WorldWideScience

Sample records for hiv virus binding

  1. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate......-binding activity and was dependent on glycosylation of gp120. Native dodecameric SP-D bound to HIV gp120 more strongly than native trimeric SP-D. Since one common polymorphic form of SP-D is predominantly expressed as trimers and associated with lower blood levels, these individuals may have less effective innate...

  2. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Paolo Monini

    Full Text Available Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs. Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.

  3. Hepatitis C Virus Resistance to Carbohydrate-Binding Agents.

    Directory of Open Access Journals (Sweden)

    Laure Izquierdo

    Full Text Available Carbohydrate binding agents (CBAs, including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV, Hepatitis C Virus (HCV, Dengue Virus, Ebola Virus or Severe Acute Respiratory Syndrome Coronavirus through binding to envelope protein N-glycans. In the case of HIV, it has been shown that CBAs select for mutant viruses with N-glycosylation site deletions which are more sensitive to neutralizing antibodies. In this study we aimed at evaluating the HCV resistance to CBAs in vitro. HCV was cultivated in the presence of increasing Galanthus nivalis agglutinin (GNA, Cyanovirin-N, Concanavalin-A or Griffithsin concentrations, during more than eight weeks. At the end of lectin exposure, the genome of the isolated strains was sequenced and several potential resistance mutations in the E1E2 envelope glycoproteins were identified. The effect of these mutations on viral fitness as well as on sensitivity to inhibition by lectins, soluble CD81 or the 3/11 neutralizing antibody was assessed. Surprisingly, none of these mutations, alone or in combination, conferred resistance to CBAs. In contrast, we observed that some mutants were more sensitive to 3/11 or CD81-LEL inhibition. Additionally, several mutations were identified in the Core and the non-structural proteins. Thus, our results suggest that in contrast to HIV, HCV resistance to CBAs is not directly conferred by mutations in the envelope protein genes but could occur through an indirect mechanism involving mutations in other viral proteins. Further investigations are needed to completely elucidate the underlying mechanisms.

  4. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    International Nuclear Information System (INIS)

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki

    2015-01-01

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol

  5. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki, E-mail: y-yasutake@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517 (Japan)

    2015-10-23

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.

  6. Human-Phosphate-Binding-Protein inhibits HIV-1 gene transcription and replication

    Directory of Open Access Journals (Sweden)

    Candolfi Ermanno

    2011-07-01

    Full Text Available Abstract The Human Phosphate-Binding protein (HPBP is a serendipitously discovered lipoprotein that binds phosphate with high affinity. HPBP belongs to the DING protein family, involved in various biological processes like cell cycle regulation. We report that HPBP inhibits HIV-1 gene transcription and replication in T cell line, primary peripherical blood lymphocytes and primary macrophages. We show that HPBP is efficient in naïve and HIV-1 AZT-resistant strains. Our results revealed HPBP as a new and potent anti HIV molecule that inhibits transcription of the virus, which has not yet been targeted by HAART and therefore opens new strategies in the treatment of HIV infection.

  7. Virus-Like-Vaccines against HIV.

    Science.gov (United States)

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  8. Functional impact of HIV coreceptor-binding site mutations

    International Nuclear Information System (INIS)

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W.; Reeves, Jacqueline D.

    2006-01-01

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner

  9. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... residues. The mammalian C-type lectin bovine conglutinin was examined for its ability to interact with recombinant gp160 (rgp160) produced in vaccinia virus-infected BHK21 cells. Specific binding of conglutinin to rgp160 was demonstrated by ELISA. The interaction of bovine conglutinin with rgp160...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  10. Nef enhances HIV-1 infectivity via association with the virus assembly complex

    International Nuclear Information System (INIS)

    Qi Mingli; Aiken, Christopher

    2008-01-01

    The HIV-1 accessory protein Nef enhances virus infectivity by facilitating an early post-entry step of infection. Nef acts in the virus producer cell, leading to a beneficial modification to HIV-1 particles. Nef itself is incorporated into HIV-1 particles, where it is cleaved by the viral protease during virion maturation. To probe the role of virion-associated Nef in HIV-1 infection, we generated a fusion protein consisting of the host protein cyclophilin A (CypA) linked to the amino terminus of Nef. The resulting CypA-Nef protein enhanced the infectivity of Nef-defective HIV-1 particles and was specifically incorporated into the virions via association with Gag during particle assembly. Pharmacologic or genetic inhibition of CypA-Nef binding to Gag prevented incorporation of CypA-Nef into virions and inhibited infectivity enhancement. Our results indicate that infectivity enhancement by Nef requires its association with a component of the assembling HIV-1 particle

  11. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  12. Comparison of Newly Assembled Full Length HIV-1 Integrase With Prototype Foamy Virus Integrase: Structure-Function Prospective.

    Science.gov (United States)

    Dayer, Mohammad Reza

    2016-05-01

    Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, including all conservative residues, is available and has been extensively used in recent investigations. The aim of this study was to determine whether the above model is precisely representative of HIV-1 integrase. This would critically determine the success of any designed drug using the model in deactivation of integrase and AIDS treatment. Primarily, a new structure for HIV-1 was constructed, using a crystal structure of prototype foamy virus as the starting structure. The constructed structure of HIV-1 integrase was simultaneously simulated with a prototype foamy virus integrase on a separate occasion. Our results indicate that the HIV-1 system behaves differently from the prototype foamy virus in terms of folding, hydration, hydrophobicity of binding site and stability. Based on our findings, we can conclude that HIV-1 integrase is vastly different from the prototype foamy virus integrase and does not resemble it, and the modeling output of the prototype foamy virus simulations could not be simply generalized to HIV-1 integrase. Therefore, our HIV-1 model seems to be more representative and more useful for future research.

  13. Coinfecting viruses as determinants of HIV disease.

    Science.gov (United States)

    Lisco, Andrea; Vanpouille, Christophe; Margolis, Leonid

    2009-02-01

    The human body constitutes a balanced ecosystem of its own cells together with various microbes ("host-microbe ecosystem"). The transmission of HIV-1 and the progression of HIV disease in such an ecosystem are accompanied by de novo infection by other microbes or by activation of microbes that were present in the host in homeostatic equilibrium before HIV-1 infection. In recent years, data have accumulated on the interactions of these coinfecting microbes-viruses in particular-with HIV. Coinfecting viruses generate negative and positive signals that suppress or upregulate HIV-1. We suggest that the signals generated by these viruses may largely affect HIV transmission, pathogenesis, and evolution. The study of the mechanisms of HIV interaction with coinfecting viruses may indicate strategies to suppress positive signals, enhance negative signals, and lead to the development of new and original anti-HIV therapies.

  14. Role of the carbohydrate-binding sites of griffithsin in the prevention of DC-SIGN-mediated capture and transmission of HIV-1.

    Directory of Open Access Journals (Sweden)

    Bart Hoorelbeke

    Full Text Available BACKGROUND: The glycan-targeting C-type DC-SIGN lectin receptor is implicated in the transmission of the human immunodeficiency virus (HIV by binding the virus and transferring the captured HIV-1 to CD4(+ T lymphocytes. Carbohydrate binding agents (CBAs have been reported to block HIV-1 infection. We have now investigated the potent mannose-specific anti-HIV CBA griffithsin (GRFT on its ability to inhibit the capture of HIV-1 to DC-SIGN, its DC-SIGN-directed transmission to CD4(+ T-lymphocytes and the role of the three carbohydrate-binding sites (CBS of GRFT in these processes. FINDINGS: GRFT inhibited HIV-1(IIIB infection of CEM and HIV-1(NL4.3 infection of C8166 CD4(+ T-lymphocytes at an EC50 of 0.059 and 0.444 nM, respectively. The single mutant CBS variants of GRFT (in which a key Asp in one of the CBS was mutated to Ala were about ∼20 to 60-fold less potent to prevent HIV-1 infection and ∼20 to 90-fold less potent to inhibit syncytia formation in co-cultures of persistently HIV-1 infected HuT-78 and uninfected C8166 CD4(+ T-lymphocytes. GRFT prevents DC-SIGN-mediated virus capture and HIV-1 transmission to CD4(+ T-lymphocytes at an EC50 of 1.5 nM and 0.012 nM, respectively. Surface plasmon resonance (SPR studies revealed that wild-type GRFT efficiently blocked the binding between DC-SIGN and immobilized gp120, whereas the point mutant CBS variants of GRFT were ∼10- to 15-fold less efficient. SPR-analysis also demonstrated that wild-type GRFT and its single mutant CBS variants have the capacity to expel bound gp120 from the gp120-DC-SIGN complex in a dose dependent manner, a property that was not observed for HHA, another mannose-specific potent anti-HIV-1 CBA. CONCLUSION: GRFT is inhibitory against HIV gp120 binding to DC-SIGN, efficiently prevents DC-SIGN-mediated transfer of HIV-1 to CD4(+ T-lymphocytes and is able to expel gp120 from the gp120-DC-SIGN complex. Functionally intact CBS of GRFT are important for the optimal action of

  15. Viruses & kidney disease: beyond HIV

    Science.gov (United States)

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B.

    2008-01-01

    HIV-infected patients may acquire new viral co-infections; they may also experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections due to immunodeficiency or to risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA. PMID:19013331

  16. Viruses and kidney disease: beyond HIV.

    Science.gov (United States)

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B

    2008-11-01

    Human immunodeficiency virus (HIV)-infected patients may acquire new viral co-infections; they also may experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections owing to immunodeficiency or risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA.

  17. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers.

    Science.gov (United States)

    Joachim, Agricola; Munseri, Patricia J; Nilsson, Charlotta; Bakari, Muhammad; Aboud, Said; Lyamuya, Eligius F; Tecleab, Teghesti; Liakina, Valentina; Scarlatti, Gabriella; Robb, Merlin L; Earl, Patricia L; Moss, Bernard; Wahren, Britta; Mhalu, Fred; Ferrari, Guido; Sandstrom, Eric; Biberfeld, Gunnel

    2017-08-01

    We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.

  18. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine.

    Science.gov (United States)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-12-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high

  19. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine

    Science.gov (United States)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K.; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-07-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high

  20. Virus-like-vaccines against HIV

    DEFF Research Database (Denmark)

    Andersson, Anne Marie C.; Schwerdtfeger, Melanie; Holst, Peter J.

    2018-01-01

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (......Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus...... of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production...

  1. Fine definition of the CXCR4-binding region on the V3 loop of feline immunodeficiency virus surface glycoprotein.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    2010-05-01

    Full Text Available The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions.

  2. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  3. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    Science.gov (United States)

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  4. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Robert A.; Datta, Siddhartha A.K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M. (NCI); (Cornell); (CM); (NIST)

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  5. Virus-producing cells determine the host protein profiles of HIV-1 virion cores

    Science.gov (United States)

    2012-01-01

    Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of

  6. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1.

    Science.gov (United States)

    Gabus, C; Derrington, E; Leblanc, P; Chnaiderman, J; Dormont, D; Swietnicki, W; Morillas, M; Surewicz, W K; Marc, D; Nandi, P; Darlix, J L

    2001-06-01

    Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucleocapsid-RNA complexes and in vivo MuLV replication accelerates the scrapie infectious process, suggesting possible interactions between retroviruses and PrP. Retroviruses, including HIV-1 encode a major nucleic acid binding protein (NC protein) found within the virus where 2000 NC protein molecules coat the dimeric genome. NC is required in virus assembly and infection to chaperone RNA dimerization and packaging and in proviral DNA synthesis by reverse transcriptase (RT). In HIV-1, 5'-leader RNA/NC interactions appear to control these viral processes. This prompted us to compare and contrast the interactions of human and ovine PrP and HIV-1 NCp7 with HIV-1 5'-leader RNA. Results show that PrP has properties characteristic of NCp7 with respect to viral RNA dimerization and proviral DNA synthesis by RT. The NC-like properties of huPrP map to the N-terminal region of huPrP. Interestingly, PrP localizes in the membrane and cytoplasm of PrP-expressing cells. These findings suggest that PrP is a multifunctional protein possibly participating in nucleic acid metabolism.

  7. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    2008-04-01

    Full Text Available HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  8. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4

    International Nuclear Information System (INIS)

    Zhao Qian; Ma Liying; Jiang Shibo; Lu Hong; Liu Shuwen; He Yuxian; Strick, Nathan; Neamati, Nouri; Debnath, Asim Kumar

    2005-01-01

    We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors

  9. Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

    Directory of Open Access Journals (Sweden)

    Henklein Peter

    2009-12-01

    Full Text Available Abstract Background The equine infection anemia virus (EIAV p9 Gag protein contains the late (L- domain required for efficient virus release of nascent virions from the cell membrane of infected cell. Results In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this α-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. Conclusions These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101. The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.

  10. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    Science.gov (United States)

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were

  11. The Binding Interface between Human APOBEC3F and HIV-1 Vif Elucidated by Genetic and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Christopher Richards

    2015-12-01

    Full Text Available APOBEC3 family DNA cytosine deaminases provide overlapping defenses against pathogen infections. However, most viruses have elaborate evasion mechanisms such as the HIV-1 Vif protein, which subverts cellular CBF-β and a polyubiquitin ligase complex to neutralize these enzymes. Despite advances in APOBEC3 and Vif biology, a full understanding of this direct host-pathogen conflict has been elusive. We combine virus adaptation and computational studies to interrogate the APOBEC3F-Vif interface and build a robust structural model. A recurring compensatory amino acid substitution from adaptation experiments provided an initial docking constraint, and microsecond molecular dynamic simulations optimized interface contacts. Virus infectivity experiments validated a long-lasting electrostatic interaction between APOBEC3F E289 and HIV-1 Vif R15. Taken together with mutagenesis results, we propose a wobble model to explain how HIV-1 Vif has evolved to bind different APOBEC3 enzymes and, more generally, how pathogens may evolve to escape innate host defenses.

  12. Prevalence of human immunodeficiency virus (HIV) infection among ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... associated virus (LAV, now HIV1.). In the same year,. Robert Gallo and colleagues, working at the National. Cancer Institute (NCI), USA made a similar discovery while in their quest to find cancer-causing viruses. In. 1986 a second closely related virus, termed HIV 2 was isolated from a patient from West ...

  13. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    Science.gov (United States)

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  14. Specific assay measuring binding of /sup 125/I-Gp 120 from HIV to T4/sup +//CD4/sup +/ cells

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, K.; Nygren, A.; Ramstedt, U.; Gidlund, M.; Wigzell, H.; Arthur, L.O.; Robey, W.G.; Morein, B.

    1987-02-26

    The HIV (HTLV-III) envelope glycoprotein, Gp120, was isolated from virus-infected tissue culture cells using affinity chromatography. A radioimmunoassay was developed to determine the degree of iodinated Gp120 to target CD4/sup +/ (T4/sup +/) cells. /sup 125/I-Gp120 could be shown to selectively bind to CD4/sup +/ cells only. The Gp120 remained bound to these cells after repeated washes. Monoclonal anti-CD4 antibodies block the binding of Gp120 to CD4/sup +/ cells. Monoclonal antibodies to other cell surface components do not interfere with /sup 125/I-Gp120 binding. All IgG antibodies from HIV seropositive donors tested block /sup 125/I-GP120 binding, though with variable titers. The authors believe that this assay provides further proof for the use of CD4 (T4) as a component of the receptor for HIV. It represents a safe, objective and sensitive method for the analysis of Gp120-CD4 interactions, as well as the potential of antibodies to interfere with this binding. (Auth.). 24 refs.; 2 figs.; 8 tabs.

  15. Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles

    International Nuclear Information System (INIS)

    Peretti, Silvia; Schiavoni, Ilaria; Pugliese, Katherina; Federico, Maurizio

    2006-01-01

    We recently showed that both replicating and resting cells cultivated with ganciclovir (GCV) were killed when challenged with vesicular stomatitis virus G glycoprotein pseudotyped HIV-1-based virus-like particles (VLPs) carrying the Nef7 (i.e., an HIV-1 Nef mutant incorporating in virions at high levels)/herpes simplex virus-1 thymidine kinase (HSV-TK) fusion product. On this basis, a novel anti-HIV therapeutic approach based on Nef7/TK VLPs expressing X4 or R5 HIV cell receptor complexes has been attempted. We here report that (CD4-CXCR4) and (CD4-CCR5) Nef7-based VLPs efficiently enter cells infected by X4- or R5-tropic HIV-1 strains, respectively. Importantly, the delivery of the VLP-associated Nef7/TK led to cell death upon GCV treatment. Of interest, VLPs were effective also against non-replicating, HIV-1-infected primary human monocyte-derived macrophages. HIV-targeted VLPs represent a promising candidate for the treatment of persistently HIV-1-infected cells that are part of virus reservoirs resistant to HAART therapies

  16. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Imamichi, Hiromi; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark [NIH

    2015-10-15

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 μg ml-1. The median IC50 of neutralized viruses was 0.033 μg ml-1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.

  17. HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Sashaina E Fanibunda

    Full Text Available BACKGROUND: During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs downstream of HIV gp120 binding to hMR. PRINCIPAL FINDINGS: Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. CONCLUSION: hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the

  18. Viruses & kidney disease: beyond HIV

    OpenAIRE

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B.

    2008-01-01

    HIV-infected patients may acquire new viral co-infections; they may also experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections due to immunodeficiency or to risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and t...

  19. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    Science.gov (United States)

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  20. Identification of dual-tropic HIV-1 using evolved neural networks.

    Science.gov (United States)

    Fogel, Gary B; Lamers, Susanna L; Liu, Enoch S; Salemi, Marco; McGrath, Michael S

    2015-11-01

    Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however, it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1 isolates that assist in the biological understanding of dual-tropism and develop an approach for their detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence was represented by 73 structural, biochemical and regional features. These features were provided to an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Binding of recombinant HIV coat protein gp120 to human monocytes

    International Nuclear Information System (INIS)

    Finbloom, D.S.; Hoover, D.L.; Meltzer, M.S.

    1991-01-01

    Inasmuch as the exact level of CD4 Ag expression on macrophages is controversial and because HIV may interact with macrophages in a manner different from that on T cells, we analyzed the binding of gp120 to freshly isolated and cultured monocytes. rgp120 was iodinated using the lactoperoxidase method to a sp. act. of 600 Ci/mmol. Highly purified monocytes (greater than 90%) were isolated from the leukapheresed blood of normal volunteers by Ficoll-Hypaque sedimentation followed by countercurrent centrifugal elutriation and cultured 7 days in DMEM supplemented with 1000 U/ml macrophage CSF in 10% human serum. Whereas MOLT/4 cells consistently bound freshly prepared 125I-rgp120 at 80% specificity with 5100 +/- 700 mol/cell, MCSF cultured monocytes bound rgp120 at only 0 to 20% specificity and 420 +/- 200 mol/cell. Most of the radioactivity bound by these cells could not be blocked by the addition of unlabeled rgp120. In contrast, the U937 myeloid cell line bound rgp120 with 50% specificity and about 2500 mol/cell. Whereas the antibody OKT4a (anti-CD4) blocked 80% of the binding on MOLT/4 cells and 50% on U937 cells, binding was only inhibited on the average of 6% on cultured monocytes. When soluble rCD4 was used as an inhibitor, binding to MOLT/4 cells was blocked by 80%. In contrast, binding to cultured monocytes was inhibited by 28%. HIV infectivity was blocked by similar concentrations of OKT4a. These observations suggest that although most binding of gp120 to cultured monocytes is not to the CD4 determinant, several hundred molecules do bind to a CD4-like molecule which promotes virus entry and replication

  2. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...... to autologous virus isolated later than the serum sample in contrast to the titre against peptides corresponding to virus isolated earlier than the serum sample. Furthermore, neutralizing anti-V3 monoclonal antibodies (MAbs) raised against V3 peptides from laboratory strains of HIV-1 showed distinct binding...

  3. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  4. An HIV-1 encoded peptide mimics the DNA binding loop of NF-κB and binds thioredoxin with high affinity

    International Nuclear Information System (INIS)

    Su Guoping; Wang Min; Taylor, Ethan Will

    2005-01-01

    Pro-fs is a human immunodeficiency virus type 1 (HIV-l)-encoded putative selenoprotein, predicted by a theoretical analysis of the viral genome; it is potentially expressed by a -1 frameshift from the protease coding region. Pro-fs has significant sequence similarity to the DNA binding loop of nuclear factor kappa B (NF-κB), which is known to bind thioredoxin (Trx). We hypothesize that the putative HIV-1 pro-fs gene product functions by mimicry of NF-κB via binding to Trx. The hypothesis was tested in vitro by co-immunoprecipitation and GST-pull down assays, using a purified mutant pro-fs protein, in which the two potential selenocysteine residues were mutated to cysteines, in order to permit expression in bacteria. Both experiments showed that pro-fs binds to human wild type Trx (Trx-wt) with high affinity. Mutation of the two conserved cysteine residues in the Trx active site redox center to serine (Ser) (Trx-CS) weakened but failed to abolish the interaction. In pro-fs-transfected 293T cells, using confocal microscopy and fluorescence resonance energy transfer (FRET), we have observed that pro-fs localizes in cell nuclei and forms oligomers. Upon stimulation by phorbol 12-myristate 13-acetate (PMA), Trx translocates into cell nuclei. Significant FRET efficiency was detected in the nuclei of PMA-stimulated 293T cells co-expressing fluorescence-tagged pro-fs and Trx-wt or Trx-CS. These results indicate that in living cells the double cysteine mutant of pro-fs binds to both Trx and Trx-CS with high affinity, suggesting that Trx-pro-fs binding is a structurally-specific interaction, involving more of the Trx molecule than just its active site cysteine residues. These results establish the capacity for functional mimicry of the Trx binding ability of the NF-κB/Rel family of transcription factors by the putative HIV-1 pro-fs protein

  5. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1.

    Directory of Open Access Journals (Sweden)

    Luis Apolonia

    2015-01-01

    Full Text Available The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G and APOBEC3F (A3F, act as potent human immunodeficiency virus type-1 (HIV-1 restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.

  6. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure

    Science.gov (United States)

    Neogi, Ujjwal; RAO, Shwetha D; BONTELL, Irene; VERHEYEN, Jens; RAO, Vasudev R; GORE, Sagar C; SONI, Neelesh; SHET, Anita; SCHÜLTER, Eugen; EKSTRAND, Maria L.; WONDWOSSEN, Amogne; KAISER, Rolf; MADHUSUDHAN, Mallur S.; PRASAD, Vinayaka R; SONNERBORG, Anders

    2014-01-01

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region which is appears in protease inhibitor (PI) failure Indian HIV-1C sequences (Odds Ratio 17.1, p<0.001) but naturally present in half of untreated Ethiopian sequences. The insertion will probably restore the ALIX mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of such insertion need to be evaluated in HIV-1C dominating regions were PI-drugs are being scaled up as second line treatment options. PMID:25102091

  7. Human Immunodeficiency Virus (HIV) Seropositivity In African ...

    African Journals Online (AJOL)

    A seroprevalence study of Human immunodeficiency virus (HIV) infection in new patients attending the eye clinic of LAUTECH Teaching Hospital in Osogbo, Osun State, Nigeria showed that twenty-nine patients 2.7%) were positive to HIV1. No patient was positive to HIV 2. There were 21 males (72.4%) and 8 females ...

  8. Torque Teno Virus in HIV-infected transgender in Surakarta, Indonesia

    Science.gov (United States)

    Hartono; Agung Prasetyo, Afiono; Fanani, Mohammad

    2018-05-01

    Torque Teno Virus (TTV) is a circular single-stranded DNA virus that may co-infected with human immunodeficiency virus (HIV), especially in the high-risk community e.g. the transgender performing high-riskbehavior. TTV shows an increased viremia in HIV patients and maybe influence the HIV clinical progression. Blood samples collected from transgender performing high-riskbehavior in Surakarta were tested by serological and molecular assays to detect the presence of HIV infection. The blood samples with HIV positive status were then tested by a nested polymerase chain reaction (PCR) to detect the presentation of TTV DNA. The amplified PCR products were molecularly cloned and subjected to sequence analysis. TTV DNA was detected in 40.0% HIV-positive samples. The molecular characterization revealed that the most prevalent was genogroup 3, followed by genogroup 2 and 1, respectively. TTV was detected in HIV-infected transgender performing high-riskbehavior in Surakarta with high infection rate.

  9. Correlation of Naturally Occurring HIV-1 Resistance to DEB025 with Capsid Amino Acid Polymorphisms

    Directory of Open Access Journals (Sweden)

    Brigitte Rosenwirth

    2013-03-01

    Full Text Available DEB025 (alisporivir is a synthetic cyclosporine with inhibitory activity against human immunodeficiency virus type-1 (HIV-1 and hepatitis C virus (HCV. It binds to cyclophilin A (CypA and blocks essential functions of CypA in the viral replication cycles of both viruses. DEB025 inhibits clinical HIV-1 isolates in vitro and decreases HIV-1 virus load in the majority of patients. HIV-1 isolates being naturally resistant to DEB025 have been detected in vitro and in nonresponder patients. By sequence analysis of their capsid protein (CA region, two amino acid polymorphisms that correlated with DEB025 resistance were identified: H87Q and I91N, both located in the CypA-binding loop of the CA protein of HIV-1. The H87Q change was by far more abundant than I91N. Additional polymorphisms in the CypA-binding loop (positions 86, 91 and 96, as well as in the N-terminal loop of CA were detected in resistant isolates and are assumed to contribute to the degree of resistance. These amino acid changes may modulate the conformation of the CypA-binding loop of CA in such a way that binding and/or isomerase function of CypA are no longer necessary for virus replication. The resistant HIV-1 isolates thus are CypA-independent.

  10. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  11. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  12. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure in Indian patients.

    Science.gov (United States)

    Neogi, Ujjwal; Rao, Shwetha D; Bontell, Irene; Verheyen, Jens; Rao, Vasudev R; Gore, Sagar C; Soni, Neelesh; Shet, Anita; Schülter, Eugen; Ekstrand, Maria L; Wondwossen, Amogne; Kaiser, Rolf; Madhusudhan, Mallur S; Prasad, Vinayaka R; Sonnerborg, Anders

    2014-09-24

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region, which appeared in protease inhibitor failure Indian HIV-1C sequences (odds ratio=17.1, P < 0.001) but was naturally present in half of untreated Ethiopian HIV-1C sequences. The insertion is predicted to restore ALIX-mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of the insertion needs to be evaluated in HIV-1C dominating regions wherein the use of protease inhibitor drugs are being scaled up.

  13. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  14. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    International Nuclear Information System (INIS)

    Diaz-Griffero, Felipe; Vandegraaff, Nick; Li Yuan; McGee-Estrada, Kathleen; Stremlau, Matthew; Welikala, Sohanya; Si Zhihai; Engelman, Alan; Sodroski, Joseph

    2006-01-01

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5α with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain

  15. The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4+ cells

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2012-02-01

    Full Text Available It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor binds the virus and mediates its transfer to CD4(+) cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN) inhibit...

  16. Vif Proteins from Diverse Primate Lentiviral Lineages Use the Same Binding Site in APOBEC3G

    OpenAIRE

    Letko, Michael; Silvestri, Guido; Hahn, Beatrice H.; Bibollet-Ruche, Frederick; Gokcumen, Omer; Simon, Viviana; Ooms, Marcel

    2013-01-01

    APOBEC3G (A3G) is a cytidine deaminase that restricts human immunodeficiency virus type 1 (HIV-1) and other lentiviruses. Most of these viruses encode a Vif protein that directly binds A3G and leads to its proteasomal degradation. Both Vif proteins of HIV-1 and African green monkey simian immunodeficiency virus (SIVagm) bind residue 128 of A3G. However, this position does not control the A3G degradation by Vif variants derived from HIV-2 and SIVmac, which both originated from SIV of sooty man...

  17. Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach.

    Science.gov (United States)

    Sanusi, Z K; Govender, T; Maguire, G E M; Maseko, S B; Lin, J; Kruger, H G; Honarparvar, B

    2017-09-01

    Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?G bind ) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Surfactant Protein D modulates HIV infection of both T-cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jens Madsen

    Full Text Available Surfactant Protein D (SP-D is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.

  19. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    Directory of Open Access Journals (Sweden)

    St-Laurent Georges

    2006-11-01

    Full Text Available Abstract Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.

  20. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid.

    Science.gov (United States)

    Fricke, Thomas; Buffone, Cindy; Opp, Silvana; Valle-Casuso, Jose; Diaz-Griffero, Felipe

    2014-12-11

    The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.

  1. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus.

    Directory of Open Access Journals (Sweden)

    Damien C Tully

    2016-05-01

    Full Text Available Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU, we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic "signatures" within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission.

  2. Temporal expression of HIV-1 envelope proteins in baculovirus-infected insect cells: Implications for glycosylation and CD4 binding

    International Nuclear Information System (INIS)

    Murphy, C.I.; Lennick, M.; Lehar, S.M.; Beltz, G.A.; Young, E.

    1990-01-01

    Three different human immunodeficiency virus type I (HIV-1) envelope derived recombinant proteins and the full length human CD4 polypeptide were expressed in Spodoptera frugiperda (Sf9) cells. DNA constructs encoding CD4, gp120, gp160, and gp160 delta were cloned into the baculovirus expression vector pVL941 or a derivative and used to generate recombinant viruses in a cotransfection with DNA from Autographa californica nuclear polyhedrosis virus (AcMNPV). Western blotting of cell extracts of the recombinant HIV-1 proteins showed that for each construct two major bands specifically reacted with anti-HIV-1 envelope antiserum. These bands corresponded to glycosylated and nonglycosylated versions of the HIV proteins as determined by 3H-mannose labeling and tunicamycin treatment of infected cells. A time course of HIV envelope expression revealed that at early times post-infection (24 hours) the proteins were fully glycosylated and soluble in nonionic detergents. However, at later times postinfection (48 hours), expression levels of recombinant protein reached a maximum but most of the increase was due to a rise in the level of the nonglycosylated species, which was largely insoluble in nonionic detergents. Thus, it appears that Sf9 cells cannot process large amounts of glycosylated recombinant proteins efficiently. As a measure of biological activity, the CD4 binding ability of both glycosylated and nonglycosylated recombinant HIV envelope proteins was tested in a coimmunoprecipitation assay. The results showed that CD4 and the glycosylated versions of recombinant gp120 or gp160 delta specifically associated with one another in this analysis. Nonglycosylated gp120 or gp160 delta proteins from tunicamycin-treated cultures did immunoprecipitate with anti-HIV-1 antiserum but did not interact with CD4

  3. Regulation of HIV receptor expression in cervical epithelial cells by ...

    African Journals Online (AJOL)

    Background. Sexually transmitted infections (STIs) caused by the Gram-negative bacteria Chlamydia trachomatis and Neisseria gonorrhoeae are associated with an increased risk of HIV acquisition in South African women. HIV infection involves binding of the virus to CD4+ receptors on host cells and subsequent binding to ...

  4. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  5. Broad, Intense Anti-Human Immunodeficiency Virus (HIV) Ex Vivo CD8+ Responses in HIV Type 1-Infected Patients: Comparison with Anti-Epstein-Barr Virus Responses and Changes during Antiretroviral Therapy

    Science.gov (United States)

    Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Sicard, Didier; Salmon, Dominique; Delfraissy, Jean-Francois; Venet, Alain; Sinet, Martine; Guillet, Jean-Gerard

    1999-01-01

    The ex vivo antiviral CD8+ repertoires of 34 human immunodeficiency virus (HIV)-seropositive patients with various CD4+ T-cell counts and virus loads were analyzed by gamma interferon enzyme-linked immunospot assay, using peptides derived from HIV type 1 and Epstein-Barr virus (EBV). Most patients recognized many HIV peptides, with markedly high frequencies, in association with all the HLA class I molecules tested. We found no correlation between the intensity of anti-HIV CD8+ responses and the CD4+ counts or virus load. In contrast, the polyclonality of anti-HIV CD8+ responses was positively correlated with the CD4+ counts. The anti-EBV responses were significantly less intense than the anti-HIV responses and were positively correlated with the CD4+ counts. Longitudinal follow-up of several patients revealed the remarkable stability of the anti-HIV and anti-EBV CD8+ responses in two patients with stable CD4+ counts, while both antiviral responses decreased in two patients with obvious progression toward disease. Last, highly active antiretroviral therapy induced marked decreases in the number of anti-HIV CD8+ T cells, while the anti-EBV responses increased. These findings emphasize the magnitude of the ex vivo HIV-specific CD8+ responses at all stages of HIV infection and suggest that the CD8+ hyperlymphocytosis commonly observed in HIV infection is driven mainly by virus replication, through intense, continuous activation of HIV-specific CD8+ T cells until ultimate progression toward disease. Nevertheless, highly polyclonal anti-HIV CD8+ responses may be associated with a better clinical status. Our data also suggest that a decrease of anti-EBV CD8+ responses may occur with depletion of CD4+ T cells, but this could be restored by highly active antiretroviral treatment. PMID:10438796

  6. Prevalence of Anaemia Among Human Immunodeficiency Virus (HIV)

    African Journals Online (AJOL)

    Background: Anaemia is the most commonly encountered haematological abnormality in human immunodeficiency virus (HIV) positive patients with estimates climbing as high as 95% depending on clinical settings. The twin effects of HIV infection and anaemia in pregnancy is associated with adverse maternal and ...

  7. Genetic characterization of natural variants of Vpu from HIV-1 infected individuals from Northern India and their impact on virus release and cell death.

    Directory of Open Access Journals (Sweden)

    Sachin Verma

    Full Text Available BACKGROUND: Genetic studies reveal that vpu is one of the most variable regions in HIV-1 genome. Functional studies have been carried out mostly with Vpu derived from laboratory adapted subtype B pNL 4-3 virus. The rationale of this study was to characterize genetic variations that are present in the vpu gene from HIV-1 infected individuals from North-India (Punjab/Haryana and determine their functional relevance. METHODS: Functionally intact vpu gene variants were PCR amplified from genomic DNA of HIV-1 infected individuals. These variants were then subjected to genetic analysis and unique representative variants were cloned under CMV promoter containing expression vector as well as into pNL 4-3 HIV-1 virus for intracellular expression studies. These variants were characterized with respect to their ability to promote virus release as well as cell death. RESULTS: Based on phylogenetic analysis and extensive polymorphisms with respect to consensus Vpu B and C, we were able to arbitrarily assign variants into two major groups (B and C. The group B variants always showed significantly higher virus release activity and exhibited moderate levels of cell death. On the other hand, group C variants displayed lower virus release activity but greater cell death potential. Interestingly, Vpu variants with a natural S61A mutation showed greater intracellular stability. These variants also exhibited significant reduction in their intracellular ubiquitination and caused greater virus release. Another group C variant that possessed a non-functional β-TrcP binding motif due to two critical serine residues (S52 and S56 being substituted with isoleucine residues, showed reduced virus release activity but modest cytotoxic activity. CONCLUSIONS: The natural variations exhibited by our Vpu variants involve extensive polymorphism characterized by substitution and deletions that contribute toward positive selection. We identified two major groups and an extremely

  8. CCL28 induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Veronica Rainone

    Full Text Available Mucosae-associated epithelial chemokine (MEC or CCL28 binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB Virus-like particles (VLPs. Mice receiving either HIV-1(IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+ splenocytes of HIV-1(IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.

  9. Prevalence of human immunodeficiency virus (HIV) infection among ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... ... virus (HIV) was disco- vered in 1983 (two years after the diseases AIDS was ... de this lipid bilayer is a matrix (MA) protein (p17). Below the matrix is ... conformational changes in the viral envelope to permit virus-cell fusion.

  10. The Oncolytic Virus MG1 Targets and Eliminates Cells Latently Infected With HIV-1: Implications for an HIV Cure.

    Science.gov (United States)

    Ranganath, Nischal; Sandstrom, Teslin S; Burke Schinkel, Stephanie C; Côté, Sandra C; Angel, Jonathan B

    2018-02-14

    Cells latently infected with human immunodeficiency virus (HIV) evade immune- and drug-mediated clearance. These cells harbor intracellular signaling defects, including impairment of the antiviral type I interferon response. Such defects have also been observed in several cancers and have been exploited for the development of therapeutic oncolytic viruses, including the recombinant Maraba virus (MG1). We therefore hypothesized that MG1 would infect and eliminate cells latently infected with HIV-1, while sparing healthy uninfected cells. Preferential infection and elimination by MG1 was first demonstrated in cell lines latently infected with HIV-1. Following this, a reduction in HIV-1 DNA and inducible HIV-1 replication was observed following MG1 infection of latently infected, resting CD4+ T cells generated using an in vitro model of latency. Last, MG1 infection resulted in a reduction in HIV-1 DNA and inducible HIV-1 replication in memory CD4+ T cells isolated from effectively treated, HIV-1-infected individuals. Our results therefore highlight a novel approach to eliminate the latent HIV-1 reservoir. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  11. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    International Nuclear Information System (INIS)

    Pham, Son; Tabarin, Thibault; Garvey, Megan; Pade, Corinna; Rossy, Jérémie; Monaghan, Paul; Hyatt, Alex; Böcking, Till; Leis, Andrew; Gaus, Katharina; Mak, Johnson

    2015-01-01

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  12. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  13. Inhibition of infection and transmission of HIV-1 and lack of significant impact on the vaginal commensal lactobacilli by carbohydrate-binding agents.

    Science.gov (United States)

    Petrova, Mariya I; Mathys, Leen; Lebeer, Sarah; Noppen, Sam; Van Damme, Els J M; Tanaka, Haruo; Igarashi, Yasuhiro; Vaneechoutte, Mario; Vanderleyden, Jos; Balzarini, Jan

    2013-09-01

    A selection of carbohydrate-binding agents (CBAs) with different glycan specificities were evaluated for their inhibitory effect against HIV infection and transmission, and their interaction with vaginal commensal bacteria. Several assays were used for the antiviral evaluation: (i) cell-free virus infection of human CD4+ T lymphocyte C8166 cells; (ii) syncytium formation in co-cultures of persistently HIV-1-infected HUT-78/HIV-1 and non-infected CD4+ SupT1 cells; (iii) DC-SIGN-directed capture of HIV-1 particles; and (iv) transmission of DC-SIGN-captured HIV-1 particles to uninfected CD4+ C8166 cells. CBAs were also examined for their interaction with vaginal commensal lactobacilli using several viability, proliferation and adhesion assays. The CBAs showed efficient inhibitory activity in the nanomolar to low-micromolar range against four events that play a crucial role in HIV-1 infection and transmission: cell-free virus infection, fusion between HIV-1-infected and non-infected cells, HIV-1 capture by DC-SIGN and transmission of DC-SIGN-captured virus to T cells. As candidate microbicides should not interfere with the normal human microbiota, we examined the effect of CBAs against Lactobacillus strains, including a variety of vaginal strains, a gastrointestinal strain and several non-human isolates. None of the CBAs included in our studies inhibited the growth of these bacteria in several media, affected their viability or had any significant impact on their adhesion to HeLa cell monolayers. The CBAs in this study were inhibitory to HIV-1 in several in vitro infection and transmission models, and may therefore qualify as potential microbicide candidates. The lack of significant impact on commensal vaginal lactobacilli is an important property of these CBAs in view of their potential microbicidal use.

  14. Hepatitis C virus infection in HIV-infected patients.

    Science.gov (United States)

    Sulkowski, Mark S

    2007-10-01

    The hepatitis C virus (HCV) is a spherical enveloped RNA virus of the Flaviviridae family, classified within the Hepacivirus genus. Since its discovery in 1989, HCV has been recognized as a major cause of chronic hepatitis and hepatic fibrosis that progresses in some patients to cirrhosis and hepatocellular carcinoma. In the United States, approximately 4 million people have been infected with HCV, and 10,000 HCVrelated deaths occur each year. Due to shared routes of transmission, HCV and HIV co-infection are common, affecting approximately one third of all HIV-infected persons in the United States. In addition, HIV co-infection is associated with higher HCV RNA viral load and a more rapid progression of HCV-related liver disease, leading to an increased risk of cirrhosis. HCV infection may also impact the course and management of HIV disease, particularly by increasing the risk of antiretroviral drug-induced hepatotoxicity. Thus, chronic HCV infection acts as an opportunistic disease in HIV-infected persons because the incidence of infection is increased and the natural history of HCV infection is accelerated in co-infected persons. Strategies to prevent primary HCV infection and to modify the progression of HCV-related liver disease are urgently needed among HIV/HCV co-infected individuals.

  15. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  16. Molecular characterization of viruses associated with gastrointestinal infection in HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Raquel C Silva

    Full Text Available BACKGROUND: Diarrhea is a major cause of morbidity and mortality among HIV-infected patients worldwide. OBJECTIVE: We sought to determine the frequency of viral gastrointestinal infections among Brazilian HIV-infected patients with diarrhea. METHODS: A collection of 90 fecal specimens from HIV-infected individuals with diarrhea, previously tested for the presence of bacteria and parasite was analyzed by polymerase chain reaction and sequence analysis for the presence of enteric viruses such as astrovirus, norovirus, rotavirus groups A, B and C, adenovirus, herpes simplex virus, Epstein-Barr virus, cytomegalovirus, and human bocavirus. RESULTS: Twenty patients (22.2%; n = 90 were infected with parasites (11 single infections and nine coinfected with virus. Enteropathogenic bacteria were not found. Virus infections were detected in 28.9% (26/90 of the specimens. Cytomegalovirus was the most common virus detected (24.4%; 22/90. Coinfections with viruses and/or parasite were observed in 10 (11.1% samples. CONCLUSION: Gastrointestinal virus infections were more frequent than parasitic or bacterial infections in this patient population.

  17. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  18. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    International Nuclear Information System (INIS)

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-01-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B

  19. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  20. Sero-prevalence of Human Immunodeficiency Virus (HIV) and ...

    African Journals Online (AJOL)

    Three hundred and seven (307) healthy blood donors aged 18 – 55 years were used to determine the sero-prevalence of Human Immunodeficiency Virus (HIV) and Hepatitis B virus (HBV) in Yola, Nigeria. The association between donors' age, occupation and marital status and the prevalence of the infections among blood ...

  1. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2006-07-01

    Full Text Available HIV-1 latency in resting CD4+ T cells represents a major barrier to virus eradication in patients on highly active antiretroviral therapy (HAART. We describe here a novel post-transcriptional block in HIV-1 gene expression in resting CD4+ T cells from patients on HAART. This block involves the aberrant localization of multiply spliced (MS HIV-1 RNAs encoding the critical positive regulators Tat and Rev. Although these RNAs had no previously described export defect, we show that they exhibit strict nuclear localization in resting CD4+ T cells from patients on HAART. Overexpression of the transcriptional activator Tat from non-HIV vectors allowed virus production in these cells. Thus, the nuclear retention of MS HIV-1 RNA interrupts a positive feedback loop and contributes to the non-productive nature of infection of resting CD4+ T cells. To define the mechanism of nuclear retention, proteomic analysis was used to identify proteins that bind MS HIV-1 RNA. Polypyrimidine tract binding protein (PTB was identified as an HIV-1 RNA-binding protein differentially expressed in resting and activated CD4+ T cells. Overexpression of PTB in resting CD4+ T cells from patients on HAART allowed cytoplasmic accumulation of HIV-1 RNAs. PTB overexpression also induced virus production by resting CD4+ T cells. Virus culture experiments showed that overexpression of PTB in resting CD4+ T cells from patients on HAART allowed release of replication-competent virus, while preserving a resting cellular phenotype. Whether through effects on RNA export or another mechanism, the ability of PTB to reverse latency without inducing cellular activation is a result with therapeutic implications.

  2. Molecular characterization of Torque teno virus and SEN virus co-infection with HIV in patients from Southern Iran

    Directory of Open Access Journals (Sweden)

    Aliyar Pirouzi

    2014-06-01

    Full Text Available Introduction Torque teno virus (TTV and SEN virus are circular single-stranded DNA viruses that cause blood-borne infections. The SEN virus (SEN-V was originally detected in the serum of an injection drug user infected with human immunodeficiency virus (HIV. Recently TTV was discovered as a potential causative agent of non-A-E hepatitis. The aim of this study was to investigate the prevalence of the SEN-V-D/H and TTV in HIV patients and healthy blood donors in Iran. Methods One hundred and fifty HIV patients with a mean age of 50.46 ± 18.46 years and 150 healthy blood donors with a mean age of 48.16 ± 13.73 years were included in this study. TTV and SEN-V were detected by the PCR and were quantitatively assayed by competitive PCR (nested and semi-nested PCR. Restriction fragment length polymorphisms (RFLPs were used to determine the heterogeneity of TTV. Results TTV and SEN-V were detected 96 (64% and 84 (56% of 150 HIV patients respectively. These rates were 34% (n=51 and 37.33% (n=56 in healthy blood donors (significant, p<0.05. PCR detected SEN-V/TTV DNA from 32 of the healthy blood donors (21.33%, while 65 (43.33% of HIV patients were positive for SEN-V/TTV DNA. Of 150 HIV patients, 32.66% and 23.33% were positive for SEN-V-H and SEN-V-D, respectively and 18.66% (n=28 were co-infected with SEN-V-D/H. Conclusions The prevalence of SEN-VD/H and TTV is higher in HIV patients than in healthy blood donors in Southern Iran. Our results suggest that TTV and SEN-V might play a role in the development of liver disease in patients with immunodeficiency diseases.

  3. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2011-09-01

    Full Text Available of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 onto plates coated with anti-CD4bs antibodies b12, b6 or the CD4 receptor mimetic, CD4-IgG2...

  4. Human immunodeficiency virus (HIV) infection in tuberculosis ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection in tuberculosis patients in Addis ... METHODS: A cross-sectional survey whereby blood sample was collected ... of co-infection appeared to have increased compared to previous studies, 6.6%, ...

  5. Identifying potential survival strategies of HIV-1 through virus-host protein interaction networks

    Directory of Open Access Journals (Sweden)

    Boucher Charles AB

    2010-07-01

    Full Text Available Abstract Background The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human protein interaction network. This network was analyzed for important proteins and processes that are specific for the HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in virus-host dynamics. Results Our analyses show that human proteins interacting with HIV form a densely connected and central sub-network within the total human protein interaction network. The evaluation of this sub-network for connectivity and centrality resulted in a set of proteins essential for the HIV life-cycle. Remarkably, we were able to associate proteins involved in RNA polymerase II transcription with hubs and proteasome formation with bottlenecks. Inferred network motifs show significant over-representation of positive and negative feedback patterns between virus and host. Strikingly, such patterns have never been reported in combined virus-host systems. Conclusions HIV infection results in a reprioritization of cellular processes reflected by an increase in the relative importance of transcriptional machinery and proteasome formation. We conclude that during the evolution of HIV, some patterns of interaction have been selected for resulting in a system where virus proteins preferably interact with central human proteins for direct control and with proteasomal proteins for indirect control over the cellular processes. Finally, the patterns described by network motifs illustrate how virus and host interact with one another.

  6. 78 FR 67175 - Proposed Collection; 60-Day Comment Request: Incident HIV/Hepatitis B Virus Infections in South...

    Science.gov (United States)

    2013-11-08

    ... Comment Request: Incident HIV/ Hepatitis B Virus Infections in South African Blood Donors: Behavioral Risk... Collection: Incident HIV/Hepatitis B virus (HBV) infections in South African blood donors: Behavioral risk... (either antibody or antigen detection tests) to screen blood donors for HIV and Hepatitis-B Virus (HBV...

  7. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    Energy Technology Data Exchange (ETDEWEB)

    Di Nunzio, Francesca, E-mail: francesca.di-nunzio@pasteur.fr [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Fricke, Thomas [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Miccio, Annarita [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Valle-Casuso, Jose Carlos; Perez, Patricio [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Souque, Philippe [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Rizzi, Ermanno; Severgnini, Marco [Institute of Biomedical Technologies, CNR, Milano (Italy); Mavilio, Fulvio [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Genethon, Evry (France); Charneau, Pierre [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Diaz-Griffero, Felipe, E-mail: felipe.diaz-griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States)

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  8. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    International Nuclear Information System (INIS)

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-01-01

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites

  9. Persistence of attenuated HIV-1 rev alleles in an epidemiologically linked cohort of long-term survivors infected with nef-deleted virus

    Directory of Open Access Journals (Sweden)

    Wesselingh Steven L

    2007-07-01

    Full Text Available Abstract Background The Sydney blood bank cohort (SBBC of long-term survivors consists of multiple individuals infected with nef-deleted, attenuated strains of human immunodeficiency virus type 1 (HIV-1. Although the cohort members have experienced differing clinical courses and now comprise slow progressors (SP as well as long-term nonprogressors (LTNP, longitudinal analysis of nef/long-terminal repeat (LTR sequences demonstrated convergent nef/LTR sequence evolution in SBBC SP and LTNP. Thus, the in vivo pathogenicity of attenuated HIV-1 strains harboured by SBBC members is dictated by factors other than nef/LTR. Therefore, to determine whether defects in other viral genes contribute to attenuation of these HIV-1 strains, we characterized dominant HIV-1 rev alleles that persisted in 4 SBBC subjects; C18, C64, C98 and D36. Results The ability of Rev derived from D36 and C64 to bind the Rev responsive element (RRE in RNA binding assays was reduced by approximately 90% compared to Rev derived from HIV-1NL4-3, C18 or C98. D36 Rev also had a 50–60% reduction in ability to express Rev-dependent reporter constructs in mammalian cells. In contrast, C64 Rev had only marginally decreased Rev function despite attenuated RRE binding. In D36 and C64, attenuated RRE binding was associated with rare amino acid changes at 3 highly conserved residues; Gln to Pro at position 74 immediately N-terminal to the Rev activation domain, and Val to Leu and Ser to Pro at positions 104 and 106 at the Rev C-terminus, respectively. In D36, reduced Rev function was mapped to an unusual 13 amino acid extension at the Rev C-terminus. Conclusion These findings provide new genetic and mechanistic insights important for Rev function, and suggest that Rev function, not Rev/RRE binding may be rate limiting for HIV-1 replication. In addition, attenuated rev alleles may contribute to viral attenuation and long-term survival of HIV-1 infection in a subset of SBBC members.

  10. An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation.

    Science.gov (United States)

    Ingemarsdotter, Carin K; Zeng, Jingwei; Long, Ziqi; Lever, Andrew M L; Kenyon, Julia C

    2018-03-14

    NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594

  11. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    Science.gov (United States)

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  12. UV-induced transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and UV-induced secretion of an extracellular factor that induces HIV-1 transcription in nonirradiated cells

    International Nuclear Information System (INIS)

    Stein, B.; Kraemer, M.R.; Rahmsdorf, H.J.; Ponta, H.; Herrlich, P.

    1989-01-01

    UV irradiation, but not visible sunlight, induces the transcription of human immunodeficiency virus type 1 (HIV-1). Chimeric constructs carrying all or parts of the HIV-1 long terminal repeat linked to an indicator gene were transfected into HeLa cells or murine and human T-cell lines, and their response to irradiation was tested. The cis-acting element conferring UV responsiveness is identical to the sequence binding transcription factor NF kappa B. UV irradiation enhances NF kappa B binding activity as assayed by gel retardation experiments. Interestingly, the requirement for UV irradiation can be replaced by cocultivation of transfected cells with UV-irradiated nontransfected (HIV-1-negative) cells. A UV-induced extracellular protein factor is detected in the culture medium conditioned by UV-treated cells. The factor is produced upon UV irradiation by several murine and human cell lines, including HeLa, Molt-4, and Jurkat, and acts on several cells. These data suggest that the UV response of keratinocytes in human skin can be magnified and spread to deeper layers that are more shielded, including the Langerhans cells, and that this indirect UV response may contribute to the activation of HIV-1 in humans

  13. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    Science.gov (United States)

    Stax, Martijn J; Mouser, Emily E I M; van Montfort, Thijs; Sanders, Rogier W; de Vries, Henry J C; Dekker, Henk L; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A

    2015-01-01

    Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

  14. Double-labelled HIV-1 particles for study of virus-cell interaction

    International Nuclear Information System (INIS)

    Lampe, Marko; Briggs, John A.G.; Endress, Thomas; Glass, Baerbel; Riegelsberger, Stefan; Kraeusslich, Hans-Georg; Lamb, Don C.; Braeuchle, Christoph; Mueller, Barbara

    2007-01-01

    Human immunodeficiency virus (HIV) delivers its genome to a host cell through fusion of the viral envelope with a cellular membrane. While the viral and cellular proteins involved in entry have been analyzed in detail, the dynamics of virus-cell fusion are largely unknown. Single virus tracing (SVT) provides the unique opportunity to visualize viral particles in real time allowing direct observation of the dynamics of this stochastic process. For this purpose, we developed a double-coloured HIV derivative carrying a green fluorescent label attached to the viral matrix protein combined with a red label fused to the viral Vpr protein designed to distinguish between complete virions and subviral particles lacking MA after membrane fusion. We present here a detailed characterization of this novel tool together with exemplary live cell imaging studies, demonstrating its suitability for real-time analyses of HIV-cell interaction

  15. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles

    Directory of Open Access Journals (Sweden)

    Nguyen Albert T

    2011-12-01

    Full Text Available Abstract Background Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1 maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1 is cleaved to p24 (CA and SP1. Results In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR. Extensive prior genetic evidence suggests that the MHR is critical for virus assembly. Conclusions This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.

  16. Mortality in siblings of patients coinfected with HIV and hepatitis C virus

    DEFF Research Database (Denmark)

    Hansen, Ann-Brit Eg; Gerstoft, Jan; Kronborg, Gitte

    2007-01-01

    BACKGROUND: Coinfection with hepatitis C virus (HCV) is a poor prognostic factor for human immunodeficiency virus (HIV)-infected patients. We examined whether the increased mortality in these patients is partly explained by a familial excess risk of death. METHODS: Danish HIV-infected patients who...... had had at least 1 HCV test were included (n=3531). In addition, 336,652 population control subjects matched for sex, age, and residency were identified from the Danish Civil Registration System. For both HIV-infected patients and population control subjects, we identified all siblings born after 1951......, with dates of death or emigration. Siblings of HIV-infected patients were classified according to the patients' HCV serostatus. Survival after age 20 years was compared among the groups of siblings. RESULTS: We identified 437 siblings of HIV/HCV-coinfected patients, 1856 siblings of HIV-monoinfected patients...

  17. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Directory of Open Access Journals (Sweden)

    Mouhssin Oufir

    2011-01-01

    Full Text Available An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  18. Hepatitis B, C and Human Immunodeficiency Virus (HIV) Co ...

    African Journals Online (AJOL)

    TNHJOURNALPH

    BACKGROUND. Nigeria which has one of the world's highest burden of children living with. Sickle cell anaemia is also endemic for hepatitis B, C and the Human immunodeficiency virus (HIV). This study set out to determine the prevalence of. Hepatitis B surface antigen (HBsAg), antibodies to Hepatitis C Virus (HCV) and.

  19. Frequent hepatitis B virus rebound among HIV-hepatitis B virus-coinfected patients following antiretroviral therapy interruption

    DEFF Research Database (Denmark)

    Dore, Gregory J; Soriano, Vicente; Rockstroh, Jürgen

    2010-01-01

    .0002), nondetectable HBV DNA at baseline (P = 0.007), and black race (P = 0.03). Time to ART reinitiation was shorter (7.5, 15.6, and 17.8 months; P hepatitis C virus-positive and non-HBV/hepatitis...... C virus participants in the drug conservation arm. No hepatic decompensation events occurred among HBV-positive participants in either arm. CONCLUSION: HBV DNA rebound following ART interruption is common and may be associated with accelerated immune deficiency in HIV-HBV-coinfected patients.......BACKGROUND: The impact of antiretroviral therapy (ART) interruption in HIV-hepatitis B virus (HBV)-coinfected patients was examined in the Strategic Management of AntiRetroviral Therapy (SMART) study. METHODS: Plasma HBV DNA was measured in all hepatitis B surface antigen-positive (HBV...

  20. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape.

    Directory of Open Access Journals (Sweden)

    Katharine J Bar

    Full Text Available Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50 selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical

  1. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol in mucosal epithelial cells (specifically Caco-2 cell layers and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.

  2. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Martijn J Stax

    Full Text Available Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa, heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments and its receptor (intelectin-1 as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

  3. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses.

    Science.gov (United States)

    Gao, Daxing; Wu, Jiaxi; Wu, You-Tong; Du, Fenghe; Aroh, Chukwuemika; Yan, Nan; Sun, Lijun; Chen, Zhijian J

    2013-08-23

    Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.

  4. Surgical excision for recurrent herpes simplex virus 2 (HSV-2) anogenital infection in a patient with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Arinze, Folasade; Shaver, Aaron; Raffanti, Stephen

    2017-10-01

    Recurrent anogenital herpes simplex virus infections are common in patients with human immunodeficiency virus (HIV), of whom approximately 5% develop resistance to acyclovir. We present a case of a 49-year-old man with HIV who had an 8-year history of recurrent left inguinal herpes simplex virus type 2 ulcerations. He initially responded to oral acyclovir, but developed resistance to acyclovir and eventually foscarnet. The lesion progressed to a large hypertrophic mass that required surgical excision, which led to resolution without recurrences. Our case highlights the importance of surgical excision as a treatment option in refractory herpes simplex virus anogenital infections.

  5. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    International Nuclear Information System (INIS)

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E.

    2006-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1α to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors

  6. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    Science.gov (United States)

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  7. Herpes viruses and HIV-1 drug resistance mutations influence the virologic and immunologic milieu of the male genital tract.

    Science.gov (United States)

    Gianella, Sara; Morris, Sheldon R; Anderson, Christy; Spina, Celsa A; Vargas, Milenka V; Young, Jason A; Richman, Douglas D; Little, Susan J; Smith, Davey M

    2013-01-02

    To further understand the role that chronic viral infections of the male genital tract play on HIV-1 dynamics and replication. Retrospective, observational study including 236 paired semen and blood samples collected from 115 recently HIV-1 infected antiretroviral naive men who have sex with men. In this study, we evaluated the association of seminal HIV-1 shedding to coinfections with seven herpes viruses, blood plasma HIV-1 RNA levels, CD4 T-cell counts, presence of transmitted drug resistance mutations (DRMs) in HIV-1 pol, participants' age and stage of HIV-infection using multivariate generalized estimating equation methods. Associations between herpes virus shedding, seminal HIV-1 levels, number and immune activation of seminal T-cells was also investigated (Mann-Whitney). Seminal herpes virus shedding was observed in 75.7% of individuals. Blood HIV-1 RNA levels (P herpes virus (HHV)-8 levels (P herpes viruses seminal shedding in our cohort. Shedding of CMV, EBV and HHV-8 and absence of DRM were associated with increased frequency of HIV-1 shedding and/or higher levels of HIV-1 RNA in semen, which are likely important cofactors for HIV-1 transmission.

  8. Ebola Virus RNA in Semen from an HIV-Positive Survivor of Ebola.

    Science.gov (United States)

    Purpura, Lawrence J; Rogers, Emerson; Baller, April; White, Stephen; Soka, Moses; Choi, Mary J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Kollie, Jomah; Dweh, Straker; Bemah, Philip; Ladele, Victor; Kpaka, Jonathan; Jawara, Mary; Mugisha, Margaret; Subah, Onyekachi; Faikai, Mylene; Bailey, Jeff A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert; Gasasira, Alex; Knust, Barbara; Nichol, Stuart; Williams, Desmond

    2017-04-01

    Ebola virus is known to persist in semen of male survivors of Ebola virus disease (EVD). However, maximum duration of, or risk factors for, virus persistence are unknown. We report an EVD survivor with preexisting HIV infection, whose semen was positive for Ebola virus RNA 565 days after recovery from EVD.

  9. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2017-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  10. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Directory of Open Access Journals (Sweden)

    Yonas Bekele

    2018-01-01

    Full Text Available During anti-retroviral therapy (ART HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV and hepatitis B virus (HBV vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory and CD8+ (central memory T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced

  11. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2018-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  12. Effect of HIV-1 envelope cytoplasmic tail on adenovirus primed virus encoded virus-like particle immunizations

    DEFF Research Database (Denmark)

    Andersson, Anne Marie C; Ragonnaud, Emeline; Seaton, Kelly E.

    2016-01-01

    were found between the different priming regimens as both induced high titered tier 1 neutralizing antibodies, but no tier 2 antibodies, possibly reflecting the similar presentation of trimer specific antibody epitopes. The described vaccine regimens provide insight into the effects of the HIV-1 Env......The low number of envelope (Env) spikes presented on native HIV-1 particles is a major impediment for HIV-1 prophylactic vaccine development. We designed virus-like particle encoding adenoviral vectors utilizing SIVmac239 Gag as an anchor for full length and truncated HIV-1 M consensus Env...

  13. R5 human immunodeficiency virus type 1 with efficient DC-SIGN use is not selected for early after birth in vertically infected children.

    Science.gov (United States)

    Borggren, Marie; Navér, Lars; Casper, Charlotte; Ehrnst, Anneka; Jansson, Marianne

    2013-04-01

    The binding of human immunodeficiency virus (HIV) to C-type lectin receptors may result in either enhanced trans-infection of T-cells or virus degradation. We have investigated the efficacy of HIV-1 utilization of DC-SIGN, a C-type lectin receptor, in the setting of intrauterine or intrapartum mother-to-child transmission (MTCT). Viruses isolated from HIV-1-infected mothers at delivery and from their vertically infected children both shortly after birth and later during the progression of the disease were analysed for their use of DC-SIGN, binding and ability to trans-infect. DC-SIGN use of a child's earlier virus isolate tended to be reduced as compared with that of the corresponding maternal isolate. Furthermore, the children's later isolate displayed enhanced DC-SIGN utilization compared with that of the corresponding earlier virus. These results were also supported in head-to-head competition assays and suggest that HIV-1 variants displaying efficient DC-SIGN use are not selected for during intrauterine or intrapartum MTCT. However, viruses with increased DC-SIGN use may evolve later in paediatric HIV-1 infections.

  14. Epidemiology of hepatitis C virus in HIV-infected patients

    DEFF Research Database (Denmark)

    Peters, Lars; Klein, Marina B

    2015-01-01

    PURPOSE OF REVIEW: This review will give an update on the prevalence of HIV/hepatitis C virus (HCV) coinfection, and describe recent trends in all-cause and cause-specific mortality. The focus is mainly on patients followed in clinics in high-income countries and their heterogeneity in terms...... of risk factors and clinical outcomes. RECENT FINDINGS: In countries that have introduced comprehensive preventive strategies for injection drug users, the prevalence of HIV/HCV coinfection has declined. Compared with HIV monoinfected patients, the mortality among HCV-coinfected patients remains markedly...

  15. Mannose-binding Lectin and the Risk of HIV Transmission and Disease Progression in Children A Systematic Review

    NARCIS (Netherlands)

    Israëls, Joël; Scherpbier, Henriette J.; Frakking, Florine N. J.; van de Wetering, Marianne D.; Kremer, Leontien C. M.; Kuijpers, Taco W.

    2012-01-01

    Background: Mannose-binding lectin (MBL) can activate the complement system by binding to carbohydrates, such as those presented on the HIV virion surface. It is unclear whether genetically determined MBL deficiency is related to vertical HIV transmission and disease progression in HIV-infected

  16. Prevalence of HIV infection in seronegative high-risk individuals examined by virus isolation and PCR

    DEFF Research Database (Denmark)

    Nielsen, C; Teglbjærg, Lars Stubbe; Pedersen, C

    1991-01-01

    HIV seronegative individuals with high-risk behavior were tested for HIV infection by sensitive virus isolation techniques using T4 lymphocytes and monocyte/macrophages, and by detection of proviral DNA using PCR with three different sets of nested primers. No evidence of HIV infection was found...... among the 31 seronegative high-risk subjects, either by virus isolation of by PCR (97.5% confidence limits, 0-11). Our results indicate that ongoing HIV infection in seronegative persons at high risk of infection is a rare event....

  17. High prevalence of HIV-1 CRF01_AE viruses among female commercial sex workers residing in Surabaya, Indonesia.

    Science.gov (United States)

    Kotaki, Tomohiro; Khairunisa, Siti Qamariyah; Sukartiningrum, Septhia Dwi; Arfijanto, M Vitanata; Utsumi, Takako; Normalina, Irine; Handajani, Retno; Widiyanti, Prihartini; Rusli, Musofa; Rahayu, Retno Pudji; Lusida, Maria Inge; Hayashi, Yoshitake; Nasronudin; Kameoka, Masanori

    2013-01-01

    Human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) cause serious health problems and have an impact on the Indonesian economy. In addition, the rapid epidemic growth of HIV is continuing in Indonesia. Commercial sex plays a significant role in the spread of HIV; therefore, in order to reveal the current HIV prevalence rate among commercial sex workers (CSWs), we conducted an epidemiological study on HIV infection among CSWs residing in Surabaya, the capital of East Java province of Indonesia with large communities of CSWs. The prevalence of HIV infection among 200 CSWs was studied. In addition, the subtype of HIV type 1 (HIV-1) and the prevalence of other blood-borne viruses, hepatitis B virus (HBV), hepatitis C virus (HCV) and GB virus C (GBV-C), were studied. The prevalence rates of HIV, hepatitis B core antibody, hepatitis B surface antigen, anti-HCV antibodies and anti-GBV-C antibodies were 11%, 64%, 4%, 0.5% and 0% among CSWs involved in this study, respectively. HIV-1 CRF01_AE viral gene fragments were detected in most HIV-positive samples. In addition, most CSWs showed low awareness of sexually transmitted diseases and had unprotected sex with their clients. The HIV prevalence rate among CSWs was significantly higher than that among the general population in Indonesia (0.2-0.4%). In addition, CSWs were at a high risk of exposure to HBV, although chronic HBV infection was less frequently established. Our results suggest the necessity of efficient prevention programs for HIV and other blood-borne viral infections among CSWs in Surabaya, Indonesia.

  18. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  19. Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation

    Science.gov (United States)

    Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves

    1999-01-01

    The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375

  20. Timing of the HIV-1 subtype C epidemic in Ethiopia based on early virus strains and subsequent virus diversification

    NARCIS (Netherlands)

    Abebe, A.; Lukashov, V. V.; Pollakis, G.; Kliphuis, A.; Fontanet, A. L.; Goudsmit, J.; Rinke de Wit, T. F.

    2001-01-01

    OBJECTIVE: To trace the introduction of HIV-1 subtype C into Ethiopia based on virus diversification during the epidemic. DESIGN: A set of 474 serum samples obtained in Ethiopia in 1982-1985 was tested for HIV-1. HIV-1 env gp120 V3 and gag or pol regions were sequenced and analysed together with

  1. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    Science.gov (United States)

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  2. Evidence for a Euro-American origin of human immunodeficiency virus (HIV).

    Science.gov (United States)

    Katner, H P; Pankey, G A

    1987-10-01

    Recent reports of the nonspecificity of the enzyme-linked immunosorbent assay (ELISA) test in African populations, significant genomic differences between simian T-cell lymphotropic virus and human immunodeficiency virus (HIV), and the early appearance of clinical acquired immunodeficiency syndroME (AIDS) in the US and Europe are powerful arguments against the assumption that AIDS originated in Africa. The authors postulate that HIV infection has been endemic in the Euro-American population at least since the beginning of the 20th century and that sociocultural changes led to the introduction of the virus into Africa. A search of the literature reveals 28 cases of disseminated Kaposi's sarcoma in the pre-epidemic 1902-66 period. In none of these cases are notations made on intravenous drug abuse, homosexuality, or other risk factors for AIDS. The majority of cases involved men, however. It is pointed out that, in a population where the incidence of a virus such as HIV is low, the number of sexual partners is limited, and intravenous drug abuse is nonexistent, an infection with as long a latency period as HIV may not only be expressed sporadically, but would probably not be recognized as a transmissible infection. On the other hand, the significant changes in these social factors that occurred as a result of the sexual revolution of the late 1960s and early 1970s would be expected to increase the spread of infection and clinical disease so that recognition would be achieved. During the past decade, there have been marked increases in the number of sexually transmitted infections in the homosexual male population. The efficiency of anal intercourse as a mode of transmission probably accounts for the fact that HIV infection first expressed itself in this population.

  3. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  4. Replacement of the murine leukemia virus (MLV) envelope gene with a truncated HIV envelope gene in MLV generates a virus with impaired replication capacity

    International Nuclear Information System (INIS)

    Nack, Ursula; Schnierle, Barbara S.

    2003-01-01

    Murine leukemia virus (MLV) capsid particles can be efficiently pseudotyped with a variant of the HIV-1 envelope protein (Env) containing the surface glycoprotein gp120-SU and a carboxyl-terminally truncated transmembrane (TM) protein, with only seven cytoplasmic amino acids. MLV/HIV pseudotyped vector particles acquire the natural host tropism of HIV-1 and their entry is dependent on the presence of CD4 and an appropriate co-receptor on the surface of the target cell. We describe here the construction of chimeric MLV/HIV proviruses containing the truncated HIV envelope gene. The MLV/HIV provirus was generated by direct replacement of the MLV envelope gene with HIV Env coding sequences either with or without the additional inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Chimeric MLV/HIV particles could be generated from transfected 293T cells and were able to infect CD4/CXCR4-positive target cells. However, the second round of infection of target cells was severely impaired, despite the fact that the WPRE element enhanced the amount of viral mRNA detected. Viral particles released from infected cells showed reduced HIV Env incorporation, indicating that additional factors required for efficient replication of MLV/HIV pseudotyped viruses are missing

  5. Interferon α subtypes in HIV infection.

    Science.gov (United States)

    Sutter, Kathrin; Dickow, Julia; Dittmer, Ulf

    2018-02-13

    Type I interferons (IFN), which are immediately induced after most virus infections, are central for direct antiviral immunity and link innate and adaptive immune responses. However, several viruses have evolved strategies to evade the IFN response by preventing IFN induction or blocking IFN signaling pathways. Thus, therapeutic application of exogenous type I IFN or agonists inducing type I IFN responses are a considerable option for future immunotherapies against chronic viral infections. An important part of the type I IFN family are 12 IFNα subtypes, which all bind the same receptor, but significantly differ in their biological activities. Up to date only one IFNα subtype (IFNα2) is being used in clinical treatment against chronic virus infections, however its therapeutic success rate is rather limited, especially during Human Immunodeficiency Virus (HIV) infection. Recent studies addressed the important question if other IFNα subtypes would be more potent against retroviral infections in in vitro and in vivo experiments. Indeed, very potent IFNα subtypes were defined and their antiviral and immunomodulatory properties were characterized. In this review we summarize the recent findings on the role of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus infection. This includes their induction during HIV/SIV infection, their antiretroviral activity and the regulation of immune response against HIV by different IFNα subtypes. The findings might facilitate novel strategies for HIV cure or functional cure studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Arendrup, M

    1991-01-01

    . This inhibition was found in infection of both lymphocytic cells and monocytoid cells. Viruses tested included six HIV-1 and five HIV-2 isolates propagated in different cells, as well as infectious plasma from AIDS patients. The antiviral effect of anti-Tn MAbs occurred by specific binding of the MAb to the virus......; this binding was inhibitable by pure Tn antigen, and indications were found that this inhibition occurred at a pre-entry step. Boosting the naturally occurring low-titer anti-Tn activity may be of prophylactic value, as suggested by the in vitro neutralization found in this study....

  7. Natural HIV-1 NEF accelerates virus replication in primary human lymphocytes

    NARCIS (Netherlands)

    de Ronde, A.; Klaver, B.; Keulen, W.; Smit, L.; Goudsmit, J.

    1992-01-01

    HIV-1 NEF genes were isolated directly from peripheral blood lymphocyte DNA of two HIV-1-infected individuals and cloned into an HXB-2-infectious molecular clone. The effect of NEF on virus production in T-cell lines and primary human lymphocytes was studied. Naturally occurring NEF accelerates

  8. High prevalence of HIV-1 CRF01_AE viruses among female commercial sex workers residing in Surabaya, Indonesia.

    Directory of Open Access Journals (Sweden)

    Tomohiro Kotaki

    Full Text Available Human immunodeficiency virus (HIV infection and acquired immune deficiency syndrome (AIDS cause serious health problems and have an impact on the Indonesian economy. In addition, the rapid epidemic growth of HIV is continuing in Indonesia. Commercial sex plays a significant role in the spread of HIV; therefore, in order to reveal the current HIV prevalence rate among commercial sex workers (CSWs, we conducted an epidemiological study on HIV infection among CSWs residing in Surabaya, the capital of East Java province of Indonesia with large communities of CSWs.The prevalence of HIV infection among 200 CSWs was studied. In addition, the subtype of HIV type 1 (HIV-1 and the prevalence of other blood-borne viruses, hepatitis B virus (HBV, hepatitis C virus (HCV and GB virus C (GBV-C, were studied. The prevalence rates of HIV, hepatitis B core antibody, hepatitis B surface antigen, anti-HCV antibodies and anti-GBV-C antibodies were 11%, 64%, 4%, 0.5% and 0% among CSWs involved in this study, respectively. HIV-1 CRF01_AE viral gene fragments were detected in most HIV-positive samples. In addition, most CSWs showed low awareness of sexually transmitted diseases and had unprotected sex with their clients.The HIV prevalence rate among CSWs was significantly higher than that among the general population in Indonesia (0.2-0.4%. In addition, CSWs were at a high risk of exposure to HBV, although chronic HBV infection was less frequently established. Our results suggest the necessity of efficient prevention programs for HIV and other blood-borne viral infections among CSWs in Surabaya, Indonesia.

  9. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

    International Nuclear Information System (INIS)

    Koch, Markus; Pancera, Marie; Kwong, Peter D.; Kolchinsky, Peter; Grundner, Christoph; Wang Liping; Hendrickson, Wayne A.; Sodroski, Joseph; Wyatt, Richard

    2003-01-01

    The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization

  10. Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation In Vitro

    Science.gov (United States)

    Gavegnano, Christina; Detorio, Mervi; Montero, Catherine; Bosque, Alberto; Planelles, Vicente

    2014-01-01

    The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals. PMID:24419350

  11. Atypical presentations of genital herpes simplex virus in HIV-1 and HIV-2 effectively treated by imiquimod.

    Science.gov (United States)

    McKendry, Anna; Narayana, Srinivasulu; Browne, Rita

    2015-05-01

    Atypical presentations of genital herpes simplex virus have been described in HIV. We report two cases with hypertrophic presentations which were effectively treated with imiquimod, one of which is the first reported case occurring in a patient with HIV-2. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Seksuel transmission af hepatitis C-virus hos hiv-inficerede maend

    DEFF Research Database (Denmark)

    Peters, Lars; Weis, Nina M; Lindhardt, Bjarne Orskov

    2006-01-01

    Infections with the hepatitis C virus (HCV) occur primarily through percutaneous transmission, while sexual transmission seems to be rare. Recently, in some European cities, an increasing incidence of sexually transmitted HCV infection among HIV-infected homosexual males has been reported. We...... describe four cases of acute HCV infection among HIV-infected homosexual males, where sexual transmission was likely. Udgivelsesdato: 2006-Oct-16...

  13. Seroprevalence of hiv and hepatitis viruses in directed blood donors ...

    African Journals Online (AJOL)

    Aims: To determine the seroprevalence of HIV and Hepatitis B viruses in directed blood donors in Nguru and also to see if there is co-infection of these viruses in this category of donor population. Method: This is a prospective study carried out at the blood bank of the Federal Medical Centre Nguru, Yobe State between ...

  14. Awareness of Human Immunodeficiency Virus (HIV) infection among ...

    African Journals Online (AJOL)

    Objective: To determine the level of awareness of Human Immunodeficiency Virus (HIV) infection among antenatal clients in Nnewi Nigeria. Subjects and Methods: A cross sectional descriptive study of six hundred consecutive antenatal clients attending the Nnamdi Azikiwe University Teaching Hospital and five private ...

  15. Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr-Importin α interactions as a novel HIV-1 therapy

    International Nuclear Information System (INIS)

    Suzuki, Tatsunori; Yamamoto, Norio; Nonaka, Mizuho; Hashimoto, Yoshie; Matsuda, Go; Takeshima, Shin-nosuke; Matsuyama, Megumi; Igarashi, Tatsuhiko; Miura, Tomoyuki; Tanaka, Rie; Kato, Shingo; Aida, Yoko

    2009-01-01

    The development of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus (HIV) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. One such target is the interaction between Vpr, one of the accessory gene products of HIV-1 and Importin α, which is crucial, not only for the nuclear import of Vpr, but also for HIV-1 replication in macrophages. We have identified a potential parent compound, hematoxylin, which suppresses Vpr-Importin α interaction, thereby inhibiting HIV-1 replication in a Vpr-dependent manner. Analysis by real-time PCR demonstrated that hematoxylin specifically inhibited nuclear import step of pre-integration complex. Thus, hematoxylin is a new anti-HIV-1 inhibitor that targets the nuclear import of HIV-1 via the Vpr-Importin α interaction, suggesting that a specific inhibitor of the interaction between viral protein and the cellular factor may provide a new strategy for HIV-1 therapy.

  16. Research on human immunodeficiency virus (HIV) in Malawi: the ...

    African Journals Online (AJOL)

    Research on human immunodeficiency virus (HIV) in Malawi: the Johns Hopkins University- Ministry of Health (JHU-MOH) project. TE Taha, JK Canner, AM Wangel, JD Chiphangwi, NG Liomba, PG Miotti, GA Dallabetta, AJ Saah ...

  17. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infectio...

  18. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ

    2011-02-01

    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  19. Glycans Flanking the Hypervariable Connecting Peptide between the A and B Strands of the V1/V2 Domain of HIV-1 gp120 Confer Resistance to Antibodies That Neutralize CRF01_AE Viruses

    Science.gov (United States)

    O’Rourke, Sara M.; Sutthent, Ruengpung; Phung, Pham; Mesa, Kathryn A.; Frigon, Normand L.; To, Briana; Horthongkham, Navin; Limoli, Kay; Wrin, Terri; Berman, Phillip W.

    2015-01-01

    Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149. PMID:25793890

  20. Hepatitis B virus treatment in HIV-infected patients.

    Science.gov (United States)

    Thio, Chloe L

    Hepatitis B virus (HBV) infection is common in HIV-infected persons and is associated with increased risk of liver-related morbidity and mortality. Agents available to treat HBV infection in coinfected patients include lamivudine, entecavir, emtricitabine, adefovir, peginterferon alfa, and the recently approved telbivudine. Treatment decisions should take into account a number of factors, including antiretroviral therapy status, HBV genotype, prior experience of lamivudine, and the need to avoid drug resistance in both HIV- and HBV-infected persons. This article summarizes a presentation on treatment and management of HBV infection in HIV-infected patients made by Chloe L. Thio, MD, at the 9th Annual Ryan White CARE Act Update in Washington, DC. The original presentation is available as a Webcast at www.iasusa.org.

  1. Human immunodeficiency virus (HIV) seropositivity and hepatitis B ...

    African Journals Online (AJOL)

    Method: A total of 130 donors comprising 120 commercial donors and 10 voluntary donors were tested for antibodies to human immunodeficiency virus and hepatitis B surface antigen in Benin city using Immunocomb HIV - 1 and 2 Biospot kit and Quimica Clinica Aplicada direct latex agglutination method respectively.

  2. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  3. Molecular epidemiology of co-infection with hepatitis B virus and human immunodeficiency virus (HIV) among adult patients in Harare, Zimbabwe.

    Science.gov (United States)

    Baudi, Ian; Iijima, Sayuki; Chin'ombe, Nyasha; Mtapuri-Zinyowera, Sekesai; Murakami, Shuko; Isogawa, Masanori; Hachiya, Atsuko; Iwatani, Yasumasa; Tanaka, Yasuhito

    2017-02-01

    The objective of this study was to determine the prevalence of co-infection with hepatitis B virus (HBV) and human immunodeficiency virus (HIV) and the genetic characteristics of both viruses among pre-HIV-treatment patients in Harare, Zimbabwe. This cross-sectional survey involved 176 remnant plasma samples collected from consenting HIV patients (median age 35 [18-74]) between June and September 2014. HBV seromarkers were determined by high-sensitivity chemiluminescence assays. Molecular evolutionary analyses were conducted on the basal core promoter/precore (BCP/PC) and S regions of HBV, as well as part of the HIV pol region. Of the 176 participants (65.7% female), 19 (10.8%) were positive for HBsAg (median 0.033 IU/ml (IQR 0.01-415). The HBsAg incidence was higher in men than women (P = 0.009). HBsAg-positive subjects had lower median CD4 counts (P = 0.016). HBV DNA was detectable in 12 HBsAg-positive samples (median 3.36 log cp/ml (2.86-4.51), seven being amplified and sequenced. All isolates were subgenotype A1 without HBV drug resistance mutations but each had at least one BCP/PC mutation. PreS deletion mutants and small S antigen variants M133I/T and D144G were identified. Of the 164 HIV isolates successfully genotyped, 163 (99.4%) were HIV-1 subtype C and only one was HIV-1 subtype F1. Sixteen (9.8%) had at least one drug resistance mutation, predominantly non-nucleoside reverse transcriptase inhibitor-related mutations, observed mostly among female participants. This study shows that co-infection with HBV is present among HIV patients enrolling into HIV care in Zimbabwe, suggesting that HBV screening and monitoring programmes be strengthened in this context. J. Med. Virol. 89:257-266, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Identification of a Conserved Interface of Human Immunodeficiency Virus Type 1 and Feline Immunodeficiency Virus Vifs with Cullin 5.

    Science.gov (United States)

    Gu, Qinyong; Zhang, Zeli; Gertzen, Christoph G W; Häussinger, Dieter; Gohlke, Holger; Münk, Carsten

    2018-03-15

    Members of the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 [A3]) family of DNA cytidine deaminases are intrinsic restriction factors against retroviruses. In felids such as the domestic cat ( Felis catus ), the A3 genes encode the A3Z2, A3Z3, and A3Z2Z3 antiviral cytidine deaminases. Only A3Z3 and A3Z2Z3 inhibit viral infectivity factor (Vif)-deficient feline immunodeficiency virus (FIV). The FIV Vif protein interacts with Cullin (CUL), Elongin B (ELOB), and Elongin C (ELOC) to form an E3 ubiquitination complex to induce the degradation of feline A3s. However, the functional domains in FIV Vif for the interaction with Cullin are poorly understood. Here, we found that the expression of dominant negative CUL5 prevented the degradation of feline A3s by FIV Vif, while dominant negative CUL2 had no influence on the degradation of A3. In coimmunoprecipitation assays, FIV Vif bound to CUL5 but not CUL2. To identify the CUL5 interaction site in FIV Vif, the conserved amino acids from positions 47 to 160 of FIV Vif were mutated, but these mutations did not impair the binding of Vif to CUL5. By focusing on a potential zinc-binding motif (K175-C161-C184-C187) of FIV Vif, we found a conserved hydrophobic region (174IR175) that is important for the CUL5 interaction. Mutation of this region also impaired the FIV Vif-induced degradation of feline A3s. Based on a structural model of the FIV Vif-CUL5 interaction, the 52LW53 region in CUL5 was identified as mediating binding to FIV Vif. By comparing our results to the human immunodeficiency virus type 1 (HIV-1) Vif-CUL5 interaction surface (120IR121, a hydrophobic region that is localized in the zinc-binding motif), we suggest that the CUL5 interaction surface in the diverse HIV-1 and FIV Vifs is evolutionarily conserved, indicating a strong structural constraint. However, the FIV Vif-CUL5 interaction is zinc independent, which contrasts with the zinc dependence of HIV-1 Vif. IMPORTANCE Feline

  5. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    Science.gov (United States)

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas

  6. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors

    Directory of Open Access Journals (Sweden)

    Andrabi Raiees

    2012-09-01

    Full Text Available Abstract Background Analysis of human monoclonal antibodies (mAbs developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3 is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5 binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females within the age range of 20–57 years (median = 33 years were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL, suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope

  7. Impact of Stereochemistry on Ligand Binding: X-ray Crystallographic Analysis of an Epoxide-Based HIV Protease Inhibitor.

    Science.gov (United States)

    Benedetti, Fabio; Berti, Federico; Campaner, Pietro; Fanfoni, Lidia; Demitri, Nicola; Olajuyigbe, Folasade M; De March, Matteo; Geremia, Silvano

    2014-09-11

    A new pseudopeptide epoxide inhibitor, designed for irreversible binding to HIV protease (HIV-PR), has been synthesized and characterized in solution and in the solid state. However, the crystal structure of the complex obtained by inhibitor-enzyme cocrystallization revealed that a minor isomer, with inverted configuration of the epoxide carbons, has been selected by HIV-PR during crystallization. The structural characterization of the well-ordered pseudopeptide, inserted in the catalytic channel with its epoxide group intact, provides deeper insights into inhibitor binding and HIV-PR stereoselectivity, which aids development of future epoxide-based HIV inhibitors.

  8. N-terminally truncated POM121C inhibits HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Hideki Saito

    Full Text Available Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1. These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication.

  9. Epidemiology and pathogesis of human immunodifiency virus(HIV ...

    African Journals Online (AJOL)

    Epidemiology and pathogesis of human immunodifiency virus(HIV) related heart disease: A review. MU Sani, BN Okeahialam. Abstract. No Abstract. Nigerian Journal of Medicine Vol. 14(3) 2005: 255-260. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African ...

  10. Management of human immunodeficiency virus (HIV) infection in ...

    African Journals Online (AJOL)

    Management of human immunodeficiency virus (HIV) infection in adults in resource-limited countries: Challenges and prospects in Nigeria. AG Habib. Abstract. No Abstract. Annals of Ibadan Postgraduate Medicine Vol. 3 (1) 2005: pp. 26-32. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ...

  11. Heparin binding sites on Ross River virus revealed by electron cryo-microscopy

    International Nuclear Information System (INIS)

    Zhang Wei; Heil, Marintha; Kuhn, Richard J.; Baker, Timothy S.

    2005-01-01

    Cell surface glycosaminoglycans play important roles in cell adhesion and viral entry. Laboratory strains of two alphaviruses, Sindbis and Semliki Forest virus, have been shown to utilize heparan sulfate as an attachment receptor, whereas Ross River virus (RRV) does not significantly interact with it. However, a single amino acid substitution at residue 218 in the RRV E2 glycoprotein adapts the virus to heparan sulfate binding and expands the host range of the virus into chicken embryo fibroblasts. Structures of the RRV mutant, E2 N218R, and its complex with heparin were determined through the use of electron cryo-microscopy and image reconstruction methods. Heparin was found to bind at the distal end of the RRV spikes, in a region of the E2 glycoprotein that has been previously implicated in cell-receptor recognition and antibody binding

  12. Frequency of Hepatitis B Virus, Hepatitis C Virus and HIV Infections in Cannabis and Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Nuran KARABULUT

    2017-04-01

    Full Text Available Objective: There are very few data about the epidemiology of hepatitis B virus (HBV, hepatitis C virus (HCV and HIV infections in drug addicts in Turkey, whereas several countries have a developed surveillance systems to monitor the spread of HBV, HCV and HIV infections in drug users. In this study, HBV, HCV and HIV prevalence in cannabis and opioid addicts were investigated. Materials and Methods: Hepatitis B surface antigen (HBsAg, anti-HBs, anti-HCV and anti-HIV tests were analyzed by enzyme-linked immunosorbent assay. The cannabis and opioid metabolites in urine samples of drug addicts were analyzed by cloned enzyme donor immunoassay. Results: This retrospective study was conducted on 276 individuals with a mean age of 28.89±10.49 years. HBsAg, anti-HBs and anti-HCV prevalence in drug addicts was found to be 4%, 52.3% and 7.9%, respectively. In all the drug addicts, anti-HIV test was negative. Whereas the rate of HBsAg among cannabis users (8.8% was higher than opioid (4.1% and both cannabis and opioid users (1.4%, the difference was not statistically significant. Although anti-HCV positivity among cannabis users was not detected, 6.4% of opioid users and 15.9% of both cannabis and opioid users were anti-HCV positive (p=0.009. Conclusion: This study showed that HCV infection among especially opioid users and both cannabis and opioid users was a problem. Understanding of local status in HBV, HCV and HIV infections is crucial for developing prevention and geographical strategies for these infections.

  13. Binding of the mannose-specific lectin, Griffithsin, to HIV-1 gp120 exposes the CD4-binding site

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2011-09-01

    Full Text Available development. Anti- microb. Agents Chemother. 41:1521?1530. 7. Buchacher, A., et al. 1994. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization...

  14. Respiratory viruses in young South African children with acute lower respiratory infections and interactions with HIV.

    Science.gov (United States)

    Annamalay, Alicia A; Abbott, Salome; Sikazwe, Chisha; Khoo, Siew-Kim; Bizzintino, Joelene; Zhang, Guicheng; Laing, Ingrid; Chidlow, Glenys R; Smith, David W; Gern, James; Goldblatt, Jack; Lehmann, Deborah; Green, Robin J; Le Souëf, Peter N

    2016-08-01

    Human rhinovirus (RV) is the most common respiratory virus and has been associated with frequent and severe acute lower respiratory infections (ALRI). The prevalence of RV species among HIV-infected children in South Africa is unknown. To describe the prevalence of respiratory viruses, including RV species, associated with HIV status and other clinical symptoms in children less than two years of age with and without ALRI in Pretoria, South Africa. Nasopharyngeal aspirates were collected from 105 hospitalized ALRI cases and 53 non-ALRI controls less than two years of age. HIV status was determined. Common respiratory viruses were identified by PCR, and RV species and genotypes were identified by semi-nested PCR, sequencing and phylogenetic tree analyses. Respiratory viruses were more common among ALRI cases than controls (83.8% vs. 69.2%; p=0.041). RV was the most commonly identified virus in cases with pneumonia (45.6%) or bronchiolitis (52.1%), regardless of HIV status, as well as in controls (39.6%). RV-A was identified in 26.7% of cases and 15.1% of controls while RV-C was identified in 21.0% of cases and 18.9% of controls. HIV-infected children were more likely to be diagnosed with pneumonia than bronchiolitis (pinfected cases (n=15) compared with 30.6% of HIV-uninfected cases (n=85, p=0.013), and was identified more frequently in bronchiolitis than in pneumonia cases (43.8% vs. 12.3%; pinfection may be protective against RSV and bronchiolitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    International Nuclear Information System (INIS)

    Qualley, Dominic F.; Sokolove, Victoria L.; Ross, James L.

    2015-01-01

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC

  16. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Qualley, Dominic F., E-mail: dqualley@berry.edu; Sokolove, Victoria L.; Ross, James L.

    2015-03-13

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC.

  17. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    Science.gov (United States)

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  18. Microbial translocation is correlated with HIV evolution in HIV-HCV co-infected patients.

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Tudesq

    Full Text Available Microbial translocation (MT is characterized by bacterial products passing into the blood through the gut barrier and is a key phenomenon in the pathophysiology of Human Immunodeficiency Virus (HIV infection. MT is also associated with liver damage in Hepatitis C Virus (HCV patients. The aim of the study was to assess MT in plasma of HIV-HCV co-infected patients. 16S rDNA (16 S Ribosomal DNA subunit marker and other markers of MT such as Lipopolysaccharide (LPS-binding protein (LBP, soluble CD14 (sCD14, intestinal fatty acid binding protein (I-FABP were used. Clinical, biological and immunological characteristics of the population were studied in order to correlate them with the intensity of the MT. We demonstrate that indirect markers of MT, LBP and CD14s, and a marker of intestinal permeability (I-FABP are significantly higher in HIV-HCV co-infected patients than in healthy controls (17.0 vs 2.6 μg/mL, p < 0.001; 1901.7 vs 1255.0 ng/mL, p = 0.018; 478.3 vs 248.1 pg/mL, p < 0.001, respectively, while a direct marker of MT (16S rDNA copies is not different between these two populations. However, plasma 16S rDNA was significantly higher in co-infected patients with long-standing HIV infections (RGM = 1.47 per 10 years, CI95% = [1.04:2.06], p = 0.03. Our findings show that in HIV-HCV co-infected patients, plasma 16S rDNA levels, directly reflecting MT, seem to be linked to the duration of HIV infection, while elevated levels of LBP and sCD14 reflect only a persistence of immune activation. The levels of these markers were not correlated with HCV evolution.

  19. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor.

    Science.gov (United States)

    Hagiwara, Kyoji; Ishii, Hideki; Murakami, Tomoyuki; Takeshima, Shin-nosuke; Chutiwitoonchai, Nopporn; Kodama, Eiichi N; Kawaji, Kumi; Kondoh, Yasumitsu; Honda, Kaori; Osada, Hiroyuki; Tsunetsugu-Yokota, Yasuko; Suzuki, Masaaki; Aida, Yoko

    2015-01-01

    The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54-74 within the C-terminal α-helical domain (αH3) of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection.

  20. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor.

    Directory of Open Access Journals (Sweden)

    Kyoji Hagiwara

    Full Text Available The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1 therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54-74 within the C-terminal α-helical domain (αH3 of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection.

  1. Generation and Characterization of HIV-1 Transmitted and Founder Virus Consensus Sequence from Intravenous Drug Users in Xinjiang, China.

    Science.gov (United States)

    Li, Fan; Ma, Liying; Feng, Yi; Hu, Jing; Ni, Na; Ruan, Yuhua; Shao, Yiming

    2017-06-01

    HIV-1 transmission in intravenous drug users (IDUs) has been characterized by high genetic multiplicity and suggests a greater challenge for HIV-1 infection blocking. We investigated a total of 749 sequences of full-length gp160 gene obtained by single genome sequencing (SGS) from 22 HIV-1 early infected IDUs in Xinjiang province, northwest China, and generated a transmitted and founder virus (T/F virus) consensus sequence (IDU.CON). The T/F virus was classified as subtype CRF07_BC and predicted to be CCR5-tropic virus. The variable region (V1, V2, and V4 loop) of IDU.CON showed length variation compared with the heterosexual T/F virus consensus sequence (HSX.CON) and homosexual T/F virus consensus sequence (MSM.CON). A total of 26 N-linked glycosylation sites were discovered in the IDU.CON sequence, which is less than that of MSM.CON and HSX.CON. Characterization of T/F virus from IDUs highlights the genetic make-up and complexity of virus near the moment of transmission or in early infection preceding systemic dissemination and is important toward the development of an effective HIV-1 preventive methods, including vaccines.

  2. Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly.

    Science.gov (United States)

    Baumgärtel, Viola; Müller, Barbara; Lamb, Don C

    2012-05-01

    Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site.

  3. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H

    1999-01-01

    The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...

  4. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Lindsey M. [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Irvin, Susan C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kennedy, Steven C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Guo, Feng [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Goldstein, Harris; Herold, Betsy C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Snapp, Erik L., E-mail: erik-lee.snapp@einstein.yu.edu [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  5. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    International Nuclear Information System (INIS)

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-01-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells

  6. GB Virus C (GBV-C Infection in Hepatitis C Virus (HCV Seropositive Women with or at Risk for HIV Infection.

    Directory of Open Access Journals (Sweden)

    Jason T Blackard

    Full Text Available GB virus C (GBV-C may have a beneficial impact on HIV disease progression; however, the epidemiologic characteristics of this virus are not well characterized. Behavioral factors and gender may lead to differential rates of GBV-C infection; yet, studies have rarely addressed GBV-C infections in women or racial/ethnic minorities. Therefore, we evaluated GBV-C RNA prevalence and genotype distribution in a large prospective study of high-risk women in the US.438 hepatitis C virus (HCV seropositive women, including 306 HIV-infected and 132 HIV-uninfected women, from the HIV Epidemiologic Research Study were evaluated for GBV-C RNA. 347 (79.2% women were GBV-C RNA negative, while 91 (20.8% were GBV-C RNA positive. GBV-C positive women were younger than GBV-C negative women. Among 306 HIV-infected women, 70 (22.9% women were HIV/GBV-C co-infected. Among HIV-infected women, the only significant difference between GBV-negative and GBV-positive women was age (mean 38.4 vs. 35.1 years; p<0.001. Median baseline CD4 cell counts and plasma HIV RNA levels were similar. The GBV-C genotypes were 1 (n = 31; 44.3%, 2 (n = 36; 51.4%, and 3 (n = 3; 4.3%. The distribution of GBV-C genotypes in co-infected women differed significantly by race/ethnicity. However, median CD4 cell counts and log10 HIV RNA levels did not differ by GBV-C genotype. GBV-C incidence was 2.7% over a median follow-up of 2.9 (IQR: 1.5, 4.9 years, while GBV-C clearance was 35.7% over a median follow-up of 2.44 (1.4, 3.5 years. 4 women switched genotypes.Age, injection drug use, a history of sex for money or drugs, and number of recent male sex partners were associated with GBV-C infection among all women in this analysis. However, CD4 cell count and HIV viral load of HIV/HCV/GBV-C co-infected women were not different although race was associated with GBV-C genotype.

  7. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120.

    Science.gov (United States)

    deCamp, Allan C; Rolland, Morgane; Edlefsen, Paul T; Sanders-Buell, Eric; Hall, Breana; Magaret, Craig A; Fiore-Gartland, Andrew J; Juraska, Michal; Carpp, Lindsay N; Karuna, Shelly T; Bose, Meera; LePore, Steven; Miller, Shana; O'Sullivan, Annemarie; Poltavee, Kultida; Bai, Hongjun; Dommaraju, Kalpana; Zhao, Hong; Wong, Kim; Chen, Lennie; Ahmed, Hasan; Goodman, Derrick; Tay, Matthew Z; Gottardo, Raphael; Koup, Richard A; Bailer, Robert; Mascola, John R; Graham, Barney S; Roederer, Mario; O'Connell, Robert J; Michael, Nelson L; Robb, Merlin L; Adams, Elizabeth; D'Souza, Patricia; Kublin, James; Corey, Lawrence; Geraghty, Daniel E; Frahm, Nicole; Tomaras, Georgia D; McElrath, M Juliana; Frenkel, Lisa; Styrchak, Sheila; Tovanabutra, Sodsai; Sobieszczyk, Magdalena E; Hammer, Scott M; Kim, Jerome H; Mullins, James I; Gilbert, Peter B

    2017-01-01

    Although the HVTN 505 DNA/recombinant adenovirus type 5 vector HIV-1 vaccine trial showed no overall efficacy, analysis of breakthrough HIV-1 sequences in participants can help determine whether vaccine-induced immune responses impacted viruses that caused infection. We analyzed 480 HIV-1 genomes sampled from 27 vaccine and 20 placebo recipients and found that intra-host HIV-1 diversity was significantly lower in vaccine recipients (P ≤ 0.04, Q-values ≤ 0.09) in Gag, Pol, Vif and envelope glycoprotein gp120 (Env-gp120). Furthermore, Env-gp120 sequences from vaccine recipients were significantly more distant from the subtype B vaccine insert than sequences from placebo recipients (P = 0.01, Q-value = 0.12). These vaccine effects were associated with signatures mapping to CD4 binding site and CD4-induced monoclonal antibody footprints. These results suggest either (i) no vaccine efficacy to block acquisition of any viral genotype but vaccine-accelerated Env evolution post-acquisition; or (ii) vaccine efficacy against HIV-1s with Env sequences closest to the vaccine insert combined with increased acquisition due to other factors, potentially including the vaccine vector.

  8. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L.

    Directory of Open Access Journals (Sweden)

    McCoy Joe-Ann

    2011-04-01

    Full Text Available Abstract Background The mint family (Lamiaceae produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L., sage (Salvia spp., peppermint (Mentha × piperita L., hyssop (Hyssopus officinalis L., basil (Ocimum spp. and self-heal (Prunella vulgaris L.. To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection. Results Aqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity. Conclusions We demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.

  9. Conditional live virus as a novel approach towards a safe live attenuated HIV vaccine

    NARCIS (Netherlands)

    Das, Atze T.; Zhou, Xue; Vink, Monique; Klaver, Bep; Berkhout, Ben

    2002-01-01

    To control the worldwide spread of HIV, a safe and effective prophylactic vaccine is urgently needed. Studies with the simian immunodeficiency virus demonstrated that a live attenuated virus can be effective as a vaccine, but serious concerns about the safety of such a vaccine virus have arisen. We

  10. Burden of Respiratory Syncytial Virus Infection in South African Human Immunodeficiency Virus (HIV)-Infected and HIV-Uninfected Pregnant and Postpartum Women: A Longitudinal Cohort Study.

    Science.gov (United States)

    Madhi, Shabir A; Cutland, Clare L; Downs, Sarah; Jones, Stephanie; van Niekerk, Nadia; Simoes, Eric A F; Nunes, Marta C

    2018-05-17

    Limited data exist on the burden of respiratory syncytial virus (RSV) illness among pregnant women, to determine their potential benefit from RSV vaccination. We evaluated the incidence of RSV illness from midpregnancy until 24 weeks postpartum in human immunodeficiency virus (HIV)-uninfected and HIV-infected women and their infants. Mother-infant dyads were enrolled in maternal influenza vaccine efficacy trials. These included 1060 and 1056 HIV-uninfected pregnant women in 2011 and 2012, respectively, 194 HIV-infected pregnant women in 2011, and their infants. Upper respiratory tract samples obtained at illness visits were tested for RSV. The incidence (per 1000 person-months) of RSV illness (n = 43 overall) among HIV-uninfected women was lower in 2011 (1.2; 95% confidence interval [CI], .6-2.2) than in 2012 (4.0; 95% CI, 2.8-5.6). The incidence of RSV illness (n = 5) in HIV-infected women was 3.4 (95% CI, 1.4-8.1). Maternal RSV infection was associated with respiratory symptoms including cough (72.1%), rhinorrhea (39.5%), sore throat (37.2%), and headache (42%), but fever was absent. RSV infection during pregnancy was not associated with adverse pregnancy outcomes. Postpartum, RSV infection in mothers (n = 27) was associated with concurrent infection among 51.9% of their infants and, conversely, 29.8% of mothers investigated within 7 days of their infants having an RSV illness also tested positive for RSV. RSV infection is associated with respiratory illness during pregnancy and postpartum. Vaccination of pregnant women against RSV could benefit the mother, albeit primarily against nonfebrile illness, and her infant. NCT01306669 and NCT01306682.

  11. Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry.

    Science.gov (United States)

    Wang, Jizhen; Manicassamy, Balaji; Caffrey, Michael; Rong, Lijun

    2011-06-01

    Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

  12. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  13. Genital herpes simplex virus type 2 infection in humanized HIV-transgenic mice triggers HIV shedding and is associated with greater neurological disease.

    Science.gov (United States)

    Nixon, Briana; Fakioglu, Esra; Stefanidou, Martha; Wang, Yanhua; Dutta, Monica; Goldstein, Harris; Herold, Betsy C

    2014-02-15

    Epidemiological studies consistently demonstrate synergy between herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1). Higher HIV-1 loads are observed in coinfected individuals, and conversely, HIV-1 is associated with more-severe herpetic disease. A small animal model of coinfection would facilitate identification of the biological mechanisms underlying this synergy and provide the opportunity to evaluate interventions. Mice transgenic for HIV-1 provirus and human cyclin T1 under the control of a CD4 promoter (JR-CSF/hu-cycT1) were intravaginally infected with HSV-2 and evaluated for disease progression, HIV shedding, and mucosal immune responses. HSV-2 infection resulted in higher vaginal HIV loads and genital tissue expression of HIV RNA, compared with HSV-uninfected JR-CSF/hu-cycT1 mice. There was an increase in genital tract inflammatory cells, cytokines, chemokines, and interferons in response to HSV-2, although the kinetics of the response were delayed in HIV-transgenic, compared with control mice. Moreover, the JR-CSF/hu-cycT1 mice exhibited earlier and more-severe neurological disease. The latter was associated with downregulation of secretory leukocyte protease inhibitor expression in neuronal tissue, a molecule with antiinflammatory, antiviral, and neuroprotective properties. JR-CSF/hu-cycT1 mice provide a valuable model to study HIV/HSV-2 coinfection and identify potential mechanisms by which HSV-2 facilitates HIV-1 transmission and HIV modulates HSV-2-mediated disease.

  14. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  15. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  16. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    International Nuclear Information System (INIS)

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-01-01

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the YxxΦ domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1 NL4.3 compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and increase of

  17. Impacts of HIV infection and long-term use of antiretroviral therapy on the prevalence of oral human papilloma virus type 16.

    Science.gov (United States)

    Amornthatree, Korntip; Sriplung, Hutcha; Mitarnun, Winyou; Nittayananta, Wipawee

    2012-04-01

    The objectives of this study were to determine (i) the prevalence and the copy numbers of oral human papilloma virus type 16 (HPV-16) in HIV-infected patients compared with non-HIV controls, and (ii) the effects of antiretroviral therapy (ART) and its duration on the virus. A cross-sectional study was carried out in HIV-infected patients with and without ART and in non-HIV controls. Saliva samples were collected, and the DNA extracted from those samples was used as a template to detect HPV-16 E6 and E7 by quantitative polymerase chain reaction. Student's t-test and ANOVA test were performed to determine the prevalence rates among groups. Forty-nine HIV-infected patients: 37 on ART (age range, 23-54 years; mean, 37 years), 12 not on ART (age range, 20-40 years; mean, 31 years), and 20 non-HIV controls (age range, 19-53 years; mean, 31 years) were enrolled. The prevalence of oral HPV-16 infection and the copy numbers of the virus were significantly higher in HIV-infected patients than in non-HIV controls when using E6 assay (geometric mean = 10696 vs. 563 copies/10(5) cells, P prevalence of oral HPV-16 infection and the copy numbers of the virus (P = 0.567). We conclude that the prevalence of oral HPV-16 infection and the copy numbers of the virus are increased by HIV infection. Neither the use of ART nor its duration significantly affected the virus. © 2011 John Wiley & Sons A/S.

  18. Epidemiology of respiratory syncytial virus-associated acute lower respiratory tract infection hospitalizations among HIV-infected and HIV-uninfected South African children, 2010-2011.

    Science.gov (United States)

    Moyes, Jocelyn; Cohen, Cheryl; Pretorius, Marthi; Groome, Michelle; von Gottberg, Anne; Wolter, Nicole; Walaza, Sibongile; Haffejee, Sumayya; Chhagan, Meera; Naby, Fathima; Cohen, Adam L; Tempia, Stefano; Kahn, Kathleen; Dawood, Halima; Venter, Marietjie; Madhi, Shabir A

    2013-12-15

    There are limited data on respiratory syncytial virus (RSV) infection among children in settings with a high prevalence of human immunodeficiency virus (HIV). We studied the epidemiology of RSV-associated acute lower respiratory tract infection (ALRTI) hospitalizations among HIV-infected and HIV-uninfected children in South Africa. Children aged infection among HIV-infected and uninfected children were examined. The relative risk of hospitalization in HIV-infected and HIV-uninfected children was calculated in 1 site with population denominators. Of 4489 participants, 4293 (96%) were tested for RSV, of whom 1157 (27%) tested positive. With adjustment for age, HIV-infected children had a 3-5-fold increased risk of hospitalization with RSV-associated ALRTI (2010 relative risk, 5.6; [95% confidence interval (CI), 4.5-6.4]; 2011 relative risk, 3.1 [95% CI, 2.6-3.6]). On multivariable analysis, HIV-infected children with RSV-associated ALRTI had higher odds of death (adjusted odds ratio. 31.1; 95% CI, 5.4-179.8) and hospitalization for >5 days (adjusted odds ratio, 4.0; 95% CI, 1.5-10.6) than HIV-uninfected children. HIV-infected children have a higher risk of hospitalization with RSV-associated ALRTI and a poorer outcome than HIV-uninfected children. These children should be targeted for interventions aimed at preventing severe RSV disease.

  19. Cellular specificity of HIV-1 replication can be controlled by LTR sequences

    International Nuclear Information System (INIS)

    Reed-Inderbitzin, Edward; Maury, Wendy

    2003-01-01

    Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-κB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry

  20. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    Directory of Open Access Journals (Sweden)

    Tiffiny Rye-McCurdy

    2016-09-01

    Full Text Available Retroviruses specifically package full-length, dimeric genomic RNA (gRNA even in the presence of a vast excess of cellular RNA. The “psi” (Ψ element within the 5′-untranslated region (5′UTR of gRNA is critical for packaging through interaction with the nucleocapsid (NC domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1 Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.

  1. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    Science.gov (United States)

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  2. Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)--associated tuberculous meningitis

    NARCIS (Netherlands)

    Török, M. Estee; Yen, Nguyen Thi Bich; Chau, Tran Thi Hong; Mai, Nguyen Thi Hoang; Phu, Nguyen Hoan; Mai, Pham Phuong; Dung, Nguyen Thi; Chau, Nguyen Van Vinh; Bang, Nguyen Duc; Tien, Nguyen Anh; Minh, N. H.; Hien, Nguyen Quang; Thai, Phan Vuong Khac; Dong, Doan The; Anh, Do Thi Tuong; Thoa, Nguyen Thi Cam; Hai, Nguyen Ngoc; Lan, Nguyen Ngoc; Lan, Nguyen Thi Ngoc; Quy, Hoang Thi; Dung, Nguyen Huy; Hien, Tran Tinh; Chinh, Nguyen Tran; Simmons, Cameron Paul; de Jong, Menno; Wolbers, Marcel; Farrar, Jeremy James

    2011-01-01

    The optimal time to initiate antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-associated tuberculous meningitis is unknown. We conducted a randomized, double-blind, placebo-controlled trial of immediate versus deferred ART in patients with HIV-associated tuberculous meningitis to

  3. Current treatment of HIV/hepatitis B virus coinfection.

    Science.gov (United States)

    Iser, David M; Sasadeusz, Joseph J

    2008-05-01

    Coinfection with HIV and hepatitis B virus (HBV) has become a significant global health problem. Liver disease is now one of the leading causes of morbidity and mortality in individuals with HIV, particularly those with viral hepatitis. There are a number of agents available with dual activity against HIV and HBV, and effective treatment depends on understanding the potential advantages and pitfalls in using these agents. There are a number of unresolved issues in the management of HIV/HBV coinfection. These include the role of liver biopsy, the significance of normal aminotransferase levels, serum HBV DNA threshold for treatment, treatment end-points, and the treatment of HBV when HIV does not yet require treatment. Treatment of HBV should be considered in individuals with HIV/HBV coinfection with evidence of significant fibrosis (>/=F2), or with elevated serum HBV DNA levels (>2000 IU/mL). Sustained suppression of serum HBV DNA to below the level of detection by the most sensitive available assay should be the goal of therapy, and, at present, treatment of HBV in HIV/HBV coinfection is lifelong. If antiretroviral therapy is required, then two agents with anti-HBV activity should be incorporated into the regimen. If antiretroviral therapy is not required, then the options are pegylated interferon, adefovir or the early introduction of antiretroviral therapy. Close monitoring is necessary to detect treatment failure or hepatic flares, such as immune reconstitution disease. Further studies of newer anti-HBV agents in individuals HIV/HBV coinfection may advance treatment of this important condition.

  4. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L.

    1991-01-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  5. The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection.

    Science.gov (United States)

    Liu, Xiao-Yu; Li, Huan; Zhang, Wei

    2014-05-04

    It has been demonstrated that the lectin from Musa paradisiaca (BanLec-1) could inhibit the cellular entry of human immunodeficiency virus (HIV). In order to evaluate its effects on tobacco mosaic virus (TMV), the banlec-1 gene was cloned and transformed into Escherichia coli and tobacco, respectively. Recombinant BanLec-1 showed metal ions dependence, and higher thermal and pH stability. Overexpression of banlec-1 in tobacco resulted in decreased leaf size, and higher resistance to TMV infection, which includes reduced TMV cellular entry, more stable chlorophyll contents, and enhanced antioxidant enzymes. BanLec-1 was found to bind directly to the TMV capsid protein in vitro , and to inhibit TMV infection in a dose-dependent manner. In contrast to limited prevention in vivo , purified rBanLec-1 exhibited more significant effects on TMV infection in vitro . Taken together, our study indicated that BanLec-1 could prevent TMV infection in tobacco, probably through the interaction between BanLec-1 and TMV capsid protein.

  6. Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk.

  7. Stimulation of the human immunodeficiency virus type 1 enhancer by the human T-cell leukemia virus type I tax gene product involves the action of inducible cellular proteins.

    Science.gov (United States)

    Böhnlein, E; Siekevitz, M; Ballard, D W; Lowenthal, J W; Rimsky, L; Bogérd, H; Hoffman, J; Wano, Y; Franza, B R; Greene, W C

    1989-04-01

    The human immunodeficiency virus type 1 (HIV-1) preferentially infects CD4+ T lymphocytes and may exist as a latent provirus within these cells for extended periods. The transition to a productive retroviral infection results in T-cell death and clinically may lead to the acquired immune deficiency syndrome. Accelerated production of infectious HIV-1 virions appears to be closely linked to a heightened state of T-cell activation. The transactivator (Tax) protein of the type I human T-cell leukemia virus (HTLV-I) can produce such an activated T-cell phenotype and augments activity of the HIV-1 long terminal repeat. One Tax-responsive region within the HIV-1 long terminal repeat has been mapped to a locus composed of two 10-base-pair direct repeats sharing homology with the binding site for the eucaryotic transcription factor NF-kappaB (GGGACTTTCC). Tax-expressing Jurkat T cells contain one or more inducible cellular proteins that specifically associate with the HIV-1 enhancer at these binding sites. Microscale DNA affinity precipitation assays identified a Tax-inducible 86-kilodalton protein, HIVEN86A, as one of these HIV-1 enhancer-binding factors. The interaction of HIVEN86A, and presumably other cellular proteins, with the HIV-1 enhancer appears functionally important as oligonucleotides corresponding to this enhancer were sufficient to impart Tax inducibility to an unresponsive heterologous promoter. These findings suggest that the Tax-inducible cellular protein HIVEN86A plays an important role in the transcriptional activation of the HIV-1 enhancer. These specific protein-DNA interactions may also be important for the transition of HIV-1 from a latent to a productive mode of infection. Furthermore, these findings highlight an intriguing biological interplay between HTLV-1 and HIV-1 through a cellular transcriptional pathway that is normally involved in T-cell activation and growth.

  8. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    International Nuclear Information System (INIS)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  9. Research On Human Immunodeficiency Virus (HIV) In Malawi: The ...

    African Journals Online (AJOL)

    The Johns Hopkins University- Ministry of Health OHU-MOH) Project ... HIV infection among low ... in Africa were infected with the virus; these women gave ... information and medical, repro(l1K;Y~ ;~d pregnancy ... white blood cell differentials were done with a ... Malawi are at increased risk during the postnatal period.

  10. Cyclic GMP-AMP Synthase is an Innate Immune Sensor of HIV and Other Retroviruses

    OpenAIRE

    Gao, Daxing; Wu, Jiaxi; Wu, You-Tong; Du, Fenghe; Aroh, Chukwuemika; Yan, Nan; Sun, Lijun; Chen, Zhijian J.

    2013-01-01

    Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic-GMP-AMP (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type-I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse transcribed HIV DNA triggers the...

  11. Physics of HIV

    Science.gov (United States)

    Tristram-Nagle, Stephanie

    2018-05-01

    This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics of various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse x-ray scattering, which yields the bending modulus, K C, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: (1) infection, (2) Tat membrane transport, and (3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): (1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, (2) cholesterol recognition amino acid consensus sequence, on the membrane proximal external region near the membrane-spanning domain, and (3) lentiviral lytic peptide 2 on the cytoplasmic C-terminal tail. For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides’ effects.

  12. Preventing HIV infection without targeting the virus: how reducing HIV target cells at the genital tract is a new approach to HIV prevention.

    Science.gov (United States)

    Lajoie, Julie; Mwangi, Lucy; Fowke, Keith R

    2017-09-12

    For over three decades, HIV infection has had a tremendous impact on the lives of individuals and public health. Microbicides and vaccines studies have shown that immune activation at the genital tract is a risk factor for HIV infection. Furthermore, lower level of immune activation, or what we call immune quiescence, has been associated with a lower risk of HIV acquisition. This unique phenotype is observed in highly-exposed seronegative individuals from different populations including female sex workers from the Pumwani cohort in Nairobi, Kenya. Here, we review the link between immune activation and susceptibility to HIV infection. We also describe a new concept in prevention where, instead of targeting the virus, we modulate the host immune system to resist HIV infection. Mimicking the immune quiescence phenotype might become a new strategy in the toolbox of biomedical methods to prevent HIV infection. Clinical trial registration on clinicaltrial.gov: #NCT02079077.

  13. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    Science.gov (United States)

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  14. Identification of full-length transmitted/founder viruses and their progeny in primary HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Bhattacharya, T [Los Alamos National Laboratory

    2009-01-01

    Identification of transmitted/founder virus genomes and their progeny by is a novel strategy for probing the molecular basis of HIV-1 transmission and for evaluating the genetic imprint of viral and host factors that act to constrain or facilitate virus replication. Here, we show in a cohort of twelve acutely infected subjects (9 clade B; 3 clade C), that complete genomic sequences of transmitted/founder viruses could be inferred using single genome amplification of plasma viral RNA, direct amplicon sequencing, and a model of random virus evolution. This allowed for the precise identification, chemical synthesis, molecular cloning, and biological analysis of those viruses actually responsible for productive clinical infection and for a comprehensive mapping of sequential viral genomes and proteomes for mutations that are necessary or incidental to the establishment of HIV-1 persistence. Transmitted/founder viruses were CD4 and CCR5 tropic, replicated preferentially in activated primary T-Iymphocytes but not monocyte-derived macrophages, and were effectively shielded from most heterologous or broadly neutralizing antibodies. By 3 months of infection, the evolving viral quasispecies in three subjects showed mutational fixation at only 2-5 discreet genomic loci. By 6-12 months, mutational fixation was evident at 18-27 genomic loci. Some, but not all, of these mutations were attributable to virus escape from cytotoxic Tlymphocytes or neutralizing antibodies, suggesting that other viral or host factors may influence early HIV -1 fitness.

  15. HIV antibodies for treatment of HIV infection.

    Science.gov (United States)

    Margolis, David M; Koup, Richard A; Ferrari, Guido

    2017-01-01

    The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However, antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Furthermore, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small-molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  16. HIV Structural Database

    Science.gov (United States)

    SRD 102 HIV Structural Database (Web, free access)   The HIV Protease Structural Database is an archive of experimentally determined 3-D structures of Human Immunodeficiency Virus 1 (HIV-1), Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) Proteases and their complexes with inhibitors or products of substrate cleavage.

  17. Serum neutralizing activities from a Beijing homosexual male cohort infected with different subtypes of HIV-1 in China.

    Directory of Open Access Journals (Sweden)

    Mingshun Zhang

    Full Text Available Protective antibodies play a critical role in an effective HIV vaccine; however, eliciting antibodies to block infection by viruses from diverse genetic subtypes remains a major challenge. As the world's most populous country, China has been under the threat of at least three major subtypes of circulating HIV-1 viruses. Understanding the cross reactivity and specificities of serum antibody responses that mediate broad neutralization of the virus in HIV-1 infected Chinese patients will provide valuable information for the design of vaccines to prevent HIV-1 transmission in China. Sera from a cohort of homosexual men, who have been managed by a major HIV clinical center in Beijing, China, were analyzed for cross-sectional neutralizing activities against pseudotyped viruses expressing Env antigens of the major subtype viruses (AE, BC and B subtypes circulating in China. Neutralizing activities in infected patients' blood were most capable of neutralizing viruses in the homologous subtype; however, a subset of blood samples was able to achieve broad neutralizing activities across different subtypes. Such cross neutralizing activity took 1-2 years to develop and CD4 binding site antibodies were critical components in these blood samples. Our study confirmed the presence of broadly neutralizing sera in China's HIV-1 patient population. Understanding the specificity and breadth of these neutralizing activities can guide efforts for the development of HIV vaccines against major HIV-1 viruses in China.

  18. Characterization of the virus-cell interactions by HIV-1 subtype C variants from an antiretroviral therapy-naïve subject with baseline resistance to the CCR5 inhibitor maraviroc

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard

    The CCR5 inhibitor maraviroc (MVC) exerts its antiviral activity by binding to- and altering the conformation of the CCR5 extracellular loops such that HIV-1 gp120 no longer recognizes CCR5. Viruses that have become resistant to MVC through long-term in vitro culture, or from treatment failure...... in vivo, can use the MVCbound form of CCR5 for HIV-1 entry via adaptive alterations in gp120. Partial baseline resistance to another CCR5 inhibitor through this mechanism, AD101, has been noted recently in one subject (1). Here, we identified and characterized envelope (Env) clones with baseline...

  19. L-Chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro

    International Nuclear Information System (INIS)

    Reinke, Ryan A.; Lee, Deborah J.; McDougall, Brenda R.; King, Peter J.; Victoria, Joseph; Mao Yingqun; Lei Xiangyang; Reinecke, Manfred G.; Robinson, W. Edward

    2004-01-01

    The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. L-Chicoric acid (L-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), L-CA inhibits integration at concentrations from 500 nM to 10 μM but also inhibits entry at concentrations above 1 μM. Using recombinant HIV IN, steady-state kinetic analyses with L-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of L-CA, was successively washed. Inhibition of IN diminished, demonstrating that L-CA was reversibly bound to the protein. These data demonstrate that L-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, L-CA likely interacts with amino acids other than those which bind substrate

  20. Human pegivirus (HPgV) infection in Ghanaians co-infected with human immunodeficiency virus (HIV) and hepatitis B virus (HBV).

    Science.gov (United States)

    N'Guessan, Kombo F; Boyce, Ceejay; Kwara, Awewura; Archampong, Timothy N A; Lartey, Margaret; Sagoe, Kwamena W; Kenu, Ernest; Obo-Akwa, Adjoa; Blackard, Jason T

    2018-03-17

    Human pegivirus (HPgV) is a positive single-stranded RNA virus in the Flaviviridae family. Phylogenetic analysis reveals the presence of multiple HPgV genotypes with distinct geographic locations. HPgV is of interest because of its potential beneficial impact on HIV disease progression. Despite this, the effects of HPgV in the context of other viral infections, such as hepatitis B virus (HBV), are poorly understood, and data from resource-limited settings are scarce. Therefore, we conducted a cross-sectional analysis of HPgV in HIV/HBV co-infected patients in Ghana. Sera from 100 HIV/HBV co-infected individuals were evaluated for HPgV RNA, and the genotype determined by sequencing the 5' untranslated region. HPgV RNA was detected in 27 samples (27%). Of these, 26 were genotyped successfully with 23 belonging to HPgV genotype 1 and 3 belonging to HPgV genotype 2. The presence of HPgV RNA had no statistically significant impact on CD4 cell count or HBV DNA titers in the HIV/HBV co-infected patients. However, there was a trend towards decreased HBV DNA levels in HPgV RNA-positive patients with CD4 cell count HBV disease among HIV/HBV co-infected patients was minimal. However, decreased HBV DNA levels in HPgV RNA-positive patients with low CD4 cell counts highlight the need for prospective studies of HPgV in HIV and hepatitis co-infected patients, especially in those with advanced HIV disease, to study further the effects of HPgV on liver disease.

  1. Association of a 3' untranslated region polymorphism in proprotein convertase subtilisin/kexin type 9 with HIV viral load and CD4+ levels in HIV/hepatitis C virus coinfected women.

    Science.gov (United States)

    Kuniholm, Mark H; Liang, Hua; Anastos, Kathryn; Gustafson, Deborah; Kassaye, Seble; Nowicki, Marek; Sha, Beverly E; Pawlowski, Emilia J; Gange, Stephen J; Aouizerat, Bradley E; Pushkarsky, Tatiana; Bukrinsky, Michael I; Prasad, Vinayaka R

    2017-11-28

    To assess variation in genes that regulate cholesterol metabolism in relation to the natural history of HIV infection. Cross-sectional and longitudinal analysis of the Women's Interagency HIV Study. We examined 2050 single nucleotide polymorphisms (SNPs) in 19 genes known to regulate cholesterol metabolism in relation to HIV viral load and CD4 T-cell levels in a multiracial cohort of 1066 antiretroviral therapy-naive women. Six SNPs were associated with both HIV viral load and CD4 T-cell levels at a false discovery rate of 0.01. Bioinformatics tools did not predict functional activity for five SNPs, located in introns of nuclear receptor corepressor 2, retinoid X receptor alpha (RXRA), and tetratricopeptide repeat domain 39B. Rs17111557 located in the 3' untranslated region of proprotein convertase subtilisin/kexin type 9 (PCSK9) putatively affects binding of hsa-miR-548t-5p and hsa-miR-4796-3p, which could regulate PCSK9 expression levels. Interrogation of rs17111557 revealed stronger associations in the subset of women with HIV/hepatitis C virus (HCV) coinfection (n = 408, 38% of women). Rs17111557 was also associated with low-density lipoprotein cholesterol levels in HIV/HCV coinfected (β: -10.4; 95% confidence interval: -17.9, -2.9; P = 0.007), but not in HIV monoinfected (β:1.2; 95% confidence interval: -6.3, 8.6; P = 0.76) women in adjusted analysis. PCSK9 polymorphism may affect HIV pathogenesis, particularly in HIV/HCV coinfected women. A likely mechanism for this effect is PCSK9-mediated regulation of cholesterol metabolism. Replication in independent cohorts is needed to clarify the generalizability of the observed associations.

  2. Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2

    Science.gov (United States)

    2010-01-01

    Background Platelets are associated with HIV in the blood of infected individuals and might modulate viral dissemination, particularly if the virus is directly transmitted into the bloodstream. The C-type lectin DC-SIGN and the novel HIV attachment factor CLEC-2 are expressed by platelets and facilitate HIV transmission from platelets to T-cells. Here, we studied the molecular mechanisms behind CLEC-2-mediated HIV-1 transmission. Results Binding studies with soluble proteins indicated that CLEC-2, in contrast to DC-SIGN, does not recognize the viral envelope protein, but a cellular factor expressed on kidney-derived 293T cells. Subsequent analyses revealed that the cellular mucin-like membranous glycoprotein podoplanin, a CLEC-2 ligand, was expressed on 293T cells and incorporated into virions released from these cells. Knock-down of podoplanin in 293T cells by shRNA showed that virion incorporation of podoplanin was required for efficient CLEC-2-dependent HIV-1 interactions with cell lines and platelets. Flow cytometry revealed no evidence for podoplanin expression on viable T-cells and peripheral blood mononuclear cells (PBMC). Podoplanin was also not detected on HIV-1 infected T-cells. However, apoptotic bystander cells in HIV-1 infected cultures reacted with anti-podoplanin antibodies, and similar results were obtained upon induction of apoptosis in a cell line and in PBMCs suggesting an unexpected link between apoptosis and podoplanin expression. Despite the absence of detectable podoplanin expression, HIV-1 produced in PBMC was transmitted to T-cells in a CLEC-2-dependent manner, indicating that T-cells might express an as yet unidentified CLEC-2 ligand. Conclusions Virion incorporation of podoplanin mediates CLEC-2 interactions of HIV-1 derived from 293T cells, while incorporation of a different cellular factor seems to be responsible for CLEC-2-dependent capture of PBMC-derived viruses. Furthermore, evidence was obtained that podoplanin expression is

  3. Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2

    Directory of Open Access Journals (Sweden)

    Münch Jan

    2010-05-01

    Full Text Available Abstract Background Platelets are associated with HIV in the blood of infected individuals and might modulate viral dissemination, particularly if the virus is directly transmitted into the bloodstream. The C-type lectin DC-SIGN and the novel HIV attachment factor CLEC-2 are expressed by platelets and facilitate HIV transmission from platelets to T-cells. Here, we studied the molecular mechanisms behind CLEC-2-mediated HIV-1 transmission. Results Binding studies with soluble proteins indicated that CLEC-2, in contrast to DC-SIGN, does not recognize the viral envelope protein, but a cellular factor expressed on kidney-derived 293T cells. Subsequent analyses revealed that the cellular mucin-like membranous glycoprotein podoplanin, a CLEC-2 ligand, was expressed on 293T cells and incorporated into virions released from these cells. Knock-down of podoplanin in 293T cells by shRNA showed that virion incorporation of podoplanin was required for efficient CLEC-2-dependent HIV-1 interactions with cell lines and platelets. Flow cytometry revealed no evidence for podoplanin expression on viable T-cells and peripheral blood mononuclear cells (PBMC. Podoplanin was also not detected on HIV-1 infected T-cells. However, apoptotic bystander cells in HIV-1 infected cultures reacted with anti-podoplanin antibodies, and similar results were obtained upon induction of apoptosis in a cell line and in PBMCs suggesting an unexpected link between apoptosis and podoplanin expression. Despite the absence of detectable podoplanin expression, HIV-1 produced in PBMC was transmitted to T-cells in a CLEC-2-dependent manner, indicating that T-cells might express an as yet unidentified CLEC-2 ligand. Conclusions Virion incorporation of podoplanin mediates CLEC-2 interactions of HIV-1 derived from 293T cells, while incorporation of a different cellular factor seems to be responsible for CLEC-2-dependent capture of PBMC-derived viruses. Furthermore, evidence was obtained that

  4. Effect of hepatitis C virus on the central nervous system of HIV-infected individuals

    Directory of Open Access Journals (Sweden)

    Forton D

    2012-11-01

    Full Text Available Markus Gess, Daniel FortonDepartment of Gastroenterology and Hepatology, St George’s University of London, London, UKAbstract: Infection with the human immunodeficiency virus (HIV is associated with a spectrum of neuropsychiatric manifestations ranging from asymptomatic cognitive impairment, detectable only by sensitive neurocognitive tests, to overt HIV-associated dementia. Highly active antiretroviral therapy has led to significant reductions in the incidence of severe HIV-associated dementia. However, the overall prevalence of milder HIV-associated cognitive disorders appears to be increasing as HIV-infected subjects live longer in the era of combined antiretroviral treatments. Chronic hepatitis C virus (HCV infection is also associated with neuropsychological symptoms and impaired cognitive performance in some patients, and recent evidence suggests that these central nervous system (CNS symptoms may be caused by HCV entry into the brain via endothelial infection. Similarly to the neuropathological processes in HIV infection, microglial activation in HCV infected subjects may underlie the CNS metabolic abnormalities and impaired cognitive performance that have been described in studies of HCV-infected cohorts. A significant proportion of HIV-infected subjects are coinfected with HCV, but the impact and clinical importance of coinfection on cognitive function has only been addressed in a small number of research studies. There is some evidence that coinfection may adversely affect neurocognitive function; however, studies published thus far are limited by a number of confounding factors and small sample sizes. This article aims to review the current evidence examining neurocognitive function in HIV- and HCV-monoinfection and further critically discusses previous studies that have explored the impact of coinfection with HCV on CNS function of HIV-infected cohorts. It is clear that, as the population of HIV-infected individuals ages and

  5. Tight regulation of the Epstein-Barr virus setpoint: interindividual differences in Epstein-Barr virus DNA load are conserved after HIV infection

    NARCIS (Netherlands)

    Piriou, Erwan; van Dort, Karel; Otto, Sigrid; van Oers, Marinus H. J.; van Baarle, Debbie

    2008-01-01

    Healthy individuals carry a constant number of Epstein-Barr virus-infected B cells in the peripheral blood over time. Here, we show that interindividual differences in Epstein-Barr virus DNA levels are maintained after HIV infection, providing evidence for the existence of an individual Epstein-Barr

  6. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    Science.gov (United States)

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. All-Round Manipulation of the Actin Cytoskeleton by HIV.

    Science.gov (United States)

    Ospina Stella, Alberto; Turville, Stuart

    2018-02-05

    While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.

  8. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Ishida, Elise; Zhou, Tongqing; Griesman, Trevor; Sheng, Zizhang; Wu, Fan; Doria-Rose, Nicole A.; Zhang, Baoshan; McKee, Krisha; O’Dell, Sijy; Chuang, Gwo-Yu; Druz, Aliaksandr; Georgiev, Ivelin S.; Schramm, Chaim A.; Zheng, Anqi; Joyce, M.  Gordon; Asokan, Mangaiarkarasi; Ransier, Amy; Darko, Sam; Migueles, Stephen A.; Bailer, Robert T.; Louder, Mark K.; Alam, S.  Munir; Parks, Robert; Kelsoe, Garnett; Von Holle, Tarra; Haynes, Barton F.; Douek, Daniel C.; Hirsch, Vanessa; Seaman, Michael S.; Shapiro, Lawrence; Mascola, John R.; Kwong, Peter D.; Connors, Mark

    2016-11-01

    Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.

  9. Epidemiology of infections with intestinal parasites and human immunodeficiency virus (HIV) among sugar-estate residents in Ethiopia

    NARCIS (Netherlands)

    Fontanet, A. L.; Sahlu, T.; Rinke de Wit, T.; Messele, T.; Masho, W.; Woldemichael, T.; Yeneneh, H.; Coutinho, R. A.

    2000-01-01

    Intestinal parasitic infections could play an important role in the progression of infection with human immunodeficiency virus (HIV), by further disturbing the immune system whilst it is already engaged in the fight against HIV. HIV and intestinal parasitic infections were investigated in 1239,

  10. Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter

    International Nuclear Information System (INIS)

    Dahabieh, Matthew S.; Ooms, Marcel; Malcolm, Tom; Simon, Viviana; Sadowski, Ivan

    2011-01-01

    Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutations in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.

  11. Drug-binding ability of human serum albumin at children with chronic virus hepatitis radiochemical definition method

    International Nuclear Information System (INIS)

    Kim, A.A.; Dadakhanov, J.A.; Djuraeva, G.T.; Shukurov, B.V.; Mavlyanov, I.R.

    2006-01-01

    Full text: The chronic virus hepatitis produces numerous abnormalities of liver function. The viruses of B, C, D, F and G hepatitis possess the ability to cause chronically proceeding diseases. Earlier we have found that binding ability of serum albumin at patients with acute forms of virus hepatitis is authentically reduced in comparison with the given parameters of control group. At an acute virus hepatitis B with middle severity the reducing of binding ability of serum albumin was observed at 70 % of patients. At an acute virus hepatitis A the reduce of binding ability of serum albumin is less expressed than at acute virus hepatitis B. At of chronic virus intoxication in human organism there is a formation and accumulation of toxic compounds in the excessive concentrations, which are not inherent to a normal metabolism. One of universal mechanisms of reaction of an organism on the increasing concentration of metabolism products is formation of complexes of various compounds with blood plasma proteins. The formation in an organism of endo- and exotoxins excessive concentrations results in blocking the binding centers of albumin molecule that causes the change of its complexing ability. The purpose of the present research: investigation of binding ability of serum albumin with use of radiochemical method at children with a chronic virus hepatitis B and C. Materials and methods. Under clinical observation there were 52 children in the age from 3 till 14 years. From them at 32 the chronic virus hepatitis B was confirmed, at 20 chronic virus - hepatitis C. Etiological diagnostics was carried out by definition of specific markers of a hepatitis B and C method IFA and PCR. Binding ability of serum albumin was defined by radiochemical method with use of the tritium labeled no-spa (drotaverine hydrochloride). The control group consists from 10 conditionally health children of similar age. Results and their discussion. The results of investigation have shown, that at a

  12. High throughput generation and characterization of replication-competent clade C transmitter-founder simian human immunodeficiency viruses.

    Directory of Open Access Journals (Sweden)

    Debashis Dutta

    Full Text Available Traditional restriction endonuclease-based cloning has been routinely used to generate replication-competent simian-human immunodeficiency viruses (SHIV and simian tropic HIV (stHIV. This approach requires the existence of suitable restriction sites or the introduction of nucleotide changes to create them. Here, using an In-Fusion cloning technique that involves homologous recombination, we generated SHIVs and stHIVs based on epidemiologically linked clade C transmitted/founder HIV molecular clones from Zambia. Replacing vif from these HIV molecular clones with vif of SIVmac239 resulted in chimeric genomes used to generate infectious stHIV viruses. Likewise, exchanging HIV env genes and introducing N375 mutations to enhance macaque CD4 binding site and cloned into a SHIVAD8-EO backbone. The generated SHIVs and stHIV were infectious in TZMbl and ZB5 cells, as well as macaque PBMCs. Therefore, this method can replace traditional methods and be a valuable tool for the rapid generation and testing of molecular clones of stHIV and SHIV based on primary clinical isolates will be valuable to generate rapid novel challenge viruses for HIV vaccine/cure studies.

  13. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation

    DEFF Research Database (Denmark)

    Yusim, K.; Kesmir, Can; Gaschen, B.

    2002-01-01

    The human cytotoxic T-lymphocyte (CTL) response to human immunodeficiency virus type 1 (HIV-1) has been intensely studied, and hundreds of CTL epitopes have been experimentally defined, published, and compiled in the HIV Molecular Immunology Database. Maps of CTL epitopes on HIV-1 protein sequenc...

  14. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  15. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  16. Neutralization of X4- and R5-tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins

    Directory of Open Access Journals (Sweden)

    Schwalbe Birco

    2010-06-01

    Full Text Available Abstract Background Myeloperoxidase (MPO, an important element of the microbicidal activity of neutrophils, generates hypochlorous acid (HOCl from H2O2 and chloride, which is released into body fluids. Besides its direct microbicidal activity, HOCl can react with amino acid residues and HOCl-modified proteins can be detected in vivo. Findings This report is based on binding studies of HOCl-modified serum albumins to HIV-1 gp120 and three different neutralization assays using infectious virus. The binding studies were carried out by surface plasmon resonance spectroscopy and by standard ELISA techniques. Virus neutralization assays were carried out using HIV-1 NL4-3 virus and recombinant strains with CXCR4 and CCR5 coreceptor usage. Viral infection was monitored by a standard p24 or X-gal staining assay. Our data demonstrate that HOCl-modified mouse-, bovine- and human serum albumins all bind to the HIV-1 NL4-3 gp120 (LAV glycoprotein in contrast to non-modified albumin. Binding of HOCl-modified albumin to gp120 correlated to the blockade of CD4 as well as that of V3 loop specific monoclonal antibody binding. In neutralization experiments, HOCl-modified serum albumins inhibited replication and syncytium formation of the X4- and R5-tropic NL4-3 isolates in a dose dependent manner. Conclusions Our data indicate that HOCl-modified serum albumin veils the binding site for CD4 and the V3 loop on gp120. Such masking of the viral gp120/gp41 envelope complex might be a simple but promising strategy to inactivate HIV-1 and therefore prevent infection when HOCl-modified serum albumin is applied, for example, as a topical microbicide.

  17. The Ebola virus VP35 protein is a suppressor of RNA silencing.

    Directory of Open Access Journals (Sweden)

    Joost Haasnoot

    2007-06-01

    Full Text Available RNA silencing or interference (RNAi is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.

  18. Coinfection with Hepatitis B and C Viruses among HIV Positive ...

    African Journals Online (AJOL)

    Background: Hepatitis B and C viruses coinfection in HIV positive pregnant women is a common public health problem and recognized worldwide. The consequences of this problem in our poor resource setting with the risk of mother to child transmission is obvious with increased morbidity and mortality in our environment.

  19. Direct and dynamic detection of HIV-1 in living cells.

    Directory of Open Access Journals (Sweden)

    Jonas Helma

    Full Text Available In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research.

  20. epidemiology of hepatitis b and hepatitis c virus infections among hiv

    African Journals Online (AJOL)

    boaz

    Hepatitis B and hepatitis C virus infection are common in Nigeria; where they are a major cause of both acute and chronic .... for HIV counseling and testing on a daily basis. .... The Genetic and Molecular ... Among Patients with Hemophilia in.

  1. The initial antibody response to HIV-1: induction of ineffective early B cell responses against GP41 by the transmitted/founder virus

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Leslie L [Los Alamos National Laboratory; Perelson, Alan [Los Alamos National Laboratory

    2008-01-01

    A window of opportunity for immune responses to extinguish HIV -1 exists from the moment of transmission through establishment of the latent pool of HIV -I-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus) but, to date, this period has been logistically difficult to analyze. Studies in non-human primates challenged with chimeric simianhuman immunodeficiency virus have shown that neutralizing antibodies, when present at the time of infection, can prevent virus infection.

  2. Infection with Hepatitis C Virus among HIV-Infected Pregnant Women in Thailand

    Directory of Open Access Journals (Sweden)

    Denise J. Jamieson

    2008-01-01

    Full Text Available Objective. The purpose of this study was to describe the epidemiology of coinfection with hepatitis C virus (HCV and HIV among a cohort of pregnant Thai women. Methods. Samples from 1771 pregnant women enrolled in three vertical transmission of HIV studies in Bangkok, Thailand, were tested for HCV. Results. Among HIV-infected pregnant women, HCV seroprevelance was 3.8% and the active HCV infection rate was 3.0%. Among HIV-uninfected pregnant women, 0.3% were HCV-infected. Intravenous drug use by the woman was the factor most strongly associated with HCV seropositivity. Among 48 infants tested for HCV who were born to HIV/HCV coinfected women, two infants were HCV infected for an HCV transmission rate of 4.2% (95% 0.51–14.25%. Conclusions. HCV seroprevalence and perinatal transmission rates were low among this Thai cohort of HIV-infected pregnant women.

  3. 76 FR 58517 - Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus (HIV...

    Science.gov (United States)

    2011-09-21

    ...-2011-0011] Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus... public comment on the draft Public Health Service Guideline for Reducing Transmission of Human..., Attn: Public Health Service Guideline for Reducing Transmission of Human Immunodeficiency Virus (HIV...

  4. Increased incidence of cancer observed in HIV/hepatitis C virus-coinfected patients versus HIV-monoinfected.

    Science.gov (United States)

    Meijide, Héctor; Pértega, Sonia; Rodríguez-Osorio, Iria; Castro-Iglesias, Ángeles; Baliñas, Josefa; Rodríguez-Martínez, Guillermo; Mena, Álvaro; Poveda, Eva

    2017-05-15

    Cancer is a growing problem in persons living with HIV infection (PLWH) and hepatitis C virus (HCV) coinfection could play an additional role in carcinogenesis. Herein, all cancers in an HIV-mono and HIV/HCV-coinfected cohort were evaluated and compared to identify any differences between these two populations. A retrospective cohort study was conducted including all cancers in PLWH between 1993 and 2014. Cancers were classified in two groups: AIDS-defining cancer (ADC) and non-AIDS-defining cancer (NADC). Cancer incidence rates were calculated and compared with that observed in the Spanish general population (GLOBOCAN, 2012), computing the standardized incidence ratios (SIRs). A competing risk approach was used to estimate the probability of cancer after HIV diagnosis. Cumulative incidence in HIV-monoinfected and HIV/HCV-coinfected patients was also compared using multivariable analysis. A total of 185 patients (117 HIV-monoinfected and 68 HIV/HCV) developed cancer in the 26 580 patient-years cohort, with an incidence rate of 696 cancers per 100 000 person-years, higher than in the general population (SIR = 3.8). The incidence rate of NADC in HIV/HCV-coinfected patients was 415.0 (SIR = 3.4), significantly higher than in monoinfected (377.3; SIR = 1.8). After adjustments, HIV/HCV-coinfected patients had a higher cumulative incidence of NADC than HIV-monoinfected (adjusted hazard ratio = 1.80), even when excluding hepatocellular carcinomas (adjusted hazard ratio = 1.26). PLWH have a higher incidence of NADC than the general population and HCV-coinfection is associated with a higher incidence of NADC. These data justify the need for prevention strategies in these two populations and the importance of eradicating HCV.

  5. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effect (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of the

  6. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice.

    Science.gov (United States)

    Wu, Xilin; Guo, Jia; Niu, Mengyue; An, Minghui; Liu, Li; Wang, Hui; Jin, Xia; Zhang, Qi; Lam, Ka Shing; Wu, Tongjin; Wang, Hua; Wang, Qian; Du, Yanhua; Li, Jingjing; Cheng, Lin; Tang, Hang Ying; Shang, Hong; Zhang, Linqi; Zhou, Paul; Chen, Zhiwei

    2018-04-23

    The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.

  7. Current antiviral drugs and their analysis in biological materials - Part II: Antivirals against hepatitis and HIV viruses.

    Science.gov (United States)

    Nováková, Lucie; Pavlík, Jakub; Chrenková, Lucia; Martinec, Ondřej; Červený, Lukáš

    2018-01-05

    This review is a Part II of the series aiming to provide comprehensive overview of currently used antiviral drugs and to show modern approaches to their analysis. While in the Part I antivirals against herpes viruses and antivirals against respiratory viruses were addressed, this part concerns antivirals against hepatitis viruses (B and C) and human immunodeficiency virus (HIV). Many novel antivirals against hepatitis C virus (HCV) and HIV have been introduced into the clinical practice over the last decade. The recent broadening portfolio of these groups of antivirals is reflected in increasing number of developed analytical methods required to meet the needs of clinical terrain. Part II summarizes the mechanisms of action of antivirals against hepatitis B virus (HBV), HCV, and HIV, their use in clinical practice, and analytical methods for individual classes. It also provides expert opinion on state of art in the field of bioanalysis of these drugs. Analytical methods reflect novelty of these chemical structures and use by far the most current approaches, such as simple and high-throughput sample preparation and fast separation, often by means of UHPLC-MS/MS. Proper method validation based on requirements of bioanalytical guidelines is an inherent part of the developed methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A comparative study of human T-cell lymphotropic virus-associated myelopathy in HIV-positive and HIV-negative patients in KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Hoosain F. Paruk

    2017-12-01

    Full Text Available Background: KwaZulu-Natal is an endemic area for HIV and human T-cell lymphotropic virus (HTLV infection. The main neurological manifestation of HTLV is HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The effect of HIV co-infection in patients with HAM/TSP is not well documented. Aims: To determine the prevalence of HIV seropositivity in patients with HAM/TSP and compare the clinical, laboratory and radiological features of patients mono-infected with HTLV and those dually infected with HTLV and HIV. Methods: Adult patients referred to the Neurology Department at Inkosi Albert Luthuli Central Hospital in KwaZulu-Natal, South Africa, for the period 01 January 2004 to 31 December 2015 with a positive HTLV serology were identified from the National Health Laboratory Service database. A retrospective chart review was conducted to identify all patients who had a diagnosis of HAM/TSP and to record their HIV status. Clinical, laboratory and radiological data were compared for HIV-positive and HIV-negative patients. Results: A total of 52 patients with HAM/TSP were identified. HIV results were available in 44 patients of whom 23 (52% patients were HIV co-infected. Patients who were HIV-positive had a younger age of presentation compared to HIV-negative patients (median: 31 vs 50 years, p = 0.002. HIV-positive patients had a median duration of symptoms at presentation of 12 months compared to 16 months for HIV-negative patients, but the difference did not reach statistical significance (p = 0.082. The CD4 cell counts of HIV-positive patients were well preserved with a median count of 781 cells/µL. Conclusions: HIV co-infection is commonly seen in the setting of HAM/TSP in KwaZulu-Natal. An interaction between the viruses may accelerate the development of HAM/TSP, leading to a younger age of presentation. Co-infection may have treatment implications because of CD4 counts being preserved in these patients.

  9. Quality control assessment of human immunodeficiency virus type 2 (HIV-2) viral load quantification assays: results from an international collaboration on HIV-2 infection in 2006

    NARCIS (Netherlands)

    Damond, Florence; Benard, Antoine; Ruelle, Jean; Alabi, Abraham; Kupfer, Bernd; Gomes, Perpetua; Rodes, Berta; Albert, Jan; Böni, Jürg; Garson, Jeremy; Ferns, Bridget; Matheron, Sophie; Chene, Geneviève; Brun-Vezinet, Françoise; Goubau, Patrick; Campa, Pauline; Descamps, Diane; Simon, François; Taieb, Audrey; Autran, Brigitte; Cotten, Matt; Jaye, Assan; Peterson, Kevin; Rowland-Jones, Sarah; Rockstroh, Jürgen; Schwarze-Zander, Carolynne; de Wolf, Frank; van Sighem, Ard; Reiss, Peter; van der Loeff, Maarten Schim; Schutten, Martin; Camacho, Ricardo; Mansinho, Kamal; Antunes, Francisco; Luis, Franca; Valadas, Emilia; Toro, Carlos; Soriano, Vicente; Gyllensten, Katarina; Sonnerborg, Anders; Yilmaz, Aylin; Gisslén, Magnus; Calmy, Alexandra; Rickenbach, Martin; Pillay, Deenan; Tosswill, Jennifer; Anderson, Jane; Chadwick, David

    2008-01-01

    Human immunodeficiency virus type 2 (HIV-2) RNA quantification assays used in nine laboratories of the ACHI(E)V(2E) (A Collaboration on HIV-2 Infection) study group were evaluated. In a blinded experimental design, laboratories quantified three series of aliquots of an HIV-2 subtype A strain, each

  10. Gender inequality and domestic violence: implications for human immunodeficiency virus (HIV) prevention

    OpenAIRE

    Kaye, Dan K

    2004-01-01

    Domestic violence and human immunodeficiency virus (HIV) infection are problems of great public health worldwide, especially sub-Saharan Africa and much of the developing countries. This is due to their far reaching social, economic and public health consequences. The two problems have gender inequality and gender power imbalances as the driving force behind the “epidemics”. HIV infection is mainly acquired through heterosexual relations, which themselves are greatly influenced by socio-cultu...

  11. Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design.

    Directory of Open Access Journals (Sweden)

    Thomas S Peat

    Full Text Available A fragment-based screen against human immunodeficiency virus type 1 (HIV integrase led to a number of compounds that bound to the lens epithelium derived growth factor (LEDGF binding site of the integrase catalytic core domain. We determined the crystallographic structures of complexes of the HIV integrase catalytic core domain for 10 of these compounds and quantitated the binding by surface plasmon resonance. We demonstrate that the compounds inhibit the interaction of LEDGF with HIV integrase in a proximity AlphaScreen assay, an assay for the LEDGF enhancement of HIV integrase strand transfer and in a cell based assay. The compounds identified represent a potential framework for the development of a new series of HIV integrase inhibitors that do not bind to the catalytic site of the enzyme.

  12. The oral microbiome in human immunodeficiency virus (HIV)-positive individuals.

    Science.gov (United States)

    Kistler, James O; Arirachakaran, Pratanporn; Poovorawan, Yong; Dahlén, Gunnar; Wade, William G

    2015-09-01

    Human immunodeficiency virus (HIV) infection is associated with a range of oral conditions, and increased numbers of disease-associated microbial species have previously been found in HIV-positive subjects. The aim of this study was to use next-generation sequencing to compare the composition of the oral microbiome in HIV-positive and -negative individuals. Plaque and saliva were collected from 37 HIV-positive individuals and 37 HIV-negative individuals, and their bacterial composition determined by pyrosequencing of partial 16S rRNA genes. A total of 855,222 sequences were analysed. The number of species-level operational taxonomic units (OTUs) detected was significantly lower in the saliva of HIV-positive individuals (mean = 303.3) than in that of HIV-negative individuals (mean = 365.5) (P PCoA) based on community membership (Jaccard index) and structure (Yue and Clayton measure of dissimilarity) showed significant separation of plaque and saliva samples [analysis of molecular variance (AMOVA), P PCoA plots did not show any clear separation based on HIV status. However, AMOVA indicated that there was a significant difference in the community membership of saliva between HIV-positive and -negative groups (P = 0.001). Linear discriminant analysis effect size revealed an OTU identified as Haemophilus parainfluenzae to be significantly associated with HIV-positive individuals, whilst Streptococcus mitis/HOT473 was most significantly associated with HIV-negative individuals. In conclusion, this study has confirmed that the microbial composition of saliva and plaque is different. The oral microbiomes of HIV-positive and -negative individuals were found to be similar overall, although there were minor but significant differences in the composition of the salivary microbiota of the two groups.

  13. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat.

    Directory of Open Access Journals (Sweden)

    Lisa Muniz

    Full Text Available The human immunodeficiency virus 1 (HIV-1 transcriptional transactivator (Tat is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II. Tat recruits the host positive transcription elongation factor b (P-TEFb to the HIV-1 promoter through binding to the transactivator RNA (TAR at the 5'-end of the nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear RNA (snRNA and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP. Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved stem-bulge-stem motif of the 5'-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR.

  14. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors.

    Science.gov (United States)

    Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda

    2016-01-01

    Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs.

  15. A stochastic spatial model of HIV dynamics with an asymmetric battle between the virus and the immune system

    International Nuclear Information System (INIS)

    Lin Hai; Shuai, J W

    2010-01-01

    A stochastic spatial model based on the Monte Carlo approach is developed to study the dynamics of human immunodeficiency virus (HIV) infection. We aim to propose a more detailed and realistic simulation frame by incorporating many important features of HIV dynamics, which include infections, replications and mutations of viruses, antigen recognitions, activations and proliferations of lymphocytes, and diffusions, encounters and interactions of virions and lymphocytes. Our model successfully reproduces the three-phase pattern observed in HIV infection, and the simulation results for the time distribution from infection to AIDS onset are also in good agreement with the clinical data. The interactions of viruses and the immune system in all the three phases are investigated. We assess the relative importance of various immune system components in the acute phase. The dynamics of how the two important factors, namely the viral diversity and the asymmetric battle between HIV and the immune system, result in AIDS are investigated in detail with the model.

  16. Prevalence of hepatitis C and B virus among patients infected with HIV: a cross-sectional analysis of a large HIV care programme in Myanmar.

    Science.gov (United States)

    Zaw, Sai Ko Ko; Tun, Sai Thein Than; Thida, Aye; Aung, Thet Ko; Maung, Win; Shwe, Myint; Aye, Mar Mar; Clevenbergh, Phillipe

    2013-07-01

    Co-infection with the hepatitis C virus (HCV) and/or hepatitis B virus (HBV) influences the morbidity and mortality of patients with HIV. A cross sectional analysis was of 11,032 HIV-infected patients enrolled in the Integrated HIV Care Program from May 2005 to April 2012 and Epi-info 3.5 was used to determine the serological prevalence of chronic hepatitis B and hepatitis C. The mean ± standard deviation age of patients was 36 ± 8.4 years (adult cohort) and 7 ± 3 years (paediatric cohort). The sero prevalence of hepatitis B surface antigen, hepatitis C (anti HCV antibodies) and triple infection are 8.7%, 5.3% and 0.35%, respectively. Men who have sex with men are at the highest risk of being co-infected with hepatitis B while intravenous drug users are at the highest risk of being co-infected with hepatitis C. It is important to screen for hepatitis B and C in HIV infected people in order to provide quality care for HIV patients with co-infection.

  17. A SNAP-tagged derivative of HIV-1--a versatile tool to study virus-cell interactions.

    Directory of Open Access Journals (Sweden)

    Manon Eckhardt

    Full Text Available Fluorescently labeled human immunodeficiency virus (HIV derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches.Here we describe the construction and characterization of the HIV derivative HIV(SNAP, which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIV(SNAP represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence

  18. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses

    Directory of Open Access Journals (Sweden)

    Mazyar Etemadzade

    2016-11-01

    Full Text Available Objective: To evaluate the effect of novel sonochemical silver nanorods on HIV and herpes simplex virus type 1 (HSV-1 viruses in human cervical cancer HeLa cells. Methods: The formation of silver nanorods conjugated with sodium 2-mercaptoethane sulfonate (Ag-MES was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The antiviral activity of this Ag-MES was examined against HIV and HSV-1 virus replication. Results: The characterizations of Ag-MES and physiochemical structure were determined by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Approximately entire viral replication was inhibited by Ag-MES at 10 µmol/mL concentration. About 90% of HSV virions failed to replicate in the present of this concentration of nanorods. However, HIV showed more sensitivity to Ag-MES than HSV-1. Conclusions: According to the obtained data, the synthesized sonochemical silver nanorod in this study is a promising candidate for further drug discovery investigation.

  19. Towards novel therapeutics for HIV through fragment-based screening and drug design.

    Science.gov (United States)

    Tiefendbrunn, Theresa; Stout, C David

    2014-01-01

    Fragment-based drug discovery has been applied with varying levels of success to a number of proteins involved in the HIV (Human Immunodeficiency Virus) life cycle. Fragment-based approaches have led to the discovery of novel binding sites within protease, reverse transcriptase, integrase, and gp41. Novel compounds that bind to known pockets within CCR5 have also been identified via fragment screening, and a fragment-based approach to target the TAR-Tat interaction was explored. In the context of HIV-1 reverse transcriptase (RT), fragment-based approaches have yielded fragment hits with mid-μM activity in an in vitro activity assay, as well as fragment hits that are active against drug-resistant variants of RT. Fragment-based drug discovery is a powerful method to elucidate novel binding sites within proteins, and the method has had significant success in the context of HIV proteins.

  20. APOBEC3G-induced hypermutation of human immunodeficiency virus type-1 is typically a discrete "all or nothing" phenomenon

    DEFF Research Database (Denmark)

    Armitage, Andrew E; Deforche, Koen; Chang, Chih-Hao

    2012-01-01

    The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host-pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV...... can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub......-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates...

  1. Human immunodeficiency virus type-1 (HIV-1) genetic diversity and ...

    African Journals Online (AJOL)

    The presence of human immunodeficiency virus (HIV) type-1 diversity has an impact on vaccine efficacy and drug resistance. It is important to know the circulating genetic variants and associated drug-resistance mutations in the context of scale up of antiretroviral therapy (ART) in Nigeria. The objective of this study was to ...

  2. Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection

    International Nuclear Information System (INIS)

    Chu, J.J.H.; Ng, M.L.

    2003-01-01

    This study attempts to isolate and characterize West Nile virus-binding molecules on the plasma membrane of Vero and murine neuroblastoma cells that is responsible for virus entry. Pretreatment of Vero cells with proteases, glycosidases (endoglycosidase H, α-mannosidase), and sodium periodate strongly inhibited West Nile virus infection, whereas treatments with phospholipases and heparinases had no effect. The virus overlay protein blot detected a 105-kDa molecule on the plasma membrane extract of Vero and murine neuroblastoma cells that bind to WN virus. Treatment of the 105-kDa molecules with β-mercaptoethanol resulted in the virus binding to a series of lower molecular weight bands ranging from 30 to 40 kDa. The disruption of disulfide-linked subunits did not affect virus binding. N-linked sugars with mannose residues on the 105-kDa membrane proteins were found to be important in virus binding. Specific antibodies against the 105-kDa glycoprotein were highly effective in blocking virus entry. These results strongly supported the possibility that the 105-kDa protease-sensitive glycoprotein with complex N-linked sugars could be the putative receptor for WN virus

  3. Epstein-Barr virus and human immunodeficiency virus serological responses and viral burdens in HIV-infected patients treated with HAART

    Science.gov (United States)

    O'Sullivan, Cathal E.; Peng, RongSheng; Cole, Kelly Stefano; Montelaro, Ronald C.; Sturgeon, Timothy; Jenson, Hal B.; Ling, Paul D.; Butel, J. S. (Principal Investigator)

    2002-01-01

    Epstein-Barr virus (EBV) associated non-Hodgkin lymphoma is recognized as a complication of human immunodeficiency virus (HIV) infection. Little is known regarding the influence of highly active antiretroviral therapy (HAART) on the biology of EBV in this population. To characterize the EBV- and HIV-specific serological responses together with EBV DNA levels in a cohort of HIV-infected adults treated with HAART, a study was conducted to compare EBV and HIV serologies and EBV DNA copy number (DNAemia) over a 12-month period after the commencement of HAART. All patients were seropositive for EBV at baseline. Approximately 50% of patients had detectable EBV DNA at baseline, and 27/30 had detectable EBV DNA at some point over the follow-up period of 1 year. Changes in EBV DNA copy number over time for any individual were unpredictable. Significant increases in the levels of Epstein-Barr nuclear antigen (EBNA) and Epstein-Barr early antigen (EA) antibodies were demonstrated in the 17 patients who had a good response to HAART. Of 29 patients with paired samples tested, four-fold or greater increases in titers were detected for EA in 12/29 (41%), for EBNA in 7/29 (24%), for VCA-IgG in 4/29 (14%); four-fold decreases in titers were detected in 2/29 (7%) for EA and 12/29 (41%) for EBNA. A significant decline in the titer of anti-HIV antibodies was also demonstrated. It was concluded that patients with advanced HIV infection who respond to HAART have an increase in their EBV specific antibodies and a decrease in their HIV-specific antibodies. For the cohort overall, there was a transient increase in EBV DNA levels that had declined by 12 months. Copyright 2002 Wiley-Liss, Inc.

  4. Hepatitis E virus co-infection in HIV-infected patients in Foggia and Naples in southern Italy.

    Science.gov (United States)

    Scotto, Gaetano; Grisorio, Benvenuto; Filippini, Pietro; Ferrara, Sergio; Massa, Salvatore; Bulla, Fabio; Martini, Salvatore; Filippini, Alberico; Tartaglia, Alessandra; Lo Muzio, Lorenzo; Fazio, Vincenzina

    2015-01-01

    Hepatitis E virus (HEV) infection represents an emerging infection in developed countries and is thought to be a zoonotic infection. It has recently been described as a new causative agent of acute and chronic hepatitis in immunosuppressed subjects, including HIV-infected patients. The aim of this study was to assess the sero-virological prevalence of HEV in HIV patients and in the general population as control group. A prospective and observational cohort study was carried out in two hospitals in southern Italy. The seroprevalence of HEV was determined in a cohort of 959 subjects, 509 (53%) of whom were HIV-positive patients and 450 were from the general population. Serum samples were tested for anti-HEV antibodies; repeatedly positive results were confirmed by a Western blot assay. In positive patients HEV RNA and genotypes were also determined. A total of 46 (4.8%) of the 959 serum samples examined were reactive to anti-HEV Ig and confirmed by Western blotting. The prevalence of HEV antibodies (IgG and/or IgM) was 2.7% in the control group and 6.7% in HIV-infected patients. Anti-HEV IgM was found in 6/46 (13.0%) of the anti-HEV Ig-positive serum samples, in 5/34 HIV patients and in 1/12 of the general population. No HIV-infected patient presented chronic hepatitis with HEV infection alone. This study indicates a higher circulation of HEV in HIV-infected patients, whereas a low prevalence of HEV antibodies in the general Italian population was shown. Chronic hepatitis with HEV alone was absent, while it was present in subjects with HIV-HEV, co-infected with hepatitis B virus (HBV) and/or hepatitis C virus (HCV).

  5. Is a Pacific Coexistence Between Virus and Host the Unexploited Path That May Lead to an HIV Functional Cure?

    Directory of Open Access Journals (Sweden)

    Jonathan Fior

    2013-02-01

    Full Text Available The SupT1 cell line supports optimal HIV-1 replication, and prolonged in vitro replication in SupT1 cells renders the virus significantly less virulent. This raises the question of whether the infusion of SupT1 cells could be used as a cell-based therapy to induce a pacific coexistence between the HIV virus and its human host. In a recent study, I investigated this potential therapeutic strategy in vitro. The results suggested that this approach should be further explored in HIV-susceptible animal models. Such studies may lead to the development of a functional cure for HIV infection.

  6. Novel host restriction factors implicated in HIV-1 replication.

    Science.gov (United States)

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  7. Chronic Hepatitis B and C Virus Infection and Risk for Non-Hodgkin Lymphoma in HIV-Infected Patients

    DEFF Research Database (Denmark)

    Wang, Qing; De Luca, Andrea; Smith, Colette

    2017-01-01

    Background: Non-Hodgkin lymphoma (NHL) is the most common AIDS-defining condition in the era of antiretroviral therapy (ART). Whether chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection promote NHL in HIV-infected patients is unclear. Objective: To investigate whether chronic HBV...... and HCV infection are associated with increased incidence of NHL in HIV-infected patients. Design: Cohort study. Setting: 18 of 33 cohorts from the Collaboration of Observational HIV Epidemiological Research Europe (COHERE). Patients: HIV-infected patients with information on HBV surface antigen...... measurements and detectable HCV RNA, or a positive HCV antibody test result if HCV RNA measurements were not available. Measurements: Time-dependent Cox models to assess risk for NHL in treatment-naive patients and those initiating ART, with inverse probability weighting to control for informative censoring...

  8. Decision making under explicit risk is impaired in individuals with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Fujiwara, Esther; Tomlinson, Sara E; Purdon, Scot E; Gill, M John; Power, Christopher

    2015-01-01

    Human immunodeficiency virus (HIV) can affect the frontal-striatal brain regions, which are known to subserve decision-making functions. Previous studies have reported impaired decision making among HIV+ individuals using the Iowa Gambling Task, a task that assesses decision making under ambiguity. Previous study populations often had significant comorbidities such as past or present substance use disorders and/or hepatitis C virus coinfection, complicating conclusions about the unique contributions of HIV-infection to decision making. Decision making under explicit risk has very rarely been examined in HIV+ individuals and was tested here using the Game of Dice Task (GDT). We examined decision making under explicit risk in the GDT in 20 HIV+ individuals without substance use disorder or HCV coinfection, including a demographically matched healthy control group (n = 20). Groups were characterized on a standard neuropsychological test battery. For the HIV+ group, several disease-related parameters (viral load, current and nadir CD4 T-cell count) were included. Analyses focused on the GDT and spanned between-group (t-tests; analysis of covariance, ANCOVA) as well as within-group comparisons (Pearson/Spearman correlations). HIV+ individuals were impaired in the GDT, compared to healthy controls (p = .02). Their decision-making impairments were characterized by less advantageous choices and more random choice strategies, especially towards the end of the task. Deficits in the GDT in the HIV+ group were related to executive dysfunctions, slowed processing/motor speed, and current immune system status (CD4+ T-cell levels, ps Decision making under explicit risk in the GDT can occur in HIV-infected individuals without comorbidities. The correlational patterns may point to underlying fronto-subcortical dysfunctions in HIV+ individuals. The GDT provides a useful measure to assess risky decision making in this population and should be tested in larger studies.

  9. Knowledge and Attitudes toward HIV, Hepatitis B Virus, and Hepatitis C Virus Infection among Health-care Workers in Malawi.

    Science.gov (United States)

    Mtengezo, Jasintha; Lee, Haeok; Ngoma, Jonathan; Kim, Susie; Aronowitz, Teri; DeMarco, Rosanna; Shi, Ling

    2016-01-01

    The highest prevalence of HIV infection occurs in Sub-Saharan Africa and hepatitis B virus (HBV), and hepatitis C virus (HCV) prevalence are the second highest in Sub-Saharan Africa including Malawi. Health-care workers (HCWs) play an important role in the prevention of, response to, and management of these infectious diseases. There is, however, no published research about the level of knowledge and attitudes toward HIV, HBV, and HCV infection among Malawian HCWs. The purpose of this study was to explore and determine the knowledge of and attitudes toward HIV, HBV, and HCV among a targeted population of Malawian HCWs. A cross-sectional community-based participatory research with 194 HCWs was completed employing health survey method. The project was a collaborative effort between nursing faculties in the USA and Malawian. A one-way analysis of variance (ANOVA) with the Bonferroni adjustment for multiple comparisons was used to assess the differences in knowledge and attitude among three subgroups of HCWs. Of 194 of Malawian HCWs surveyed, 41% were support staff, 37% were nursing students, and 22% were health-care professionals. Both health-care professionals and support staff had high knowledge scores related to HIV/AIDS, and their attitudes were mainly positive. However, a series of one-way ANOVAs revealed significant differences in knowledge and attitude toward HIV/AIDs, HBV, and HCV among HCWs ( P attitudes toward hepatitis. This study highlights the ongoing need for reducing negative attitudes toward HIV, HBV, and HCV; and providing health education among HCWs, especially focusing on HBV and HCV prevention. The findings of the research project can be used to develop interventions addressing low HBV- and HCV-related knowledge and attitudes.

  10. HIV-specific CD8+ T cells: serial killers condemned to die?

    Science.gov (United States)

    Petrovas, Constantinos; Mueller, Yvonne M; Katsikis, Peter D

    2004-04-01

    An increasing body of evidence supports a key role for cytotoxic CD8+ T cells (CTL) in controlling HIV infection. Although a vigorous HIV-specific CD8+ T cell response is raised during the primary infection, these cells ultimately fail to control virus and prevent disease progression. The failure of CTL to control HIV infection has been attributed to a number of strategies HIV employs to evade the immune system. Recently, intrinsic defects in the CTL themselves have been proposed to contribute to the failure of CTL to control HIV. HIV-specific CD8+ T cells differ in their effector/memory phenotype from other virus-specific CD8+ T cells indicating that their differentiation status differs. This altered differentiation may affect effector functions as well as homing properties of these cells. Other studies have indicated that activation of HIV-specific CTL may be impaired and this contributes to their dysfunction. The effector function of these CTL may also be affected. There are conflicting reports about their ability to kill, whereas IFNgamma production does not appear to be impaired in these cells. In this review we focus on recent work indicating that apoptosis may be an important mechanism through which HIV evades the CTL response. In particular, HIV-specific CD8+ T cells are highly susceptible to CD95/Fas-induced apoptosis. This leads to the hypothesis that virus-specific cytotoxic T cells can be eliminated upon binding CD95L/FasL on HIV-infected cells. Understanding the intrinsic defects of CTL in HIV infection could lead to new therapeutic strategies and optimized vaccination protocols that enhance the HIV-specific cytotoxic response.

  11. Punica granatum (Pomegranate juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2004-10-01

    Full Text Available Abstract Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1 infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2 binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored.

  12. Liver-related death among HIV/hepatitis C virus-co-infected individuals

    DEFF Research Database (Denmark)

    Grint, Daniel; Peters, Lars; Rockstroh, Juergen K

    2015-01-01

    BACKGROUND: Potent, less toxic, directly acting antivirals (DAAs) for treatment of hepatitis C virus (HCV) infection promise to improve HCV cure rates among HIV/HCV-co-infected individuals. However, the costs of treatment will necessitate prioritization of those at greatest risk of liver-related ......BACKGROUND: Potent, less toxic, directly acting antivirals (DAAs) for treatment of hepatitis C virus (HCV) infection promise to improve HCV cure rates among HIV/HCV-co-infected individuals. However, the costs of treatment will necessitate prioritization of those at greatest risk of liver.......7-2.9), but substantial in those with F2/F3 and F4 fibrosis (sHR 10.3%, 95% CI 7.6-13.5; and sHR 14.0%, 95% CI 10.3-18.3, respectively). CONCLUSION: Treatment with DAAs should be prioritized for those with at least F2 fibrosis. Early initiation of cART with the aim of avoiding low CD4 cell counts should be considered...

  13. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.

    Directory of Open Access Journals (Sweden)

    Rick S Mitchell

    2004-08-01

    Full Text Available The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV, avian sarcoma-leukosis virus (ASLV, and murine leukemia virus (MLV. Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection.

  14. Antiretroviral Drugs and Risk of Chronic Alanine Aminotransferase Elevation in Human Immunodeficiency Virus (HIV)-Monoinfected Persons

    DEFF Research Database (Denmark)

    Kovari, Helen; Sabin, Caroline A; Ledergerber, Bruno

    2016-01-01

    Background.  Although human immunodeficiency virus (HIV)-positive persons on antiretroviral therapy (ART) frequently have chronic liver enzyme elevation (cLEE), the underlying cause is often unclear. Methods.  Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study participants without ...

  15. Hepatitis B virus surface antigen and anti-hepatitis C virus rapid tests underestimate hepatitis prevalence among HIV-infected patients.

    Science.gov (United States)

    Hønge, Bl; Jespersen, S; Medina, C; Té, Ds; da Silva, Zj; Ostergaard, L; Laursen, Al; Wejse, C; Krarup, H; Erikstrup, C

    2014-10-01

    In the case of coinfection with HIV and hepatitis B virus (HBV) and/or hepatitis C virus (HCV), hepatic disease progression is often accelerated, with higher rates of liver cirrhosis and liver-related mortality. We aimed to evaluate the performance of the rapid tests used routinely to detect HBV surface antigen (HBsAg) and anti-HCV among HIV-infected patients in Guinea-Bissau. Blood samples from HIV-infected patients in Guinea-Bissau were stored after testing for HBsAg and anti-HCV with rapid tests. Samples were subsequently re-tested for HBsAg and anti-HCV in Denmark. Two rapid tests were used in Guinea-Bissau: HBsAg Strip Ref 2034 (VEDA.LAB, Alençon, France; sensitivity 62.3%; specificity 99.2%) and HEPA-SCAN (Bhat Bio-Tech, Bangalore, India; sensitivity 57.1%; specificity 99.7%). In the two tests the ability to obtain the correct outcome depended on the antigen and antibody concentrations, respectively. Sex, age, CD4 cell count and antiretroviral therapy status did not differ between false negative and true positive samples in either of the tests. The study is limited by a low number of anti-HCV positive samples. New diagnostic rapid tests should always be evaluated in the setting in which they will be used before implementation. © 2014 British HIV Association.

  16. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

    DEFF Research Database (Denmark)

    Kloverpris, Henrik N; Karlsson, Ingrid; Thorn, Mette

    2009-01-01

    Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response......, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA......-gamma)-producing CD8(+) T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode...

  17. A Case of Respiratory Syncytial Virus Infection in an HIV-Positive Adult

    Directory of Open Access Journals (Sweden)

    Aakriti Gupta

    2012-01-01

    Full Text Available Respiratory syncytial virus (RSV is commonly known to cause an influenza-like illness. However, it can also cause more severe disease in young children and older adults comprising of organ transplant patients with immunocompromised status. Till date, only four cases of RSV infections have been reported in HIV-positive adults. We describe here a case of HIV-positive female with relatively preserved immune function who presented with RSV infection requiring ventilation and showed improvement after prompt treatment with intravenous immunoglobulin.

  18. The VNTR Polymorphism of the DC-SIGNR Gene and Susceptibility to HIV-1 Infection: A Meta-Analysis

    OpenAIRE

    Li, Hui; Yu, Xiao-Min; Wang, Jia-Xin; Hong, Ze-Hui; Tang, Nelson Leung-Sang

    2012-01-01

    BACKGROUND: Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin related (DC-SIGNR) can bind to the human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein and is thus important for the host-pathogen interaction in HIV-1 infection. Studies of the association between the variable number tandem repeat (VNTR) polymorphism of the DC-SIGNR gene and HIV-1 susceptibility have produced controversial results. METHODS AND FINDINGS: We conducted a meta-analysis of th...

  19. PREVALENCE OF HYPERTENSION, ANEMIA, ASYMPTOMATIC URINARY TRACT INFECTION, SYPHILIS, HIV AND HEPATITIS B VIRUS INFECTION

    Science.gov (United States)

    Deme, Chala; Edao, Beyene; Jaya, Gemedi; Tisiano, Gebre; Fano, Hayi; Alegria, Iñaki; Reyes, Francisco; Gorgolas, Miguel; Ramos, José M

    2016-09-01

    Antenatal care (ANC) is provided to prevent, diagnose early and treat pregnant women for a variety of diseases. The objective of this study was to determine the seroprevalences of syphilis, human immunodeficiency virus (HIV) and hepatitis B virus (HVB) and asymptomatic urinary tract infections and the prevalence of hypertension and anemia among pregnant women attending the antenatal clinic at Gambo Rural Hospital in southern Ethiopia. The following tests were conducted among study subjects: hemoglobin (Hgb) level, rapid plasma reagin (RPR) for syphilis, anti-HIV antibodies, hepatitis B surface antigen (HBsAg) and urine analysis. A total of 574 pregnant women were included in this study. The mean age of the participants was 25.7 (SD: 4.8) years old; 88.2% were living in urban areas and 11.8% in rural areas. Sixty-seven point two percent of participants began their attended care during the second trimester of their pregnancy. Overall, anemia (Hgb urinary tract infection (having ≥10 white blood cells /high power field in the urine) was present in 12.7% of participants (95% CI: 10.0-15.5). The RPR test was positive in two patients (0.3%; 95% CI: 0.1-1.3). The prevalences of positive test for HBsAg and HIV-1 were 2.3% (95% CI: 1.3-3.8) and 0.2% (95% CI: 0.03-0.9), respectively. No HIV-2 cases were detected. Our data show relatively low prevalences of anemia, hypertension, urinary tract infection, syphilis, HIV, and hepatitis B virus infections among study subjects at a rural antenatal clinic in southern Ethiopia.

  20. Increased Hepatitis E Virus Seroprevalence Correlates with Lower CD4+ Cell Counts in HIV-Infected Persons in Argentina.

    Directory of Open Access Journals (Sweden)

    José D Debes

    Full Text Available Hepatitis E virus (HEV is a single-stranded RNA virus that can cause hepatitis in an epidemic fashion. HEV usually causes asymptomatic or limited acute infections in immunocompetent individuals, whereas in immunosuppressed individuals such as transplant recipients, HEV can cause chronic infections. The risks and outcomes of HEV co-infection in patients infected with human immunodeficiency virus (HIV are poorly characterized. We used a third generation immunoassay to measure serum IgG antibodies specific for HEV in 204 HIV-infected individuals from Argentina and a control group of 433 HIV-negative individuals. We found 15 of 204 (7.3%, 95%CI 3.74-10.96% individuals in the HIV-positive group to have positive HEV IgG levels suggestive of previous infection, compared to 19 of 433 (4.4%, 95% CI 2.5-6.3% individuals in the HIV-negative control group (p = 0.12. Among HIV-positive individuals, those with HEV seropositivity had lower CD4 counts compared to those that were HEV seronegative (average CD4 count of 234 vs 422 mm3, p = 0.01, indicating that patients with lower CD4 counts were more likely to be HEV IgG positive. Moreover, HEV seropositivity in patients with CD4 counts 200 mm3 (p = 0.012. We found a positive PCR result for HEV in one individual. Our study found that increased seroprevalence of HEV IgG correlated with lower CD4 counts in HIV-infected patients in Argentina.

  1. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis

    Science.gov (United States)

    Zhou, Yun; Zhang, Ying; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhan S

    2014-01-01

    Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules. PMID:24965611

  2. Epitope mapping and characterization of a novel CD4-induced human monoclonal antibody capable of neutralizing primary HIV-1 strains

    International Nuclear Information System (INIS)

    Xiang Shihua; Wang Liping; Abreu, Mariam; Huang, C.-C.; Kwong, Peter D.; Rosenberg, Eric; Robinson, James E.; Sodroski, Joseph

    2003-01-01

    Human immunodeficiency virus (HIV-1) enters target cells by binding its gp120 exterior envelope glycoprotein to CD4 and one of the chemokine receptors, CCR5 or CXCR4. CD4-induced (CD4i) antibodies bind gp120 more efficiently after CD4 binding and block the interaction with the chemokine receptor. Examples of CD4i antibodies are limited, and the prototypes of the CD4i antibodies exhibit only weak neutralizing activity against primary, clinical HIV-1 isolates. Here we report the identification of a novel antibody, E51, that exhibits CD4-induced binding to gp120 and neutralizes primary HIV-1 more efficiently than the prototypic CD4i antibodies. The E51 antibody blocks the interaction of gp120-CD4 complexes with CCR5 and binds to a highly conserved, basic gp120 element composed of the β19-strand and surrounding structures. Thus, on primary HIV-1 isolates, this gp120 region, which has been previously implicated in chemokine receptor binding, is accessible to a subset of CD4i antibodies

  3. Predictors of hepatitis B virus genotype and viraemia in HIV-infected patients with chronic hepatitis B in Europe

    DEFF Research Database (Denmark)

    Soriano, Vincent; Mocroft, Amanda; Peters, Lars

    2010-01-01

    Both natural history and treatment outcome of hepatitis B virus (HBV) infection are influenced by genotypes and viral load. Information about factors determining HBV genotype distribution and viraemia in HIV/HBV-co-infected patients is scarce.......Both natural history and treatment outcome of hepatitis B virus (HBV) infection are influenced by genotypes and viral load. Information about factors determining HBV genotype distribution and viraemia in HIV/HBV-co-infected patients is scarce....

  4. Generation and Characterization of a Defective HIV-1 Virus as an Immunogen for a Therapeutic Vaccine

    Science.gov (United States)

    García-Pérez, Javier; García, Felipe; Blanco, Julia; Escribà-García, Laura; Gatell, Jose Maria; Alcamí, Jose; Plana, Montserrat; Sánchez-Palomino, Sonsoles

    2012-01-01

    Background The generation of new immunogens able to elicit strong specific immune responses remains a major challenge in the attempts to obtain a prophylactic or therapeutic vaccine against HIV/AIDS. We designed and constructed a defective recombinant virus based on the HIV-1 genome generating infective but non-replicative virions able to elicit broad and strong cellular immune responses in HIV-1 seropositive individuals. Results Viral particles were generated through transient transfection in producer cells (293-T) of a full length HIV-1 DNA carrying a deletion of 892 base pairs (bp) in the pol gene encompassing the sequence that codes for the reverse transcriptase (NL4-3/ΔRT clone). The viral particles generated were able to enter target cells, but due to the absence of reverse transcriptase no replication was detected. The immunogenic capacity of these particles was assessed by ELISPOT to determine γ-interferon production in a cohort of 69 chronic asymptomatic HIV-1 seropositive individuals. Surprisingly, defective particles produced from NL4-3/ΔRT triggered stronger cellular responses than wild-type HIV-1 viruses inactivated with Aldrithiol-2 (AT-2) and in a larger proportion of individuals (55% versus 23% seropositive individuals tested). Electron microscopy showed that NL4-3/ΔRT virions display immature morphology. Interestingly, wild-type viruses treated with Amprenavir (APV) to induce defective core maturation also induced stronger responses than the same viral particles generated in the absence of protease inhibitors. Conclusions We propose that immature HIV-1 virions generated from NL4-3/ΔRT viral clones may represent new prototypes of immunogens with a safer profile and stronger capacity to induce cellular immune responses than wild-type inactivated viral particles. PMID:23144996

  5. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... What are HIV and AIDS? HIV (human immunodeficiency virus) is the virus that causes AIDS (acquired immune deficiency syndrome). AIDS ... but no cure, at the present time. The virus (HIV) and the disease it causes (AIDS) are ...

  6. Development of a HIV-1 Virus Detection System Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2015-04-01

    Full Text Available Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM, electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS using plasmonic nanoparticle.

  7. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    Science.gov (United States)

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  8. Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors.

    Science.gov (United States)

    Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha

    2013-08-01

    Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Escape from Human Immunodeficiency Virus Type 1 (HIV-1 Entry Inhibitors

    Directory of Open Access Journals (Sweden)

    Carol D. Weiss

    2012-12-01

    Full Text Available The human immunodeficiency virus (HIV enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.

  10. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    International Nuclear Information System (INIS)

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture

  11. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.

    Science.gov (United States)

    Mounce, Bryan C; Cesaro, Teresa; Carrau, Lucia; Vallet, Thomas; Vignuzzi, Marco

    2017-06-01

    Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 μM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Epstein-Barr virus infects B and non-B lymphocytes in HIV-1-infected children and adolescents

    NARCIS (Netherlands)

    Bekker, Vincent; Scherpbier, Henriëtte; Beld, Marcel; Piriou, Erwan; van Breda, Alex; Lange, Joep; van Leth, Frank; Jurriaans, Suzanne; Alders, Sophie; Wertheim-van Dillen, Pauline; van Baarle, Debbie; Kuijpers, Taco

    2006-01-01

    Epstein-Barr virus (EBV) is a widespread, persistent herpesvirus that can transform B cells and that is associated with malignant lymphomas. EBV dynamics and specific immunity in human immunodeficiency virus (HIV)-1-infected children are unknown. We found that, in 74% of EBV-seropositive,

  13. Reactivation of latent HIV-1 by new semi-synthetic ingenol esters

    Energy Technology Data Exchange (ETDEWEB)

    Pandeló José, Diego [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil); Bartholomeeusen, Koen [Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143-0703 (United States); Delveccio da Cunha, Rodrigo; Abreu, Celina Monteiro [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil); Glinski, Jan [PlantaAnalytica LLC, Danbury, CT 06810 (United States); Barbizan Ferreira da Costa, Thais; Bacchi Rabay, Ana Flávia Mello; Pianowski Filho, Luiz Francisco [Kyolab Laboratories, Valinhos, São Paulo 13273-105 (Brazil); Dudycz, Lech W. [Lex Company Research Laboratories, Shirley 01464, MA (United States); Ranga, Udaykumar [Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064 (India); Peterlin, Boris Matija [Department of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143-0703 (United States); Pianowski, Luiz Francisco [Kyolab Laboratories, Valinhos, São Paulo 13273-105 (Brazil); Tanuri, Amilcar [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil); Aguiar, Renato Santana, E-mail: santana@biologia.ufrj.br [Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902 (Brazil)

    2014-08-15

    The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcription in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART. - Highlights: • 3-caproyl-ingenol (ING B) reactivates latent HIV better than SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. • ING B promotes PKC activation and NF-kB translocation to the nucleus. • ING B activates virus transcription of B and non-B subtypes of HIV-1. • ING B activates HIV transcription in infected primary resting CD4+ T cells. • ING B induces higher levels of P-TEFb components in human primary cells.

  14. Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis.

    Science.gov (United States)

    Beltz, Hervé; Clauss, Céline; Piémont, Etienne; Ficheux, Damien; Gorelick, Robert J; Roques, Bernard; Gabus, Caroline; Darlix, Jean-Luc; de Rocquigny, Hugues; Mély, Yves

    2005-05-20

    The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) is formed of two highly conserved CCHC zinc fingers flanked by small basic domains. NC is required for the two obligatory strand transfers in viral DNA synthesis through its nucleic acid chaperoning properties. The first DNA strand transfer relies on NC's ability to bind and destabilize the secondary structure of complementary transactivation response region (cTAR) DNA, to inhibit self-priming, and to promote the annealing of cTAR to TAR RNA. To further investigate NC chaperone properties, our aim was to identify by fluorescence spectroscopy and gel electrophoresis, the NC structural determinants for cTAR binding and destabilization, and for the inhibition of self-primed DNA synthesis on a model system using a series of NC mutants and HIV-1 reverse transcriptase. NC destabilization and self-priming inhibition properties were found to be supported by the two fingers in their proper context and the basic (29)RAPRKKG(35) linker. The strict requirement of the native proximal finger suggests that its hydrophobic platform (Val13, Phe16, Thr24 and Ala25) is crucial for binding, destabilization and inhibition of self-priming. In contrast, only partial folding of the distal finger is required, probably for presenting the Trp37 residue in an appropriate orientation. Also, Trp37 and the hydrophobic residues of the proximal finger appear to be essential for the propagation of the melting from the cTAR ends up to the middle of the stem. Finally, both N-terminal and C-terminal basic domains contribute to cTAR binding but not to its destabilization.

  15. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1994-01-01

    Baringer, J.R. 1974. Recovery of herpes simplex virus from human sacral ganglions. N. Eng!. J. Med. 291:828-830. Baringer, J.R. 1976. The biology of herpes ...UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA~Binding Protein of Herpes Simplex Virus" beyond brief...Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA-Binding Protein of Herpes Simplex Virus Allen G. Albright Doctor of

  16. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  17. Analysis of the PDZ binding specificities of Influenza A Virus NS1 proteins

    Directory of Open Access Journals (Sweden)

    Nagasaka Kazunori

    2011-01-01

    Full Text Available Abstract The Influenza A virus non-structural protein 1 (NS1 is a multifunctional virulence factor with several protein-protein interaction domains, involved in preventing apoptosis of the infected cell and in evading the interferon response. In addition, the majority of influenza A virus NS1 proteins have a class I PDZ-binding motif at the C-terminus, and this itself has been shown to be a virulence determinant. In the majority of human influenza NS1 proteins the consensus motif is RSxV: in avian NS1 it is ESxV. Of the few human strains that have the avian motif, all were from very high mortality outbreaks of the disease. Previous work has shown that minor differences in PDZ-binding motifs can have major effects on the spectrum of cellular proteins targeted. In this study we analyse the effect of these differences upon the binding of Influenza A virus NS1 protein to a range of cellular proteins involved in polarity and signal transduction.

  18. [Vaccine for human immunodeficiency virus (HIV)--relevance of these days].

    Science.gov (United States)

    Laiskonis, Alvydas; Pukenyte, Evelina

    2005-01-01

    Since 1980 more than 25 million people have died from acquired immunodeficiency syndrome (AIDS), which results from infection with human immunodeficiency virus (HIV). Number of new cases increases very threateningly. One and the most effective method to stop the progress of epidemic is the development of the vaccine for HIV. There is the presentation of the first stage of the vaccine for HIV testing (structure, methodology), which is now on trial in St. Pierre hospital, Brussels University. HIV characteristics which inflame the process of the vaccine development, historical facts and facts about vaccines on trial in these days are reviewed in this article. More than 10,000 volunteers have been participating in various clinical trials since 1987. The development of the vaccine is a very difficult, long-terming (about 8-10 years) and costly process. The process of the vaccine testing is very difficult in developing countries where the infection spreads the most rapidly. Available data confirm that the vaccine must be multi-componential, inducing cellular, humoral immunity against various subtypes of HIV. The vaccine cannot protect fully but the changes of the natural infection course could decrease virulence, distance the stage of AIDS, and retard the spread of the epidemic.

  19. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2017-01-01

    Full Text Available Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector’s range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.

  20. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  1. Adherence to hepatitis A virus vaccination in HIV-infected men who have sex with men.

    Science.gov (United States)

    Kourkounti, Sofia; Paparizos, Vassilios; Leuow, Kirsten; Paparizou, Eleni; Antoniou, Christina

    2015-10-01

    Although vaccination against hepatitis A virus (HAV) is essential for human immunodeficiency virus (HIV)-infected patients, the uptake of HAV vaccine is reported to be very low. From 2007 to 2012, 912 HIV-infected men in Athens, Greece were screened for exposure to HAV. Two doses of an HAV vaccine were recommended to 569 eligible patients. Reminder cards with scheduled vaccination visits were given to each patient. Among eligible patients, 62.2% (354/569) received both doses. Patients who were fully vaccinated compared with non-adherent patients were natives, older, had undetectable HIV viral load, higher CD4 T cell counts and lower nadir CD4 T cell counts. Multivariate logistic regression revealed that the patient's country of origin (p = 0.024; OR = 2.712; 95% CI, 1.139-6.457), CD4 T cell count (p < 0.001) and nadir CD4 T cell count (p < 0.001) were factors directly associated with adherence. In conclusion, adherence to HAV vaccination was better than in previously published data. Because many of the factors related to vaccination completion are parameters of HIV infection, it appears that physician interest in HIV care and vaccination planning is crucial to enhancing vaccine uptake. © The Author(s) 2015.

  2. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1).

    Science.gov (United States)

    Yamaguchi, Koushi; Honda, Mitsuo; Ikigai, Hajime; Hara, Yukihiko; Shimamura, Tadakatsu

    2002-01-01

    Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-bacterial agent. In addition, anti-tumor promoting, anti-inflammatory, anti-oxidative and antiviral activities have been reported. In the present study, we investigated possible anti-human immunodeficiency virus type-1 (HIV-1) activity of EGCg and its mechanisms of action in the viral life cycle. EGCg impinges on each step of the HIV life cycle. Thus, destruction of the viral particles, viral attachment to cells, post-adsorption entry into cells, reverse transcription (RT), viral production from chronically-infected cells, and the level of expression of viral mRNA, were analyzed using T-lymphoid (H9) and monocytoid (THP-1) cell systems, and antiviral protease activity was measured using a cell-free assay. Inhibitory effects of EGCg on specific binding of the virions to the cellular surfaces and changes in the steady state viral regulation (mRNA expression) due to EGCg were not observed. However, EGCg had a destructive effect on the viral particles, and post-adsorption entry and RT in acutely infected monocytoid cells were significantly inhibited at concentrations of EGCg greater than 1 microM, and protease kinetics were suppressed at a concentration higher than 10 microM in the cell-free study. Viral production by THP-1 cells chronically-infected with HIV-1 was also inhibited in a dose-dependent manner and the inhibitory effect was enhanced by liposome modification of EGCg. As expected, increased viral mRNA production was observed in lipopolysaccharide (LPS)-activated chronically HIV-1-infected cells. This production was significantly inhibited by EGCg treatment of THP-1 cells. In contrast, production of HIV-1 viral mRNA in unstimulated or LPS-stimulated T-lymphoid cells (H9) was not inhibited by EGCg. Anti-HIV viral activity of EGCg may thus result from an interaction with several steps in the HIV-1 life cycle.

  3. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

    Energy Technology Data Exchange (ETDEWEB)

    Bungard, Christopher J.; Williams, Peter D.; Ballard, Jeanine E.; Bennett, David J.; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S.; Chang, Ronald K.; Dubost, David C.; Fay, John F.; Diamond, Tracy L.; Greshock, Thomas J.; Hao, Li; Holloway, M. Katharine; Felock, Peter J.; Gesell, Jennifer J.; Su, Hua-Poo; Manikowski, Jesse J.; McKay, Daniel J.; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M.; Nantermet, Philippe G.; Nadeau, Christian; Sanchez, Rosa I.; Satyanarayana, Tummanapalli; Shipe, William D.; Singh, Sanjay K.; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M.; Vacca, Joseph P.; Crane, Sheldon N.; McCauley, John A. (Merck); (Albany MR)

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  4. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  5. A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Jinquan Chen

    Full Text Available Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils.Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2, can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM, in the presence or absence of EP2. Circular dichroism (CD spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells.Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection.

  6. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  7. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate.

    Science.gov (United States)

    Visciano, Maria Luisa; Tagliamonte, Maria; Stewart-Jones, Guillaume; Heyndrickx, Leo; Vanham, Guido; Jansson, Marianne; Fomsgaard, Anders; Grevstad, Berit; Ramaswamy, Meghna; Buonaguro, Franco M; Tornesello, Maria Lina; Biswas, Priscilla; Scarlatti, Gabriella; Buonaguro, Luigi

    2013-07-08

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutralizing activity against homologous and heterologous viruses. In the present study, we generated a recombinant trimeric soluble gp140, derived from a previously identified Ugandan A-clade HIV field isolate (gp14094UG018). Antibodies elicited in immunized rabbits show a broad binding pattern to HIV envelopes of different clades. An epitope mapping analysis reveals that, on average, the binding is mostly focused on the C1, C2, V3, V5 and C5 regions. Immune sera show neutralization activity to Tier 1 isolates of different clades, demonstrating cross clade neutralizing activity which needs to be further broadened by possible structural modifications of the clade A gp14094UG018. Our results provide a rationale for the design and evaluation of immunogens and the clade A gp14094UG018 shows promising characteristics for potential involvement in an effective HIV vaccine with broad activity.

  8. An efficiently cleaved HIV-1 clade C Env selectively binds to neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Saikat Boliar

    Full Text Available An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.

  9. Systematic Protein-Protein Docking and Molecular Dynamics Studies of HIV-1 gp120 and CD4: Insights for New Drug Development

    Directory of Open Access Journals (Sweden)

    M. Rizman-Idid

    2011-12-01

    Full Text Available Background and the purpose of the study: The interactions between HIV-1 gp120 and mutated CD4 proteins were investigated in order to identify a lead structure for therapy based on competitive blocking of the HIV binding receptor for human T-cells. Crystal structures of HIV gp120-CD4 complexes reveal a close interaction of the virus receptor with CD4 Phe43, which is embedded in a pocket of the virus protein.Methods: This study applies computer simulations to determine the best binding of amino acid 43 CD4 mutants to HIV gp120. Besides natural CD4, three mutants carrying alternate aromatic residues His, Trp and Tyr at position 43 were investigated. Several docking programs were applied on isolated proteins based on selected crystal structures of gp120-CD4 complexes, as well as a 5 ns molecular dynamics study on the protein complexes. The initial structures were minimized in Gromacs to avoid crystal packing effects, and then subjected to docking experiments using AutoDock4, FireDock, ClusPro and ZDock. In molecular dynamics, the Gibbs free binding energy was calculated for the gp120-CD4 complexes. The docking outputs were analyzed on energy within the respective docking software.Results and conclusion: Visualization and hydrogen bonding analysis were performed using the Swiss-PdbViewer. Strong binding to HIV gp120 can be achieved with an extended aromatic group (Trp. However, the sterical demand of the interaction affects the binding kinetics. In conclusion, a ligand for an efficient blocking of HIV gp120 should involve an extended but conformational flexible aromatic group, i.e. a biphenyl. A docking study on biphenylalanine-43 confirms this expectation

  10. RNA-binding properties and mapping of the RNA-binding domain from the movement protein of Prunus necrotic ringspot virus.

    Science.gov (United States)

    Herranz, M Carmen; Pallás, Vicente

    2004-03-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is involved in intercellular virus transport. In this study, putative RNA-binding properties of the PNRSV MP were studied. The PNRSV MP was produced in Escherichia coli using an expression vector. Electrophoretic mobility shift assays (EMSAs) using DIG-labelled riboprobes demonstrated that PNRSV MP bound ssRNA cooperatively without sequence specificity. Two different ribonucleoprotein complexes were found to be formed depending on the molar MP : PNRSV RNA ratio. The different responses of the complexes to urea treatment strongly suggested that they have different structural properties. Deletion mutagenesis followed by Northwestern analysis allowed location of a nucleic acid binding domain to aa 56-88. This 33 aa RNA-binding motif is the smallest region delineated among members of the family Bromoviridae for which RNA-binding properties have been demonstrated. This domain is highly conserved within all phylogenetic subgroups previously described for PNRSV isolates. Interestingly, the RNA-binding domain described here and the one described for Alfamovirus are located at the N terminus of their corresponding MPs, whereas similar domains previously characterized in members of the genera Bromovirus and Cucumovirus are present at the C terminus, strongly reflecting their corresponding phylogenetic relationships. The evolutionary implications of this observation are discussed.

  11. Human immunodeficiency virus (HIV) is highly associated with giant idiopathic esophageal ulcers in acquired immunodeficiency syndrome (AIDS) patients.

    Science.gov (United States)

    Lv, Bei; Cheng, Xin; Gao, Jackson; Zhao, Hong; Chen, Liping; Wang, Liwei; Huang, Shaoping; Fan, Zhenyu; Zhang, Renfang; Shen, Yinzhong; Li, Lei; Liu, Baochi; Qi, Tangkai; Wang, Jing; Cheng, Jilin

    2016-01-01

    This study aimed to determine whether the human immunodeficiency virus (HIV) exists in giant idiopathic esophageal ulcers in the patients with acquired immune deficiency syndrome (AIDS). 16 AIDS patients with a primary complaint of epigastric discomfort were examined by gastroscopy. Multiple and giant esophageal ulcers were biopsied and analyzed with pathology staining and reverse transcription-polymerase chain reaction (RT-PCR) to determine the potential pathogenic microorganisms, including HIV, cytomegalovirus (CMV) and herpes simplex viruses (HSV). HIV was detected in ulcer samples from 12 out of these 16 patients. Ulcers in 2 patients were infected with CMV and ulcers in another 2 patients were found HSV positive. No obvious cancerous pathological changes were found in these multiple giant esophageal ulcer specimens. HIV may be one of the major causative agents of multiple benign giant esophageal ulcers in AIDS patients.

  12. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    Full Text Available Heparan sulfate proteoglycans (HSPG can act as binding receptors for certain laboratory-adapted (TCA strains of feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV. Heparin, a soluble heparin sulfate (HS, can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS. Heparin also specifically interferes with TCA surface glycoprotein (SU binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.

  13. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... Send the Message . Get the Facts What are HIV and AIDS? HIV (human immunodeficiency virus) is the virus that ... AIDS) are often linked and referred to as "HIV/AIDS." HIV can be transferred between people if an ...

  14. Complement and the control of HIV infection: an evolving story.

    Science.gov (United States)

    Frank, Michael M; Hester, Christopher; Jiang, Haixiang

    2014-05-01

    Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.

  15. Increased carotid intima-media thickness associated with antibody responses to varicella-zoster virus and cytomegalovirus in HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Mar Masiá

    Full Text Available OBJECTIVE: We investigated the relationship of the Herpesviridiae with inflammation and subclinical atherosclerosis in HIV-infected patients. METHODS: Prospective study including virologically suppressed HIV-infected patients. IgG antibodies against herpesviruses, carotid intima-media thickness (cIMT, endothelial function through flow-mediated dilatation (FMD of the brachial artery, and blood atherosclerosis biomarkers (hsCRP, TNF-α, IL-6, MCP-1, MDA, sCD14, sCD163, VCAM-1, ICAM-1, D-dimer, and PAI-1 were measured. RESULTS: 136 patients with HIV viral load <200 copies/ml were included. 93.4% patients were infected with herpes simplex virus type-1, 55.9% with herpes simplex virus type-2, 97.1% with varicella-zoster virus, 65.4% with human herpesvirus-6, 91.2% with cytomegalovirus, and 99.3% with Epstein-Barr virus. Previous AIDS diagnosis was associated with higher cytomegalovirus IgG titers (23,000 vs 17,000 AU, P = 0.011 and higher varicella-zoster virus IgG titers (3.19 vs 2.88 AU, P = 0.047, and there was a positive correlation of the Framingham risk score with IgG levels against cytomegalovirus (Spearman's Rho 0.216, P = 0.016 and Herpes simplex virus-2 (Spearman's Rho 0.293, P = 0.001. IgG antibodies against cytomegalovirus correlated in adjusted analysis with the cIMT (P = 0.030. High seropositivity for varicella-zoster virus (OR 2.91, 95% CI 1.05-8.01, P = 0.039, and for cytomegalovirus (OR 3.79, 95% CI 1.20-11.97, P = 0.023 were predictors for the highest quartile of the cIMT in adjusted analyses. PAI-1 levels were independently associated with cytomegalovirus IgG titers (P = 0.041, IL-6 and ICAM-1 levels with varicella-zoster virus IgG (P = 0.046 and P = 0.035 respectively, and hsCRP levels with Herpes simplex virus-2 IgG (P = 0.035. CONCLUSION: In virologically suppressed HIV-infected patients, antibody responses against herpesviruses are associated with subclinical atherosclerosis, and with increased inflammation and coagulation

  16. Anti-HIV double variable domain immunoglobulins binding both gp41 and gp120 for targeted delivery of immunoconjugates.

    Directory of Open Access Journals (Sweden)

    Ryan B Craig

    Full Text Available BACKGROUND: Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs that bind to both epitopes. METHODS: Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. FINDINGS: The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK](nA resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS](n. In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. CONCLUSIONS: DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.

  17. Prevalence of human immunodeficiency virus, hepatitis C virus ...

    African Journals Online (AJOL)

    Background. Human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) and syphilis remain major infections around the world. In Angola, about 166 000 individuals are living with HIV, representing a prevalence of 1.98% in adults between 15 and 49 years of age. In a 2003 study in Luanda, 4.5% ...

  18. Seroprevalence of hepatitis C virus among people living with HIV/AIDS in Latin America and the Caribbean: a systematic review

    Directory of Open Access Journals (Sweden)

    Fatima Mitiko Tengan

    2016-11-01

    Full Text Available Abstract Background Studies have shown that the immunosuppression induced by the human immunodeficiency virus (HIV accelerates the natural history of liver disease associated with hepatitis C virus (HCV, with 3- to 5-fold higher odds of coinfected individuals developing cirrhosis. However, estimates of the seroprevalence of hepatitis C among people living with HIV/acquired immune deficiency syndrome (AIDS (PLHA in Latin America and the Caribbean (LAC are widely variable. Methods We performed a systematic review to estimate the seroprevalence of HCV among PLHA. We searched studies on HIV and HCV infections in LAC included in the PubMed, LILACS and Embase databases in December of 2014 with no time or language restrictions. The following combinations of search terms were used in the PubMed and Embase databases: (HIV OR Acquired Immunodeficiency Syndrome Virus OR AIDS OR HTLV OR Human Immunodeficiency Virus OR Human T Cell AND (HCV OR HEPATITIS C OR HEPATITIS C VIRUS OR HEPACIVIRUS AND (name of an individual country or territory in LAC. The following search terms were used in the LILACS database: (HIV OR AIDS OR Virus da Imunodeficiencia Humana AND (HCV OR Hepatite C OR Hepacivirus. An additional 11 studies were identified through manual searches. A total of 2,380 publications were located, including 617 duplicates; the remaining articles were reviewed to select studies for inclusion in this study. Results A total of 37 studies were selected for systematic review, including 23 from Brazil, 5 from Argentina, 3 from Cuba, 1 from Puerto Rico, 1 from Chile, 1 from Colombia, 1 from Mexico, 1 from Peru and 1 from Venezuela. The estimated seroprevalence of HCV infection varied from 0.8 to 58.5 % (mean 17.37; median 10.91, with the highest in Argentina and Brazil and the lowest in Venezuela and Colombia. Conclusions Investigation of HCV infection among PLHA and of HIV infection among people living with HCV is highly recommended because it allows for better

  19. Inactivation of human immunodeficiency virus (HIV) by ionizing radiation in body fluids and serological evidence

    International Nuclear Information System (INIS)

    Bigbee, P.D.; Sarin, P.S.; Humphreys, J.C.; Eubanks, W.G.; Sun, D.; Hocken, D.G.; Thornton, A.; Adams, D.E.; Simic, M.G.

    1989-01-01

    A method to use ionizing radiation to inactivate HIV (Human Immunodeficiency Virus) in human body fluids was studied in an effort to reduce the risk of accidental infection to forensic science laboratory workers. Experiments conducted indicate that an X-ray absorbed dose of 25 krad was required to completely inactivate HIV. This does not alter forensically important constituents such as enzymes and proteins in body fluids. This method of inactivation of HIV cannot be used on body fluids which will be subjected to deoxyribonucleic acid (DNA) typing

  20. Hepatitis C virus treatment rates and outcomes in HIV/hepatitis C virus co-infected individuals at an urban HIV clinic.

    Science.gov (United States)

    Murray, Melanie C M; Barrios, Rolando; Zhang, Wendy; Hull, Mark; Montessori, Valentina; Hogg, Robert S; Montaner, Julio S G

    2011-01-01

    The factors associated with hepatitis C virus (HCV) treatment uptake and responses were assessed among HCV/HIV co-infected individuals referred for HCV therapy at an urban HIV clinic. Retrospective review of HIV/HCV patients enrolled in the HCV treatment program at the John Ruedy Immunodeficiency Clinic in Vancouver. The factors associated with treatment uptake were assessed using multivariate analysis. A total of 134 HCV/HIV co-infected individuals were recalled for assessment for HCV therapy. Overall 64 (48%) initiated treatment, and of those treated 49 (76.6%) attained end treatment response, whereas 35 (57.8%) achieved sustained virological response (SVR). When evaluated by genotype, 53% (17/32) of those with genotype 1, and 65% (20/31) of those with genotype 2 or 3 infections attained SVR. In treated individuals, alanine aminotransferase dropped significantly after treatment (P<0.001). During treatment, CD4 counts dropped significantly (P<0.001) in all patients. The counts recovered to baseline in patients who achieved SVR, but remained lower in patients who failed the therapy (P=0.015). On multivariate analysis, history of injection drug use (odds ratio: 3.48; 95% confidence interval: 1.37-8.79; P=0.009) and low hemoglobin levels (odds ratio: 4.23; 95% confidence interval: 1.36-13.10; P=0.013) were associated with those who did not enter the treatment. Only half of treatment-eligible co-infected patients referred for the therapy initiated treatment. Of those referred for the therapy, history of injection drug use was associated with lower rates of treatment uptake. Treated HIV/HCV co-infected individuals benefitted from both decreased alanine aminotransferase (independent of SVR), and rates of SVR similar to those described in HCV monoinfected patients.

  1. Mapping of the Lassa virus LAMP1 binding site reveals unique determinants not shared by other old world arenaviruses.

    Directory of Open Access Journals (Sweden)

    Hadar Israeli

    2017-04-01

    Full Text Available Cell entry of many enveloped viruses occurs by engagement with cellular receptors, followed by internalization into endocytic compartments and pH-induced membrane fusion. A previously unnoticed step of receptor switching was found to be critical during cell entry of two devastating human pathogens: Ebola and Lassa viruses. Our recent studies revealed the functional role of receptor switching to LAMP1 for triggering membrane fusion by Lassa virus and showed the involvement of conserved histidines in this switching, suggesting that other viruses from this family may also switch to LAMP1. However, when we investigated viruses that are genetically close to Lassa virus, we discovered that they cannot bind LAMP1. A crystal structure of the receptor-binding module from Morogoro virus revealed structural differences that allowed mapping of the LAMP1 binding site to a unique set of Lassa residues not shared by other viruses in its family, illustrating a key difference in the cell-entry mechanism of Lassa virus that may contribute to its pathogenicity.

  2. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations.

    Directory of Open Access Journals (Sweden)

    Chitra Upadhyay

    2018-01-01

    Full Text Available HIV-1 envelope glycoprotein (Env mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP that directs the nascent Env to the endoplasmic reticulum (ER where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody

  3. NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site.

    Directory of Open Access Journals (Sweden)

    Shahin Ranjbar

    2006-12-01

    Full Text Available To replicate, HIV-1 capitalizes on endogenous cellular activation pathways resulting in recruitment of key host transcription factors to its viral enhancer. RNA interference has been a powerful tool for blocking key checkpoints in HIV-1 entry into cells. Here we apply RNA interference to HIV-1 transcription in primary macrophages, a major reservoir of the virus, and specifically target the transcription factor NFAT5 (nuclear factor of activated T cells 5, which is the most evolutionarily divergent NFAT protein. By molecularly cloning and sequencing isolates from multiple viral subtypes, and performing DNase I footprinting, electrophoretic mobility shift, and promoter mutagenesis transfection assays, we demonstrate that NFAT5 functionally interacts with a specific enhancer binding site conserved in HIV-1, HIV-2, and multiple simian immunodeficiency viruses. Using small interfering RNA to ablate expression of endogenous NFAT5 protein, we show that the replication of three major HIV-1 viral subtypes (B, C, and E is dependent upon NFAT5 in human primary differentiated macrophages. Our results define a novel host factor-viral enhancer interaction that reveals a new regulatory role for NFAT5 and defines a functional DNA motif conserved across HIV-1 subtypes and representative simian immunodeficiency viruses. Inhibition of the NFAT5-LTR interaction may thus present a novel therapeutic target to suppress HIV-1 replication and progression of AIDS.

  4. Stimulation of HIV-1-specific cytolytic T-lymphocytes facilitates elimination of latent viral reservoir after virus reactivation

    Science.gov (United States)

    Shan, Liang; Deng, Kai; Shroff, Neeta S.; Durand, Christine; Rabi, S. Alireza.; Yang, Hung-Chih; Zhang, Hao; Margolick, Joseph B.; Blankson, Joel N.; Siliciano, Robert F.

    2012-01-01

    Summary Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia. Life-long treatment is therefore required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T-cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4+ T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T-lymphocytes (CTL) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. PMID:22406268

  5. The pathogenesis of liver disease in the setting of HIV-hepatitis B virus coinfection.

    Science.gov (United States)

    Iser, David M; Lewin, Sharon R

    2009-01-01

    There are many potential reasons for increased liver-related mortality in HIV-hepatitis B virus (HBV) coinfection compared with either infection alone. HIV infects multiple cells in the liver and might potentially alter the life cycle of HBV, although evidence to date is limited. Unique mutations in HBV have been defined in HIV-HBV-coinfected individuals and might directly alter pathogenesis. In addition, an impaired HBV-specific T-cell immune response is likely to be important. The roles of microbial translocation, immune activation and increased hepatic stellate cell activation will be important areas for future study.

  6. Localized or Systemic {italic In Vivo} Heat-Inactivation of Human Immunodeficiency Virus (HIV): A Mathematical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pennypacker, Carl R.; Perelson, A.S.; Nys, N.; Nelson, G.; Sessler, D.I.

    1993-12-15

    Temperatures as low as 42 C, maintained for a little as 25 minutes, inactivate {approx}25% of HIV. Furthermore, human immunodeficiency virus (HIV)-infected T-cells are more sensitive to heat than healthy lymphocytes and susceptibility increases when the cells are pre-sensitized by exposure to tumor necrosis factor. Thus, induction of a whole-body hyperthermia, or hyperthermia specifically limited to tissues having a high viral load, are potential antiviral therapies for acquired immunodeficiency disease (AIDS). Accordingly, we incorporated therapeutic hyperthermia into an existing mathematical model which evaluates the interaction between HIV and CD4{sup +} T cells. Given the assumptions and limitations of this model, the results indicate that a daily therapy, reducing the population of actively infected cells by 40% or infectious virus by 50%, would effectively reverse the depletion of T cells. In contrast, a daily reduction of 20% of either actively infected cells or infectious virus would have a marginal effect. However, reduction by 20% of both actively infected cells and infectious virus could restore T cell numbers, assuming that permanent damage had not been inflicted on the thymus. Whole-body hyperthermia seems unlikely to be clinically useful, unless it can be induced non-invasively without general anesthesia. In contrast, heating directed specifically to areas of viral concentration may be effective and have a suitable risk/benefit ratio.

  7. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    International Nuclear Information System (INIS)

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-01-01

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  8. Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4+ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism

    OpenAIRE

    Arenaccio, Claudia; Chiozzini, Chiara; Columba-Cabezas, Sandra; Manfredi, Francesco; Affabris, Elisabetta; Baur, Andreas; Federico, Maurizio

    2014-01-01

    Resting CD4+ T lymphocytes resist human immunodeficiency virus (HIV) infection. Here, we provide evidence that exosomes from HIV-1-infected cells render resting human primary CD4+ T lymphocytes permissive to HIV-1 replication. These results were obtained with transwell cocultures of HIV-1-infected cells with quiescent CD4+ T lymphocytes in the presence of inhibitors of exosome release and were confirmed using exosomes purified from supernatants of HIV-1-infected primary CD4+ T lymphocytes. We...

  9. Multiple oncogenic viruses identified in Ocular surface squamous neoplasia in HIV-1 patients

    Directory of Open Access Journals (Sweden)

    Bisson Gregory

    2010-03-01

    Full Text Available Abstract Background Ocular surface squamous neoplasia (OSSN is a rare cancer that has increased in incidence with the HIV pandemic in Africa. The underlying cause of this cancer in HIV-infected patients from Botswana is not well defined. Results Tissues were obtained from 28 OSSN and 8 pterygia patients. The tissues analyzed from OSSN patients were 83% positive for EBV, 75% were HPV positive, 70% were KSHV positive, 75% were HSV-1/2 positive, and 61% were CMV positive by PCR. Tissues from pterygium patients were 88% positive for EBV, 75% were HPV positive, 50% were KSHV positive, and 60% were CMV positive. None of the patients were JC or BK positive. In situ hybridization and immunohistochemistry analyses further identified HPV, EBV, and KSHV in a subset of the tissue samples. Conclusion We identified the known oncogenic viruses HPV, KSHV, and EBV in OSSN and pterygia tissues. The presence of these tumor viruses in OSSN suggests that they may contribute to the development of this malignancy in the HIV population. Further studies are necessary to characterize the molecular mechanisms associated with viral antigens and their potential role in the development of OSSN.

  10. IP-10 predicts the first phase decline of HCV RNA and overall viral response to therapy in patients co-infected with chronic hepatitis C virus infection and HIV

    DEFF Research Database (Denmark)

    Falconer, Karolin; Askarieh, Galia; Weis, Nina Margrethe

    2010-01-01

    The aim of this study was to investigate the utility of baseline plasma interferon-gamma inducible protein-10 (IP-10) levels in human immunodeficiency virus (HIV)-hepatitis C virus (HCV) co-infected patients. Baseline IP-10 was monitored during HCV combination therapy in 21 HIV-HCV co-infected pa......The aim of this study was to investigate the utility of baseline plasma interferon-gamma inducible protein-10 (IP-10) levels in human immunodeficiency virus (HIV)-hepatitis C virus (HCV) co-infected patients. Baseline IP-10 was monitored during HCV combination therapy in 21 HIV-HCV co......-10 viral response to HCV therapy in HIV-HCV co-infected patients, and may thus be useful in encouraging such difficult-to-treat patients to initiate therapy....

  11. Human immunodeficiency virus (HIV) seropositivity and hepatitis B surface antigenemia (HBSAG) among blood donors in Benin city, Edo state, Nigeria.

    Science.gov (United States)

    Umolu, Patience Idia; Okoror, Lawrence Ehis; Orhue, Philip

    2005-03-01

    Human Immunodeficiency Virus and Hepatitis B virus are blood borne pathogens that can be transmitted through blood transfusion and could pose a huge problem in areas where mechanisms of ensuring blood safety are suspect. This study became necessary in a population where most of the blood for transfusion is from commercial blood donors. A total of 130 donors comprising 120 commercial donors and 10 voluntary donors were tested for antibodies to human immunodeficiency virus and hepatitis B surface antigen in Benin city using Immunocomb HIV - 1 and 2 Biospot kit and Quimica Clinica Aplicada direct latex agglutination method respectively. Thirteen (10%) samples were HIV seropositive and 7(5.8%) were HBsAg positive. The age bracket 18 - 25years had the highest numbers of donors and also had the highest number of HBsAg positive cases (7.8%) while the age group 29 - 38years had highest number of HIV seropositive cases. High prevalence of HIV antibodies and Hepatitis B surface antigen was found among commercial blood donors. Appropriate and compulsory screening of blood donors using sensitive methods, must be ensured to prevent post transfusion hepatitis and HIV.

  12. HIV/AIDS

    Science.gov (United States)

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. HIV most ...

  13. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Schade Larsen, C

    2000-01-01

    of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  14. Limited overlap between phylogenetic HIV and hepatitis C virus clusters illustrates the dynamic sexual network structure of Dutch HIV-infected MSM.

    Science.gov (United States)

    Vanhommerig, Joost W; Bezemer, Daniela; Molenkamp, Richard; Van Sighem, Ard I; Smit, Colette; Arends, Joop E; Lauw, Fanny N; Brinkman, Kees; Rijnders, Bart J; Newsum, Astrid M; Bruisten, Sylvia M; Prins, Maria; Van Der Meer, Jan T; Van De Laar, Thijs J; Schinkel, Janke

    2017-09-24

    MSM are at increased risk for infection with HIV-1 and hepatitis C virus (HCV). Is HIV/HCV coinfection confined to specific HIV transmission networks? A HIV phylogenetic tree was constructed for 5038 HIV-1 subtype B polymerase (pol) sequences obtained from MSM in the AIDS therapy evaluation in the Netherlands cohort. We investigated the existence of HIV clusters with increased HCV prevalence, the HIV phylogenetic density (i.e. the number of potential HIV transmission partners) of HIV/HCV-coinfected MSM compared with HIV-infected MSM without HCV, and the overlap in HIV and HCV phylogenies using HCV nonstructural protein 5B sequences from 183 HIV-infected MSM with acute HCV infection. Five hundred and sixty-three of 5038 (11.2%) HIV-infected MSM tested HCV positive. Phylogenetic analysis revealed 93 large HIV clusters (≥10 MSM), 370 small HIV clusters (2-9 MSM), and 867 singletons with a median HCV prevalence of 11.5, 11.6, and 9.3%, respectively. We identified six large HIV clusters with elevated HCV prevalence (range 23.5-46.2%). Median HIV phylogenetic densities for MSM with HCV (3, interquartile range 1-7) and without HCV (3, interquartile range 1-8) were similar. HCV phylogeny showed 12 MSM-specific HCV clusters (clustersize: 2-39 HCV sequences); 12.7% of HCV infections were part of the same HIV and HCV cluster. We observed few HIV clusters with elevated HCV prevalence, no increase in the HIV phylogenetic density of HIV/HCV-coinfected MSM compared to HIV-infected MSM without HCV, and limited overlap between HIV and HCV phylogenies among HIV/HCV-coinfected MSM. Our data do not support the existence of MSM-specific sexual networks that fuel both the HIV and HCV epidemic.

  15. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Science.gov (United States)

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  16. Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid.

    Directory of Open Access Journals (Sweden)

    Mallori Burse

    Full Text Available The host immunophilin cyclophilin A (CypA binds to the capsid protein (CA of HIV-1 and regulates its infectivity. Depending on the target cell type, CypA can either promote or inhibit HIV-1 infection. The ability of CypA to promote HIV-1 infection has been extensively studied and linked to several steps in early replication including uncoating, reverse transcription and nuclear import. By contrast, the mechanism by which CypA inhibits infection is less well understood. We investigated the mechanism by which CypA potentiates restriction of HIV-1 by the tripartite motif-containing protein 5 (TRIM5α. Depletion of TRIM5α in the African green monkey cell line Vero, resulted in a loss of inhibition of infection by CypA, demonstrating that inhibition by CypA is mediated by TRIM5α. Complementary genetic and biochemical assays failed to demonstrate an ability of CypA to promote binding of TRIM5α to the viral capsid. TRIM5α inhibits HIV-1 reverse transcription in a proteasome-dependent manner; however, we observed that inhibition of proteasome activity did not reduce the ability of CypA to inhibit infection, suggesting that CypA acts at a step after reverse transcription. Accordingly, we observed a CypA-dependent reduction in the accumulation of nuclear HIV-1 DNA, indicating that CypA specifically promotes TRIM5α inhibition of HIV-1 nuclear import. We also observed that the ability of CypA to inhibit HIV-1 infection is abolished by amino acid substitutions within the conserved CPSF6-binding surface in CA. Our results indicate that CypA inhibits HIV-1 infection in Vero cells not by promoting TRIM5α binding to the capsid but by blocking nuclear import of the HIV-1 preintegration complex.

  17. Evolution of hepatitis A virus seroprevalence among HIV-positive adults in Taiwan

    Science.gov (United States)

    Lin, Kuan-Yin; Cheng, Chien-Yu; Li, Chia-Wen; Yang, Chia-Jui; Tsai, Mao-Song; Tang, Hung-Jen; Lin, Te-Yu; Wang, Ning-Chi; Lee, Yi-Chien; Lin, Shih-Ping; Huang, Yu-Shan; Sun, Hsin-Yun; Zhang, Jun-Yu; Ko, Wen-Chien; Cheng, Shu-Hsing; Lee, Yuan-Ti; Hung, Chien-Ching

    2017-01-01

    Objectives The study aimed to describe the seroprevalence of hepatitis A virus (HAV) in HIV-positive adult patients in Taiwan between 2012 and 2016 and to examine the evolution of HAV seroprevalence between 2004–2007 and 2012–2016. Methods Clinical information and data of anti-HAV antibody results were collected from 2,860 antiretroviral-naïve HIV-positive Taiwanese aged 18 years or older who initiated combination antiretroviral therapy at 11 hospitals around Taiwan between 2012 and 2016 (2012–2016 cohort). A multivariate logistic regression model was applied to identify independent variables associated with HAV seropositivity. Comparisons of HAV seroprevalences and associated clinical characteristics were made between this 2012–2016 cohort and a previous cohort of 1580 HIV-positive patients in 2004–2007 (2004–2007 cohort). Results Of the 2,860 HIV-positive patients between 2012 and 2016, the overall HAV seropositivity rate was 21.2% (605/2860), which was independently associated with an older age (adjusted odds ratio [AOR], per 1-year increase, 1.13; 95% confidence interval [95% CI], 1.11–1.15) and co-infection with hepatitis B virus (AOR 1.44; 95% CI, 1.08–1.93). Residence in southern Taiwan (AOR 0.49; 95% CI, 0.34–0.72) was inversely associated with HAV seropositivity. The overall HAV seroprevalence in the 2012–2016 cohort was significantly lower than that in the 2004–2007 cohort (21.2% vs 60.9%, pa country without nationwide childhood vaccination program against HAV. PMID:29036227

  18. Seroprevalence of Epstein-Barr virus among HIV positive patients moreover and its association with CD4 positive lymphocyte count.

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2014-12-01

    Full Text Available Opportunistic infections are the leading cause of hospitalization and morbidity in human immunodeficiency virus (HIV positive patients and are the most common cause of death between them. We aimed to measure IgG antibody against EBV viral capsid antigen (EBV-VCA IgG to determine the seroprevalence of this infection in HIV-positive population. A case-control study between September 2011 and October 2012 was conducted in a teaching hospital enrolling 114 HIV-positive patients as case group and 114 healthy individuals as control with similar age and sex. Enzyme-linked immunosurbant assay (ELISA technique was used for determination of EBV-VAC IgG in obtained samples. Of 114 serum samples obtained from HIV-positive patients, 103 (90.4% samples were found positive for EBV-VCA IgG antibody. There was no significant difference in seroprevalence of EBV VCA IgG antibody between patients received antiretroviral therapy and naive patients (91.5% vs. 87.5%, P>0.05. There was no statistically significant difference in EBV-VCA IgG seroprevalence between three groups of CD4+ in HIV positive group. In conclusion current study showed that seroprevalence of EBV in HIV-positive patients is higher than HIV-negative healthy participants; however, administration of HAART and CD4+ lymphocyte count did not reveal a significant effect in seroprevalence of EBV. Due to the significance of this virus in mortality and morbidity and causing certain malignancies in patients with AIDS, these patients are strongly recommended to be tested for this virus.

  19. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  20. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  1. Investigation of ability of serum albumin to bind the tritium labeled drotaverine hydrochloride at virus hepatitis

    International Nuclear Information System (INIS)

    Kim, A.A.; Mavlyanov, I.R.; Shukurov, B.V.; Djuraeva, G.T.

    2005-01-01

    The most of pathological conditions, and especially liver pathologies, proceeds on the background of intoxication syndromes. One of universal mechanisms of reaction of an organism on increase of concentration of toxic metabolites is removing of metabolites with the help of one of the basic protein of blood plasma - serum albumin. The purpose of the present research was studying of serum albumin ability to bind drotaverine hydrochloride at virus hepatitis in dynamics of traditional therapy. This parameter is rather important for therapy as it is known, that serum albumin is a carrier of pharmaceutical preparations. At intoxication of organism the toxic metabolites can reduce the binding capacity of serum albumin due to competitive binding and by that to reduce efficiency of carry of pharmaceutical preparations. Application of a radiochemical method with use of tritium labeled drotaverine hydrochloride in the given research it is represented to the most effective. The method of tritium labeling of pharmacological preparation of drotaverine hydrochloride was developed. Drotaverine hydrochloride was labeled by thermally activated tritium. The system of purification of tritium labeled drotaverine hydrochloride by thin layer chromatography (TLC) has been developed. Tritium labeled preparation of drotaverine hydrochloride was purified by TLC on silica gel in system isopropanol : ammonia : water (8:1:1). The output of purified tritium labeled preparation of drotaverine hydrochloride was about 25 %. The received preparation had specific radioactivity - 3,2 MBq/mg (37,4 mCi/mmol), radiochemical purity of a preparation was 95 %. We had been developed a micromethod of definition of binding ability of albumin, allowing analyze 20 microliters of blood serum. The method consists in incubation of tritium labeled drotaverine hydrochloride with blood serum in vitro, the following fractionation of serum proteins by gel - filtration on a microcolumn with Sephadex G-25, and direct

  2. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor

    International Nuclear Information System (INIS)

    Schols, D.; Baba, M.; Pauwels, R.; Desmyter, J.; De Clercq, E.

    1989-01-01

    The triphenylmethane derivative aurintricarboxylic acid (ATA), but not aurin, selectively prevented the binding of OKT4A/Leu-3a monoclonal antibody (mAb) and, to a lesser extent, OKT4 mAb to the CD4 cell receptor for human immunodeficiency virus type 1 (HIV-1). The effect was seen within 1 min at an ATA concentration of 10 μM in various T4 + cells (MT-4, U-937, peripheral blood lymphocytes, and monocytes). It was dose-dependent and reversible. ATA prevented the attachment of radiolabeled HIV-1 particles to MT-4 cells, which could be expected as the result of its specific binding to the HIV/CD4 receptor. Other HIV inhibitors such as suramin, fuchsin acid, azidothymidine, dextran sulfate, heparin, and pentosan polysulfate did not affect OKT4A/Leu-3a mAb binding to the CD4 receptor, although the sulfated polysaccharides suppressed HIV-1 adsorption to the cells at concentrations required for complete protection against HIV-1 cytopathogenicity. Thus, ATA is a selective marker molecule for the CD4 receptor. ATA also interfered with the staining of membrane-associated HIV-1 glycoprotein gp120 by a mAb against it. These unusual properties of a small molecule of nonimmunological origin may have important implications for the study of CD4/HIV/AIDS pathogenesis and possibly treatment

  3. Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA.

    Science.gov (United States)

    Comas-Garcia, Mauricio; Datta, Siddhartha Ak; Baker, Laura; Varma, Rajat; Gudla, Prabhakar R; Rein, Alan

    2017-07-20

    Selective packaging of HIV-1 genomic RNA (gRNA) requires the presence of a cis -acting RNA element called the 'packaging signal' (Ψ). However, the mechanism by which Ψ promotes selective packaging of the gRNA is not well understood. We used fluorescence correlation spectroscopy and quenching data to monitor the binding of recombinant HIV-1 Gag protein to Cy5-tagged 190-base RNAs. At physiological ionic strength, Gag binds with very similar, nanomolar affinities to both Ψ-containing and control RNAs. We challenged these interactions by adding excess competing tRNA; introducing mutations in Gag; or raising the ionic strength. These modifications all revealed high specificity for Ψ. This specificity is evidently obscured in physiological salt by non-specific, predominantly electrostatic interactions. This nonspecific activity was attenuated by mutations in the MA, CA, and NC domains, including CA mutations disrupting Gag-Gag interaction. We propose that gRNA is selectively packaged because binding to Ψ nucleates virion assembly with particular efficiency.

  4. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells

    NARCIS (Netherlands)

    Naarding, Marloes A.; Dirac, Annette M.; Ludwig, Irene S.; Speijer, Dave; Lindquist, Susanne; Vestman, Eva-Lotta; Stax, Martijn J.; Geijtenbeek, Teunis B. H.; Pollakis, Georgios; Hernell, Olle; Paxton, William A.

    2006-01-01

    A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs

  5. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity.

    Directory of Open Access Journals (Sweden)

    Michael R Nonnemacher

    Full Text Available The large majority of human immunodeficiency virus type 1 (HIV-1 markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs contained within the viral promoter or long terminal repeat (LTR in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count.

  6. State infants after perinatal complications prevention by mother with the association of HIV and herpes virus infection

    OpenAIRE

    Zhdanovich O.I.; Anoshyna T.M.; Kolomiichenko T.V.

    2016-01-01

    Relevance. Complicated and little studied issue is the perinatal complications prevention in pregnant women with HIV and herpes virus infections (GI) The goal — to evaluate the effectiveness of the system of perinatal complications prevention during the association of HIV and herpes infection. Materials and methods. Selected 60 HIV-infected pregnant women with the GI, which divided into 2 groups: primary — 30 pregnant women with the use of recommended prophylaxis complex (specific immunogl...

  7. Binding of human collectins (SP-A and MBP) to influenza virus.

    OpenAIRE

    Malhotra, R; Haurum, J S; Thiel, S; Sim, R B

    1994-01-01

    Collectins are a group of soluble proteins each of which has collagenous domains and non-collagenous globular domains, the latter containing the consensus residues found in C-type lectins. Members of the collectin family are the serum proteins mannan-binding protein (MBP), conglutinin, CL-43, and the lung-associated proteins surfactant protein A (SP-A) and surfactant protein D (SP-D). MBP and conglutinin have been shown previously to bind to influenza viruses and to inhibit the infectivity an...

  8. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  9. Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein.

    Science.gov (United States)

    Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena

    2014-06-15

    Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands

    Directory of Open Access Journals (Sweden)

    Cao-Lormeau Van-Mai

    2009-03-01

    Full Text Available Abstract Dengue virus (DENV, the etiological agent of dengue fever, is transmitted to the human host during blood uptake by an infective mosquito. Infection of vector salivary glands and further injection of infectious saliva into the human host are key events of the DENV transmission cycle. However, the molecular mechanisms of DENV entry into the mosquito salivary glands have not been clearly identified. Otherwise, although it was demonstrated for other vector-transmitted pathogens that insect salivary components may interact with host immune agents and impact the establishment of infection, the role of mosquito saliva on DENV infection in human has been only poorly documented. To identify salivary gland molecules which might interact with DENV at these key steps of transmission cycle, we investigated the presence of proteins able to bind DENV in salivary gland extracts (SGE from two mosquito species. Using virus overlay protein binding assay, we detected several proteins able to bind DENV in SGE from Aedes aegypti (L. and Aedes polynesiensis (Marks. The present findings pave the way for the identification of proteins mediating DENV attachment or entry into mosquito salivary glands, and of saliva-secreted proteins those might be bound to the virus at the earliest step of human infection. The present findings might contribute to the identification of new targets for anti-dengue strategies.

  11. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children.

    Directory of Open Access Journals (Sweden)

    Marta C Nunes

    Full Text Available Advances in molecular diagnostics have implicated newly-discovered respiratory viruses in the pathogenesis of pneumonia. We aimed to determine the prevalence and clinical characteristics of human bocavirus (hBoV, human rhinovirus (hRV, polyomavirus-WU (WUPyV and -KI (KIPyV and human coronaviruses (CoV-OC43, -NL63, -HKU1 and -229E among children hospitalized with lower respiratory tract infections (LRTI.Multiplex real-time reverse-transcriptase polymerase chain reaction was undertaken on archived nasopharyngeal aspirates from HIV-infected and -uninfected children (<2 years age hospitalized for LRTI, who had been previously investigated for respiratory syncytial virus, human metapneumovirus, parainfluenza I-III, adenovirus and influenza A/B.At least one of these viruses were identified in 274 (53.0% of 517 and in 509 (54.0% of 943 LRTI-episodes in HIV-infected and -uninfected children, respectively. Human rhinovirus was the most prevalent in HIV-infected (31.7% and -uninfected children (32.0%, followed by CoV-OC43 (12.2% and hBoV (9.5% in HIV-infected; and by hBoV (13.3% and WUPyV (11.9% in HIV-uninfected children. Polyomavirus-KI (8.9% vs. 4.8%; p = 0.002 and CoV-OC43 (12.2% vs. 3.6%; p<0.001 were more prevalent in HIV-infected than -uninfected children. Combined with previously-tested viruses, respiratory viruses were identified in 60.9% of HIV-infected and 78.3% of HIV-uninfected children. The newly tested viruses were detected at high frequency in association with other respiratory viruses, including previously-investigated viruses (22.8% in HIV-infected and 28.5% in HIV-uninfected children.We established that combined with previously-investigated viruses, at least one respiratory virus was identified in the majority of HIV-infected and HIV-uninfected children hospitalized for LRTI. The high frequency of viral co-infections illustrates the complexities in attributing causality to specific viruses in the aetiology of LRTI and may indicate a

  12. Influence of Hepatitis C Virus Sustained Virological Response on Immunosuppressive Tryptophan Catabolism in ART-Treated HIV/HCV Coinfected Patients

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Mehraj, Vikram; Costiniuk, Cecilia T.; Vyboh, Kishanda; Kema, Ido; Rollet, Kathleen; Ramirez, Robert Paulino; Klein, Marina B.; Routy, Jean-Pierre

    2016-01-01

    Background: We previously reported an association between tryptophan (Trp) catabolism and immune dysfunction in HIV monoinfection. Coinfection with HIV is associated with more rapid evolution of hepatitis C virus (HCV)-associated liver disease despite antiretroviral therapy (ART), possibly due to

  13. [Epidemiologic aspects of human immunodeficiency virus and hepatitis virus infections].

    Science.gov (United States)

    Diarra, M; Konate, A; Minta, D; Sounko, A; Dembele, M; Toure, C S; Kalle, A; Traore, H H; Maiga, M Y

    2006-01-01

    In order to determinate the prevalence of hepatitis B virus and hepatitis C virus among patients infected by the HIV, We realized a transverse survey case--control in hepato-gastro-enterological ward and serology unity of National Institute of Research in Public health (INRSP). Our sample was constituted with 100 patients HIV positive compared to 100 controls HIV negative. The viral markers research has been made by methods immuno-enzymatiqueses of ELISA 3rd generation. Tests permitted to get the following results: Hepatitis B surface antigen (HBs Ag) was positive among 21% with patients HIV positive versus 23% among control (p = 0,732); Antibody to hepatitis C virus (anti-HCV ab) was present among 23% with patients HIV positive versus 0% among control (p <0,05). Female was predominant among co-infections patient, but without statistic link (p = 0,9 and p = 0,45); The co-infection HBV- HCV was significatively linked to age beyond 40 years (p = 0,0005). Co-infections with HIV infection and hepatitis virus are not rare and deserve to be investigated.

  14. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... HIV (human immunodeficiency virus) is the virus that causes AIDS (acquired immune deficiency syndrome). AIDS is a ... time. The virus (HIV) and the disease it causes (AIDS) are often linked and referred to as " ...

  15. Select neurocognitive impairment in HIV-infected women: associations with HIV viral load, hepatitis C virus, and depression, but not leukocyte telomere length.

    Directory of Open Access Journals (Sweden)

    Chantelle J Giesbrecht

    Full Text Available Through implementation of combination antiretroviral therapy (cART remarkable gains have been achieved in the management of HIV infection; nonetheless, the neurocognitive consequences of infection remain a pivotal concern in the cART era. Research has often employed norm-referenced neuropsychological scores, derived from healthy populations (excluding many seronegative individuals at high risk for HIV infection, to characterize impairments in predominately male HIV-infected populations.Using matched-group methodology, we assessed 81 HIV-seropositive (HIV+ women with established neuropsychological measures validated for detection of HIV-related impairments, as well as additional detailed tests of executive function and decision-making from the Cambridge Neuropsychological Test Automated Battery (CANTAB.On validated tests, the HIV+ women exhibited impairments that were limited to significantly slower information processing speed when compared with 45 HIV-seronegative (HIV- women with very similar demographic backgrounds and illness comorbidities. Additionally, select executive impairments in shifting attention (i.e., reversal learning and in decision-making quality were revealed in HIV+ participants. Modifiers of neurocognition in HIV-infected women included detectable HIV plasma viral load, active hepatitis C virus co-infection, and self-reported depression symptoms. In contrast, leukocyte telomere length (LTL, a marker of cellular aging, did not significantly differ between HIV+ and HIV- women, nor was LTL associated with overall neurocognition in the HIV+ group.The findings suggest that well-managed HIV infection may entail a more circumscribed neurocognitive deficit pattern than that reported in many norm-referenced studies, and that common comorbidities make a secondary contribution to HIV-related neurocognitive impairments.

  16. Analysis of binding energy activity of TIBO and HIV-RT based on ...

    African Journals Online (AJOL)

    Tetrahydro-imidazo[4,5,l-jk][1,4]-benzodiazepin-2 (1 H)one (TIBO) is a noncompetitive non nucleotide antiretroviral drug with a specific allosteric binding site of HIV-1 RT. The conformational analysis shows that the effect of the drug depends on the potential energy which varied due to the beta rotatable dihedral angles (N6 ...

  17. No influence of GB virus C on disease progression in a Danish cohort of HIV-infected men

    DEFF Research Database (Denmark)

    Ryt-Hansen, Rosa; Katzenstein, Terese L; Gerstoft, Jan

    2006-01-01

    Presumed apathogenic viruses have been suggested to play a role in HIV infection. In some cohorts of HIVpositive patients, GB virus C (GBVC) has been associated with prolonged survival and time to AIDS. We set out to address whether GBVC infection had any influence on survival in a cohort of 112...

  18. Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA protein in a human immunodeficiency virus type 1 (HIV-1 derivative that has simian immunodeficiency virus (SIVmac239 vif and CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells

    Directory of Open Access Journals (Sweden)

    Adachi Akio

    2009-08-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 productively infects only humans and chimpanzees but not cynomolgus or rhesus monkeys while simian immunodeficiency virus isolated from macaque (SIVmac readily establishes infection in those monkeys. Several HIV-1 and SIVmac chimeric viruses have been constructed in order to develop an animal model for HIV-1 infection. Construction of an HIV-1 derivative which contains sequences of a SIVmac239 loop between α-helices 4 and 5 (L4/5 of capsid protein (CA and the entire SIVmac239 vif gene was previously reported. Although this chimeric virus could grow in cynomolgus monkey cells, it did so much more slowly than did SIVmac. It was also reported that intrinsic TRIM5α restricts the post-entry step of HIV-1 replication in rhesus and cynomolgus monkey cells, and we previously demonstrated that a single amino acid in a loop between α-helices 6 and 7 (L6/7 of HIV type 2 (HIV-2 CA determines the susceptibility of HIV-2 to cynomolgus monkey TRIM5α. Results In the study presented here, we replaced L6/7 of HIV-1 CA in addition to L4/5 and vif with the corresponding segments of SIVmac. The resultant HIV-1 derivatives showed enhanced replication capability in established T cell lines as well as in CD8+ cell-depleted primary peripheral blood mononuclear cells from cynomolgus monkey. Compared with the wild type HIV-1 particles, the viral particles produced from a chimeric HIV-1 genome with those two SIVmac loops were less able to saturate the intrinsic restriction in rhesus monkey cells. Conclusion We have succeeded in making the replication of simian-tropic HIV-1 in cynomolgus monkey cells more efficient by introducing into HIV-1 the L6/7 CA loop from SIVmac. It would be of interest to determine whether HIV-1 derivatives with SIVmac CA L4/5 and L6/7 can establish infection of cynomolgus monkeys in vivo.

  19. Changes in the topology of gene expression networks by human immunodeficiency virus type 1 (HIV-1) integration in macrophages.

    Science.gov (United States)

    Soto-Girón, María Juliana; García-Vallejo, Felipe

    2012-01-01

    One key step of human immunodeficiency virus type 1 (HIV-1) infection is the integration of its viral cDNA. This process is mediated through complex networks of host-virus interactions that alter several normal cell functions of the host. To study the complexity of disturbances in cell gene expression networks by HIV-1 integration, we constructed a network of human macrophage genes located close to chromatin regions rich in proviruses. To perform the network analysis, we selected 28 genes previously identified as the target of cDNA integration and their transcriptional profiles were obtained from GEO Profiles (NCBI). A total of 2770 interactions among the 28 genes located around the HIV-1 proviruses in human macrophages formed a highly dense main network connected to five sub-networks. The overall network was significantly enriched by genes associated with signal transduction, cellular communication and regulatory processes. To simulate the effects of HIV-1 integration in infected macrophages, five genes with the most number of interaction in the normal network were turned off by putting in zero the correspondent expression values. The HIV-1 infected network showed changes in its topology and alteration in the macrophage functions reflected in a re-programming of biosynthetic and general metabolic process. Understanding the complex virus-host interactions that occur during HIV-1 integration, may provided valuable genomic information to develop new antiviral treatments focusing on the management of some specific gene expression networks associated with viral integration. This is the first gene network which describes the human macrophages genes interactions related with HIV-1 integration. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Is response to anti-hepatitis C virus treatment predictive of mortality in hepatitis C virus/HIV-positive patients?

    DEFF Research Database (Denmark)

    Peters, Lars; Raben, Dorthe

    2017-01-01

    BACKGROUND: Long-term clinical outcomes after hepatitis C virus (HCV) treatment of HIV/HCV patients are not well described. We aimed to compare the risk of all-cause and liver-related death (LRD) according to HCV treatment response in HIV/HCV patients in the multicohort study Collaboration...... of Observational HIV Epidemiological Research in Europe. METHODS: All patients who had started pegylated interferon + ribavirin (baseline) and followed for at least 72 weeks after baseline were included. Patients were categorized into three response groups depending on treatment duration and HCV-RNA measured...... in the window 24-72 weeks after baseline. Patients who received at least 24 weeks of therapy were defined as responders if their last HCV-RNA measured between 24 and 72 weeks after baseline was negative, and having 'unknown response' if HCV-RNA was unknown. Nonresponders were treated for less than 24 weeks...

  1. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  2. Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion

    International Nuclear Information System (INIS)

    Garg, Himanshu; Fuller, Frederick J.; Tompkins, Wayne A.F.

    2004-01-01

    Feline immunodeficiency virus (FIV) shares remarkable homology to primate lentiviruses, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). The process of lentiviral env glycoprotein-mediated fusion of membranes is essential for viral entry and syncytia formation. A detailed understanding of this phenomenon has helped identify new targets for antiviral drug development. Using a model based on syncytia formation between FIV env-expressing cells and a feline CD4+ T cell line we have studied the mechanism of FIV env-mediated fusion. Using this model we show that FIV env-mediated fusion mechanism and kinetics are similar to HIV env. Syncytia formation could be blocked by CXCR4 antagonist AMD3100, establishing the importance of this receptor in FIV gp120 binding. Interestingly, CXCR4 alone was not sufficient to allow fusion by a primary isolate of FIV, as env glycoprotein from FIV-NCSU 1 failed to induce syncytia in several feline cell lines expressing CXCR4. Syncytia formation could be inhibited at a post-CXCR4 binding step by synthetic peptide T1971, which inhibits interaction of heptad repeat regions of gp41 and formation of the hairpin structure. Finally, using site-directed mutagenesis, we also show that a conserved tryptophan-rich region in the membrane proximal ectodomain of gp41 is critical for fusion, possibly at steps post hairpin structure formation

  3. Feline leukemia virus infection requires a post-receptor binding envelope-dependent cellular component.

    Science.gov (United States)

    Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S

    2011-12-01

    Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.

  4. Correlates of hepatitis B virus and HIV knowledge among gay and bisexual homeless young adults in Hollywood.

    Science.gov (United States)

    Nyamathi, Adeline; Salem, Benissa; Reback, Cathy J; Shoptaw, Steven; Branson, Catherine M; Idemundia, Faith E; Kennedy, Barbara; Khalilifard, Farinaz; Marfisee, Mary; Liu, Yihang

    2013-01-01

    Homeless gay and bisexual (G/B) young men have multiple risk factors that increase their risk of contracting hepatitis B virus (HBV) and human immunodeficiency virus (HIV). This study used baseline information from structured instruments to assess correlates of knowledge to HIV and HBV infection from 267 young (18-39 year old) G/B active methamphetamine, cocaine, and crack-using homeless men enrolled in a longitudinal trial. The study is designed to reduce drug use and improve knowledge of hepatitis and HIV/AIDS in a community center in Hollywood, California. Regression modeling revealed that previous hepatitis education delivered to G/B men was associated with higher levels of HIV/AIDS and hepatitis knowledge. Moreover, higher HIV/AIDS knowledge was associated with combining sex and drinking alcohol. Associations with hepatitis B knowledge was found among G/B men who were engaging in sex while under the influence of marijuana, who were receiving support from non-drug users, and who had been homeless in the last 4 months. Although being informed about HIV/AIDS and hepatitis did not preclude risky sexual and drug use behavior, knowledge about the dangers of concurrent sex with substance use is important. As higher levels of knowledge of hepatitis was associated with more moderate drug use, early access to testing and teaching harm reduction strategies remain critical to reduce exposure and infection of HBV and HIV in this population.

  5. Quantitative analyses reveal distinct sensitivities of the capture of HIV-1 primary viruses and pseudoviruses to broadly neutralizing antibodies.

    Science.gov (United States)

    Kim, Jiae; Jobe, Ousman; Peachman, Kristina K; Michael, Nelson L; Robb, Merlin L; Rao, Mangala; Rao, Venigalla B

    2017-08-01

    Development of vaccines capable of eliciting broadly neutralizing antibodies (bNAbs) is a key goal to controlling the global AIDS epidemic. To be effective, bNAbs must block the capture of HIV-1 to prevent viral acquisition and establishment of reservoirs. However, the role of bNAbs, particularly during initial exposure of primary viruses to host cells, has not been fully examined. Using a sensitive, quantitative, and high-throughput qRT-PCR assay, we found that primary viruses were captured by host cells and converted into a trypsin-resistant form in less than five minutes. We discovered, unexpectedly, that bNAbs did not block primary virus capture, although they inhibited the capture of pseudoviruses/IMCs and production of progeny viruses at 48h. Further, viruses escaped bNAb inhibition unless the bNAbs were present in the initial minutes of exposure of virus to host cells. These findings will have important implications for HIV-1 vaccine design and determination of vaccine efficacy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Expression of Herpes Simplex Virus Thymidine Kinase/Ganciclovir by RNA Trans-Splicing Induces Selective Killing of HIV-Producing Cells

    Directory of Open Access Journals (Sweden)

    Carin K. Ingemarsdotter

    2017-06-01

    Full Text Available Antiviral strategies targeting hijacked cellular processes are less easily evaded by the virus than viral targets. If selective for viral functions, they can have a high therapeutic index. We used RNA trans-splicing to deliver the herpes simplex virus thymidine kinase-ganciclovir (HSV-tk/GCV cell suicide system into HIV-producing cells. Using an extensive in silico bioinformatics and RNA structural analysis approach, ten HIV RNA trans-splicing constructs were designed targeting eight different HIV splice donor or acceptor sites and were tested in cells expressing HIV. Trans-spliced mRNAs were identified in HIV-expressing cells using qRT-PCR with successful detection of fusion RNA transcripts between HIV RNA and the HSV-tk RNA transcripts from six of ten candidate RNA trans-splicing constructs. Conventional PCR and Sanger sequencing confirmed RNA trans-splicing junctions. Measuring cell viability in the presence or absence of GCV expression of HSV-tk by RNA trans-splicing led to selective killing of HIV-producing cells using either 3′ exon replacement or 5′ exon replacement in the presence of GCV. Five constructs targeting four HIV splice donor and acceptor sites, D4, A5, A7, and A8, involved in regulating the generation of multiple HIV RNA transcripts proved to be effective for trans-splicing mediated selective killing of HIV-infected cells, within which individual constructs targeting D4 and A8 were the most efficient.

  7. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    Science.gov (United States)

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  8. Exploration of the effect of sequence variations located inside the binding pocket of HIV-1 and HIV-2 proteases.

    Science.gov (United States)

    Triki, Dhoha; Billot, Telli; Visseaux, Benoit; Descamps, Diane; Flatters, Delphine; Camproux, Anne-Claude; Regad, Leslie

    2018-04-10

    HIV-2 protease (PR2) is naturally resistant to most FDA (Food and Drug Administration)-approved HIV-1 protease inhibitors (PIs), a major antiretroviral class. In this study, we compared the PR1 and PR2 binding pockets extracted from structures complexed with 12 ligands. The comparison of PR1 and PR2 pocket properties showed that bound PR2 pockets were more hydrophobic with more oxygen atoms and fewer nitrogen atoms than PR1 pockets. The structural comparison of PR1 and PR2 pockets highlighted structural changes induced by their sequence variations and that were consistent with these property changes. Specifically, substitutions at residues 31, 46, and 82 induced structural changes in their main-chain atoms that could affect PI binding in PR2. In addition, the modelling of PR1 mutant structures containing V32I and L76M substitutions revealed a cooperative mechanism leading to structural deformation of flap-residue 45 that could modify PR2 flexibility. Our results suggest that substitutions in the PR1 and PR2 pockets can modify PI binding and flap flexibility, which could underlie PR2 resistance against PIs. These results provide new insights concerning the structural changes induced by PR1 and PR2 pocket variation changes, improving the understanding of the atomic mechanism of PR2 resistance to PIs.

  9. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H

    1999-01-01

    The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...... including a protease inhibitor. Unstimulated and pokeweed mitogen (PWM)-, interleukin (IL)-2- and phytohaemagglutinin (PHA)-stimulated lymphocyte proliferative responses increased during follow-up reaching average levels from 1.3-fold (PHA) to 3.7-fold (PWM) above baseline values. The total CD4+ lymphocyte...

  10. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication.

    Directory of Open Access Journals (Sweden)

    Deepika Bhullar

    Full Text Available Japanese encephalitis virus (JEV has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5'- and 3'-non-coding regions (NCRs. The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB interacts in vitro with both the 5'-NCR of the positive-sense genomic RNA--5NCR(+, and its complementary sequence in the negative-sense replication intermediate RNA--3NCR(-. The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(- RNA with viral RNA-dependent RNA polymerase (NS5 protein, an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.

  11. Food insecurity may lead to incomplete HIV viral suppression and less immune reconstitution among HIV/hepatitis C virus-coinfected people.

    Science.gov (United States)

    Aibibula, W; Cox, J; Hamelin, A-M; Moodie, Eem; Naimi, A I; McLinden, T; Klein, M B; Brassard, P

    2018-02-01

    The aim of this study was to determine the impact of food insecurity (FI) on HIV viral load and CD4 count among people coinfected with HIV and hepatitis C virus (HCV). This study was conducted using data from the Food Security & HIV-HCV Sub-Study of the Canadian Co-Infection Cohort study. FI was measured using the adult scale of Health Canada's Household Food Security Survey Module and was classified into three categories: food security, moderate food insecurity and severe food insecurity. The association between FI, HIV viral load, and CD4 count was assessed using a stabilized inverse probability weighted marginal structural model. A total of 725 HIV/HCV-coinfected people with 1973 person-visits over 3 years of follow-up contributed to this study. At baseline, 23% of participants experienced moderate food insecurity and 34% experienced severe food insecurity. The proportion of people with undetectable HIV viral load was 75% and the median CD4 count was 460 [interquartile range (IQR): 300-665] cells/μL. People experiencing severe food insecurity had 1.47 times [95% confidence interval (CI): 1.14, 1.88] the risk of having detectable HIV viral load and a 0.91-fold (95% CI: 0.84, 0.98) increase in CD4 count compared with people who were food secure. These findings provide evidence of the negative impact of food insecurity on HIV viral load and CD4 count among HIV/HCV-coinfected people. © 2017 British HIV Association.

  12. Prevalence of human Papilloma Virus in HIV-positive and HIV-negative patients in the State of Bahia: a pilot study

    Directory of Open Access Journals (Sweden)

    Conceição Queiroz

    Full Text Available Human Papilloma Virus (HPV plays a central role in the development of cervical cancer. However, other coexisting factors, such as HIV infection, must be present for this to occur. We evaluated the prevalence of HPV in HIV-positive and HIV-negative patients in the city of Salvador , Bahia, Brazil, and determined the most prevalent types of HPV in these patients. Fifty-five cases were selected from among patients attending three institutions providing cervical pathology services in the city of Salvador. HIV testing (Elisa/WB, HPV-DNA testing by PCR, colposcopy, cytology and biopsy were carried out in all patients. The histopathological results were classified as follows: 11 cases were normal/negative for neoplasia, 15 were diagnosed as cervical intraepithelial neoplasia grade 1 (CIN 1, 10 were CIN 2, 15 cases were CIN 3 and there were four cases of invasive squamous cell carcinoma. Among the 55 patients studied, 43 tested positive for HPV-DNA and 20 for HIV. All HIV-positive patients were positive for HPV-DNA. The most prevalent types of HPV were HPV 16, 52, 58, 53, 54, 33 and 51, and there was little difference between the groups of HIV-positive and HIV-negative patients with respect to the type of HPV encountered. The HIV-positive patients were found to be infected with a greater number of types of HPV than the HIV-negative patients. This study corroborates the existence of regional variations in the distribution of certain types of HPV, which is probably due to the particular ethnic constitution found in this region of Brazil.

  13. Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase†

    Science.gov (United States)

    Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2009-01-01

    Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161

  14. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  15. Influence of membrane fluidity on human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Harada, Shinji; Yusa, Keisuke; Monde, Kazuaki; Akaike, Takaaki; Maeda, Yosuke

    2005-01-01

    For penetration of human immunodeficiency virus type 1 (HIV-1), formation of fusion-pores might be required for accumulating critical numbers of fusion-activated gp41, followed by multiple-site binding of gp120 with receptors, with the help of fluidization of the plasma membrane and viral envelope. Correlation between HIV-1 infectivity and fluidity was observed by treatment of fluidity-modulators, indicating that infectivity was dependent on fluidity. A 5% decrease in fluidity suppressed the HIV-1 infectivity by 56%. Contrarily, a 5% increase in fluidity augmented the infectivity by 2.4-fold. An increased temperature of 40 deg C or treatment of 0.2% xylocaine after viral adsorption at room temperature enhanced the infectivity by 2.6- and 1.5-fold, respectively. These were inhibited by anti-CXCR4 peptide, implying that multiple-site binding was accelerated at 40 deg C or by xylocaine. Thus, fluidity of both the plasma membrane and viral envelope was required to form the fusion-pore and to complete the entry of HIV-1

  16. [Molecular tests in diagnosis of Cytomegalovirus (CMV), human herpesvirus 6 (HHV-6) and Epstein-Barr virus (EBV) using real-time PCR in HIV positive and HIV-negative pregnant women in Ouagadougou, Burkina Faso].

    Science.gov (United States)

    Ouedraogo, Alice Rogomenoma; Kabre, Madeleine; Bisseye, Cyrille; Zohoncon, Théodora Mahoukèdè; Asshi, Maleki; Soubeiga, Serge Théophile; Diarra, Birama; Traore, Lassina; Djigma, Florencia Wendkuuni; Ouermi, Djénéba; Pietra, Virginio; Barro, Nicolas; Simpore, Jacques

    2016-01-01

    Herpesvirus EBV, CMV and HHV-6 are viruses that evolve based on pandemic modeling and are responsible for congenital infections causing severe sequelae in infants. This study aims to determine the prevalence of CMV, EBV and HHV-6 among HIV (+) and HIV (-) pregnant women in Ouagadougou. In this study 200 blood plasma samples taken from pregnant women, of whom 100 with HIV(+) and 100 with HIV(-), were analyzed using multiplex real-time PCR which detected three infections (EBV, CMV and HHV-6). Out of the 200 samples tested, 18(9.0%) were positive for at least one of the three viruses, 12(6.0%) were positive for EBV, 13(6.5%) were positive for CMV and 12(6.0%) were positive for HHV-6. Among the 18 cases with infections, 10 cases (55.6%) had co-infections of whom 90.0% (9/10) with multiple EBV/CMV/HHV6 infection and 10.0% with EBV/HHV6 co-infection. HHVs infection rate was higher among HIV (-) pregnant women than among HIV (+) pregnant women (12.0% versus 6.0%). Among HIV (+) pregnant women, PCR showed 7.1% (6/85) of HHVs infection in patients who were not treated with ARV against 0% in those treated with ARVs. Herpes virus infections are a common condition in pregnant women in Burkina Faso. They may represent a real threat to pregnant women because of complications and risks of infection in infants.

  17. Feline immunodeficiency virus model for designing HIV/AIDS vaccines.

    Science.gov (United States)

    Yamamoto, Janet K; Sanou, Missa P; Abbott, Jeffrey R; Coleman, James K

    2010-01-01

    Feline immunodeficiency virus (FIV) discovered in 1986 is a lentivirus that causes AIDS in domestic cats. FIV is classified into five subtypes (A-E), and all subtypes and circulating intersubtype recombinants have been identified throughout the world. A commercial FIV vaccine, consisting of inactivated subtype-A and -D viruses (Fel-O-Vax FIV, Fort Dodge Animal Health), was released in the United States in 2002. The United States Department of Agriculture approved the commercial release of Fel-O-Vax FIV based on two efficacy trials using 105 laboratory cats and a major safety trial performed on 689 pet cats. The prototype and commercial FIV vaccines had broad prophylactic efficacy against global FIV subtypes and circulating intersubtype recombinants. The mechanisms of cross-subtype efficacy are attributed to FIV-specific T-cell immunity. Findings from these studies are being used to define the prophylactic epitopes needed for an HIV-1 vaccine for humans.

  18. Population immunity to measles virus and the effect of HIV-1 infection after a mass measles vaccination campaign in Lusaka, Zambia: a cross-sectional survey.

    Science.gov (United States)

    Lowther, Sara A; Curriero, Frank C; Kalish, Brian T; Shields, Timothy M; Monze, Mwaka; Moss, William J

    2009-03-21

    Measles control efforts are hindered by challenges in sustaining high vaccination coverage, waning immunity in HIV-1-infected children, and clustering of susceptible individuals. Our aim was to assess population immunity to measles virus after a mass vaccination campaign in a region with high HIV prevalence. 3 years after a measles supplemental immunisation activity (SIA), we undertook a cross-sectional survey in Lusaka, Zambia. Households were randomly selected from a satellite image. Children aged 9 months to 5 years from selected households were eligible for enrolment. A questionnaire was administered to the children's caregivers to obtain information about measles vaccination history and history of measles. Oral fluid samples were obtained from children and tested for antibodies to measles virus and HIV-1 by EIA. 1015 children from 668 residences provided adequate specimens. 853 (84%) children had a history of measles vaccination according to either caregiver report or immunisation card. 679 children (67%) had antibodies to measles virus, and 64 (6%) children had antibodies to HIV-1. Children with antibodies to HIV-1 were as likely to have no history of measles vaccination as those without antibodies to HIV-1 (odds ratio [OR] 1.17, 95% CI 0.57-2.41). Children without measles antibodies were more likely to have never received measles vaccine than those with antibodies (adjusted OR 2.50, 1.69-3.71). In vaccinated children, 33 (61%) of 54 children with antibodies to HIV-1 also had antibodies to measles virus, compared with 568 (71%) of 796 children without antibodies to HIV-1 (p=0.1). 3 years after an SIA, population immunity to measles was insufficient to interrupt measles virus transmission. The use of oral fluid and satellite images for sampling are potential methods to assess population immunity and the timing of SIAs.

  19. HIV and Pregnancy

    Science.gov (United States)

    ... Management Education & Events Advocacy For Patients About ACOG HIV and Pregnancy Home For Patients Search FAQs HIV ... HIV and Pregnancy FAQ113, July 2017 PDF Format HIV and Pregnancy Pregnancy What is human immunodeficiency virus ( ...

  20. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  1. Epidemiological and clinical characteristics of hepatitis B virus in HIV-infected patients in Guangdong, China.

    Science.gov (United States)

    Huang, S M; Cai, W P; Hu, F Y; Lan, Y; Liao, B L; Chen, Y P; Tang, X P

    2016-09-01

    This study investigated the epidemiological and clinical characteristics of hepatitis B virus (HBV) in HIV-infected adults at the time of antiretroviral therapy (ART) initiation in Guangdong province, China. A total of 2793 HIV-infected adults were enrolled between January 2004 and September 2011. Demographic data and laboratory parameters were collected, HBV-DNA levels were measured, and HBV genotypes were identified before ART initiation. The prevalence of hepatitis B surface antigen (HBsAg) in HIV-infected patients was 13.2%. A total of 266 HIV/HBV co-infected patients and 1469 HIV mono-infected patients were recruited. The median alanine aminotransferase and aspartate aminotransferase levels of HIV/HBV co-infected patients were higher than HIV mono-infected patients (32 U/L vs. 22 U/L, p HIV/HBV co-infected patients was lower than HIV mono-infected patients (59 cells/mm(3) vs. 141 cells/mm(3), p study indicates a high prevalence of HBsAg in HIV-infected adults in Guangdong. The level of CD4 cell count in HIV/HBV co-infected patients was much lower than HIV mono-infected patients, especially in patients who were HBeAg-positive and had a high level of HBV-DNA. The predominant HBV genotype in HIV/HBV co-infected patients is genotype B. © The Author(s) 2015.

  2. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2017-10-01

    Full Text Available Human immunodeficiency virus (HIV hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR. This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS. Quantitative enzyme-linked immunoadsorption assays (ELISA demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.

  3. When human immunodeficiency virus (HIV) treatment goals conflict with guideline-based opioid prescribing: A qualitative study of HIV treatment providers.

    Science.gov (United States)

    Starrels, Joanna L; Peyser, Deena; Haughton, Lorlette; Fox, Aaron; Merlin, Jessica S; Arnsten, Julia H; Cunningham, Chinazo O

    2016-01-01

    Human immunodeficiency virus (HIV)-infected patients have a high prevalence of chronic pain and opioid use, making HIV care a critical setting for improving the safety of opioid prescribing. Little is known about HIV treatment providers' perspectives about opioid prescribing to patients with chronic pain. The authors administered a questionnaire and conducted semistructured telephone interviews with 18 HIV treatment providers (infectious disease specialists, general internists, family medicine physicians, nurse practitioners, and physician assistants) in Bronx, NY. Open-ended interview questions focused on providers' experiences, beliefs, and attitudes about opioid prescribing and about the use of guideline-based opioid prescribing practices (conservative prescribing, and monitoring for and responding to misuse). Transcripts were thematically analyzed using a modified grounded theory approach. Eighteen HIV treatment providers included 13 physicians, four nurse practitioners, and one physician assistant. They were 62% female, 56% white, and practiced as HIV treatment providers for a mean of 14.6 years. Most reported always or almost always using opioid treatment agreements (56%) and urine drug testing (61%) with their patients on long-term opioid therapy. HIV treatment providers tended to view opioid prescribing for chronic pain within the "HIV paradigm," a set of priorities and principles defined by three key themes: (1) primacy of HIV goals, (2) familiarity with substance use, and (3) the clinician as ally. The HIV paradigm sometimes supported, and sometimes conflicted with, guideline-based opioid prescribing practices. For HIV treatment providers, perceived alignment with the HIV paradigm determined whether and how guideline-based opioid prescribing practices were adopted. For example, the primacy of HIV goals superseded conservative opioid prescribing when providers prescribed opioids with the goal of retaining patients in HIV care. These findings highlight

  4. Hepatitis E virus IgG seroprevalence in HIV patients and blood donors, west-central Poland

    Directory of Open Access Journals (Sweden)

    Maciej Bura

    2017-08-01

    Conclusions: Wielkopolska Region in west-central Poland is an area hyperendemic for HEV infection. In this part of Poland, the exposure of HIV-positive persons to this virus is not greater than that of healthy blood donors.

  5. Structure and function of A41, a vaccinia virus chemokine binding protein.

    Directory of Open Access Journals (Sweden)

    Mohammad W Bahar

    2008-01-01

    Full Text Available The vaccinia virus (VACV A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI, and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM chemokine-chemokine receptor interactions.

  6. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia.

    Science.gov (United States)

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W; Swanstrom, Ronald

    2009-04-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2) mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2) range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+) T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.

  7. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia.

    Directory of Open Access Journals (Sweden)

    Gretja Schnell

    2009-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 invades the central nervous system (CNS shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA, targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2 mean = 2.27 days. However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2 range = 9.85 days to no initial decay. The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.

  8. A morphological study of penile chancroid lesions in human immunodeficiency virus (HIV)-positive and -negative African men with a hypothesis concerning the role of chancroid in HIV transmission.

    Science.gov (United States)

    Magro, C M; Crowson, A N; Alfa, M; Nath, A; Ronald, A; Ndinya-Achola, J O; Nasio, J

    1996-10-01

    Chancroid, the most common cause of genital ulceration in Africa, is known to be associated epidemiologically with heterosexual transmission of human immunodeficiency virus (HIV). The pathophysiological mechanisms by which chancroid might facilitate the spread of HIV are obscure. To investigate the role of chancroid in HIV transmission, the authors studied the histological features of biopsies from 11 men with penile chancroid lesions including five who were serologically positive for HIV. The histomorphologic and immunophenotypic nature of the inflammatory infiltrates suggests that there is a significant role for cell-mediated immunity in the host response to Hemophilus ducreyi infection. This response may be critical to the role of chancroid in HIV transmission.

  9. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    Directory of Open Access Journals (Sweden)

    Shchelkunov Sergei N

    2010-10-01

    Full Text Available Abstract Background Variola virus (VARV the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  10. Prevalence and risk of hepatitis e virus infection in the HIV population of Nepal

    NARCIS (Netherlands)

    Shrestha, A. (Ananta); Adhikari, A. (Anurag); Bhattarai, M. (Manjula); Rauniyar, R. (Ramanuj); J.D. Debes; P.A. Boonstra (André); Lama, T.K. (Thupten K.); Al Mahtab, M. (Mamun); Butt, A.S. (Amna Subhan); Akbar, S.M.F. (Sheikh Mohammad Fazle); Aryal, N. (Nirmal); Karn, S. (Sapana); Manandhar, K.D. (Krishna Das); Gupta, B.P. (Birendra Prasad)

    2017-01-01

    textabstractBackground: Infection with the hepatitis E virus (HEV) can cause acute hepatitis in endemic areas in immune-competent hosts, as well as chronic infection in immune-compromised subjects in non-endemic areas. Most studies assessing HEV infection in HIV-infected populations have been

  11. HIV and AIDS

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español HIV and AIDS KidsHealth / For Kids / HIV and AIDS ... actually the virus that causes the disease AIDS. HIV Hurts the Immune System People who are HIV ...

  12. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    Science.gov (United States)

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  13. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  14. Management and Treatment of Hepatitis C Virus in Patients with HIV and Hepatitis C Virus Coinfection: A Practical Guide for Health Care Professionals

    Directory of Open Access Journals (Sweden)

    Pierre Côté

    2007-01-01

    Full Text Available Concomitant HIV and hepatitis C virus (HCV is a common yet complex coinfection. The present document is a practical guide for treating HCV infection in people coinfected with HIV. Effective antiretroviral therapies have prolonged survival rates for HIV-infected people over the past decade, which have made latent complications of HCV major causes of morbidity and mortality in these patients. Advances in the treatment of HCV (eg, combined pegylated interferon and ribavirin offer the possibility of eradicating HCV infection in coinfected persons. The treatment of HCV must be considered in all cases. Intensive management of the adverse effects of HCV treatment is one of the factors for the success of these therapies. HCV eradication is predicted to decrease the mortality associated with coinfection and reduce the toxicity of HIV treatment.

  15. Management and treatment of hepatitis C virus in patients with HIV and hepatitis C virus coinfection: A practical guide for health care professionals.

    Science.gov (United States)

    Côté, Pierre; Baril, Jean-Guy; Hébert, Marie-Nicole; Klein, Marina; Lalonde, Richard; Poliquin, Marc; Rouleau, Danielle; Therrien, Rachel; Vézina, Sylvie; Willems, Bernard; Dion, Harold; Junod, Patrice; Lapointe, Normand; Lévesque, Dominic; Pinault, Lyse; Tremblay, Cécile; Trottier, Benoît; Trottier, Sylvie; Tsoukas, Chris; Piché, Alain

    2007-09-01

    Concomitant HIV and hepatitis C virus (HCV) is a common yet complex coinfection. The present document is a practical guide for treating HCV infection in people coinfected with HIV. Effective antiretroviral therapies have prolonged survival rates for HIV-infected people over the past decade, which have made latent complications of HCV major causes of morbidity and mortality in these patients. Advances in the treatment of HCV (eg, combined pegylated interferon and ribavirin) offer the possibility of eradicating HCV infection in coinfected persons. The treatment of HCV must be considered in all cases. Intensive management of the adverse effects of HCV treatment is one of the factors for the success of these therapies. HCV eradication is predicted to decrease the mortality associated with coinfection and reduce the toxicity of HIV treatment.

  16. Management and treatment of hepatitis C virus in patients with HIV and hepatitis C virus coinfection: A practical guide for health care professionals

    Science.gov (United States)

    Côté, Pierre; Baril, Jean-Guy; Hébert, Marie-Nicole; Klein, Marina; Lalonde, Richard; Poliquin, Marc; Rouleau, Danielle; Therrien, Rachel; Vézina, Sylvie; Willems, Bernard; Dion, Harold; Junod, Patrice; Lapointe, Normand; Lévesque, Dominic; Pinault, Lyse; Tremblay, Cécile; Trottier, Benoît; Trottier, Sylvie; Tsoukas, Chris; Piché, Alain

    2007-01-01

    Concomitant HIV and hepatitis C virus (HCV) is a common yet complex coinfection. The present document is a practical guide for treating HCV infection in people coinfected with HIV. Effective antiretroviral therapies have prolonged survival rates for HIV-infected people over the past decade, which have made latent complications of HCV major causes of morbidity and mortality in these patients. Advances in the treatment of HCV (eg, combined pegylated interferon and ribavirin) offer the possibility of eradicating HCV infection in coinfected persons. The treatment of HCV must be considered in all cases. Intensive management of the adverse effects of HCV treatment is one of the factors for the success of these therapies. HCV eradication is predicted to decrease the mortality associated with coinfection and reduce the toxicity of HIV treatment. PMID:18923731

  17. CXCR4-using HIV variants in a cohort of Black men who have sex with men: HIV Prevention Trials Network 061.

    Science.gov (United States)

    Chen, Iris; Huang, Wei; Connor, Matthew B; Frantzell, Arne; Cummings, Vanessa; Beauchamp, Geetha G; Griffith, Sam; Fields, Sheldon D; Scott, Hyman M; Shoptaw, Steven; Del Rio, Carlos; Magnus, Manya; Mannheimer, Sharon; Tieu, Hong-Van; Wheeler, Darrell P; Mayer, Kenneth H; Koblin, Beryl A; Eshleman, Susan H

    2016-07-01

    To evaluate factors associated with HIV tropism among Black men who have sex with men (MSM) in the United States enrolled in a clinical study (HIV Prevention Trials Network 061). HIV tropism was analyzed using a phenotypic assay (Trofile assay, Monogram Biosciences). Samples were analyzed from 43 men who were HIV infected at enrollment and reported either exclusive insertive intercourse or exclusive receptive intercourse; samples were also analyzed from 20 men who were HIV uninfected at enrollment and seroconverted during the study. Clonal analysis of individual viral variants was performed for seroconverters who had dual/mixed (DM) viruses. DM viruses were detected in samples from 11 (26%) of the 43 HIV-infected men analyzed at the enrollment visit; HIV tropism did not differ between those reporting exclusive insertive vs receptive intercourse. DM viruses were also detected in five (25%) of the 20 seroconverters. DM viruses were associated with lower CD4 cell counts. Seroconverters with DM viruses had dual-tropic viruses only or mixed populations of CCR5- and dual-tropic viruses. DM viruses were frequently detected among Black MSM in this study, including seroconverters. Further studies are needed to understand factors driving transmission and selection of CXCR4- and dual-tropic viruses among Black MSM.

  18. The virus–receptor interaction in the replication of feline immunodeficiency virus (FIV)☆

    Science.gov (United States)

    Willett, Brian J; Hosie, Margaret J

    2013-01-01

    The feline and human immunodeficiency viruses (FIV and HIV) target helper T cells selectively, and in doing so they induce a profound immune dysfunction. The primary determinant of HIV cell tropism is the expression pattern of the primary viral receptor CD4 and co-receptor(s), such as CXCR4 and CCR5. FIV employs a distinct strategy to target helper T cells; a high affinity interaction with CD134 (OX40) is followed by binding of the virus to its sole co-receptor, CXCR4. Recent studies have demonstrated that the way in which FIV interacts with its primary receptor, CD134, alters as infection progresses, changing the cell tropism of the virus. This review examines the contribution of the virus–receptor interaction to replication in vivo as well as the significance of these findings to the development of vaccines and therapeutics. PMID:23992667

  19. Management and Treatment of Hepatitis B Virus in Patients with Hiv Infection: A Practical Guide for Health Care Professionals

    Directory of Open Access Journals (Sweden)

    Marina B. Klein

    2011-01-01

    Full Text Available The management and treatment of HIV and hepatitis B virus (HBV-coinfected patients present specific challenges for clinicians. The morbidity and mortality related to these concomitant infections are growing concerns, while the use of antiviral drugs effective against both viruses complicates therapeutic decision making. The present document provides guidelines for physicians regarding care and treatment of patients coinfected with HIV and HBV. Primary prevention of HBV in HIV-positive patients is achieved through appropriate vaccination schedules. Follow-up before treatment of HBV may include liver biopsy, screening for hepatocellular carcinoma and testing for esophageal varicies in cases of cirrhosis. In HBV-infected patients requiring treatment, recommendations regarding initiation, duration and choice of first-line drugs are made. Finally, in the case of resistance, appropriate alternative therapies are necessary.

  20. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity.

    Science.gov (United States)

    Couñago, Rafael M; Knapp, Karen M; Nakatani, Yoshio; Fleming, Stephen B; Corbett, Michael; Wise, Lyn M; Mercer, Andrew A; Krause, Kurt L

    2015-07-07

    The chemokine binding protein (CKBP) from orf virus (ORFV) binds with high affinity to chemokines from three classes, C, CC, and CXC, making it unique among poxvirus CKBPs described to date. We present its crystal structure alone and in complex with three CC chemokines, CCL2, CCL3, and CCL7. ORFV CKBP possesses a β-sandwich fold that is electrostatically and sterically complementary to its binding partners. Chemokines bind primarily through interactions involving the N-terminal loop and a hydrophobic recess on the ORFV CKBP β-sheet II surface, and largely polar interactions between the chemokine 20s loop and a negatively charged surface groove located at one end of the CKBP β-sheet II surface. ORFV CKBP interacts with leukocyte receptor and glycosaminoglycan binding sites found on the surface of bound chemokines. SEC-MALLS and chromatographic evidence is presented supporting that ORFV CKBP is a dimer in solution over a broad range of protein concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

    Science.gov (United States)

    Wu, Kailang; Chen, Lang; Peng, Guiqing; Zhou, Wenbo; Pennell, Christopher A; Mansky, Louis M; Geraghty, Robert J; Li, Fang

    2011-06-01

    How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

  2. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Directory of Open Access Journals (Sweden)

    Li Huang

    Full Text Available Highly active antiretroviral therapy (HAART has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  3. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  4. HIV tropism and decreased risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Nancy A Hessol

    2010-12-01

    Full Text Available During the first two decades of the U.S. AIDS epidemic, and unlike some malignancies, breast cancer risk was significantly lower for women with human immunodeficiency virus (HIV infection compared to the general population. This deficit in HIV-associated breast cancer could not be attributed to differences in survival, immune deficiency, childbearing or other breast cancer risk factors. HIV infects mononuclear immune cells by binding to the CD4 molecule and to CCR5 or CXCR4 chemokine coreceptors. Neoplastic breast cells commonly express CXCR4 but not CCR5. In vitro, binding HIV envelope protein to CXCR4 has been shown to induce apoptosis of neoplastic breast cells. Based on these observations, we hypothesized that breast cancer risk would be lower among women with CXCR4-tropic HIV infection.We conducted a breast cancer nested case-control study among women who participated in the WIHS and HERS HIV cohort studies with longitudinally collected risk factor data and plasma. Cases were HIV-infected women (mean age 46 years who had stored plasma collected within 24 months of breast cancer diagnosis and an HIV viral load≥500 copies/mL. Three HIV-infected control women, without breast cancer, were matched to each case based on age and plasma collection date. CXCR4-tropism was determined by a phenotypic tropism assay. Odds ratios (OR and 95% confidence intervals (CI for breast cancer were estimated by exact conditional logistic regression. Two (9% of 23 breast cancer cases had CXCR4-tropic HIV, compared to 19 (28% of 69 matched controls. Breast cancer risk was significantly and independently reduced with CXCR4 tropism (adjusted odds ratio, 0.10, 95% CI 0.002-0.84 and with menopause (adjusted odds ratio, 0.08, 95% CI 0.001-0.83. Adjustment for CD4+ cell count, HIV viral load, and use of antiretroviral therapy did not attenuate the association between infection with CXCR4-tropic HIV and breast cancer.Low breast cancer risk with HIV is specifically linked

  5. Antiretroviral drug-related liver mortality among HIV-positive persons in the absence of hepatitis B or C virus coinfection

    DEFF Research Database (Denmark)

    Kovari, Helen; Sabin, Caroline A; Ledergerber, Bruno

    2013-01-01

    Liver diseases are the leading causes of death in human immunodeficiency virus (HIV)-positive persons since the widespread use of combination antiretroviral treatment (cART). Most of these deaths are due to hepatitis C (HCV) or B (HBV) virus coinfections. Little is known about other causes...

  6. Hepatitis B and C virus co-infections in human immunodeficiency virus positive North Indian patients

    Science.gov (United States)

    Gupta, Swati; Singh, Sarman

    2006-01-01

    AIM: To determine the prevalence of hepatitis B and C virus infections in human immunodeficiency virus (HIV) -positive patients at a tertiary care hospital in New Delhi, India. METHODS: Serum samples from 451 HIV positive patients were analyzed for HBsAg and HCV antibodies during three years (Jan 2003-Dec 2005). The control group comprised of apparently healthy bone-marrow and renal donors. RESULTS: The study population comprised essentially of heterosexually transmitted HIV infection. The prevalence rate of HBsAg in this population was 5.3% as compared to 1.4% in apparently healthy donors (P < 0.001). Though prevalence of HCV co-infection (2.43%) was lower than HBV in this group of HIV positive patients, the prevalence was significantly higher (P < 0.05) than controls (0.7%). Triple infection of HIV, HBV and HCV was not detected in any patient. CONCLUSION: Our study shows a significantly high prevalence of hepatitis virus infections in HIV infected patients. Hepatitis viruses in HIV may lead to faster progression to liver cirrhosis and a higher risk of antiretroviral therapy induced hepatotoxicity. Therefore, it would be advisable to detect hepatitis virus co-infections in these patients at the earliest. PMID:17106941

  7. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy.

    Science.gov (United States)

    Halim, S S; Collins, D N; Ramsingh, A I

    2000-10-10

    The ultimate goal in the treatment of HIV-infected persons is to prevent disease progression. A strategy to accomplish this goal is to use chemotherapy to reduce viral load followed by immunotherapy to stimulate HIV-specific immune responses that are observed in long-term asymptomatic individuals. An effective, live, recombinant virus, expressing HIV sequences, would be capable of inducing both CTL and CD4(+) helper T cell responses. To accomplish these goals, the viral vector must be immunogenic yet retain its avirulent phenotype in a T cell-deficient host. We have identified a coxsackievirus variant, CB4-P, that can induce protective immunity against a virulent variant. In addition, the CB4-P variant remains avirulent in mice lacking CD4(+) helper T cells, suggesting that CB4-P may be uniquely suited as a viral vector for a therapeutic HIV vaccine. Two strategies designed to elicit CTL and CD4(+) helper T cell responses were used to construct CB4-P/HIV recombinants. Recombinant viruses were viable, genetically stable, and retained the avirulent phenotype of the parental virus. In designing a viral vector for vaccine development, an issue that must be addressed is whether preexisting immunity to the vector would affect subsequent administration of the recombinant virus. Using a test recombinant, we showed that prior exposure to the parental CB4-P virus did not affect the ability of the recombinant to induce a CD4(+) T cell response against the foreign sequence. The results suggest that a "cocktail" of coxsackie/HIV recombinants may be useful as a therapeutic HIV vaccine.

  8. Preclinical assessment of HIV vaccines and microbicides by repeated low-dose virus challenges.

    Directory of Open Access Journals (Sweden)

    Roland R Regoes

    2005-08-01

    Full Text Available Trials in macaque models play an essential role in the evaluation of biomedical interventions that aim to prevent HIV infection, such as vaccines, microbicides, and systemic chemoprophylaxis. These trials are usually conducted with very high virus challenge doses that result in infection with certainty. However, these high challenge doses do not realistically reflect the low probability of HIV transmission in humans, and thus may rule out preventive interventions that could protect against "real life" exposures. The belief that experiments involving realistically low challenge doses require large numbers of animals has so far prevented the development of alternatives to using high challenge doses.Using statistical power analysis, we investigate how many animals would be needed to conduct preclinical trials using low virus challenge doses. We show that experimental designs in which animals are repeatedly challenged with low doses do not require unfeasibly large numbers of animals to assess vaccine or microbicide success.Preclinical trials using repeated low-dose challenges represent a promising alternative approach to identify potential preventive interventions.

  9. Seroprevalence of the human immunodeficiency virus (HIV among pregnant women in eastern Sudan

    Directory of Open Access Journals (Sweden)

    Abdalla Ali Mohammed

    2011-03-01

    Full Text Available Summary: We conducted a cross-sectional survey to determine the prevalence of the human immunodeficiency virus (HIV among pregnant women attending a major hospital in Kassala state, eastern Sudan. Unlinked anonymous testing of residual blood specimens, which were originally collected for other routine clinical purposes, was performed using rapid immunochromatographic assays. In total, 430 residual blood specimens were consecutively collected over a 6-week period (April–May 2010. Specimens from the antenatal clinic (ANC constituted 50.7% (218/430 of the total whereas specimens from the labour ward accounted for the remaining 49.3% (212/430. The median age of pregnant women was 29 years (range 16–40. The prevalence of HIV-1 infection was 0.23% (1/430 [95% confidence interval = 0.01–1.29%]. The only reactive specimen came from a 20-year-old ANC attendee. We report low HIV prevalence among pregnant women in eastern Sudan but further research is needed to confirm our findings. An integrated framework to diagnose and treat maternal HIV infection should be developed in order to prevent transmission to infants. Keywords: HIV, Prevalence, Pregnancy, Eastern Sudan

  10. Feline Immunodeficiency Virus (FIV Neutralization: A Review

    Directory of Open Access Journals (Sweden)

    Margaret J. Hosie

    2011-10-01

    Full Text Available One of the major obstacles that must be overcome in the design of effective lentiviral vaccines is the ability of lentiviruses to evolve in order to escape from neutralizing antibodies. The primary target for neutralizing antibodies is the highly variable viral envelope glycoprotein (Env, a glycoprotein that is essential for viral entry and comprises both variable and conserved regions. As a result of the complex trimeric nature of Env, there is steric hindrance of conserved epitopes required for receptor binding so that these are not accessible to antibodies. Instead, the humoral response is targeted towards decoy immunodominant epitopes on variable domains such as the third hypervariable loop (V3 of Env. For feline immunodeficiency virus (FIV, as well as the related human immunodeficiency virus-1 (HIV-1, little is known about the factors that lead to the development of broadly neutralizing antibodies. In cats infected with FIV and patients infected with HIV-1, only rarely are plasma samples found that contain antibodies capable of neutralizing isolates from other clades. In this review we examine the neutralizing response to FIV, comparing and contrasting with the response to HIV. We ask whether broadly neutralizing antibodies are induced by FIV infection and discuss the comparative value of studies of neutralizing antibodies in FIV infection for the development of more effective vaccine strategies against lentiviral infections in general, including HIV-1.

  11. Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way

    Directory of Open Access Journals (Sweden)

    Bosch Valerie

    2006-12-01

    Full Text Available Abstract Background The availability of cell lines releasing fluorescent viral particles can significantly support a variety of investigations, including the study of virus-cell interaction and the screening of antiviral compounds. Regarding HIV-1, the recovery of such biologic reagents represents a very hard challenge due to the intrinsic cytotoxicity of many HIV-1 products. We sought to overcome such a limitation by using a cell line releasing HIV-1 particles in an inducible way, and by exploiting the ability of a HIV-1 Nef mutant to be incorporated in virions at quite high levels. Results Here, we report the isolation and characterization of a HIV-1 packaging cell line, termed 18-4s, able to release valuable amounts of fluorescent HIV-1 based Virus-Like Particles (VLPs in an inducible way. 18-4s cells were recovered by constitutively expressing the HIV-1 NefG3C mutant fused with the enhanced-green fluorescent protein (NefG3C-GFP in a previously isolated inducible HIV-1 packaging cell line. The G3C mutation creates a palmitoylation site which results in NefG3C-GFP incorporation into virions greatly exceeding that of the wild type counterpart. Upon induction of 18-4s cells with ponasterone A and sodium butyrate, up to 4 μg/ml of VLPs, which had incorporated about 150 molecules of NefG3C-GFP per viral particle, were released into the culture supernatant. Due to their intrinsic strong fluorescence, the 18-4s VLPs were easily detectable by a novel cytofluorometric-based assay developed here. The treatment of target cells with fluorescent 18-4 VLPs pseudotyped with different glycoprotein receptors resulted in these becoming fluorescent as early as two hours post-challenge. Conclusion We created a stable cell line releasing fluorescent HIV-1 based VLPs upon induction useful for several applications including the study of virus-cell interactions and the screening of antiviral compounds.

  12. Mechanisms of human immunodeficiency virus type 2 RNA packaging

    DEFF Research Database (Denmark)

    Ni, Na; Nikolaitchik, Olga A; Dilley, Kari A

    2011-01-01

    do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins......Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2...... proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results...

  13. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  14. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    Science.gov (United States)

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  15. Identifying HIV-1 dual infections

    Directory of Open Access Journals (Sweden)

    Cornelissen Marion

    2007-09-01

    Full Text Available Abstract Transmission of human immunodeficiency virus (HIV is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus and superinfections (second infection after a specific immune response to the first infecting strain has developed can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR strains could recombine to produce a pan-resistant, transmittable virus. We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA, counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the

  16. Human immunodeficiency virus type 1 KK26-27 matrix mutants display impaired infectivity, circularization and integration but not nuclear import

    International Nuclear Information System (INIS)

    Mannioui, Abdelkrim; Nelson, Elisabeth; Schiffer, Cecile

    2005-01-01

    We analyzed the role of human immunodeficiency virus (HIV)-1 matrix protein (MA) during the virus replication afferent phase. Single-round infection of H9 T lymphocytes showed that the combined mutation of MA Lys residues 26-27 in MA reported nuclear localization signal (NLS)-1 [Haffar, O.K., Popov, S., Dubrovsky, L., Agostini, I., Tang, H., Pushkarsky, T., Nadler, S.G., Bukrinsky, M., 2000. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J. Mol. Biol. 299 (2): 359-368] impaired infectivity, abrogated 2-LTR-circle formation and significantly reduced integration. However, the mutation did not affect viral DNA docking to chromatin in either interphasic or mitotic cells, indicating that MA N-terminal basic domain should not represent a major determinant of HIV-1 nuclear import in T lymphocytes. These data point to a previously unreported role of MA in the late, post-chromatin-binding, afferent phase of HIV-1 replication cycle

  17. Frequency of human immunodeficiency virus type-2 in hiv infected patients in Maputo City, Mozambique

    Directory of Open Access Journals (Sweden)

    Bhatt Nilesh

    2011-08-01

    Full Text Available Abstract The HIV/AIDS pandemic is primarily caused by HIV-1. Another virus type, HIV-2, is found mainly in West African countries. We hypothesized that population migration and mobility in Africa may have facilitated the introduction and spreading of HIV-2 in Mozambique. The presence of HIV-2 has important implications for diagnosis and choice of treatment of HIV infection. Hence, the aim of this study was to estimate the prevalence of HIV-2 infection and its genotype in Maputo, Mozambique. HIV-infected individuals (N = 1,200 were consecutively enrolled and screened for IgG antibodies against HIV-1 gp41 and HIV-2 gp36 using peptide-based enzyme immunoassays (pepEIA. Specimens showing reactivity on the HIV-2 pepEIA were further tested using the INNO-LIA immunoblot assay and HIV-2 PCR targeting RT and PR genes. Subtype analysis of HIV-2 was based on the protease gene. After screening with HIV-2 pepEIA 1,168 were non-reactive and 32 were reactive to HIV-2 gp36 peptide. Of this total, 30 specimens were simultaneously reactive to gp41 and gp36 pepEIA while two samples reacted solely to gp36 peptide. Only three specimens containing antibodies against gp36 and gp105 on the INNO-LIA immunoblot assay were found to be positive by PCR to HIV-2 subtype A. The proportion of HIV-2 in Maputo City was 0.25% (90%CI 0.01-0.49. The HIV epidemic in Southern Mozambique is driven by HIV-1, with HIV-2 also circulating at a marginal rate. Surveillance program need to improve HIV-2 diagnosis and consider periodical survey aiming to monitor HIV-2 prevalence in the country.

  18. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.

    2001-01-01

    We have previously reported the cloning and characterisation of the heavy and light chain variable domain genes encoding three monoclonal antibodies (Mabs) that bind viral haemorrhagic septicaemia virus (VHSV). Two of these antibodies, 3F1H10 and 3F1A2 both neutralised the virus though 3F1A2...... appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using...

  19. Novel anti-HIV peptides containing multiple copies of artificially designed heptad repeat motifs

    International Nuclear Information System (INIS)

    Shi Weiguo; Qi Zhi; Pan Chungen; Xue Na; Debnath, Asim K.; Qie Jiankun; Jiang Shibo; Liu Keliang

    2008-01-01

    The peptidic anti-HIV drug T20 (Fuzeon) and its analog C34 share a common heptad repeat (HR) sequence, but they have different functional domains, i.e., pocket- and lipid-binding domains (PBD and LBD, respectively). We hypothesize that novel anti-HIV peptides may be designed by using artificial sequences containing multiple copies of HR motifs plus zero, one or two functional domains. Surprisingly, we found that the peptides containing only the non-natural HR sequences could significantly inhibit HIV-1 infection, while addition of PBD and/or LBD to the peptides resulted in significant improvement of anti-HIV-1 activity. These results suggest that these artificial HR sequences, which may serve as structural domains, could be used as templates for the design of novel antiviral peptides against HIV and other viruses with class I fusion proteins

  20. Compartmentalized Human Immunodeficiency Virus Type 1 Originates from Long-Lived Cells in Some Subjects with HIV-1–Associated Dementia

    Science.gov (United States)

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W.; Swanstrom, Ronald

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1–associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1–associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t1/2 mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t1/2 range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD

  1. HIV/AIDS in Women

    Science.gov (United States)

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. HIV often ...

  2. High level of surface CD4 prevents stable human immunodeficiency virus infection of T-cell transfectants.

    OpenAIRE

    Marshall, W L; Diamond, D C; Kowalski, M M; Finberg, R W

    1992-01-01

    CD4 is the principal receptor for the human immunodeficiency virus (HIV). We have isolated and studied CD4-expressing tumor cell clones made by expressing CD4 in the T-cell tumor line HSB. Two clones, one designated HSBCD4, a clone expressing low levels of CD4, and the other, HSB10xCD4, a high-expresser CD4+ clone, were studied for their ability to bind and replicate HIV. In contrast to many other CD4+ cells that down-modulate CD4 following HIV infection, the HSB10xCD4 clones continued to exp...

  3. Cloning, purification and structure determination of the HIV integrase-binding domain of lens epithelium-derived growth factor.

    Science.gov (United States)

    Hannon, Clare; Cruz-Migoni, Abimael; Platonova, Olga; Owen, Robin L; Nettleship, Joanne E; Miller, Ami; Carr, Stephen B; Harris, Gemma; Rabbitts, Terence H; Phillips, Simon E V

    2018-03-01

    Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase in human cells. The crystal structure of the HIV integrase-binding domain (IBD) of LEDGF has been determined in the absence of ligand. IBD was overexpressed in Escherichia coli, purified and crystallized by sitting-drop vapour diffusion. X-ray diffraction data were collected at Diamond Light Source to a resolution of 2.05 Å. The crystals belonged to space group P2 1 , with eight polypeptide chains in the asymmetric unit arranged as an unusual octamer composed of four domain-swapped IBD dimers. IBD exists as a mixture of monomers and dimers in concentrated solutions, but the dimers are unlikely to be biologically relevant.

  4. Role of LAMP1 Binding and pH Sensing by the Spike Complex of Lassa Virus.

    Science.gov (United States)

    Cohen-Dvashi, Hadas; Israeli, Hadar; Shani, Orly; Katz, Aliza; Diskin, Ron

    2016-11-15

    To effectively infect cells, Lassa virus needs to switch in an endosomal compartment from its primary receptor, α-dystroglycan, to a protein termed LAMP1. A unique histidine triad on the surface of the receptor-binding domain from the glycoprotein spike complex of Lassa virus is important for LAMP1 binding. Here we investigate mutated spikes that have an impaired ability to interact with LAMP1 and show that although LAMP1 is important for efficient infectivity, it is not required for spike-mediated membrane fusion per se Our studies reveal important regulatory roles for histidines from the triad in sensing acidic pH and preventing premature spike triggering. We further show that LAMP1 requires a positively charged His230 residue to engage with the spike complex and that LAMP1 binding promotes membrane fusion. These results elucidate the molecular role of LAMP1 binding during Lassa virus cell entry and provide new insights into how pH is sensed by the spike. Lassa virus is a devastating disease-causing agent in West Africa, with a significant yearly death toll and severe long-term complications associated with its infection in survivors. In recent years, we learned that Lassa virus needs to switch receptors in a pH-dependent manner to efficiently infect cells, but neither the molecular mechanisms that allow switching nor the actual effects of switching were known. Here we investigate the activity of the viral spike complex after abrogation of its ability to switch receptors. These studies inform us about the role of switching receptors and provide new insights into how the spike senses acidic pH. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Prediction of HIV-1 coreceptor usage (tropism) by sequence analysis using a genotypic approach.

    Science.gov (United States)

    Sierra, Saleta; Kaiser, Rolf; Lübke, Nadine; Thielen, Alexander; Schuelter, Eugen; Heger, Eva; Däumer, Martin; Reuter, Stefan; Esser, Stefan; Fätkenheuer, Gerd; Pfister, Herbert; Oette, Mark; Lengauer, Thomas

    2011-12-01

    Maraviroc (MVC) is the first licensed antiretroviral drug from the class of coreceptor antagonists. It binds to the host coreceptor CCR5, which is used by the majority of HIV strains in order to infect the human immune cells (Fig. 1). Other HIV isolates use a different coreceptor, the CXCR4. Which receptor is used, is determined in the virus by the Env protein (Fig. 2). Depending on the coreceptor used, the viruses are classified as R5 or X4, respectively. MVC binds to the CCR5 receptor inhibiting the entry of R5 viruses into the target cell. During the course of disease, X4 viruses may emerge and outgrow the R5 viruses. Determination of coreceptor usage (also called tropism) is therefore mandatory prior to administration of MVC, as demanded by EMA and FDA. The studies for MVC efficiency MOTIVATE, MERIT and 1029 have been performed with the Trofile assay from Monogram, San Francisco, U.S.A. This is a high quality assay based on sophisticated recombinant tests. The acceptance for this test for daily routine is rather low outside of the U.S.A., since the European physicians rather tend to work with decentralized expert laboratories, which also provide concomitant resistance testing. These laboratories have undergone several quality assurance evaluations, the last one being presented in 2011. For several years now, we have performed tropism determinations based on sequence analysis from the HIV env-V3 gene region (V3). This region carries enough information to perform a reliable prediction. The genotypic determination of coreceptor usage presents advantages such as: shorter turnover time (equivalent to resistance testing), lower costs, possibility to adapt the results to the patients' needs and possibility of analysing clinical samples with very low or even undetectable viral load (VL), particularly since the number of samples analysed with VL < 1000 copies/μl roughly increased in the last years (Fig. 3). The main steps for tropism testing (Fig. 4) demonstrated in

  6. Hepatitis B virus prevalence and vaccine response in HIV-infected children and adolescents on combination antiretroviral therapy in Kigali, Rwanda

    NARCIS (Netherlands)

    Mutwa, Philippe R.; Boer, Kimberly R.; Rusine, John B.; Muganga, Narcisse; Tuyishimire, Diane; Reiss, Peter; Lange, Joep M. A.; Geelen, Sibyl P. M.

    2013-01-01

    The aim of this study was to determine the prevalence of hepatitis B virus (HBV) infection in a cohort of HIV-infected Rwandan children and adolescents on combination antiretroviral therapy (cART), and the success rate of HBV vaccination in those children found to be HBV negative. HIV-infected

  7. Burden of non-AIDS-defining and non-virus-related cancers among HIV-infected patients in the combined antiretroviral therapy era.

    Science.gov (United States)

    Albini, Laura; Calabresi, Alessandra; Gotti, Daria; Ferraresi, Alice; Festa, Andrea; Donato, Francesco; Magoni, Michele; Castelli, Francesco; Quiros-Roldan, Eugenia

    2013-08-01

    The risk of cancer is substantially increased in HIV-infected patients. However, little is known about non-AIDS-defining cancers (NADCs) without an infectious etiology. A total of 5,090 HIV-infected patients registered in the Local Health Authority (LHA) of Brescia and receiving primary care at our clinic were included in a retrospective (1999-2009) analysis. The cancer diagnoses were obtained through a record-linkage procedure between our database and the LHA general database and population-based Cancer Registry of LHA. We compared risks of these malignancies with those of the general population living in the same health area by using age-standardized incidence ratios (SIRs). Poisson regression analysis was used to assess factors associated with non-virus-related NADCs. We recorded an increase in the SIR of non-virus-related NADCs over time, with 138 cancers diagnosed in 131 patients. The mean incidence rate was 42.6/10,000 person years and the median age at the diagnosis was 49 (range, 28-78) years old. Stratifying for gender, only HIV-infected males had an increased risk of non-virus-related NADCs [SIR=1.86; 95% confidence interval (CI), 1.55-2.26]. Risk was higher for lung (SIR=3.59; 95% CI, 2.36-5.45) and testis cancer (SIR=3.11; 95% CI, 1.48-6.52). However,, cancers of the prostate and breast in HIV-positive men and women were null (SIR=1.10; 95% CI, 0.53-2.32 and SIR=0.91; 95% CI, 0.47-1.74, respectively). The only predictors of non-virus-related NADCs included older age [incidence rate ratio (IRR)=1.10; 95% CI, 1.08-1.12 per each additional year, prisk of non-virus-related NADCs compared to the general population. However, the use of cART appeared to be beneficial in protecting against the development of these malignancies.

  8. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  9. Trastuzumab-binding peptide display by Tobacco mosaic virus

    International Nuclear Information System (INIS)

    Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.; Kosorukov, Vyacheslav S.; Sheval, Eugene V.; Gleba, Yuri Y.; Dorokhov, Yuri L.

    2010-01-01

    Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.

  10. Interplay between HIV Entry and Transportin-SR2 Dependency

    Directory of Open Access Journals (Sweden)

    Gijsbers Rik

    2011-01-01

    Full Text Available Abstract Background Transportin-SR2 (TRN-SR2, TNPO3, transportin 3 was previously identified as an interaction partner of human immunodeficiency virus type 1 (HIV-1 integrase and functions as a nuclear import factor of HIV-1. A possible role of capsid in transportin-SR2-mediated nuclear import was recently suggested by the findings that a chimeric HIV virus, carrying the murine leukemia virus (MLV capsid and matrix proteins, displayed a transportin-SR2 independent phenotype, and that the HIV-1 N74D capsid mutant proved insensitive to transportin-SR2 knockdown. Results Our present analysis of viral specificity reveals that TRN-SR2 is not used to the same extent by all lentiviruses. The DNA flap does not determine the TRN-SR2 requirement of HIV-1. We corroborate the TRN-SR2 independent phenotype of the chimeric HIV virus carrying the MLV capsid and matrix proteins. We reanalyzed the HIV-1 N74D capsid mutant in cells transiently or stably depleted of transportin-SR2 and confirm that the N74D capsid mutant is independent of TRN-SR2 when pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G. Remarkably, although somewhat less dependent on TRN-SR2 than wild type virus, the N74D capsid mutant carrying the wild type HIV-1 envelope required TRN-SR2 for efficient replication. By pseudotyping with envelopes that mediate pH-independent viral uptake including HIV-1, measles virus and amphotropic MLV envelopes, we demonstrate that HIV-1 N74D capsid mutant viruses retain partial dependency on TRN-SR2. However, this dependency on TRN-SR2 is lost when the HIV N74D capsid mutant is pseudotyped with envelopes mediating pH-dependent endocytosis, such as the VSV-G and Ebola virus envelopes. Conclusion Here we discover a link between the viral entry of HIV and its interaction with TRN-SR2. Our data confirm the importance of TRN-SR2 in HIV-1 replication and argue for careful interpretation of experiments performed with VSV-G pseudotyped viruses in

  11. Survey of malaria and anti-dengue virus IgG among febrile HIV-infected patients attending a tertiary hospital in Abuja, Nigeria.

    Science.gov (United States)

    Mustapha, Jelili Olaide; Emeribe, Anthony Uchenna; Nasir, Idris Abdullahi

    2017-01-01

    Dengue and malaria are infections, of great public health concern, especially in sub-Saharan Africa where the burden of HIV infection is high. This study was conducted to determine the seroprevalence of dengue virus IgG antibodies and dengue/malaria coinfection among febrile HIV-infected patients attending the University of Abuja Teaching Hospital, Gwagwalada, Abuja. In this cross-sectional study, blood samples from 178 consenting HIV-infected patients receiving antiretroviral therapy were collected and tested for plasmodiasis and anti-Dengue virus IgG using malaria microscopy and ELISA, respectively. Interviewer-based questionnaires were used to assess subjects' sociodemographic variables and dengue risk factors. Of the 178 screened participants, 44.4% were seropositive for dengue virus IgG antibody, whereas 29.2% were positive for Plasmodium falciparum. About 44.2% were positive for both dengue virus and P. falciparum . There was a statistical association between anti-dengue IgG and occupation ( p =0.03) but not with age, residential area, educational level and patients' gender ( p >0.05). Seroprevalence of anti-dengue specific IgG was relatively higher in participants who adopted protective measures. There was a statistical association between seroprevalence of anti-dengue IgG and adoption of preventive measures ( p <0.05). The high prevalence of malaria and dengue virus IgG indicates the need to strengthen vector control and dengue surveillance programs.

  12. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Directory of Open Access Journals (Sweden)

    Belhumeur Pierre

    2008-11-01

    Full Text Available Abstract Background HIV-1 integrase (IN is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s and/or motif(s required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of

  13. Targeting Spare CC Chemokine Receptor 5 (CCR5) as a Principle to Inhibit HIV-1 Entry*

    OpenAIRE

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G. H.; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-01-01

    International audience; : CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for i...

  14. Incorporation of chimeric HIV-SIV-Env and modified HIV-Env proteins into HIV pseudovirions

    International Nuclear Information System (INIS)

    Devitt, Gerard; Emerson, Vanessa; Holtkotte, Denise; Pfeiffer, Tanya; Pisch, Thorsten; Bosch, Valerie

    2007-01-01

    Low level incorporation of the viral glycoprotein (Env) into human immunodeficiency virus (HIV) particles is a major drawback for vaccine strategies against HIV/AIDS in which HIV particles are used as immunogen. Within this study, we have examined two strategies aimed at achieving higher levels of Env incorporation into non-infectious pseudovirions (PVs). First, we have generated chimeric HIV/SIV Env proteins containing the truncated C-terminal tail region of simian immunodeficiency virus (SIV)mac239-Env767 stop , which mediates strongly increased incorporation of SIV-Env into SIV particles. In a second strategy, we have employed a truncated HIV-Env protein (Env-Tr752 N750K ) which we have previously demonstrated to be incorporated into HIV virions, generated in infected T-cells, to a higher level than that of Wt-HIV-Env. Although the chimeric HIV/SIV Env proteins were expressed at the cell surface and induced increased levels of cell-cell fusion in comparison to Wt-HIV-Env, they did not exhibit increased incorporation into either HIV-PVs or SIV-PVs. Only Env-Tr752 N750K exhibited significantly higher (threefold) levels of incorporation into HIV-PVs, an improvement, which, although not dramatic, is worthwhile for the large-scale preparation of non-infectious PVs for vaccine studies aimed at inducing Env humoral responses

  15. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-01-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  16. RNA binding specificity of Ebola virus transcription factor VP30.

    Science.gov (United States)

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.

  17. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... the Facts What are HIV and AIDS? HIV (human immunodeficiency virus) is the virus that causes AIDS ( ... is crucial to the normal function of the human immune system. Loss of these CD4+ cells in ...

  18. Awareness of human immunodeficiency virus (HIV) infection among antenatal clients in Nnewi Nigeria.

    Science.gov (United States)

    Okafor, C I; Dinwoke, V O; Udigwe, G O

    2014-01-01

    To determine the level of awareness of Human Immunodeficiency Virus (HIV) infection among antenatal clients in Nnewi Nigeria. A cross sectional descriptive study of six hundred consecutive antenatal clients attending the Nnamdi Azikiwe University Teaching Hospital and five private specialist hospitals (run by Consultant Obstetricians) in Nnewi was conducted over a six-month period (1st September 2008 -28th February 2009). Anonymous, structured, pretested questionnaire designed to assess the awareness of HIV infection was used. The mean age of all the 600 clients was 31.4 (SD 2.8) years, majority were married (94%) and in the third trimester of pregnancy (69%). Most (58%) attended secondary school while 0.83% had no formal education. Only 2% had complete knowledge of the modes of HIV transmission while majority (96.5%) had partial knowledge. There was a statistically significant relationship between level of education and knowledge of HIV (p < 0.00001). HIV test was done on 419 (69.84%); 37 tested positive giving a seroprevalence rate of 8.83%. Among those tested, only 51.55% had counseling before testing. This study showed that the knowledge of HIV among women of child bearing age and the practice of voluntary counseling and testing are still poor in our environment. Improved public enlightenment and training of health workers are urgently needed.

  19. Nano-Medicine as a Newly Emerging Approach to Combat Human Immunodeficiency Virus (HIV).

    Science.gov (United States)

    Saravanan, Muthupandian; Asmalash, Tsehaye; Gebrekidan, Atsebaha; Gebreegziabiher, Dawit; Araya, Tadele; Hilekiros, Haftamu; Barabadi, Hamed; Ramanathan, Kumaresan

    2018-01-01

    Human Immuno deficiency Virus (HIV) infection has attained pandemic level due to its complexity on both the HIV infection cycle and on the targets for drug delivery. This limits medication and consequently requires prominent and promising drug delivery systems to be invented. Notably, various nanomaterial have been studied to enhance effective delivery of the antiretroviral drugs for HIV prevention, diagnosis and cure. Some of these nanomaterials are liposomes, dendrimers, inorganic nanoparticles (NPs), polymeric micelles, natural and synthetic polymers. The present study aimed to review the recent progress in nanomedicine as a newly emerging approach to combat HIV. The scientific data bases reviewed carefully to find both in vitro and in vivo studies representing the role of nonomedicine to combat HIV. Impressively, nanomedicine drug delivery systems have been commendable in various models ranging from in vitro to in vivo. It gives notion about the application of nano-carrier systems for the delivery of anti-retroviral drugs which ideally should provide better distribution to surpass Blood- Brain Barrier (BBB) and other tissue or to overcome innate barriers such as mucus. Considerably, nanomaterials such as dendrimers and many other inorganic NPs such as silver, gold, iron, and zinc can be used for HIV treatment by interfering in varying stages of HIV life cycle. Furthermore, NPs could best act as adjuvants, convoys during vaccine delivery, as intra-vaginal microbicides and for the early detection of HIV-1 p24 antigen. Nanomedicine may be a proper approach in HIV/AIDS therapy by means of offering lower dosage and side effect, better patient-to-patient consistency, bioavailability, target specificity and improved sensitivity of HIV diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA

    Directory of Open Access Journals (Sweden)

    Niu Meijuan

    2004-10-01

    Full Text Available Abstract The primer tRNA for reverse transcription in HIV-1, tRNALys3, is selectively packaged into the virus during its assembly, and annealed to the viral genomic RNA. The ribonucleoprotein complex that is involved in the packaging and annealing of tRNALys into HIV-1 consists of Gag, GagPol, tRNALys, lysyl-tRNA synthetase (LysRS, and viral genomic RNA. Gag targets tRNALys for viral packaging through Gag's interaction with LysRS, a tRNALys-binding protein, while reverse transcriptase (RT sequences within GagPol (the thumb domain bind to tRNALys. The further annealing of tRNALys3 to viral RNA requires nucleocapsid (NC sequences in Gag, but not the NC sequences GagPol. In this report, we further show that while the RT connection domain in GagPol is not required for tRNALys3 packaging into the virus, it is required for tRNALys3 annealing to the viral RNA genome.

  1. Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains.

    Science.gov (United States)

    Fera, Daniela; Schmidt, Aaron G; Haynes, Barton F; Gao, Feng; Liao, Hua-Xin; Kepler, Thomas B; Harrison, Stephen C

    2014-07-15

    Rapidly evolving pathogens, such as human immunodeficiency and influenza viruses, escape immune defenses provided by most vaccine-induced antibodies. Proposed strategies to elicit broadly neutralizing antibodies require a deeper understanding of antibody affinity maturation and evolution of the immune response to vaccination or infection. In HIV-infected individuals, viruses and B cells evolve together, creating a virus-antibody "arms race." Analysis of samples from an individual designated CH505 has illustrated the interplay between an antibody lineage, CH103, and autologous viruses at various time points. The CH103 antibodies, relatively broad in their neutralization spectrum, interact with the CD4 binding site of gp120, with a contact dominated by CDRH3. We show by analyzing structures of progenitor and intermediate antibodies and by correlating them with measurements of binding to various gp120s that there was a shift in the relative orientation of the light- and heavy-chain variable domains during evolution of the CH103 lineage. We further show that mutations leading to this conformational shift probably occurred in response to insertions in variable loop 5 (V5) of the HIV envelope. The shift displaced the tips of the light chain away from contact with V5, making room for the inserted residues, which had allowed escape from neutralization by the progenitor antibody. These results, which document the selective mechanism underlying this example of a virus-antibody arms race, illustrate the functional significance of affinity maturation by mutation outside the complementarity determining region surface of the antibody molecule.

  2. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H.

    Science.gov (United States)

    Yang, Fengyuan; Zheng, Guoxun; Fu, Tingting; Li, Xiaofeng; Tu, Gao; Li, Ying Hong; Yao, Xiaojun; Xue, Weiwei; Zhu, Feng

    2018-06-27

    The rapid emergence of drug-resistant variants is one of the most common causes of highly active antiretroviral therapeutic (HAART) failure in patients infected with HIV-1. Compared with the existing HAART, the recently developed pyrrolyl diketo acid scaffold targeting both HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) is an efficient approach to counteract the failure of anti-HIV treatment due to drug resistance. However, the binding mode and potential resistance profile of these inhibitors with important mechanistic principles remain poorly understood. To address this issue, an integrated computational method was employed to investigate the binding mode of inhibitor JMC6F with HIV-1 IN and RNase H. By using per-residue binding free energy decomposition analysis, the following residues: Asp64, Thr66, Leu68, Asp116, Tyr143, Gln148 and Glu152 in IN, Asp443, Glu478, Trp536, Lys541 and Asp549 in RNase H were identified as key residues for JMC6F binding. And then computational alanine scanning was carried to further verify the key residues. Moreover, the resistance profile of the currently known major mutations in HIV-1 IN and 2 mutations in RNase H against JMC6F was predicted by in silico mutagenesis studies. The results demonstrated that only three mutations in HIV-1 IN (Y143C, Q148R and N155H) and two mutations in HIV-1 RNase H (Y501R and Y501W) resulted in a reduction of JMC6F potency, thus indicating their potential role in providing resistance to JMC6F. These data provided important insights into the binding mode and resistance profile of the inhibitors with a pyrrolyl diketo acid scaffold in HIV-1 IN and RNase H, which would be helpful for the development of more effective dual HIV-1 IN and RNase H inhibitors.

  3. Validation of an automated system for aliquoting of HIV-1 Env-pseudotyped virus stocks.

    Science.gov (United States)

    Schultz, Anke; Germann, Anja; Fuss, Martina; Sarzotti-Kelsoe, Marcella; Ozaki, Daniel A; Montefiori, David C; Zimmermann, Heiko; von Briesen, Hagen

    2018-01-01

    The standardized assessments of HIV-specific immune responses are of main interest in the preclinical and clinical stage of HIV-1 vaccine development. In this regard, HIV-1 Env-pseudotyped viruses play a central role for the evaluation of neutralizing antibody profiles and are produced according to Good Clinical Laboratory Practice- (GCLP-) compliant manual and automated procedures. To further improve and complete the automated production cycle an automated system for aliquoting HIV-1 pseudovirus stocks has been implemented. The automation platform consists of a modified Tecan-based system including a robot platform for handling racks containing 48 cryovials, a Decapper, a tubing pump and a safety device consisting of ultrasound sensors for online liquid level detection of each individual cryovial. With the aim to aliquot the HIV-1 pseudoviruses in an automated manner under GCLP-compliant conditions a validation plan was developed where the acceptance criteria-accuracy, precision as well as the specificity and robustness-were defined and summarized. By passing the validation experiments described in this article the automated system for aliquoting has been successfully validated. This allows the standardized and operator independent distribution of small-scale and bulk amounts of HIV-1 pseudovirus stocks with a precise and reproducible outcome to support upcoming clinical vaccine trials.

  4. Stability of hepatitis C virus (HCV) RNA levels among interferon-naïve HIV/HCV-coinfected individuals treated with combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Grint, D; Peters, L; Reekie, J

    2013-01-01

    Infection with hepatitis C virus (HCV) is a major cause of chronic liver disease. High HCV RNA levels have been associated with poor treatment response. This study aimed to examine the natural history of HCV RNA in chronically HCV/HIV-coinfected individuals.......Infection with hepatitis C virus (HCV) is a major cause of chronic liver disease. High HCV RNA levels have been associated with poor treatment response. This study aimed to examine the natural history of HCV RNA in chronically HCV/HIV-coinfected individuals....

  5. Use of etanercept in human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients.

    Science.gov (United States)

    Ting, Patricia T; Koo, John Y

    2006-06-01

    Etanercept (Enbrel, Amgen, Thousand Oaks, CA), a soluble p75 tumor necrosis factor receptor:FC (TNFR:FC) fusion protein for plasma cytokines, specifically tumor necrosis factor-alpha (TNF-alpha), is used in the treatment of immune-mediated rheumatic diseases. To our knowledge, the use of etanercept in patients with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) is relatively uncommon. The main purpose of this short review is to examine the safety of etanercept in patients with HIV/AIDS. A Medline search was conducted using the keywords etanercept and HIV and/or AIDS for any published articles between 1966 to the present (September 2004). A case report, one case series, and one clinical trial pertained to the use of etanercept in HIV patients. No reports were found on the use of etanercept in AIDS. In addition, two case reports were found documenting the use of infliximab in HIV patients. Preliminary reports indicate that the administration of etanercept does not appear to increase the morbidity or mortality rates in HIV. The inhibition of TNF-alpha may actually improve the symptoms of HIV/AIDS-associated aphthous ulcers, cachexia, dementia, fatigue, and fever, as well as help manage concomitant rheumatic diseases and psoriasis. The use of etanercept shows promise for applications in disease management in patients with HIV/AIDS. Continued research efforts are necessary to establish the long-term safety and efficacy of etanercept and other biologic agents in this patient population.

  6. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    Science.gov (United States)

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  7. The profile of the dermatoses in children with the HIV virus at the Fundação de Medicina Tropical do Amazonas.

    Science.gov (United States)

    Dias, Eleonora Dantas; Cunha, Maria da Graça Souza; Talhari, Sinésio

    2012-01-01

    The Acquired Immunodeficiency Syndrome (AIDS) constitutes a sub-epidemic in Brazil. Due to the increasing number of women infected by the virus, the vertical transmission increased substantially, and due to the lack of adequate prophylactic treatment, many children are infected and show manifestations of the disease in early ages. Multiple systems are affected by the HIV virus, and the skin is often the first organ to be involved. The objective of this study is to analyze the clinic, dermatological and epidemiological profiles of children carriers of the virus in the City of Manaus aiming at identifying the most frequent dermatoses that affect these children and try to relate these dermatoses to the immunologic deterioration. A study was conducted where children carriers of the HIV virus from the Fundação Alfredo da Matta and Fundação de Medicina Tropical were studied from March 2007 to July 2008. These children were submitted to dermatological and laboratorial exams such as viral load dosage and CD4+ and CD8+ counts. During the study period, 70 HIV + children were examined; all of them had AIDS and had been contaminated by vertical transmission. The average number of dermatoses by children was 1.73, and 95.5% had at least one dermatosis during the study period. The most frequent manifestations were atopic dermatitis (22.9%), childhood prurigo (20%) and warts (18,6%). Children with HIV/AIDS have more skin disorders than children without HIV/AIDS. There was no statistical difference between the children in the group using ARVT and the group that wasn't using it.

  8. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  9. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.

    Science.gov (United States)

    Jones, Christopher P; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-02-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.

  10. Syphilis and HIV prevalence and associated factors to their co-infection, hepatitis B and hepatitis C viruses prevalence among female sex workers in Rwanda.

    Science.gov (United States)

    Mutagoma, Mwumvaneza; Nyirazinyoye, Laetitia; Sebuhoro, Dieudonné; Riedel, David J; Ntaganira, Joseph

    2017-07-28

    Human Immunodeficiency Virus (HIV), syphilis, Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) are sexually transmitted infections (STIs) and share modes of transmission. These infections are generally more prevalent among female sex workers (FSWs). This is a cross-sectional study conducted among female sex workers (FSWs) in Rwanda in 2015. Venue-Day-Time (VDT) sampling method was used in recruiting participants. HIV, syphilis, HBV, and HCV testing were performed. Descriptive analyses and logistic regression models were computed. In total, 1978 FSWs were recruited. The majority (58.5%) was aged between 20 and 29 years old. Up to 63.9% of FSWs were single, 62.3% attained primary school, and 68.0% had no additional occupation beside sex work. Almost all FSWs (81.2%) had children. The majority of FSWs (68.4%) were venue-based, and most (53.5%) had spent less than five years in sex work. The overall prevalence of syphilis was 51.1%; it was 2.5% for HBV, 1.4% for HCV, 42.9% for HIV and 27.4% for syphilis/HIV co-infection. The prevalence of syphilis, HIV, and syphilis + HIV co-infection was increasing with age and decreasing with the level of education. A positive association with syphilis/HIV co-infection was found in: 25 years and older (aOR = 1.82 [95% CI:1.33-2.50]), having had a genital sore in the last 12 months (aOR = 1.34 [95% CI:1.05-1.71]), and having HBsAg-positive test (aOR = 2.09 [1.08-4.08]). The prevalence of HIV and syphilis infections and HIV/syphilis co-infection are very high among FSWs in Rwanda. A strong, specific prevention program for FSWs and to avert HIV infection and other STIs transmission to their clients is needed.

  11. Efficacy and safety of rilpivirine in treatment-naive, HIV-1-infected patients with hepatitis B virus/hepatitis C virus coinfection enrolled in the Phase III randomized, double-blind ECHO and THRIVE trials

    DEFF Research Database (Denmark)

    Nelson, Mark; Amaya, Gerardo; Clumeck, Nathan

    2012-01-01

    OBJECTIVES: The efficacy and hepatic safety of the non-nucleoside reverse transcriptase inhibitors rilpivirine (TMC278) and efavirenz were compared in treatment-naive, HIV-infected adults with concurrent hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection in the pooled week 48 analys...

  12. Prevalence of hepatitis C virus infection among HIV+ men who have sex with men: a systematic review and meta-analysis.

    Science.gov (United States)

    Jordan, Ashly E; Perlman, David C; Neurer, Joshua; Smith, Daniel J; Des Jarlais, Don C; Hagan, Holly

    2017-02-01

    Since 2000, an increase in hepatitis C virus infection among HIV-infected (HIV+) men who have sex with men has been observed. Evidence points to blood exposure during sex as the medium of hepatitis C virus transmission. Hepatitis C virus prevalence among HIV + MSM overall and in relation to injection drug use is poorly characterized. In this study, a systematic review and meta-analysis examining global hepatitis C virus antibody prevalence and estimating active hepatitis C virus prevalence among HIV + MSM were conducted; 42 reports provided anti-hepatitis C virus prevalence data among HIV + MSM. Pooled prevalence produced an overall anti-hepatitis C virus prevalence among HIV + MSM of 8.1%; active HCV prevalence estimate was 5.3%-7.3%. Anti-hepatitis C virus prevalence among injection drug use and non-injection drug use HIV + MSM was 40.0% and 6.7%, respectively. Among HIV + MSM, hepatitis C virus prevalence increased significantly over time among the overall and non-injection drug use groups, and decreased significantly among injection drug use HIV + MSM. We identified a moderate prevalence of hepatitis C virus among all HIV + MSM and among non-injection drug use HIV + MSM; for both, prevalence was observed to be increasing slightly. Pooled prevalence of hepatitis C virus among HIV + MSM was higher than that observed in the 1945-1965 US birth cohort. The modest but rising hepatitis C virus prevalence among HIV + MSM suggests an opportunity to control HCV among HIV + MSM; this combined with data demonstrating a rising hepatitis C virus incidence highlights the temporal urgency to do so.

  13. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations.

    Science.gov (United States)

    Faria, Nuno R; Rambaut, Andrew; Suchard, Marc A; Baele, Guy; Bedford, Trevor; Ward, Melissa J; Tatem, Andrew J; Sousa, João D; Arinaminpathy, Nimalan; Pépin, Jacques; Posada, David; Peeters, Martine; Pybus, Oliver G; Lemey, Philippe

    2014-10-03

    Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations. Copyright © 2014, American Association for the Advancement of Science.

  14. Human immunodeficiency virus (HIV) in pregnancy: a review of the guidelines for preventing mother-to-child transmission in Malaysia.

    Science.gov (United States)

    Azwa, Iskandar; Khong, Su Yen

    2012-12-01

    Mother-to-child transmission (MTCT) of human immunodefi ciency virus (HIV) is a devastating consequence of HIV infection during pregnancy and is largely preventable. Evidence-based interventions such as universal antenatal screening, provision of antiretroviral therapy, delivery by elective caesarean section and avoidance of breastfeeding have ensured that the rates of MTCT remain low in Malaysia. This review discusses the most recent advances in the management of HIV infection in pregnancy with emphasis on antiretroviral treatment strategies and obstetric care in a middle income country.

  15. Genomic variability associated with the presence of occult hepatitis B virus in HIV co-infected individuals

    OpenAIRE

    Martin, C. M.; Welge, J. A.; Shire, N. J.; Rouster, S. D.; Shata, M. T.; Sherman, K. E.; Blackard, J. T.

    2009-01-01

    Occult hepatitis B virus (O-HBV) infection is characterized by the presence of HBV DNA without detectable hepatitis B surface antigen (HBV DNA+/HBsAg−) in the serum. Although O-HBV is more prevalent during HBV/HIV co-infection, analysis of HBV mutations in co-infected patients is limited. In this preliminary study, HBV PreSurface (PreS) and surface (S) regions were amplified from 33 HIV-positive patient serum samples − 27 chronic HBV (C-HBV) and six O-HBV infections. HBV genotype was determin...

  16. Saturation Mutagenesis of the HIV-1 Envelope CD4 Binding Loop Reveals Residues Controlling Distinct Trimer Conformations.

    Directory of Open Access Journals (Sweden)

    Maria Duenas-Decamp

    2016-11-01

    Full Text Available The conformation of HIV-1 envelope (Env glycoprotein trimers is key in ensuring protection against waves of neutralizing antibodies generated during infection, while maintaining sufficient exposure of the CD4 binding site (CD4bs for viral entry. The CD4 binding loop on Env is an early contact site for CD4 while penetration of a proximal cavity by CD4 triggers Env conformational changes for entry. The role of residues in the CD4 binding loop in regulating the conformation of the trimer and trimer association domain (TAD was investigated using a novel saturation mutagenesis approach. Single mutations identified, resulted in distinct trimer conformations affecting CD4bs exposure, the glycan shield and the TAD across diverse HIV-1 clades. Importantly, mutations that improve access to the CD4bs without exposing the immunodominant V3 loop were identified. The different trimer conformations identified will affect the specificity and breadth of nabs elicited in vivo and are important to consider in design of Env immunogens for vaccines.

  17. Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection

    Science.gov (United States)

    Liu, Haichuan; Usmani, Shariq M.; Neidleman, Jason; Müller, Janis A.; Avila-Herrera, Aram; Gawanbacht, Ali; Zirafi, Onofrio; Chu, Simon; Dong, Ming; Kumar, Senthil T.; Smith, James F.; Pollard, Katherine S.; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan; Witkowska, H. Ewa; Greene, Warner C.

    2014-01-01

    ABSTRACT Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen

  18. Feline immunodeficiency virus (FIV) infection in the cat as a model for HIV infection in man: FIV induced impairment of immune function.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); I-H. Chu (I-Hai); G.F. Rimmelzwaan (Guus); K. Weijer (Kees); R. van Herwijnen (Rob); P. Knell (Peter); H.F. Egberink (Herman); M.L. Bosch (Marnix); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractTo assess the value of feline immunodeficiency virus (FIV) infection as a model for human immunodeficiency virus (HIV) infection in man, we studied the impairment of certain immunological functions following natural or experimental FIV infection. Proliferative responses of peripheral

  19. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A. (Sinai); (Scripps)

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  20. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Arun K. Nalla

    2016-03-01

    Full Text Available Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC. Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.

  1. Molecular status of Human Immunodeficiency Virus, Hepatitis B virus, and Hepatitis C virus among injecting drug male commercial sex workers in Surakarta, Indonesia

    Science.gov (United States)

    Agung Prasetyo, Afiono; Marwoto; Arifin Adnan, Zainal; Hartono

    2018-05-01

    Male commercial sex workers are one of the high-risk community for blood-borne viruses. However, there are no data concerning the molecular status of Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus (HCV) circulated among male commercial sex workers with injecting drug habits in Surakarta, Indonesia. Blood samples obtained from injecting drug male commercial sex workers in Surakarta were examined for HIV antibodies, HBsAg, and HCV antibodies, respectively, by immunological assays. Blood samples were also subjected to viral nucleic acid extraction and molecular detection of HIV, HBV, and HCV by nested (RT) PCRs. The PCR products were purified from agarose gels, and the nucleotide sequences were retrieved and molecular analyzed. HIV, HBV, and HCV were detected in 29.4% (10/34), 17.6% (6/34), and 52.9% (18/34), respectively. HIV CRF01_AE and B were found to be circulating in the community. HBV genotype B3 was predominated, followed by C1. HCV genotype 1a was predominated, followed by 1c, 3a, 1b, and 4a. HIV, HBV, and HCV were found circulating in the male commercial sex workers with injecting drug habits in Surakarta, Indonesia.

  2. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging.

    Science.gov (United States)

    Webb, Joseph A; Jones, Christopher P; Parent, Leslie J; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-08-01

    Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.

  3. Molecular status of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus among transgender commercial sex workers in Surakarta, Indonesia

    Science.gov (United States)

    Prasetyo, Afiono Agung; Sari, Yulia; Dharmawan, Ruben; Marwoto

    2017-02-01

    Sexual contact and other risk behavior among transgender working as commercial sex workers are important factors for sexual and blood-borne virus (BBV) infections. However, there no data concerning the molecular status of human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV) circulated among transgender working as commercial sex workers. Blood samples obtained from transgender working as commercial sex workers in Surakarta were examined for HIV antibodies, HBsAg and HCV antibodies, respectively, by immunological assays. All blood samples were also subjected for viral nucleic acid extraction and molecular detection of HIV, HBV and HCV by nested RT-PCR. The PCR products were purified from agarose gels, and the nucleotide sequences were retrieved and molecular analyzed. HIV, HBV and HCV was detected in 26.9% (7/26), 19.2% (5/26) and 46.2% (12/26), respectively. HIV CRF01_AE and B were found to be circulating in the community. HBV genotype B3 predominated, followed by C1. HCV genotype 1a predominated among HCV-infected transgender working as commercial sex workers, followed by 1c, 3a, and 4a. HIV, HBV, and HCV were found circulating in the transgender working as commercial sex workers in Surakarta, Indonesia.

  4. Hubungan antara Fatigue, Jumlah CD4, dan Kadar Hemoglobin pada Pasien yang Terinfeksi Human Immunodeficiency Virus (HIV

    Directory of Open Access Journals (Sweden)

    Kusman Ibrahim

    2018-01-01

    Full Text Available Keberadaan Human Immunodeficiency Virus (HIV di dalam tubuh secara terus menerus menyebabkan gangguan pada hampir semua sistem tubuh yang berdampak pada munculnya gejala kelelahan (fatigue. Fatigue banyak dilaporkan pada penderita HIV/AIDS dengan prevalensi berkisar antara 20% sampai 60%. Penelitian ini bertujuan menguji hubungan antara fatigue dengan jumlah CD4 dan kadar Hb pada pasien HIV/AIDS. Sebanyak 77 responden direkrut secara purposif di sebuah Klinik Rawat Jalan Rumah Sakit di Kota Bandung. Fatigue diukur menggunakan kuesioner HIV Related Fatigue Score (HRFS. Data yang terkumpul dianalisis menggunakan uji pearson correlation. Hasil penelitian menunjukkan terdapat hubungan yang bermakna antara fatigue dengan jumlah CD4 dalam darah (r = -.289, p< 0.05 dan kadar Hb (r = -.349, p< 0.05. Selain itu, kadar Hb memiliki hubungan yang bermakna dengan jumlah CD4 pada pasien HIV/AIDS (r = .360, p < .01. Hasil penelitian ini mengindikasikan perlunya monitoring kadar CD4 dan Hb secara berkala dan melakukan intervensi untuk mengatasi penurunan Hb dan CD4 sesegera mungkin sehingga dapat mencegah agar fatigue tidak berkelanjutan. Kata kunci: CD4, fatigue, hemoglobin, HIV/AIDS.   The Correlation of Between Fatigue, CD4 Cell Count, and Hemoglobin Level among HIV/AIDS Patients Abstract The existence of Human Immunodeficiency Virus (HIV in the body continuously causes disruption in almost all body systems that impact on the emergence of symptoms of fatigue. Fatigue was widely reported in HIV/AIDS patients with prevalence ranging from 20% to 60%. This study examined the relationship between fatigue and CD4 cell count and hemoglobin levels in HIV/AIDS patients. A total of 77 respondents were recruited purposively in Outpatient Clinic, General Hospital Bandung City. Fatigue was measured using the HIV Related Fatigue Score (HRFS questionnaire. The collected data were analyzed using pearson correlation product moment. The results showed there were significant

  5. Effectiveness of semen washing to prevent human immunodeficiency virus (HIV) transmission and assist pregnancy in HIV-discordant couples: a systematic review and meta-analysis.

    Science.gov (United States)

    Zafer, Maryam; Horvath, Hacsi; Mmeje, Okeoma; van der Poel, Sheryl; Semprini, Augusto E; Rutherford, George; Brown, Joelle

    2016-03-01

    To evaluate the effectiveness of semen washing in human immunodeficiency virus (HIV)-discordant couples in which the male partner is infected. Systematic review and meta-analysis. Not applicable. Forty single-arm open-label studies among HIV-discordant couples that underwent intrauterine insemination (IUI) or in vitro fertilization (IVF) with or without intracytoplasmic sperm injection (ICSI) using washed semen. Semen washing followed by IUI, IVF, or IVF/ICSI. HIV transmission to HIV-uninfected women; secondary outcomes: HIV transmission to newborns and proportion of couples achieving a clinical pregnancy. No HIV transmission occurred in 11,585 cycles of assisted reproduction with the use of washed semen among 3,994 women. Among the subset of HIV-infected men without plasma viral suppression at the time of semen washing, no HIV seroconversions occurred among 1,023 women after 2,863 cycles of assisted reproduction with the use of washed semen. Studies that measured HIV transmission to infants reported no cases of vertical transmission. Overall, 56.3% of couples (2,357/4,184) achieved a clinical pregnancy with the use of washed semen. Semen washing appears to significantly reduce the risk of transmission in HIV-discordant couples desiring children, regardless of viral suppression in the male partner. There are no randomized controlled studies or studies from low-income countries, especially those with a large burden of HIV. Continued development of lower-cost semen washing and assisted reproduction technologies is needed. Integration of semen washing into HIV prevention interventions could help to further reduce the spread of HIV. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. HIV Molecular Immunology 2014

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korber, Bette Tina Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States); Koup, Richard [Vaccine Research Center National Institutes of Health (United States); de Boer, Rob [Utrecht Univ. (Netherlands). Dept. of Biology; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Brander, Christian [Institucioi Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Walker, Bruce D. [Ragon Institute of Massachusetts General Hospital, Cambridge, MA (United States); Harvard Univ., Cambridge, MA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-03

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.

  7. Aspects on the history of transmission and favor of distribution of viruses by iatrogenic action: perhaps an example of a paradigm of the worldwide spread of HIV.

    Science.gov (United States)

    Gürtler, Lutz G; Eberle, Josef

    2017-08-01

    Transmission of infectious agents might be associated with iatrogenic actions of charitable help in health care. An example is the vaccination against yellow fever in USA that transmitted hepatitis B virus. Another example is injections of praziquantel for treatment and cure of schistosomiasis in Central and Northern Africa, with a focus in Egypt that has spread hepatitis C virus. There is no indication that human T-lymphotropic virus type 1 was spread by injection treatment for African trypanosomiasis, syphilis and treponematosis, but these treatments might have contributed to the early spread of human immunodeficiency virus type 1 (HIV-1) in Central Africa. Slave trade contributed as well to the spread of viruses from Africa to the Americas; it was stopped in 1850. Until that date HIV-1 was not transported to the Americas. By analysis of nucleic acid sequence data it can be concluded that the continental spread of HCV and HIV-1 might have started around 1920 with an exponential phase from 1940 to 1970. Further iatrogenic actions that promoted the spread of HCV and HIV-1 might be vaccinations to prevent deadly diseases. The successful vaccination was followed by diminution of the infectious agent in the population such as small pox, yellow fever and measles. Measurements to reduce the spread of plague and cholera were further benefits increasing survival of diseased subjects in a population. Thus, the reduction of exposure to deadly infectious agents might have given a chance to HIV-1 infected subjects to survive and for HIV-1 to be distributed around the world starting from Central Africa in the 1950s.

  8. Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA.

    Science.gov (United States)

    Moscardini, Mila; Pistello, Mauro; Bendinelli, M; Ficheux, Damien; Miller, Jennifer T; Gabus, Caroline; Le Grice, Stuart F J; Surewicz, Witold K; Darlix, Jean-Luc

    2002-04-19

    All lentiviruses and oncoretroviruses examined so far encode a major nucleic-acid binding protein (nucleocapsid or NC* protein), approximately 2500 molecules of which coat the dimeric RNA genome. Studies on HIV-1 and MoMuLV using in vitro model systems and in vivo have shown that NC protein is required to chaperone viral RNA dimerization and packaging during virus assembly, and proviral DNA synthesis by reverse transcriptase (RT) during infection. The human cellular prion protein (PrP), thought to be the major component of the agent causing transmissible spongiform encephalopathies (TSE), was recently found to possess a strong affinity for nucleic acids and to exhibit chaperone properties very similar to HIV-1 NC protein in the HIV-1 context in vitro. Tight binding of PrP to nucleic acids is proposed to participate directly in the prion disease process. To extend our understanding of lentiviruses and of the unexpected nucleic acid chaperone properties of the human prion protein, we set up an in vitro system to investigate replication of the feline immunodeficiency virus (FIV), which is functionally and phylogenetically distant from HIV-1. The results show that in the FIV model system, NC protein chaperones viral RNA dimerization, primer tRNA(Lys,3) annealing to the genomic primer-binding site (PBS) and minus strand DNA synthesis by the homologous FIV RT. FIV NC protein is able to trigger specific viral DNA synthesis by inhibiting self-priming of reverse transcription. The human prion protein was found to mimic the properties of FIV NC with respect to primer tRNA annealing to the viral RNA and chaperoning minus strand DNA synthesis. Copyright 2002 Elsevier Science Ltd.

  9. Drug-resistant molecular mechanism of CRF01_AE HIV-1 protease due to V82F mutation

    Science.gov (United States)

    Liu, Xiaoqing; Xiu, Zhilong; Hao, Ce

    2009-05-01

    Human immunodeficiency virus type 1 protease (HIV-1 PR) is one of the major targets of anti-AIDS drug discovery. The circulating recombinant form 01 A/E (CRF01_AE, abbreviated AE) subtype is one of the most common HIV-1 subtypes, which is infecting more humans and is expanding rapidly throughout the world. It is, therefore, necessary to develop inhibitors against subtype AE HIV-1 PR. In this work, we have performed computer simulation of subtype AE HIV-1 PR with the drugs lopinavir (LPV) and nelfinavir (NFV), and examined the mechanism of resistance of the V82F mutation of this protease against LPV both structurally and energetically. The V82F mutation at the active site results in a conformational change of 79's loop region and displacement of LPV from its proper binding site, and these changes lead to rotation of the side-chains of residues D25 and I50'. Consequently, the conformation of the binding cavity is deformed asymmetrically and some interactions between PR and LPV are destroyed. Additionally, by comparing the interactive mechanisms of LPV and NFV with HIV-1 PR we discovered that the presence of a dodecahydroisoquinoline ring at the P1' subsite, a [2-(2,6-dimethylphenoxy)acetyl]amino group at the P2' subsite, and an N2 atom at the P2 subsite could improve the binding affinity of the drug with AE HIV-1 PR. These findings are helpful for promising drug design.

  10. Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers

    Directory of Open Access Journals (Sweden)

    Muriaux Delphine

    2007-08-01

    Full Text Available Abstract Background The HIV-1 nucleocapsid protein (NC is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT, gRNA dimerization and packaging, and virion assembly. Results We previously reported a role for the first NC zinc finger in virion structure and replication 1. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc finger mutations have a negative impact on virion biogenesis and maturation and rendered defective the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag, which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with endosomal membranes as for wild type Gag. Evidences are also provided showing that the intracellular interactions between NC-mutated Gag and the gRNA were impaired. Conclusion These results show that Gag oligomerization mediated by gRNA-NC interactions is required for correct Gag trafficking, and assembly in HIV-1 producing cells and the release of infectious viruses.

  11. Cure of chronic hepatitis C virus infection in an HIV-coinfected patient with multiple comorbidities and drug interaction challenges.

    Science.gov (United States)

    Álvarez, Hortensia; Mariño, Ana; Valcarce, Nieves; Khoo, Saye; Bhagani, Sanjay; Schapiro, Jonathan; Llibre, Josep M

    2018-01-01

    Curing hepatitis C virus (HCV) infection in patients harbouring multiple severe comorbidities is a medical challenge. Evidence-based data are lacking regarding HCV treatment with direct-acting antiviral regimens in particular populations of HCV/HIV-coinfected patients with cirrhosis and chronic kidney disease on haemodialysis. Here, we present the HCV treatment challenges facing a patient with HIV coinfection, prior failure of both HIV-1 and HCV therapy, cirrhosis, end-stage renal failure on haemodialysis, as well as management of drug-drug interactions, especially given the need to receive long-term amiodarone therapy.

  12. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration.

    Directory of Open Access Journals (Sweden)

    Francesca Di Nunzio

    Full Text Available The nuclear pore complex (NPC mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.

  13. The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3',3'-dimethylsuccinyl betulinic acid (DSB is counteracted by Vif and requires its Zinc-binding domain

    Directory of Open Access Journals (Sweden)

    Bouaziz Serge

    2008-12-01

    Full Text Available Abstract Background DSB, the 3-O-(3',3'dimethylsuccinyl derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag, which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9, DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP. In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium. Results Wild-type Vif (Vifwt restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD formed by the four H108C114C133H139 coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone. Conclusion The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway.

  14. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase.

    Science.gov (United States)

    Rowley, David C; Hansen, Mark S T; Rhodes, Denise; Sotriffer, Christoph A; Ni, Haihong; McCammon, J Andrew; Bushman, Frederic D; Fenical, William

    2002-11-01

    Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.

  15. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... help us Send the Message . Get the Facts What are HIV and AIDS? HIV (human immunodeficiency virus) ... hiv-aids-101/statistics/ . Reference Centers for Disease Control and Prevention, Division of HIV/AIDS Prevention, National ...

  16. HIV/AIDS and Alcohol

    Science.gov (United States)

    ... Psychiatric Disorders Other Substance Abuse HIV/AIDS HIV/AIDS Human immunodeficiency virus (HIV) targets the body’s immune ... and often leads to acquired immune deficiency syndrome (AIDS). The U.S. CDC reported that in 2015, 39, ...

  17. Appraising the performance of genotyping tools in the prediction of coreceptor tropism in HIV-1 subtype C viruses

    Directory of Open Access Journals (Sweden)

    Crous Saleema

    2012-09-01

    Full Text Available Abstract Background In human immunodeficiency virus type 1 (HIV-1 infection, transmitted viruses generally use the CCR5 chemokine receptor as a coreceptor for host cell entry. In more than 50% of subtype B infections, a switch in coreceptor tropism from CCR5- to CXCR4-use occurs during disease progression. Phenotypic or genotypic approaches can be used to test for the presence of CXCR4-using viral variants in an individual’s viral population that would result in resistance to treatment with CCR5-antagonists. While genotyping approaches for coreceptor-tropism prediction in subtype B are well established and verified, they are less so for subtype C. Methods Here, using a dataset comprising V3 loop sequences from 349 CCR5-using and 56 CXCR4-using HIV-1 subtype C viruses we perform a comparative analysis of the predictive ability of 11 genotypic algorithms in their prediction of coreceptor tropism in subtype C. We calculate the sensitivity and specificity of each of the approaches as well as determining their overall accuracy. By separating the CXCR4-using viruses into CXCR4-exclusive (25 sequences and dual-tropic (31 sequences we evaluate the effect of the possible conflicting signal from dual-tropic viruses on the ability of a of the approaches to correctly predict coreceptor phenotype. Results We determined that geno2pheno with a false positive rate of 5% is the best approach for predicting CXCR4-usage in subtype C sequences with an accuracy of 94% (89% sensitivity and 99% specificity. Contrary to what has been reported for subtype B, the optimal approaches for prediction of CXCR4-usage in sequence from viruses that use CXCR4 exclusively, also perform best at predicting CXCR4-use in dual-tropic viral variants. Conclusions The accuracy of genotyping approaches at correctly predicting the coreceptor usage of V3 sequences from subtype C viruses is very high. We suggest that genotyping approaches can be used to test for coreceptor tropism in HIV-1

  18. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L

    Science.gov (United States)

    Drappier, Melissa; Elliott, Ruth; Zhang, Rong; Weiss, Susan R.; Silverman, Robert H.

    2018-01-01

    The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A. PMID:29652922

  19. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin α4β7.

    Directory of Open Access Journals (Sweden)

    Nicholas F Parrish

    Full Text Available Sexual transmission of human immunodeficiency virus type 1 (HIV-1 most often results from productive infection by a single transmitted/founder (T/F virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20 and chronic (n = 20 Env constructs as well as full-length T/F (n = 6 and chronic (n = 4 infectious molecular clones (IMCs. We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.

  20. Human papilloma virus prevalence in HIV patients with head and neck squamous cell carcinoma.

    Science.gov (United States)

    Picard, Annabelle; Badoual, Cécile; Hourseau, Muriel; Halimi, Caroline; Pere, Hélène; Dib, Fadia; Barry, Béatrix; Albert, Sébastien

    2016-05-15

    The implication of human papilloma virus (HPV) in head and neck squamous cell carcinoma (HNSCC) is well established, especially in oropharyngeal SCC. HIV patients have a higher risk of persistent HPV infection. We investigated the role of HPV in HNSCC carcinogenesis in HIV population. Retrospective monocentric study. We studied HIV patients who presented with HNSCC between 1994 and 2014. For each patient, tumor characteristics, HIV disease, and survival information were collected. Tumor HPV testing was performed using p16 immunohistochemistry (IHC), in-situ hybridization and PCR. We assessed the percentage of HPV in this population of HIV patients with HNSCC and compared HIV disease characteristics based on HPV status. Forty-seven patients were included: 11 women/36 men, the median age was 50 years. Tumor HPV testing was performed in 40 patients. Tumors were located in oropharynx (32%), oral cavity (32%), larynx (21%), and hypopharynx (11%). At the time of diagnosis, median CD4 level was 385 cells/μl, 31% of the patients were stage (Centers for Disease Control, stage C). The percentage of HPV linked to HNSCC for all locations in HIV patients was 30% (n = 12). HPV16 accounted for 50% of all HPV genotypes. HPV positive status was associated with a CD4 nadir of less than 200 (P = 0.026), but not with CD4 level at time of diagnosis (P = 0.414). HPV-negative tumors tend to be associated with poorer 5-year overall survival (hazard ratio = 2.9, P = 0.0711). HPV plays a critical role in HNSCC development in HIV population. HIV immunodeficiency may increase HPV persistence and progression of HNSCC.

  1. Hepatitis B virus and HIV co-infection among pregnant women in Rwanda.

    Science.gov (United States)

    Mutagoma, Mwumvaneza; Balisanga, Helene; Malamba, Samuel S; Sebuhoro, Dieudonné; Remera, Eric; Riedel, David J; Kanters, Steve; Nsanzimana, Sabin

    2017-09-11

    Hepatitis B virus (HBV) affects people worldwide but the local burden especially in pregnant women and their new born babies is unknown. In Rwanda HIV-infected individuals who are also infected with HBV are supposed to be initiated on ART immediately. HBV is easily transmitted from mother to child during delivery. We sought to estimate the prevalence of chronic HBV infection among pregnant women attending ante-natal clinic (ANC) in Rwanda and to determine factors associated with HBV and HIV co-infection. This study used a cross-sectional survey, targeting pregnant women in sentinel sites. Pregnant women were tested for hepatitis B surface antigen (HBsAg) and HIV infection. A series of tests were done to ensure high sensitivity. Multivariable logistic regression was used to identify independent predictors of HBV-HIV co-infection among those collected during ANC sentinel surveillance, these included: age, marital status, education level, occupation, residence, pregnancy and syphilis infection. The prevalence of HBsAg among 13,121 pregnant women was 3.7% (95% CI: 3.4-4.0%) and was similar among different socio-demographic characteristics that were assessed. The proportion of HIV-infection among HBsAg-positive pregnant women was 4.1% [95% CI: 2.5-6.3%]. The prevalence of HBV-HIV co-infection was higher among women aged 15-24 years compared to those women aged 25-49 years [aOR = 6.9 (95% CI: 1.8-27.0)]. Women residing in urban areas seemed having HBV-HIV co-infection compared with women residing in rural areas [aOR = 4.3 (95% CI: 1.2-16.4)]. Women with more than two pregnancies were potentially having the co-infection compared to those with two or less (aOR = 6.9 (95% CI: 1.7-27.8). Women with RPR-positive test were seemed associated with HBV-HIV co-infection (aOR = 24.9 (95% CI: 5.0-122.9). Chronic HBV infection is a public health problem among pregnant women in Rwanda. Understanding that HBV-HIV co-infection may be more prominent in younger women from urban

  2. Psycho-immunology and HIV infection : biopsychosocial determinants of distress, immunological parameters, and disease progression in homosexual men infected with human immunodeficiency virus-1

    NARCIS (Netherlands)

    C.L. Mulder (Niels)

    1994-01-01

    textabstractSubjects who have tested positive for the presence of antibodies against Human Immunodeficiency Virus Type I (further abbreviated as HIV), have to live with a lifethreatening infection. At present, no definite medical cure is available that prevents progression of HIV infection.

  3. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... Drugs and HIV Learn the Link - Drugs and HIV Email Facebook Twitter 2005 –Ongoing Behaviors associated with ... Send the Message . Get the Facts What are HIV and AIDS? HIV (human immunodeficiency virus) is the ...

  4. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev (Merck)

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  5. High awareness of hepatitis C virus (HCV) but limited knowledge of HCV complications among HIV-positive and HIV-negative men who have sex with men

    NARCIS (Netherlands)

    Lambers, Femke A. E.; Prins, Maria; Davidovich, Udi; Stolte, Ineke G.

    2014-01-01

    Hepatitis C virus (HCV) has emerged as a sexually transmitted infection among HIV-positive men who have sex with men (MSM) in high-income countries. Little is reported about HCV awareness among MSM, although this is essential for developing targeted prevention strategies. We, therefore, studied HCV

  6. A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction

    Directory of Open Access Journals (Sweden)

    Samman Ayman

    2008-08-01

    Full Text Available Abstract Feline immunodeficiency virus (FIV targets helper T cells by attachment of the envelope glycoprotein (Env to CD134, a subsequent interaction with CXCR4 then facilitating the process of viral entry. As the CXCR4 binding site is not exposed until CD134-binding has occurred then the virus is protected from neutralising antibodies targeting the CXCR4-binding site on Env. Prototypic FIV vaccines based on the FL4 strain of FIV contain a cell culture-adapted strain of FIV Petaluma, a CD134-independent strain of FIV that interacts directly with CXCR4. In addition to a characteristic increase in charge in the V3 loop homologue of FIVFL4, we identified two mutations in potential sites for N-linked glycosylation in the region of FIV Env analogous to the V1–V2 region of HIV and SIV Env, T271I and N342Y. When these mutations were introduced into the primary GL8 and CPG41 strains of FIV, the T271I mutation was found to alter the nature of the virus-CD134 interaction; primary viruses carrying the T271I mutation no longer required determinants in cysteine-rich domain (CRD 2 of CD134 for viral entry. The T271I mutation did not confer CD134-independent infection upon GL8 or CPG41, nor did it increase the affinity of the CXCR4 interaction, suggesting that the principal effect was targeted at reducing the complexity of the Env-CD134 interaction.

  7. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    International Nuclear Information System (INIS)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.

    1987-01-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4 + and T8 + cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4 + cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo

  8. HIV infection of T cells: actin-in and actin-out.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Shaw, Stephen

    2009-04-14

    Three studies shed light on the decade-old observation that the actin cytoskeleton is hijacked to facilitate entry of HIV into its target cells. Polymerization of actin is required to assemble high concentrations of CD4 and CXCR4 at the plasma membrane, which promote viral binding and entry in both the simple model of infection by free virus and the more physiologically relevant route of infection through the virological synapse. Three types of actin-interacting proteins-filamin, ezrin/radixin/moesin (ERM), and cofilin-are now shown to play critical roles in this process. Filamin binds to both CD4 and CXCR4 in a manner promoted by signaling of the HIV gp120 glycoprotein. ERM proteins attach actin filaments to the membrane and may promote polymerization of actin. Early in the process of viral entry, cofilin is inactivated, which is proposed to facilitate the early assembly of actin filaments, but cofilin is reported to be activated soon thereafter to facilitate postentry events. This complex role of cofilin may help to reconcile the paradox that actin polymerization promotes initial binding and fusion steps but inhibits some subsequent early postentry events.

  9. Predictors of human immunodeficiency virus (HIV) infection in primary care: a systematic review protocol.

    Science.gov (United States)

    Rumbwere Dube, Benhildah N; Marshall, Tom P; Ryan, Ronan P

    2016-09-20

    Antiretroviral therapies for human immunodeficiency virus are more effective if infected individuals are diagnosed early, before they have irreversible immunologic damage. A large proportion of patients that are diagnosed with HIV, in United Kingdom, would have seen a general practitioner (GP) within the previous year. Determining the demographic and clinical characteristics of HIV-infected patients prior to diagnosis of HIV may be useful in identifying patients likely to be HIV positive in primary care. This could help inform a strategy of early HIV testing in primary care. This systematic review aims to identify characteristics of HIV-infected adults prior to diagnosis that could be used in a prediction model for early detection of HIV in primary care. The systematic review will search for literature, mainly observational (cohort and case-control) studies, with human participants aged 18 years and over. The exposures are demographic, socio-economic or clinical risk factors or characteristics associated with HIV infection. The comparison group will be patients with no risk factors or no comparison group. The outcome is laboratory-confirmed HIV/AIDS infection. Evidence will be identified from electronic searches of online databases of EMBASE, MEDLINE, The Cochrane Library and grey literature search engines of Open Grey, Web of Science Conference Proceedings Citation Index and examination of reference lists from selected studies (reference searching). Two reviewers will be involved in quality assessment and data extraction of the review. A data extraction form will be developed to collate data from selected studies. A checklist for quality assessment will be adapted from the Scottish Intercollegiate Guidelines Network (SIGN). This systematic review will identify and consolidate existing scientific evidence on characteristics of HIV infected individuals that could be used to inform decision-making in prognostic model development. PROSPERO CRD42016042427.

  10. Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development

    Science.gov (United States)

    Liu, Chia-Lin; Hung, Hui-Chen; Lo, Shou-Chen; Chiang, Ching-Hui; Chen, I.-Jung; Hsu, John T.-A.; Hou, Ming-Hon

    2016-02-01

    Nucleoprotein (NP) is the most abundant type of RNA-binding viral protein in influenza A virus-infected cells and is necessary for viral RNA transcription and replication. Recent studies demonstrated that influenza NP is a valid target for antiviral drug development. The surface of the groove, covered with numerous conserved residues between the head and body domains of influenza A NP, plays a crucial role in RNA binding. To explore the mechanism by which NP binds RNA, we performed a series of site-directed mutagenesis in the RNA-binding groove, followed by surface plasmon resonance (SPR), to characterize the interactions between RNA and NP. Furthermore, a role of Y148 in NP stability and NP-RNA binding was evaluated. The aromatic residue of Y148 was found to stack with a nucleotide base. By interrupting the stacking interaction between Y148 and an RNA base, we identified an influenza virus NP inhibitor, (E, E)-1,7-bis(4-hydroxy-3-methoxyphenyl) -1,6-heptadiene-3,5-dione; this inhibitor reduced the NP’s RNA-binding affinity and hindered viral replication. Our findings will be useful for the development of new drugs that disrupt the interaction between RNA and viral NP in the influenza virus.

  11. HIV restriction by APOBEC3 in humanized mice.

    Directory of Open Access Journals (Sweden)

    John F Krisko

    2013-03-01

    Full Text Available Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3 family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV, Hepatitis B virus (HBV, Human Papilloma virus (HPV, and Human T Cell Leukemia virus (HTLV. The best characterized members of this family are APOBEC3G (A3G and APOBEC3F (A3F and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif. Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.

  12. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  13. Treating depression in HIV-positive patients affects adherence

    African Journals Online (AJOL)

    2012-09-02

    Sep 2, 2012 ... reported that the number of people newly infected with HIV and the number .... and immunity. Subjects were ... of change in adherence as a response ..... retroviral drugs: Theorising contextual relationships. ... Drug-resistant HIV-1: The virus strikes back. ... persons with human immunodeficiency virus (HIV).

  14. Virological Mechanisms in the Coinfection between HIV and HCV

    Directory of Open Access Journals (Sweden)

    Maria Carla Liberto

    2015-01-01

    Full Text Available Due to shared transmission routes, coinfection with Hepatitis C Virus (HCV is common in patients infected by Human Immunodeficiency Virus (HIV. The immune-pathogenesis of liver disease in HIV/HCV coinfected patients is a multifactorial process. Several studies demonstrated that HIV worsens the course of HCV infection, increasing the risk of cirrhosis and hepatocellular carcinoma. Also, HCV might increase immunological defects due to HIV and risk of comorbidities. A specific cross-talk among HIV and HCV proteins in coinfected patients modulates the natural history, the immune responses, and the life cycle of both viruses. These effects are mediated by immune mechanisms and by a cross-talk between the two viruses which could interfere with host defense mechanisms. In this review, we focus on some virological/immunological mechanisms of the pathogenetic interactions between HIV and HCV in the human host.

  15. Repeated Vaccination of Cows with HIV Env gp140 during Subsequent Pregnancies Elicits and Sustains an Enduring Strong Env-Binding and Neutralising Antibody Response.

    Directory of Open Access Journals (Sweden)

    Behnaz Heydarchi

    Full Text Available An important feature of a potential vaccine against HIV is the production of broadly neutralising antibodies (BrNAbs capable of potentially blocking infectivity of a diverse array of HIV strains. BrNAbs naturally arise in some HIV infected individuals after several years of infection and their serum IgG can neutralise various HIV strains across different subtypes. We previously showed that vaccination of cows with HIV gp140 AD8 trimers resulted in a high titre of serum IgG against HIV envelope (Env that had strong BrNAb activity. These polyclonal BrNAbs concentrated into the colostrum during the late stage of pregnancy and can be harvested in vast quantities immediately after calving. In this study, we investigated the effect of prolonged HIV gp140 vaccination on bovine colostrum IgG HIV Env-binding and BrNAb activity over subsequent pregnancies. Repeated immunisation led to a maintained high titre of HIV Env specific IgG in the colostrum batches, but this did not increase through repeated cycles. Colostrum IgG from all batches also strongly competed with sCD4 binding to gp140 Env trimer and with human-derived monoclonal VRC01 and b12 BrNAbs that bind the CD4 binding site (CD4bs. Furthermore, competition neutralisation assays using RSC3 Env gp120 protein core and a derivative CD4bs mutant, RSC3 Δ371I/P363N, showed that CD4bs neutralising antibodies contribute to the neutralising activity of all batches of purified bovine colostrum IgG. This result indicates that the high IgG titre/avidity of anti-CD4bs antibodies with BrNAb activity was achieved during the first year of vaccination and was sustained throughout the years of repeated vaccinations in the cow tested. Although IgG of subsequent colostrum batches may have a higher avidity towards the CD4bs, the overall breadth in neutralisation was not enhanced. This implies that the boosting vaccinations over 4 years elicited a polyclonal antibody response that maintained the proportion of both

  16. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.

    Science.gov (United States)

    Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael

    2012-11-01

    In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.

  17. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. HIV/AIDS - pregnancy and infants

    Science.gov (United States)

    ... immunodeficiency virus - children; Acquired immune deficiency syndrome - children; Pregnancy - HIV; Maternal HIV; Perinatal - HIV ... mother to the child. This can occur during pregnancy, childbirth, or when breastfeeding. Only blood, semen, vaginal ...

  19. Neutralization of tier-2 viruses and epitope profiling of plasma antibodies from human immunodeficiency virus type 1 infected donors from India.

    Directory of Open Access Journals (Sweden)

    Raiees Andrabi

    Full Text Available Broadly cross neutralizing antibodies (NAbs are generated in a group of HIV-1 infected individuals during the natural infection, but little is known about their prevalence in patients infected with viral subtypes from different geographical regions. We tested here the neutralizing efficiency of plasma antibodies from 80 HIV-1 infected antiretroviral drug naive patients against a panel of subtype-B and C tier 2 viruses. We detected cross-neutralizing antibodies in approximately 19-27% of the plasma, however the subtype-C specific neutralization efficiency predominated (p = 0.004. The neutralizing activity was shown to be exclusively mediated by the immunoglobulin G (IgG fraction in the representative plasma samples. Epitope mapping of three, the most cross-neutralizing plasma (CNP AIIMS206, AIIMS239 and AIIMS249 with consensus-C overlapping envelope peptides revealed ten different binding specificities with only V3 and IDR being common. The V3 and IDR were highly antigenic regions but no correlation between their reciprocal Max50 binding titers and neutralization was observed. In addition, the neutralizing activity of CNP was not substantially reduced by V3 and gp41 peptides except a modest contribution of MPER peptide. The MPER was rarely recognized by plasma antibodies though antibody depletion and competition experiments demonstrated MPER dependent neutralization in two out of three CNP. Interestingly, the binding specificity of one of the CNP (AIIMS206 overlapped with broadly neutralizing mAb 2F5 epitope. Overall, the data suggest that, despite the low immunogenicity of HIV-1 MPER, the antibodies directed to this region may serve as crucial reagents for HIV-1 vaccine design.

  20. The anti-HIV-1 effect of scutellarin

    International Nuclear Information System (INIS)

    Zhang Gaohong; Wang Qian; Chen Jijun; Zhang Xuemei; Tam, S.-C.; Zheng Yongtang

    2005-01-01

    Scutellarin was purified from the plant Erigeron breviscapus (Vant.) Hand.-Mazz. The activity against 3 strains of human immunodeficiency virus (HIV) was determined in vitro in this study. These were laboratory-derived virus (HIV-1 IIIB ), drug-resistant virus (HIV-1 74V ), and low-passage clinical isolated virus (HIV-1 KM018 ). From syncytia inhibition study, the EC 50 of scutellarin against HIV-1 IIIB direct infection in C8166 cells was 26 μM with a therapeutic index of 36. When the mode of infection changed from acute infection to cell-to-cell infection, this compound became even more potent and the EC 50 reduced to 15 μM. This suggested that cell fusion might be affected by this compound. By comparing the inhibitory effects on p24 antigen, scutellarin was also found to be active against HIV-1 74V (EC 50 253 μM) and HIV-1 KM018 (EC 50 136 μM) infection with significant difference in potency. The mechanism of its action was also explored in this study. At a concentration of 433 μM, scutellarin inhibited 48% of the cell free recombinant HIV-1 RT activity. It also caused 82% inhibition of HIV-1 particle attachment and 45% inhibition of fusion at the concentrations of 54 μM. In summary, scutellarin was found to inhibit several strains of HIV-1 replication with different potencies. It appeared to inhibit HIV-1 RT activity, HIV-1 particle attachment and cell fusion. These are essential activities for viral transmission and replication

  1. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    International Nuclear Information System (INIS)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J.; Chen, Han; Zhou, You; Belshan, Michael

    2014-01-01

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release

  2. Deletions in the fifth alpha helix of HIV-1 matrix block virus release

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, Bridget; Li, Yan; Maly, Connor J.; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Chen, Han [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, You [Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE (United States); Nebraska Center for Virology, Lincoln, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Nebraska Center for Virology, Lincoln, NE (United States)

    2014-11-15

    The matrix (MA) protein of HIV-1 is the N-terminal component of the Gag structural protein and is critical for the early and late stages of viral replication. MA contains five α-helices (α1–α5). Deletions in the N-terminus of α5 as small as three amino acids impaired virus release. Electron microscopy of one deletion mutant (MA∆96-120) showed that its particles were tethered to the surface of cells by membranous stalks. Immunoblots indicated all mutants were processed completely, but mutants with large deletions had alternative processing intermediates. Consistent with the EM data, MA∆96-120 retained membrane association and multimerization capability. Co-expression of this mutant inhibited wild type particle release. Alanine scanning mutation in this region did not affect virus release, although the progeny virions were poorly infectious. Combined, these data demonstrate that structural ablation of the α5 of MA inhibits virus release. - Highlights: • Deletions were identified in the C-terminus of matrix that block virus release. • These deletion mutants still multimerized and associated with membranes. • TEM showed the mutant particles were tethered to the cell surface. • Amino acid mutagenesis of the region did not affect release. • The data suggests that disruption of matrix structure blocks virus release.

  3. How you get HIV/AIDS

    Science.gov (United States)

    How you get HIV/AIDS Which body fluids contain HIV? HIV is a virus that lives in blood and other fluids in the body. Moving ... answers to any questions you have about HIV/AIDS. Your public health department and health care provider ...

  4. Molecular evolution of broadly neutralizing Llama antibodies to the CD4-binding site of HIV-1.

    Science.gov (United States)

    McCoy, Laura E; Rutten, Lucy; Frampton, Dan; Anderson, Ian; Granger, Luke; Bashford-Rogers, Rachael; Dekkers, Gillian; Strokappe, Nika M; Seaman, Michael S; Koh, Willie; Grippo, Vanina; Kliche, Alexander; Verrips, Theo; Kellam, Paul; Fassati, Ariberto; Weiss, Robin A

    2014-12-01

    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols.

  5. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses.

    Directory of Open Access Journals (Sweden)

    Xuyong Li

    2014-11-01

    Full Text Available H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific "internal-gene-combination" predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as "vehicles" to deliver different subtypes of influenza viruses from avian species to humans.

  6. Impact of Hepatitis C Virus Coinfection on Response to Highly Active Antiretroviral Therapy and Outcome in HIV-Infected Individuals: A Nationwide Cohort Study

    DEFF Research Database (Denmark)

    Weis, Nina Margrethe; Lindhardt, Bjarne Ø.; Kronborg, Gitte

    2006-01-01

    BACKGROUND: Coinfection with hepatitis C virus (HCV) in human immunodeficiency virus (HIV) type 1-infected patients may decrease the effectiveness of highly active antiretroviral therapy. We determined the impact of HCV infection on response to highly active antiretroviral therapy and outcome among...

  7. Impact of hepatitis C virus coinfection on response to highly active antiretroviral therapy and outcome in HIV-infected individuals: a nationwide cohort study

    DEFF Research Database (Denmark)

    Weis, Nina Margrethe; Lindhardt, Bjarne Ø.; Kronborg, Gitte

    2006-01-01

    BACKGROUND: Coinfection with hepatitis C virus (HCV) in human immunodeficiency virus (HIV) type 1-infected patients may decrease the effectiveness of highly active antiretroviral therapy. We determined the impact of HCV infection on response to highly active antiretroviral therapy and outcome among...

  8. Crystallization and preliminary X-ray analysis of the chemokine-binding protein from orf virus (Poxviridae)

    International Nuclear Information System (INIS)

    Couñago, Rafael Miguez; Fleming, Stephen B.; Mercer, Andrew A.; Krause, Kurt L.

    2010-01-01

    The chemokine-binding protein from orf virus was purified and crystallized. The morphology and diffraction behaviour of these crystals was significantly improved through the use of additives known as Silver Bullets. The parapoxvirus orf virus (ORFV) encodes a chemokine-binding protein (CBP) that functions to downregulate the host’s immune response at the site of infection by blocking the chemokine-induced recruitment of immune cells. In order to shed light on the structural determinants of CBP–chemokine binding, ORFV CBP was crystallized as part of an ongoing structure–function study on this protein. ORFV CBP crystals were obtained by the sitting-drop vapour-diffusion technique using ammonium citrate as a precipitant. The crystal quality was greatly improved through the addition of small-molecule additives to the crystallization mother liquor. ORFV CBP crystals diffracted X-rays to 2.50 Å resolution and belonged to the hexagonal space group P6 1 22 or its enantiomorph P6 5 22, with unit-cell parameters a = b = 75.62, c = 282.49 Å, α = 90, β = 90, γ = 120°

  9. HIV Molecular Immunology 2015

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Korber, Bette Tina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Brander, Christian [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States). Division of Vaccine Research; de Boer, Rob [Utrecht University, Utrecht (Netherlands). Faculty of Biology; Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Koup, Richard [National Inst. of Health (NIH), Bethesda, MD (United States). Vaccine Research Center; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Walker, Bruce D. [Ragon Institute, Cambridge, MA (United States); Watkins, David [Wisconsin Regional Primate Research Center, Madison, WI (United States)

    2016-04-05

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins

  10. Interferon-α Subtypes As an Adjunct Therapeutic Approach for Human Immunodeficiency Virus Functional Cure.

    Science.gov (United States)

    George, Jeffy; Mattapallil, Joseph J

    2018-01-01

    Human immunodeficiency virus (HIV) establishes life-long latency in infected individuals. Although highly active antiretroviral therapy (HAART) has had a significant impact on the course of HIV infection leading to a better long-term outcome, the pool of latent reservoir remains substantial even under HAART. Numerous approaches have been under development with the goal of eradicating the latent HIV reservoir though with limited success. Approaches that combine immune-mediated control of HIV to activate both the innate and the adaptive immune system under suppressive therapy along with "shock and kill" drugs may lead to a better control of the reactivated virus. Interferon-α (IFN-α) is an innate cytokine that has been shown to activate intracellular defenses capable of restricting and controlling HIV. IFN-α, however, harbors numerous functional subtypes that have been reported to display different binding affinities and potency. Recent studies have suggested that certain subtypes such as IFN-α8 and IFN-α14 have potent anti-HIV activity with little or no immune activation, whereas other subtypes such as IFN-α4, IFN-α5, and IFN-α14 activate NK cells. Could these subtypes be used in combination with other strategies to reduce the latent viral reservoir? Here, we review the role of IFN-α subtypes in HIV infection and discuss the possibility that certain subtypes could be potential adjuncts to a "shock and kill" or therapeutic vaccination strategy leading to better control of the latent reservoir and subsequent functional cure.

  11. Hodgkin lymphoma, HIV, and Epstein-Barr virus in Malawi: Longitudinal results from the Kamuzu Central Hospital Lymphoma study.

    Science.gov (United States)

    Westmoreland, Katherine D; Stanley, Christopher C; Montgomery, Nathan D; Kaimila, Bongani; Kasonkanji, Edwards; El-Mallawany, Nader Kim; Wasswa, Peter; Mtete, Idah; Butia, Mercy; Itimu, Salama; Chasela, Mary; Mtunda, Mary; Chikasema, Maria; Makwakwa, Victor; Kampani, Coxcilly; Dhungel, Bal M; Sanders, Marcia K; Krysiak, Robert; Tomoka, Tamiwe; Liomba, N George; Dittmer, Dirk P; Fedoriw, Yuri; Gopal, Satish

    2017-05-01

    Contemporary descriptions of classical Hodgkin lymphoma (cHL) are lacking from sub-Saharan Africa where human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) are prevalent. We describe a prospective cHL cohort in Malawi enrolled from 2013 to 2015. Patients received standardized treatment and evaluation, including HIV status and EBV testing of tumors and plasma. Among 31 patients with confirmed cHL, the median age was 19 years (range, 2-51 years) and 22 (71%) were male. Sixteen patients (52%) had stage III/IV, 25 (81%) B symptoms, and 16 (52%) performance status impairment. Twenty-three patients (74%) had symptoms >6 months, and 11 of 29 (38%) had received empiric antituberculosis treatment. Anemia was common with median hemoglobin 8.2 g/dL (range, 3.1-17.1 g/dL), which improved during treatment. No children and 5 of 15 adults (33%) were HIV+. All HIV+ patients were on antiretroviral therapy for a median 15 months (range, 2-137 months), with median CD4 count 138 cells/μL (range, 23-329 cells/μL) and four (80%) having undetectable HIV. EBV was present in 18 of 24 (75%) tumor specimens, including 14 of 20 (70%) HIV- and 4 of 4 (100%) HIV+. Baseline plasma EBV DNA was detected in 25 of 28 (89%) patients, with median viral load 4.7 (range, 2.0-6.7) log 10 copies/mL, and subsequently declined in most patients. At 12 months, overall survival was 75% (95% confidence interval [CI], 55%-88%) and progression-free survival 65% (95% CI, 42%-81%). Baseline plasma EBV DNA and persistent viremia during treatment were associated with poorer outcomes. cHL in Malawi is characterized by delayed diagnosis and advanced disease. Most cases were EBV associated and one-third of adults were HIV+. Despite resource limitations, 12-month outcomes were good. © 2016 Wiley Periodicals, Inc.

  12. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation.

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Mohsen

    2016-06-01

    Full Text Available Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART, and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9 potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002, more potently than vorinostat (p = 0.02. rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05. rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006 and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02 and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009, suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.

  13. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    David J Stanley

    2012-12-01

    Full Text Available Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV. HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G. Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.

  14. Hepatitis C virus reinfection incidence and treatment outcome among HIV-positive MSM.

    Science.gov (United States)

    Martin, Thomas C S; Martin, Natasha K; Hickman, Matthew; Vickerman, Peter; Page, Emma E; Everett, Rhiannon; Gazzard, Brian G; Nelson, Mark

    2013-10-23

    Liver disease secondary to hepatitis C virus (HCV) infection in the context of HIV infection is one of the leading non-AIDS causes of death. Sexual transmission of HCV infection among HIV-positive MSM appears to be leading to increased reports of acute HCV infection. Reinfection after successful treatment or spontaneous clearance is reported among HIV-positive MSM but the scale of reinfection is unknown. We calculate and compare HCV reinfection rates among HIV-positive MSM after spontaneous clearance and successful medical treatment of infection. Retrospective analysis of HIV-positive MSM with sexually acquired HCV who subsequently spontaneously cleared or underwent successful HCV treatment between 2004 and 2012. Among 191 individuals infected with HCV, 44 were reinfected over 562 person-years (py) of follow-up with an overall reinfection rate of 7.8/100 py [95% confidence interval (CI) 5.8-10.5]. Eight individuals were subsequently reinfected a second time at a rate of 15.5/100 py (95% CI 7.7-31.0). Combining all reinfections, 20% resulted in spontaneous clearance and treatment sustained viral response rates were 73% (16/22) for genotypes one and four and 100% (2/2) for genotypes two and three. Among 145 individuals with a documented primary infection, the reinfection rate was 8.0 per 100 py (95% CI 5.7-11.3) overall, 9.6/100 py (95% CI 6.6-14.1) among those successfully treated and 4.2/100 py (95% CI 1.7-10.0) among those who spontaneously cleared. The secondary reinfection rate was 23.2/100 py (95% CI 11.6-46.4). Despite efforts at reducing risk behaviour, HIV-positive MSM who clear HCV infection remain at high risk of reinfection. This emphasizes the need for increased sexual education, surveillance and preventive intervention work.

  15. [Association between intracellular zinc levels and nutritional status in HIV-infected and uninfected children exposed to the virus].

    Science.gov (United States)

    Gómez G, Erika María; Maldonado C, María Elena; Rojas L, Mauricio; Posada J, Gladys

    2015-01-01

    Malnutrition, growth retardation and opportunistic infections outlast the metabolic, immune and gastrointestinal disorders produced by HIV. Zinc deficiency has been associated with deteriorating nutritional status, growth failure, and risk of infection. The aim of this study is to determine the association between zinc levels in peripheral blood mononuclear cells (PBMC) and the nutritional status of HIV-infected and uninfected children exposed to the virus. An analytical, observational, cross-sectional study was conducted on 17 infected and 17 exposed children, aged 2-10 years. Anthropometric measurements, clinical and nutritional history, 24h recall, measurement of physical activity, and zinc in PBMC by flow cytometry analysis were recorded. Height according to age, energy consumption and adequacy of energy, protein and dietary zinc were significantly higher in children exposed to the virus compared to those infected with HIV (P .05). However, the median levels of zinc in monocytes of infected patients was higher (218.6) compared to the control group (217.0). No association was found between zinc intake and levels of intracellular zinc. The deterioration of nutritional status and growth retardation in children were associated with HIV, but not with the levels of intracellular zinc. The dietary intake of this nutrient was not associated with levels of zinc in monocytes or CD4 + and CD4- lymphocytes. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  16. Hepatitis B virus prevalence, risk factors and genotype distribution in HIV infected patients from West Java, Indonesia.

    Science.gov (United States)

    Fibriani, Azzania; Wisaksana, Rudi; Alisjahbana, Bachti; Indrati, Agnes; Schutten, Martin; van Crevel, Reinout; van der Ven, Andre; Boucher, Charles A B

    2014-04-01

    Indonesia currently faces both an increasing HIV incidence and a high hepatitis B virus (HBV) burden. The objective of our study is to examine the prevalence, risk factors, and genotypic distribution of HBV infection among HIV infected patients in West Java, Indonesia. A cross sectional study was conducted among a cohort of HIV infected patients in 2008. Demographic and disease related variables were compared between HBV negative and positive patients. Logistic regression was applied to determine risk factors for HBV co-infection. HBV and HIV genotyping was performed in co-infected patients. Of 636 HIV-infected patients, the rate of HBV co-infection was 7%. The proportion of males was higher in HBV/HIV co-infected patients than in HIV mono-infected patients (93% vs. 72%, P=0.001). A history of injecting drug use (IDU), but not tattooing, was associated with HBV co-infection [P=0.035 OR 2.41 (95% CI 1.06-5.47)]. In the HIV and HBV treatment naive patients, CD4 cells counts Java. However, an increased prevalence was observed in men with a history of IDU, underlining the need for routine HBV screening and monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Zika Virus

    Science.gov (United States)

    ... Funding CDC Activities For Healthcare Providers Clinical Evaluation & Disease Sexual Transmission HIV Infection & Zika Virus Testing for Zika Test Specimens – At Time of Birth Diagnostic Tests Understanding Zika Virus Test Results ...

  18. Prevalence of HIV associated neurocognitive deficit among HIV ...

    African Journals Online (AJOL)

    Background: HIV associated neurocognitive deficit impairs motor activity, neuropsychiatric functioning, daily activity and work activity usually due to the immune suppression effect of the virus. Sub-Saharan region including Ethiopia is the region with the highest burden of HIV. However, a few studies are found on this aspect ...

  19. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  20. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm.

    Science.gov (United States)

    Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-09-26

    Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a "cytokine storm." Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1 -/- mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1 -/- mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine-Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4 Hi CD3 Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4 + T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4 + T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD. IMPORTANCE Ebola virus infection is characterized by a massive release of inflammatory mediators, which has come to be known as a cytokine storm. The severity of the cytokine storm is