Here we demonstrate our software by analyzing two temporally sampled HIV-1 intra-patient datasets from a clinical study of maraviroc. This drug binds the CCR5 coreceptor, thus preventing HIV-1 infection of the cell. The objective is to determine viral tropism (CCR5 versus CXCR4 usage and track the evolution of minority CXCR4-using variants that may limit the response to a maraviroc-containing treatment regimen. Five time points (two prior to treatment were available from each patient. We first quantify the effects of divergence on initial read k-mer mapping and demonstrate the importance of utilizing population-specific template sequences in relation to the analysis of next-generation sequence data. Then, in conjunction with coreceptor prediction algorithms that infer HIV tropism, our software was used to quantify the viral population structure pre- and post-treatment. In both cases, low frequency CXCR4-using variants (2.5-15% were detected prior to treatment. Following phylogenetic inference, these variants were observed to exist as distinct lineages that were maintained through time. Our analysis, thus confirms the role of pre-existing CXCR4-using virus in the emergence of maraviroc-insensitive HIV. The software will have utility for the study of intra-host viral diversity and evolution of other fast evolving viruses, and is available from http://www.bioinf.manchester.ac.uk/segminator/.

  2. Risk of HIV Infection and Lethality Are Decreased in CCR5del32  Heterozygotes: Focus Nosocomial Infection Study and Meta-analysis.

    Science.gov (United States)

    Borinskaya, S A; Kozhekbaeva, Zh M; Zalesov, A V; Olseeva, E V; Maksimov, A R; Kutsev, S I; Garaev, M M; Rubanovich, A V; Yankovsky, N K

    2012-01-01

    CCR5del32 Homozygous deletion in the chemokine receptor R5 gene provides almost complete protection to individuals against HIV infection. However, data relating to the protective effect forCCR5del32 heterozygous individuals have been contradictory. The frequency of theCCR5del32allele in population control cohorts was compared with that of a group of children (27 Kalmyks and 50 Russians) infected by G-subtype HIV-1 in a nosocomial outbreak. The frequency of theCCR5del32allele was shown to be lower among the infected children in comparison with that of the control group; however, the difference was small and statistically insignificant. Similar results were obtained in a number of earlier studies. The insignificance of the small differences could be a result of one of two reasons. (i) The fact that there is no protective effect of the heterozygous state, and that the phenomenon depends only on the fluctuation of allele frequencies. In this case, there would be no differences even if the infected cohort is enlarged. (ii)The protective effect of the heterozygous state is real; however, the size of the studied cohort is insufficient to demonstrate it. In order to discern between these two reasons, a meta-analysis of data from 25 published articles (a total of 5,963 HIV-infected individuals and 5,048 individuals in the control group, including the authors' own data) was undertaken. A conclusion was drawn from the meta-analysis that theCCR5del32 allele protects individuals against the HIV infection even in a heterozygous state (OR=1.22, 95%CI=1.10-1.36). The risk of HIV infection forCCR5 wt/del32 heterozygotes was lower by at least 13% as compared to that for wild typeCCR5 wt/wthomozygotes. Prior to this study, no data of the type or any conclusions had been published for Caucasians. The mortality rate in the 15 years following the infection was found to be approximately 40% lower forCCR5del32 heterozygotes in comparison with that for the wild type homozygotes in the

  3. Molecular characterization of HIV-1 subtype C gp-120 regions potentially involved in virus adaptive mechanisms.

    Directory of Open Access Journals (Sweden)

    Alessandra Cenci

    Full Text Available The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of "shifting" putative N-glycosylation sites (PNGSs in the α2 helix (in C3 and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response.

  4. CCR5 and CXCR3 are dispensable for liver infiltration, but CCR5 protects against virus-induced T-cell-mediated hepatic steatosis

    DEFF Research Database (Denmark)

    Holst, P J; Orskov, C; Qvortrup, K

    2007-01-01

    CCR5 and CXCR3 are important molecules in regulating the migration of activated lymphocytes. Thus, the majority of tissue-infiltrating T cells found in the context of autoimmune conditions and viral infections express CCR5 and CXCR3, and the principal chemokine ligands are expressed within inflamed...

  5. Differential susceptibility of naïve, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission

    Directory of Open Access Journals (Sweden)

    Schuitemaker Joost HN

    2006-08-01

    Full Text Available Abstract Background Dendritic cells (DC have been proposed to facilitate sexual transmission of HIV-1 by capture of the virus in the mucosa and subsequent transmission to CD4+ T cells. Several T cell subsets can be identified in humans: naïve T cells (TN that initiate an immune response to new antigens, and memory T cells that respond to previously encountered pathogens. The memory T cell pool comprises central memory (TCM and effector memory cells (TEM, which are characterized by distinct homing and effector functions. The TEM cell subset, which can be further divided into effector Th1 and Th2 cells, has been shown to be the prime target for viral replication after HIV-1 infection, and is abundantly present in mucosal tissues. Results We determined the susceptibility of TN, TCM and TEM cells to DC-mediated HIV-1 transmission and found that co-receptor expression on the respective T cell subsets is a decisive factor for transmission. Accordingly, CCR5-using (R5 HIV-1 was most efficiently transmitted to TEM cells, and CXCR4-using (X4 HIV-1 was preferentially transmitted to TN cells. Conclusion The highly efficient R5 transfer to TEM cells suggests that mucosal T cells are an important target for DC-mediated transmission. This may contribute to the initial burst of virus replication that is observed in these cells. TN cells, which are the prime target for DC-mediated X4 virus transmission in our study, are considered to inefficiently support HIV-1 replication. Our results thus indicate that DC may play a decisive role in the susceptibility of TN cells to X4 tropic HIV-1.

  6. CCR5 Delta 32 Genotype Leads to a Th2 Type Directed Immune Response in ESRD Patients

    NARCIS (Netherlands)

    Muntinghe, Friso L. H.; Abdulahad, Wayel H.; Huitema, Minke G.; Damman, Jeffrey; Seelen, Marc A.; Lems, Simon P. M.; Hepkema, Bouke G.; Navis, Gerjan; Westra, Johanna

    2012-01-01

    Background: In patients with end stage renal disease (ESRD) we observed protection from inflammation-associated mortality in CCR5 Delta 32 carriers, leading to CCR5 deficiency, suggesting impact of CCR5 Delta 32 on inflammatory processes. Animal studies have shown that CCR5 deficiency is associated

  7. Thermal stability of the human immunodeficiency virus type 1 (HIV-1 receptors, CD4 and CXCR4, reconstituted in proteoliposomes.

    Directory of Open Access Journals (Sweden)

    Mikhail A Zhukovsky

    2010-10-01

    Full Text Available The entry of human immunodeficiency virus (HIV-1 into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4.We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (E(a of 269 kJ/mol (64.3 kcal/mol and an inactivation temperature (T(i of 56°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an E(a of 278 kJ/mol (66.5 kcal/mol, and a T(i of 52.2°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules.Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors.

  8. Frequency of CCR5 Delta-32 Mutation in Human Immunodeficiency Virus (HIV-seropositive and HIV-exposed Seronegative Individuals and in General Population of Medellin, Colombia

    Directory of Open Access Journals (Sweden)

    Francisco J Díaz

    2000-04-01

    Full Text Available Repeated exposure to human immunodeficiency virus (HIV does not always result in seroconversion. Modifications in coreceptors for HIV entrance to target cells are one of the factors that block the infection. We studied the frequency of Delta-32 mutation in ccr5 gene in Medellin, Colombia. Two hundred and eighteen individuals distributed in three different groups were analyzed for Delta-32 mutation in ccr5 gene by polymerase chain reaction (PCR: 29 HIV seropositive (SP, 39 exposed seronegative (ESN and 150 individuals as a general population sample (GPS. The frequency of the Delta-32 mutant allele was 3.8% for ESN, 2.7% for GPS and 1.7% for SP. Only one homozygous mutant genotype (Delta-32/Delta-32 was found among the ESN (2.6%. The heterozygous genotype (ccr5/Delta-32 was found in eight GPS (5.3%, in one SP (3.4% and in one ESN (2.6%. The differences in the allelic and genotypic frequencies among the three groups were not statistically significant. A comparison between the expected and the observed genotypic frequencies showed that these frequencies were significantly different for the ESN group, which indirectly suggests a protective effect of the mutant genotype (Delta-32/Delta-32. Since this mutant genotype explained the resistance of infection in only one of our ESN persons, different mechanisms of protection must be playing a more important role in this population.

  9. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory.

    Science.gov (United States)

    Zhou, Miou; Greenhill, Stuart; Huang, Shan; Silva, Tawnie K; Sano, Yoshitake; Wu, Shumin; Cai, Ying; Nagaoka, Yoshiko; Sehgal, Megha; Cai, Denise J; Lee, Yong-Seok; Fox, Kevin; Silva, Alcino J

    2016-12-20

    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV.

  10. CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

    Science.gov (United States)

    Zhou, Miou; Greenhill, Stuart; Huang, Shan; Silva, Tawnie K; Sano, Yoshitake; Wu, Shumin; Cai, Ying; Nagaoka, Yoshiko; Sehgal, Megha; Cai, Denise J; Lee, Yong-Seok; Fox, Kevin; Silva, Alcino J

    2016-01-01

    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV. DOI: http://dx.doi.org/10.7554/eLife.20985.001 PMID:27996938

  11. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C

    2011-01-01

    -allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...... preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units....

  12. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection.

    Directory of Open Access Journals (Sweden)

    Imtiaz A Khan

    2006-06-01

    Full Text Available The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/- mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.

  13. Psoriasis patients exhibit impairment of the high potency CCR5+ T regulatory cell subset

    Science.gov (United States)

    Soler, David C.; Sugiyama, Hideaki; Young, Andrew B.; Massari, Jessica V.; McCormick, Thomas S.; Cooper, Kevin D.

    2013-01-01

    CCR5 expression on CD4+CD25highFoxp3+ regulatory T cells (Tregs) has been reported to be crucial for limiting Th1 inflammation associated with autoimmunity and bacterial infections. We inquired whether abnormalities in chemokine receptors expressed on Tregs might be involved in the psoriatic pathogenesis. Indeed, the proportion of CCR5+Treg was 58.8% in healthy individuals (n=9), whereas only half as many CCR5+Treg cells were found in psoriatic individuals (29.1%, n=8, p<0.01). The flow-enriched control CCR5+Tregs consistently exceeded the suppressive capacity of unsorted Tregs in autologous MLR assays (n=5, p<0.05) showing that CCR5+Treg subset is a high potency regulatory T cell population. Interestingly, psoriatic CCR5+Treg cells exhibited significantly less migratory capacity toward CCR5 ligands MIP-1β and RANTES in vitro compared to CCR5+Treg controls (n=3, p<0.05). Our data demonstrate that psoriatic CCR5+Tregs cells are numerically-, functionally- and chemotactically-deficient compared to controls and may pose a triple impairment on the ability of psoriatic Tregs to restrain inflammation. PMID:23954573

  14. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF ...

    Indian Academy of Sciences (India)

    Unknown

    Polymorphic allelic variants of chemokine receptors CCR2 and CCR5, as well as of stromal-derived factor-1 SDF-1, the ligand for the chemokine receptor CXCR4, are known to have protective effects against HIV-1 infection and to be involved with delay in disease progression. We have studied the DNA polymorphisms at ...

  15. Phenotype and envelope gene diversity of nef-deleted HIV-1 isolated from long-term survivors infected from a single source

    Directory of Open Access Journals (Sweden)

    Sullivan John S

    2007-07-01

    Full Text Available Abstract Background The Sydney blood bank cohort (SBBC of long-term survivors consists of multiple individuals infected with attenuated, nef-deleted variants of human immunodeficiency virus type 1 (HIV-1 acquired from a single source. Long-term prospective studies have demonstrated that the SBBC now comprises slow progressors (SP as well as long-term nonprogressors (LTNP. Convergent evolution of nef sequences in SBBC SP and LTNP indicates the in vivo pathogenicity of HIV-1 in SBBC members is dictated by factors other than nef. To better understand mechanisms underlying the pathogenicity of nef-deleted HIV-1, we examined the phenotype and env sequence diversity of sequentially isolated viruses (n = 2 from 3 SBBC members. Results The viruses characterized here were isolated from two SP spanning a three or six year period during progressive HIV-1 infection (subjects D36 and C98, respectively and from a LTNP spanning a two year period during asymptomatic, nonprogressive infection (subject C18. Both isolates from D36 were R5X4 phenotype and, compared to control HIV-1 strains, replicated to low levels in peripheral blood mononuclear cells (PBMC. In contrast, both isolates from C98 and C18 were CCR5-restricted. Both viruses isolated from C98 replicated to barely detectable levels in PBMC, whereas both viruses isolated from C18 replicated to low levels, similar to those isolated from D36. Analysis of env by V1V2 and V3 heteroduplex tracking assay, V1V2 length polymorphisms, sequencing and phylogenetic analysis showed distinct intra- and inter-patient env evolution. Conclusion Independent evolution of env despite convergent evolution of nef may contribute to the in vivo pathogenicity of nef-deleted HIV-1 in SBBC members, which may not necessarily be associated with changes in replication capacity or viral coreceptor specificity.

  16. Limited protective effect of the CCR5Delta32/CCR5Delta32 genotype on human immunodeficiency virus infection incidence in a cohort of patients with hemophilia and selection for genotypic X4 virus

    DEFF Research Database (Denmark)

    Iversen, Astrid K N; Christiansen, Claus Bohn; Attermann, Jørn

    2003-01-01

    The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)-infected patients with hemophilia. One patient (0.6%) had the CCR5Delta32/CCR5Delta32 genotype (which occurs in approximately 2% of the Scand......The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)-infected patients with hemophilia. One patient (0.6%) had the CCR5Delta32/CCR5Delta32 genotype (which occurs in approximately 2...

  17. Pathogenic infection of Macaca nemestrina with a CCR5-tropic subtype-C simian-human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Song Ruijiang

    2009-07-01

    Full Text Available Abstract Background Although pig-tailed macaques (Macaca nemestrina have been used in AIDS research for years, less is known about the early immunopathogenic events in this species, as compared to rhesus macaques (Macaca mulatta. Similarly, the events in early infection are well-characterized for simian immunodeficiency viruses (SIV, but less so for chimeric simian-human immunodeficiency viruses (SHIV, although the latter have been widely used in HIV vaccine studies. Here, we report the consequences of intrarectal infection with a CCR5-tropic clade C SHIV-1157ipd3N4 in pig-tailed macaques. Results Plasma and cell-associated virus was detectable in peripheral blood and intestinal tissues of all four pig-tailed macaques following intrarectal inoculation with SHIV-1157ipd3N4. We also observed a rapid and irreversible loss of CD4+ T cells at multiple mucosal sites, resulting in a marked decrease of CD4:CD8 T cell ratios 0.5–4 weeks after inoculation. This depletion targeted subsets of CD4+ T cells expressing the CCR5 coreceptor and having a CD28-CD95+ effector memory phenotype, consistent with the R5-tropism of SHIV-1157ipd3N4. All three animals that were studied beyond the acute phase seroconverted as early as week 4, with two developing cross-clade neutralizing antibody responses by week 24. These two animals also demonstrated persistent plasma viremia for >48 weeks. One of these animals developed AIDS, as shown by peripheral blood CD4+ T-cell depletion starting at 20 weeks post inoculation. Conclusion These findings indicate that SHIV-1157ipd3N4-induced pathogenesis in pig-tailed macaques followed a similar course as SIV-infected rhesus macaques. Thus, R5 SHIV-C-infection of pig-tailed macaques could provide a useful and relevant model for AIDS vaccine and pathogenesis research.

  18. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice.

    Directory of Open Access Journals (Sweden)

    Guangming Li

    2014-07-01

    Full Text Available The role of plasmacytoid dendritic cells (pDC in human immunodeficiency virus type 1 (HIV-1 infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.

  19. Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro.

    Science.gov (United States)

    Behbahani, Mandana

    2014-11-01

    This study was carried out to check the efficacy of methanol seed extract of Avicenna marina and its column chromatographic fractions on Peripheral Blood Mono nuclear Cells (PBMCs) toxicity and HIV-1 replication. The anti-HIV-1 activities of crude methanol extract and its fractions were performed by use of real-time polymerase chain reaction (PCR) assay and HIV-1 p24 antigen kit. A time of drug addiction approach was also done to identify target of anti-HIV compound. The activity of the extracts on CD4, CD3, CD19 and CD45 expression in lymphocytes population was performed by use of flow cytometry. The most active anti-HIV agent was detected by spectroscopic analysis as 2'-O-(4-methoxycinnamoyl) mussaenosidic acid. The apparent effective concentrations for 50% virus replication (EC50) of methanol extract and iridoid glycoside were 45 and 0.1 μg/ml respectively. The iridoid glycoside also did not have any observable effect on the proportion of CD4, CD3, CD19 and CD45 cells or on the intensity of their expressions on PBMCs. In addition, the expression level of C-C chemokine receptor type 5 (CCR5) and chemokine receptor type 4 (CXCR4) on CD4(+) T cells were decreased in cells treated with this iridoid glycoside. The reduction of these two HIV coreceptors and the result of time of addition study demonstrated that this iridoid glycoside restricts HIV-1 replication on the early stage of HIV infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Elicitation of neutralizing antibodies directed against CD4-induced epitope(s using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Antu K Dey

    Full Text Available The identification of HIV-1 envelope glycoprotein (Env structures that can generate broadly neutralizing antibodies (BNAbs is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4 receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i epitope(s known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH, was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140 using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1 complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s. These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s here, and its potential role in vaccine application.

  1. Chemokines and chemokine receptors in susceptibility to HIV-1 infection and progression to AIDS.

    Science.gov (United States)

    Chatterjee, Animesh; Rathore, Anurag; Vidyant, Sanjukta; Kakkar, Kavita; Dhole, Tapan N

    2012-01-01

    A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals.

  2. Chemokines and Chemokine Receptors in Susceptibility to HIV-1 Infection and Progression to AIDS

    Directory of Open Access Journals (Sweden)

    Animesh Chatterjee

    2012-01-01

    Full Text Available A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals.

  3. Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1.

    Science.gov (United States)

    Khamaikawin, Wannisa; Shimizu, Saki; Kamata, Masakazu; Cortado, Ruth; Jung, Yujin; Lam, Jennifer; Wen, Jing; Kim, Patrick; Xie, Yiming; Kim, Sanggu; Arokium, Hubert; Presson, Angela P; Chen, Irvin S Y; An, Dong Sung

    2018-06-15

    Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >107 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34+ HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34+ HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4+ T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting.

  4. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, H.B.; Timm, S.; Wang, A.G.

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  5. Limited protective effect of the CCR5Δ32/CCR5Δ32 genotype on human immunodeficiency virus infection incidence in a cohort of patients with hemophilia and selection for genotypic X4 virus

    DEFF Research Database (Denmark)

    Iversen, Astrid K. N.; Christiansen, Claus Bohn; Attermann, Jørn

    2003-01-01

    The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)–infected patients with hemophilia. One patient (0.6%) had the CCR5Δ32/CCR5Δ32 genotype (which occurs in ∼2% of the Scandinavian population...

  6. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...on through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. Authors Lee C, Liu QH, Tomkowicz B, Yi

  7. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system.

    Science.gov (United States)

    Durrant, Douglas M; Daniels, Brian P; Pasieka, TracyJo; Dorsey, Denise; Klein, Robyn S

    2015-12-15

    Cell-mediated immunity is critical for clearance of central nervous system (CNS) infection with the encephalitic flavivirus, West Nile virus (WNV). Prior studies from our laboratory have shown that WNV-infected neurons express chemoattractants that mediate recruitment of antiviral leukocytes into the CNS. Although the chemokine receptor, CCR5, has been shown to play an important role in CNS host defense during WNV infection, regional effects of its activity within the infected brain have not been defined. We used CCR5-deficient mice and an established murine model of WNV encephalitis to determine whether CCR5 activity impacts on WNV levels within the CNS in a region-specific fashion. Statistical comparisons between groups were made with one- or two-way analysis of variance; Bonferroni's post hoc test was subsequently used to compare individual means. Survival was analyzed by the log-rank test. Analyses were conducted using Prism software (GraphPad Prism). All data were expressed as means ± SEM. Differences were considered significant if P ≤ 0.05. As previously shown, lack of CCR5 activity led to increased symptomatic disease and mortality in mice after subcutaneous infection with WNV. Evaluation of viral burden in the footpad, draining lymph nodes, spleen, olfactory bulb, and cerebellum derived from WNV-infected wild-type, and CCR5(-/-) mice showed no differences between the genotypes. In contrast, WNV-infected, CCR5(-/-) mice exhibited significantly increased viral burden in cortical tissues, including the hippocampus, at day 8 post-infection. CNS regional studies of chemokine expression via luminex analysis revealed significantly increased expression of CCR5 ligands, CCL4 and CCL5, within the cortices of WNV-infected, CCR5(-/-) mice compared with those of similarly infected WT animals. Cortical elevations in viral loads and CCR5 ligands in WNV-infected, CCR5(-/-) mice, however, were associated with decreased numbers of infiltrating mononuclear cells

  8. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape

    Directory of Open Access Journals (Sweden)

    Gero Hütter

    2015-07-01

    Full Text Available Allogeneic transplantation with CCR5-delta 32 (CCR5-d32 homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN, clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9, transcription activator-like effectors nuclease (TALEN, short hairpin RNA (shRNA, and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.

  9. Chemokine receptor CCR5 and CXCR4 might influence virus replication during IBDV infection.

    Science.gov (United States)

    Ou, Changbo; Wang, Qiuxia; Yu, Yan; Zhang, Yanhong; Ma, Jinyou; Kong, Xianghui; Liu, Xingyou

    2017-06-01

    Both CCR5 and CXCR4 are important chemokine receptors and take vital role in migration, development and distribution of T cells, however, whether they will influence the process of T cell infiltration into bursa of Fabricius during infectious bursal disease virus (IBDV) infection is unclear. In the current study, CCR5 and CXCR4 antagonists, Maraviroc and AMD3100, were administrated into chickens inoculated with IBDV, and the gene levels of IBDV VP2, CCR5, CXCR4 and related cytokines were determined by real-time PCR. The results showed that large number of T cells began to migrate into the bursae on Day 3 post infection with IBDV and the mRNA of chemokine receptors CCR5 and CXCR4 began to increase on Day 1. Moreover, antagonist treatments have increased the VP2, CCR5 and CXCR4 gene transcriptions and influenced on the gene levels of IL-2, IL-6, IL-8, IFN-γ, TGF-β4, MHC-I and MDA5. In conclusion, the chemokine receptors CCR5 and CXCR4 might influence virus replication during IBDV infection and further study would focus on the interaction between chemokine receptors and their ligands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Neutralization of X4- and R5-tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins

    Directory of Open Access Journals (Sweden)

    Schwalbe Birco

    2010-06-01

    Full Text Available Abstract Background Myeloperoxidase (MPO, an important element of the microbicidal activity of neutrophils, generates hypochlorous acid (HOCl from H2O2 and chloride, which is released into body fluids. Besides its direct microbicidal activity, HOCl can react with amino acid residues and HOCl-modified proteins can be detected in vivo. Findings This report is based on binding studies of HOCl-modified serum albumins to HIV-1 gp120 and three different neutralization assays using infectious virus. The binding studies were carried out by surface plasmon resonance spectroscopy and by standard ELISA techniques. Virus neutralization assays were carried out using HIV-1 NL4-3 virus and recombinant strains with CXCR4 and CCR5 coreceptor usage. Viral infection was monitored by a standard p24 or X-gal staining assay. Our data demonstrate that HOCl-modified mouse-, bovine- and human serum albumins all bind to the HIV-1 NL4-3 gp120 (LAV glycoprotein in contrast to non-modified albumin. Binding of HOCl-modified albumin to gp120 correlated to the blockade of CD4 as well as that of V3 loop specific monoclonal antibody binding. In neutralization experiments, HOCl-modified serum albumins inhibited replication and syncytium formation of the X4- and R5-tropic NL4-3 isolates in a dose dependent manner. Conclusions Our data indicate that HOCl-modified serum albumin veils the binding site for CD4 and the V3 loop on gp120. Such masking of the viral gp120/gp41 envelope complex might be a simple but promising strategy to inactivate HIV-1 and therefore prevent infection when HOCl-modified serum albumin is applied, for example, as a topical microbicide.

  11. Pharmacodynamic Monitoring Predicts Outcomes of CCR5 Blockade as Graft-versus-Host Disease Prophylaxis.

    Science.gov (United States)

    Huffman, Austin P; Richman, Lee P; Crisalli, Lisa; Ganetsky, Alex; Porter, David L; Vonderheide, Robert H; Reshef, Ran

    2017-10-20

    Blocking lymphocyte trafficking after allogeneic hematopoietic stem cell transplantation is a promising strategy to prevent graft-versus-host disease (GVHD) while preserving the graft-versus-tumor response. Maraviroc, a CCR5 antagonist, has shown promise in clinical trials, presumably by disrupting the migration of effector cells to GVHD target organs. We describe a phosphoflow assay to quantify CCR5 blockade during treatment with maraviroc and used it to evaluate 28 patients in a phase II study. We found that insufficient blockade of CCR5 was associated with significantly worse overall survival (HR, 10.6; 95% CI, 2.2 to 52.0; P = .004) and higher rates of nonrelapse mortality (HR, 146; 95% CI, 1.0 to 20,600; P = .04) and severe acute GVHD (HR, 12; 95% CI, 1.9 to 76.6; P = .009). In addition, we found that pretransplant high surface expression of CCR5 on recipient T cells predicted higher nonrelapse mortality and worse GVHD- and relapse-free survival. Our results demonstrate that pharmacodynamic monitoring of CCR5 blockade unravels interpatient variability in the response to therapy and may serve as a clinically informative biomarker. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  12. CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar.

    Science.gov (United States)

    Tollenaere, C; Rahalison, L; Ranjalahy, M; Rahelinirina, S; Duplantier, J-M; Brouat, C

    2008-12-01

    Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a functionally important region of the gene. We then compared (i) CCR5 genotypes of dying and surviving plague-challenged rats and (ii) CCR5 allelic frequencies in plague focus and plague-free populations. Our results suggested a higher prevalence of the substitution in resistant animals compared to susceptible individuals, and a tendency for higher frequencies in plague focus areas compared to plague-free areas. Therefore, the CCR5 polymorphism may be involved in Malagasy black rat plague resistance. CCR5 and other undetermined plague resistance markers may provide useful biological information about host evolution and disease dynamics.

  13. The suppression of immune activation during enfuvirtide-based salvage therapy is associated with reduced CCR5 expression and decreased concentrations of circulating interleukin-12 and IP-10 during 48 weeks of longitudinal follow-up.

    Science.gov (United States)

    Carsenti-Dellamonica, H; Saïdi, H; Ticchioni, M; Guillouet de Salvador, F; Dufayard Cottalorda, J; Garraffo, R; Dellamonica, P; Durant, J; Gougeon, M-L

    2011-02-01

    It has been suggested that patients who initiate highly active antiretroviral therapy (HAART) late in their course of infection may have suboptimal CD4 T-cell gains, persistent alterations in T-cell subsets and residual inflammation. To address this issue, we carried out a comprehensive 48-week immunological study in HIV-infected patients who had experienced failures of prior therapies, had low CD4 cell counts, and were receiving enfuvirtide-based salvage therapy. Immunological monitoring of peripheral lymphocytes from enfuvirtide-responder patients was performed over a 48-week period. A detailed assessment of immune cell subsets, their activation state [CD38 and human leucocyte antigen (HLA)-DR expression] and homeostasis [activation-induced cell death (AICD) and Ki67 expression], and the expression of co-receptors was performed by flow cytometry. Cytokine and chemokine signatures were assessed using multianalyte profiling technology. Enfuvirtide-based salvage therapy induced a progressive restoration of naïve and central memory CD4 T cells, associated with a decrease in their activation state, suppression of premature priming for AICD and increased expression of Ki67. In addition, a significant decrease in C-C chemokine receptor 5 (CCR5) expression was detected on CD4 T cells, which was strongly correlated with the suppression of immune activation. Changes in circulating proinflammatory molecules occurred; i.e. there were decreases in the concentrations of interleukin (IL)-12, macrophage inflammatory protein MIP-1α, MIP-1β, monokine induced by IFNγ (MIG) and interferon-γ-inducible protein-10 (IP-10). The decline in circulating IL-12 and IP-10 was correlated with both the reduction in the viral load and CD4 T-cell restoration. This study shows that suppression of HIV-1 replication with enfuvirtide-based salvage therapy in patients with low CD4 cell counts may result in an immunological benefit, characterized by the restoration of CD4 T-cell subsets associated

  14. CCL3L1-CCR5 Genotype Improves the Assessment of AIDS Risk in HIV-1-Infected Individuals

    Science.gov (United States)

    2008-09-08

    Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science...plateau of CD4 T-cell counts in the 3(1/2) years after initiation of potent antiretroviral therapy. J Acquir Immune Defic Syndr 27: 168–175. 32. Hunt PW...virologic responses to highly active antiretroviral therapy are associated with increased mortality and poor adherence to therapy. J Acquir Immune Defic

  15. Development of maraviroc, a CCR5 antagonist for treatment of HIV, using a novel tropism assay.

    Science.gov (United States)

    van der Ryst, Elna; Heera, Jayvant; Demarest, James; Knirsch, Charles

    2015-06-01

    Assays to identify infectious organisms are critical for diagnosis and enabling the development of therapeutic agents. The demonstration that individuals with a 32-bp deletion within the CCR5 locus were resistant to human immunodeficiency virus (HIV) infection, while those heterozygous for the mutation progressed more slowly, led to the discovery of maraviroc (MVC), a CCR5 antagonist. As MVC is only active against CCR5-tropic strains of HIV, it was critical to develop a diagnostic assay to identify appropriate patients. Trofile™, a novel phenotypic tropism assay, was used to identify patients with CCR5-tropic virus for the MVC development program. Results of these clinical studies demonstrated that the assay correctly identified patients likely to respond to MVC. Over time, the performance characteristics of the phenotypic assay were enhanced, necessitating retesting of study samples. Genotypic tropism tests that have the potential to allow for local use and more rapid turnaround times are also being developed. © 2015 New York Academy of Sciences.

  16. The temporal increase in HIV-1 non-R5 tropism frequency among newly diagnosed patients from northern Poland is associated with clustered transmissions

    Directory of Open Access Journals (Sweden)

    Miłosz Parczewski

    2015-08-01

    Full Text Available Introduction: CCR5 (R5 tropic viruses are associated with early stages of infection, whereas CXCR4 (X4 HIV-1 tropism has been associated with severe immunodeficiency. We investigated the temporal changes in the genotype-predicted tropism frequency and the phylogenetic relationships between the R5 and non-R5 clades. Methods: A cohort of 194 patients with a newly diagnosed HIV infection that was linked to their care from 2007 to 2014 was analyzed. Baseline plasma samples were used to assess the HIV-1 genotypic tropism with triplicate V3-loop sequencing. The non-R5 tropism prediction thresholds were assigned using a false positive rate (FPR of 10 and 5.75% and associated with clinical and laboratory data. The transmission clusters were analyzed using pol sequences with a maximum likelihood and Bayesian inference. Results: The overall non-R5 tropism frequency for 5.75% FPR was 15.5% (n=30 and 27.8% (n=54 for 10% FPR. The frequency of the non-R5 tropism that was predicted using 5.75% FPR increased significantly from 2007 (0% to 2014 (n=5/17, 29.4% (p=0.004, rough slope +3.73%/year and from 0% (2007 to 35.3% (2014, n=6/17 (p=0.071, rough slope +2.9%/year using 10% FPR. Increase in the asymptomatic diagnoses over time was noted (p=0.05, rough slope +3.53%/year along with a tendency to increase the lymphocyte CD4 nadir (p=0.069. Thirty-two clusters were identified, and non-R5 tropic viruses were found for 26 (30.95% sequences contained within 14 (43.8% clusters. Non-R5 tropism was associated with subtype D variants (p=0.0001 and the presence of CCR5 Δ32/wt genotype (p=0.052. Conclusions: R5 tropism predominates among the treatment of naive individuals, but the increases in the frequency of non-R5 tropic variants may limit the clinical efficacy of the co-receptor inhibitors. The rising prevalence of non-R5 HIV-1 may indicate transmission of X4 clades.

  17. SNP/haplotype associations of CCR2 and CCR5 genes with severity of chagasic cardiomyopathy.

    Science.gov (United States)

    Machuca, Mayra Alejandra; Suárez, Edwin Uriel; Echeverría, Luis Eduardo; Martín, Javier; González, Clara Isabel

    2014-12-01

    Chronic inflammation plays a major role in the tissue injury seen in the chronic chagasic cardiomyopathy. The CCR2 and CCR5 chemokine receptors are involved with the type of cellular infiltrate present in cardiac tissue and CCR5-gene variants were previously associated with this pathology. This is a replication study in an independent cohort with larger sample size. Nine SNPs of CCR5 and CCR2 were typified to confirm the association previously found with Chagas disease. Evidence of association with severity was found for the A allele of rs1799864 of CCR2 (pad=0.02; OR=1.91, 95% CI=1.10-3.30), the T allele of the rs1800024 of CCR5 (pad=0.01; OR=1.95, 95% CI=1.13-3.38), and the HHF(∗)2 haplotype (p=0.03, OR=1.65, 95% CI=1.03-2.65). These results were replicated in the study combined with previous data. In this analysis it was replicated the allele T of rs2734648 (pad=0.009, OR=0.52, 95% CI=0.32-0.85) with protection. In addition, the allele G of rs1800023 (pad=0.043, OR=0.61, 95% CI=0.38-0.98), and the HHC haplotype (p=0.004, OR=0.62, 95% CI=0.44-0.86) were also associated with protection. In contrast, the allele A of rs1799864 of CCR2 (pad=0.009; OR=1.90, 95% CI=1.17-3.08); and the allele T of rs1800024 of CCR5 (pad=0.005, OR=1.98, 95% CI=1.22-3.23) were associated with greater severity. No evidence of association between symptomatic and asymptomatic patients was observed. These results confirm that variants of CCR5 and CCR2 genes and their haplotypes are associated with the severity but not with susceptibility to develop chagasic cardiomyopathy. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes.

    Science.gov (United States)

    Balzarini, Jan; Van Herrewege, Yven; Vermeire, Kurt; Vanham, Guido; Schols, Dominique

    2007-01-01

    Exposure of HIV-1 to dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing B-lymphoblast Raji cells (Raji/DC-SIGN) but not to wild-type Raji/0 cells results in the capture of HIV-1 particles to the cells as measured by the quantification of cell-associated p24 antigen. Cocultivation of HIV-1-captured Raji/DC-SIGN cells with uninfected CD4+ T lymphocyte C8166 cells results in abundant formation of syncytia within 36 h after cocultivation. Short preexposure of HIV-1 to carbohydrate-binding agents (CBA) dose dependently prevents the Raji/DC-SIGN cells from efficiently binding the virus particles, and no syncytia formation occurs upon subsequent cocultivation with C8166 cells. Thus, the mannose-specific [i.e., the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Narcissus pseudonarcissus agglutinin; and Cymbidium agglutinin (CA); the procaryotic cyanovirin-N (CV-N); and the monoclonal antibody 2G12) and N-acetylglucosamine-specific (i.e., the plant lectin Urtica dioica agglutinin) CBAs efficiently abrogate the DC-SIGN-directed HIV-1 capture and subsequent transmission to T lymphocytes. In this assay, the CD4-down-regulating cyclotriazodisulfonamide derivative, the CXCR4 and CCR5 coreceptor antagonists 1-[[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl] - 1,4,8,11 - tetrazacyclotetradecane (AMD3100) and maraviroc, the gp41-binding enfuvirtide, and the polyanionic substances dextran sulfate (M(r) 5000), sulfated polyvinyl alcohol, and the naphthalene sulfonate polymer PRO-2000 were markedly less efficient or even completely ineffective. Similar observations were made in primary monocyte-derived dendritic cell cultures that were infected with HIV-1 particles that had been shortly pre-exposed to the CBAs CV-N, CA, HHA, and GNA and the polyanions DS-5000 and PRO-2000. The potential of CBAs, but not polyanions and other structural/functional classes of entry inhibitors, to impair

  19. Association of IL-4 589 C/T promoter and IL-4RalphaI50V receptor polymorphism with susceptibility to HIV-1 infection in North Indians.

    Science.gov (United States)

    Chatterjee, Animesh; Rathore, Anurag; Dhole, Tapan N

    2009-06-01

    The clinical course and outcome of HIV-1 infection are highly variable among individuals. Interleukin 4 (IL-4) is a key T helper 2 cytokine with various immune-modulating functions including induction of immunoglobulin E (IgE) production in B cells, downregulation of CCR5 and upregulation of CXCR4, the main co-receptors for HIV. Our objective is to investigate whether single-nucleotide polymorphisms (SNPs) in the IL-4 promoter 589 C/T and IL-4 Ralpha I50V affect the susceptibility to HIV infection and its progression to AIDS in North Indian individuals. The study population consisted of 180 HIV-1 seropositive (HSP) stratified on the basis of disease severity (stage I, II, III), 50 HIV-1 exposed seronegative (HES), and 305 HIV-1 seronegative (HSN) individuals. The subjects were genotyped for IL-4 589 C/T promoter polymorphism and IL-4 Ralpha I50V by polymerase chain reaction restriction fragment length polymorphism. The results showed that IL-4 589 C/T was not associated with the risk of HIV infection and disease progression. However, the IL-4Ralpha I50 allele and genotype was significantly increased in HSP compared to HSN and HSP and was associated with risk of HIV infection. The frequency of IL-4Ralpha I50 allele in the HSP group was higher than in HSN (76.11 vs. 64.75%; P = 0.000; OR = 1.734) and HES (76.11% vs. 62.00%; P = 0.007; OR = 1.953). Homozygous IL-4Ralpha I50I genotype was significantly increased in HSP group compared with HSN (58.88% vs. 44.26%; P = 0.002; OR = 1.804) and HES (58.88% vs. 42.00%; P = 0.038; OR = 1.978). The present study for the first time suggests an association of IL-4Ralpha I50 allele with increased likelihood of HIV-1 infection in North Indian population. Further studies are required to confirm these findings and understand the effect of IL-4Ralpha polymorphism on the outcome of HIV-1 infection.

  20. Interleukin 10 Increases CCR5 Expression and HIV Infection in Human Monocytes

    Science.gov (United States)

    Sozzani, Silvano; Ghezzi, Silvia; Iannolo, Gioacchino; Luini, Walter; Borsatti, Alessandro; Polentarutti, Nadia; Sica, Antonio; Locati, Massimo; Mackay, Charles; Wells, Timothy N.C.; Biswas, Priscilla; Vicenzi, Elisa; Poli, Guido; Mantovani, Alberto

    1998-01-01

    The immunosuppressive and antiinflammatory cytokine interleukin (IL) 10 selectively upregulates the expression of the CC chemokine receptors CCR5, 2, and 1 in human monocytes by prolonging their mRNA half-life. IL-10–stimulated monocytes display an increased number of cell surface receptors for, and better chemotactic responsiveness to, relevant agonists than do control cells. In addition, IL-10–stimulated monocytes are more efficiently infected by HIV BaL. This effect was associated to the enhancement of viral entry through CCR5. These data add support to an emerging paradigm in which pro- and antiinflammatory molecules exert reciprocal and opposing influence on chemokine agonist production and receptor expression. PMID:9449724

  1. CCR5 Is Involved in Interruption of Pregnancy in Mice Infected with Toxoplasma gondii during Early Pregnancy.

    Science.gov (United States)

    Nishimura, Maki; Umeda, Kousuke; Suwa, Masayuki; Furuoka, Hidefumi; Nishikawa, Yoshifumi

    2017-09-01

    Toxoplasmosis can cause abortion in pregnant humans and other animals; however, the mechanism of abortion remains unknown. C-C chemokine receptor type 5 (CCR5) is essential for host defense against Toxoplasma gondii infection. To investigate the relationship between CCR5 and abortion in toxoplasmosis, we inoculated wild-type and CCR5-deficient (CCR5-/-) mice with T. gondii tachyzoites intraperitoneally on day 3 of pregnancy (embryonic day 3 [E3]). The pregnancy rate decreased as pregnancy progressed in infected wild-type mice. Histopathologically, no inflammatory lesions were observed in the fetoplacental tissues. Although wild-type mice showed a higher parasite burden at the implantation sites than did CCR5-/- mice at E6 (3 days postinfection [dpi]), T. gondii antigen was detected only in the uterine tissue and not in the fetoplacental tissues. At E8 (5 dpi), the embryos in infected wild-type mice showed poor development compared with those of infected CCR5-/- mice, and apoptosis was observed in poorly developed embryos. Compared to uninfected mice, infected wild-type mice showed increased CCR5 expression at the implantation site at E6 and E8. Furthermore, analyses of mRNA expression in the uterus of nonpregnant and pregnant mice suggested that a lack of the CCR5 gene and the downregulation of tumor necrosis factor alpha (TNF-α) and CCL3 expression at E6 (3 dpi) are important factors for the maintenance of pregnancy following T. gondii infection. These results suggested that CCR5 signaling is involved in embryo loss in T. gondii infection during early pregnancy and that apoptosis is associated with embryo loss rather than direct damage to the fetoplacental tissues. Copyright © 2017 American Society for Microbiology.

  2. Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization

    Directory of Open Access Journals (Sweden)

    Bell Thomas W

    2010-06-01

    Full Text Available Abstract Background HIV-1 in genital secretions may be opsonized by several molecules including complement components. Opsonized HIV-1 by complement enhances the infection of various mucosal target cells, such as dendritic cells (DC and epithelial cells. Results We herein evaluated the effect of HIV-1 complement opsonization on microbicide candidates' activity, by using three in vitro mucosal models: CCR5-tropic HIV-1JR-CSF transcytosis through epithelial cells, HIV-1JR-CSF attachment on immature monocyte-derived dendritic cells (iMDDC, and infectivity of iMDDC by CCR5-tropic HIV-1BaL and CXCR4-tropic HIV-1NDK. A panel of 10 microbicide candidates [T20, CADA, lectines HHA & GNA, PVAS, human lactoferrin, and monoclonal antibodies IgG1B12, 12G5, 2G12 and 2F5], were investigated using cell-free unopsonized or opsonized HIV-1 by complements. Only HHA and PVAS were able to inhibit HIV trancytosis. Upon opsonization, transcytosis was affected only by HHA, HIV-1 adsorption on iMDDC by four molecules (lactoferrin, IgG1B12, IgG2G5, IgG2G12, and replication in iMDDC of HIV-1BaL by five molecules (lactoferrin, CADA, T20, IgG1B12, IgG2F5 and of HIV-1NDK by two molecules (lactoferrin, IgG12G5. Conclusion These observations demonstrate that HIV-1 opsonization by complements may modulate in vitro the efficiency of candidate microbicides to inhibit HIV-1 infection of mucosal target cells, as well as its crossing through mucosa.

  3. Functional characteristics of HIV-1 subtype C compatible with increased heterosexual transmissibility

    DEFF Research Database (Denmark)

    Walter, Brandon L; Armitage, Andrew E; Graham, Stephen C

    2009-01-01

    BACKGROUND: Despite the existence of over 50 subtypes and circulating recombinant forms of HIV-1, subtype C dominates the heterosexual pandemic causing approximately 56% of all infections. OBJECTIVE: To evaluate whether viral genetic factors may contribute to the observed subtype-C predominance...... mononuclear cell and cell lines with low CCR5 expression. Structural modeling suggested the formation of an additional hydrogen bond between V3 and CCR5. Moreover, we found preferential selection of HIV with 316T and/or extremely short V1-V2 loops in cervices of three women infected with subtypes A/C, B or C....... CONCLUSION: As CD4-CCR5-T cells are key targets for genital HIV infection and cervical selection can favor compact V1-V2 loops and 316T, which increase viral infectivity, we propose that these conserved subtype-C motifs may contribute to transmission and spread of this subtype....

  4. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Kouki; Hattori, Shinichiro; Kariya, Ryusho [Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Komizu, Yuji [Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082 (Japan); Kudo, Eriko; Goto, Hiroki; Taura, Manabu [Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Ueoka, Ryuichi [Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082 (Japan); Kimura, Shinya [Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Okada, Seiji, E-mail: okadas@kumamoto-u.ac.jp [Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan)

    2015-02-13

    Membrane fusion between host cells and HIV-1 is the initial step in HIV-1 infection, and plasma membrane fluidity strongly influences infectivity. In the present study, we demonstrated that GUT-70, a natural product derived from Calophyllum brasiliense, stabilized plasma membrane fluidity, inhibited HIV-1 entry, and down-regulated the expression of CD4, CCR5, and CXCR4. Since GUT-70 also had an inhibitory effect on viral replication through the inhibition of NF-κB, it is expected to be used as a dual functional and viral mutation resistant reagent. Thus, these unique properties of GUT-70 enable the development of novel therapeutic agents against HIV-1 infection.

  5. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES

    Science.gov (United States)

    Chi, Haixia; Wang, Xiaoqiang; Li, Jiqiang; Ren, Hao; Huang, Fang

    2015-11-01

    The in vitro folding of newly translated human CC chemokine receptor type 5 (CCR5), which belongs to the physiologically important family of G protein-coupled receptors (GPCRs), has been studied in a cell-free system supplemented with the surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its biologically active state but only slowly and inefficiently. However, on addition of the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was significantly enhanced, as was the structural stability and functional expression of the soluble form of CCR5. The chaperonin GroEL was partially effective on its own, but for maximum efficiency both the GroEL and its GroES lid were necessary. These results are direct evidence for chaperone-assisted membrane protein folding and therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane proteins.

  6. HIV-1 tropism testing in subjects achieving undetectable HIV-1 RNA: diagnostic accuracy, viral evolution and compartmentalization.

    Science.gov (United States)

    Pou, Christian; Codoñer, Francisco M; Thielen, Alexander; Bellido, Rocío; Pérez-Álvarez, Susana; Cabrera, Cecilia; Dalmau, Judith; Curriu, Marta; Lie, Yolanda; Noguera-Julian, Marc; Puig, Jordi; Martínez-Picado, Javier; Blanco, Julià; Coakley, Eoin; Däumer, Martin; Clotet, Bonaventura; Paredes, Roger

    2013-01-01

    Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs). However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain. We designed a proof-of-concept study including 30 chronically HIV-1-infected individuals who achieved HIV-1 RNA evolution in PBMCs during viremia suppression and only found evolution of R5 viruses in one subject. No de novo CXCR4-using HIV-1 production was observed over time. Finally, Slatkin-Maddison tests suggested that plasma and cell-associated V3 forms were sometimes compartmentalized. The absence of tropism shifts during viremia suppression suggests that, when available, testing of stored plasma samples is generally safe and informative, provided that HIV-1 suppression is maintained. Tropism testing in PBMCs may not necessarily produce equivalent biological results to plasma, because the structure of viral populations and the diagnostic performance of tropism assays may sometimes vary between compartments. Thereby, proviral DNA tropism testing should be specifically validated in clinical trials before it can be applied to routine clinical decision-making.

  7. Physical Exercise Reduces the Expression of RANTES and Its CCR5 Receptor in the Adipose Tissue of Obese Humans

    Directory of Open Access Journals (Sweden)

    Engin Baturcam

    2014-01-01

    Full Text Available RANTES and its CCR5 receptor trigger inflammation and its progression to insulin resistance in obese. In the present study, we investigated for the first time the effect of physical exercise on the expression of RANTES and CCR5 in obese humans. Fifty-seven adult nondiabetic subjects (17 lean and 40 obese were enrolled in a 3-month supervised physical exercise. RANTES and CCR5 expressions were measured in PBMCs and subcutaneous adipose tissue before and after exercise. Circulating plasma levels of RANTES were also investigated. There was a significant increase in RANTES and CCR5 expression in the subcutaneous adipose tissue of obese compared to lean. In PBMCs, however, while the levels of RANTES mRNA and protein were comparable between both groups, CCR5 mRNA was downregulated in obese subjects (P<0.05. Physical exercise significantly reduced the expression of both RANTES and CCR5 (P<0.05 in the adipose tissue of obese individuals with a concomitant decrease in the levels of the inflammatory markers TNF-α, IL-6, and P-JNK. Circulating RANTES correlated negatively with anti-inflammatory IL-1ra (P=0.001 and positively with proinflammatory IP-10 and TBARS levels (P<0.05. Therefore, physical exercise may provide an effective approach for combating the deleterious effects associated with obesity through RANTES signaling in the adipose tissue.

  8. In silico analysis of HIV-1 Env-gp120 reveals structural bases for viral adaptation in growth-restrictive cells

    Directory of Open Access Journals (Sweden)

    Masaru eYokoyama

    2016-02-01

    Full Text Available Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1 envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.

  9. Role of homozygous DC-SIGNR 5/5 tandem repeat polymorphism in HIV-1 exposed seronegative North Indian individuals.

    Science.gov (United States)

    Rathore, Anurag; Chatterjee, Animesh; Sivarama, P; Yamamoto, Naohiko; Dhole, Tapan N

    2008-01-01

    Despite multiple sexual exposures to HIV-1 virus, some individuals remain HIV-1 seronegative. Although several genetic factors have been related to HIV-1 resistance, the homozygosity for a mutation in CCR5 gene (the 32-bp deletion, i.e., CCR5-Delta32 allele) is presently considered the most relevant one. The C-type lectins, DC-SIGN (present on dendritic cells and macrophages) and DC-SIGNR (present on endothelial cells in liver and lymph nodes) efficiently bind and transmit HIV-1 to susceptible cell in trans, thereby augmenting the infection. A potential association of the DC-SIGN and DC-SIGNR neck domain repeat polymorphism and risk of HIV-1 infection is currently under debate. To determine the influence of host genetic factors on HIV-1 resistance, we conducted genetic risk association study in HIV-1-exposed seronegative (n = 47) individuals, HIV-1 seronegative (n = 262) healthy control, and HIV-1-infected seropositive patients (n = 168) for polymorphism in neck domain of DC-SIGN and DC-SIGNR genes. The DC-SIGN and DC-SIGNR genotypes were identified by polymerase chain reaction method in DNA extracted from peripheral blood and confirmed by sequencing. Fisher exact or chi (2) test was used for static analysis. DC-SIGN genotype and allele distribution was fairly similar in HIV-1-exposed seronegative, HIV-1 seropositive, and HIV-1 seronegative control. There was no statistical significance in the differences in the distribution of DC-SIGN genotypes. A total of 13 genotypes were found in DC-SIGNR neck repeat region polymorphism. Among all the genotypes, only 5/5 homozygous showed significant reduced risk of HIV-1 infection in HIV-1-exposed seronegative individuals (p = 0.009). A unique genotype 8/5 heterozygous was also found in HIV-1 seropositive individual, which is not reported elsewhere.

  10. The role of CCR5 in Chagas disease - a systematic review.

    Science.gov (United States)

    de Oliveira, Amanda P; Ayo, Christiane M; Bestetti, Reinaldo B; Brandão de Mattos, Cinara C; Cavasini, Carlos E; de Mattos, Luiz C

    2016-11-01

    Chagas disease is an infection caused by the protozoan Trypanosoma cruzi. The clinical manifestations result from the chronic forms of the disease: indeterminate, cardiac, digestive or mixed. The pathogenesis of this disease is related to the genetic variability of both the parasite and the host with polymorphisms of genes involved in immune response possibly being involved in the variable clinical course. Cytokines play a key role in regulating immune response, in particular chemokines exert a crucial role in the control of leukocyte migration during the host's response to infectious processes. Furthermore, inflammatory cytokines and chemokines have been implicated in the generation of inflammatory infiltrates and tissue damage. The involvement of the CC Chemokine Receptor 5 (CCR5) in leukocyte migration to sites of inflammation has been elucidated and this receptor has been investigated in Chagas disease. Here we review the role of CCR5 in T. cruzi infection as well as its importance in the pathogenesis of the Chagas disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. HIV-1 is not a major driver of increased plasma IL-6 levels in chronic HIV-1 disease

    Science.gov (United States)

    Shive, Carey L.; Biancotto, Angélique; Funderburg, Nicholas T.; Pilch-Cooper, Heather A.; Valdez, Hernan; Margolis, Leonid; Sieg, Scott F.; McComsey, Grace A.; Rodriguez, Benigno; Lederman, Michael M.

    2012-01-01

    Objective Increased plasma IL-6 levels have been associated with HIV-1 disease progression risk, yet the drivers of IL-6 production in HIV-1 infection are not known. This study was designed to explore the relationship between HIV-1 replication and IL-6 induction. Design Correlations between plasma levels of IL-6 and HIV-1 RNA were examined in two clinical studies. To more directly assess the induction of IL-6 by HIV-1, several cell and tissue types that support HIV-1 replication in vivo were infected with HIV-1 and expression of IL-6 was measured. Methods Spearman’s rank correlations were used to examine the relationship between plasma levels of IL-6 and HIV-1 RNA. Macrophages, and colonic and lymph node histocultures were infected with HIV-1 or stimulated with bacterial products, LPS or flagellin, and IL-6 levels in supernatant were measured by ELISA or multiplex bead assay. Results In the clinical studies there was weak or no correlation between plasma levels of IL-6 and HIV-1 RNA but IL-6 levels were correlated with plasma levels of the LPS coreceptor CD14. Macrophages stimulated with LPS or flagellin showed robust production of IL-6, but there was no increase in IL-6 production after HIV-1 infection. IL-6 expression was not increased in lymph node histocultures obtained from HIV-1 infected subjects nor after productive HIV-1 infection of colonic or lymph node histocultures ex vivo. Conclusions We find no evidence that HIV-1 replication is an important driver of IL-6 expression in vivo or in in vitro systems. PMID:22659649

  12. Assessment of HIV-1 entry inhibitors by MLV/HIV-1 pseudotyped vectors

    Directory of Open Access Journals (Sweden)

    Thaler Sonja

    2005-09-01

    Full Text Available Abstract Background Murine leukemia virus (MLV vector particles can be pseudotyped with a truncated variant of the human immunodeficiency virus type 1 (HIV-1 envelope protein (Env and selectively target gene transfer to human cells expressing both CD4 and an appropriate co-receptor. Vector transduction mimics the HIV-1 entry process and is therefore a safe tool to study HIV-1 entry. Results Using FLY cells, which express the MLV gag and pol genes, we generated stable producer cell lines that express the HIV-1 envelope gene and a retroviral vector genome encoding the green fluorescent protein (GFP. The BH10 or 89.6 P HIV-1 Env was expressed from a bicistronic vector which allowed the rapid selection of stable cell lines. A codon-usage-optimized synthetic env gene permitted high, Rev-independent Env expression. Vectors generated by these producer cells displayed different sensitivity to entry inhibitors. Conclusion These data illustrate that MLV/HIV-1 vectors are a valuable screening system for entry inhibitors or neutralizing antisera generated by vaccines.

  13. Switch to maraviroc with darunavir/r, both QD, in patients with suppressed HIV-1 was well tolerated but virologically inferior to standard antiretroviral therapy: 48-week results of a randomized trial.

    Directory of Open Access Journals (Sweden)

    Barbara Rossetti

    Full Text Available Primary study outcome was absence of treatment failure (virological failure, VF, or treatment interruption per protocol at week 48.Patients on 3-drug ART with stable HIV-1 RNA <50 copies/mL and CCR5-tropic virus were randomized 1:1 to maraviroc with darunavir/ritonavir qd (study arm or continue current ART (continuation arm.In June 2015, 115 patients were evaluable for the primary outcome (56 study, 59 continuation arm. The study was discontinued due to excess of VF in the study arm (7 cases, 12.5%, vs 0 in the continuation arm, p = 0.005. The proportion free of treatment failure was 73.2% in the study and 59.3% in the continuation arm. Two participants in the study and 10 in the continuation arm discontinued therapy due to adverse events (p = 0.030. At VF, no emergent drug resistance was detected. Co-receptor tropism switched to non-R5 in one patient. Patients with VF reported lower adherence and had lower plasma drug levels. Femoral bone mineral density was significantly improved in the study arm.Switching to maraviroc with darunavir/ritonavir qd in virologically suppressed patients was associated with improved tolerability but was virologically inferior to 3-drug therapy.

  14. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    Directory of Open Access Journals (Sweden)

    Thornber Carol

    2008-01-01

    Full Text Available Abstract Sargassum fusiforme (Harvey Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme, which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4 and CCR5 (R5 tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development.

  15. Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model

    Science.gov (United States)

    Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.

    2013-01-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631

  16. High frequency of the CCR5delta32 variant among individuals from an admixed Brazilian population with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    J.A.B. Chies

    2003-01-01

    Full Text Available Homozygous sickle cell disease (SCD has a wide spectrum of clinical manifestations. In Brazil, the main cause of death of individuals with SCD is recurrent infection. The CCR5delta32 allele, which confers relative resistance to macrophage-tropic HIV virus infection, probably has reached its frequency and world distribution due to other pathogens that target macrophage in European populations. In the present investigation a relatively higher prevalence (5.1% of the CCR5delta32 allele was identified, by PCR amplification using specific primers, in 79 SCD patients when compared to healthy controls (1.3% with the same ethnic background (Afro-Brazilians. Based on a hypothesis that considers SCD as a chronic inflammatory condition, and since the CCR5 chemokine receptor is involved in directing a Th1-type immune response, we suggest that a Th1/Th2 balance can influence the morbidity of SCD. If the presence of the null CCR5delta32 allele results in a reduction of the chronic inflammation state present in SCD patients, this could lead to differential survival of SCD individuals who are carriers of the CCR5delta32 allele. This differential survival could be due to the development of less severe infections and consequently reduced or less severe vaso-occlusive crises.

  17. Impact of chemotherapy for HIV-1 related lymphoma on residual viremia and cellular HIV-1 DNA in patients on suppressive antiretroviral therapy.

    Science.gov (United States)

    Cillo, Anthony R; Krishnan, Supriya; McMahon, Deborah K; Mitsuyasu, Ronald T; Para, Michael F; Mellors, John W

    2014-01-01

    The first cure of HIV-1 infection was achieved through complex, multimodal therapy including myeloablative chemotherapy, total body irradiation, anti-thymocyte globulin, and allogeneic stem cell transplantation with a CCR5 delta32 homozygous donor. The contributions of each component of this therapy to HIV-1 eradication are unclear. To assess the impact of cytotoxic chemotherapy alone on HIV-1 persistence, we longitudinally evaluated low-level plasma viremia and HIV-1 DNA in PBMC from patients in the ACTG A5001/ALLRT cohort on suppressive antiretroviral therapy (ART) who underwent chemotherapy for HIV-1 related lymphoma without interrupting ART. Plasma HIV-1 RNA, total HIV-1 DNA and 2-LTR circles (2-LTRs) in PBMC were measured using sensitive qPCR assays. In the 9 patients who received moderately intensive chemotherapy for HIV-1 related lymphoma with uninterrupted ART, low-level plasma HIV-1 RNA did not change significantly with chemotherapy: median HIV-1 RNA was 1 copy/mL (interquartile range: 1.0 to 20) pre-chemotherapy versus 4 copies/mL (interquartile range: 1.0 to 7.0) post-chemotherapy. HIV-1 DNA levels also did not change significantly, with median pre-chemotherapy HIV-1 DNA of 355 copies/106 CD4+ cells versus 228 copies/106 CD4+ cells post-chemotherapy. 2-LTRs were detectable in 2 of 9 patients pre-chemotherapy and in 3 of 9 patients post-chemotherapy. In summary, moderately intensive chemotherapy for HIV-1 related lymphoma in the context of continuous ART did not have a prolonged impact on HIV-1 persistence. Clinical trials registration unique identifier: NCT00001137.

  18. Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2009-05-01

    Full Text Available Abstract Background The human placenta-derived cell line BeWo has been demonstrated to be restrictive to cell-free HIV-1 infection. BeWo cells are however permissive to infection by VSV-G pseudotyped HIV-1, which enters cells by a receptor-independent mechanism, and to infection by HIV-1 via a cell-to-cell route. Results Here we analysed viral entry in wild type BeWo (CCR5+, CXCR4+ and BeWo-CD4+ (CD4+, CCR5+, CXCR4+ cells. We report that HIV-1 internalisation is not restricted in either cell line. Levels of internalised p24 antigen between VSV-G HIV-1 pseudotypes and R5 or X4 virions were comparable. We next analysed the fate of internalised virions; X4 and R5 HIV-1 virions were less stable over time in BeWo cells than VSV-G HIV-1 pseudotypes. We then investigated the role of the proteasome in restricting cell-free HIV-1 infection in BeWo cells using proteasome inhibitors. We observed an increase in the levels of VSV-G pseudotyped HIV-1 infection in proteasome-inhibitor treated cells, but the infection by R5-Env or X4-Env pseudotyped virions remains restricted. Conclusion Collectively these results suggest that cell-free HIV-1 infection encounters a surface block leading to a non-productive entry route, which either actively targets incoming virions for non-proteasomal degradation, and impedes their release into the cytoplasm, or causes the inactivation of mechanisms essential for viral replication.

  19. Robust supervised and unsupervised statistical learning for HIV type 1 coreceptor usage analysis.

    Science.gov (United States)

    Prosperi, Mattia C F; Fanti, Iuri; Ulivi, Giovanni; Micarelli, Alessandro; De Luca, Andrea; Zazzi, Maurizio

    2009-03-01

    Human immunodeficiency virus type 1 (HIV-1) isolates differ in their use of coreceptors to enter target cells. This has important implications for both viral pathogenicity and susceptibility to entry inhibitors, recently approved or under development. Predicting HIV-1 coreceptor usage on the basis of sequence information is a challenging task, due to the high variability of the envelope. The associations of the whole HIV-1 envelope genetic features (subtype, mutations, insertions-deletions, physicochemical properties) and clinical markers (viral RNA load, CD8(+), CD4(+) T cell counts) with viral tropism were investigated, using a set of 2896 (659 after filter, 593 patients) sequence-tropism pairs available at the Los Alamos HIV database. Bootstrapped hierarchical clustering was used to assess mutational covariation. Univariate and multivariate analysis was performed to assess the relative importance of different features. Different machine learning (logistic regression, support vector machines, decision trees, rule bases, instance based reasoning) and feature selection (filter and embedded) methods, along with loss functions (accuracy, AUC of ROC curves, sensitivity, specificity, f-measure), were applied and compared for the classification of X4 variants. Extra-sample error estimation was assessed via multiple cross-validation and adjustments for multiple testing. A high-performing, compact, and interpretable logistic regression model was derived to infer HIV-1 coreceptor tropism for a given patient [accuracy = 92.76 (SD 3.07); AUC = 0.93 (SD 0.04)].

  20. CXCR3+CCR5+ T cells and autoimmune diseases: guilty as charged?

    Science.gov (United States)

    Mackay, Charles R.

    2014-01-01

    Prior to the 1990s, genetic analyses indicated that many autoimmune diseases are driven by T cell responses; however, the identity of the pathogenic T cell populations responsible for dysfunctional autoimmune responses remained unclear. Some 20 years ago, the discovery of numerous chemokines and their receptors along with the development of specific mAbs to these provided a distinct advance. These new tools revealed a remarkable dichotomy and disclosed that some chemokine receptors guided the constitutive migration of T cells through lymphoid tissues, whereas others, such as CCR5 and CXCR3, guided effector and memory T cell migration to inflammatory lesions. These T cell markers enabled a new understanding of immune responses and the types of T cells involved in different inflammatory reactions. PMID:25180533

  1. Prevalence of CCR5-delta32 mutation in asthmatic and non-asthmatic subjects from department of medicine, JUCM, Cracow.

    Science.gov (United States)

    Gomulska, Martyna; Rusin, Gabriela; Gwiazdak, Piotr

    2014-01-01

    C-C chemokine receptor type 5 (CCR5) is chemokine receptor encoded by CCR5 gene located on the short arm of chromosome 3. Asthma is a chronic bronchial inflammatory disease of either allergic or idiopathic etiology. CCR5 Δ32 mutation is a common deletion of 32 nucleotides resulting in a frameshift and non-functional receptor. Its prevalence in European population ranges between 4 and 16% (frequency of homozygotes is 1%). The current study was aimed to assess frequency of this mutation in asthmatics and its possible impact on asthma. The study was conducted on 254 subjects (125 diagnosed with asthma and 129 in control group). Isolated DNA was analysed by PCR. Primers were designed to flank the deletion region, thus PCR products could be genotyped by mere agarose gel electrophoresis. The variant alleles were represented as bands of 270 and 238 pb lengths. The shorter amplification product was diagnostic for the presence of CCR5-delta32 deletion. Visualisation of agarose gel revealed non-mutated, mutated homozygotes as well as heterozygotes. In the control group there were 37 women and 92 men, whereas the study group comprised 87 women and 38 men. In the control group genotypes distribution was: 105 non-mutated homozygotes, 21 hetezygotes and 3 mutated homozygotes, whereas in the study group 103, 21 and 1 respectively. No statistically significant differences between these groups were detected. Prevalence of homozygotes was 1,6%. Current study revealed no association between CCR5 Δ32 mutation and incidence of asthma. It may be assumed that CCR5 Δ32 deletion is neutral as a risk factor of asthma.

  2. HIV signaling through CD4 and CCR5 activates Rho family GTPases that are required for optimal infection of primary CD4+ T cells.

    Science.gov (United States)

    Lucera, Mark B; Fleissner, Zach; Tabler, Caroline O; Schlatzer, Daniela M; Troyer, Zach; Tilton, John C

    2017-01-24

    HIV-1 hijacks host cell machinery to ensure successful replication, including cytoskeletal components for intracellular trafficking, nucleoproteins for pre-integration complex import, and the ESCRT pathway for assembly and budding. It is widely appreciated that cellular post-translational modifications (PTMs) regulate protein activity within cells; however, little is known about how PTMs influence HIV replication. Previously, we reported that blocking deacetylation of tubulin using histone deacetylase inhibitors promoted the kinetics and efficiency of early post-entry viral events. To uncover additional PTMs that modulate entry and early post-entry stages in HIV infection, we employed a flow cytometric approach to assess a panel of small molecule inhibitors on viral fusion and LTR promoter-driven gene expression. While viral fusion was not significantly affected, early post-entry viral events were modulated by drugs targeting multiple processes including histone deacetylation, methylation, and bromodomain inhibition. Most notably, we observed that inhibitors of the Rho GTPase family of cytoskeletal regulators-including RhoA, Cdc42, and Rho-associated kinase signaling pathways-significantly reduced viral infection. Using phosphoproteomics and a biochemical GTPase activation assay, we found that virion-induced signaling via CD4 and CCR5 activated Rho family GTPases including Rac1 and Cdc42 and led to widespread modification of GTPase signaling-associated factors. Together, these data demonstrate that HIV signaling activates members of the Rho GTPase family of cytoskeletal regulators that are required for optimal HIV infection of primary CD4+ T cells.

  3. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells

    DEFF Research Database (Denmark)

    Odum, Niels; Bregenholt, S; Eriksen, K W

    1999-01-01

    The CC-chemokine receptor 5 (CCR5) has recently been described as a surface marker of human T cells producing type 1 (Th1) cytokines. Here we confirm that CCR5 is expressed on human Th1 but not on Th2 T-cell clones. Using intracellular cytokine staining, we show that alloantigen specific CD4+ T....... These results were similar to those obtained from alloantigen specific CD4+ T-cell lines derived from CCR5 expressing individuals. An enzyme-linked immunoabsorbent assay (ELISA) confirmed that the Th1 cytokine-positive cells from the CCR5-deficient individual were able to produce equal amounts of cytokines when...

  4. The impact of CCR5-Δ32 deletion on C-reactive protein levels and cardiovascular disease

    DEFF Research Database (Denmark)

    Dinh, Khoa Manh; Pedersen, Ole B; Petersen, Mikkel S

    2015-01-01

    and hospitalization with cardiovascular diseases in a large cohort of blood donors. METHODS: Genotyping of 15,206 healthy participants from The Danish Blood Donor Study for CCR5-Δ32 was performed and combined with CRP measurements and questionnaire data. Cardiovascular disease diagnoses were identified by ICD-10...

  5. A Linear Epitope in the N-Terminal Domain of CCR5 and Its Interaction with Antibody.

    Directory of Open Access Journals (Sweden)

    Benny Chain

    Full Text Available The CCR5 receptor plays a role in several key physiological and pathological processes and is an important therapeutic target. Inhibition of the CCR5 axis by passive or active immunisation offers one very selective strategy for intervention. In this study we define a new linear epitope within the extracellular domain of CCR5 recognised by two independently produced monoclonal antibodies. A short peptide encoding the linear epitope can induce antibodies which recognise the intact receptor when administered colinear with a tetanus toxoid helper T cell epitope. The monoclonal antibody RoAb 13 is shown to bind to both cells and peptide with moderate to high affinity (6x10^8 and 1.2x107 M-1 respectively, and binding to the peptide is enhanced by sulfation of tyrosines at positions 10 and 14. RoAb13, which has previously been shown to block HIV infection, also blocks migration of monocytes in response to CCR5 binding chemokines and to inflammatory macrophage conditioned medium. A Fab fragment of RoAb13 has been crystallised and a structure of the antibody is reported to 2.1 angstrom resolution.

  6. Calcitonin gene–related peptide inhibits Langerhans cell–mediated HIV-1 transmission

    Science.gov (United States)

    Ganor, Yonatan; Drillet-Dangeard, Anne-Sophie; Lopalco, Lucia; Tudor, Daniela; Tambussi, Giuseppe; Delongchamps, Nicolas Barry; Zerbib, Marc

    2013-01-01

    Upon its mucosal entry, human immunodeficiency virus type 1 (HIV-1) is internalized by Langerhans cells (LCs) in stratified epithelia and transferred locally to T cells. In such epithelia, LCs are in direct contact with peripheral neurons secreting calcitonin gene–related peptide (CGRP). Although CGRP has immunomodulatory effects on LC functions, its potential influence on the interactions between LCs and HIV-1 is unknown. We show that CGRP acts via its receptor expressed by LCs and interferes with multiple steps of LC-mediated HIV-1 transmission. CGRP increases langerin expression, decreases selected integrins, and activates NF-κB, resulting in decreased HIV-1 intracellular content, limited formation of LC–T cell conjugates, and elevated secretion of the CCR5-binding chemokine CCL3/MIP-1α. These mechanisms cooperate to efficiently inhibit HIV-1 transfer from LCs to T cells and T cell infection. In vivo, HIV-1 infection decreases CGRP plasma levels in both vaginally SHIV-challenged macaques and HIV-1–infected individuals. CGRP plasma levels return to baseline after highly active antiretroviral therapy. Our results reveal a novel path by which a peripheral neuropeptide acts at the molecular and cellular levels to limit mucosal HIV-1 transmission and suggest that CGRP receptor agonists might be used therapeutically against HIV-1. PMID:24081951

  7. Psychoneuroimmunology and HIV-1.

    Science.gov (United States)

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  8. HIV-1 envelope glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  9. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...

  10. The chemokine receptor CCR5, a therapeutic target for HIV/AIDS antagonists, is critical for recovery in a mouse model of Japanese encephalitis.

    Directory of Open Access Journals (Sweden)

    Maximilian Larena

    Full Text Available Japanese encephalitis is a severe central nervous system (CNS inflammatory disease caused by the mosquito-borne flavivirus, Japanese encephalitis virus (JEV. In the current study we have investigated the immune responses against JEV in mice lacking expression of the chemokine receptor CCR5, which functions in activation and chemotaxis of leukocytes during infection. We show that CCR5 serves as a host antiviral factor against Japanese encephalitis, with CCR5 deficiency markedly increasing mortality, and viral burden in the CNS. Humoral immune responses, which are essential in recovery from JEV infection, were of similar magnitude in CCR5 sufficient and deficient mice. However, absence of CCR5 resulted in a multifaceted deficiency of cellular immune responses characterized by reduced natural killer and CD8⁺ T cell activity, low splenic cellularity, and impaired trafficking of leukocytes to the brain. Interestingly, adoptive transfer of immune spleen cells, depleted of B lymphocytes, increased resistance of CCR5-deficient recipient mice against JEV regardless of whether the cells were obtained from CCR5-deficient or wild-type donor mice, and only when transferred at one but not at three days post-challenge. This result is consistent with a mechanism by which CCR5 expression enhances lymphocyte activation and thereby promotes host survival in Japanese encephalitis.

  11. The Chemokine Receptor CCR5, a Therapeutic Target for HIV/AIDS Antagonists, Is Critical for Recovery in a Mouse Model of Japanese Encephalitis

    Science.gov (United States)

    Larena, Maximilian; Regner, Matthias; Lobigs, Mario

    2012-01-01

    Japanese encephalitis is a severe central nervous system (CNS) inflammatory disease caused by the mosquito-borne flavivirus, Japanese encephalitis virus (JEV). In the current study we have investigated the immune responses against JEV in mice lacking expression of the chemokine receptor CCR5, which functions in activation and chemotaxis of leukocytes during infection. We show that CCR5 serves as a host antiviral factor against Japanese encephalitis, with CCR5 deficiency markedly increasing mortality, and viral burden in the CNS. Humoral immune responses, which are essential in recovery from JEV infection, were of similar magnitude in CCR5 sufficient and deficient mice. However, absence of CCR5 resulted in a multifaceted deficiency of cellular immune responses characterized by reduced natural killer and CD8+ T cell activity, low splenic cellularity, and impaired trafficking of leukocytes to the brain. Interestingly, adoptive transfer of immune spleen cells, depleted of B lymphocytes, increased resistance of CCR5-deficient recipient mice against JEV regardless of whether the cells were obtained from CCR5-deficient or wild-type donor mice, and only when transferred at one but not at three days post-challenge. This result is consistent with a mechanism by which CCR5 expression enhances lymphocyte activation and thereby promotes host survival in Japanese encephalitis. PMID:23028638

  12. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4

    Directory of Open Access Journals (Sweden)

    Andrea eGross

    2013-09-01

    Full Text Available We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1. Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.

  13. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    2010-09-01

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  14. Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Bryan P Burke

    2015-01-01

    Full Text Available We described earlier a dual-combination anti-HIV type 1 (HIV-1 lentiviral vector (LVsh5/C46 that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1 vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.

  15. Possible contribution of chemokine receptor CCR2 and CCR5 polymorphisms in the pathogenesis of chronic spontaneous autoreactive urticaria.

    Science.gov (United States)

    Brzoza, Z; Grzeszczak, W; Rogala, B; Trautsolt, W; Moczulski, D

    2014-01-01

    Autoimmune mechanisms play a role in the pathophysiology of chronic urticaria. As the genetic background of autoimmunity is well proven, the role of genetics in chronic urticaria is hypothesised. 153 unrelated chronic spontaneous urticaria patients with a positive result of autologous serum skin test were included into the study, as were 115 healthy volunteers as control group. In all subjects we analysed CCR2 G190A and CCR5 d32 polymorphisms. We noticed higher prevalence of CCR2 A allele as well as lower frequency of CCR5 d32 in chronic urticaria group in comparison to control group, with borderline statistical significance. Additionally, we assumed haplotype Gd statistically significant negative chronic urticaria association with tendency to higher frequency of Aw haplotype in this group. The results of our study imply the role of autoimmune components in chronic urticaria pathogenesis and present chronic urticaria as possibly genetically related disorder. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  16. Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study.

    Directory of Open Access Journals (Sweden)

    Gugan Kothandan

    Full Text Available Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å, we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2 and Glu283 (CCR5 are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.

  17. Influence of Acyclic Nucleoside Phosphonate Antivirals on Gene Expression of Chemokine Receptors CCR5 and CXCR4

    Czech Academy of Sciences Publication Activity Database

    Potměšil, P.; Holý, Antonín; Zídek, Zdeněk

    2015-01-01

    Roč. 61, č. 1 (2015), s. 1-7 ISSN 0015-5500 R&D Projects: GA ČR GA305/03/1470; GA MŠk 1M0508 Institutional support: RVO:61388963 ; RVO:68378041 Keywords : acyclic nucleoside phosphonate * HIV * CCR5 * CXCR4 * cytokine * RT-PCR Subject RIV: CC - Organic Chemistry; FR - Pharmacology ; Medidal Chemistry (UEM-P) Impact factor: 0.833, year: 2015

  18. Genetic Variations in the Receptor-Ligand Pair CCR5 and CCL3L1 Are Important Determinants of Susceptibility to Kawasaki Disease

    Science.gov (United States)

    Burns, Jane C.; Shimizu, Chisato; Gonzalez, Enrique; Kulkarni, Hemant; Patel, Sukeshi; Shike, Hiroko; Sundel, Robert S.; Newburger, Jane W.; Ahuja, Sunil K.

    2010-01-01

    Kawasaki disease (KD) is an enigmatic, self-limited vasculitis of childhood that is complicated by development of coronary-artery aneurysms. The high incidence of KD in Asian versus European populations prompted a search for genetic polymorphisms that are differentially distributed among these populations and that influence KD susceptibility. Here, we demonstrate a striking, inverse relationship between the worldwide distribution of CCR5-Δ32 allele and the incidence of KD. In 164 KD patient-parent trios, 4 CCR5 haplotypes including the CCR5-Δ32 allele were differentially transmitted from heterozygous parents to affected children. However, the magnitude of the reduced risk of KD associated with the CCR5-Δ32 allele and certain CCR5 haplotypes was significantly greater in individuals who also possessed a high copy number of the gene encoding CCL3L1, the most potent CCR5 ligand. These findings, derived from the largest genetic study of any systemic vasculitis, suggest a central role of CCR5-CCL3L1 gene-gene interactions in KD susceptibility and the importance of gene modifiers in infectious diseases. PMID:15962231

  19. Genetic Susceptibility to Cardiac and Digestive Clinical Forms of Chronic Chagas Disease: Involvement of the CCR5 59029 A/G Polymorphism.

    Science.gov (United States)

    de Oliveira, Amanda Priscila; Bernardo, Cássia Rubia; Camargo, Ana Vitória da Silveira; Ronchi, Luiz Sérgio; Borim, Aldenis Albaneze; de Mattos, Cinara Cássia Brandão; de Campos Júnior, Eumildo; Castiglioni, Lílian; Netinho, João Gomes; Cavasini, Carlos Eugênio; Bestetti, Reinaldo Bulgarelli; de Mattos, Luiz Carlos

    2015-01-01

    The clinical manifestations of chronic Chagas disease include the cardiac form of the disease and the digestive form. Not all the factors that act in the variable clinical course of this disease are known. This study investigated whether the CCR5Δ32 (rs333) and CCR5 59029 A/G (promoter region--rs1799987) polymorphisms of the CCR5 gene are associated with different clinical forms of chronic Chagas disease and with the severity of left ventricular systolic dysfunction in patients with chronic Chagas heart disease (CCHD). The antibodies anti-T. cruzi were identified by ELISA. PCR and PCR-RFLP were used to identify the CCR5Δ32 and CCR5 59029 A/G polymorphisms. The chi-square test was used to compare variables between groups. There was a higher frequency of the AA genotype in patients with CCHD compared with patients with the digestive form of the disease and the control group. The results also showed a high frequency of the AG genotype in patients with the digestive form of the disease compared to the other groups. The results of this study show that the CCR5Δ32 polymorphism does not seem to influence the different clinical manifestations of Chagas disease but there is involvement of the CCR5 59029 A/G polymorphism in susceptibility to the different forms of chronic Chagas disease. Besides, these polymorphisms do not influence left ventricular systolic dysfunction in patients with CCHD.

  20. Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools.

    Science.gov (United States)

    Roy, Kunal; Mandal, Asim Sattwa

    2009-02-01

    Quantitative structure-activity relationship (QSAR) studies have been performed on piperidine derivatives (n = 119) as CCR5 antagonists. The whole data set was divided into a training set (75% of the dataset) and a test set (remaining 25%) on the basis of K-means clustering technique. Models developed from the training set were used to assess the predictive potential of the models using test set compounds. Initially classical type QSAR models were developed using structural, spatial, electronic, physicochemical and/or topological parameters using statistical methods like stepwise regression, partial least squares (PLS) and factor analysis followed by multiple linear regression (FA-MLR). Using topological and structural parameters, FA-MLR provided the best equation based on internal validation (Q(2) = 0.514) but the best externally validated model was obtained with PLS ([image omitted] = 0.565). When structural, physicochemical, spatial and electronic descriptors were used, the best Q(2) value (0.562) was obtained from the stepwise regression derived model whereas the best [image omitted] value (0.571) came from the PLS model. When topological descriptors were used in combination with the structural, physicochemical, spatial and electronic descriptors, the best Q(2) and [image omitted] values obtained were 0.530 (stepwise regression) and 0.580 (PLS) respectively. Attempt was made to develop 3D-QSAR models using molecular shape analysis descriptors in combination with structural, physicochemical, spatial and electronic parameters. Linear models were developed using genetic function algorithm coupled with multiple linear regression. However, the results from the 3D-QSAR study were not superior to those of the classical QSAR models. Finally, artificial neural network was employed for development of nonlinear models. The ANN models showed acceptable values of squared correlation coefficient for the observed and predicted values of the test set compounds. From the view

  1. Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk.

    Science.gov (United States)

    Fouda, Genevieve G; Jaeger, Frederick H; Amos, Joshua D; Ho, Carrie; Kunz, Erika L; Anasti, Kara; Stamper, Lisa W; Liebl, Brooke E; Barbas, Kimberly H; Ohashi, Tomoo; Moseley, Martin Arthur; Liao, Hua-Xin; Erickson, Harold P; Alam, S Munir; Permar, Sallie R

    2013-11-05

    Achieving an AIDS-free generation will require elimination of postnatal transmission of HIV-1 while maintaining the nutritional and immunologic benefits of breastfeeding for infants in developing regions. Maternal/infant antiretroviral prophylaxis can reduce postnatal HIV-1 transmission, yet toxicities and the development of drug-resistant viral strains may limit the effectiveness of this strategy. Interestingly, in the absence of antiretroviral prophylaxis, greater than 90% of infants exposed to HIV-1 via breastfeeding remain uninfected, despite daily mucosal exposure to the virus for up to 2 y. Moreover, milk of uninfected women inherently neutralizes HIV-1 and prevents virus transmission in animal models, yet the factor(s) responsible for this anti-HIV activity is not well-defined. In this report, we identify a primary HIV-1-neutralizing protein in breast milk, Tenascin-C (TNC). TNC is an extracellular matrix protein important in fetal development and wound healing, yet its antimicrobial properties have not previously been established. Purified TNC captured and neutralized multiclade chronic and transmitted/founder HIV-1 variants, and depletion of TNC abolished the HIV-1-neutralizing activity of milk. TNC bound the HIV-1 Envelope protein at a site that is induced upon engagement of its primary receptor, CD4, and is blocked by V3 loop- (19B and F39F) and chemokine coreceptor binding site-directed (17B) monoclonal antibodies. Our results demonstrate the ability of an innate mucosal host protein found in milk to neutralize HIV-1 via binding to the chemokine coreceptor site, potentially explaining why the majority of HIV-1-exposed breastfed infants are protected against mucosal HIV-1 transmission.

  2. Differential control of CXCR4 and CD4 downregulation by HIV-1 Gag

    Directory of Open Access Journals (Sweden)

    Valiathan Rajeshwari R

    2008-02-01

    Full Text Available Abstract Background The ESCRT (endosomal sorting complex required for transport machinery functions to sort cellular receptors into the lumen of the multivesicular body (MVB prior to lysosomal degradation. ESCRT components can also be recruited by enveloped viruses to sites of viral assembly where they have been proposed to mediate viral egress. For example, HIV-1 budding is dependent on Gag-mediated recruitment of the cellular ESCRTs-I, -III, AIP1/Alix and Vps4 proteins. Viral recruitment of ESCRT proteins could therefore impact on host cell processes such as receptor downregulation. Results Here we show that downregulation of the HIV-1 co-receptor, CXCR4, by its ligand SDF-1, is ESCRT-I dependent. Expression of HIV-1 Gag attenuated downregulation of CXCR4, resulting in accumulation of undegraded receptors within intracellular compartments. The effect of Gag was dependent on an ESCRT-I interacting motif within the C-terminal p6 region of Gag. In contrast, PMA-induced downregulation of the HIV-1 receptor CD4 was independent of ESCRT-I and Vps4; HIV-1 Gag had no effect on this process. Conclusion These results establish that the HIV-1 receptor, CD4, and co-receptor, CXCR4 are differentially regulated by ESCRT proteins. HIV-1 Gag selectively modulates protein sorting at the MVB, interfering with ESCRT-I dependent but not ESCRT-I independent processes.

  3. Colorectal Mucus Binds DC-SIGN and Inhibits HIV-1 Trans-Infection of CD4+ T-Lymphocytes

    Science.gov (United States)

    van Montfort, Thijs; Sanders, Rogier W.; de Vries, Henry J. C.; Dekker, Henk L.; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A.

    2015-01-01

    Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1–3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa. PMID:25793526

  4. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Mondal Debasis

    2011-01-01

    Full Text Available Abstract Background Tissue resident mesenchymal stem cells (MSCs are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD cells derived from ASCs could productively be infected with HIV-1. Results HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-. Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. Conclusions Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.

  5. Immunological and pharmacological strategies to reactivate HIV-1 from latently infected cells: a possibility for HIV-1 paediatric patients?

    Science.gov (United States)

    Martínez-Bonet, M; Clemente, M I; Serramía, M J; Moreno, S; Muñoz, E; Muñoz-Fernández, M A

    2015-07-01

    The limitations to establishing a viral reservoir facilitated by early cART in children could play a critical role in achieving natural control of viral replication upon discontinuation of cART, which could be defined as 'functional cure'. Viral reservoirs could provide a persistent source of recrudescent viraemia after withdrawal of cART, despite temporary remission of HIV-1 infection, as observed in the 'Mississippi baby'. Intensification of cART has been proposed as a strategy to control residual replication and to diminish the reservoirs. The effects of cART intensification with maraviroc persisted after discontinuation of the drug in HIV-1-infected adults. However, in HIV-1-infected children, the emergence of CXCR4-using variants occurs very early, and the use of CCR5 antagonists in these children as intensification therapy may not be the best alternative. New treatments to eradicate HIV-1 are focused on the activation of viral production from latently infected cells to purge and clear HIV-1 reservoirs. This strategy involves the use of a wide range of small molecules called latency-reversing agents (LRAs). Histone deacetylase inhibitors (HDACi) such as givinostat, belinostat and panobinostat, and class I-selective HDACis that include oxamflatin, NCH-51 and romidepsin, are the most advanced in clinical testing for HIV-1 LRAs. Panobinostat and romidepsin show an efficient reactivation profile in J89GFP cells, a lymphocyte HIV-1 latently infected cell line considered a relevant model to study post-integration HIV-1 latency and reactivation. Clinical trials with panobinostat and romidepsin have been performed in children with other pathologies and it could be reasonable to design a clinical trial using these drugs in combination with cART in HIV-1-infected children.

  6. Differential susceptibility of human thymic dendritic cell subsets to X4 and R5 HIV-1 infection.

    Science.gov (United States)

    Schmitt, Nathalie; Nugeyre, Marie-Thérèse; Scott-Algara, Daniel; Cumont, Marie-Christine; Barré-Sinoussi, Françoise; Pancino, Gianfranco; Israël, Nicole

    2006-02-28

    Human thymus can be infected by HIV-1 with potential consequences on immune regeneration and homeostasis. We previously showed that CD4 thymocytes preferentially replicate CXCR4 tropic (X4) HIV-1 dependently on interleukin (IL)-7. Here we addressed the susceptibility of thymic dendritic cells (DC) to HIV-1 infection. We investigated the replication ability of CXCR4 or CCR5 (R5) tropic HIV-1 in thymic micro-explants as well as in isolated thymic CD11clowCD14- DC, CD11chighCD14+ DC and plasmacytoid DC subsets. Thymic tissue was productively infected by both X4 and R5 viruses. However, X4 but not R5 HIV-1 replication was enhanced by IL-7 in thymic micro-explants, suggesting that R5 virus replication occurred in cells other than thymocytes. Indeed, we found that R5 HIV-1 replicated efficiently in DC isolated from thymic tissue. The replicative capacity of X4 and R5 viruses differed according to the different DC subsets. R5 but not X4 HIV-1 efficiently replicated in CD11chighCD14+ DC. In contrast, no HIV-1 replication was detected in CD11clowCD14- DC. Both X4 and R5 viruses efficiently replicated in plasmacytoid DC, which secreted interferon-alpha upon HIV-1 exposure. Productive HIV-1 infection also caused DC loss, consistent with different permissivity of each DC subset. Thymic DC sustain high levels of HIV-1 replication. DC might thus be the first target for R5 HIV-1 infection of thymus, acting as a Trojan horse for HIV-1 spread to thymocytes. Furthermore, DC death induced by HIV-1 infection may affect thymopoiesis.

  7. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Directory of Open Access Journals (Sweden)

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  8. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  9. Frequencies of CCR5-D32, CCR2-64I and SDF1-3’A mutations in Human Immunodeficiency Virus (HIV seropositive subjects and seronegative individuals from the state of Pará in Brazilian Amazonia

    Directory of Open Access Journals (Sweden)

    Fernanda Andreza de Pinho Lott Carvalhaes

    2005-12-01

    Full Text Available The distribution of genetic polymorphisms of chemokine receptors CCR5-delta32, CCR2-64I and chemokine (SDF1-3’A mutations were studied in 110 Human Immunodeficiency Virus type 1 (HIV-1 seropositive individuals (seropositive group and 139 seronegative individuals (seronegative group from the population of the northern Brazilian city of Belém which is the capital of the state of Pará in the Brazilian Amazon. The CCR5-delta32 mutation was found in the two groups at similar frequencies, i.e. 2.2% for the seronegative group and 2.7% for the seropositive group. The frequencies of the SDF1-3’A mutation were 21.0% for the seronegative group and 15.4% for the seropositive group, and the CCR2-64I allele was found at frequencies of 12.5% for the seronegative group and 5.4% for the seropositive group. Genotype distributions were consistent with Hardy-Weinberg expectations in both groups, suggesting that none of the three mutations has a detectable selective effect. Difference in the allelic and genotypic frequencies was statistically significant for the CCR2 locus, the frequency in the seronegative group being twice that found in the seropositive group. This finding may indicate a protective effect of the CCR2-64I mutation in relation to HIV transmission. However, considering that the CCR2-64I mutation has been more strongly associated with a decreased risk for progression for AIDS than to the resistance to the HIV infection, this could reflect an aspect of population structure or a Type I error.

  10. Eradication of HIV by Transplantation of CCR5-Deficient Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Gero Hütter

    2011-01-01

    Full Text Available Today, 30 years after the onset of the HIV pandemic, although treatment strategies have considerably improved, there is still no cure for the disease. Recently, we described a successful hematopoietic stem cell transplantation in an HIV-1–infected patient, transferring donor-derived cells with a natural resistance against HIV infection. These hematopoietic stem cells engrafted, proliferated, and differentiated into mature myeloid and lymphoid cells. To date, the patient has not required any antiretroviral treatment, more than 4 years after allogeneic transplantation. In the analysis of peripheral blood cells and different tissue samples, including gut, liver, and brain, no viral load or proviral DNA could be detected. Our report raises the hope for further targeted treatment strategies against HIV and represents a successful personalized treatment with allogeneic stem cells carrying a beneficial gene. However, this case has ignited a controversy regarding the question of whether this patient has achieved complete eradication of HIV or not. Here we give an update on open questions, unsolved aspects, and clinical consequences concerning this unique case.

  11. Genetically Modified Hematopoietic Stem Cell Transplantation for HIV-1–infected Patients: Can We Achieve a Cure?

    Science.gov (United States)

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2014-01-01

    The cure of a human immunodeficiency virus (HIV)-1–infected patient following allogeneic transplantation from a CCR5-null donor and potential cure of two patients transplanted with CCR5 wild-type hematopoietic stem cells (HSC) have provided renewed optimism that a potential alternative to conventional antiretroviral therapy (ART) is forthcoming. While allogeneic grafts have thus far suggested complete eradication of viral reservoirs, it has yet to be observed following autologous HSC transplantation. Development of curative autologous transplantation strategies would significantly increase the number of treatable patients, eliminating the need for matched donors and reducing the risks of adverse events. Recent studies suggest gene therapy may provide a mechanism for developing curative therapies. Expression of cellular/artificial restriction factors or disruption of CCR5 has been shown to limit viral replication and provide protection of genetically modified cells. However, significant obstacles remain with regards to the depletion of established viral reservoirs in an autologous transplantation setting devoid of the “allo-effect”. Here, we discuss results from early-stage clinical trials and recent findings in animal models of gene modified HSC transplantation. Finally, we propose innovative combination therapies that may aid in the reduction and/or elimination of viral reservoirs in HIV-1–infected patients and promote the artificial development of a natural controller phenotype. PMID:24220323

  12. HIV-1 envelope subregion length variation during disease progression.

    Directory of Open Access Journals (Sweden)

    Marcel E Curlin

    2010-12-01

    Full Text Available The V3 loop of the HIV-1 Env protein is the primary determinant of viral coreceptor usage, whereas the V1V2 loop region is thought to influence coreceptor binding and participate in shielding of neutralization-sensitive regions of the Env glycoprotein gp120 from antibody responses. The functional properties and antigenicity of V1V2 are influenced by changes in amino acid sequence, sequence length and patterns of N-linked glycosylation. However, how these polymorphisms relate to HIV pathogenesis is not fully understood. We examined 5185 HIV-1 gp120 nucleotide sequence fragments and clinical data from 154 individuals (152 were infected with HIV-1 Subtype B. Sequences were aligned, translated, manually edited and separated into V1V2, C2, V3, C3, V4, C4 and V5 subregions. V1-V5 and subregion lengths were calculated, and potential N-linked glycosylation sites (PNLGS counted. Loop lengths and PNLGS were examined as a function of time since infection, CD4 count, viral load, and calendar year in cross-sectional and longitudinal analyses. V1V2 length and PNLGS increased significantly through chronic infection before declining in late-stage infection. In cross-sectional analyses, V1V2 length also increased by calendar year between 1984 and 2004 in subjects with early and mid-stage illness. Our observations suggest that there is little selection for loop length at the time of transmission; following infection, HIV-1 adapts to host immune responses through increased V1V2 length and/or addition of carbohydrate moieties at N-linked glycosylation sites. V1V2 shortening during early and late-stage infection may reflect ineffective host immunity. Transmission from donors with chronic illness may have caused the modest increase in V1V2 length observed during the course of the pandemic.

  13. Expression of HIV receptors, alternate receptors and co-receptors on tonsillar epithelium: implications for HIV binding and primary oral infection

    Directory of Open Access Journals (Sweden)

    Maher Diane M

    2006-04-01

    Full Text Available Abstract Background Primary HIV infection can develop from exposure to HIV in the oral cavity. In previous studies, we have documented rapid and extensive binding of HIV virions in seminal plasma to intact mucosal surfaces of the palatine tonsil and also found that virions readily penetrated beneath the tissue surfaces. As one approach to understand the molecular interactions that support HIV virion binding to human mucosal surfaces, we have examined the distribution of the primary HIV receptor CD4, the alternate HIV receptors heparan sulfate proteoglycan (HS and galactosyl ceramide (GalCer and the co-receptors CXCR4 and CCR5 in palatine tonsil. Results Only HS was widely expressed on the surface of stratified squamous epithelium. In contrast, HS, GalCer, CXCR4 and CCR5 were all expressed on the reticulated epithelium lining the tonsillar crypts. We have observed extensive variability, both across tissue sections from any tonsil and between tonsils, in the distribution of epithelial cells expressing either CXCR4 or CCR5 in the basal and suprabasal layers of stratified epithelium. The general expression patterns of CXCR4, CCR5 and HS were similar in palatine tonsil from children and adults (age range 3–20. We have also noted the presence of small clusters of lymphocytes, including CD4+ T cells within stratified epithelium and located precisely at the mucosal surfaces. CD4+ T cells in these locations would be immediately accessible to HIV virions. Conclusion In total, the likelihood of oral HIV transmission will be determined by macro and micro tissue architecture, cell surface expression patterns of key molecules that may bind HIV and the specific properties of the infectious inoculum.

  14. Stimulated trans-acting factor of 50 kDa (Staf50) inhibits HIV-1 replication in human monocyte-derived macrophages.

    Science.gov (United States)

    Bouazzaoui, Abdellatif; Kreutz, Marina; Eisert, Veronika; Dinauer, Norbert; Heinzelmann, Anna; Hallenberger, Sabine; Strayle, Jochen; Walker, Russel; Rübsamen-Waigmann, Helga; Andreesen, Reinhard; von Briesen, Hagen

    In order to identify cellular genes which interfere with HIV-1 replication in monocyte-derived macrophages (MAC), cells were stimulated with interferon (IFN) or lipopolysaccharide (LPS) leading to a pronounced inhibition of HIV-1 infection in these cells, and the resulting gene expression was analyzed. Using the microarray technology we identified a gene named Stimulated Trans-Acting Factor of 50 kDa (Staf50), which is known to repress the activity of the HIV-1 LTR. Analysis of the Staf50 expression by real-time PCR showed an overexpression in IFNalpha (up to 20-fold) and LPS (up to 10-fold)-stimulated MAC as well as in infected cells (up to 3-fold). For stable overexpression, 293 T cells and primary macrophages were transduced with Staf50-IRES-GFP bicistronic pseudotype viruses. After transduction, 293 T CD4/CCR5 and MAC were infected with HIV-1, and virus replication was monitored by p24 ELISA. Overexpression of Staf50 inhibited the HIV-1 infection between 50% and 90% in 293 T CD4/CCR5 as well as in MAC. Our findings suggest that host genetic effects in combination with viral properties determine the susceptibility of an appropriate target cell for HIV-1 infection as well as the replication potential of the virus in the cell resulting in an overall productive infection.

  15. Mechanisms of HIV-1 Control.

    Science.gov (United States)

    Soliman, Mary; Srikrishna, Geetha; Balagopal, Ashwin

    2017-06-01

    HIV-1 infection is of global importance, and still incurs substantial morbidity and mortality. Although major pharmacologic advances over the past two decades have resulted in remarkable HIV-1 control, a cure is still forthcoming. One approach to a cure is to exploit natural mechanisms by which the host restricts HIV-1. Herein, we review past and recent discoveries of HIV-1 restriction factors, a diverse set of host proteins that limit HIV-1 replication at multiple levels, including entry, reverse transcription, integration, translation of viral proteins, and packaging and release of virions. Recent studies of intracellular HIV-1 restriction have offered unique molecular insights into HIV-1 replication and biology. Studies have revealed insights of how restriction factors drive HIV-1 evolution. Although HIV-1 restriction factors only partially control the virus, their importance is underscored by their effect on HIV-1 evolution and adaptation. The list of host restriction factors that control HIV-1 infection is likely to expand with future discoveries. A deeper understanding of the molecular mechanisms of regulation by these factors will uncover new targets for therapeutic control of HIV-1 infection.

  16. The role of CC chemokine receptor 5 in antiviral immunity

    DEFF Research Database (Denmark)

    Nansen, Anneline; Christensen, Jan Pravsgaard; Andreasen, Susanne Ørding

    2002-01-01

    The CC chemokine receptor CCR5 is an important coreceptor for human immunodeficiency virus (HIV), and there is a major thrust to develop anti-CCR5-based therapies for HIV-1. However, it is not known whether CCR5 is critical for a normal antiviral T-cell response. This study investigated the immune...... response to lymphocytic choriomeningitis virus in mice lacking CCR5 (CCR5(-/-) mice). This infection is a classical model for studying antiviral immunity, and influx of CCR5-expressing CD8(+) T cells and macrophages is essential for both virus control and associated immunopathology. Results showed...... influence of CCR5 was found, not even when viral peptide was used as local trigger instead of live virus. Finally, long-term CD8(+) T cell-mediated immune surveillance was efficiently sustained in CCR5(-/-) mice. Taken together, these results indicate that expression of CCR5 is not critical for T cell...

  17. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds.

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Phad, Ganesh E; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B; Karlsson Hedestam, Gunilla B; Haynes, Barton; Sodroski, Joseph

    2016-05-15

    The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus

  18. Potential roles of CCR5(+ CCR6(+ dendritic cells induced by nasal ovalbumin plus Flt3 ligand expressing adenovirus for mucosal IgA responses.

    Directory of Open Access Journals (Sweden)

    Yoshiko Fukuyama

    Full Text Available We assessed the role of CCR5(+/CCR6(+/CD11b(+/CD11c(+ dendritic cells (DCs for induction of ovalbumin (OVA-specific antibody (Ab responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL showed early expansion of CCR5(+/CCR6(+/CD11b(+/CD11c(+ DCs in nasopharyngeal-associated lymphoid tissue (NALT and cervical lymph nodes (CLNs. Subsequently, this DC subset became resident in submandibular glands (SMGs and nasal passages (NPs in response to high levels of CCR-ligands produced in these tissues. CD11b(+/CD11c(+ DCs were markedly decreased in both CCR5(-/- and CCR6(-/- mice. Chimera mice reconstituted with bone marrow cells from CD11c-diphtheria toxin receptor (CD11c-DTR and CCR5(-/- or CD11c-DTR and CCR6(-/- mice given nasal OVA plus Ad-FL had elevated plasma IgG, but reduced IgA as well as low anti-OVA secretory IgA (SIgA Ab responses in saliva and nasal washes. These results suggest that CCR5(+CCR6(+ DCs play an important role in the induction of Ag-specific SIgA Ab responses.

  19. Pushing it back. Dating the CCR5–32 bp deletion to the Mesolithic in Sweden and its implications for the Meso\\Neo transition

    Directory of Open Access Journals (Sweden)

    Kerstin Lidén

    2006-12-01

    Full Text Available Genetic variation in the chemokine receptor gene CCR5 has received considerable scientific interest during the last few years. Protection against HIV-infection and AIDS, together with specific geographic distribution are the major reasons for the great interest in CCR5 32bp deletion. The event for the occurrence of this mutation has been postulated by coalescence dating to the 14th century, or 5000 BP. In our prehistoric Swedish samples we show that the frequency of 32pb deletion in CCR5 in the Neolithic population does not deviate from the frequency in a modern Swedish population, and that the deletion existed in Sweden already during the Mesolithic period.

  20. Investigating the association of chemokine receptor 5 (CCR5 polymorphism with cervical cancer in human papillomavirus (HPV positive patients - DOI: 10.4025/actascihealthsci.v30i2.944 Investigating association of chemokine receptor 5 (CCR5 polymorphism with cervical cancer in human papillomavirus (HPV suggestive patients - DOI: 10.4025/actascihealthsci.v30i2.944

    Directory of Open Access Journals (Sweden)

    Sueli Donizete Borelli

    2008-12-01

    Full Text Available HPV is one of the most frequent causes for the development of cervical cancer. It is known that chemokines are important determinants of early inflammatory responses. The CC chemokine receptor 5 (CCR5 gene is involved in the chemotaxis of leukocytes toward inflammation sites. In the present study, polymerase chain reactions (PCR in genomic DNA samples, using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion, detected a 225 bp product from the normal CCR5 allele and a 193 bp product from the 32 bp deletion allele. The wild type genotype was prevalent in both group, but it was not statistically significant, with χ2 = 1.519 (2 degrees of freedom; p > 0.05. As there are a small number of 32 allele carriers, further studies are needed to clarify the role of CCR5 in the cervical cancer.HPV is the most responsible of cervical cancer. It is known that chemokines are important determinants of the early inflammatory response. The CC chemokine receptor 5 (CCR5 gene is involved in the chemotaxis of leukocytes toward inflammation sites. In the present study, polymerase chain reactions (PCR in genomic DNA samples, using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion, detected a 225bp product from the normal CCR5 allele and a 193bp product from the 32bp deletion allele. The wild type genotype was prevalent in both group, but it wasn’t statistically significant with χ² =1,519 (2 degrees of freedom; p>0.05. Once there is a small number of 32 allele carriers, further studies are needed to clarify the role of CCR5 in the cervical cancer.

  1. HIV-1 replication in the central nervous system occurs in two distinct cell types.

    Directory of Open Access Journals (Sweden)

    Gretja Schnell

    2011-10-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection of the central nervous system (CNS can lead to the development of HIV-1-associated dementia (HAD. We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5 T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells. Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders.

  2. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7.

    Directory of Open Access Journals (Sweden)

    Yaoqing Chen

    Full Text Available For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1. In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC(50 value of 2.76 µg/ml (1.65 µM and showed low cytotoxicity to host cells with a selective index (SI of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1.

  3. Modest human immunodeficiency virus coreceptor function of CXCR3 is strongly enhanced by mimicking the CXCR4 ligand binding pocket in the CXCR3 receptor

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Huskens, Dana; Princen, Katrien

    2007-01-01

    The chemokine receptor CXCR3 can exhibit weak coreceptor function for several human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical isolates. These viruses produced microscopically visible cytopathicity in U87.CD4.CXCR3 cell cultures, whereas untransfected (CXCR3-negative) U87...... at positions 300 and 304 of the CXCR3 receptor. This mutant receptor (CXCR3[K300A, S304E]) showed markedly enhanced HIV coreceptor function compared to the wild-type receptor (CXCR3[WT]). Moreover, the CXCR4 antagonist AMD3100 exhibited antagonistic and anti-HIV activities in U87.CD4.CXCR3[K300A, S304E] cells...

  4. Successful isolation of infectious and high titer human monocyte-derived HIV-1 from two subjects with discontinued therapy.

    Science.gov (United States)

    Wang, Tong; Xu, Younong; Zhu, Haiying; Andrus, Thomas; Ivanov, Sergei B; Pan, Charlotte; Dolores, Jazel; Dann, Gregory C; Zhou, Michael; Forte, Dominic; Yang, Zihuan; Holte, Sarah; Corey, Lawrence; Zhu, Tuofu

    2013-01-01

    HIV-1 DNA in blood monocytes is considered a viral source of various HIV-1 infected tissue macrophages, which is also known as "Trojan horse" hypothesis. However, whether these DNA can produce virions has been an open question for years, due to the inability of isolating high titer and infectious HIV-1 directly from monocytes. In this study, we demonstrated successful isolation of two strains of M-HIV-1 (1690 M and 1175 M) from two out of four study subjects, together with their in vivo controls, HIV-1 isolated from CD4+ T-cells (T-HIV-1), 1690 T and 1175 T. All M- and T- HIV-1 isolates were detected CCR5-tropic. Both M- HIV-1 exhibited higher levels of replication in monocyte-derived macrophages (MDM) than the two T- HIV-1. Consistent with our previous reports on the subject 1175 with late infection, compartmentalized env C2-V3-C3 sequences were identified between 1175 M and 1175 T. In contrast, 1690 M and 1690 T, which were isolated from subject 1690 with relatively earlier infection, showed homogenous env C2-V3-C3 sequences. However, multiple reverse transcriptase (RT) inhibitor resistance-associated variations were detected in the Gag-Pol region of 1690 M, but not of 1690 T. By further measuring HIV DNA intracellular copy numbers post-MDM infection, 1690 M was found to have significantly higher DNA synthesis efficiency than 1690 T in macrophages, indicating a higher RT activity, which was confirmed by AZT inhibitory assays. These results suggested that the M- and T- HIV-1 are compartmentalized in the two study subjects, respectively. Therefore, we demonstrated that under in vitro conditions, HIV-1 infected human monocytes can productively release live viruses while differentiating into macrophages.

  5. [Application progress of CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection].

    Science.gov (United States)

    Han, Ying-lun; Li, Qing-wei

    2016-01-01

    The goal of gene therapy is to introduce foreign genes into human target cells in a certain way to correct or compensate diseases caused by defective or abnormal genes. Therefore, gene therapy has great practical significance in studying the treatment of persistent or latent HIV-1 infection. At present, the existing methods of gene therapy have some major defects such as limited target site recognition and high frequency of off-targets. The latest research showed that the clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea has been successfully reformed to a targeted genome editing tool. Thus, how to achieve the goal of treating HIV-1 infection by modifying targeted HIV-1 virus genome effectively using the CRISPR/Cas9 system has become a current research focus. Here we review the latest achievements worldwide and briefly introduce applications of the CRISPR/Cas9 genome editing technology in the treatment of HIV-1 infection, including CCR5 gene editing, removal of HIV-1 virus and activation of HIV-1 virus, in order to provide reference for the prevention and treatment of HIV-1 infection.

  6. Sexual transmission of HIV-1.

    Science.gov (United States)

    Fox, Julie; Fidler, Sarah

    2010-01-01

    HIV-1 transmission occurs in a limited number of ways all of which are preventable. Overall, the risk of HIV-1 transmission following a single sexual exposure is low especially in comparison with other sexually transmitted infections (STIs); with estimates of the average probability of male to female HIV-1 transmission only 0.0005-0.0026 per coital act. The risk of acquiring HIV-1 from a single contact varies enormously and is dependant upon the infectiousness of the HIV-1 positive individual and the susceptibility to HIV-1 of their sexual partner. An understanding of the determinants of HIV-1 transmission is important not only to assess the infection risk to an individual when exposed to the virus (e.g. to determine the provision of post exposure prophylaxis), but also to make accurate predictions on the potential spread of HIV-1 infection in a population and to direct appropriate targeted prevention strategies. In this review article we summarise the current literature on the major worldwide source of HIV-1 acquisition, sexual transmission. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Revisiting HIV-1 uncoating

    Directory of Open Access Journals (Sweden)

    Arhel Nathalie

    2010-11-01

    Full Text Available Abstract HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs, in which reverse transcription occurs, and pre-integration complexes (PICs, which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered.

  8. HIV-1 Fusion Is Blocked through Binding of GB Virus C E2D Peptides to the HIV-1 gp41 Disulfide Loop

    Science.gov (United States)

    Eissmann, Kristin; Mueller, Sebastian; Sticht, Heinrich; Jung, Susan; Zou, Peng; Jiang, Shibo; Gross, Andrea; Eichler, Jutta; Fleckenstein, Bernhard; Reil, Heide

    2013-01-01

    A strategy for antiviral drug discovery is the elucidation and imitation of viral interference mechanisms. HIV-1 patients benefit from a coinfection with GB Virus C (GBV-C), since HIV-positive individuals with long-term GBV-C viraemia show better survival rates than HIV-1 patients without persisting GBV-C. A direct influence of GBV-C on HIV-1 replication has been shown in coinfection experiments. GBV-C is a human non-pathogenic member of the flaviviridae family that can replicate in T and B cells. Therefore, GBV-C shares partly the same ecological niche with HIV-1. In earlier work we have demonstrated that recombinant glycoprotein E2 of GBV-C and peptides derived from the E2 N-terminus interfere with HIV entry. In this study we investigated the underlying mechanism. Performing a virus-cell fusion assay and temperature-arrested HIV-infection kinetics, we provide evidence that the HIV-inhibitory E2 peptides interfere with late HIV-1 entry steps after the engagement of gp120 with CD4 receptor and coreceptor. Binding and competition experiments revealed that the N-terminal E2 peptides bind to the disulfide loop region of HIV-1 transmembrane protein gp41. In conjunction with computational analyses, we identified sequence similarities between the N-termini of GBV-C E2 and the HIV-1 glycoprotein gp120. This similarity appears to enable the GBV-C E2 N-terminus to interact with the HIV-1 gp41 disulfide loop, a crucial domain involved in the gp120-gp41 interface. Furthermore, the results of the present study provide initial proof of concept that peptides targeted to the gp41 disulfide loop are able to inhibit HIV fusion and should inspire the development of this new class of HIV-1 entry inhibitors. PMID:23349893

  9. HIV-1 fusion is blocked through binding of GB Virus C E2-derived peptides to the HIV-1 gp41 disulfide loop [corrected].

    Directory of Open Access Journals (Sweden)

    Kristin Eissmann

    Full Text Available A strategy for antiviral drug discovery is the elucidation and imitation of viral interference mechanisms. HIV-1 patients benefit from a coinfection with GB Virus C (GBV-C, since HIV-positive individuals with long-term GBV-C viraemia show better survival rates than HIV-1 patients without persisting GBV-C. A direct influence of GBV-C on HIV-1 replication has been shown in coinfection experiments. GBV-C is a human non-pathogenic member of the flaviviridae family that can replicate in T and B cells. Therefore, GBV-C shares partly the same ecological niche with HIV-1. In earlier work we have demonstrated that recombinant glycoprotein E2 of GBV-C and peptides derived from the E2 N-terminus interfere with HIV entry. In this study we investigated the underlying mechanism. Performing a virus-cell fusion assay and temperature-arrested HIV-infection kinetics, we provide evidence that the HIV-inhibitory E2 peptides interfere with late HIV-1 entry steps after the engagement of gp120 with CD4 receptor and coreceptor. Binding and competition experiments revealed that the N-terminal E2 peptides bind to the disulfide loop region of HIV-1 transmembrane protein gp41. In conjunction with computational analyses, we identified sequence similarities between the N-termini of GBV-C E2 and the HIV-1 glycoprotein gp120. This similarity appears to enable the GBV-C E2 N-terminus to interact with the HIV-1 gp41 disulfide loop, a crucial domain involved in the gp120-gp41 interface. Furthermore, the results of the present study provide initial proof of concept that peptides targeted to the gp41 disulfide loop are able to inhibit HIV fusion and should inspire the development of this new class of HIV-1 entry inhibitors.

  10. Molecular basis for tetanus toxin coreceptor interactions.

    Science.gov (United States)

    Chen, Chen; Baldwin, Michael R; Barbieri, Joseph T

    2008-07-08

    Tetanus toxin (TeNT) elicits spastic paralysis through the cleavage of vesicle-associated membrane protein-2 (VAMP-2) in neurons at the interneuronal junction of the central nervous system. While TeNT retrograde traffics from peripheral nerve endings to the interneuronal junction, there is limited understanding of the neuronal receptors utilized by tetanus toxin for the initial entry into nerve cells. Earlier studies implicated a coreceptor for tetanus toxin entry into neurons: a ganglioside binding pocket and a sialic acid binding pocket and that GT1b bound to each pocket. In this study, a solid phase assay characterized the ganglioside binding specificity and functional properties of both carbohydrate binding pockets of TeNT. The ganglioside binding pocket recognized the ganglioside sugar backbone, Gal-GalNAc, independent of sialic acid-(5) and sialic acid-(7) and GM1a was an optimal substrate for this pocket, while the sialic acid binding pocket recognized sialic acid-(5) and sialic acid-(7) with "b"series of gangliosides preferred relative to "a" series gangliosides. The high-affinity binding of gangliosides to TeNT HCR required functional ganglioside and sialic acid binding pockets, supporting synergistic binding to coreceptors. This analysis provides a model for how tetanus toxin utilizes coreceptors for high-affinity binding to neurons.

  11. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillel Haim

    2011-06-01

    Full Text Available Human immunodeficiency virus (HIV-1 enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like" viruses, globally sensitive ("Tier 1" viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of

  12. Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity

    Science.gov (United States)

    Haim, Hillel; Strack, Bettina; Kassa, Aemro; Madani, Navid; Wang, Liping; Courter, Joel R.; Princiotto, Amy; McGee, Kathleen; Pacheco, Beatriz; Seaman, Michael S.; Smith, Amos B.; Sodroski, Joseph

    2011-01-01

    Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the “intrinsic reactivity” of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant (“Tier 2-like”) viruses, globally sensitive (“Tier 1”) viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of

  13. The combination of primary sclerosing cholangitis and CCR5-Delta 32 in recipients is strongly associated with the development of nonanastomotic biliary strictures after liver transplantation

    NARCIS (Netherlands)

    den Dries, Sanna Op; Buis, Carlijn I.; Adelmeijer, Jelle; Van der Jagt, Eric J.; Haagsma, Elizabeth B.; Lisman, Ton; Porte, Robert J.

    Background: The role of the immune system in the pathogenesis of nonanastomotic biliary strictures (NAS) after orthotopic liver transplantation (OLT) is unclear. A loss-of-function mutation in the CC chemokine receptor 5 (CCR5-Delta 32) leads to changes in the immune system, including impaired

  14. Association of CCR2-CCR5 haplotypes and CCL3L1 copy number with Kawasaki Disease, coronary artery lesions, and IVIG responses in Japanese children.

    Directory of Open Access Journals (Sweden)

    Manju Mamtani

    2010-07-01

    Full Text Available The etiology of Kawasaki Disease (KD is enigmatic, although an infectious cause is suspected. Polymorphisms in CC chemokine receptor 5 (CCR5 and/or its potent ligand CCL3L1 influence KD susceptibility in US, European and Korean populations. However, the influence of these variations on KD susceptibility, coronary artery lesions (CAL and response to intravenous immunoglobulin (IVIG in Japanese children, who have the highest incidence of KD, is unknown.We used unconditional logistic regression analyses to determine the associations of the copy number of the CCL3L1 gene-containing duplication and CCR2-CCR5 haplotypes in 133 Japanese KD cases [33 with CAL and 25 with resistance to IVIG] and 312 Japanese controls without a history of KD. We observed that the deviation from the population average of four CCL3L1 copies (i.e., four copies was associated with an increased risk of KD and IVIG resistance (adjusted odds ratio (OR=2.25, p=0.004 and OR=6.26, p=0.089, respectively. Heterozygosity for the CCR5 HHF*2 haplotype was associated with a reduced risk of both IVIG resistance (OR=0.21, p=0.026 and CAL development (OR=0.44, p=0.071.The CCL3L1-CCR5 axis may play an important role in KD pathogenesis. In addition to clinical and laboratory parameters, genetic markers may also predict risk of CAL and resistance to IVIG.

  15. CCR3, CCR5, CCR8 and CXCR3 expression in memory T helper cells from allergic rhinitis patients, asymptomatically sensitized and healthy individuals

    DEFF Research Database (Denmark)

    Holse, Mille; Assing, Kristian; Poulsen, Lars K.

    2006-01-01

    Chemokine receptors have been suggested to be preferentially expressed on CD4+ T cells with CCR3 and CCR8 linked to the T helper (Th) 2 subset and CCR5 and CXCR3 to the Th1 subset, however this remains controversial....

  16. Biased and constitutive signaling in the CC-chemokine receptor CCR5 by manipulating the interface between transmembrane helices 6 and 7

    DEFF Research Database (Denmark)

    Steen, Anne; Thiele, Stefanie; Guo, Dong

    2013-01-01

    signaling. Thus, β-arrestin recruitment was eliminated, whereas constitutive activity was observed in Gαi-mediated signaling. Furthermore, the CCR5 antagonist aplaviroc was converted to a full agonist (a so-called efficacy switch). Computational modeling revealed that the position of the 7TM receptor...

  17. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  18. Association of TGFβ1, TNFα, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians

    Directory of Open Access Journals (Sweden)

    Gupta Arvind

    2007-04-01

    Full Text Available Abstract Background Cytokines play an important role in the development of diabetic chronic renal insufficiency (CRI. Transforming growth factor β1 (TGF β1 induces renal hypertrophy and fibrosis, and cytokines like tumor necrosis factor-alpha (TNFα, chemoattractant protein-1 (MCP-1, and regulated upon activation and normal T cell expressed and secreted (RANTES mediate macrophage infiltration into kidney. Over expression of these chemokines leads to glomerulosclerosis and interstitial fibrosis. The effect of MCP-1 and RANTES on kidney is conferred by their receptors i.e., chemokine receptor (CCR-2 and CCR-5 respectively. We tested association of nine single nucleotide polymorphisms (SNPs from TGFβ1, TNFα, CCR2 and CCR5 genes among individuals with type-2 diabetes with and without renal insufficiency. Methods Type-2 diabetes subjects with chronic renal insufficiency (serum creatinine ≥ 3.0 mg/dl constituted the cases, and matched individuals with diabetes of duration ≥ 10 years and normoalbuminuria were evaluated as controls from four centres in India. Allelic and genotypic contributions of nine SNPs from TGFβ1, TNFα, CCR2 and CCR5 genes to diabetic CRI were tested by computing odds ratio (OR and 95% confidence intervals (CI. Sub-analysis of CRI cases diabetic retinopathy status as dependent variable and SNP genotypes as independent variable in a univariate logistic regression was also performed. Results SNPs Tyr81His and Thr263Ile in TGF β1 gene were monomorphic, and Arg25Pro in TGF β1 gene and Δ32 polymorphism in CCR5 gene were minor variants (minor allele frequency A SNP of CCR5 gene has been observed and the allele 59029A seems to confer predisposition to development of diabetic CRI (OR 1.39; CI 1.04–1.84. In CRI subjects a compound group of genotypes "GA and AA" of SNP G>A -800 was found to confer predisposition for proliferative retinopathy (OR 3.03; CI 1.08–8.50, p = 0.035. Conclusion Of the various cytokine gene

  19. p21(WAF1/CIP1 RNA expression in highly HIV-1 exposed, uninfected individuals.

    Directory of Open Access Journals (Sweden)

    Joshua Herbeck

    Full Text Available Some individuals remain HIV-1 antibody and PCR negative after repeated exposures to the virus, and are referred to as HIV-exposed seronegatives (HESN. However, the causes of resistance to HIV-1 infection in cases other than those with a homozygous CCR5Δ32 deletion are unclear. We hypothesized that human p21WAF1/CIP1 (a cyclin-dependent kinase inhibitor could play a role in resistance to HIV-1 infection in HESN, as p21 expression has been associated with suppression of HIV-1 in elite controllers and reported to block HIV-1 integration in cell culture. We measured p21 RNA expression in PBMC from 40 HESN and 40 low exposure HIV-1 seroconverters (LESC prior to their infection using a real-time PCR assay. Comparing the 20 HESN with the highest exposure risk (median = 111 partners/2.5 years prior to the 20 LESC with the lowest exposure risk (median = 1 partner/2.5 years prior, p21 expression trended higher in HESN in only one of two experiments (P = 0.11 vs. P = 0.80. Additionally, comparison of p21 expression in the top 40 HESN (median = 73 partners/year and lowest 40 LESC (median = 2 partners/year showed no difference between the groups (P = 0.84. There was a weak linear trend between risk of infection after exposure and increasing p21 gene expression (R2 = 0.02, P = 0.12, but again only in one experiment. Hence, if p21 expression contributes to the resistance to viral infection in HESN, it likely plays a minor role evident only in those with extremely high levels of exposure to HIV-1.

  20. HIV-1 replication in macrophages

    NARCIS (Netherlands)

    Kootstra, N.A.

    1999-01-01

    Lentiviruses such as the human immunodeficiency virus type 1 (HIV-1) are considered to be unique amongst the retroviruses due to their ability to replicate in macrophages, which are often referred to as non-dividing cells. The studies described in this thesis focus on the ability of HIV-1 to

  1. Novel inhibitors of the early steps of the HIV-1 life cycle.

    Science.gov (United States)

    Citterio, Paola; Rusconi, Stefano

    2007-01-01

    Considerable advances have been made on compounds that are active as inhibitors of HIV entry and fusion. The discovery of chemokines a few years ago focused the attention on coreceptor inhibitors in addition to fusion and attachment blockers. During the last 5 years, there has been an intense research activity from both private companies and academic institutions to find effective compounds that are capable of inhibiting the initial steps in the HIV life cycle. Some of the presented compounds demonstrated in vitro synergism, thus there is the rationale of their combined use in HIV-infected individuals. Many entry and fusion inhibitors of HIV are being investigated in controlled clinical trials and there are a number of them that are bioavailable as oral formulations. This is an essential feature for an extended use of these compounds with the purpose of ameliorating patients' adherence to medications; therefore, preventing the development of drug resistance. Among the many compounds that are being investigated, some are in the preclinical arena and others are more advanced in development stages. Overall, the main aim is to establish the action of these compounds on the immune system (e.g., the balance of the system after shutting off CCR5 or CXCR4 coreceptors) and the possible burden of unexplained side effects. This review focuses on the recent developments in this field with a particular attention on promising compounds in preclinical and clinical trials.

  2. Dendritic cells preferentially transfer CXCR4-using human immunodeficiency virus type 1 variants to CD4(+) T lymphocytes in trans

    NARCIS (Netherlands)

    van Montfort, Thijs; Thomas, Adri A. M.; Pollakis, Georgios; Paxton, William A.

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to IHV-I the adaptive immune

  3. Reconstructing the Dynamics of HIV Evolution within Hosts from Serial Deep Sequence Data

    NARCIS (Netherlands)

    Poon, Art F. Y.; Swenson, Luke C.; Bunnik, Evelien M.; Edo-Matas, Diana; Schuitemaker, Hanneke; van 't Wout, Angélique B.; Harrigan, P. Richard

    2012-01-01

    At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and

  4. Infection and depletion of CD4+ group-1 innate lymphoid cells by HIV-1 via type-I interferon pathway.

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2018-01-01

    Full Text Available Innate lymphoid cells (ILCs are severely depleted during chronic HIV-1 infection by unclear mechanisms. We report here that human ILC1s comprising of CD4+ and CD4- subpopulations were present in various human lymphoid organs but with different transcription programs and functions. Importantly, CD4+ ILC1s expressed HIV-1 co-receptors and were productively infected by HIV-1 in vitro and in vivo. Furthermore, chronic HIV-1 infection activated and depleted both CD4+ and CD4- ILC1s, and impaired their cytokine production activity. Highly active antiretroviral (HAART therapy in HIV-1 patients efficiently rescued the ILC1 numbers and reduced their activation, but failed to restore their functionality. We also found that blocking type-I interferon (IFN-I signaling during HIV-1 infection in vivo in humanized mice prevented HIV-1 induced depletion or apoptosis of ILC1 cells. Therefore, we have identified the CD4+ ILC1 cells as a new target population for HIV-1 infection, and revealed that IFN-I contributes to the depletion of ILC1s during HIV-1 infection.

  5. Development of an HIV-1 Subtype Panel in China: Isolation and Characterization of 30 HIV-1 Primary Strains Circulating in China.

    Directory of Open Access Journals (Sweden)

    Jingwan Han

    Full Text Available The complex epidemic and significant diversity of HIV-1 strains in China pose serious challenges for surveillance and diagnostic assays, vaccine development and clinical management. There is a lack of HIV-1 isolates in current canonical HIV-1 subtype panels that can represent HIV-1 diversity in China; an HIV-1 subtype panel for China is urgently needed.Blood samples were collected from HIV-1 infected patients participating in the drug-resistance surveillance program in China. The samples were isolated, cultured and stored as neat culture supernatant. The HIV-1 isolates were fully characterized. The panel was used to compare 2 viral load assays and 2 p24 assays as the examples of how this panel could be used.An HIV-1 subtype panel for China composed of 30 HIV-1 primary strains of four subtypes (B [including Thai-B], CRF01_AE, CRF07_BC and G was established. The samples were isolated and cultured to a high-titer (10(6-10(9 copies/ml/high-volume (40 ml. The HIV-1 isolates were fully characterized by the final viral load, p24 concentration, gag-pol and envC2V3 sequencing, co-receptor prediction, determination of the four amino acids at the tip of the env V3-loop, glycosylation sites in the V3 loop and the drug-resistance mutations. The comparison of two p24 assays and two viral load assays on the isolates illustrated how this panel may be used for the evaluation of diagnostic assay performance. The Pearson value between p24 assays were 0.938. The viral load results showed excellent concordance and agreement for samples of Thai-B, but lower correlations for samples of CRF01_AE.The current panel of 30 HIV-1 isolates served as a basis for the development of a comprehensive panel of fully characterized viral isolates, which could reflect the current dynamic and complex HIV-1 epidemic in China. This panel will be available to support HIV-1 research, assay evaluation, vaccine and drug development.

  6. Stabilization of HIV-1 envelope in the CD4-bound conformation through specific cross-linking of a CD4 mimetic.

    Science.gov (United States)

    Martin, Grégoire; Burke, Brian; Thaï, Robert; Dey, Antu K; Combes, Olivier; Ramos, Oscar H P; Heyd, Bernadette; Geonnotti, Anthony R; Montefiori, David C; Kan, Elaine; Lian, Ying; Sun, Yide; Abache, Toufik; Ulmer, Jeffrey B; Madaoui, Hocine; Guérois, Raphaël; Barnett, Susan W; Srivastava, Indresh K; Kessler, Pascal; Martin, Loïc

    2011-06-17

    CD4 binding on gp120 leads to the exposure of highly conserved regions recognized by the HIV co-receptor CCR5 and by CD4-induced (CD4i) antibodies. A covalent gp120-CD4 complex was shown to elicit CD4i antibody responses in monkeys, which was correlated with control of the HIV virus infection (DeVico, A., Fouts, T., Lewis, G. K., Gallo, R. C., Godfrey, K., Charurat, M., Harris, I., Galmin, L., and Pal, R. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 17477-17482). Because the inclusion of CD4 in a vaccine formulation should be avoided, due to potential autoimmune reactions, we engineered small sized CD4 mimetics (miniCD4s) that are poorly immunogenic and do not induce anti-CD4 antibodies. We made covalent complexes between such an engineered miniCD4 and gp120 or gp140, through a site-directed coupling reaction. These complexes were recognized by CD4i antibodies as well as by the HIV co-receptor CCR5. In addition, they elicit CD4i antibody responses in rabbits and therefore represent potential vaccine candidates that mimic an important HIV fusion intermediate, without autoimmune hazard.

  7. Oral and vaginal epithelial cell lines bind and transfer cell-free infectious HIV-1 to permissive cells but are not productively infected.

    Directory of Open Access Journals (Sweden)

    Arinder Kohli

    Full Text Available The majority of HIV-1 infections worldwide are acquired via mucosal surfaces. However, unlike the vaginal mucosa, the issue of whether the oral mucosa can act as a portal of entry for HIV-1 infection remains controversial. To address potential differences with regard to the fate of HIV-1 after exposure to oral and vaginal epithelium, we utilized two epithelial cell lines representative of buccal (TR146 and pharyngeal (FaDu sites of the oral cavity and compared them with a cell line derived from vaginal epithelium (A431 in order to determine (i HIV-1 receptor gene and protein expression, (ii whether HIV-1 genome integration into epithelial cells occurs, (iii whether productive viral infection ensues, and (iv whether infectious virus can be transferred to permissive cells. Using flow cytometry to measure captured virus by HIV-1 gp120 protein detection and western blot to detect HIV-1 p24 gag protein, we demonstrate that buccal, pharyngeal and vaginal epithelial cells capture CXCR4- and CCR5-utilising virus, probably via non-canonical receptors. Both oral and vaginal epithelial cells are able to transfer infectious virus to permissive cells either directly through cell-cell attachment or via transcytosis of HIV-1 across epithelial cells. However, HIV-1 integration, as measured by real-time PCR and presence of early gene mRNA transcripts and de novo protein production were not detected in either epithelial cell type. Importantly, both oral and vaginal epithelial cells were able to support integration and productive infection if HIV-1 entered via the endocytic pathway driven by VSV-G. Our data demonstrate that under normal conditions productive HIV-1 infection of epithelial cells leading to progeny virion production is unlikely, but that epithelial cells can act as mediators of systemic viral dissemination through attachment and transfer of HIV-1 to permissive cells.

  8. Inhibition of HIV-1 replication in human monocyte-derived macrophages by parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Guadalupe Andreani

    Full Text Available BACKGROUND: Cells of monocyte/macrophage lineage are one of the major targets of HIV-1 infection and serve as reservoirs for viral persistence in vivo. These cells are also the target of the protozoa Trypanosoma cruzi, the causative agent of Chagas disease, being one of the most important endemic protozoonoses in Latin America. It has been demonstrated in vitro that co-infection with other pathogens can modulate HIV replication. However, no studies at cellular level have suggested an interaction between T. cruzi and HIV-1 to date. METHODOLOGY/PRINCIPAL FINDINGS: By using a fully replicative wild-type virus, our study showed that T. cruzi inhibits HIV-1 antigen production by nearly 100% (p99% being stronger than HIV-T. cruzi (approximately 90% for BaL and approximately 85% for VSV-G infection. In MDM with established HIV-1 infection, T. cruzi significantly inhibited luciferate activity (p<0.01. By quantifying R-U5 and U5-gag transcripts by real time PCR, our study showed the expression of both transcripts significantly diminished in the presence of trypomastigotes (p<0.05. Thus, T. cruzi inhibits viral post-integration steps, early post-entry steps and entry into MDM. Trypomastigotes also caused a approximately 60-70% decrease of surface CCR5 expression on MDM. Multiplication of T. cruzi inside the MDM does not seem to be required for inhibiting HIV-1 replication since soluble factors secreted by trypomastigotes have shown similar effects. Moreover, the major parasite antigen cruzipain, which is secreted by the trypomastigote form, was able to inhibit viral production in MDM over 90% (p<0.01. CONCLUSIONS/SIGNIFICANCE: Our study showed that T. cruzi inhibits HIV-1 replication at several replication stages in macrophages, a major cell target for both pathogens.

  9. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages.

    Science.gov (United States)

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-06-23

    HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.

  10. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells

    Directory of Open Access Journals (Sweden)

    Bertin Jonathan

    2012-03-01

    Full Text Available Abstract Background Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS. Leukotriene B4 (LTB4 and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs in HIV-1 infection of microglial cells. Methods To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2 or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR. Results We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5 surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. Conclusions These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.

  11. Higher viral load and genetic diversity of HIV-1 in seminal compartments than in blood of seven Chinese men who have sex with men and have early HIV-1 infection.

    Science.gov (United States)

    Jiao, Yan-Mei; Chen, Guang-Lei; Zhu, Wei-Jun; Huang, Hui-Huang; Fu, Jun-Liang; Chen, Wei-Wei; Shi, Ming; Zhang, Tong; Wu, Hao; Wang, Fu-Sheng

    2017-06-01

    To date, there have been no reports characterizing HIV-1 in the semen of Chinese men who have sex with men (MSM) with early infection. In this study, genetic diversity and viral load of HIV-1 in the seminal compartments and blood of Chinese MSM with early HIV-1 infection were examined. Viral load and genetic diversity of HIV-1 in paired samples of semen and blood were analyzed in seven MSM with early HIV-1 infection. HIV-1 RNA and DNA were quantitated by real-time PCR assays. Through sequencing the C2-V5 region of the HIV-1 env gene, the HIV-1 genotype and genetic diversity based on V3 loop amino acid sequences were determined by using Geno2pheno and PSSM programs co-receptor usage. It was found that there was more HIV-1 RNA in seminal plasma than in blood plasma and total, and more 2-LTR circular and integrated HIV-1 DNA in seminal cells than in peripheral blood mononuclear cells from all seven patients with early HIV-infection. There was also greater HIV-1 genetic diversity in seminal than in blood compartments. HIV-1 in plasma displayed higher genetic diversity than in cells from the blood and semen. In addition, V3 loop central motifs, which present some key neutralizing antibody epitopes, varied between blood and semen. Thus, virological characteristics in semen may be more representative when evaluating risk of transmission in persons with early HIV infection. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  12. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild-type...... mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...

  13. CCR5Δ32 Polymorphism Associated with a Slower Rate Disease Progression in a Cohort of RR-MS Sicilian Patients

    Directory of Open Access Journals (Sweden)

    Rosalia D'Angelo

    2011-01-01

    Full Text Available Multiple sclerosis (MS disease is carried through inflammatory and degenerative stages. Based on clinical feaures, it can be subdivided into three groups: relapsing-remitting MS, secondary progressive MS, and primary progressive MS. Multiple sclerosis has a multifactorial etiology with an interplay of genetic predisposition, environmental factors, and autoimmune inflammatory mechanism in which play a key role CC-chemokines and its receptors. In this paper, we studied the frequency of CCR5 gene Δ32 allele in a cohort of Sicilian RR-MS patients comparing with general Sicilian population. Also, we evaluate the association between this commonly polymorphism and disability development and age of disease onset in the same cohort. Our results show that presence of CCR5Δ32 is significantly associated with expanded disability status scale score (EDSS but not with age of disease onset.

  14. Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector.

    Science.gov (United States)

    Walker, Jon E; Chen, Rachel X; McGee, Jeannine; Nacey, Catherine; Pollard, Richard B; Abedi, Mehrdad; Bauer, Gerhard; Nolta, Jan A; Anderson, Joseph S

    2012-05-01

    HIV gene therapy has the potential to offer an alternative to the use of current small-molecule antiretroviral drugs as a treatment strategy for HIV-infected individuals. Therapies designed to administer HIV-resistant stem cells to an infected patient may also provide a functional cure, as observed in a bone marrow transplant performed with hematopoietic stem cells (HSCs) homozygous for the CCR5-Δ32-bp allele. In our current studies, preclinical evaluation of a combination anti-HIV lentiviral vector was performed, in vivo, in humanized NOD-RAG1(-/-) IL2rγ(-/-) knockout mice. This combination vector, which displays strong preintegration inhibition of HIV-1 infection in vitro, contains a human/rhesus macaque TRIM5α isoform, a CCR5 short hairpin RNA (shRNA), and a TAR decoy. Multilineage hematopoiesis from anti-HIV lentiviral vector-transduced human CD34(+) HSCs was observed in the peripheral blood and in various lymphoid organs, including the thymus, spleen, and bone marrow, of engrafted mice. Anti-HIV vector-transduced CD34(+) cells displayed normal development of immune cells, including T cells, B cells, and macrophages. The anti-HIV vector-transduced cells also displayed knockdown of cell surface CCR5 due to the expression of the CCR5 shRNA. After in vivo challenge with either an R5-tropic BaL-1 or X4-tropic NL4-3 strain of HIV-1, maintenance of human CD4(+) cell levels and a selective survival advantage of anti-HIV gene-modified cells were observed in engrafted mice. The data provided from our study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validates its potential application in future clinical trials.

  15. Generation of an HIV-1-Resistant Immune System with CD34+ Hematopoietic Stem Cells Transduced with a Triple-Combination Anti-HIV Lentiviral Vector

    Science.gov (United States)

    Walker, Jon E.; Chen, Rachel X.; McGee, Jeannine; Nacey, Catherine; Pollard, Richard B.; Abedi, Mehrdad; Bauer, Gerhard; Nolta, Jan A.

    2012-01-01

    HIV gene therapy has the potential to offer an alternative to the use of current small-molecule antiretroviral drugs as a treatment strategy for HIV-infected individuals. Therapies designed to administer HIV-resistant stem cells to an infected patient may also provide a functional cure, as observed in a bone marrow transplant performed with hematopoietic stem cells (HSCs) homozygous for the CCR5-Δ32-bp allele. In our current studies, preclinical evaluation of a combination anti-HIV lentiviral vector was performed, in vivo, in humanized NOD-RAG1−/− IL2rγ−/− knockout mice. This combination vector, which displays strong preintegration inhibition of HIV-1 infection in vitro, contains a human/rhesus macaque TRIM5α isoform, a CCR5 short hairpin RNA (shRNA), and a TAR decoy. Multilineage hematopoiesis from anti-HIV lentiviral vector-transduced human CD34+ HSCs was observed in the peripheral blood and in various lymphoid organs, including the thymus, spleen, and bone marrow, of engrafted mice. Anti-HIV vector-transduced CD34+ cells displayed normal development of immune cells, including T cells, B cells, and macrophages. The anti-HIV vector-transduced cells also displayed knockdown of cell surface CCR5 due to the expression of the CCR5 shRNA. After in vivo challenge with either an R5-tropic BaL-1 or X4-tropic NL4-3 strain of HIV-1, maintenance of human CD4+ cell levels and a selective survival advantage of anti-HIV gene-modified cells were observed in engrafted mice. The data provided from our study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validates its potential application in future clinical trials. PMID:22398281

  16. Biased and constitutive signaling in the CC-chemokine receptor CCR5 by manipulating the interface between transmembrane helices 6 and 7

    DEFF Research Database (Denmark)

    Steen, Anne; Thiele, Stefanie; Guo, Dong

    2013-01-01

    The equilibrium state of CCR5 is manipulated here toward either activation or inactivation by introduction of single amino acid substitutions in the transmembrane domains (TMs) 6 and 7. Insertion of a steric hindrance mutation in the center of TM7 (G286F in position VII:09/7.42) resulted in biased....... Furthermore, replacing Trp-248 with a smaller aromatic amino acid (Tyr/Phe) impaired the β-arrestin recruitment, yet with maintained G protein activity (biased signaling); also, here aplaviroc switched to a full agonist. Thus, the altered positioning of Trp-248, induced by G286F, led to a constraint of G......-conserved Trp in TM6 (Trp-248 in position VI:13/6.48, part of the CWXP motif) was influenced by the G286F mutation, causing Trp-248 to change orientation away from TM7. The essential role of Trp-248 in CCR5 activation was supported by complete inactivity of W248A-CCR5 despite maintaining chemokine binding...

  17. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan)

    2015-12-15

    C–C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5–MIP-1α interaction affects the progress of autoimmune diseases.

  18. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Dimiter S. Dimitrov

    2009-11-01

    Full Text Available Several human monoclonal antibodies (hmAbs and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i antibodies in HIV-1-infected patients (X5 is a CD4i antibody as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and

  19. Production of Mucosally Transmissible SHIV Challenge Stocks from HIV-1 Circulating Recombinant Form 01_AE env Sequences.

    Directory of Open Access Journals (Sweden)

    Lawrence J Tartaglia

    2016-02-01

    Full Text Available Simian-human immunodeficiency virus (SHIV challenge stocks are critical for preclinical testing of vaccines, antibodies, and other interventions aimed to prevent HIV-1. A major unmet need for the field has been the lack of a SHIV challenge stock expressing circulating recombinant form 01_AE (CRF01_AE env sequences. We therefore sought to develop mucosally transmissible SHIV challenge stocks containing HIV-1 CRF01_AE env derived from acutely HIV-1 infected individuals from Thailand. SHIV-AE6, SHIV-AE6RM, and SHIV-AE16 contained env sequences that were >99% identical to the original HIV-1 isolate and did not require in vivo passaging. These viruses exhibited CCR5 tropism and displayed a tier 2 neutralization phenotype. These challenge stocks efficiently infected rhesus monkeys by the intrarectal route, replicated to high levels during acute infection, and established chronic viremia in a subset of animals. SHIV-AE16 was titrated for use in single, high dose as well as repetitive, low dose intrarectal challenge studies. These SHIV challenge stocks should facilitate the preclinical evaluation of vaccines, monoclonal antibodies, and other interventions targeted at preventing HIV-1 CRF01_AE infection.

  20. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    Science.gov (United States)

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR5 and CXCR3 and are the most permissive to HIV-1 infection. A single low-dose intravaginal HIV-1 challenge of humanized DRAG mice results in 100% infectivity with accumulation of TFH-cells mainly in the Peyer’s patches and FRT. The novel finding of TFH-cells in the FRT may contribute to the high susceptibility of DRAG mice to HIV-1 infection. This mouse model thus provides new opportunities to study TFH-cells and to evaluate HIV-1 vaccines. PMID:26034905

  1. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators.

    Directory of Open Access Journals (Sweden)

    Tony S Cardno

    Full Text Available Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag, and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using -1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that

  2. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Qin, Yan; Bai, Lei [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Lan, Ke [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Wang, Jian-Hua, E-mail: Jh_wang@sibs.ac.cn [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China)

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.

  3. Nef does not contribute to replication differences between R5 pre-AIDS and AIDS HIV-1 clones from patient ACH142

    Directory of Open Access Journals (Sweden)

    Rekosh David

    2008-05-01

    Full Text Available Abstract AIDS-associated, CCR5-tropic (R5 HIV-1 clones, isolated from a patient that never developed CXCR4-tropic HIV-1, replicate to a greater extent and cause greater cytopathic effects than R5 HIV-1 clones isolated before the onset of AIDS. Previously, we showed that HIV-1 Env substantially contributed to the enhanced replication of an AIDS clone. In order to determine if Nef makes a similar contribution, we cloned and phenotypically analyzed nef genes from a series of patient ACH142 derived R5 HIV-1 clones. The AIDS-associated Nef contains a series of residues found in Nef proteins from progressors 1. In contrast to other reports 123, this AIDS-associated Nef downmodulated MHC-I to a greater extent and CD4 less than pre-AIDS Nef proteins. Additionally, all Nef proteins enhanced infectivity similarly in a single round of replication. Combined with our previous study, these data show that evolution of the HIV-1 env gene, but not the nef gene, within patient ACH142 significantly contributed to the enhanced replication and cytopathic effects of the AIDS-associated R5 HIV-1 clone.

  4. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  5. RANTES Gene Polymorphisms Associated with HIV-1 Infections in Kenyan Population

    Directory of Open Access Journals (Sweden)

    Shem P. M. Mutuiri

    2016-01-01

    Full Text Available Previous studies have reported that two single nucleotide polymorphisms (SNPs in the RANTES gene promoter region, -403G/A and -28C/G, are associated with a slower rate of decline in CD4+ T cell count. In addition, as a ligand of the major HIV coreceptor CCR5, it is known to block HIV-CCR5 interactions in the course of the HIV infection cycle. This study was carried out with the aim of determining the occurrence of single nucleotide polymorphisms (SNPs -403G > A and -28C > G in the promoter region of RANTES, in a subset of the Kenyan population. Genomic DNA was extracted from peripheral blood monocular cells and used to amplify the RANTES gene region. Restriction fragment length polymorphism was used to determine the genotypes of the RANTES gene. Out of 100 HIV infected individuals, 19% had G1 genotypes (403G/G, 28C/G, 30% (403A/A, 28C/C, and 50% (403G/A, 28C/C, while in healthy blood donors 13% had G4 (403G/A, 28C/C genotypes, 22% (403A/A, 28C/C, and 54% (403G/A, 28C/C. HIV negative blood donors (54% had higher risk of alteration to risk of HIV transmission compared to those who were HIV infected (50%. However, the risk to transmission and distribution differences was not significant (P=0.092. The study showed that RANTES polymorphisms -403 and -28 alleles do exist in the Kenyan population.

  6. Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides.

    Science.gov (United States)

    Hamorsky, Krystal Teasley; Grooms-Williams, Tiffany W; Husk, Adam S; Bennett, Lauren J; Palmer, Kenneth E; Matoba, Nobuyuki

    2013-05-01

    Broadly neutralizing monoclonal antibodies (bnMAbs) may offer powerful tools for HIV-1 preexposure prophylaxis, such as topical microbicides. However, this option is hampered due to expensive MAb biomanufacturing based on mammalian cell culture. To address this issue, we developed a new production system for bnMAb VRC01 in Nicotiana benthamiana plants using a tobamovirus replicon vector. Unlike conventional two-vector-based expression, this system was designed to overexpress full-length IgG1 from a single polypeptide by means of kex2p-like enzyme recognition sites introduced between the heavy and light chains. An enzyme-linked immunosorbent assay (ELISA) revealed that gp120-binding VRC01 IgG1 was maximally accumulated on 5 to 7 days following vector inoculation, yielding ~150 mg of the bnMAb per kg of fresh leaf material. The plant-made VRC01 (VRC01p) was efficiently purified by protein A affinity followed by hydrophobic-interaction chromatography. ELISA, surface plasmon resonance, and an HIV-1 neutralization assay demonstrated that VRC01p has gp120-binding affinity and HIV-1-neutralization capacity virtually identical to the human-cell-produced counterpart. To advance VRC01p's use in topical microbicides, we analyzed combinations of the bnMAb with other microbicide candidates holding distinct antiviral mechanisms in an HIV-1 neutralization assay. VRC01p exhibited clear synergy with the antiviral lectin griffithsin, the CCR5 antagonist maraviroc, and the reverse transcriptase inhibitor tenofovir in multiple CCR5-tropic HIV-1 strains from clades A, B, and C. In summary, VRC01p is amenable to robust, rapid, and large-scale production and may be developed as an active component in combination microbicides with other anti-HIV agents such as antiviral lectins, CCR5 antagonists, and reverse transcriptase inhibitors.

  7. HLA-C increases HIV-1 infectivity and is associated with gp120

    Directory of Open Access Journals (Sweden)

    Beretta Alberto

    2008-08-01

    Full Text Available Abstract Background A recently identified genetic polymorphism located in the 5' region of the HLA-C gene is associated with individual variations in HIV-1 viral load and with differences in HLA-C expression levels. HLA-C has the potential to restrict HIV-1 by presenting epitopes to cytotoxic T cells but it is also a potent inhibitor of NK cells. In addition, HLA-C molecules incorporated within the HIV-1 envelope have been shown to bind to the envelope glycoprotein gp120 and enhance viral infectivity. We investigated this last property in cell fusion assays where the expression of HLA-C was silenced by small interfering RNA sequences. Syncytia formation was analyzed by co-cultivating cell lines expressing HIV-1 gp120/gp41 from different laboratory and primary isolates with target cells expressing different HIV-1 co-receptors. Virus infectivity was analyzed using pseudoviruses. Molecular complexes generated during cell fusion (fusion complexes were purified and analyzed for their HLA-C content. Results HLA-C positive cells co-expressing HIV-1 gp120/gp41 fused more rapidly and produced larger syncytia than HLA-C negative cells. Transient transfection of gp120/gp41 from different primary isolates in HLA-C positive cells resulted in a significant cell fusion increase. Fusion efficiency was reduced in HLA-C silenced cells compared to non-silenced cells when co-cultivated with different target cell lines expressing HIV-1 co-receptors. Similarly, pseudoviruses produced from HLA-C silenced cells were significantly less infectious. HLA-C was co-purified with gp120 from cells before and after fusion and was associated with the fusion complex. Conclusion Virionic HLA-C molecules associate to Env and increase the infectivity of both R5 and X4 viruses. Genetic polymorphisms associated to variations in HLA-C expression levels may therefore influence the individual viral set point not only by means of a regulation of the virus-specific immune response but also

  8. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  9. Risk for HIV-1 infection is not associated with repeat-region polymorphism in the DC-SIGN neck domain and novel genetic DC-SIGN variants among North Indians.

    Science.gov (United States)

    Rathore, Anurag; Chatterjee, Animesh; Sood, Vikas; Khan, Sohrab Z; Banerjea, Akhil C; Yamamoto, Naohiko; Dhole, Tapan N

    2008-05-01

    Several genetic factors have been related to HIV-1 resistance, the homozygosity for a mutation in CCR5 gene (CCR5Delta 32 allele) is presently considered the most relevant one. The C-type lectin, DC-SIGN efficiently binds and transmits HIV-1 to susceptible cell in trans thereby augmenting the infection. A potential association of the DC-SIGN neck domain repeats polymorphism and risk of HIV-1 infection is currently under debate. Genetic risk association study was conducted in HIV-1 exposed seronegative (HES; n=50) individuals, HIV-1 seronegative (HSN; n=314) healthy control and HIV-1 infected seropositive patients (HSP; n=190) for polymorphism in neck domain of DC-SIGN gene. The DC-SIGN genotypes were identified by PCR from DNA extracted from peripheral blood and confirmed by sequencing. Fisher exact or chi(2) test was used for statistical analysis. One HSN and HSP individual who were heterozygous (7/8) with respect to DC-SIGN repeat regions were found. The DC-SIGN neck repeat polymorphism among North Indian individuals was not associated with susceptibility to HIV-1 infection. Furthermore, inheritance study of heterozygous mutation (7/8) in HSN individual's family showed that one parent, two brothers, one sister and one daughter were heterozygous (7/8) for DC-SIGN mutant allele. Sequence analyses of DC-SIGN exon 4 repeat region of randomly selected 25 North Indian individuals from HSP, HSN and HES revealed four conserved intronic mutations. These mutations were at nucleotide position 1283, 1306, 1308 upstream and 1906 downstream of the DC-SIGN exon 4 repeat region when compared with the wild type sequence (NCBI Acc. No. AF209479). The polymorphism in DC-SIGN neck repeats region was rare and not associated with HIV-1 susceptibility among North Indians. Sequencing analysis of DC-SIGN gene confirmed four novel genetic variants in intronic region flanking exon 4 coding region.

  10. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Directory of Open Access Journals (Sweden)

    Song Xinming

    2009-08-01

    HIV-1 interaction with target cells, i.e., the interaction between gp120 and CD4/CCR5 or gp120 and CD4/CXCR4 and point to the potential of developing these two extracts to be HIV-1 entry inhibitors.

  11. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    Energy Technology Data Exchange (ETDEWEB)

    Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Kunstman, Kevin, E-mail: kunstman@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Gabuzda, Dana, E-mail: dana_gabuzda@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Neurology (Microbiology and Immunobiology), Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.

  12. Efecto de un antagonista de CCR5 sobre la reactivación de la latencia del virus de la inmunodeficiencia humana

    OpenAIRE

    Madrid Elena, Nadia Patricia

    2014-01-01

    Hernández Novoa, Beatriz, codir. Maraviroc (MVC) es un antagonista del receptor de quimioquinas CCR5, que a su vez, es utilizado por el VIH-1 como correceptor para su entrada a la célula. Estudios previos de nuestro grupo muestran que cuando se añadió MVC al tratamiento antirretroviral (TAR) supresivo, en un ensayo clínico de intensificación, aceleró la caída del reservorio celular al tiempo que aumentó la viremia plasmática y el ADN episomal con 2-LTRs. Estos resultados sugerían que MVC p...

  13. Design and Characterization of a Peptide Mimotope of the HIV-1 gp120 Bridging Sheet

    Directory of Open Access Journals (Sweden)

    Guido Poli

    2012-05-01

    Full Text Available The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV+ broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env. In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.

  14. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Directory of Open Access Journals (Sweden)

    Samuele E Burastero

    Full Text Available To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  15. Inhibition of highly productive HIV-1 infection in T cells, primary human macrophages, microglia, and astrocytes by Sargassum fusiforme

    Directory of Open Access Journals (Sweden)

    Veille Jean-Claude

    2006-05-01

    Full Text Available Abstract Background The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS, in microglia and astrocytes. Results S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3 infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4 and CCR5 (R5-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC. S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV, which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3 was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. Conclusion This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition

  16. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha.

    Science.gov (United States)

    Raport, C J; Gosling, J; Schweickart, V L; Gray, P W; Charo, I F

    1996-07-19

    Chemokines affect leukocyte chemotactic and activation activities through specific G protein-coupled receptors. In an effort to map the closely linked CC chemokine receptor genes, we identified a novel chemokine receptor encoded 18 kilobase pairs downstream of the monocyte chemoattractant protein-1 (MCP-1) receptor (CCR2) gene on human chromosome 3p21. The deduced amino acid sequence of this novel receptor, designated CCR5, is most similar to CCR2B, sharing 71% identical residues. Transfected cells expressing the receptor bind RANTES (regulated on activation normal T cell expressed), MIP-1beta, and MIP-1alpha with high affinity and generate inositol phosphates in response to these chemokines. This same combination of chemokines has recently been shown to potently inhibit human immunodeficiency virus replication in human peripheral blood leukocytes (Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P.(1995) Science 270, 1811-1815). CCR5 is expressed in lymphoid organs such as thymus and spleen, as well as in peripheral blood leukocytes, including macrophages and T cells, and is the first example of a human chemokine receptor that signals in response to MIP-1beta.

  17. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  18. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell.

    Science.gov (United States)

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N

    2016-04-01

    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A macaque model of HIV-1 infection

    OpenAIRE

    Hatziioannou, Theodora; Ambrose, Zandrea; Chung, Nancy P. Y.; Piatak, Michael; Yuan, Fang; Trubey, Charles M.; Coalter, Vicky; Kiser, Rebecca; Schneider, Doug; Smedley, Jeremy; Pung, Rhonda; Gathuka, Mercy; Estes, Jacob D.; Veazey, Ronald S.; KewalRamani, Vineet N.

    2009-01-01

    The lack of a primate model that utilizes HIV-1 as the challenge virus is an impediment to AIDS research; existing models generally employ simian viruses that are divergent from HIV-1, reducing their usefulness in preclinical investigations. Based on an understanding of species-specific variation in primate TRIM5 and APOBEC3 antiretroviral genes, we constructed simian-tropic (st)HIV-1 strains that differ from HIV-1 only in the vif gene. We demonstrate that such minimally modified stHIV-1 stra...

  20. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    Science.gov (United States)

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mucosal immunity and HIV-1 infection: applications for mucosal AIDS vaccine development.

    Science.gov (United States)

    Belyakov, Igor M; Ahlers, Jeffrey D

    2012-01-01

    Natural transmission of human immunodeficiency virus type 1 (HIV-1) occurs through gastrointestinal and vaginal mucosa. These mucosal tissues are major reservoirs for initial HIV replication and amplification, and the sites of rapid CD4(+) T cell depletion. In both HIV-infected humans and SIV-infected macaques, massive loss of CD4(+) CCR5(+) memory T cells occurs in the gut and vaginal mucosa within the first 10-14 days of infection. Induction of local HIV-specific immune responses by vaccines may facilitate effective control of HIV or SIV replication at these sites. Vaccines that induce mucosal responses, in particular CD8(+) cytotoxic T lymphocytes (CTL), have controlled viral replication at mucosal sites and curtailed systemic dissemination. Thus, there is strong justification for development of next generation vaccines that induce mucosal immune effectors against HIV-1 including CD8(+) CTL, CD4(+) T helper cells and secretory IgA. In addition, further understanding of local innate mechanisms that impact early viral replication will greatly inform future vaccine development. In this review, we examine the current knowledge concerning mucosal AIDS vaccine development. Moreover, we propose immunization strategies that may be able to elicit an effective immune response that can protect against AIDS as well as other mucosal infections.

  2. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells.

    Directory of Open Access Journals (Sweden)

    Meimei Shan

    2007-11-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 envelope glycoprotein gp120 is a vaccine immunogen that can signal via several cell surface receptors. To investigate whether receptor biology could influence immune responses to gp120, we studied its interaction with human, monocyte-derived dendritic cells (MDDCs in vitro. Gp120 from the HIV-1 strain JR-FL induced IL-10 expression in MDDCs from 62% of donors, via a mannose C-type lectin receptor(s (MCLR. Gp120 from the strain LAI was also an IL-10 inducer, but gp120 from the strain KNH1144 was not. The mannose-binding protein cyanovirin-N, the 2G12 mAb to a mannose-dependent gp120 epitope, and MCLR-specific mAbs inhibited IL-10 expression, as did enzymatic removal of gp120 mannose moieties, whereas inhibitors of signaling via CD4, CCR5, or CXCR4 were ineffective. Gp120-stimulated IL-10 production correlated with DC-SIGN expression on the cells, and involved the ERK signaling pathway. Gp120-treated MDDCs also responded poorly to maturation stimuli by up-regulating activation markers inefficiently and stimulating allogeneic T cell proliferation only weakly. These adverse reactions to gp120 were MCLR-dependent but independent of IL-10 production. Since such mechanisms might suppress immune responses to Env-containing vaccines, demannosylation may be a way to improve the immunogenicity of gp120 or gp140 proteins.

  3. Higher pre-infection vitamin E levels are associated with higher mortality in HIV-1-infected Kenyan women: a prospective study

    Directory of Open Access Journals (Sweden)

    Lavreys Ludo

    2007-06-01

    Full Text Available Abstract Background Low vitamin E levels are often found in HIV-1 infection, and studies have suggested that higher levels may decrease the risk of disease progression. However, vitamin E supplementation has also been reported to increase CCR5 expression, which could increase HIV-1 replication. We hypothesized that vitamin E levels at HIV-1 acquisition may influence disease progression. Methods Vitamin E status was measured in stored samples from the last pre-infection visit for 67 Kenyan women with reliably estimated dates of HIV-1 acquisition. Regression analyses were used to estimate associations between pre-infection vitamin E and plasma viral load, time to CD4 count Results After controlling for potential confounding factors, each 1 mg/L increase in pre-infection vitamin E was associated with 0.08 log10 copies/mL (95% CI -0.01 to +0.17 higher set point viral load and 1.58-fold higher risk of mortality (95% CI 1.15–2.16. The association between higher pre-infection vitamin E and mortality persisted after adjustment for set point viral load (HR 1.55, 95% CI 1.13–2.13. Conclusion Higher pre-infection vitamin E levels were associated with increased mortality. Further research is needed to elucidate the role vitamin E plays in HIV-1 pathogenesis.

  4. HIV-1 infection of human intestinal lamina propria CD4+ T cells in vitro is enhanced by exposure to commensal Escherichia coli.

    Science.gov (United States)

    Dillon, Stephanie M; Manuzak, Jennifer A; Leone, Amanda K; Lee, Eric J; Rogers, Lisa M; McCarter, Martin D; Wilson, Cara C

    2012-07-15

    Microbial translocation has been linked to systemic immune activation in HIV-1 disease, yet mechanisms by which microbes may contribute to HIV-associated intestinal pathogenesis are poorly understood. Importantly, our understanding of the impact of translocating commensal intestinal bacteria on mucosal-associated T cell responses in the context of ongoing viral replication that occurs early in HIV-1 infection is limited. We previously identified commensal Escherichia coli-reactive Th1 and Th17 cells in normal human intestinal lamina propria (LP). In this article, we established an ex vivo assay to investigate the interactions between Th cell subsets in primary human LP mononuclear cells (LPMCs), commensal E. coli, and CCR5-tropic HIV-1(Bal). Addition of heat-killed E. coli to HIV-1-exposed LPMCs resulted in increases in HIV-1 replication, CD4 T cell activation and infection, and IL-17 and IFN-γ production. Conversely, purified LPS derived from commensal E. coli did not enhance CD4 T cell infection. E. coli exposure induced greater proliferation of LPMC Th17 than Th1 cells. Th17 cells were more permissive to infection than Th1 cells in HIV-1-exposed LPMC cultures, and Th17 cell infection frequencies significantly increased in the presence of E. coli. The E. coli-associated enhancement of infection was dependent on the presence of CD11c(+) LP dendritic cells and, in part, on MHC class II-restricted Ag presentation. These results highlight a potential role for translocating microbes in impacting mucosal HIV-1 pathogenesis during early infection by increasing HIV-1 replication and infection of intestinal Th1 and Th17 cells.

  5. Interleukin-27 is a potent inhibitor of cis HIV-1 replication in monocyte-derived dendritic cells via a type I interferon-independent pathway.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available IL-27, a member of the IL-12 family of cytokines, plays an important and diverse role in the function of the immune system. Whilst generally recognized as an anti-inflammatory cytokine, in addition IL-27 has been found to have broad anti-viral effects. Recently, IL-27 has been shown to be a potent inhibitor of HIV-1 infection in CD4+ T cells and macrophages. The main objective of this study was to see whether IL-27 has a similar inhibitory effect on HIV-1 replication in dendritic cells (DCs. Monocytes were differentiated into immature DCs (iDCs and mature DCs (mDCs with standard techniques using a combination of GM-CSF, IL-4 and LPS. Following differentiation, iDCs were infected with HIV-1 and co-cultured in the presence or absence of IL-27. IL-27 treated DCs were shown to be highly potent inhibitors of cis HIV-1, particularly of CCR5 tropic strains. Of note, other IL-12 family members (IL-12, IL-23 and IL-35 had no effect on HIV-1 replication. Microarray studies of IL-27 treated DCs showed no up-regulation of Type I (IFN gene expression. Neutralization of the Type-I IFN receptor had no impact on the HIV inhibition. Lastly, IL-27 mediated inhibition was shown to act post-viral entry and prior to completion of reverse transcription. These results show for the first time that IL-27 is a potent inhibitor of cis HIV-1 infection in DCs by a Type I IFN independent mechanism. IL-27 has previously been reported to inhibit HIV-1 replication in CD4+ T cells and macrophages, thus taken together, this cytokine is a potent anti-HIV agent against all major cell types targeted by the HIV-1 virus and may have a therapeutic role in the future.

  6. Chemokine Ligand 5 (CCL5 and chemokine receptor (CCR5 genetic variants and prostate cancer risk among men of African Descent: a case-control study

    Directory of Open Access Journals (Sweden)

    Kidd LaCreis R

    2012-11-01

    Full Text Available Abstract Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs are associated with various cancers, their impact on prostate cancer (PCA among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA and rs3817655 (AA, AG, AG+AA genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655 and CCR5 (rs1799988 sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent.

  7. Association between the polymorphism of CCR5 and Alzheimer's disease: results of a study performed on male and female patients from Northern Italy.

    Science.gov (United States)

    Balistreri, Carmela Rita; Grimaldi, Maria Paola; Vasto, Sonya; Listi, Florinda; Chiappelli, Martina; Licastro, Federico; Lio, Domenico; Caruso, Calogero; Candore, Giuseppina

    2006-11-01

    Alzheimer's disease (AD) is the most common cause of dementia in Western society. The prevalence of AD is greater in women than in men, largely due to longevity and survival differences favoring women. However, some studies suggest that incidence rates may really be increased in women. One possible factor influencing AD incidence in women is the loss of ovarian estrogens production after menopause, which might be involved in AD pathogenesis. Estrogens seem to influence some neuronal functions. Many of these actions appear beneficial (i.e., neuroprotective action against a variety of insults, as oxidative stress, and reduction of beta-amyloid plaques formation). Furthermore, several studies have shown that proinflammatory genotypes seem to significantly contribute to AD risk. In the present study, we evaluated whether the anti-inflammatory allele of chemokine receptor CCR5 is a component of the genetic protective background versus AD neuronal degeneration. We genotyped for Delta32 (a 32-bp deletion of the CCR5 gene that causes a frameshift at amino acid 185) in 191 AD patients (133 women and 58 men; age range: 53-98 years; mean age: 74.88 +/- 8.44) and 182 controls (98 women and 84 men; age range: 65-93; mean age 73.21 +/- 8.24) from northern Italy. No different distribution of the CCRDelta32 deletion in the two cohorts was clearly evident. Statistical analysis by gender stratification, demonstrated no differences in genotype distribution and allelic frequency both in women and in men. Further, studies should focus on identification of proinflammatory genetic variants involved in AD pathogenesis in women.

  8. The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Sarah K Mercier

    2013-10-01

    Full Text Available HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45⁺ microvesicles (MV which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45⁺ MVs was shown to enhance DC maturation and ICAM-1 (CD54 expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24⁺ MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs and nef were the likely DC maturation candidates. Recombinant HSP90α and β and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1

  9. CCR5Δ32 (rs333) polymorphism is associated with decreased risk of chronic and aggressive periodontitis: A case-control analysis based in disease resistance and susceptibility phenotypes.

    Science.gov (United States)

    Cavalla, Franco; Biguetti, Claudia C; Dionisio, Thiago J; Azevedo, Michelle C S; Martins, Walter; Santos, Carlos F; Trombone, Ana Paula F; Silva, Renato M; Letra, Ariadne; Garlet, Gustavo P

    2017-09-29

    Chronic and aggressive periodontitis are infectious diseases characterized by the irreversible destruction of periodontal tissues, which is mediated by the host inflammatory immune response triggered by periodontal infection. The chemokine receptor CCR5 play an important role in disease pathogenesis, contributing to pro-inflammatory response and osteoclastogenesis. CCR5Δ32 (rs333) is a loss-of-function mutation in the CCR5 gene, which can potentially modulate the host response and, consequently periodontitis outcome. Thus, we investigated the effect of the CCR5Δ32 mutation over the risk to suffer periodontitis in a cohort of Brazilian patients (total N=699), representative of disease susceptibility (chronic periodontitis, N=197; and aggressive periodontitis, N=91) or resistance (chronic gingivitis, N=193) phenotypes, and healthy subjects (N=218). Additionally, we assayed the influence of CCR5Δ32 in the expression of the biomarkers TNFα, IL-1β, IL-10, IL-6, IFN-γ and T-bet, and key periodontal pathogens P. gingivalis, T. forsythia, and T. denticola. In the association analysis of resistant versus susceptible subjects, CCR5Δ32 mutant allele-carriers proved significantly protected against chronic (OR 0.49; 95% CI 0.29-0.83; p-value 0.01) and aggressive (OR 0.46; 95% CI 0.22-0.94; p-value 0.03) periodontitis. Further, heterozygous subjects exhibited significantly decreased expression of TNFα in periodontal tissues, pointing to a functional effect of the mutation in periodontal tissues during the progression of the disease. Conversely, no significant changes were observed in the presence or quantity of the periodontal pathogens P. gingivalis, T. forsythia, and T. denticola in the subgingival biofilm that could be attributable to the mutant genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identification of full-length transmitted/founder viruses and their progeny in primary HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Bhattacharya, T [Los Alamos National Laboratory

    2009-01-01

    Identification of transmitted/founder virus genomes and their progeny by is a novel strategy for probing the molecular basis of HIV-1 transmission and for evaluating the genetic imprint of viral and host factors that act to constrain or facilitate virus replication. Here, we show in a cohort of twelve acutely infected subjects (9 clade B; 3 clade C), that complete genomic sequences of transmitted/founder viruses could be inferred using single genome amplification of plasma viral RNA, direct amplicon sequencing, and a model of random virus evolution. This allowed for the precise identification, chemical synthesis, molecular cloning, and biological analysis of those viruses actually responsible for productive clinical infection and for a comprehensive mapping of sequential viral genomes and proteomes for mutations that are necessary or incidental to the establishment of HIV-1 persistence. Transmitted/founder viruses were CD4 and CCR5 tropic, replicated preferentially in activated primary T-Iymphocytes but not monocyte-derived macrophages, and were effectively shielded from most heterologous or broadly neutralizing antibodies. By 3 months of infection, the evolving viral quasispecies in three subjects showed mutational fixation at only 2-5 discreet genomic loci. By 6-12 months, mutational fixation was evident at 18-27 genomic loci. Some, but not all, of these mutations were attributable to virus escape from cytotoxic Tlymphocytes or neutralizing antibodies, suggesting that other viral or host factors may influence early HIV -1 fitness.

  11. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  12. Photoinduced Reactivity of the HIV-1 Envelope Glycoprotein with a Membrane-Embedded Probe Reveals Insertion of Portions of the HIV-1 Gp41 Cytoplasmic Tail into the Viral Membrane†

    Science.gov (United States)

    Viard, Mathias; Ablan, Sherimay D.; Zhou, Ming; Veenstra, Timothy D.; Freed, Eric O.; Raviv, Yossef; Blumenthal, Robert

    2008-01-01

    The interactions of HIV-1 Env (gp120-gp41) with CD4 and coreceptors trigger a barrage of conformational changes in Env that drive the membrane fusion process. Various regions of gp41 have profound effects on HIV entry and budding. However, the precise interactions between gp41 and the membrane have not been elucidated. To examine portions of membrane proteins that are embedded in membrane lipids, we have studied photoinduced chemical reactions in membranes using the lipid bilayer specific probe iodonaphthyl azide (INA). Here we show that in addition to the transmembrane anchor, amphipatic sequences in the cytoplasmic tail (CT) of HIV-1 gp41 are labeled by INA. INA labeling of the HIV-1 gp41 CT was similar whether wild-type or a mutant HIV-1 was used with uncleaved p55 Gag, which does not allow entry. These results shed light on the disposition of the HIV-1 gp41 CT with respect to the membrane. Moreover, our data have general implications for topology of membrane proteins and their in situ interactions with the lipid bilayer. PMID:18198900

  13. Diagnostik af HIV-1 infektionen

    DEFF Research Database (Denmark)

    Christiansen, C B; Dickmeiss, E; Bygbjerg, Ib Christian

    1991-01-01

    Different methods have been developed for the diagnosis of HIV infection, i.e. detection of antibodies, antigen and proviral DNA. ELISA methods for detecting HIV-1 antibodies are widely used as screening assays. A sample which is repeatedly positive with ELISA is re-tested with a confirmatory test...... in a proportion of patients. Detection and quantitation of HIV antigen are used as indicators of disease progression and for monitoring the antiviral efficacy of therapeutic interventions. When no antibodies or antigens can be detected in persons suspected of having HIV infection, culture of HIV can be performed....... For research purposes, detection of small amounts of proviral DNA can be made with polymerase chain reaction (PCR). The method is not yet applicable in routine diagnosis of HIV infection....

  14. Transcriptional Analysis of serk1 and serk3 coreceptor mutants

    NARCIS (Netherlands)

    Esse, van Wilma; Hove, ten Colette A.; Guzzonato, Francesco; Esse, van Peter; Boekschoten, Mark; Ridder, Lars; Vervoort, Jacques; Vries, de Sacco C.

    2016-01-01

    Somatic embryogenesis receptor kinases (SERKs) are ligand-binding coreceptors that are able to combine with different ligandperceiving receptors such as BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2. Phenotypical analysis of serk single mutants is not straightforward because

  15. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR RNA.

    Directory of Open Access Journals (Sweden)

    Matthew S Lalonde

    2011-05-01

    Full Text Available The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (- strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.

  16. Quantifying Ongoing HIV-1 Exposure in HIV-1–Serodiscordant Couples to Identify Individuals With Potential Host Resistance to HIV-1

    Science.gov (United States)

    Mackelprang, Romel D.; Baeten, Jared M.; Donnell, Deborah; Celum, Connie; Farquhar, Carey; de Bruyn, Guy; Essex, Max; McElrath, M. Juliana; Nakku-Joloba, Edith; Lingappa, Jairam R.

    2012-01-01

    Background. Immunogenetic correlates of resistance to HIV-1 in HIV-1–exposed seronegative (HESN) individuals with consistently high exposure may inform HIV-1 prevention strategies. We developed a novel approach for quantifying HIV-1 exposure to identify individuals remaining HIV-1 uninfected despite persistent high exposure. Methods. We used longitudinal predictors of HIV-1 transmission in HIV-1 serodiscordant couples to score HIV-1 exposure and define HESN clusters with persistently high, low, and decreasing risk trajectories. The model was validated in an independent cohort of serodiscordant couples. We describe a statistical tool that can be applied to other HESN cohorts to identify individuals with high exposure to HIV-1. Results. HIV-1 exposure was best quantified by frequency of unprotected sex with, plasma HIV-1 RNA levels among, and presence of genital ulcer disease among HIV-1–infected partners and by age, pregnancy status, herpes simplex virus 2 serostatus, and male circumcision status among HESN participants. Overall, 14% of HESN individuals persistently had high HIV-1 exposure and exhibited a declining incidence of HIV-1 infection over time. Conclusions. A minority of HESN individuals from HIV-1–discordant couples had persistent high HIV-1 exposure over time. Decreasing incidence of infection in this group suggests these individuals were selected for resistance to HIV-1 and may be most appropriate for identifying biological correlates of natural host resistance to HIV-1 infection. PMID:22926009

  17. HIV-1 as RNA evolution machine

    NARCIS (Netherlands)

    Berkhout, Ben

    2011-01-01

    We have over the years studied several sequence or structural elements within the HIV-1 RNA genome. Molecular mechanisms have been proposed for the role of these RNA motifs in virus replication. We have developed HIV-1 evolution as a powerful research method to study different aspects of the viral

  18. T cell dynamics in HIV-1 infection

    NARCIS (Netherlands)

    Clark, D.R.; Boer, R.J. de; Wolthers, K.C.; Miedema, F.

    1999-01-01

    One of the most prominent features of HIV-1 infection is CD4⁺ T cell depletion. This statement is widely used in papers on HIV-1 research; however, while true, it is deceptively simplistic in that it fails to describe what is actually a complex change in the representation of T cell

  19. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  20. Apelin, the natural ligand of the orphan seven-transmembrane receptor APJ, inhibits human immunodeficiency virus type 1 entry

    NARCIS (Netherlands)

    Cayabyab, M.; Hinuma, S.; Farzan, M.; Choe, H.; Fukusumi, S.; Kitada, C.; Nishizawa, N.; Hosoya, M.; Nishimura, O.; Messele, T.; Pollakis, G.; Goudsmit, J.; Fujino, M.; Sodroski, J.

    2000-01-01

    In addition to the CCR5 and CXCR4 chemokine receptors, a subset of primary human immunodeficiency virus type 1 (HIV-1) isolates can also use the seven-transmembrane-domain receptor APJ as a coreceptor. A previously identified ligand of APJ, apelin, specifically inhibited the entry of primary

  1. Infected cell killing by HIV-1 protease promotes NF-kappaB dependent HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Gary D Bren

    2008-05-01

    Full Text Available Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1 NF-kappaB activation, (2 caspase 8 dependent apoptosis, and that (3 caspase 8 directly activates NF-kappaB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-kappaB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-kappaB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-kappaB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-kappaB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1.

  2. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    Science.gov (United States)

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer's and Parkinson's disease.

    Science.gov (United States)

    Huerta, Cecilia; Alvarez, Victoria; Mata, Ignacio F; Coto, Eliecer; Ribacoba, René; Martínez, Carmen; Blázquez, Marta; Guisasola, Luis M; Salvador, Carlos; Lahoz, Carlos H; Peña, Joaquín

    2004-11-11

    Parkinson's disease (PD) is a complex disorder characterized by the progressive degeneration of dopaminergic neurons in the midbrain. Late-onset Alzheimer's disease (LOAD) is the most common cause of dementia in the elderly, affecting about 5% of the population older than 65 years. Several works have demonstrated the involvement of inflammation in the pathogenesis of both, PD and LOAD. Genetic susceptibility to develop PD and LOAD has also been widely recognised. Thus, functional polymorphisms at the genes encoding inflammatory proteins could influence the overall risk of developing these neurodegenerative disorders. We examined whether DNA-polymorphisms at the genes encoding chemokines MCP-1 (-2518 A/G) and RANTES (-403 A/G), and chemokine receptors 5 (CCR5, Delta32) and 2 (CCR2,V64I), were associated with the risk and/or the clinical outcome of LOAD and PD. A total of 200 PD, 326 LOAD, and 370 healthy controls were genotyped for the four polymorphisms, and genotype frequencies statistically compared. We did not find significant differences in the frequencies of the different genotypes between both groups of patients and controls. We conclude that the four DNA polymorphisms, which have been associated with several immuno-modulated diseases, did not contribute to the risk of PD or LOAD.

  4. Enriching the Housing Environment for Mice Enhances Their NK Cell Antitumor Immunity via Sympathetic Nerve-Dependent Regulation of NKG2D and CCR5.

    Science.gov (United States)

    Song, Yanfang; Gan, Yu; Wang, Qing; Meng, Zihong; Li, Guohua; Shen, Yuling; Wu, Yufeng; Li, Peiying; Yao, Ming; Gu, Jianren; Tu, Hong

    2017-04-01

    Mice housed in an enriched environment display a tumor-resistant phenotype due to eustress stimulation. However, the mechanisms underlying enriched environment-induced protection against cancers remain largely unexplained. In this study, we observed a significant antitumor effect induced by enriched environment in murine pancreatic cancer and lung cancer models. This effect remained intact in T/B lymphocyte-deficient Rag1 -/- mice, but was nearly eliminated in natural killer (NK) cell-deficient Beige mice or in antibody-mediated NK-cell-depleted mice, suggesting a predominant role of NK cells in enriched environment-induced tumor inhibition. Exposure to enriched environment enhanced NK-cell activity against tumors and promoted tumoral infiltration of NK cells. Enriched environment increased the expression levels of CCR5 and NKG2D (KLRK1) in NK cells; blocking their function effectively blunted the enriched environment-induced enhancement of tumoral infiltration and cytotoxic activity of NK cells. Moreover, blockade of β-adrenergic signaling or chemical sympathectomy abolished the effects of enriched environment on NK cells and attenuated the antitumor effect of enriched environment. Taken together, our results provide new insight into the mechanism by which eustress exerts a beneficial effect against cancer. Cancer Res; 77(7); 1611-22. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. High systemic levels of interleukin-10, interleukin-22 and C-reactive protein in Indian patients are associated with low in vitro replication of HIV-1 subtype C viruses

    Science.gov (United States)

    2010-01-01

    Background HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. The present study was conducted to evaluate whether the host cytokine environment modulates the in vitro replication capacity of HIV-1C viruses. Methods A small subset of HIV-1C isolates showing efficient replication in peripheral blood mononuclear cells (PBMC) is described, and the association of in vitro replication capacity with disease progression markers and the host cytokine response was evaluated. Viruses were isolated from patient samples, and the corresponding in vitro growth kinetics were determined by monitoring for p24 production. Genotype, phenotype and co-receptor usage were determined for all isolates, while clinical category, CD4 cell counts and viral loads were recorded for all patients. Plasmatic concentrations of cytokines and, acute-phase response, and microbial translocation markers were determined; and the effect of cytokine treatment on in vitro replication rates was also measured. Results We identified a small number of viral isolates showing high in vitro replication capacity in healthy-donor PBMC. HIV-1C usage of CXCR4 co-receptor was rare; therefore, it did not account for the differences in replication potential observed. There was also no correlation between the in vitro replication capacity of HIV-1C isolates and patients' disease status. Efficient virus growth was significantly associated with low interleukin-10 (IL-10), interleukin-22 (IL-22), and C-reactive protein (CRP) levels in plasma (p membranes. Conclusions These results indicate that high systemic levels of IL-10, CRP and IL-22 in HIV-1C-infected Indian patients are associated with low viral replication in vitro, and that the former two have direct inhibitory

  6. Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; Vermeire, Kurt

    2003-01-01

    The interaction of the CXCR4 antagonist AMD3100 with its target is greatly influenced by specific aspartate residues in the receptor protein, including Asp(171) and Asp(262). We have now found that aspartate-to-asparagine substitutions at these positions differentially affect the binding of four...... different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp(262) strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.3. Thus, resistance...... of HIV-1 NL4.3 to AMD3100 is associated with a decreased dependence of the viral gp120 on Asp(262) of CXCR4, pointing to a different mode of interaction of wild-type versus AMD3100-resistant virus with CXCR4....

  7. Cytoplasmic Dynein Promotes HIV-1 Uncoating

    Directory of Open Access Journals (Sweden)

    Paulina Pawlica

    2014-11-01

    Full Text Available Retroviral capsid (CA cores undergo uncoating during their retrograde transport (toward the nucleus, and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.

  8. Inhibiting sexual transmission of HIV-1 infection.

    Science.gov (United States)

    Shattock, Robin J; Moore, John P

    2003-10-01

    The worldwide infection rate for HIV-1 is estimated to be 14,000 per day, but only now, more than 20 years into the epidemic, are the immediate events between exposure to infectious virus and the establishment of infection becoming clear. Defining the mechanisms of HIV-1 transmission, the target cells involved and how the virus attaches to and fuses with these cells, could reveal ways to block the sexual spread of the virus. In this review, we will discuss how our increasing knowledge of the ways in which HIV-1 is transmitted is shaping the development of new, more sophisticated intervention strategies based on the application of vaginal or rectal microbicides.

  9. The molecular determinants of CD8 co-receptor function

    Science.gov (United States)

    Cole, David K; Laugel, Bruno; Clement, Mathew; Price, David A; Wooldridge, Linda; Sewell, Andrew K

    2012-01-01

    CD8+ T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein ‘co-receives’ antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands. PMID:22804746

  10. Claudin-1 gene variants and susceptibility to hepatitis C infection in HIV-1 infected intravenous drug users (an ANRS case-control study).

    Science.gov (United States)

    Ghosn, Jade; Fouquet, Baptiste; Quertainmont, Yann; Salmon, Dominique; Sahali, Sabrinel; Rioux, Christophe; Duvivier, Claudine; Mole, Martine; Delfraissy, Jean-François; Misrahi, Micheline

    2015-04-01

    Hepatitis C virus (HCV) seroprevalence is highly diverse among human immunodeficiency virus-1 (HIV-1) infected patients, ranging between 10% of HIV-1 infected homo-bisexuel men, to >92% in patients infected with HIV-1 who acquired HIV-1 through intravenous drug use. Thus, being HCV-free while having acquired HIV-1 via intravenous drug use is a rare situation. Claudin-1 is a protein involved in intracellular tight-junctions and has been identified as a major cellular co-receptor for HCV infection. Our objective was to determine whether Claudin-1 gene (CLDN1) mutations might be involved in natural resistance to HCV infection. We conducted a case-control study. All recruited patients acquired HIV-1 infection via intravenous drug use route before 1995. The case study patients remained free from HCV infection (negative anti-HCV antibodies and HCV-RNA). The control study patients was co-infected with HCV (positive anti-HCV antibodies). Direct genomic sequencing of the CLDN1 gene coding region and adjacent intron/exons junctions was performed from peripheral blood mononuclear cells. A total of 138 Caucasian patients were enrolled. Twenty-two patients (cases) were free from HCV infection and 116 (controls) were co-infected with HCV. We found single nucleotide polymorphisms (SNPs) described previously with no significant differences in allele frequencies between cases and controls. In conclusion, despite being a major cellular co-receptor for HCV entry in vitro, we did not identify any specific substitution in CLDN1 gene coding region in our study patients highly exposed but resistant to HCV infection in vivo. Other cellular co-factors involved in HCV infection should be investigated in this highly-exposed intravenous drug users patients. © 2015 Wiley Periodicals, Inc.

  11. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation.

    Science.gov (United States)

    Henrick, Bethany M; Yao, Xiao-Dan; Rosenthal, Kenneth Lee

    2015-01-01

    Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2) physically inhibited HIV-induced NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs) for cellular TLR2 heterodimers. These studies made use of primary human T cells and TZMbl cells stably transformed to express TLR2 (TZMbl-2). Our results demonstrated that cells expressing TLR2 showed significantly increased proviral DNA compared to cells lacking TLR2, and mechanistically this may be due to a TLR2-mediated increased CCR5 expression. Importantly, we show that HIV-1 structural proteins, p17, p24, and gp41, act as viral PAMPs signaling through TLR2 and its heterodimers leading to significantly increased immune activation via the NFκB signaling pathway. Using co-immunoprecipitation and a dot blot method, we demonstrated direct protein interactions between these viral PAMPs and TLR2, while only p17 and gp41 bound to TLR1. Specifically, TLR2/1 heterodimer recognized p17 and gp41, while p24 lead to immune activation through TLR2/6. These results were confirmed using TLR2/1 siRNA knock down assays which ablated p17 and gp41-induced cellular activation and through studies of HEK293 cells expressing selected TLRs. Interestingly, our results show in the absence of TLR6, p24 bound to TLR2 and blocked p17 and gp41-induced activation, thus providing a novel mechanism by which HIV-1 can manipulate innate sensing. Taken together, our results identified, for the first time, novel HIV-1 PAMPs that play a role in TLR2-mediated cellular activation and increased proviral DNA. These findings have important implications for our fundamental understanding of HIV-1 immune activation and pathogenesis, as well as HIV-1 vaccine development.

  12. Molecular Understanding of HIV-1 Latency

    Directory of Open Access Journals (Sweden)

    W. Abbas

    2012-01-01

    Full Text Available The introduction of highly active antiretroviral therapy (HAART has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs.

  13. Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion

    Directory of Open Access Journals (Sweden)

    Doms Robert W

    2006-12-01

    Full Text Available Abstract Background HIV envelope glycoprotein (Env-mediated fusion is driven by the concerted coalescence of the HIV gp41 N-helical and C-helical regions, which results in the formation of 6 helix bundles. Kinetics of HIV Env-mediated fusion is an important determinant of sensitivity to entry inhibitors and antibodies. However, the parameters that govern the HIV Env fusion cascade have yet to be fully elucidated. We address this issue by comparing the kinetics HIV-1IIIB Env with those mediated by HIV-2 from two strains with different affinities for CD4 and CXCR4. Results HIV-1 and HIV-2 Env-mediated cell fusion occurred with half times of about 60 and 30 min, respectively. Binding experiments of soluble HIV gp120 proteins to CD4 and co-receptor did not correlate with the differences in kinetics of fusion mediated by the three different HIV Envs. However, escape from inhibition by reagents that block gp120-CD4 binding, CD4-induced CXCR4 binding and 6-helix bundle formation, respectively, indicated large difference between HIV-1 and HIV-2 envelope glycoproteins in their CD4-induced rates of engagement with CXCR4. Conclusion The HIV-2 Env proteins studied here exhibited a significantly reduced window of time between the engagement of gp120 with CD4 and exposure of the CXCR4 binding site on gp120 as compared with HIV-1IIIB Env. The efficiency with which HIV-2 Env undergoes this CD4-induced conformational change is the major cause of the relatively rapid rate of HIV-2 Env mediated-fusion.

  14. Molecular characterisation of newly identified HIV-1 infections in Curitiba, Brazil: preponderance of clade C among males with recent infections

    Directory of Open Access Journals (Sweden)

    João Leandro de Paula Ferreira

    2008-12-01

    Full Text Available As in many areas of Brazil, the AIDS epidemic in Curitiba is relatively stable, but surveillance is important to support public policy. The molecular characteristics of HIV may be instrumental for monitoring epidemic trends. We evaluated plasma HIV-1 RNA (n = 37 from 38 cases presenting with positive serology, who were among 820 consenting volunteers visiting the downtown counselling and serology testing centre. Seroprevalence was 4.6% (CI 95% 3.2-6.3 and the estimated HIV incidence, as defined by the BED assay, was 2.86 persons/years (CI 95% 1.04-4.68. An additional set of contemporaneous, anonymous samples from a local laboratory was also analysed (n = 20. Regions of the HIV-1 polymerase (n = 57 and envelope (n = 34 were evaluated for subtyping, determination of mosaic structure, primary drug resistance mutations (pDRM, envelope V3 loop motifs and amino acid signatures related to viral tropism. HIV-1 clade B was observed in 53% of cases; HIV-1C in 30% and BC mosaics in 14%, with one F genome and one CF mosaic. Clade C infection was associated with recent infections among males (p < 0.03. Stanford surveillance pDRM was observed in 8.8% of sequences, with 7% showing high level resistance to at least one antiretroviral drug. Tropism for CXCR4 co-receptor was predicted in 18% of envelope sequences, which were exclusively among clade B genomes and cases with serological reactivity to chronic infection.

  15. Clinical research in HIV-1 infected children

    OpenAIRE

    Fraaij, Pieter

    2005-01-01

    textabstractAcquired immune deficiency syndrome (AIDS) was described for the first time in 1981. Two years later the previously unknown human immunodeficiency virus (HIV) was identified as the causative agent. HIV has been included in the genus Lent/viruses of the Retroviridae family. Two types are recognized: HIV-1 and HIV-2. Of these, HIV-1 is the primary etiologic agent of the current pandemic. HIV probably originates from simian immunodeficiency virus (SIV) which is endemic in African mon...

  16. Prospective Memory in HIV-1 Infection

    OpenAIRE

    CAREY, CATHERINE L.; WOODS, STEVEN PAUL; RIPPETH, JULIE D.; HEATON, ROBERT K.; GRANT, IGOR

    2006-01-01

    The cognitive deficits associated with HIV-1 infection are thought to primarily reflect neuropathophysiology within the fronto-striato-thalamo-cortical circuits. Prospective memory (ProM) is a cognitive function that is largely dependent on prefronto-striatal circuits, but has not previously been examined in an HIV-1 sample. A form of episodic memory, ProM involves the complex processes of forming, monitoring, and executing future intentions vis-à-vis ongoing distractions. The current study e...

  17. Maraviroc in treatment-experienced patients with HIV-1 infection - experience from routine clinical practice

    Directory of Open Access Journals (Sweden)

    Reuter S

    2010-06-01

    Full Text Available Abstract Objective Few data are available about the efficacy of maraviroc (MVC during routine use. We characterized indications for MVC use and the efficacy of MVC in clinical practice. Methods Thirty-two patients treated with MVC at our institution between 2006 and 2009 were included. Genotypic (n = 31 and phenotypic (n = 13 tropism analysis was performed. We determined indications for MVC use, characteristics of antiretroviral combination partners and treatment outcome. Results Complete suppression of viral replication was achieved in 78% after 6 months. A median increase of 124 CD4+ cells/μl after 6 months was observed. Concordance between phenotypic and genotypic tropism was found in 75%. Indications for MVC treatment included treatment failure (n = 15, intolerance to previous antiretrovirals (n = 6 and add-on MVC for intensification without changing the current regimen (n = 11. The add-on strategy was used in patients with a relatively low viremia in order to achieve complete viral load suppression or in situations with suppressed viral load but judged as unstable due to an extensive resistance pattern. Salvage drugs most frequently combined with MVC were darunavir (n = 14 and raltegravir (n = 14. The genotypic assay had predicted CXCR4 tropism in 5 patients, using a false positive rate (FPR of 20%. Lowering the FPR to 5% predicted CCR5 tropism in 4 cases, still resulting in sustained complete viral response under MVC use. Conclusions MVC containing salvage regimens achieve relevant CD4 cell increases and high viral response rates. In patients with few remaining treatment options it may be justified to lower the FPR-cutoff to 5% when predicting the coreceptor usage. Hereby, MVC could still be applied in selected patients with otherwise limited treatment options.

  18. Exosomes: Implications in HIV-1 Pathogenesis

    Science.gov (United States)

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  19. Prospective memory in HIV-1 infection.

    Science.gov (United States)

    Carey, Catherine L; Woods, Steven Paul; Rippeth, Julie D; Heaton, Robert K; Grant, Igor

    2006-05-01

    The cognitive deficits associated with HIV-1 infection are thought to primarily reflect neuropathophysiology within the fronto-striato-thalamo-cortical circuits. Prospective memory (ProM) is a cognitive function that is largely dependent on prefronto-striatal circuits, but has not previously been examined in an HIV-1 sample. A form of episodic memory, ProM involves the complex processes of forming, monitoring, and executing future intentions vis-à-vis ongoing distractions. The current study examined ProM in 42 participants with HIV-1 infection and 29 demographically similar seronegative healthy comparison (HC) subjects. The HIV-1 sample demonstrated deficits in time- and event-based ProM, as well as more frequent 24-hour delay ProM failures and task substitution errors relative to the HC group. In contrast, there were no significant differences in recognition performance, indicating that the HIV-1 group was able to accurately retain and recognize the ProM intention when retrieval demands were minimized. Secondary analyses revealed that ProM performance correlated with validated clinical measures of executive functions, episodic memory (free recall), and verbal working memory, but not with tests of semantic memory, retention, or recognition discrimination. Taken together, these findings indicate that HIV-1 infection is associated with ProM impairment that is primarily driven by a breakdown in the strategic (i.e., executive) aspects of retrieving future intentions, which is consistent with a prefronto-striatal circuit neuropathogenesis.

  20. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Thomas [Los Alamos National Laboratory; Campbell, Mary S [UNIV OF WASHINGTON; Mullins, James I [UNIV OF WASHINGTON; Hughes, James P [UNIV OF WASHINGTON; Wong, Kim G [UNIV OF WASHINGTON; Raugi, Dana N [UNIV OF WASHINGTON; Scrensen, Stefanie [UNIV OF WASHINGTON

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  1. Generation of HIV-1 Resistant and Functional Macrophages From Hematopoietic Stem Cell–derived Induced Pluripotent Stem Cells

    Science.gov (United States)

    Kambal, Amal; Mitchell, Gaela; Cary, Whitney; Gruenloh, William; Jung, Yunjoon; Kalomoiris, Stefanos; Nacey, Catherine; McGee, Jeannine; Lindsey, Matt; Fury, Brian; Bauer, Gerhard; Nolta, Jan A; Anderson, Joseph S

    2011-01-01

    Induced pluripotent stem cells (iPSCs) have radically advanced the field of regenerative medicine by making possible the production of patient-specific pluripotent stem cells from adult individuals. By developing iPSCs to treat HIV, there is the potential for generating a continuous supply of therapeutic cells for transplantation into HIV-infected patients. In this study, we have used human hematopoietic stem cells (HSCs) to generate anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into continuously growing iPSC lines with four reprogramming factors and a combination anti-HIV lentiviral vector containing a CCR5 short hairpin RNA (shRNA) and a human/rhesus chimeric TRIM5α gene. Upon directed differentiation of the anti-HIV iPSCs toward the hematopoietic lineage, a robust quantity of colony-forming CD133+ HSCs were obtained. These cells were further differentiated into functional end-stage macrophages which displayed a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages exhibited strong protection from HIV-1 infection. Here, we demonstrate the ability of iPSCs to develop into HIV-1 resistant immune cells and highlight the potential use of iPSCs for HIV gene and cellular therapies. PMID:21119622

  2. Cold Atmospheric Plasma Inhibits HIV-1 Replication in Macrophages by Targeting Both the Virus and the Cells.

    Directory of Open Access Journals (Sweden)

    Olga Volotskova

    Full Text Available Cold atmospheric plasma (CAP is a specific type of partially ionized gas that is less than 104°F at the point of application. It was recently shown that CAP can be used for decontamination and sterilization, as well as anti-cancer treatment. Here, we investigated the effects of CAP on HIV-1 replication in monocyte-derived macrophages (MDM. We demonstrate that pre-treatment of MDM with CAP reduced levels of CD4 and CCR5, inhibiting virus-cell fusion, viral reverse transcription and integration. In addition, CAP pre-treatment affected cellular factors required for post-entry events, as replication of VSV-G-pseudotyped HIV-1, which by-passes HIV receptor-mediated fusion at the plasma membrane during entry, was also inhibited. Interestingly, virus particles produced by CAP-treated cells had reduced infectivity, suggesting that the inhibitory effect of CAP extended to the second cycle of infection. These results demonstrate that anti-HIV activity of CAP involves the effects on target cells and the virus, and suggest that CAP may be considered for potential application as an anti-HIV treatment.

  3. HIV-1 vaccine induced immune responses in newborns of HIV-1 infected mothers.

    Science.gov (United States)

    McFarland, Elizabeth J; Johnson, Daniel C; Muresan, Petronella; Fenton, Terence; Tomaras, Georgia D; McNamara, James; Read, Jennifer S; Douglas, Steven D; Deville, Jaime; Gurwith, Marc; Gurunathan, Sanjay; Lambert, John S

    2006-07-13

    Breast milk transmission continues to account for a large proportion of cases of mother-to-child transmission of HIV-1 worldwide. An effective HIV-1 vaccine coupled with either passive immunization or short-term antiretroviral prophylaxis represents a potential strategy to prevent breast milk transmission. This study evaluated the safety and immunogenicity of ALVAC HIV-1 vaccine with and without a subunit envelope boost in infants born to HIV-1-infected women. : Placebo-controlled, double-blinded study. Infants born to HIV-1-infected mothers in the US were immunized with a prime-boost regimen using a canarypox virus HIV-1 vaccine (vCP1452) and a recombinant glycoprotein subunit vaccine (rgp120). Infants (n = 30) were randomized to receive: vCP1452 alone, vCP1452 + rgp120, or corresponding placebos. Local reactions were mild or moderate and no significant systemic toxicities occurred. Subjects receiving both vaccines had gp120-specific binding serum antibodies that were distinguishable from maternal antibody. Repeated gp160-specific lymphoproliferative responses were observed in 75%. Neutralizing activity to HIV-1 homologous to the vaccine strain was observed in 50% of the vCP1452 + rgp120 subjects who had lost maternal antibody by week 24. In some infants HIV-1-specific proliferative and antibody responses persisted until week 104. HIV-1-specific cytotoxic T lymphocyte responses were detected in two subjects in each treatment group; the frequency of HIV-1 specific cytotoxic T lymphocyte responses did not differ between vaccine and placebo recipients. The demonstration of vaccine-induced immune responses in early infancy supports further study of HIV-1 vaccination as a strategy to reduce breast milk transmission.

  4. Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors.

    Science.gov (United States)

    Pacheco, Beatriz; Alsahafi, Nirmin; Debbeche, Olfa; Prévost, Jérémie; Ding, Shilei; Chapleau, Jean-Philippe; Herschhorn, Alon; Madani, Navid; Princiotto, Amy; Melillo, Bruno; Gu, Christopher; Zeng, Xin; Mao, Youdong; Smith, Amos B; Sodroski, Joseph; Finzi, Andrés

    2017-03-01

    Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the

  5. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    Science.gov (United States)

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  6. Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency

    Science.gov (United States)

    Jean, Maxime Junior; Power, Derek; Kong, Weili; Huang, Huachao; Santoso, Netty; Zhu, Jian

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1) Tat is a virus-encoded trans-activator that plays a central role in viral transcription. We used our recently developed parallel analysis of in vitro translated open reading frames (ORFs) (PLATO) approach to identify host proteins that associate with HIV-1 Tat. From this proteomic assay, we identify 89 Tat-associated proteins (TAPs). We combine our results with other datasets of Tat or long terminal repeat (LTR)-associated proteins. For some of these proteins (NAT10, TINP1, XRCC5, SIN3A), we confirm their strong association with Tat. These TAPs also suppress Tat-mediated HIV-1 transcription. Removing suppression of HIV-1 transcription benefits the reversal of post-integrated, latent HIV-1 proviruses. We demonstrate that these transcriptionally suppressing TAPs contribute to HIV-1 latency in Jurkat latency (J-LAT) cells. Therefore, our proteomic analysis highlights the previously unappreciated TAPs that play a role in maintaining HIV-1 latency and can be further studied as potential pharmacological targets for the “shock and kill” HIV-1 cure strategy. PMID:28368303

  7. LRP4 serves as a co-receptor of agrin

    OpenAIRE

    Zhang, Bin; Luo, Shiwen; Wang, Qiang; Suzuki, Tatsuo; Xiong, Wen C.; Mei, Lin

    2008-01-01

    Formation of the neuromuscular junction (NMJ) requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. Here we report that low-density lipoprotein receptor (LDLR)-related protein (LRP) 4 (LRP4) functions as a co-receptor of agrin. LRP4 is specifically expressed in myotubes and is concentrated at the NMJ. The extracellular domain of LRP4 interacts with neuronal...

  8. Targeting CXCR4 in HIV Cell-Entry Inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Schwartz, T W; Rosenkilde, M M

    2010-01-01

    CXCR4 and CCR5 constitute the two major coreceptors for HIV-1 entry into host cells. In the course of an HIV-infection, a coreceptor switch takes place in approximately half of the patients - from R5 HIV-1 (CCR5 utilizing) strains to X4 HIV-1 (CXCR4 utilizing) strains. Treatment of HIV......-infected individuals with CXCR4 antagonists delays the onset of AIDS by preventing the CCR5 to CXCR4 coreceptor switch. In addition to the endogenous CXCR4 and CCR5 ligands, other chemokines, for example the human herpesvirus 8 encoded CC-chemokine, vCCL2, and modifications hereof, have proven efficient HIV-1 cell...... no oral bioavailability. The hunt for orally active small-molecule CXCR4 antagonists led to the development of monocyclam-based compounds, and recently to the non-cyclam antagonist AMD070, which is orally active and currently in Phase II clinical trial as anti-HIV treatment. Current review provides...

  9. Advanced glycation end products inhibit both infection and transmission in trans of HIV-1 from monocyte-derived dendritic cells to autologous T cells.

    Science.gov (United States)

    Nasreddine, Nadine; Borde, Chloé; Gozlan, Joël; Bélec, Laurent; Maréchal, Vincent; Hocini, Hakim

    2011-05-15

    Highly active antiretroviral therapy is associated with carbohydrate metabolic alterations that may lead to diabetes. One consequence of hyperglycemia is the formation of advanced glycation end products (AGEs) that are involved in diabetes complications. We investigated the impact of AGEs on the infection of monocyte-derived dendritic cells (MDDCs) by HIV-1 and the ability of MDDCs to transmit the virus to T cells. We showed that AGEs could inhibit infection of MDDCs with primary R5-tropic HIV-1(Ba-L) by up to 85 ± 9.2% and with primary X4-tropic HIV-1(VN44) by up to 60 ± 8.5%. This inhibitory effect of AGEs was not prevented by a neutralizing anti-receptor for advanced glycation end products (anti-RAGE) Ab, demonstrating a RAGE-independent mechanism. Moreover, AGEs inhibited by 70-80% the transmission in trans of the virus to CD4 T cells. Despite the inhibitory effect of AGEs on both MDDC infection and virus transmission in trans, no inhibition of virus attachment to cell membrane was observed, confirming that attachment and transmission of the virus involve independent mechanisms. The inhibitory effect of AGEs on infection was associated with a RAGE-independent downregulation of CD4 at the cell membrane and by a RAGE-dependent repression of the CXCR4 and CCR5 HIV-1 receptors. AGEs induce the secretion of proinflammatory cytokines IL-6, TNF-α, and IL-12, but not RANTES or MIP-1α, and did not lead to MDDC maturation as demonstrated by the lack of expression of the CD83 molecule. Taken together, our results suggest that AGEs can play an inhibiting role in HIV-1 infection in patients who accumulate circulating AGEs, including patients treated with protease inhibitors that developed diabetes.

  10. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls.

    Directory of Open Access Journals (Sweden)

    Paul J McLaren

    Full Text Available Multiple genome-wide association studies (GWAS have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1. After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6 × 10⁻¹¹. However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity. Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.

  11. Frequent detection of CXCR4-using viruses among Brazilian blood donors with HIV-1 long-standing infection and unknown clinical stage: Analysis of massive parallel sequencing data

    Directory of Open Access Journals (Sweden)

    Rodrigo Pessôa

    2016-03-01

    Full Text Available The determination of viral tropism is critically important and highly recommended to guide therapy with the CCR5 antagonist, which does not inhibit the effect of X4-tropic viruses. Here, we report the prevalence of HIV-1×4 HIV strains in 84 proviral DNA massively parallel sequencing “MPS” data from well-defined non-recently infected first-time Brazilian blood donors. The MPS data covering the entire V3 region of the env gene was extracted from our recently generated HIV-1 genomes sequenced by a paired-end protocol (Illumina. Of the 84 MPS data samples, 63 (75% were derived from donors with long-standing infection and 21 (25% were lacking stage information. HIV‐1 tropism was inferred using Geno2pheno (g2p [454] algorithm (FPR=1%, 2.5%, and 3.75%. Among the 84 data samples for which tropism was defined by g2p2.5%, 13 (15.5% participants had detectable CXCR4-using viruses in their MPS reads. Mixed infections with R5 and X4 were observed in 11.9% of the study subjects and minority X4 viruses were detected in 7 (8.3% of participants. Nine of the 63 (14.3% subjects with LS infection were predicted by g2p 2.5% to harbor proviral CXCR4-using viruses. Our findings of a high proportion of blood donors (15.5% harboring CXCR4-using viruses in PBMCs may indicate that this phenomenon is common. These findings may have implications for clinical and therapeutic aspects and may benefit individuals who plan to receive CCR5 antagonists.

  12. Cross-Reactivity of Anti-HIV-1 T Cell Immune Responses among the Major HIV-1 Clades in HIV-1-Positive Individuals from 4 Continents

    National Research Council Canada - National Science Library

    Paul M. Coplan; Swati B. Gupta; Sheri A. Dubey; Punnee Pitisuttithum; Alex Nikas; Bernard Mbewe; Efthyia Vardas; Mauro Schechter; Esper G. Kallas; Dan C. Freed; Tong-Ming Fu; Christopher T. Mast; Pilaipan Puthavathana; James Kublin; Kelly Brown Collins; John Chisi; Richard Pendame; Scott J. Thaler; Glenda Gray; James Mcintyre; Walter L. Straus; Jon H. Condra; Devan V. Mehrotra; Harry A. Guess; Emilio A. Emini; John W. Shiver

    2005-01-01

    .... Therefore, we quantified the cross-clade reactivity, among unvaccinated individuals, of anti-HIV-1 T cell responses to the infecting HIV-1 clade relative to other major circulating clades. Methods...

  13. HIV-1 Reservoir Association with Immune Activation

    Directory of Open Access Journals (Sweden)

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  14. LRP4 serves as a co-receptor of agrin

    Science.gov (United States)

    Zhang, Bin; Luo, Shiwen; Wang, Qiang; Suzuki, Tatsuo; Xiong, Wen C.; Mei, Lin

    2008-01-01

    SUMMARY Formation of the neuromuscular junction (NMJ) requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. Here we report that low-density lipoprotein receptor (LDLR)-related protein (LRP) 4 (LRP4) functions as a co-receptor of agrin. LRP4 is specifically expressed in myotubes and is concentrated at the NMJ. The extracellular domain of LRP4 interacts with neuronal, but not muscle, agrin. Expression of LRP4 enables agrin binding activity and MuSK signaling in cells that otherwise does not respond to agrin. Suppression of LRP4 expression attenuates agrin binding activity, agrin-induced MuSK tyrosine phosphorylation and AChR clustering in muscle cells. LRP4 also interacts with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations identify LRP4 as a functional co-receptor of agrin that is necessary for agrin-induced MuSK signaling and AChR clustering. PMID:18957220

  15. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection.

    Science.gov (United States)

    Venuti, Assunta; Pastori, Claudia; Lopalco, Lucia

    2017-01-01

    The CC chemokine receptor 5 (CCR5) is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). Natural reactive antibodies (Abs) recognizing first loop (ECL1) of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN) or HIV-infected individuals who control disease progression (LTNP) as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2) of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days). The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.

  16. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection

    Directory of Open Access Journals (Sweden)

    Assunta Venuti

    2017-10-01

    Full Text Available The CC chemokine receptor 5 (CCR5 is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV. Natural reactive antibodies (Abs recognizing first loop (ECL1 of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN or HIV-infected individuals who control disease progression (LTNP as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2 of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days. The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.

  17. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection

    Science.gov (United States)

    Venuti, Assunta; Pastori, Claudia; Lopalco, Lucia

    2017-01-01

    The CC chemokine receptor 5 (CCR5) is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). Natural reactive antibodies (Abs) recognizing first loop (ECL1) of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN) or HIV-infected individuals who control disease progression (LTNP) as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2) of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days). The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies. PMID:29163468

  18. Human TRIM5α mediated restriction of different HIV-1 subtypes and Lv2 sensitive and insensitive HIV-2 variants

    Directory of Open Access Journals (Sweden)

    Hagmann Isabel

    2006-11-01

    Full Text Available Abstract In order to characterize the antiviral activity of human TRIM5α in more detail human derived indicator cell lines over expressing wild type human TRIM5α were generated and challenged with HIV-1 and HIV-2 viruses pseudotyped with HIV envelope proteins in comparison to VSV-G pseudotyped particles. HIV envelope protein pseudotyped particles (HIV-1[NL4.3], HIV-1[BaL] showed a similar restriction to infection (12 fold inhibition compared to VSV-G pseudotyped viruses after challenging TZM-huTRIM5α cells. For HIV-2 a stronger restriction to infection was observed when the homologous envelope protein Env42S was pseudotyped onto these particles compared to VSV-G pseudotyped HIV-2 particles (8.6 fold inhibition versus 3.4 fold inhibition. It has been shown that HIV-2 is restricted by the restriction factor Lv2, acting on capsid like TRIM5α. A mutation of amino acid 73 (I73V of HIV-2 capsid renders this virus Lv2-insensitive. Lv2-insensitive VSV-G pseudotyped HIV-2/I73V particles showed a similar restriction to infection as did HIV-2[VSV-G] particles (4 fold inhibition. HIV-2 envelope protein (Env42S-pseudotyped HIV-2/I73V particles revealed a 9.3 fold increase in infection in TZM cells but remained restricted in TZM-huTRIM5α cells (80.6 fold inhibition clearly indicating that at least two restriction factors, TRIM5α and Lv2, act on incoming HIV-2 particles. Further challenge experiments using primary isolates from different HIV-1 subtypes and from HIV-1 group O showed that wild type human TRIM5α restricted infection independent of coreceptor use of the infecting particle but to variable degrees (between 1.2 and 19.6 fold restriction.

  19. Viral linkage in HIV-1 seroconverters and their partners in an HIV-1 prevention clinical trial.

    Directory of Open Access Journals (Sweden)

    Mary S Campbell

    2011-03-01

    Full Text Available Characterization of viruses in HIV-1 transmission pairs will help identify biological determinants of infectiousness and evaluate candidate interventions to reduce transmission. Although HIV-1 sequencing is frequently used to substantiate linkage between newly HIV-1 infected individuals and their sexual partners in epidemiologic and forensic studies, viral sequencing is seldom applied in HIV-1 prevention trials. The Partners in Prevention HSV/HIV Transmission Study (ClinicalTrials.gov #NCT00194519 was a prospective randomized placebo-controlled trial that enrolled serodiscordant heterosexual couples to determine the efficacy of genital herpes suppression in reducing HIV-1 transmission; as part of the study analysis, HIV-1 sequences were examined for genetic linkage between seroconverters and their enrolled partners.We obtained partial consensus HIV-1 env and gag sequences from blood plasma for 151 transmission pairs and performed deep sequencing of env in some cases. We analyzed sequences with phylogenetic techniques and developed a Bayesian algorithm to evaluate the probability of linkage. For linkage, we required monophyletic clustering between enrolled partners' sequences and a Bayesian posterior probability of ≥ 50%. Adjudicators classified each seroconversion, finding 108 (71.5% linked, 40 (26.5% unlinked, and 3 (2.0% indeterminate transmissions, with linkage determined by consensus env sequencing in 91 (84%. Male seroconverters had a higher frequency of unlinked transmissions than female seroconverters. The likelihood of transmission from the enrolled partner was related to time on study, with increasing numbers of unlinked transmissions occurring after longer observation periods. Finally, baseline viral load was found to be significantly higher among linked transmitters.In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner

  20. Epidemiology of HIV-1 and emerging problems

    NARCIS (Netherlands)

    Lukashov, V. V.; de Ronde, A.; de Jong, J. J.; Goudsmit, J.

    2000-01-01

    Broad use of antiretroviral drugs is becoming a factor that is important to consider for understanding the HIV-1 epidemiology. Since 1993, we observe that a proportion of new infections within major risk groups in Amsterdam is caused by azidothymidine (AZT)-resistant viruses. After the introduction

  1. HIV-1 transcription and latency: an update.

    Science.gov (United States)

    Van Lint, Carine; Bouchat, Sophie; Marcello, Alessandro

    2013-06-26

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.

  2. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Unknown

    Erichsen D, Lopez A L, Peng H, Niemann D, Williams C,. Bauer M, Morgello S, Cotter R L, Ryan L A, Ghorpade A,. Gendelman H E and Zheng J 2003 Neuronal injury regulates fractalkine: relevance for HIV-1 associated dementia; J. Neu- roimmunol. 138 144–155. Enting R H, Hoetelmans R M, Lange J M, Burger D M and.

  3. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological ...

  4. Epigenetic heterogeneity in HIV-1 latency establishment.

    Science.gov (United States)

    Matsuda, Yuka; Kobayashi-Ishihara, Mie; Fujikawa, Dai; Ishida, Takaomi; Watanabe, Toshiki; Yamagishi, Makoto

    2015-01-09

    Despite prolonged antiretroviral therapy, HIV-1 persists as transcriptionally inactive proviruses. The HIV-1 latency remains a principal obstacle in curing AIDS. It is important to understand mechanisms by which HIV-1 latency is established to make the latent reservoir smaller. We present a molecular characterization of distinct populations at an early phase of infection. We developed an original dual-color reporter virus to monitor LTR kinetics from establishment to maintenance stage. We found that there are two ways of latency establishment i.e., by immediate silencing and slow inactivation from active infection. Histone covalent modifications, particularly polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation, appeared to dominate viral transcription at the early phase. PRC2 also contributes to time-dependent LTR dormancy in the chronic phase of the infection. Significant differences in sensitivity against several stimuli were observed between these two distinct populations. These results will expand our understanding of heterogeneous establishment of HIV-1 latency populations.

  5. Enteric viruses in HIV-1 seropositive and HIV-1 seronegative children with diarrheal diseases in Brazil

    Science.gov (United States)

    Rocha, Monica Simões; Fumian, Tulio Machado; Maranhão, Adriana Gonçalves; de Assis, Rosane Maria; Xavier, Maria da Penha Trindade Pinheiro; Rocha, Myrna Santos; Miagostovich, Marize Pereira; Leite, José Paulo Gagliardi; Volotão, Eduardo de Mello

    2017-01-01

    Diarrheal diseases (DD) have distinct etiological profiles in immune-deficient and immune-competent patients. This study compares detection rates, genotype distribution and viral loads of different enteric viral agents in HIV-1 seropositive (n = 200) and HIV-1 seronegative (n = 125) children hospitalized with DD in Rio de Janeiro, Brazil. Except for group A rotavirus (RVA), which were detected through enzyme immunoassay, the other enteric viruses (norovirus [NoV], astrovirus [HAstV], adenovirus [HAdV] and bocavirus [HBoV]) were detected through PCR or RT-PCR. A quantitative PCR was performed for RVA, NoV, HAstV, HAdV and HBoV. Infections with NoV (19% vs. 9.6%; p<0.001), HBoV (14% vs. 7.2%; p = 0.042) and HAdV (30.5% vs. 14.4%; p<0.001) were significantly more frequent among HIV-1 seropositive children. RVA was significantly less frequent among HIV-1 seropositive patients (6.5% vs. 20%; p<0.001). Similarly, frequency of infection with HAstV was lower among HIV-1 seropositive children (5.5% vs. 12.8%; p = 0.018). Among HIV-1 seropositive children 33 (16.5%) had co-infections, including three enteric viruses, such as NoV, HBoV and HAdV (n = 2) and NoV, HAstV and HAdV (n = 2). The frequency of infection with more than one virus was 17 (13.6%) in the HIV-1 negative group, triple infection (NoV + HAstV + HBoV) being observed in only one patient. The median viral load of HAstV in feces was significantly higher among HIV-1 positive children compared to HIV-1 negative children. Concerning children infected with RVA, NoV, HBoV and HAdV, no statistically significant differences were observed in the medians of viral loads in feces, comparing HIV-1 seropositive and HIV-1 seronegative children. Similar detection rates were observed for RVA, HAstV and HAdV, whilst NoV and HBoV were significantly more prevalent among children with CD4+ T lymphocyte count below 200 cells/mm3. Enteric viruses should be considered an important cause of DD in HIV-1 seropositive children, along with

  6. Enteric viruses in HIV-1 seropositive and HIV-1 seronegative children with diarrheal diseases in Brazil.

    Directory of Open Access Journals (Sweden)

    Silvana Augusta Rodrigues Portes

    Full Text Available Diarrheal diseases (DD have distinct etiological profiles in immune-deficient and immune-competent patients. This study compares detection rates, genotype distribution and viral loads of different enteric viral agents in HIV-1 seropositive (n = 200 and HIV-1 seronegative (n = 125 children hospitalized with DD in Rio de Janeiro, Brazil. Except for group A rotavirus (RVA, which were detected through enzyme immunoassay, the other enteric viruses (norovirus [NoV], astrovirus [HAstV], adenovirus [HAdV] and bocavirus [HBoV] were detected through PCR or RT-PCR. A quantitative PCR was performed for RVA, NoV, HAstV, HAdV and HBoV. Infections with NoV (19% vs. 9.6%; p<0.001, HBoV (14% vs. 7.2%; p = 0.042 and HAdV (30.5% vs. 14.4%; p<0.001 were significantly more frequent among HIV-1 seropositive children. RVA was significantly less frequent among HIV-1 seropositive patients (6.5% vs. 20%; p<0.001. Similarly, frequency of infection with HAstV was lower among HIV-1 seropositive children (5.5% vs. 12.8%; p = 0.018. Among HIV-1 seropositive children 33 (16.5% had co-infections, including three enteric viruses, such as NoV, HBoV and HAdV (n = 2 and NoV, HAstV and HAdV (n = 2. The frequency of infection with more than one virus was 17 (13.6% in the HIV-1 negative group, triple infection (NoV + HAstV + HBoV being observed in only one patient. The median viral load of HAstV in feces was significantly higher among HIV-1 positive children compared to HIV-1 negative children. Concerning children infected with RVA, NoV, HBoV and HAdV, no statistically significant differences were observed in the medians of viral loads in feces, comparing HIV-1 seropositive and HIV-1 seronegative children. Similar detection rates were observed for RVA, HAstV and HAdV, whilst NoV and HBoV were significantly more prevalent among children with CD4+ T lymphocyte count below 200 cells/mm3. Enteric viruses should be considered an important cause of DD in HIV-1 seropositive children, along

  7. Central nervous system compartmentalization of HIV-1 subtype C variants early and late in infection in young children.

    Directory of Open Access Journals (Sweden)

    Christa Buckheit Sturdevant

    2012-12-01

    Full Text Available HIV-1 subtype B replication in the CNS can occur in CD4+ T cells or macrophages/microglia in adults. However, little is known about CNS infection in children or the ability of subtype C HIV-1 to evolve macrophage-tropic variants. In this study, we examined HIV-1 variants in ART-naïve children aged three years or younger to determine viral genotypes and phenotypes associated with HIV-1 subtype C pediatric CNS infection. We examined HIV-1 subtype C populations in blood and CSF of 43 Malawian children with neurodevelopmental delay or acute neurological symptoms. Using single genome amplification (SGA and phylogenetic analysis of the full-length env gene, we defined four states: equilibrated virus in blood and CSF (n = 20, 47%, intermediate compartmentalization (n = 11, 25%, and two distinct types of compartmentalized CSF virus (n = 12, 28%. Older age and a higher CSF/blood viral load ratio were associated with compartmentalization, consistent with independent replication in the CNS. Cell tropism was assessed using pseudotyped reporter viruses to enter a cell line on which CD4 and CCR5 receptor expression can be differentially induced. In a subset of compartmentalized cases (n = 2, 17%, the CNS virus was able to infect cells with low CD4 surface expression, a hallmark of macrophage-tropic viruses, and intermediate compartmentalization early was associated with an intermediate CD4 entry phenotype. Transmission of multiple variants was observed for 5 children; in several cases, one variant was sequestered within the CNS, consistent with early stochastic colonization of the CNS by virus. Thus we hypothesize two pathways to compartmentalization: early stochastic sequestration in the CNS of one of multiple variants transmitted from mother to child, and emergence of compartmentalized variants later in infection, on average at age 13.5 months, and becoming fully apparent in the CSF by age 18 months. Overall, compartmentalized viral

  8. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41.

    Directory of Open Access Journals (Sweden)

    Rachel P J Lai

    2011-12-01

    Full Text Available Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs that target the membrane proximal external region (MPER of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly

  9. Sensitive Cell-Based Assay for Determination of Human Immunodeficiency Virus Type 1 Coreceptor Tropism

    Czech Academy of Sciences Publication Activity Database

    Weber, Jan; Vazquez, A. C.; Winner, D.; Gibson, R. M.; Rhea, A. M.; Rose, J. D.; Wylie, D.; Henry, K.; Wright, A.; King, K.; Archer, J.; Poveda, E.; Soriano, V.; Robertson, D. L.; Olivo, P. D.; Arts, E. J.; Quinones-Mateu, M. E.

    2013-01-01

    Roč. 51, č. 5 (2013), s. 1517-1527 ISSN 0095-1137 Grant - others:NIH(US) P30 AI036219 Institutional support: RVO:61388963 Keywords : HIV tropism * phenotypic assay * genotypic prediction * disease progression * CCR5 antagonists * naive patients Subject RIV: EE - Microbiology, Virology Impact factor: 4.232, year: 2013

  10. Identification of Acute HIV-1 Infection by Hologic Aptima HIV-1 RNA Qualitative Assay

    Science.gov (United States)

    Eller, Leigh Anne; Malia, Jennifer; Jagodzinski, Linda L.; Trichavaroj, Rapee; Oundo, Joseph; Lueer, Cornelia; Cham, Fatim; de Souza, Mark; Michael, Nelson L.; Robb, Merlin L.; Peel, Sheila A.

    2017-01-01

    ABSTRACT The Hologic Aptima HIV-1 Qualitative RNA assay was used in a rigorous screening approach designed to identify individuals at the earliest stage of HIV-1 infection for enrollment into subsequent studies of cellular and viral events in early infection (RV 217/Early Capture HIV Cohort [ECHO] study). Volunteers at high risk for HIV-1 infection were recruited from study sites in Thailand, Tanzania, Uganda, and Kenya with high HIV-1 prevalence rates among the populations examined. Small-volume blood samples were collected by finger stick at twice-weekly intervals and tested with the Aptima assay. Participants with reactive Aptima test results were contacted immediately for entry into a more comprehensive follow-up schedule with frequent blood draws. Evaluation of the Aptima test prior to use in this study showed a detection sensitivity of 5.5 copies/ml (50%), with all major HIV-1 subtypes detected. A total of 54,306 specimens from 1,112 volunteers were examined during the initial study period (August 2009 to November 2010); 27 individuals were identified as converting from uninfected to infected status. A sporadic reactive Aptima signal was observed in HIV-1-infected individuals under antiretroviral therapy. Occasional false-reactive Aptima results in uninfected individuals, or nonreactive results in HIV-1-infected individuals not on therapy, were observed and used to calculate assay sensitivity and specificity. The sensitivity and specificity of the Aptima assay were 99.03% and 99.23%, respectively; positive and negative predictive values were 92.01% and 99.91%, respectively. Conversion from HIV-1-uninfected to -infected status was rapid, with no evidence of a prolonged period of intermittent low-level viremia. PMID:28424253

  11. Transplanting supersites of HIV-1 vulnerability.

    Directory of Open Access Journals (Sweden)

    Tongqing Zhou

    Full Text Available One strategy for isolating or eliciting antibodies against a specific target region on the envelope glycoprotein trimer (Env of the human immunodeficiency virus type 1 (HIV-1 involves the creation of site transplants, which present the target region on a heterologous protein scaffold with preserved antibody-binding properties. If the target region is a supersite of HIV-1 vulnerability, recognized by a collection of broadly neutralizing antibodies, this strategy affords the creation of "supersite transplants", capable of binding (and potentially eliciting antibodies similar to the template collection of effective antibodies. Here we transplant three supersites of HIV-1 vulnerability, each targeted by effective neutralizing antibodies from multiple donors. To implement our strategy, we chose a single representative antibody against each of the target supersites: antibody 10E8, which recognizes the membrane-proximal external region (MPER on the HIV-1 gp41 glycoprotein; antibody PG9, which recognizes variable regions one and two (V1V2 on the HIV-1 gp120 glycoprotein; and antibody PGT128 which recognizes a glycopeptide supersite in variable region 3 (glycan V3 on gp120. We used a structural alignment algorithm to identify suitable acceptor proteins, and then designed, expressed, and tested antigenically over 100-supersite transplants in a 96-well microtiter-plate format. The majority of the supersite transplants failed to maintain the antigenic properties of their respective template supersite. However, seven of the glycan V3-supersite transplants exhibited nanomolar affinity to effective neutralizing antibodies from at least three donors and recapitulated the mannose9-N-linked glycan requirement of the template supersite. The binding of these transplants could be further enhanced by placement into self-assembling nanoparticles. Essential elements of the glycan V3 supersite, embodied by as few as 3 N-linked glycans and ∼ 25 Env residues, can be

  12. TNF/TNFR1 signaling up-regulates CCR5 expression by CD8+ T lymphocytes and promotes heart tissue damage during Trypanosoma cruzi infection: beneficial effects of TNF-α blockade

    Directory of Open Access Journals (Sweden)

    Karina Kroll-Palhares

    2008-06-01

    Full Text Available In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-α is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-α levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-α, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-α+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-α treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-α-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-α treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.

  13. Dual role of autophagy in HIV-1 replication and pathogenesis

    Directory of Open Access Journals (Sweden)

    Killian M

    2012-05-01

    Full Text Available Abstract Autophagy, the major mechanism for degrading long-lived intracellular proteins and organelles, is essential for eukaryotic cell homeostasis. Autophagy also defends the cell against invasion by microorganisms and has important roles in innate and adaptive immunity. Increasingly evident is that HIV-1 replication is dependent on select components of autophagy. Fittingly, HIV-1 proteins are able to modulate autophagy to maximize virus production. At the same time, HIV-1 proteins appear to disrupt autophagy in uninfected cells, thereby contributing to CD4+ cell death and HIV-1 pathogenesis. These observations allow for new approaches for the treatment and possibly the prevention of HIV-1 infection. This review focuses on the relationship between autophagy and HIV-1 infection. Discussed is how autophagy plays dual roles in HIV-1 replication and HIV-1 disease progression.

  14. Intestinal microbiota and HIV-1 infection

    Directory of Open Access Journals (Sweden)

    E. B. S. M. Trindade

    2007-01-01

    Full Text Available The intestinal microbiota consists of a qualitatively and quantitatively diverse range of microorganisms dynamically interacting with the host. It is remarkably stable with regard to the presence of microorganisms and their roles which, however, can be altered due to pathological conditions, diet composition, gastrointestinal disturbances and/or drug ingestion. The present review aimed at contributing to the discussion about changes in the intestinal microbiota due to HIV-1 infection, focusing on the triad infection-microbiota-nutrition as factors that promote intestinal bacterial imbalance. Intestinal microbiota alterations can be due to the HIV-1 infection as a primary factor or the pharmacotherapy employed, or they can be one of the consequences of the disease.

  15. Limits on oral transmission of HIV-1.

    Science.gov (United States)

    Cohen, M S; Shugars, D C; Fiscus, S A

    2000-07-22

    This article discusses the potential of acquiring an HIV-1 infection through an oral route, with a view of offering clues for its prevention. In a study of adult animals given low concentration cell-free simian immunodeficiency virus (SIV) orally, histological examination suggested that SIV infected lymphoid tissue through the antigen-transporting crypt epithelium rather than through dendritic cells. The investigators found no evidence of acquiring SIV via the gastrointestinal tract. For humans, HIV transmission from saliva or intimate family contact seems to be extremely rare. This could be because of the low concentration of HIV-1 in saliva. A study of 40 people found that significantly less HIV was found in salivary secretions than in plasma. Another possible explanation for inefficient oral transmission might be that HIV-1 in the oropharynx is inhibited by components found in salivary secretions. Conversely, studies have noted that risk of oral transmission of HIV from contaminated breast milk and semen is higher than from saliva. Breast-feeding by an HIV-infected woman puts the baby at substantial risk of infection and receptive fellatio cannot be considered a safe sex act.

  16. HIV-1 vaccine design: Learning from natural infection

    NARCIS (Netherlands)

    van den Kerkhof, T.L.G.M.

    2016-01-01

    Het humane immuundeficiëntie virus type 1 (hiv-1) is het virus dat aids veroorzaakt. Er is nog steeds geen bescherming tegen een hiv-1 infectie en de beëindiging van de wereldwijde epidemie kan waarschijnlijk alleen worden bereikt met behulp van een vaccin. Een hiv-1 vaccin zal bescherming moeten

  17. HIV-1 envelope trimer fusion proteins and their applications

    NARCIS (Netherlands)

    Sliepen, K.H.E.W.J.

    2016-01-01

    HIV-1 is a major threat to global health and a vaccine is not yet on the horizon. A successful HIV-1 vaccine should probably induce HIV-1 neutralizing antibodies that target the envelope glycoprotein (Env) trimer on the outside of the virion. A possible starting point for such a vaccine are soluble

  18. Effects of the I559P gp41 change on the conformation and function of the human immunodeficiency virus (HIV-1 membrane envelope glycoprotein trimer.

    Directory of Open Access Journals (Sweden)

    Nirmin Alsahafi

    Full Text Available The mature human immunodeficiency virus (HIV-1 envelope glycoprotein (Env trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env

  19. Quantification of the Epitope Diversity of HIV-1-Specific Binding Antibodies by Peptide Microarrays for Global HIV-1 Vaccine Development

    OpenAIRE

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T; Barouch, Dan H.

    2014-01-01

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6,564 peptides from across...

  20. HIV-1 Phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues

    Science.gov (United States)

    Lamers, Susanna L.; Gray, Rebecca R.; Salemi, Marco; Huysentruyt, Leanne C.; McGrath, Michael

    2010-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that 1) HIV-1 is clearly capable of migrating out of the brain, 2) the meninges are the most likely primary transport tissues, and 3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. PMID:21055482

  1. Compartmentalization of HIV-1 within the female genital tract is due to monotypic and low-diversity variants not distinct viral populations.

    Directory of Open Access Journals (Sweden)

    Marta Bull

    Full Text Available BACKGROUND: Compartmentalization of HIV-1 between the genital tract and blood was noted in half of 57 women included in 12 studies primarily using cell-free virus. To further understand differences between genital tract and blood viruses of women with chronic HIV-1 infection cell-free and cell-associated virus populations were sequenced from these tissues, reasoning that integrated viral DNA includes variants archived from earlier in infection, and provides a greater array of genotypes for comparisons. METHODOLOGY/PRINCIPAL FINDINGS: Multiple sequences from single-genome-amplification of HIV-1 RNA and DNA from the genital tract and blood of each woman were compared in a cross-sectional study. Maximum likelihood phylogenies were evaluated for evidence of compartmentalization using four statistical tests. Genital tract and blood HIV-1 appears compartmentalized in 7/13 women by >/=2 statistical analyses. These subjects' phylograms were characterized by low diversity genital-specific viral clades interspersed between clades containing both genital and blood sequences. Many of the genital-specific clades contained monotypic HIV-1 sequences. In 2/7 women, HIV-1 populations were significantly compartmentalized across all four statistical tests; both had low diversity genital tract-only clades. Collapsing monotypic variants into a single sequence diminished the prevalence and extent of compartmentalization. Viral sequences did not demonstrate tissue-specific signature amino acid residues, differential immune selection, or co-receptor usage. CONCLUSIONS/SIGNIFICANCE: In women with chronic HIV-1 infection multiple identical sequences suggest proliferation of HIV-1-infected cells, and low diversity tissue-specific phylogenetic clades are consistent with bursts of viral replication. These monotypic and tissue-specific viruses provide statistical support for compartmentalization of HIV-1 between the female genital tract and blood. However, the intermingling

  2. Evaluation of Xpert HIV-1 Qual assay for resolution of HIV-1 infection in samples with negative or indeterminate Geenius HIV-1/2 results.

    Science.gov (United States)

    Michaeli, Michal; Wax, Marina; Gozlan, Yael; Rakovsky, Aviya; Mendelson, Ella; Mor, Orna

    2016-03-01

    Diagnosis of HIV infection is a multistage algorithm. Following screening with 4(th) generation combination immunoassay, confirmation of HIV infection is performed with an antibody assay that differentiates HIV-1 from HIV-2 infection. In the newly updated algorithm, samples that are nonreactive or indeterminate in the differentiation assay are to be tested with an HIV-1 nucleic acid amplification (NAAT) test for resolution. Xpert HIV-1 Qual is a new NAAT assay approved for the identification of HIV infection in whole and dried blood. To assess the performance of Xpert HIV-1 Qual supplementary assay in resolving the clinical status of serum samples reactive by 4(th) generation immunoassays and indeterminate or negative by Geenius HIV-1/2 confirmatory assay. In a retrospective study, samples from 97 individuals for whom the true HIV-1 status was already known (by follow-up samples) and which were negative or indeterminate by HIV-1/2 Geenius assay were tested with Xpert Qual HIV-1 assay. Xpert Qual assay correctly classified all 97 samples from HIV-1 positive (n=49) and negative (n=48) individuals. The sensitivity and specificity of Xpert Qual when using the true HIV status as a reference were 100% (92.7-100% at 95% confidence interval [CI] and 92.6-100% at 95% CI, respectively). Applying Xpert Qual HIV-1 assay in the new HIV multi-stage diagnostic algorithm correctly classified 100% of HIV-1 infections including 49 from HIV-1 carriers who have not yet seroconverted. With this assay the total time required for acute HIV diagnosis could be significantly reduced. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. CD44 function as a growth factor co-receptor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.

    2003-06-01

    CD44 splice variant proteins containing exon v6 encoded sequence have been implicated in tumour metastasis. The work presented in this thesis shows that CD44 isoforms containing exon v6 encoded sequences act as coreceptor for the c-Met receptor, a tyrosine kinase receptor that is involved in growth control and invasive growth. The c-Met receptor and its ligand hepatocyte growth factor (HGF) have also been implicated in tumour metastasis. My results show the cooperation between CD44, HGF and c-Met. A CD44 isoform containing variant exon v6 encoded sequences is strictly required for c-Met activation by HGF/SF in rat and human carcinoma cells. In a non-metastatic cell line BSp73AS cells which only expressed CD44 standard form, HGF can not activate c-Met. Upon transfection with the CD44 bearing v6 encoded sequences, the cells become HGF inducible. Antibodies against two CD44 exon v6-encoded epitopes inhibit autophosphorylation of c-Met. The CD44 isoform is required for the assembly of signalling complex containing at least HGF, c-Met and CD44 v6 bearing isoform. Furthermore, this growth factor co-receptor function could be a more general mechanism. I have investigated the involvement of CD44 isoforms in the signalling by the EGF receptor family. My results show that HB-EGF, EGF and Amphiregulin activate their receptors in a CD44 dependent manner. CD44 v6 specific antibodies can interfere with HB-EGF, EGF and Amphiregulin signalling both at Erk level and at receptor level. (orig.) [German] In der nicht metastasierenden Zelllinie Bsp73 AS, die ausschliesslich die CD44 Standardform exprimiert, fuehrt HGF nicht zur Aktivierung von c-Met. Durch Transfektion mit unterschiedlichen CD44 v6 enthaltenden Isoformen, werden die Zellen HGF-induzierbar. Antikoerper gegen zwei von CD44 Exon v6 kodierte Epitope verhindern die Autophosphorylierung von c-Met. Die CD44 Isoform wird zur Bildung eines Signalkomplexes benoetigt, der zumindest HGF, c-Met und CD44v6 tragende Isoformen

  4. A simple one-step method for the preparation of HIV-1 envelope glycoprotein immunogens based on a CD4 mimic peptide.

    Science.gov (United States)

    Martin, Grégoire; Sun, Yide; Heyd, Bernadette; Combes, Olivier; Ulmer, Jeffrey B; Descours, Anne; Barnett, Susan W; Srivastava, Indresh K; Martin, Loïc

    2008-11-25

    To counteract the problems associated with the purification of HIV envelope, we developed a new purification method exploiting the high affinity of a peptide mimicking CD4 towards the viral glycoprotein. This miniCD4 was used as a ligand in affinity chromatography and allowed the separation in one step of HIV envelope monomer from cell supernatant and the capture of pre-purified trimer. This simple and robust method of purification yielded to active and intact HIV envelopes as proved by the binding of CCR5 HIV co-receptor, CD4 and a panel of well-characterized monoclonal antibodies. The immunogenicity of miniCD4-purified HIV envelope was further assessed in rats. The analysis of the humoral response indicated that elicited antibodies were able to recognize a broad range of HIV envelopes. Finally, this method based on a chemically synthesized peptide may represent a convenient and versatile tool for protein purification compatible far scale-up in both academic and pharmaceutical researches.

  5. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice

    Science.gov (United States)

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  6. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry.

    Directory of Open Access Journals (Sweden)

    Rachid Sougrat

    2007-05-01

    Full Text Available The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV, are heterodimers of a transmembrane glycoprotein (usually gp41, and a surface glycoprotein (gp120, which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.

  7. Photochemical neutralization of HIV-1 and inhibition of HIV-1 induced syncytium formation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.E.; Utecht, R.E. [South Dakota State Univ., Brookings, SD (United States); Chanh, T.C.; Allan, J.S. [Southwest Foundation for Biomedical Research, San Antonio, TX (United States); Sogandares-Bernal, F.; Judy, M.M.; Matthews J.L. [Baylor Research Foundation, Dallas, TX (United States)

    1993-12-31

    The authors have prepared a new class of photochemically activatable antiviral compounds based on the 1,8-naphthalimide skeleton which are excited by visible (420 nm) light, and which are highly effective in causing neutralization of enveloped viruses including HIV-1, HSV-1, and VSV. One such photoactive compound, 1,14-bis-(N-hexyl-3-bromo-1,8-naphthalimid-4-yl)-1,4,11,14-tetrazatetradecane-5,10-dione (diED66Br) effectively neutralized HIV-1 in vitro at concentrations below .1{mu}M; similar results are obtained for HSV-1 and VSV. DiED66Br also effectively inhibits syncytium formation induced by cells infected with HIV-1 at doses which had no effect on normal human blood peripheral mononuclear cells. The synthesis of the photochemically active compounds and the mode of antiviral action will be discussed.

  8. Defining HIV-1 transmission clusters based on sequence data.

    Science.gov (United States)

    Hassan, Amin S; Pybus, Oliver G; Sanders, Eduard J; Albert, Jan; Esbjörnsson, Joakim

    2017-06-01

    : Understanding HIV-1 transmission dynamics is relevant to both screening and intervention strategies of HIV-1 infection. Commonly, HIV-1 transmission chains are determined based on sequence similarity assessed either directly from a sequence alignment or by inferring a phylogenetic tree. This review is aimed at both nonexperts interested in understanding and interpreting studies of HIV-1 transmission, and experts interested in finding the most appropriate cluster definition for a specific dataset and research question. We start by introducing the concepts and methodologies of how HIV-1 transmission clusters usually have been defined. We then present the results of a systematic review of 105 HIV-1 molecular epidemiology studies summarizing the most common methods and definitions in the literature. Finally, we offer our perspectives on how HIV-1 transmission clusters can be defined and provide some guidance based on examples from real life datasets.

  9. Factors of intermittent HIV-1 excretion in semen and efficiency of sperm processing in obtaining spermatozoa without HIV-1 genomes.

    Science.gov (United States)

    Bujan, Louis; Daudin, Myriam; Matsuda, Tomohiro; Righi, Laurence; Thauvin, Laurence; Berges, Laetitia; Izopet, Jacques; Berrebi, Alain; Massip, Patrice; Pasquier, Christophe

    2004-03-26

    To study the risk factors for HIV-1 in semen according to the localization of HIV-1 in sperm cell fractions and to assess the efficiency of sperm processing in obtaining spermatozoa without HIV-1 genomes. Ninety-four HIV-infected patients provided 281 paired blood and semen samples. Sperm cell separation was performed using two successive methods. HIV-1 RNA was quantified in blood and seminal plasma. HIV-1 RNA and DNA were detected in cell fractions. HIV-1 RNA was found in 14% of seminal plasma samples and up to 8.7% of native semen cells were positive for HIV-1 RNA and DNA. Ten seminal plasma samples had detectable RNA although blood viral load was undetectable. Antiretroviral treatment reduced the likelihood of RNA detection in seminal plasma. For semen with polynuclear cells and HIV-1 RNA in seminal plasma, the likelihood of detecting HIV-1 genomes in semen cells was increased fourfold and sixfold, respectively. In 25% of patients, HIV-1 excretion was intermittent. In the group of patients with systematic negative seminal plasma, HIV-1 genomes were detected in up to 10% of sperm cell samples. Our method of sperm processing always enabled us to obtain spermatozoa without detectable HIV-1 genomes. Polynuclear cells in semen are a risk factor for seminal HIV-1 excretion. Blood viral load was the only predictive factor for the intermittence of HIV-1 excretion in semen over time. Sperm processing using two successive methods was effective in obtaining spermatozoa without detectable HIV-1 genomes regardless of the viral load level in native semen.

  10. Increased Risk of HIV-1 Transmission in Pregnancy: A Prospective Study among African HIV-1 Serodiscordant Couples

    Science.gov (United States)

    MUGO, Nelly R.; HEFFRON, Renee; DONNELL, Deborah; WALD, Anna; WERE, Edwin O.; REES, Helen; CELUM, Connie; KIARIE, James N.; COHEN, Craig R.; KAYINTEKORE, Kayitesi; BAETEN, Jared M.

    2011-01-01

    Background Physiologic and behavioral changes during pregnancy may alter HIV-1 susceptibility and infectiousness. Prospective studies exploring pregnancy and HIV-1 acquisition risk in women have found inconsistent results. No study has explored the effect of pregnancy on HIV-1 transmission risk from HIV-1 infected women to male partners. Methods In a prospective study of African HIV-1 serodiscordant couples, we evaluated the relationship between pregnancy and the risk of 1) HIV-1 acquisition among women and 2) HIV-1 transmission from women to men. Results 3321 HIV-1 serodiscordant couples were enrolled, 1085 (32.7%) with HIV-1 susceptible female partners and 2236 (67.3%) with susceptible male partners. HIV-1 incidence in women was 7.35 versus 3.01 per 100 person-years during pregnant and non-pregnant periods (hazard ratio [HR] 2.34, 95% confidence interval [CI] 1.33–4.09). This effect was attenuated and not statistically significant after adjusting for sexual behavior and other confounding factors (adjusted HR 1.71, 95% CI 0.93–3.12). HIV-1 incidence in male partners of infected women was 3.46 versus 1.58 per 100 person-years when their partners were pregnant versus not pregnant (HR 2.31, 95% CI 1.22–4.39). This effect was not attenuated in adjusted analysis (adjusted HR 2.47, 95% CI 1.26–4.85). Conclusions HIV-1 risk increased two-fold during pregnancy. Elevated risk of HIV-1 acquisition in pregnant women appeared in part to be explained by behavioral and other factors. This is the first study to show pregnancy increased the risk of female-to-male HIV-1 transmission, which may reflect biological changes of pregnancy that could increase HIV-1 infectiousness. PMID:21785321

  11. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1

    Science.gov (United States)

    Bonsignori, Mattia; Wiehe, Kevin; Grimm, Sebastian K.; Lynch, Rebecca; Yang, Guang; Kozink, Daniel M.; Perrin, Florence; Cooper, Abby J.; Hwang, Kwan-Ki; Chen, Xi; Liu, Mengfei; McKee, Krisha; Parks, Robert J.; Eudailey, Joshua; Wang, Minyue; Clowse, Megan; Criscione-Schreiber, Lisa G.; Moody, M. Anthony; Ackerman, Margaret E.; Boyd, Scott D.; Gao, Feng; Kelsoe, Garnett; Verkoczy, Laurent; Tomaras, Georgia D.; Liao, Hua-Xin; Kepler, Thomas B.; Montefiori, David C.; Mascola, John R.; Haynes, Barton F.

    2014-01-01

    Broadly HIV-1–neutralizing antibodies (BnAbs) display one or more unusual traits, including a long heavy chain complementarity-determining region 3 (HCDR3), polyreactivity, and high levels of somatic mutations. These shared characteristics suggest that BnAb development might be limited by immune tolerance controls. It has been postulated that HIV-1–infected individuals with autoimmune disease and defective immune tolerance mechanisms may produce BnAbs more readily than those without autoimmune diseases. In this study, we identified an HIV-1–infected individual with SLE who exhibited controlled viral load (<5,000 copies/ml) in the absence of controlling HLA phenotypes and developed plasma HIV-1 neutralization breadth. We collected memory B cells from this individual and isolated a BnAb, CH98, that targets the CD4 binding site (CD4bs) of HIV-1 envelope glycoprotein 120 (gp120). CH98 bound to human antigens including dsDNA, which is specifically associated with SLE. Anti-dsDNA reactivity was also present in the patient’s plasma. CH98 had a mutation frequency of 25% and 15% nt somatic mutations in the heavy and light chain variable domains, respectively, a long HCDR3, and a deletion in the light chain CDR1. The occurrence of anti-dsDNA reactivity by a HIV-1 CD4bs BnAb in an individual with SLE raises the possibility that some BnAbs and SLE-associated autoantibodies arise from similar pools of B cells. PMID:24614107

  12. In-depth characterization of viral isolates from plasma and cells compared with plasma circulating quasispecies in early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Judith Dalmau

    Full Text Available BACKGROUND: The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However, overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS technology in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral isolates and in vivo quasispecies. METHODOLOGY/PRINCIPAL FINDINGS: We amplified by DPS HIV-1 genomic regions covering gag, protease, integrase and env-V3 to characterize paired isolates from plasma and peripheral blood mononuclear cells and compare them with total plasma viral RNA in four recently HIV-1 infected subjects. Our study demonstrated the presence of unique haplotypes scattered between sample types with conservation of major variants. In addition, no differences in intra- and inter-population encoded protein variability were found between the different types of isolates or when these were compared to plasma viral RNA within subjects. Additionally, in vitro experiments demonstrated phenotypic similarities in terms of replicative capacity and co-receptor usage between viral isolates and plasma viral RNA. CONCLUSION: This study is the first in-depth comparison and characterization of viral isolates from different sources and plasma circulating quasispecies using DPS in recently HIV-1 infected subjects. Our data supports the use of primary isolates regardless of their plasma or cellular origin to define

  13. Role of Endolysosomes in HIV-1 Tat-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Liang Hui

    2012-05-01

    Full Text Available Combined anti-retroviral therapeutic drugs effectively increase the lifespan of HIV-1-infected individuals who then have a higher prevalence of HAND (HIV-1 associated neurocognitive disorder. Soluble factors including HIV-1 proteins released from HIV-1-infected cells have been implicated in the pathogenesis of HAND, and particular attention has been paid to the HIV-1 Tat (transactivator of transcription protein because of its ability to directly excite neurons and cause neuronal cell death. Since HIV-1 Tat enters cells by receptor-mediated endocytosis and since endolysosomes play an important role in neuronal cell life and death, we tested here the hypothesis that HIV-1 Tat neurotoxicity is associated with changes in the endolysosome structure and function and also autophagy. Following the treatment of primary cultured rat hippocampal neurons with HIV-1 Tat or as controls mutant-Tat or PBS, neuronal viability was determined using a triple staining method. Preceding observations of HIV-1 Tat-induced neuronal cell death, we observed statistically significant changes in the structure and membrane integrity of endolysosomes, endolysosome pH and autophagy. As early as 24 h after HIV-1 Tat was applied to neurons, HIV-1 Tat accumulated in endolysosomes, endolysosome morphology was affected and their size increased, endolysosome membrane integrity was disrupted, endolysosome pH increased, specific activities of endolysosome enzymes decreased and autophagy was inhibited, as indicated by the significant changes in three markers for autophagy. In contrast, statistically significant levels of HIV-1 Tat-induced neuronal cell death were observed only after 48 h of HIV-1 Tat treatment. Our findings suggest that endolysosomes are involved in HIV-1 Tat-induced neurotoxicity and may represent a target for therapeutic intervention against HAND.

  14. Human Cytosolic Extracts Stabilize the HIV-1 Core

    Science.gov (United States)

    Fricke, Thomas; Brandariz-Nuñez, Alberto; Wang, Xiaozhao; Smith, Amos B.

    2013-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects on HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure the stability of in vitro-assembled HIV-1 CA-NC complexes. The assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core. Interestingly, stabilization of in vitro-assembled HIV-1 CA-NC complexes is not due solely to macromolecular crowding, suggesting the presence of specific cellular factors that stabilize the HIV-1 core. By using our novel assay, we measured the abilities of different drugs, such as PF74, CAP-1, IXN-053, cyclosporine, Bi2 (also known as BI-2), and the peptide CAI, to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes. Interestingly, we found that PF74 and Bi2 strongly stabilized HIV-1 CA-NC complexes. On the other hand, the peptide CAI destabilized HIV-1 CA-NC complexes. We also found that purified cyclophilin A destabilizes in vitro-assembled HIV-1 CA-NC complexes in the presence of cellular extracts in a cyclosporine-sensitive manner. In agreement with previous observations using the fate-of-the-capsid assay, we also demonstrated the ability of recombinant CPSF6 to stabilize HIV-1 CA-NC complexes. Overall, our findings suggested that cellular extracts specifically stabilize the HIV-1 core. We believe that our assay can be a powerful tool to assess HIV-1 core stability in vitro. PMID:23885082

  15. Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease.

    Science.gov (United States)

    Hussein, G; Miyashiro, H; Nakamura, N; Hattori, M; Kawahata, T; Otake, T; Kakiuchi, N; Shimotohno, K

    1999-02-01

    Forty-eight methanol and aqueous extracts from Sudanese plants were screened for their inhibitory activity on viral replication. Nineteen extracts showed inhibitory effects on HIV-induced cytopathic effects (CPE) on MT-4 cells. The extracts were further screened against HIV-1 protease (PR) using an HPLC assay method. Of the tested extracts, the methanol extracts of Acacia nilotica (bark and pods), Euphorbia granulata (leaves), Maytenus senegalensis (stem-bark) and aqueous extracts of A. nilotica (pods) and M. senegalensis (stem-bark) showed considerable inhibitory effects against HIV-1 PR. Inhibitory principles were isolated from M. senegalensis and their activities were also discussed.

  16. The Vaginal Acquisition and Dissemination of HIV-1 Infection in a Novel Transgenic Mouse Model Is Facilitated by Coinfection with Herpes Simplex Virus 2 and Is Inhibited by Microbicide Treatment.

    Science.gov (United States)

    Seay, Kieran; Khajoueinejad, Nazanin; Zheng, Jian Hua; Kiser, Patrick; Ochsenbauer, Christina; Kappes, John C; Herold, Betsy; Goldstein, Harris

    2015-09-01

    Epidemiological studies have demonstrated that herpes simplex virus 2 (HSV-2) infection significantly increases the risk of HIV-1 acquisition, thereby contributing to the expanding HIV-1 epidemic. To investigate whether HSV-2 infection directly facilitates mucosal HIV-1 acquisition, we used our transgenic hCD4/R5/cT1 mouse model which circumvents major entry and transcription blocks preventing murine HIV-1 infection by targeting transgenic expression of human CD4, CCR5, and cyclin T1 genes to CD4(+) T cells and myeloid-committed cells. Productive infection of mucosal leukocytes, predominantly CD4(+) T cells, was detected in all hCD4/R5/cT1 mice intravaginally challenged with an HIV-1 infectious molecular clone, HIV-Du151.2env-NLuc, which expresses an env gene (C.Du151.2) cloned from an acute heterosexually infected woman and a NanoLuc luciferase reporter gene. Lower genital tract HIV-1 infection after HIV-Du151.2env-NLuc intravaginal challenge was increased ~4-fold in hCD4/R5/cT1 mice coinfected with HSV-2. Furthermore, HIV-1 dissemination to draining lymph nodes was detected only in HSV-2-coinfected mice. HSV-2 infection stimulated local infiltration and activation of CD4(+) T cells and dendritic cells, likely contributing to the enhanced HIV-1 infection and dissemination in HSV-2-coinfected mice. We then used this model to demonstrate that a novel gel containing tenofovir disoproxil fumarate (TDF), the more potent prodrug of tenofovir (TFV), but not the TFV microbicide gel utilized in the recent CAPRISA 004, VOICE (Vaginal and Oral Interventions to Control the Epidemic), and FACTS 001 clinical trials, was effective as preexposure prophylaxis (PrEP) to completely prevent vaginal HIV-1 infection in almost half of HSV-2-coinfected mice. These results also support utilization of hCD4/R5/cT1 mice as a highly reproducible immunocompetent preclinical model to evaluate HIV-1 acquisition across the female genital tract. Multiple epidemiological studies have reported that

  17. HIV-1 genetic variants in Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    V Laga

    2012-11-01

    Full Text Available Objectives: During the last two decades, HIV-1 has been spreading rapidly in former Soviet Union republics including Kyrgyzstan. The current molecular monitoring of HIV-infection epidemic is carried out in Russia only with no or limited data from the other FSU countries. The aim of this work was to investigate the prevalence of HIV-1 genetic variants circulating in Kyrgyzstan. Methods: Blood collection from the HIV-infected patients was carried out by local specialists with the informed consent and the questionnaire was answered by each of the patients. The total number of samples was 100. The washed cell pellets were transferred to Moscow following with proviral DNA extraction, PCR amplification and gag, pol and env genes sequencing. The phylogenetic analysis of nucleotide sequences using neighbor-joining method was carried out by MEGA 3 program. The preliminary data were obtained in 22 samples isolated from PBMC of HIV-infected patients from Kyrgyzstan. Results: Among the samples studied 6 (27.3% samples belonged to a subtype CRF02_AG, 16 samples - to subtype A (A1. One of the samples belonging to CRF02_AG, probably, is a recombinant between CRF02_AG and A1. There was no major drug resistance mutations in the samples studied. The minor mutations were presented in small proportions: 1 in PR (L10I, 6 in RT (A62V - in 3 samples, V108G, E138A, Y181F, M184I, L210M - on one sample and 1 in IN (L74M. It was impossible to associate the distribution of mutations with HIV-1 genetic variant. The V3 loop (env gene in 17 samples was analyzed for tropism using geno2pheno program; all samples were found to be R5-viruses. Conclusion: The HIV-1 subtype A seems to dominate in Kyrgyzstan like in other FSU countries. The recombinant CRF02_AG epidemiologically linked to Uzbekistan is quite widespread. The rest of Kyrgyzstan collection is under investigation and the data will be refined soon.

  18. Rigidity analysis of HIV-1 protease

    Science.gov (United States)

    Heal, J. W.; Wells, S. A.; Jimenez-Roldan, E.; Freedman, R. F.; Römer, R. A.

    2011-03-01

    We present a rigidity analysis on a large number of X-ray crystal structures of the enzyme HIV-1 protease using the 'pebble game' algorithm of the software FIRST. We find that although the rigidity profile remains similar across a comprehensive set of high resolution structures, the profile changes significantly in the presence of an inhibitor. Our study shows that the action of the inhibitors is to restrict the flexibility of the β-hairpin flaps which allow access to the active site. The results are discussed in the context of full molecular dynamics simulations as well as data from NMR experiments.

  19. LRP4 serves as a coreceptor of agrin.

    Science.gov (United States)

    Zhang, Bin; Luo, Shiwen; Wang, Qiang; Suzuki, Tatsuo; Xiong, Wen C; Mei, Lin

    2008-10-23

    Neuromuscular junction (NMJ) formation requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. We report that LRP4, a low-density lipoprotein receptor (LDLR)-related protein, is expressed specifically in myotubes and binds to neuronal agrin. Its expression enables agrin binding and MuSK signaling in cells that otherwise do not respond to agrin. Suppression of LRP4 expression in muscle cells attenuates agrin binding, agrin-induced MuSK tyrosine phosphorylation, and AChR clustering. LRP4 also forms a complex with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies.

  20. Current Status of the Pharmacokinetics and Pharmacodynamics of HIV-1 Entry Inhibitors and HIV Therapy.

    Science.gov (United States)

    Xu, Fengyan; Acosta, Edward P; Liang, Liyu; He, Yingchun; Yang, Juan; Kerstner-Wood, Corenna; Zheng, Qingshang; Huang, Jihan; Wang, Kun

    2017-10-16

    Human Immunodeficiency Virus (HIV) entry inhibitors target the first step of the HIV life cycle and efficiently inhibit HIV from infecting the immune cells which is a key prerequisite for viral spread. Because of their unique mechanism of action on cell-cell transmission, they may provide a promising perspective for the treatment of AIDS. Maraviroc (MVC) and Enfuvirtide (ENF) have been approved by the FDA for the treatment of HIV-1 infection. Attachment inhibitors (BMS-663068 and TNX-355) and co-receptor inhibitors (PRO-140 and cenicriviroc (CVC)) have reached phase II or III clinical trials. These entry inhibitors show beneficial pharmacokinetics and substantial reductions of plasma HIV-1 RNA load in HIV infected patients. Most entry inhibitors are generally safe, without serious Adverse Event (AE) or AE leading to discontinuation. The pharmacokinetics of MVC, CVC and BMS-663068 was affected by CYP3A4 inhibitors or inducers. The FDA has proposed that the dosage of MVC (300 mg, BID, orally) be adjusted to half or two-fold for patients if it is combined with a major CYP3A4 inhibitor or inducer, respectively. Researchers suggested that the dosage of CVC (50-75 mg, QD, orally) may also need adjustment but the dosage of BMS-663068 (600 mg, BID, orally) does not. The standard, recommended ENF dosage is 90 mg BID, injected subcutaneously for adults, and 2 mg/kg BID, up to a maximum dose of 90 mg, injected subcutaneously for pediatric patients. TNX-355 (10-15 mg/kg, BID, intravenously) and PRO-140(5-10 mg/kg, BID, intravenously; 324 mg, biweekly, subcutaneously) are administered by intravenous infusion or subcutaneous injection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Complementation of diverse HIV-1 Env defects through cooperative subunit interactions: a general property of the functional trimer

    Directory of Open Access Journals (Sweden)

    Salzwedel Karl

    2009-08-01

    Full Text Available Abstract Background The HIV-1 Env glycoprotein mediates virus entry by catalyzing direct fusion between the virion membrane and the target cell plasma membrane. Env is composed of two subunits: gp120, which binds to CD4 and the coreceptor, and gp41, which is triggered upon coreceptor binding to promote the membrane fusion reaction. Env on the surface of infected cells is a trimer consisting of three gp120/gp41 homo-dimeric protomers. An emerging question concerns cooperative interactions between the protomers in the trimer, and possible implications for Env function. Results We extended studies on cooperative subunit interactions within the HIV-1 Env trimer, using analysis of functional complementation between coexpressed inactive variants harboring different functional deficiencies. In assays of Env-mediated cell fusion, complementation was observed between variants with a wide range of defects in both the gp120 and gp41 subunits. The former included gp120 subunits mutated in the CD4 binding site or incapable of coreceptor interaction due either to mismatched specificity or V3 loop mutation. Defective gp41 variants included point mutations at different residues within the fusion peptide or heptad repeat regions, as well as constructs with modifications or deletions of the membrane proximal tryptophan-rich region or the transmembrane domain. Complementation required the defective variants to be coexpressed in the same cell. The observed complementation activities were highly dependent on the assay system. The most robust activities were obtained with a vaccinia virus-based expression and reporter gene activation assay for cell fusion. In an alternative system involving Env expression from integrated provirus, complementation was detected in cell fusion assays, but not in virus particle entry assays. Conclusion Our results indicate that Env function does not require every subunit in the trimer to be competent for all essential activities. Through

  2. Cyclophilin B enhances HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln, NE (United States)

    2016-02-15

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  3. Evaluation of three enzyme immunoassays for HIV-1 antigen detection.

    Science.gov (United States)

    Willoughby, P B; Lisker, A; Folds, J D

    1989-01-01

    Three enzyme immunoassay (EIA) methods for the detection of human immunodeficiency virus (HIV-1) were evaluated. Serum or plasma samples from 22 individuals seropositive for HIV-1 antibodies were tested with the Abbott, Coulter, and DuPont kits for presence of HIV-1 p24 antigen. Another 12 samples were tested with two kits only. Discordant results were obtained with 9 of 34 (26%) HIV-1-antibody-positive patient samples tested. Most of these discrepancies were found in samples containing less than 30 pg/ml of HIV-1 p24 core antigen. A sampling of sera from normal blood donors and patients with infectious or autoimmune diseases revealed a low level of false positive reactions, especially with sera containing antinuclear antibodies or rheumatoid factor. Noteworthy is the frequency of false positive reactions seen with the DuPont EIA for HIV-1 p24 antigen. 18/111 sera (16.2%) containing auto-antibodies tested positively with the DuPont HIV-1 p24 antigen EIA. The nonspecific nature of the test reactivity for 9/10 of these samples was confirmed using an HIV-1 p24 antigen inhibition assay. These findings are discussed in light of the need for HIV-1 antigen detection in the clinical laboratory and of other methods for HIV-1 detection: the polymerase chain reaction and measurements of reverse transcriptase activity.

  4. Genetic composition of replication competent clonal HIV-1 variants isolated from peripheral blood mononuclear cells (PBMC), HIV-1 proviral DNA from PBMC and HIV-1 RNA in serum in the course of HIV-1 infection.

    Science.gov (United States)

    Edo-Matas, Diana; van Gils, Marit J; Bowles, Emma J; Navis, Marjon; Rachinger, Andrea; Boeser-Nunnink, Brigitte; Stewart-Jones, Guillaume B; Kootstra, Neeltje A; van 't Wout, Angélique B; Schuitemaker, Hanneke

    2010-09-30

    The HIV-1 quasispecies in peripheral blood mononuclear cells (PBMC) is considered to be a mix of actively replicating, latent, and archived viruses and may be genetically distinct from HIV-1 variants in plasma that are considered to be recently produced. Here we analyzed the genetic relationship between gp160 env sequences from replication competent clonal HIV-1 variants that were isolated from PBMC and from contemporaneous HIV-1 RNA in serum and HIV-1 proviral DNA in PBMC of four longitudinally studied therapy naïve HIV-1 infected individuals. Replication competent clonal HIV-1 variants, HIV-1 RNA from serum, and HIV-1 proviral DNA from PBMC formed a single virus population at most time points analyzed. However, an under-representation in serum of HIV-1 sequences with predicted CXCR4 usage was sometimes observed implying that the analysis of viral sequences from different sources may provide a more complete assessment of the viral quasispecies in peripheral blood in vivo. Copyright 2010 Elsevier Inc. All rights reserved.

  5. HIV-1 Entry in SupT1-R5, CEM-ss, and Primary CD4+ T Cells Occurs at the Plasma Membrane and Does Not Require Endocytosis

    Science.gov (United States)

    Herold, Nikolas; Anders-Ößwein, Maria; Glass, Bärbel; Eckhardt, Manon; Müller, Barbara

    2014-01-01

    ABSTRACT Cytoplasmic entry of HIV-1 requires binding of the viral glycoproteins to the cellular receptor and coreceptor, leading to fusion of viral and cellular membranes. Early studies suggested that productive HIV-1 infection occurs by direct fusion at the plasma membrane. Endocytotic uptake of HIV-1 was frequently observed but was considered to constitute an unspecific dead-end pathway. More recent evidence suggested that endocytosis contributes to productive HIV-1 entry and may even represent the predominant or exclusive route of infection. We have analyzed HIV-1 binding, endocytosis, cytoplasmic entry, and infection in T-cell lines and in primary CD4+ T cells. Efficient cell binding and endocytosis required viral glycoproteins and CD4, but not the coreceptor. The contribution of endocytosis to cytoplasmic entry and infection was assessed by two strategies: (i) expression of dominant negative dynamin-2 was measured and was found to efficiently block HIV-1 endocytosis but to not affect fusion or productive infection. (ii) Making use of the fact that HIV-1 fusion is blocked at temperatures below 23°C, cells were incubated with HIV-1 at 22°C for various times, and endocytosis was quantified by parallel analysis of transferrin and fluorescent HIV-1 uptake. Subsequently, entry at the plasma membrane was blocked by high concentrations of the peptidic fusion inhibitor T-20, which does not reach previously endocytosed particles. HIV-1 infection was scored after cells were shifted to 37°C in the presence of T-20. These experiments revealed that productive HIV-1 entry occurs predominantly at the plasma membrane in SupT1-R5, CEM-ss, and primary CD4+ T cells, with little, if any, contribution coming from endocytosed virions. IMPORTANCE HIV-1, like all enveloped viruses, reaches the cytoplasm by fusion of the viral and cellular membranes. Many viruses enter the cytoplasm by endosomal uptake and fusion from the endosome, while cell entry can also occur by direct fusion at

  6. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication.

    Science.gov (United States)

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases

    Science.gov (United States)

    Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar

    2014-01-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  8. Species tropism of HIV-1 modulated by viral accessory proteins

    OpenAIRE

    Masako eNomaguchi; Naoya eDoi; Yui eMatsumoto; Yosuke eSakai; Sachi eFujiwara; Akio eAdachi

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) is tropic and pathogenic only for humans, and does not replicate in macaque monkeys routinely used for experimental infections. This specially narrow host range (species tropism) has impeded much the progress of HIV-1/acquired immunodeficiency syndrome (AIDS) basic research. Extensive studies on the underlying mechanism have revealed that Vif, one of viral accessory proteins, is critical for the HIV-1 species tropism in addition to Gag-capsid protei...

  9. Reverse transcription of the HIV-1 pandemic.

    Science.gov (United States)

    Basavapathruni, Aravind; Anderson, Karen S

    2007-12-01

    The HIV/AIDS pandemic has existed for >25 years. Extensive work globally has provided avenues to combat viral infection, but the disease continues to rage on in the human population and infected approximately 4 million people in 2006 alone. In this review, we provide a brief history of HIV/AIDS, followed by analysis of one therapeutic target of HIV-1: its reverse transcriptase (RT). We discuss the biochemical characterization of RT in order to place emphasis on possible avenues of inhibition, which now includes both nucleoside and non-nucleoside modalities. Therapies against RT remain a cornerstone of anti-HIV treatment, but the virus eventually resists inhibition through the selection of drug-resistant RT mutations. Current inhibitors and associated resistance are discussed, with the hopes that new therapeutics can be developed against RT.

  10. TIM-family proteins inhibit HIV-1 release.

    Science.gov (United States)

    Li, Minghua; Ablan, Sherimay D; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S; Rennert, Paul D; Maury, Wendy; Johnson, Marc C; Freed, Eric O; Liu, Shan-Lu

    2014-09-02

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors.

  11. RNA Interference Therapies for an HIV-1 Functional Cure.

    Science.gov (United States)

    Scarborough, Robert J; Gatignol, Anne

    2017-12-27

    HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.

  12. Chronic HIV-1 infection frequently fails to protect against superinfection.

    Directory of Open Access Journals (Sweden)

    Anne Piantadosi

    2007-11-01

    Full Text Available Reports of HIV-1 superinfection (re-infection have demonstrated that the immune response generated against one strain of HIV-1 does not always protect against other strains. However, studies to determine the incidence of HIV-1 superinfection have yielded conflicting results. Furthermore, few studies have attempted to identify superinfection cases occurring more than a year after initial infection, a time when HIV-1-specific immune responses would be most likely to have developed. We screened a cohort of high-risk Kenyan women for HIV-1 superinfection by comparing partial gag and envelope sequences over a 5-y period beginning at primary infection. Among 36 individuals, we detected seven cases of superinfection, including cases in which both viruses belonged to the same HIV-1 subtype, subtype A. In five of these cases, the superinfecting strain was detected in only one of the two genome regions examined, suggesting that recombination frequently occurs following HIV-1 superinfection. In addition, we found that superinfection occurred throughout the course of the first infection: during acute infection in two cases, between 1-2 y after infection in three cases, and as late as 5 y after infection in two cases. Our results indicate that superinfection commonly occurs after the immune response against the initial infection has had time to develop and mature. Implications from HIV-1 superinfection cases, in which natural re-exposure leads to re-infection, will need to be considered in developing strategies for eliciting protective immunity to HIV-1.

  13. Progress in HIV-1 antibody research using humanized mice.

    Science.gov (United States)

    Gruell, Henning; Klein, Florian

    2017-05-01

    Recent discoveries of highly potent broadly HIV-1 neutralizing antibodies provide new opportunities to successfully prevent, treat, and potentially cure HIV-1 infection. To test their activity in vivo, humanized mice have been shown to be a powerful model and were used to investigate antibody-mediated prevention and therapy approaches. In this review, we will summarize recent findings in humanized mice that have informed on the potential use of broadly neutralizing anti