WorldWideScience

Sample records for hiv entry inhibitor

  1. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  2. Escape from Human Immunodeficiency Virus Type 1 (HIV-1 Entry Inhibitors

    Directory of Open Access Journals (Sweden)

    Carol D. Weiss

    2012-12-01

    Full Text Available The human immunodeficiency virus (HIV enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.

  3. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Anthony M. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Cheung, Pamela [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Swartz, Talia H.; Li, Hongru [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Tsibane, Tshidi [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Durham, Natasha D. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Basler, Christopher F. [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Felsenfeld, Dan P. [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Chen, Benjamin K., E-mail: benjamin.chen@mssm.edu [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States)

    2016-03-15

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  4. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    International Nuclear Information System (INIS)

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.; Li, Hongru; Tsibane, Tshidi; Durham, Natasha D.; Basler, Christopher F.; Felsenfeld, Dan P.; Chen, Benjamin K.

    2016-01-01

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  5. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    International Nuclear Information System (INIS)

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E.

    2006-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1α to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors

  6. Interaction of small molecule inhibitors of HIV-1 entry with CCR5

    International Nuclear Information System (INIS)

    Seibert, Christoph; Ying Weiwen; Gavrilov, Svetlana; Tsamis, Fotini; Kuhmann, Shawn E.; Palani, Anandan; Tagat, Jayaram R.; Clader, John W.; McCombie, Stuart W.; Baroudy, Bahige M.; Smith, Steven O.; Dragic, Tatjana; Moore, John P.; Sakmar, Thomas P.

    2006-01-01

    The CC-chemokine receptor 5 (CCR5) is the major coreceptor for macrophage-tropic (R5) HIV-1 strains. Several small molecule inhibitors of CCR5 that block chemokine binding and HIV-1 entry are being evaluated as drug candidates. Here we define how CCR5 antagonists TAK-779, AD101 (SCH-350581) and SCH-C (SCH-351125), which inhibit HIV-1 entry, interact with CCR5. Using a mutagenesis approach in combination with a viral entry assay to provide a direct functional read out, we tested predictions based on a homology model of CCR5 and analyzed the functions of more than 30 amino acid residues. We find that a key set of aromatic and aliphatic residues serves as a hydrophobic core for the ligand binding pocket, while E283 is critical for high affinity interaction, most likely by acting as the counterion for a positively charged nitrogen atom common to all three inhibitors. These results provide a structural basis for understanding how specific antagonists interact with CCR5, and may be useful for the rational design of new, improved CCR5 ligands

  7. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes

    International Nuclear Information System (INIS)

    Ketas, Thomas J.; Schader, Susan M.; Zurita, Juan; Teo, Esther; Polonis, Victoria; Lu Min; Klasse, Per Johan; Moore, John P.

    2007-01-01

    Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 μM), the replication of most R5 isolates in human donor lymphocytes was inhibited by > 90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness

  8. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    Science.gov (United States)

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Structural Study of a New HIV-1 Entry Inhibitor and Interaction with the HIV-1 Fusion Peptide in Dodecylphosphocholine Micelles.

    Science.gov (United States)

    Pérez, Yolanda; Gómara, Maria José; Yuste, Eloísa; Gómez-Gutierrez, Patricia; Pérez, Juan Jesús; Haro, Isabel

    2017-08-25

    Previous studies support the hypothesis that the envelope GB virus C (GBV-C) E1 protein interferes the HIV-1 entry and that a peptide, derived from the region 139-156 of this protein, has been defined as a novel HIV-1 entry inhibitor. In this work, we firstly focus on the characterization of the structural features of this peptide, which are determinant for its anti-HIV-1 activity and secondly, on the study of its interaction with the proposed viral target (i.e., the HIV-1 fusion peptide). We report the structure of the peptide determined by NMR spectroscopy in dodecylphosphocholine (DPC) micelles solved by using restrained molecular dynamics calculations. The acquisition of different NMR experiments in DPC micelles (i.e., peptide-peptide titration, diffusion NMR spectroscopy, and addition of paramagnetic relaxation agents) allows a proposal of an inhibition mechanism. We conclude that a 18-mer peptide from the non-pathogenic E1 GBV-C protein, with a helix-turn-helix structure inhibits HIV-1 by binding to the HIV-1 fusion peptide at the membrane level, thereby interfering with those domains in the HIV-1, which are critical for stabilizing the six-helix bundle formation in a membranous environment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics.

    Directory of Open Access Journals (Sweden)

    Andreas Schweizer

    2008-07-01

    Full Text Available Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

  11. Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors

    Science.gov (United States)

    Ketas, Thomas J.; Holuigue, Sophie; Matthews, Katie; Moore, John P.

    2011-01-01

    We measured the inhibition of infectivity of HIV-1 isolates and derivative clones by combinations of neutralizing antibodies (NAbs) and other entry inhibitors in a single-cycle-replication assay. Synergy was analyzed both by the current linear and a new nonlinear method. The new method reduced spurious indications of synergy and antagonism. Synergy between NAbs was overall weaker than between other entry inhibitors, and no stronger where one ligand is known to enhance the binding of another. However, synergy was stronger for a genetically heterogeneous HIV-1 R5 isolate than for its derivative clones. Enhanced cooperativity in inhibition by combinations, compared with individual inhibitors, correlated with increased synergy at higher levels of inhibition, while being less variable. Again, cooperativity enhancement was stronger for isolates than clones. We hypothesize that genetic, post-translational or conformational heterogeneity of the Env protein and of other targets for inhibitors can yield apparent synergy and increased cooperativity between inhibitors. PMID:22018634

  12. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  13. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4

    International Nuclear Information System (INIS)

    Zhao Qian; Ma Liying; Jiang Shibo; Lu Hong; Liu Shuwen; He Yuxian; Strick, Nathan; Neamati, Nouri; Debnath, Asim Kumar

    2005-01-01

    We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors

  14. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  15. Punica granatum (Pomegranate juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2004-10-01

    Full Text Available Abstract Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1 infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2 binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored.

  16. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120.

    Science.gov (United States)

    Curreli, Francesca; Belov, Dmitry S; Kwon, Young Do; Ramesh, Ranjith; Furimsky, Anna M; O'Loughlin, Kathleen; Byrge, Patricia C; Iyer, Lalitha V; Mirsalis, Jon C; Kurkin, Alexander V; Altieri, Andrea; Debnath, Asim K

    2018-05-12

    We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Stem cell gene therapy for HIV: strategies to inhibit viral entry and replication.

    Science.gov (United States)

    DiGiusto, David L

    2015-03-01

    Since the demonstration of a cure of an HIV+ patient with an allogeneic stem cell transplant using naturally HIV-resistant cells, significant interest in creating similar autologous products has fueled the development of a variety of "cell engineering" approaches to stem cell therapy for HIV. Among the more well-studied strategies is the inhibition of viral entry through disruption of expression of viral co-receptors or through competitive inhibitors of viral fusion with the cell membrane. Preclinical evaluation of these approaches often starts in vitro but ultimately is tested in animal models prior to clinical implementation. In this review, we trace the development of several key approaches (meganucleases, short hairpin RNA (shRNA), and fusion inhibitors) to modification of hematopoietic stem cells designed to impart resistance to HIV to their T-cell and monocytic progeny. The basic evolution of technologies through in vitro and in vivo testing is discussed as well as the pros and cons of each approach and how the addition of postentry inhibitors may enhance the overall antiviral efficacy of these approaches.

  18. Medicinal chemistry of small molecule CCR5 antagonists for blocking HIV-1 entry: a review of structural evolution.

    Science.gov (United States)

    Tian, Ye; Zhang, Dujuan; Zhan, Peng; Liu, Xinyong

    2014-01-01

    CCR5, a member of G protein-coupled receptors superfamily, plays an important role in the HIV-1 entry process. Antagonism of this receptor finally leads to the inhibition of R5 strains of HIV entry into the human cells. The identification of CCR5 antagonists as antiviral agents will provide more option for HAART. Now, more than a decade after the first small molecule CCR5 inhibitor was discovered, great achievements have been made. In this article, we will give a brief introduction of several series of small molecule CCR5 antagonists, focused on their appealing structure evolution, essential SAR information and thereof the enlightenment of strategies on CCR5 inhibitors design.

  19. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    Science.gov (United States)

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gene Therapy Targeting HIV Entry

    Directory of Open Access Journals (Sweden)

    Chuka Didigu

    2014-03-01

    Full Text Available Despite the unquestionable success of antiretroviral therapy (ART in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.

  1. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry.

    Directory of Open Access Journals (Sweden)

    Rachid Sougrat

    2007-05-01

    Full Text Available The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV, are heterodimers of a transmembrane glycoprotein (usually gp41, and a surface glycoprotein (gp120, which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.

  2. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance

    International Nuclear Information System (INIS)

    Anastassopoulou, Cleo G.; Ketas, Thomas J.; Sanders, Rogier W.; Johan Klasse, Per; Moore, John P.

    2012-01-01

    A rare pathway of HIV-1 resistance to small molecule CCR5 inhibitors such as Vicriviroc (VCV) involves changes solely in the gp41 fusion peptide (FP). Here, we show that the G516V change is critical to VCV resistance in PBMC and TZM-bl cells, although it must be accompanied by either M518V or F519I to have a substantial impact. Modeling VCV inhibition data from the two cell types indicated that G516V allows both double mutants to use VCV-CCR5 complexes for entry. The model further identified F519I as an independent determinant of preference for the unoccupied, high-VCV affinity form of CCR5. From inhibitor-free reversion cultures, we also identified a substitution in the inner domain of gp120, T244A, which appears to counter the resistance phenotype created by the FP substitutions. Examining the interplay of these changes will enhance our understanding of Env complex interactions that influence both HIV-1 entry and resistance to CCR5 inhibitors.

  3. High-throughput screening using pseudotyped lentiviral particles: a strategy for the identification of HIV-1 inhibitors in a cell-based assay.

    Science.gov (United States)

    Garcia, Jean-Michel; Gao, Anhui; He, Pei-Lan; Choi, Joyce; Tang, Wei; Bruzzone, Roberto; Schwartz, Olivier; Naya, Hugo; Nan, Fa-Jun; Li, Jia; Altmeyer, Ralf; Zuo, Jian-Ping

    2009-03-01

    Two decades after its discovery the human immunodeficiency virus (HIV) is still spreading worldwide and killing millions. There are 25 drugs formally approved for HIV currently on the market, but side effects as well as the emergence of HIV strains showing single or multiple resistances to current drug-therapy are causes for concern. Furthermore, these drugs target only 4 steps of the viral cycle, hence the urgent need for new drugs and also new targets. In order to tackle this problem, we have devised a cell-based assay using lentiviral particles to look for post-entry inhibitors of HIV-1. We report here the assay development, validation as well as confirmation of the hits using both wild-type and drug-resistant HIV-1 viruses. The screening was performed on an original library, rich in natural compounds and pure molecules from Traditional Chinese Medicine pharmacopoeia, which had never been screened for anti-HIV activity. The identified hits belong to four chemical sub-families that appear to be all non-nucleoside reverse transcriptase inhibitors (NNRTIs). Secondary tests with live viruses showed that there was good agreement with pseudotyped particles, confirming the validity of this approach for high-throughput drug screens. This assay will be a useful tool that can be easily adapted to screen for inhibitors of viral entry.

  4. Activity and Safety of Synthetic Lectins Based on Benzoboroxole-Functionalized Polymers for Inhibition of HIV Entry

    Science.gov (United States)

    Mahalingam, Alamelu; Geonnotti, Anthony R.; Balzarini, Jan; Kiser, Patrick F.

    2011-01-01

    Lectins derived from plant and microbial sources constitute a vital class of entry inhibitors that target the oligomannose residues on the HIV envelope gp120. Despite their potency and specificity, success of lectin-based entry inhibitors may be impeded by issues in regards to economical production, formulation and potential mitogenicity. Therefore, there exists a gap in the HIV therapeutics pipeline that underscores the need for mass producible, synthetic, broad-spectrum, and biocomptabile inhibitors of HIV entry. Here, we present the development of a polymeric synthetic lectin, based on benzoboroxole (BzB), which exhibits weak affinity (~25 M−1) for non-reducing sugars, similar to those found on the HIV envelope. High molecular weight BzB-functionalized polymers demonstrated antiviral activity that increased with an increase in ligand density and molecular weight of the polymer construct; revealing that polyvalency improves activity. Polymers showed significant increase in activity from 25 to 75 mol% BzB functionalization with EC50 of 15 μM and 15 nM, respectively. A further increase in mole functionalization to 90% resulted in an increase of the EC50 (59 ± 5 nM), likely due to the elongated rigid structure of the polymer chain compelled by electrostatic repulsion between the boronic acid groups. An increase in molecular weight of the polymer at 50 mol% BzB functionalization showed a gradual but significant increase in antiviral activity, with the highest activity seen with the 382 kDa polymer (EC50 of 1.1 ± 0.5 nM in CEM cells and 11 ± 3 nM in TZM-bl cells). Supplementing the polymer backbone with 10 mol% sulfonic acid not only increased the aqueous solubility of the polymers by at least 50-fold, but also demonstrated a synergistic increase in anti-HIV activity (4.0 ± 1.5 nM in TZM-bl cells), possibly due to electrostatic interactions between the negatively charged polymer backbone and the positively charged V3-loop in the gp120. The benzoboroxole

  5. A novel small molecule inhibitor of hepatitis C virus entry.

    Directory of Open Access Journals (Sweden)

    Carl J Baldick

    Full Text Available Small molecule inhibitors of hepatitis C virus (HCV are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc, blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.

  6. The successes and failures of HIV drug discovery.

    Science.gov (United States)

    Hashimoto, Chie; Tanaka, Tomohiro; Narumi, Tetsuo; Nomura, Wataru; Tamamura, Hirokazu

    2011-10-01

    To date, several anti-human immunodeficiency virus (HIV) drugs, including reverse transcriptase inhibitors and protease inhibitors, have been developed and used clinically for the treatment of patients infected with HIV. Recently, novel drugs have been discovered which have different mechanisms of action from those of the above inhibitors, including entry inhibitors and integrase (IN) inhibitors; the clinical use of three of these inhibitors has been approved. Other inhibitors are still in development. This review article summarizes the history of the development of anti-HIV drugs and also focuses on successes in the development of these entry and IN inhibitors, along with looking at exploratory approaches for the development of other inhibitors. Currently used highly active antiretroviral therapy can be subject to a loss of efficacy, due to the emergence of multi-drug resistant (MDR) strains; a change of regimens of the drug combination is required to combat this, along with careful monitoring of the virus and CD4 in the blood, by methods such as cellular tropism testing. In such a situation, entry inhibitors such as CCR5/CXCR4 antagonists, CD4 mimics, fusion inhibitors and IN inhibitors might be optional agents for an expansion of the drug repertoire available to patients at all stages of HIV infection.

  7. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    International Nuclear Information System (INIS)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-01-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4. (paper)

  8. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    Science.gov (United States)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-10-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.

  9. HIV/AIDS testing at ports of entry in China.

    Science.gov (United States)

    Lai, Dejian; Hwang, Lu-Yu; Beasley, R Palmer

    2011-05-01

    In 2007 the Chinese government issued regulations requiring HIV/AIDS testing for Chinese citizens returning at ports of entry if they had resided outside China for 1 year or longer. Three years after publication and partial implementation of the regulations, the Chinese government decided to eliminate compulsory HIV/AIDS testing of returning Chinese. We examine the history of China's HIV/AIDS testing regulations on entry-exit populations, showing how China has gradually altered its policy. As of December 2010, the policy of compulsory HIV/AIDS testing of returning Chinese has been abandoned; however, the regulations still compel HIV/AIDS testing for other groups inside China. Our review sheds new light on the dynamics of regulatory changes in the last 3 years. The Chinese experience that we observed may provide useful insights for policymakers in other parts of the world.

  10. HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    DEFF Research Database (Denmark)

    Vanangamudi, Murugesan; Poongavanam, Vasanthanathan; Namasivayam, Vigneshwaran

    2017-01-01

    BACKGROUND: Design of inhibitors for HIV-1 reverse transcriptase inhibition (HIV-1 RT) is one of the successful chemotherapies for the treatment of HIV infection. Among the inhibitors available for HIV-1 RT, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have shown to be very promising......: The conformation dependent-alignment based (CoMFA and CoMSIA) methods have been proven very successful ligand based strategy in the drug design. Here, CoMFA and CoMSIA studies reported for structurally distinct NNRTIs including thiazolobenzimidazole, dipyridodiazepinone, 1,1,3-trioxo [1,2,4]-thiadiazine...

  11. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion.

    Directory of Open Access Journals (Sweden)

    Matthew P Wood

    Full Text Available Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.

  12. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    Science.gov (United States)

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript.

  13. Predictors of Delayed Entry into Medical Care of Children Diagnosed with HIV Infection: Data from an HIV Cohort Study in India

    Directory of Open Access Journals (Sweden)

    Gerardo Alvarez-Uria

    2013-01-01

    Full Text Available Data about the attrition before entry into care of children diagnosed with HIV in low- or middle-income countries are scarce. The aim of this study is to describe the attrition before engagement in HIV medical care in 523 children who were diagnosed with HIV from 2007 to 2012 in a cohort study in India. The cumulative incidence of children who entered into care was 87.2% at one year, but most children who did not enter into care within one year were lost to followup. The mortality before entry into care was low (1.3% at one year and concentrated during the first three months after HIV diagnosis. Factors associated with delayed entry into care were being diagnosed after mother’s HIV diagnosis, belonging to scheduled castes, age 90 minutes from the HIV centre. Children whose parents were alive and were living in a rented house were at a higher risk of delayed entry into care than those who were living in an owned house. The results of this study can be used to improve the linkage between HIV testing and HIV care of children diagnosed with HIV in India.

  14. V3-independent competitive resistance of a dual-X4 HIV-1 to the CXCR4 inhibitor AMD3100.

    Directory of Open Access Journals (Sweden)

    Yosuke Maeda

    Full Text Available A CXCR4 inhibitor-resistant HIV-1 was isolated from a dual-X4 HIV-1 in vitro. The resistant variant displayed competitive resistance to the CXCR4 inhibitor AMD3100, indicating that the resistant variant had a higher affinity for CXCR4 than that of the wild-type HIV-1. Amino acid sequence analyses revealed that the resistant variant harbored amino acid substitutions in the V2, C2, and C4 regions, but no remarkable changes in the V3 loop. Site-directed mutagenesis confirmed that the changes in the C2 and C4 regions were principally involved in the reduced sensitivity to AMD3100. Furthermore, the change in the C4 region was associated with increased sensitivity to soluble CD4, and profoundly enhanced the entry efficiency of the virus. Therefore, it is likely that the resistant variant acquired the higher affinity for CD4/CXCR4 by the changes in non-V3 regions. Taken together, a CXCR4 inhibitor-resistant HIV-1 can evolve using a non-V3 pathway.

  15. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors

    Directory of Open Access Journals (Sweden)

    Simmonds Peter

    2008-01-01

    Full Text Available Abstract Background HIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node. Results R5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542, but with increased resistance to the anti-CD4 monoclonal antibody (mab, Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120. Conclusion Variation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.

  16. Recombinant protein of heptad-repeat HR212, a stable fusion inhibitor with potent anti-HIV action in vitro

    International Nuclear Information System (INIS)

    Pang, Wei; Wang Ruirui; Yang Liumeng; Liu Changmei; Tien Po; Zheng Yongtang

    2008-01-01

    HR212, a recombinant protein expressed in Escherichia coli, has been previously reported to inhibit HIV-1 membrane fusion at low nanomolar level. Here we report that HR212 is effective in blocking laboratory strain HIV-1 IIIB entry and replication with EC 50 values of 3.92 ± 0.62 and 6.59 ± 1.74 nM, respectively, and inhibiting infection by clinic isolate HIV-1 KM018 with EC 50 values of 44.44 ± 10.20 nM, as well as suppressing HIV-1-induced cytopathic effect with an EC 50 value of 3.04 ± 1.20 nM. It also inhibited HIV-2 ROD and HIV-2 CBL-20 entry and replication in the μM range. Notably, HR212 was highly effective against T20-resistant strains with EC 50 values ranging from 5.09 to 7.75 nM. Unlike T20, HR212 showed stability sufficient to inhibit syncytia formation in a time-of-addition assay, and was insensitive to proteinase K digestion. These results suggest that HR212 has great potential to be further developed as novel HIV-1 fusion inhibitor for treatment of HIV/AIDS patients, particularly for those infected by T20-resistant variants

  17. FAITH – Fast Assembly Inhibitor Test for HIV

    Energy Technology Data Exchange (ETDEWEB)

    Hadravová, Romana [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague (Czech Republic); Ruml, Tomáš, E-mail: tomas.ruml@vscht.cz [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague (Czech Republic)

    2015-12-15

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  18. FAITH – Fast Assembly Inhibitor Test for HIV

    International Nuclear Information System (INIS)

    Hadravová, Romana; Rumlová, Michaela; Ruml, Tomáš

    2015-01-01

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  19. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes.

    Science.gov (United States)

    Setz, Christian; Friedrich, Melanie; Rauch, Pia; Fraedrich, Kirsten; Matthaei, Alina; Traxdorf, Maximilian; Schubert, Ulrich

    2017-08-12

    In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)-the proteasome holoenzymes and a number of ubiquitin ligases-play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1 NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.

  20. Targeting CXCR4 in HIV Cell-Entry Inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Schwartz, T W; Rosenkilde, M M

    2010-01-01

    CXCR4 and CCR5 constitute the two major coreceptors for HIV-1 entry into host cells. In the course of an HIV-infection, a coreceptor switch takes place in approximately half of the patients - from R5 HIV-1 (CCR5 utilizing) strains to X4 HIV-1 (CXCR4 utilizing) strains. Treatment of HIV......-infected individuals with CXCR4 antagonists delays the onset of AIDS by preventing the CCR5 to CXCR4 coreceptor switch. In addition to the endogenous CXCR4 and CCR5 ligands, other chemokines, for example the human herpesvirus 8 encoded CC-chemokine, vCCL2, and modifications hereof, have proven efficient HIV-1 cell...... no oral bioavailability. The hunt for orally active small-molecule CXCR4 antagonists led to the development of monocyclam-based compounds, and recently to the non-cyclam antagonist AMD070, which is orally active and currently in Phase II clinical trial as anti-HIV treatment. Current review provides...

  1. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan

    2014-08-21

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  2. EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors.

    Science.gov (United States)

    Kremb, Stephan; Helfer, Markus; Heller, Werner; Hoffmann, Dieter; Wolff, Horst; Kleinschmidt, Andrea; Cepok, Sabine; Hemmer, Bernhard; Durner, Jörg; Brack-Werner, Ruth

    2010-12-01

    HIV replication assays are important tools for HIV drug discovery efforts. Here, we present a full HIV replication system (EASY-HIT) for the identification and analysis of HIV inhibitors. This technology is based on adherently growing HIV-susceptible cells, with a stable fluorescent reporter gene activated by HIV Tat and Rev. A fluorescence-based assay was designed that measures HIV infection by two parameters relating to the early and the late phases of HIV replication, respectively. Validation of the assay with a panel of nine reference inhibitors yielded effective inhibitory concentrations consistent with published data and allowed discrimination between inhibitors of early and late phases of HIV replication. Finer resolution of the effects of reference drugs on different steps of HIV replication was achieved in secondary time-of-addition assays. The EASY-HIT assay yielded high Z' scores (>0.9) and signal stabilities, confirming its robustness. Screening of the LOPAC(1280) library identified 10 compounds (0.8%), of which eight were known to inhibit HIV, validating the suitability of this assay for screening applications. Studies evaluating anti-HIV activities of natural products with the EASY-HIT technology led to the identification of three novel inhibitory compounds that apparently act at different steps of HIV-1 replication. Furthermore, we demonstrate successful evaluation of plant extracts for HIV-inhibitory activities, suggesting application of this technology for the surveillance of biological extracts with anti-HIV activities. We conclude that the EASY-HIT technology is a versatile tool for the discovery and characterization of HIV inhibitors.

  3. Sifuvirtide, a potent HIV fusion inhibitor peptide

    International Nuclear Information System (INIS)

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-01-01

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC 50 ), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC 50 ) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1 IIIB were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  4. HIV takes double hit before entry

    NARCIS (Netherlands)

    Sanders, Rogier W.

    2012-01-01

    In the absence of a vaccine or a cure, identification of novel HIV-1 inhibitors remains important. A paper in Retrovirology describes a rationally designed bi-specific protein that irreversibly damages the viral envelope glycoprotein complex via a two-punch mechanism. In contrast to traditional

  5. Timing of entry to care by newly diagnosed HIV cases before and after the 2010 New York State HIV testing law.

    Science.gov (United States)

    Gordon, Daniel E; Bian, Fuqin; Anderson, Bridget J; Smith, Lou C

    2015-01-01

    Prompt entry to care after HIV diagnosis benefits the infected individual and reduces the likelihood of further transmission of the virus. The New York State HIV Testing Law of 2010 requires diagnosing providers to refer persons newly diagnosed with HIV to follow-up medical care. This study used routinely collected HIV-related laboratory data from the New York State HIV surveillance system to assess whether the fraction of newly diagnosed cases entering care within 90 days of diagnosis increased after the implementation of the law. Laboratory data on 23,302 newly diagnosed cases showed that entry to care within 90 days rose steadily from 72.0% in 2007 to 85.4% in 2012. The rise was observed across all race/ethnic groups, ages, transmission risk groups, sexes, and regions of residence. Logistic regression analyses of entry to care pre-law and post-law, controlling for demographic characteristics, transmission risk, and geographic area, indicate that percentage of newly diagnosed cases entering care within 90 days grew more rapidly in the post-law period. This is consistent with a positive effect of the law on entry to care.

  6. An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV-1 fusion inhibitors by lactobacilli

    NARCIS (Netherlands)

    Pusch, O.; Kalyanaraman, R.; Tucker, L.D.; Wells, J.; Rmanratnam, B.; Boden, D.

    2006-01-01

    Objectives: To engineer Lactobacillus spp. to secrete HIV-1 fusion inhibitors with potent neutralizing activity against primary HIV-1 isolates. Methods: HIV-1 fusion inhibitors (FI-1, FI-2, and FI-3) were introduced into the previously developed shuttle vector pTSV2 and transformed in L. plantarum

  7. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  8. Raltegravir: first in class HIV integrase inhibitor

    Directory of Open Access Journals (Sweden)

    Zelalem Temesgen

    2008-06-01

    Full Text Available Zelalem Temesgen1, Dawd S Siraj21Mayo Clinic, Rochester, MN, USA; 2East Carolina University Greenville, NC, USAAbstract: On October 16, 2007, the US Food and Drug Administration (FDA approved raltegravir for treatment of human immunodeficiency virus (HIV-1 infection in combination with other antiretroviral agents in treatment-experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents. Raltegravir is first in a novel class of antiretroviral drugs known as integrase inhibitors. It has demonstrated potent anti HIV activity in both antiretroviral treatment-naïve and experienced patients. The most common adverse events reported with raltegravir during phase 2 and 3 clinical trials were diarrhea, nausea, and headache. Laboratory abnormalities include mild elevations in liver transaminases and creatine phosphokinase.Keywords: raltegravir, HIV, antiretroviral agents, integrase inhibitors

  9. Experiences with HIV testing, entry, and engagement in care by HIV-infected women of color, and the need for autonomy, competency, and relatedness.

    Science.gov (United States)

    Quinlivan, E Byrd; Messer, Lynne C; Adimora, Adaora A; Roytburd, Katya; Bowditch, Natasha; Parnell, Heather; Seay, Julia; Bell, Lynda; Pierce, Jonah K

    2013-07-01

    Self-determination theory examines the needs of people adopting new behaviors but has not been applied to the adoption of HIV healthcare behaviors. The current study applied self-determination theory to descriptions of healthcare behaviors adopted by ethnic minority women after an HIV diagnosis. Women of color were asked to describe their experiences with HIV testing, entry, and engagement-in-care in qualitative interviews and focus groups. Participants were mostly African-American (88%), over 40 years old (70%), had been diagnosed for more than 6 years (87%) and had disclosed their HIV infection to more than 3 people (73%). Women described unmet self-determination needs at different time points along the HIV Continuum of Care. Women experienced a significant loss of autonomy at the time of HIV diagnosis. Meeting competency and relatedness needs assisted women in entry and engagement-in-care. However, re-establishing autonomy was a key element for long-term engagement-in-care. Interventions that satisfy these needs at the optimal time point in care could improve diagnosis, entry-to-care, and retention-in-care for women living with HIV.

  10. Metabolic complications associated with HIV protease inhibitor therapy.

    Science.gov (United States)

    Nolan, David

    2003-01-01

    HIV protease inhibitors were introduced into clinical practice over 7 years ago as an important component of combination antiretroviral drug regimens which in many ways revolutionised the treatment of HIV infection. The significant improvements in prognosis that have resulted from the use of these regimens, combined with the need for lifelong treatment, have increasingly focused attention on the adverse effects of antiretroviral drugs and on the metabolic complications of HIV protease inhibitors in particular. In this review, the cluster of metabolic abnormalities characterised by triglyceride-rich dyslipidaemia and insulin resistance associated with HIV protease inhibitor therapy are considered, along with implications for cardiovascular risk in patients affected by these complications. Toxicity profiles of individual drugs within the HIV protease inhibitor class are examined, as there is an increased recognition of significant intra-class differences both in terms of absolute risk of metabolic complications as well as the particular metabolic phenotype associated with these drugs. Guidelines for clinical assessment and treatment are emphasised, along with pathophysiological mechanisms that may provide a rational basis for the treatment of metabolic complications. Finally, these drug-specific effects are considered within the context of HIV-specific effects on lipid metabolism as well as lifestyle factors that have contributed to a rapidly increasing incidence of similar metabolic syndromes in the general population. These data highlight the importance of individualising patient management in terms of choice of antiretroviral regimen, assessment of metabolic outcomes and use of therapeutic interventions, based on the assessment of baseline (pre-treatment) metabolic status as well as the presence of potentially modifiable cardiovascular risk factors.

  11. Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors.

    Directory of Open Access Journals (Sweden)

    Christina Gavegnano

    2017-12-01

    Full Text Available Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15 ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.

  12. HIV protease inhibitors in pregnancy : pharmacology and clinical use.

    Science.gov (United States)

    Andany, Nisha; Loutfy, Mona R

    2013-03-01

    The impact of antiretroviral therapy (ART) on the natural history of HIV-1 infection has resulted in dramatic reductions in disease-associated morbidity and mortality. Additionally, the epidemiology of HIV-1 infection worldwide is changing, as women now represent a substantial proportion of infected adults. As more highly effective and tolerable antiretroviral regimens become available, and as the prevention of mother-to-child transmission becomes an attainable goal in the management of HIV-infected individuals, more and more HIV-positive women are choosing to become pregnant and have children. Consequently, it is important to consider the efficacy and safety of antiretroviral agents in pregnancy. Protease inhibitors are a common class of medication used in the treatment of HIV-1 infection and are increasingly being used in pregnancy. However, several studies have raised concerns regarding pharmacokinetic alterations in pregnancy, particularly in the third trimester, which results in suboptimal drug concentrations and a theoretically higher risk of virologic failure and perinatal transmission. Drug level reductions have been observed with each individual protease inhibitor and dose adjustments in pregnancy are suggested for certain agents. Furthermore, studies have also raised concerns regarding the safety of protease inhibitors in pregnancy, particularly as they may increase the risk of pre-term birth and metabolic disturbances. Overall, protease inhibitors are safe and effective for the treatment of HIV-infected pregnant women. Specifically, ritonavir-boosted lopinavir- and atazanavir-based regimens are preferred in pregnancy, while ritonavir-boosted darunavir- and saquinavir-based therapies are reasonable alternatives. This paper reviews the use of protease inhibitors in pregnancy, focusing on pharmacokinetic and safety considerations, and outlines the recommendations for use of this class of medication in the HIV-1-infected pregnant woman.

  13. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    Science.gov (United States)

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  14. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Directory of Open Access Journals (Sweden)

    Song Xinming

    2009-08-01

    HIV-1 interaction with target cells, i.e., the interaction between gp120 and CD4/CCR5 or gp120 and CD4/CXCR4 and point to the potential of developing these two extracts to be HIV-1 entry inhibitors.

  15. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  16. Characterization of the virus-cell interactions by HIV-1 subtype C variants from an antiretroviral therapy-naïve subject with baseline resistance to the CCR5 inhibitor maraviroc

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard

    The CCR5 inhibitor maraviroc (MVC) exerts its antiviral activity by binding to- and altering the conformation of the CCR5 extracellular loops such that HIV-1 gp120 no longer recognizes CCR5. Viruses that have become resistant to MVC through long-term in vitro culture, or from treatment failure...... in vivo, can use the MVCbound form of CCR5 for HIV-1 entry via adaptive alterations in gp120. Partial baseline resistance to another CCR5 inhibitor through this mechanism, AD101, has been noted recently in one subject (1). Here, we identified and characterized envelope (Env) clones with baseline...

  17. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    Science.gov (United States)

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. L-Chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro

    International Nuclear Information System (INIS)

    Reinke, Ryan A.; Lee, Deborah J.; McDougall, Brenda R.; King, Peter J.; Victoria, Joseph; Mao Yingqun; Lei Xiangyang; Reinecke, Manfred G.; Robinson, W. Edward

    2004-01-01

    The human immunodeficiency virus (HIV) integrase (IN) must covalently join the viral cDNA into a host chromosome for productive HIV infection. L-Chicoric acid (L-CA) enters cells poorly but is a potent inhibitor of IN in vitro. Using quantitative real-time polymerase chain reaction (PCR), L-CA inhibits integration at concentrations from 500 nM to 10 μM but also inhibits entry at concentrations above 1 μM. Using recombinant HIV IN, steady-state kinetic analyses with L-CA were consistent with a noncompetitive or irreversible mechanism of inhibition. IN, in the presence or absence of L-CA, was successively washed. Inhibition of IN diminished, demonstrating that L-CA was reversibly bound to the protein. These data demonstrate that L-CA is a noncompetitive but reversible inhibitor of IN in vitro and of HIV integration in vivo. Thus, L-CA likely interacts with amino acids other than those which bind substrate

  19. HIV-protease inhibitors for the treatment of cancer

    DEFF Research Database (Denmark)

    Maksimovic-Ivanic, Danijela; Fagone, Paolo; McCubrey, James

    2017-01-01

    The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated from their success in treating HIV-related Kaposi's sarcoma (KS). While these findings were initially attributed to immune reconstitution and better control of oncogenic...... and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer....

  20. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  1. The conserved residue Arg46 in the N-terminal heptad repeat domain of HIV-1 gp41 is critical for viral fusion and entry.

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    Full Text Available During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR of gp41 interacts with the C-terminal heptad repeat (CHR to form fusogenic six-helix bundle (6-HB core. We previously identified a crucial residue for 6-HB formation and virus entry--Lys63 (K63 in the C-terminal region of NHR (aa 54-70, which forms a hydrophobic cavity. It can form an important salt bridge with Asp121 (D121 in gp41 CHR. Here, we found another important conserved residue for virus fusion and entry, Arg46 (R46, in the N-terminal region of NHR (aa 35-53, which forms a hydrogen bond with a polar residue, Asn43 (N43, in NHR, as a part of the hydrogen-bond network. R46 can also form a salt bridge with a negatively charged residue, Glu137 (E137, in gp41 CHR. Substitution of R46 with the hydrophobic residue Ala (R46A or the negatively charged residue Glu (R46E resulted in disruption of the hydrogen bond network, breakage of the salt bridge and reduction of 6-HB's stability, leading to impairment of viral fusion and decreased inhibition of N36, an NHR peptide. Similarly, CHR peptide C34 with substitution of E137 for Ala (E137A or Arg (E137R also exhibited reduced inhibitory activity against HIV-1 infection and HIV-1-mediated cell-to-cell fusion. These results suggest that the positively charged residue R46 and its hydrogen bond network, together with the salt bridge between R46 and E137, are important for viral fusion and entry and may therefore serve as a target for designing novel HIV fusion/entry inhibitors.

  2. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A.; Korn, Klaus [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany); Poehlmann, Stefan [Institute of Virology, Hannover Medical School, 30625 Hannover (Germany); Holland, Gudrun; Bannert, Norbert [Robert Koch-Institute, Center for Biological Security 4, 13353 Berlin (Germany); Bogner, Elke [Institute of Virology, Charite University Hospital, 10117 Berlin (Germany); Schmidt, Barbara, E-mail: baschmid@viro.med.uni-erlangen.de [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany)

    2012-02-20

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p < 0.05). Blocking CD4 inhibited the uptake of virions into cytosolic and endosomal compartments. Dynasore, an inhibitor of dynamin-dependent endocytosis, not the fusion inhibitor T-20, reduced the HIV-1 induced IFN-alpha production. Altogether, our morphological and functional data support the role of endocytosis for the entry and IFN-alpha induction of HIV-1 in PDC.

  3. Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2009-04-01

    Full Text Available Elite suppressors (ES are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor and CCR5 (co-receptor. In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals.

  4. Linear and non-linear quantitative structure-activity relationship models on indole substitution patterns as inhibitors of HIV-1 attachment.

    Science.gov (United States)

    Nirouei, Mahyar; Ghasemi, Ghasem; Abdolmaleki, Parviz; Tavakoli, Abdolreza; Shariati, Shahab

    2012-06-01

    The antiviral drugs that inhibit human immunodeficiency virus (HIV) entry to the target cells are already in different phases of clinical trials. They prevent viral entry and have a highly specific mechanism of action with a low toxicity profile. Few QSAR studies have been performed on this group of inhibitors. This study was performed to develop a quantitative structure-activity relationship (QSAR) model of the biological activity of indole glyoxamide derivatives as inhibitors of the interaction between HIV glycoprotein gp120 and host cell CD4 receptors. Forty different indole glyoxamide derivatives were selected as a sample set and geometrically optimized using Gaussian 98W. Different combinations of multiple linear regression (MLR), genetic algorithms (GA) and artificial neural networks (ANN) were then utilized to construct the QSAR models. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear log (1/EC50) prediction. The results that were obtained using GA-ANN were compared with MLR-MLR and MLR-ANN models. A high predictive ability was observed for the MLR, MLR-ANN and GA-ANN models, with root mean sum square errors (RMSE) of 0.99, 0.91 and 0.67, respectively (N = 40). In summary, machine learning methods were highly effective in designing QSAR models when compared to statistical method.

  5. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals.

    Science.gov (United States)

    Olajuyigbe, Folasade M; Demitri, Nicola; De Zorzi, Rita; Geremia, Silvano

    2016-10-31

    Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  6. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals

    Directory of Open Access Journals (Sweden)

    Folasade M. Olajuyigbe

    2016-10-01

    Full Text Available Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  7. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  8. Interleukin-27 is a potent inhibitor of cis HIV-1 replication in monocyte-derived dendritic cells via a type I interferon-independent pathway.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available IL-27, a member of the IL-12 family of cytokines, plays an important and diverse role in the function of the immune system. Whilst generally recognized as an anti-inflammatory cytokine, in addition IL-27 has been found to have broad anti-viral effects. Recently, IL-27 has been shown to be a potent inhibitor of HIV-1 infection in CD4+ T cells and macrophages. The main objective of this study was to see whether IL-27 has a similar inhibitory effect on HIV-1 replication in dendritic cells (DCs. Monocytes were differentiated into immature DCs (iDCs and mature DCs (mDCs with standard techniques using a combination of GM-CSF, IL-4 and LPS. Following differentiation, iDCs were infected with HIV-1 and co-cultured in the presence or absence of IL-27. IL-27 treated DCs were shown to be highly potent inhibitors of cis HIV-1, particularly of CCR5 tropic strains. Of note, other IL-12 family members (IL-12, IL-23 and IL-35 had no effect on HIV-1 replication. Microarray studies of IL-27 treated DCs showed no up-regulation of Type I (IFN gene expression. Neutralization of the Type-I IFN receptor had no impact on the HIV inhibition. Lastly, IL-27 mediated inhibition was shown to act post-viral entry and prior to completion of reverse transcription. These results show for the first time that IL-27 is a potent inhibitor of cis HIV-1 infection in DCs by a Type I IFN independent mechanism. IL-27 has previously been reported to inhibit HIV-1 replication in CD4+ T cells and macrophages, thus taken together, this cytokine is a potent anti-HIV agent against all major cell types targeted by the HIV-1 virus and may have a therapeutic role in the future.

  9. Factors associated with delayed entry into HIV medical care after HIV diagnosis in a resource-limited setting: Data from a cohort study in India

    Directory of Open Access Journals (Sweden)

    Gerardo Alvarez-Uria

    2013-06-01

    Full Text Available Studies from sub-Saharan Africa have shown that a substantial proportion of patients diagnosed with HIV enter into HIV medical care late. However, data from low or middle-income countries outside Africa are scarce. In this study, we investigated risk factors associated with delayed entry into care stratified by gender in a large cohort study in India. 7701 patients were diagnosed with HIV and 5410 entered into care within three months of HIV diagnosis. Nearly 80% entered into care within a year, but most patients who did not enter into care within a year remained lost to follow up or died. Patient with risk factors related to having a low socio-economic status (poverty, being homeless, belonging to a disadvantaged community and illiteracy were more likely to enter into care late. In addition, male gender and being asymptomatic at the moment of HIV infection were factors associated with delayed entry into care. Substantial gender differences were found. Younger age was found to be associated with delayed entry in men, but not in women. Widows and unmarried men were more likely to enter into care within three months. Women belonging to disadvantaged communities or living far from a town were more likely to enter into care late. The results of this study highlight the need to improve the linkage between HIV diagnosis and HIV treatment in India. HIV programmes should monitor patients diagnosed with HIV until they engage in HIV medical care, especially those at increased risk of attrition.

  10. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  11. Computational study of HIV gp120 as a target for polyanionic entry inhibitors: Exploiting the V3 loop region.

    Directory of Open Access Journals (Sweden)

    Louis R Hollingsworth

    Full Text Available Multiple approaches are being utilized to develop therapeutics to treat HIV infection. One approach is designed to inhibit entry of HIV into host cells, with a target being the viral envelope glycoprotein, gp120. Polyanionic compounds have been shown to be effective in inhibiting HIV entry, with a mechanism involving electrostatic interactions with the V3 loop of gp120 being proposed. In this study, we applied computational methods to elucidate molecular interactions between the repeat unit of the precisely alternating polyanion, Poly(4,4'-stilbenedicarboxylate-alt-maleic acid (DCSti-alt-MA and the V3 loop of gp120 from strains of HIV against which these polyanions were previously tested (IIIb, BaL, 92UG037, JR-CSF as well as two strains for which gp120 crystal structures are available (YU2, 2B4C. Homology modeling was used to create models of the gp120 proteins. Using monomers of the gp120 protein, we applied extensive molecular dynamics simulations to obtain dominant morphologies that represent a variety of open-closed states of the V3 loop to examine the interaction of 112 ligands of the repeating units of DCSti-alt-MA docked to the V3 loop and surrounding residues. Using the distance between the V1/V2 and V3 loops of gp120 as a metric, we revealed through MD simulations that gp120 from the lab-adapted strains (BaL and IIIb, which are more susceptible to inhibition by DCSti-alt-MA, clearly transitioned to the closed state in one replicate of each simulation set, whereas none of the replicates from the Tier II strains (92UG037 and JR-CSF did so. Docking repeat unit microspecies to the gp120 protein before and after MD simulation enabled identification of residues that were key for binding. Notably, only a few residues were found to be important for docking both before and after MD simulation as a result of the conformational heterogeneity provided by the simulations. Consideration of the residues that were consistently involved in interactions

  12. Potent nonnucleoside reverse transcriptase inhibitors target HIV-1 Gag-Pol.

    Directory of Open Access Journals (Sweden)

    Anna Figueiredo

    2006-11-01

    Full Text Available Nonnucleoside reverse transcriptase inhibitors (NNRTIs target HIV-1 reverse transcriptase (RT by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzyme's inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation.

  13. Binding kinetics of aptamers to gp120 derived from HIV-1 subtype C

    CSIR Research Space (South Africa)

    Millroy, L

    2011-02-01

    Full Text Available aptamers with specific and strong affinity to the HIV-1 envelope glycoprotein gp120 and act as novel HIV-1 entry inhibitor drugs or as targeted drug delivery systems to HIV-1 infected cells. Prior to any downstream applications, novel gp120 aptamers need...

  14. Oral CCR5 inhibitors: will they make it through?

    Science.gov (United States)

    Biswas, Priscilla; Nozza, Silvia; Scarlatti, Gabriella; Lazzarin, Adriano; Tambussi, Giuseppe

    2006-05-01

    The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.

  15. PRACTICE OF USING VIRAL PROTEASE INHIBITORS IN CHILDREN WITH HIV INFECTION

    Directory of Open Access Journals (Sweden)

    V.B. Denisenko

    2010-01-01

    Full Text Available Selection of the most effective and safest high-active antiretroviral therapies is a critical issue faced by modern HIV medicine. Authors studied 28 children with HIV infection aged from 3 to 7 divided into two groups administered a combination of two HIV reverse transcriptase nucleoside inhibitors with viral protease nelfinavir inhibitors (n = 13 and lopinavir/ritonavir (n = 15. The subjects in both groups demonstrated a decreased frequency of HIV-associated symptoms and opportunistic infections, positive dynamics of immunological indicators, suppression of HIV replication. When lopinavir/ritonavir was administered, there was more even better dynamics in clinical, immunological and virologic parameters, which allows this medication to be recommended as a antiretroviral therapy for children. Key words: HIV infection, lopinavir/ritonavir, nelfinavir, children. (Pediatric Pharmacology. – 2010; 7(1:62-67

  16. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    Science.gov (United States)

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.; Takayama, Jun; Ella-Menye, Jean-Rene; Yashchuk, Sofiya; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2017-10-01

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.

  18. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance

    Science.gov (United States)

    Rabi, S. Alireza; Laird, Gregory M.; Durand, Christine M.; Laskey, Sarah; Shan, Liang; Bailey, Justin R.; Chioma, Stanley; Moore, Richard D.; Siliciano, Robert F.

    2013-01-01

    HIV-1 protease inhibitors (PIs) are among the most effective antiretroviral drugs. They are characterized by highly cooperative dose-response curves that are not explained by current pharmacodynamic theory. An unresolved problem affecting the clinical use of PIs is that patients who fail PI-containing regimens often have virus that lacks protease mutations, in apparent violation of fundamental evolutionary theory. Here, we show that these unresolved issues can be explained through analysis of the effects of PIs on distinct steps in the viral life cycle. We found that PIs do not affect virion release from infected cells but block entry, reverse transcription, and post–reverse transcription steps. The overall dose-response curves could be reconstructed by combining the curves for each step using the Bliss independence principle, showing that independent inhibition of multiple distinct steps in the life cycle generates the highly cooperative dose-response curves that make these drugs uniquely effective. Approximately half of the inhibitory potential of PIs is manifest at the entry step, likely reflecting interactions between the uncleaved Gag and the cytoplasmic tail (CT) of the Env protein. Sequence changes in the CT alone, which are ignored in current clinical tests for PI resistance, conferred PI resistance, providing an explanation for PI failure without resistance. PMID:23979165

  19. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; De Clercq, Erik

    2005-01-01

    The chemokine receptors CCR5 and CXCR4 function as coreceptors for human immunodeficiency virus (HIV) and are attractive targets for the development of anti-HIV drugs. The most potent CXCR4 antagonists described until today are the bicyclams. The prototype compound, AMD3100, exhibits potent and s...

  20. Interdependence of Inhibitor Recognition in HIV-1 Protease.

    Science.gov (United States)

    Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-09

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.

  1. Impact of Stereochemistry on Ligand Binding: X-ray Crystallographic Analysis of an Epoxide-Based HIV Protease Inhibitor.

    Science.gov (United States)

    Benedetti, Fabio; Berti, Federico; Campaner, Pietro; Fanfoni, Lidia; Demitri, Nicola; Olajuyigbe, Folasade M; De March, Matteo; Geremia, Silvano

    2014-09-11

    A new pseudopeptide epoxide inhibitor, designed for irreversible binding to HIV protease (HIV-PR), has been synthesized and characterized in solution and in the solid state. However, the crystal structure of the complex obtained by inhibitor-enzyme cocrystallization revealed that a minor isomer, with inverted configuration of the epoxide carbons, has been selected by HIV-PR during crystallization. The structural characterization of the well-ordered pseudopeptide, inserted in the catalytic channel with its epoxide group intact, provides deeper insights into inhibitor binding and HIV-PR stereoselectivity, which aids development of future epoxide-based HIV inhibitors.

  2. An anti-CCR5 monoclonal antibody and small molecule CCR5 antagonists synergize by inhibiting different stages of human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Safarian, Diana; Carnec, Xavier; Tsamis, Fotini; Kajumo, Francis; Dragic, Tatjana

    2006-01-01

    HIV-1 coreceptors are attractive targets for novel antivirals. Here, inhibition of entry by two classes of CCR5 antagonists was investigated. We confirmed previous findings that HIV-1 isolates vary greatly in their sensitivity to small molecule inhibitors of CCR5-mediated entry, SCH-C and TAK-779. In contrast, an anti-CCR5 monoclonal antibody (PA14) similarly inhibited entry of diverse viral isolates. Sensitivity to small molecules was V3 loop-dependent and inversely proportional to the level of gp120 binding to CCR5. Moreover, combinations of the MAb and small molecules were highly synergistic in blocking HIV-1 entry, suggesting different mechanisms of action. This was confirmed by time course of inhibition experiments wherein the PA14 MAb and small molecules were shown to inhibit temporally distinct stages of CCR5 usage. We propose that small molecules inhibit V3 binding to the second extracellular loop of CCR5, whereas PA14 preferentially inhibits subsequent events such as CCR5 recruitment into the fusion complex or conformational changes in the gp120-CCR5 complex that trigger fusion. Importantly, our findings suggest that combinations of CCR5 inhibitors with different mechanisms of action will be central to controlling HIV-1 infection and slowing the emergence of resistant strains

  3. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  4. HIV-protease inhibitors for the treatment of cancer: Repositioning HIV protease inhibitors while developing more potent NO-hybridized derivatives?

    Science.gov (United States)

    Maksimovic-Ivanic, Danijela; Fagone, Paolo; McCubrey, James; Bendtzen, Klaus; Mijatovic, Sanja; Nicoletti, Ferdinando

    2017-04-15

    The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated from their success in treating HIV-related Kaposi's sarcoma (KS). While these findings were initially attributed to immune reconstitution and better control of oncogenic viral infections, the number of reports on solid tumors, KS, lymphoma, fibrosarcoma, multiple myeloma and prostate cancer suggest other mechanisms for the anti-neoplastic activity of PIs. However, a major drawback for the possible adoption of HIV-PIs in the therapy of cancer relies on their relatively weak anticancer potency and important side effects. This has propelled several groups to generate derivatives of HIV-PIs for anticancer use, through modifications such as attachment of different moieties, ligands and transporters, including saquinavir-loaded folic acid conjugated nanoparticles and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer. © 2016 UICC.

  5. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo.

    Science.gov (United States)

    Strizki, J M; Xu, S; Wagner, N E; Wojcik, L; Liu, J; Hou, Y; Endres, M; Palani, A; Shapiro, S; Clader, J W; Greenlee, W J; Tagat, J R; McCombie, S; Cox, K; Fawzi, A B; Chou, C C; Pugliese-Sivo, C; Davies, L; Moreno, M E; Ho, D D; Trkola, A; Stoddart, C A; Moore, J P; Reyes, G R; Baroudy, B M

    2001-10-23

    We describe here the identification and properties of SCH-C (SCH 351125), a small molecule inhibitor of HIV-1 entry via the CCR5 coreceptor. SCH-C, an oxime-piperidine compound, is a specific CCR5 antagonist as determined in multiple receptor binding and signal transduction assays. This compound specifically inhibits HIV-1 infection mediated by CCR5 in U-87 astroglioma cells but has no effect on infection of CXCR4-expressing cells. SCH-C has broad and potent antiviral activity in vitro against primary HIV-1 isolates that use CCR5 as their entry coreceptor, with mean 50% inhibitory concentrations ranging between 0.4 and 9 nM. Moreover, SCH-C strongly inhibits the replication of an R5-using HIV-1 isolate in SCID-hu Thy/Liv mice. SCH-C has a favorable pharmacokinetic profile in rodents and primates with an oral bioavailability of 50-60% and a serum half-life of 5-6 h. On the basis of its novel mechanism of action, potent antiviral activity, and in vivo pharmacokinetic profile, SCH-C is a promising new candidate for therapeutic intervention of HIV infection.

  6. Delayed entry into HIV care after diagnosis in two specialized care and treatment centres in Cameroon: the influence of CD4 count and WHO staging

    Directory of Open Access Journals (Sweden)

    Noah F. Takah

    2016-07-01

    Full Text Available Abstract Background Delayed entry into HIV care has complicated the challenges faced in sub-Saharan Africa due to the high HIV burden. A clear knowledge of the factors affecting delayed entry will be essential in directing interventions towards reducing delayed entry into HIV care. There exist very limited data on delayed entry in Cameroon despite its relevance; hence this study was conducted to determine the rate of delayed entry and its associated factors in HIV programmes in Cameroon. Methods Data used for this study was routine data obtained from the files of HIV patients who were diagnosed between January 1, 2015 and June 30, 2015 at Limbe and Buea regional hospital HIV centers in the South West region of Cameroon. Data analysis was done using SPSS version 20. Results Of the 223 patients included in the study, nearly one-quarter of patients (22.4 % delayed to enter HIV care within 3 months. Those who delayed to enter care were less likely to present at first diagnosis (using HIV rapid test with symptoms such as fever > 1 month (5 % versus 30 %, p = 0.01 and weight loss > 10 % (13 % versus 48 %, p < 0.001. Alcohol consumption, WHO stage and CD4 count levels were also associated with delayed entry in bivariate analysis. In multivariate analysis only CD4 count greater than 500cells/μl and WHO stages I and II were independently associated with delayed entry into HIV care within 3 months. Conclusion In the South West region of Cameroon, approximately 1 out of 4 patients delay to enter HIV care. This high proportion of patients who delay to enter care correlates to the findings recorded by other studies in sub Saharan Africa. Interventions tackling delayed entry into HIV care might need to be favorably directed towards patients that have high CD4 counts and are at very early WHO clinical stages.

  7. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.

    Science.gov (United States)

    Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu

    2013-08-01

    To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  9. Interplay between HIV Entry and Transportin-SR2 Dependency

    Directory of Open Access Journals (Sweden)

    Gijsbers Rik

    2011-01-01

    Full Text Available Abstract Background Transportin-SR2 (TRN-SR2, TNPO3, transportin 3 was previously identified as an interaction partner of human immunodeficiency virus type 1 (HIV-1 integrase and functions as a nuclear import factor of HIV-1. A possible role of capsid in transportin-SR2-mediated nuclear import was recently suggested by the findings that a chimeric HIV virus, carrying the murine leukemia virus (MLV capsid and matrix proteins, displayed a transportin-SR2 independent phenotype, and that the HIV-1 N74D capsid mutant proved insensitive to transportin-SR2 knockdown. Results Our present analysis of viral specificity reveals that TRN-SR2 is not used to the same extent by all lentiviruses. The DNA flap does not determine the TRN-SR2 requirement of HIV-1. We corroborate the TRN-SR2 independent phenotype of the chimeric HIV virus carrying the MLV capsid and matrix proteins. We reanalyzed the HIV-1 N74D capsid mutant in cells transiently or stably depleted of transportin-SR2 and confirm that the N74D capsid mutant is independent of TRN-SR2 when pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G. Remarkably, although somewhat less dependent on TRN-SR2 than wild type virus, the N74D capsid mutant carrying the wild type HIV-1 envelope required TRN-SR2 for efficient replication. By pseudotyping with envelopes that mediate pH-independent viral uptake including HIV-1, measles virus and amphotropic MLV envelopes, we demonstrate that HIV-1 N74D capsid mutant viruses retain partial dependency on TRN-SR2. However, this dependency on TRN-SR2 is lost when the HIV N74D capsid mutant is pseudotyped with envelopes mediating pH-dependent endocytosis, such as the VSV-G and Ebola virus envelopes. Conclusion Here we discover a link between the viral entry of HIV and its interaction with TRN-SR2. Our data confirm the importance of TRN-SR2 in HIV-1 replication and argue for careful interpretation of experiments performed with VSV-G pseudotyped viruses in

  10. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Aylin Yilmaz

    2009-09-01

    Full Text Available Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF and plasma in subjects receiving antiretroviral treatment regimens containing this drug.Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma.Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0-126.0. The median plasma raltegravir concentration was 448 ng/ml (range, 37-5180. CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations.Approximately 50% of the CSF specimens exceeded the IC(95 levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.

  11. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection.

    Science.gov (United States)

    Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W

    2009-09-01

    Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0-126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37-5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Approximately 50% of the CSF specimens exceeded the IC(95) levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.

  12. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    International Nuclear Information System (INIS)

    András, Ibolya E.; Toborek, Michal

    2014-01-01

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ

  13. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  14. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    International Nuclear Information System (INIS)

    Pham, Son; Tabarin, Thibault; Garvey, Megan; Pade, Corinna; Rossy, Jérémie; Monaghan, Paul; Hyatt, Alex; Böcking, Till; Leis, Andrew; Gaus, Katharina; Mak, Johnson

    2015-01-01

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  15. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  16. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.

    Science.gov (United States)

    Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko

    2011-01-01

    HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors. © 2010 John Wiley & Sons A/S.

  17. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  18. Re-entry experiences of Black men living with HIV/AIDS after release from prison: Intersectionality and implications for care.

    Science.gov (United States)

    Sun, Shufang; Crooks, Natasha; Kemnitz, Rebecca; Westergaard, Ryan P

    2018-06-12

    Both the HIV epidemic and incarceration disproportionately affect Black men in the United States. A critical period for incarcerated Black men living with HIV/AIDS is re-entry into the community, which is often associated with adverse health outcomes. Additionally, Black men living with HIV/AIDS involved in the criminal justice system are burdened by multiple, intersecting disadvantaged identities and social positions. This study aimed to examine community re-entry experiences among Black men living with HIV/AIDS from an intersectional perspective. In-depth, semi-structured interviews were conducted with 16 incarcerated Black men in Wisconsin, at pre-release from prison and six months after re-entry. Thematic analysis guided by intersectionality theory was used to analyze interview transcripts. Seven emerged themes included Intersectional Identities and Social Positions, Family Support, Neighborhood Violence, Relationship with Law Enforcement, Employment, Mental Health Concerns, and Medical Care and Medication Management. Intersecting identities and social positions interact with factors at multiple levels to inform health and HIV care. A conceptual framework was developed to illustrate relationships among themes. Findings demonstrate the relevance of intersectionality theory in HIV care with Black men involved in criminal justice system. Incorporating a social-ecological perspective into intersectionality framework could be useful in theoretical and empirical research. Disenfranchised communities may particularly benefit from interventions that address community- and systemic-level issues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Marielle Cavrois

    2017-07-01

    Full Text Available To characterize susceptibility to HIV infection, we phenotyped infected tonsillar T cells by single-cell mass cytometry and created comprehensive maps to identify which subsets of CD4+ T cells support HIV fusion and productive infection. By comparing HIV-fused and HIV-infected cells through dimensionality reduction, clustering, and statistical approaches to account for viral perturbations, we identified a subset of memory CD4+ T cells that support HIV entry but not viral gene expression. These cells express high levels of CD127, the IL-7 receptor, and are believed to be long-lived lymphocytes. In HIV-infected patients, CD127-expressing cells preferentially localize to extrafollicular lymphoid regions with limited viral replication. Thus, CyTOF-based phenotyping, combined with analytical approaches to distinguish between selective infection and receptor modulation by viruses, can be used as a discovery tool.

  20. Chemokine (C-C motif) receptor 5-using envelopes predominate in dual/mixed-tropic HIV from the plasma of drug-naive individuals.

    Science.gov (United States)

    Irlbeck, David M; Amrine-Madsen, Heather; Kitrinos, Kathryn M; Labranche, Celia C; Demarest, James F

    2008-07-31

    HIV-1 utilizes CD4 and either chemokine (C-C motif) receptor 5 (CCR5) or chemokine (C-X-C motif) receptor 4 (CXCR4) to gain entry into host cells. Small molecule CCR5 antagonists are currently being developed for the treatment of HIV-1 infection. Because HIV-1 may also use CXCR4 for entry, the use of CCR5 entry inhibitors is controversial for patients harboring CCR5-using and CXCR4-using (dual/mixed-tropic) viruses. The goal of the present study was to determine the proportion of CCR5-tropic and CXCR4-tropic viruses in dual/mixed-tropic virus isolates from drug-naïve patients and the phenotypic and genotypic relationships of viruses that use CCR5 or CXCR4 or both. Fourteen antiretroviral-naive HIV-1-infected patients were identified as having population coreceptor tropism readout of dual/mixed-tropic viruses. Intrapatient comparisons of coreceptor tropism and genotype of env clones were conducted on plasma virus from each patient. Population HIV-1 envelope tropism and susceptibility to the CCR5 entry inhibitor, aplaviroc, were performed using the Monogram Biosciences Trofile Assay. Twelve env clones from each patient were analyzed for coreceptor tropism, aplaviroc sensitivity, genotype, and intrapatient phylogenetic relationships. Viral populations from antiretroviral-naive patients with dual/mixed-tropic virus are composed primarily of CCR5-tropic env clones mixed with those that use both coreceptors (R5X4-tropic) and, occasionally, CXCR4-tropic env clones. Interestingly, the efficiency of CXCR4 use by R5X4-tropic env clones varied with their genetic relationships to CCR5-tropic env clones from the same patient. These data show that the majority of viruses in these dual/mixed-tropic populations use CCR5 and suggest that antiretroviral-naive patients may benefit from combination therapy that includes CCR5 entry inhibitors.

  1. Preclinical safety and efficacy of an anti–HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor

    Directory of Open Access Journals (Sweden)

    Orit Wolstein

    2014-01-01

    Full Text Available Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC. CCR5-targeted shRNA (sh5 and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

  2. Motivations for entry into sex work and HIV risk among mobile female sex workers in India.

    Science.gov (United States)

    Saggurti, Niranjan; Verma, Ravi K; Halli, Shiva S; Swain, Suvakanta N; Singh, Rajendra; Modugu, Hanimi Reddy; Ramarao, Saumya; Mahapatra, Bidhubhusan; Jain, Anrudh K

    2011-09-01

    This paper assesses the reasons for entry into sex work and its association with HIV risk behaviours among mobile female sex workers (FSWs) in India. Data were collected from a cross-sectional survey conducted in 22 districts across four high HIV prevalence states in India during 2007-2008. Analyses were limited to 5498 eligible mobile FSWs. The reasons given by FSWs for entering sex work and associations with socio-demographic characteristics were assessed. Reported reasons for entering sex work include poor or deprived economic conditions; negative social circumstances in life; own choice; force by an external person; and family tradition. The results from multivariate analyses indicate that those FSWs who entered sex work due to poor economic conditions or negative social circumstances in life or force demonstrated elevated levels of current inconsistent condom use as well as in the past in comparison with those FSWs who reported entering sex work by choice or family tradition. This finding indicates the need for a careful assessment of the pre-entry contexts among HIV prevention interventions since these factors may continue to hinder the effectiveness of efforts to reduce the spread of HIV/AIDS in India and elsewhere.

  3. IDENTIFICATION OF PIPERAZINYLBENZENESULFONAMIDES AS NEW INHIBITORS OF CLAUDIN-1 TRAFFICKING AND HEPATITIS C VIRUS ENTRY

    DEFF Research Database (Denmark)

    Riva, Laura; Song, Ok-Ryul; Prentoe, Jannick

    2018-01-01

    identified SB258585, an antagonist of the serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines, as well as in primary hepatocytes. A functional characterization suggested a role for this compound, as well as for the compound SB399885 sharing a similar structure....... These findings reinforce the hypothesis of a common pathway shared by several viruses, which involves G-protein coupled receptor -dependent signaling in late steps of viral entry.IMPORTANCEThe HCV entry process is highly complex and important details of this structured event are poorly understood. By screening...

  4. The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Nelson

    2017-04-01

    Full Text Available Phosphatidylinositol-3-phosphate 5-kinase (PIKfyve is a lipid kinase involved in endosome maturation that emerged from a haploid genetic screen as being required for Ebola virus (EBOV infection. Here we analyzed the effects of apilimod, a PIKfyve inhibitor that was reported to be well tolerated in humans in phase 2 clinical trials, for its effects on entry and infection of EBOV and Marburg virus (MARV. We first found that apilimod blocks infections by EBOV and MARV in Huh 7, Vero E6 and primary human macrophage cells, with notable potency in the macrophages (IC50, 10 nM. We next observed that similar doses of apilimod block EBOV-glycoprotein-virus like particle (VLP entry and transcription-replication competent VLP infection, suggesting that the primary mode of action of apilimod is as an entry inhibitor, preventing release of the viral genome into the cytoplasm to initiate replication. After providing evidence that the anti-EBOV action of apilimod is via PIKfyve, we showed that it blocks trafficking of EBOV VLPs to endolysosomes containing Niemann-Pick C1 (NPC1, the intracellular receptor for EBOV. Concurrently apilimod caused VLPs to accumulate in early endosome antigen 1-positive endosomes. We did not detect any effects of apilimod on bulk endosome acidification, on the activity of cathepsins B and L, or on cholesterol export from endolysosomes. Hence by antagonizing PIKfyve, apilimod appears to block EBOV trafficking to its site of fusion and entry into the cytoplasm. Given the drug's observed anti-filoviral activity, relatively unexplored mechanism of entry inhibition, and reported tolerability in humans, we propose that apilimod be further explored as part of a therapeutic regimen to treat filoviral infections.

  5. Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nicolas Sluis-Cremer

    2013-11-01

    Full Text Available HIV-1 reverse transcriptase (RT plays a central role in HIV infection. Current United States Federal Drug Administration (USFDA-approved antiretroviral therapies can include one of five approved non-nucleoside RT inhibitors (NNRTIs, which are potent inhibitors of RT activity. Despite their crucial clinical role in treating and preventing HIV-1 infection, their mechanism of action remains elusive. In this review, we introduce RT and highlight major advances from experimental and computational biophysical experiments toward an understanding of RT function and the inhibitory mechanism(s of NNRTIs.

  6. FAITH - Fast Assembly Inhibitor Test for HIV

    Czech Academy of Sciences Publication Activity Database

    Hadravová, Romana; Rumlová, Michaela; Ruml, T.

    2015-01-01

    Roč. 486, Dec (2015), s. 78-87 ISSN 0042-6822 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : retrovirus * HIV * assembly * assay * inhibitor Subject RIV: EE - Microbiology, Virology Impact factor: 3.200, year: 2015 http://www.sciencedirect.com/science/article/pii/S0042682215003864

  7. A historical sketch of the discovery and development of HIV-1 integrase inhibitors.

    Science.gov (United States)

    Savarino, Andrea

    2006-12-01

    The long process of HIV-1 integrase inhibitor discovery and development can be attributed to both the complexity of HIV-1 integration and poor 'integration' of these researches into mainstream investigations on antiretroviral therapy in the mid-1990s. Of note, some fungal extracts investigated during this period contain the beta-hydroxyketo group, later recognised to be a key structural requirement for keto-enol acids (also referred to as diketo acids) and other integrase inhibitors. This review reconstructs (in the general context of the history of AIDS research) the principal steps that led to the integrase inhibitors currently in clinical trials, and discusses possible future directions.

  8. Potential use of rapamycin in HIV infection

    DEFF Research Database (Denmark)

    Donia, Marco; McCubrey, James A; Bendtzen, Klaus

    2010-01-01

    The strong need for the development of alternative anti-HIV agents is primarily due to the emergence of strain-resistant viruses, the need for sustained adherence to complex treatment regimens and the toxicity of currently used antiviral drugs. This review analyzes proof of concept studies...... indicating that the immunomodulatory drug rapamycin (RAPA) possesses anti-HIV properties both in vitro and in vivo that qualifies it as a potential new anti-HIV drug. It represents a literature review of published studies that evaluated the in vitro and in vivo activity of RAPA in HIV. RAPA represses HIV-1...... replication in vitro through different mechanisms including, but not limited, to down regulation of CCR5. In addition RAPA synergistically enhances the anti-HIV activity of entry inhibitors such as vicriviroc, aplaviroc and enfuvirtide in vitro. RAPA also inhibits HIV-1 infection in human peripheral blood...

  9. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

    Energy Technology Data Exchange (ETDEWEB)

    Bungard, Christopher J.; Williams, Peter D.; Ballard, Jeanine E.; Bennett, David J.; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S.; Chang, Ronald K.; Dubost, David C.; Fay, John F.; Diamond, Tracy L.; Greshock, Thomas J.; Hao, Li; Holloway, M. Katharine; Felock, Peter J.; Gesell, Jennifer J.; Su, Hua-Poo; Manikowski, Jesse J.; McKay, Daniel J.; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M.; Nantermet, Philippe G.; Nadeau, Christian; Sanchez, Rosa I.; Satyanarayana, Tummanapalli; Shipe, William D.; Singh, Sanjay K.; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M.; Vacca, Joseph P.; Crane, Sheldon N.; McCauley, John A. (Merck); (Albany MR)

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  10. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Zandrea, E-mail: zaa4@pitt.edu [Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261 (United States); Aiken, Christopher [Department of Pathology, Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2014-04-15

    The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed by a capsid shell that dissociates within the cell in a multistep process known as uncoating, which influences completion of reverse transcription of the viral genome. Double-stranded viral DNA is imported into the nucleus for integration into the host genome, a hallmark of retroviral infection. Reverse transcription, nuclear entry, and integration are coordinated by a capsid uncoating process that is regulated by cellular proteins. Although uncoating is not well understood, recent studies have revealed insights into the process, particularly with respect to nuclear import pathways and protection of the viral genome from DNA sensors. Understanding uncoating will be valuable toward developing novel antiretroviral therapies for HIV-infected individuals.

  11. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  12. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance.

    Science.gov (United States)

    Wensing, Annemarie M J; van Maarseveen, Noortje M; Nijhuis, Monique

    2010-01-01

    HIV protease plays a crucial role in the viral life cycle and is essential for the generation of mature infectious virus particles. Detailed knowledge of the structure of HIV protease and its substrate has led to the design of specific HIV protease inhibitors. Unfortunately, resistance to all protease inhibitors (PIs) has been observed and the genetic basis of resistance has been well documented over the past 15 years. The arrival of the early PIs was a pivotal moment in the development of antiretroviral therapy. They made possible the dual class triple combination therapy that became known as HAART. However, the clinical utility of the first generation of PIs was limited by low bioavailability and high pill burdens, which ultimately reduced adherence and limited long-term viral inhibition. When therapy failure occurred multiple protease resistance mutations were observed, often resulting in broad class resistance. To combat PI-resistance development, second-generation approaches have been developed. The first advance was to increase the level of existing PIs in the plasma by boosting with ritonavir. The second was to develop novel PIs with high potency against the known PI-resistant HIV protease variants. Both approaches increased the number of protease mutations required for clinical resistance, thereby raising the genetic barrier. This review provides an overview of the history of protease inhibitor therapy, its current status and future perspectives. It forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  13. "Right Here is the Gateway": Mobility, Sex Work Entry and HIV Risk Along the Mexico-U.S. Border.

    Science.gov (United States)

    Goldenberg, Sm; Silverman, Js; Engstrom, D; Bojorquez-Chapela, I; Strathdee, Sa

    2014-08-01

    Women comprise an increasing proportion of migrants. Many voluntarily migrate for sex work or practice survival sex, while others may be trafficked for sexual exploitation. To investigate how the context of mobility shapes sex work entry and HIV risk, we conducted in-depth interviews with formerly trafficked women currently engaged in sex work (n=31) in Tijuana, Mexico and their service providers (n=7) in Tijuana and San Diego, USA from 2010-2011. Women's experiences of coerced and deceptive migration, deportation as forced migration, voluntary mobility, and migration to a risk environment illustrate that circumstances driving and resulting from migration shape vulnerability to sex trafficking, voluntary sex work entry, and HIV risk. Findings suggest an urgent need for public health and immigration policies that provide integrated support for deported and/or recently arrived female migrants. Policies to prevent sex trafficking and assist trafficked females must also consider the varying levels of personal agency involved in migration and sex work entry.

  14. New inhibitors of HDAC to purge latent HIV-1 reservoir

    Czech Academy of Sciences Publication Activity Database

    Hejnar, Jiří; Hirsch, I.

    2010-01-01

    Roč. 2, č. 4 (2010), s. 505-506 ISSN 1750-1911 Institutional research plan: CEZ:AV0Z50520514 Keywords : HAART * HIV latency * HDAC inhibitor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.429, year: 2010

  15. Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2009-05-01

    Full Text Available Abstract Background The human placenta-derived cell line BeWo has been demonstrated to be restrictive to cell-free HIV-1 infection. BeWo cells are however permissive to infection by VSV-G pseudotyped HIV-1, which enters cells by a receptor-independent mechanism, and to infection by HIV-1 via a cell-to-cell route. Results Here we analysed viral entry in wild type BeWo (CCR5+, CXCR4+ and BeWo-CD4+ (CD4+, CCR5+, CXCR4+ cells. We report that HIV-1 internalisation is not restricted in either cell line. Levels of internalised p24 antigen between VSV-G HIV-1 pseudotypes and R5 or X4 virions were comparable. We next analysed the fate of internalised virions; X4 and R5 HIV-1 virions were less stable over time in BeWo cells than VSV-G HIV-1 pseudotypes. We then investigated the role of the proteasome in restricting cell-free HIV-1 infection in BeWo cells using proteasome inhibitors. We observed an increase in the levels of VSV-G pseudotyped HIV-1 infection in proteasome-inhibitor treated cells, but the infection by R5-Env or X4-Env pseudotyped virions remains restricted. Conclusion Collectively these results suggest that cell-free HIV-1 infection encounters a surface block leading to a non-productive entry route, which either actively targets incoming virions for non-proteasomal degradation, and impedes their release into the cytoplasm, or causes the inactivation of mechanisms essential for viral replication.

  16. Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV type 1.

    Science.gov (United States)

    Moyle, Graeme; DeJesus, Edwin; Boffito, Marta; Wong, Rebecca S; Gibney, Colleen; Badel, Karin; MacFarland, Ron; Calandra, Gary; Bridger, Gary; Becker, Stephen

    2009-03-15

    The X4 Antagonist Concept Trial investigates the safety and antiviral activity of AMD11070, a potent inhibitor of X4-tropic human immunodeficiency virus (HIV) in vitro in HIV-infected patients harboring X4-tropic virus. Patients enrolled in the study had an X4 virus population 2000 relative luminescence units (rlu; by the Monogram Trofile Assay) and an HIV-1 RNA level 5000 copies/mL. Patients received AMD11070 monotherapy for 10 days. Coreceptor tropism, plasma HIV-1 RNA level, and CD4 cell count were measured at study entry, on day 5, and on day 10. Daily predose and serial samples on the last day of treatment were obtained for determination of plasma AMD11070 concentration. Ten patients were given AMD11070 monotherapy (200 mg to 8 patients and 100 mg to 2 patients) twice daily for 10 days. The median baseline CD4 cell count was 160 cells/mm(3), and the median HIV-1 RNA level was 91,447 copies/mL. Four of 9 evaluable patients achieved a reduction in X4 virus population of >or= rlu. The median change in X4 virus population at the end of treatment was -0.22 log(10) rlu (range, -1.90 to 0.23 log(10) rlu). Three of 4 patients who responded to therapy showed a tropism shift from dual- or mixed-tropic viruses to exclusively R5 virus by day 10. There were no drug-related serious adverse events, adverse events of greater than grade 2, or laboratory abnormalities. These results demonstrate the activity of AMD11070, the first oral CXCR4 antagonist, against X4-tropic HIV-1. The drug was well tolerated, with no serious safety concerns. AMD11070 is on clinical hold because of histologic changes to the liver observed in long-term animal studies; additional preclinical safety assessments are pending.

  17. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  18. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  19. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    Science.gov (United States)

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  20. Crystal structure of an FIV/HIV chimeric protease complexed with the broad-based inhibitor, TL-3

    Directory of Open Access Journals (Sweden)

    Elder John H

    2007-01-01

    Full Text Available Abstract We have obtained the 1.7 Å crystal structure of FIV protease (PR in which 12 critical residues around the active site have been substituted with the structurally equivalent residues of HIV PR (12X FIV PR. The chimeric PR was crystallized in complex with the broad-based inhibitor TL-3, which inhibits wild type FIV and HIV PRs, as well as 12X FIV PR and several drug-resistant HIV mutants 1234. Biochemical analyses have demonstrated that TL-3 inhibits these PRs in the order HIV PR > 12X FIV PR > FIV PR, with Ki values of 1.5 nM, 10 nM, and 41 nM, respectively 234. Comparison of the crystal structures of the TL-3 complexes of 12X FIV and wild-typeFIV PR revealed theformation of additinal van der Waals interactions between the enzyme inhibitor in the mutant PR. The 12X FIV PR retained the hydrogen bonding interactions between residues in the flap regions and active site involving the enzyme and the TL-3 inhibitor in comparison to both FIV PR and HIV PR. However, the flap regions of the 12X FIV PR more closely resemble those of HIV PR, having gained several stabilizing intra-flap interactions not present in wild type FIV PR. These findings offer a structural explanation for the observed inhibitor/substrate binding properties of the chimeric PR.

  1. Striking HIV-1 Entry by Targeting HIV-1 gp41. But, Where Should We Target?

    Directory of Open Access Journals (Sweden)

    Cátia Teixeira

    Full Text Available HIV-1 gp41 facilitates the viral fusion through a conformational switch involving the association of three C-terminal helices along the conserved hydrophobic grooves of three N-terminal helices coiled-coil. The control of these structural rearrangements is thought to be central to HIV-1 entry and, therefore, different strategies of intervention are being developed. Herewith, we describe a procedure to simulate the folding of an HIV-1 gp41 simplified model. This procedure is based on the construction of plausible conformational pathways, which describe protein transition between non-fusogenic and fusogenic conformations. The calculation of the paths started with 100 molecular dynamics simulations of the non-fusogenic conformation, which were found to converge to different intermediate states. Those presenting defined criteria were selected for separate targeted molecular dynamics simulations, subjected to a force constant imposing a movement towards the gp41 fusogenic conformation. Despite significant diversity, a preferred sequence of events emerged when the simulations were analyzed in terms of the formation, breakage and evolution of the contacts. We pointed out 29 residues as the most relevant for the movement of gp41; also, 2696 possible interactions were reduced to only 48 major interactions, which reveals the efficiency of the method. The analysis of the evolution of the main interactions lead to the detection of four main behaviors for those contacts: stable, increasing, decreasing and repulsive interactions. Altogether, these results suggest a specific small cavity of the HIV-1 gp41 hydrophobic groove as the preferred target to small molecules.

  2. The Microbiological Context of HIV Resistance: Vaginal Microbiota and Mucosal Inflammation at the Viral Point of Entry

    Directory of Open Access Journals (Sweden)

    John J. Schellenberg

    2012-01-01

    Full Text Available Immune activation is increasingly recognized as a critical element of HIV infection and pathogenesis, causing expansion of virus founder populations at the mucosal port of entry and eventual exhaustion of cellular immune effectors. HIV susceptibility is well known to be influenced by concurrent sexually transmitted infections; however, the role of commensal vaginal microbiota is poorly characterized. Bacterial vaginosis (BV is a risk factor for HIV acquisition in studies worldwide; however, the etiology of BV remains enigmatic, and the mechanisms by which BV increases HIV susceptibility are not fully defined. A model of how vaginal microbiota influences HIV transmission is considered in the context of a well-established cohort of HIV-exposed seronegative (HESN commercial sex workers (CSW in Nairobi, Kenya, many of whom have increased levels of anti-inflammatory factors in vaginal secretions and reduced peripheral immune activation (immune quiescence. Elucidation of the relationship between complex microbial communities and inflammatory mucosal responses underlying HIV infection should be a priority for future prevention-focussed research.

  3. The association between adolescent entry into the trucking industry and risk of HIV among long-distance truck drivers in India.

    Science.gov (United States)

    Mishra, Ram Manohar; Dube, Madhulika; Saggurti, Niranjan; Pandey, Arvind; Mahapatra, Bidhubhusan; Ramesh, Sowmya

    2012-01-01

    This study examines the relationship between entry into the trucking industry during adolescence and both sexually transmitted infections (STIs) and infection by the human immunodeficiency virus (HIV) among long-distance truck drivers in India. Data were sourced from a cross-sectional survey (sample size: 2066) undertaken in 2007 among long-distance truck drivers. The survey spread across major transshipment locations covering the bulk of India's transport volume along four routes. Participants were interviewed about sexual behaviors and were tested for HIV and STIs. The present authors constructed two synthetic cohorts based on the participants' duration of employment in the trucking industry: (1) low (duration ≤ 6 years) and (2) high experience (duration ≥ 7 years). Based on age at entry into the trucking industry, participants were termed as either adolescent (age at entry 4.0%, respectively; adjusted OR: 1.9; 95% CI: 1.2-3.1) and syphilis (5.7% versus 3.5%, respectively; adjusted OR: 1.8; 95% CI: 1.1-3.1). These results suggest the need for focused behavioral change programs in HIV prevention interventions for adolescent truckers in India and elsewhere.

  4. A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines.

    Science.gov (United States)

    Yang, Yong; Cheng, Han; Yan, Hui; Wang, Peng-Zhan; Rong, Rong; Zhang, Ying-Ying; Zhang, Cheng-Bo; Du, Rui-Kun; Rong, Li-Jun

    2017-05-01

    Emerging viruses such as Ebola virus (EBOV), Lassa virus (LASV), and avian influenza virus H5N1 (AIV) are global health concerns. Since there is very limited options (either vaccine or specific therapy) approved for humans against these viruses, there is an urgent need to develop prophylactic and therapeutic treatments. Previously we reported a high-throughput screening (HTS) protocol to identify entry inhibitors for three highly pathogenic viruses (EBOV, LASV, and AIV) using a human immunodeficiency virus-based pseudotyping platform which allows us to perform the screening in a BSL-2 facility. In this report, we have adopted this screening protocol to evaluate traditional Chinese Medicines (TCMs) in an effort to discover entry inhibitors against these viruses. Here we show that extracts of the following Chinese medicinal herbs exhibit potent anti-Ebola viral activities: Gardenia jasminoides Ellis, Citrus aurantium L., Viola yedoensis Makino, Prunella vulgaris L., Coix lacryma-jobi L. var. mayuen (Roman.) Stapf, Pinellia ternata (Thunb.) Breit., and Morus alba L. This study represents a proof-of-principle investigation supporting the suitability of this assay for rapid screening TCMs and identifying putative entry inhibitors for these viruses. J. Med. Virol. 89:908-916, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Targeting Spare CC Chemokine Receptor 5 (CCR5) as a Principle to Inhibit HIV-1 Entry*

    OpenAIRE

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G. H.; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-01-01

    International audience; : CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for i...

  6. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    Science.gov (United States)

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.

  7. Identification of novel targets for HIV-1: Molecular dynamics simulation and binding energy calculations

    Science.gov (United States)

    Pandey, Vishnudatt; Tiwari, Gargi; Mall, Vijaya Shri; Tiwari, Rakesh Kumar; Ojha, R. P.

    2018-05-01

    HIV-1 envelope glycoprotein-mediated fusion is managed by the concerted coalescence of the HIV-1 gp41 N- and C- helical regions, which is a product in the formation of 6-helix bundles. These two regions are considered prime targets for peptides and antibodies that inhibit HIV-1 entry. There are so many rational method aimed to attach a rationally designed artificial tail to the C-terminus of HIV-1 fusion inhibitors to increase their antiviral potency. Here M. D. simulation was performed to go insight for study of C-terminal tail of Ile-Asp-Leu (IDL).

  8. Design and synthesis of N₁-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors.

    Science.gov (United States)

    Monforte, Anna-Maria; Ferro, Stefania; De Luca, Laura; Lo Surdo, Giuseppa; Morreale, Francesca; Pannecouque, Christophe; Balzarini, Jan; Chimirri, Alba

    2014-02-15

    A series of novel N1-aryl-2-arylthioacetamido-benzimidazoles were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Some of them proved to be effective in inhibiting HIV-1 replication at submicromolar and nanomolar concentration acting as HIV-1 non-nucleoside RT inhibitors (NNRTIs), with low cytotoxicity. The preliminary structure-activity relationship (SAR) of these new derivatives was discussed and rationalized by docking studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    International Nuclear Information System (INIS)

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-01-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo

  10. Synthesis and evaluation of "AZT-HEPT", "AZT-pyridinone", and "ddC-HEPT" conjugates as inhibitors of HIV reverse transcriptase.

    Science.gov (United States)

    Pontikis, R; Dollé, V; Guillaumel, J; Dechaux, E; Note, R; Nguyen, C H; Legraverend, M; Bisagni, E; Aubertin, A M; Grierson, D S; Monneret, C

    2000-05-18

    To test the concept that HIV reverse transcriptase could be effectively inhibited by "mixed site inhibitors", a series of seven conjugates containing both a nucleoside analogue component (AZT 1, ddC 2) and a nonnucleoside type inhibitor (HEPT analogue 12, pyridinone 27) were synthesized and evaluated for their ability to block HIV replication. The (N-3 and C-5)AZT-HEPT conjugates 15, 22, and 23 displayed 2-5 microM anti-HIV activity, but they had no effect on the replication of HIV-2 or the HIV-1 strain with the Y181C mutation. The (C-5)AZT-pyridinone conjugates 34-37 were found to be inactive. In marked contrast, the ddC-HEPT molecule 26 displayed the same potency (EC(50) = 0.45 microM) against HIV-1 (wild type and the Y181C nevirapine-resistant strain) and HIV-2 in cell culture. No synergistic effect was observed for these bis-substrate inhibitors, suggesting that the two individual inhibitor components in these molecules do not bind simultaneously in their respective sites. Interestingly, however, the results indicate that the AZT-HEPT conjugates and the ddC-HEPT derivative 26 inhibit reverse transcriptase (RT) in an opposite manner. One explanation for this difference is that the former compounds interact preferentially with the hydrophobic pocket in RT, whereas 26 (after supposed triphosphorylation) inhibits RT through binding in the catalytic site.

  11. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  12. Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis.

    Science.gov (United States)

    Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A

    2017-11-01

    Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Treatment Failure in HIV-Infected Children on Second-line Protease Inhibitor-Based Antiretroviral Therapy.

    Science.gov (United States)

    Suaysod, Rapeepan; Ngo-Giang-Huong, Nicole; Salvadori, Nicolas; Cressey, Tim R; Kanjanavanit, Suparat; Techakunakorn, Pornchai; Krikajornkitti, Sawitree; Srirojana, Sakulrat; Laomanit, Laddawan; Chalermpantmetagul, Suwalai; Lallemant, Marc; Le Cœur, Sophie; McIntosh, Kenneth; Traisathit, Patrinee; Jourdain, Gonzague

    2015-07-01

    Human immunodeficiency virus (HIV)-infected children failing second-line antiretroviral therapy (ART) have no access to third-line antiretroviral drugs in many resource-limited settings. It is important to identify risk factors for second-line regimen failure. HIV-infected children initiating protease inhibitor (PI)-containing second-line ART within the Program for HIV Prevention and Treatment observational cohort study in Thailand between 2002 and 2010 were included. Treatment failure was defined as confirmed HIV type 1 RNA load >400 copies/mL after at least 6 months on second-line regimen or death. Adherence was assessed by drug plasma levels and patient self-report. Cox proportional hazards regression analyses were used to identify risk factors for failure. A total of 111 children started a PI-based second-line regimen, including 59 girls (53%). Median first-line ART duration was 1.9 years (interquartile range [IQR], 1.4-3.3 years), and median age at second-line initiation was 10.7 years (IQR, 6.3-13.4 years). Fifty-four children (49%) experienced virologic failure, and 2 (2%) died. The risk of treatment failure 24 months after second-line initiation was 41%. In multivariate analyses, failure was independently associated with exposure to first-line ART for >2 years (adjusted hazard ratio [aHR], 1.8; P = .03), age >13 years (aHR, 2.9; P < .001), body mass index-for-age z score < -2 standard deviations at second-line initiation (aHR, 2.8; P = .03), and undetectable drug levels within 6 months following second-line initiation (aHR, 4.5; P < .001). Children with longer exposure to first-line ART, entry to adolescence, underweight, and/or undetectable drug levels were at higher risk of failing second-line ART and thus should be closely monitored. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors

    Directory of Open Access Journals (Sweden)

    Neamati Nouri

    2009-03-01

    Full Text Available Abstract Merck's MK-0518, known as raltegravir, has recently become the first FDA-approved HIV-1 integrase (IN inhibitor and has since risen to blockbuster drug status. Much research has in turn been conducted over the last few years aimed at recreating but optimizing the compound's interactions with the protein. Resulting me-too drugs have shown favorable pharmacokinetic properties and appear drug-like but, as expected, most have a highly similar interaction with IN to that of raltegravir. We propose that, based upon conclusions drawn from our docking studies illustrated herein, most of these me-too MK-0518 analogues may experience a low success rate against raltegravir-resistant HIV strains. As HIV has a very high mutational competence, the development of drugs with new mechanisms of inhibitory action and/or new active substituents may be a more successful route to take in the development of second- and third-generation IN inhibitors.

  15. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    International Nuclear Information System (INIS)

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection

  16. Plasma Selenium Concentrations Are Sufficient and Associated with Protease Inhibitor Use in Treated HIV-Infected Adults123

    Science.gov (United States)

    Hileman, Corrilynn O; Dirajlal-Fargo, Sahera; Lam, Suet Kam; Kumar, Jessica; Lacher, Craig; Combs, Gerald F; McComsey, Grace A

    2015-01-01

    Background: Selenium is an essential constituent of selenoproteins, which play a substantial role in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation, including cardiovascular disease (CVD). Although HIV infection has been associated with low selenium, the role of selenium status in HIV-related CVD is unclear. Objectives: We sought to assess associations between plasma selenium and markers of inflammation, immune activation, and subclinical vascular disease in HIV-infected adults on contemporary antiretroviral therapy (ART) and to determine if statin therapy modifies selenium status. Methods: In the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN trial, HIV-infected adults on stable ART were randomly assigned 1:1 to rosuvastatin or placebo. Plasma selenium concentrations were determined at entry, week 24, and week 48. Spearman correlation and linear regression analyses were used to assess relations between baseline selenium, HIV-related factors and markers of inflammation, immune activation, and subclinical vascular disease. Changes in selenium over 24 and 48 wk were compared between groups. Results: One hundred forty-seven HIV-infected adults were included. All participants were on ART. Median current CD4+ count was 613, and 76% had HIV-1 RNA ≤48 copies/mL (range: selenium concentration was 122 μg/L (range: 62–200). At baseline, higher selenium was associated with protease inhibitor (PI) use, lower body mass index, and a higher proportion of activated CD8+ T cells (CD8+CD38+human leukocyte antigen-DR+), but not markers of inflammation or subclinical vascular disease. Over 48 wk, selenium concentrations increased in the statin group (P selenium concentrations were within the normal range for the background population and were not associated with subclinical vascular disease in HIV-infected adults on contemporary ART. The association between current PI use

  17. Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model.

    Directory of Open Access Journals (Sweden)

    Leandro S Sangenito

    Full Text Available BACKGROUND: Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs on Trypanosoma cruzi, the etiologic agent of Chagas' disease. METHODOLOGY AND PRINCIPAL FINDINGS: HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. CONCLUSIONS AND SIGNIFICANCE: The results

  18. Inhibition of HIV-1 infection in ex vivo cervical tissue model of human vagina by palmitic acid; implications for a microbicide development.

    Directory of Open Access Journals (Sweden)

    Xudong Lin

    Full Text Available BACKGROUND: Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L species of probiotic vaginal flora. PRINCIPAL FINDINGS: Our results show that treatment with 100-200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki to be ∼2.53 µM. SIGNIFICANCE: These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.

  19. Class 1-Selective Histone Deacetylase (HDAC) Inhibitors Enhance HIV Latency Reversal while Preserving the Activity of HDAC Isoforms Necessary for Maximal HIV Gene Expression.

    Science.gov (United States)

    Zaikos, Thomas D; Painter, Mark M; Sebastian Kettinger, Nadia T; Terry, Valeri H; Collins, Kathleen L

    2018-03-15

    Combinations of drugs that affect distinct mechanisms of HIV latency aim to induce robust latency reversal leading to cytopathicity and elimination of the persistent HIV reservoir. Thus far, attempts have focused on combinations of protein kinase C (PKC) agonists and pan-histone deacetylase inhibitors (HDIs) despite the knowledge that HIV gene expression is regulated by class 1 histone deacetylases. We hypothesized that class 1-selective HDIs would promote more robust HIV latency reversal in combination with a PKC agonist than pan-HDIs because they preserve the activity of proviral factors regulated by non-class 1 histone deacetylases. Here, we show that class 1-selective agents used alone or with the PKC agonist bryostatin-1 induced more HIV protein expression per infected cell. In addition, the combination of entinostat and bryostatin-1 induced viral outgrowth, whereas bryostatin-1 combinations with pan-HDIs did not. When class 1-selective HDIs were used in combination with pan-HDIs, the amount of viral protein expression and virus outgrowth resembled that of pan-HDIs alone, suggesting that pan-HDIs inhibit robust gene expression induced by class 1-selective HDIs. Consistent with this, pan-HDI-containing combinations reduced the activity of NF-κB and Hsp90, two cellular factors necessary for potent HIV protein expression, but did not significantly reduce overall cell viability. An assessment of viral clearance from in vitro cultures indicated that maximal protein expression induced by class 1-selective HDI treatment was crucial for reservoir clearance. These findings elucidate the limitations of current approaches and provide a path toward more effective strategies to eliminate the HIV reservoir. IMPORTANCE Despite effective antiretroviral therapy, HIV evades eradication in a latent form that is not affected by currently available drug regimens. Pharmacologic latency reversal that leads to death of cellular reservoirs has been proposed as a strategy for

  20. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  1. Review The Emerging Profile of Cross-Resistance among the Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors

    OpenAIRE

    Nicolas Sluis-Cremer

    2014-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infectio...

  2. US refuses to issue entry visas to people with HIV / AIDS.

    Science.gov (United States)

    1991-07-01

    The US government, ignoring the almost unanimous recommendation of medical and public health experts throughout the world, continues to ban both immigration and travel by people with HIV. Following recommendations from the US Centers for Disease Control and Prevention, the US Department of Health and Human Services indicated its intention to reduce the list of dangerous and contagious diseases for excluding entry to the US to include only active tuberculosis. That decision would have removed HIV/AIDS from the list. However, due to the subsequent 35,000 letters and postcards, mostly generated by conservative religious broadcasters and mailing houses opposed to lifting the ban, AIDS remained on the list. Opposition to lifting the ban came from the US Justice Department, as well as in the form of a signed statement to that end from 67 Republican members of the US Congress. US AIDS activists have organized their own letter campaign to support the removal of HIV/AIDS from the list. The June 1990 Sixth International Conference on AIDS was disrupted because of the travel ban. More than 70 AIDS, medical, and governmental organizations, including the International Red Cross, the British Medical Association, and the European Parliament boycotted the conferences. Planning for the 8th International Conference on AIDS, scheduled to be held in Boston in May 1992, is already being disputed and may not be held.

  3. Progress in the Identification of Dengue Virus Entry/Fusion Inhibitors

    Directory of Open Access Journals (Sweden)

    Carolina De La Guardia

    2014-01-01

    Full Text Available Dengue fever, a reemerging disease, is putting nearly 2.5 billion people at risk worldwide. The number of infections and the geographic extension of dengue fever infection have increased in the past decade. The disease is caused by the dengue virus, a flavivirus that uses mosquitos Aedes sp. as vectors. The disease has several clinical manifestations, from the mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, there is no approved drug for the treatment of dengue disease or an effective vaccine to fight the virus. Therefore, the search for antivirals against dengue virus is an active field of research. As new possible receptors and biological pathways of the virus biology are discovered, new strategies are being undertaken to identify possible antiviral molecules. Several groups of researchers have targeted the initial step in the infection as a potential approach to interfere with the virus. The viral entry process is mediated by viral proteins and cellular receptor molecules that end up in the endocytosis of the virion, the fusion of both membranes, and the release of viral RNA in the cytoplasm. This review provides an overview of the targets and progress that has been made in the quest for dengue virus entry inhibitors.

  4. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Sketching the historical development of pyrimidones as the inhibitors of the HIV integrase

    Czech Academy of Sciences Publication Activity Database

    Patel, Rahul V.; Keum, Y.S.; Park, S.W.

    2015-01-01

    Roč. 97, JUN 5 (2015), s. 649-663 ISSN 0223-5234 Institutional support: RVO:61389030 Keywords : Pyrimidones * Anti-HIV * Integrase inhibitors Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2015

  6. Inhibition of cornifins and up-regulation of protease inhibitors in cervicovaginal lavage imparts resistance to heterosexual HIV transmission

    Directory of Open Access Journals (Sweden)

    Sushama Rokade

    2017-12-01

    Full Text Available HIV-exposed seronegative individuals (HESNs are persons who remain seronegative despite repeated exposure to HIV, suggesting an in vivo resistance mechanism to HIV. Elucidation of endogenous factors responsible for this phenomenon may aid in the development of new classes of microbicides and therapeutics. The genital mucosal secretions of both men and women are known to contain a spectrum of antimicrobials and immune mediators that may contribute to resistance against HIV-1. Existence of HIV serodiscordant couples is a testimony to mucosal factors in the genital tract that prevent sexual transmission of the virus. We attempted to map such mucosal factors in female genital secretions of the serodiscordant couples in comparison with HIV infected and healthy participants using quantitative proteomics. The cervico vaginal lavage (CVL samples were collected from three groups of study participants (HIV infected, n=30; Un-infected Controls, n=10; Serodiscordant, n=24. Abundant proteins, albumin and globulins were removed from the pooled samples using multiple affinity removal spin cartridge (Agilent to enhance the sensitivity of iTRAQ proteomics analysis. Initial analysis identified a total of 135 proteins and associated 497 peptide matches. Serodiscordant females showed significantly down regulated levels of Cornifin A, B and C, Neutrophil gelatinase, myeloperoxidase and eosinophil peroxidase. Cornifins are cross-linked envelope protein of keratinocytes and are upregulated during inflammation. Downregulation of oxidative stress inducing enzymes and cornifins suggests immune-quiescence in serodiscordant females. CVL of these women showed significantly upregulated levels of Mucin 5B, S100A7, Alpha-2-macroglobulin, Cystatin A (protease inhibitor, Lacto-transferrin, SLPI (anti-leukoproteinase inhibitor and SERPIN G1 (protease inhibitor.  Significantly elevated levels of Cystatin B and Elafin in the CVL of serodiscordant females were confirmed by ELISA

  7. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  8. Characterization of natural polymorphic sites of the HIV-1 integrase before the introduction of HIV-1 integrase inhibitors in Germany

    Science.gov (United States)

    Meixenberger, Karolin; Pouran Yousef, Kaveh; Somogyi, Sybille; Fiedler, Stefan; Bartmeyer, Barbara; von Kleist, Max; Kücherer, Claudia

    2014-01-01

    Introduction The aim of our study was to analyze the occurrence and evolution of HIV-1 integrase polymorphisms during the HIV-1 epidemic in Germany prior to the introduction of the first integrase inhibitor raltegravir in 2007. Materials and Methods Plasma samples from drug-naïve HIV-1 infected individuals newly diagnosed between 1986 and 2006 were used to determine PCR-based population sequences of the HIV-1 integrase (amino acids 1–278). The HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. We calculated the frequency of amino acids at each position of the HIV-1 integrase in 337 subtype B strains for the time periods 1986–1989, 1991–1994, 1995–1998, 1999–2002, and 2003–2006. Positions were defined as polymorphic if amino acid variation was >1% in any period. Logistic regression was used to identify trends in amino acid variation over time. Resistance-associated mutations were identified according to the IAS 2013 list and the HIVdb, ANRS and GRADE algorithms. Results Overall, 56.8% (158/278) amino acid positions were polymorphic and 15.8% (25/158) of these positions exhibited a significant trend in amino acid variation over time. Proportionately, most polymorphic positions (63.3%, 31/49) were detected in the N-terminal zinc finger domain of the HIV-1 integrase. Motifs and residues essential for HIV-1 integrase activity were little polymorphic, but within the minimal non-specific DNA binding region I220-D270 up to 18.1% amino acid variation was noticed, including four positions with significant amino acid variation over time (S230, D232, D256, A265). No major resistance mutations were identified, and minor resistance mutations were rarely observed without trend over time. E157Q considered by HIVdb, ANRS, and GRADE algorithms was the most frequent resistance-associated polymorphism with an overall prevalence of 2.4%. Conclusions Detailed knowledge of the evolutionary variation of HIV-1 integrase polymorphisms is important to understand

  9. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein

    Directory of Open Access Journals (Sweden)

    Cara Andrea

    2007-03-01

    Full Text Available Abstract Background The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN (IN inhibitors, IINs has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA derivatives active on the HIV-1 IN strand transfer (ST step and with EC50 ranging from 1.83 to >50 μm in cell-based assays were tested for their in vitro interaction with P-gp in the CEM-MDR cell system. IINs were investigated for the inhibition and induction of the P-gp function and expression as well as for multidrug resistance (MDR reversing ability. Results The HIV-1 IINs act as genuine P-gp substrates by inhibiting doxorubicin efflux and inducing P-gp functional conformation changes as evaluated by the modulation of UIC2 mAb epitope. Further, IINs chemosensitize MDR cells to vinblastine and induce P-gp expression in drug sensitive revertants of CEM-MDR cells. Conclusion To our knowledge, this is the first demonstration that HIV-1 IINs are P-gp substrates. This biological property may influence the absorption, distribution and elimination of these novels anti HIV-1 compounds.

  10. Molecular interaction of gp120 and B40 aptamer: A potential new HIV-1 entry inhibitor drug

    CSIR Research Space (South Africa)

    Baron, MK

    2008-11-01

    Full Text Available HIV-1 infection and its concomitant disease – Aids, remain major public health problems in southern Africa. While current antiretroviral drugs have prolonged the quality of life for many HIV-positive individuals, they do not eliminate the virus (2...

  11. Contribution of HIV minority variants to drug resistance in an integrase strand transfer inhibitor-based therapy

    Czech Academy of Sciences Publication Activity Database

    Weber, Jan; Gibson, R. M.; Meyer, A. M.; Winner, D.; Robertson, D. L.; Miller, M. D.; Quinones-Mateu, M. E.

    2013-01-01

    Roč. 18, Suppl. 1 (2013), A66-A66 ISSN 1359-6535. [International Workshop on HIV & Hepatitis Virus Drug Resistance Curative Strategies. 04.06.2013-08.06.2013, Toronto] Institutional support: RVO:61388963 Keywords : HIV minority variants * integrase inhibitor * replicative fitness Subject RIV: CE - Biochemistry

  12. Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor

    Czech Academy of Sciences Publication Activity Database

    Schimer, Jiří; Pávová, Marcela; Anders, M.; Pachl, Petr; Šácha, Pavel; Cígler, Petr; Weber, Jan; Majer, Pavel; Řezáčová, Pavlína; Kräusslich, H. G.; Müller, B.; Konvalinka, Jan

    2015-01-01

    Roč. 6, Mar (2015), 6461/1-6461/8 ISSN 2041-1723 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LO1302 Grant - others:GA MŠk(CZ) ED1.1.00/02.0109 Program:ED Institutional support: RVO:61388963 Keywords : HIV maturation * HIV PR photodegradable inhibitor * HIV PR caging Subject RIV: CE - Biochemistry Impact factor: 11.329, year: 2015 http://www.nature.com/ncomms/2015/150309/ncomms7461/pdf/ncomms7461.pdf

  13. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  14. Immune activation and HIV-specific T cell responses are modulated by a cyclooxygenase-2 inhibitor in untreated HIV-infected individuals: An exploratory clinical trial.

    Directory of Open Access Journals (Sweden)

    Christian Prebensen

    Full Text Available Pathologically elevated immune activation and inflammation contribute to HIV disease progression and immunodeficiency, potentially mediated by elevated levels of prostaglandin E2, which suppress HIV-specific T cell responses. We have previously shown that a high dose of the cyclooxygenase-2 inhibitor celecoxib can reduce HIV-associated immune activation and improve IgG responses to T cell-dependent vaccines. In this follow-up study, we included 56 HIV-infected adults, 28 antiretroviral therapy (ART-naïve and 28 on ART with undetectable plasma viremia but CD4 counts below 500 cells/μL. Patients in each of the two study groups were randomized to receive 90 mg qd of the cyclooxygenase-2 inhibitor etoricoxib for six months, two weeks or to a control arm, respectively. T cell activation status, HIV Gag-specific T cell responses and plasma inflammatory markers, tryptophan metabolism and thrombin generation were analyzed at baseline and after four months. In addition, patients received tetanus toxoid, conjugated pneumococcal and seasonal influenza vaccines, to which IgG responses were determined after four weeks. In ART-naïve patients, etoricoxib reduced the density of the activation marker CD38 in multiple CD8+ T cell subsets, improved Gag-specific T cell responses, and reduced in vitro plasma thrombin generation, while no effects were seen on plasma markers of inflammation or tryptophan metabolism. No significant immunological effects of etoricoxib were observed in ART-treated patients. Patients receiving long-term etoricoxib treatment had poorer tetanus toxoid and conjugated pneumococcal vaccine responses than those receiving short-course etoricoxib. Cyclooxygenase-2 inhibitors may attenuate harmful immune activation in HIV-infected patients without access to ART.

  15. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  16. Selective histonedeacetylase inhibitor M344 intervenes in HIV-1 latency through increasing histone acetylation and activation of NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Hao Ying

    Full Text Available Histone deacetylase (HDAC inhibitors present an exciting new approach to activate HIV production from latently infected cells to potentially enhance elimination of these cells and achieve a cure. M344, a novel HDAC inhibitor, shows robust activity in a variety of cancer cells and relatively low toxicity compared to trichostatin A (TSA. However, little is known about the effects and action mechanism of M344 in inducing HIV expression in latently infected cells.Using the Jurkat T cell model of HIV latency, we demonstrate that M344 effectively reactivates HIV-1 gene expression in latently infected cells. Moreover, M344-mediated activation of the latent HIV LTR can be strongly inhibited by a NF-κB inhibitor aspirin. We further show that M344 acts by increasing the acetylation of histone H3 and histone H4 at the nucleosome 1 (nuc-1 site of the HIV-1 long terminal repeat (LTR and by inducing NF-κB p65 nuclear translocation and direct RelA DNA binding at the nuc-1 region of the HIV-1 LTR. We also found that M344 synergized with prostratin to activate the HIV-1 LTR promoter in latently infected cells.These results suggest the potential of M344 in anti-latency therapies and an important role for histone modifications and NF-κB transcription factors in regulating HIV-1 LTR gene expression.

  17. Development and evaluation of a phenotypic assay monitoring resistance formation to protease inhibitors in HIV-1-infected patients.

    Science.gov (United States)

    Gehringer, Heike; Von der Helm, Klaus; Seelmeir, Sigrid; Weissbrich, Benedikt; Eberle, Josef; Nitschko, Hans

    2003-05-01

    A novel phenotypic assay, based on recombinant expression of the HIV-1-protease was developed and evaluated; it monitors the formation of resistance to protease inhibitors. The HIV-1 protease-encoding region from the blood sample of patients was amplified, ligated into the expression vector pBD2, and recombinantly expressed in Escherichia coli TG1 cells. The resulting recombinant enzyme was purified by a newly developed one-step acid extraction protocol. The protease activity was determined in presence of five selected HIV protease inhibitors and the 50% inhibitory concentration (IC(50)) to the respective protease inhibitors determined. The degree of resistance was expressed in terms of x-fold increase in IC(50) compared to the IC(50) value of an HIV-1 wild type protease preparation. The established test system showed a reproducible recombinant expression of each individual patients' HIV-1 protease population. Samples of nine clinically well characterised HIV-1-infected patients with varying degrees of resistance were analysed. There was a good correlation between clinical parameters and the results obtained by this phenotypic assay. For the majority of patients a blind genotypic analysis of the patients' protease domain revealed a fair correlation to the results of the phenotypic assay. In a minority of patients our phenotypic results diverged from the genotypic ones. This novel phenotypic assay can be carried out within 8-10 days, and offers a significant advantage in time to the current employed phenotypic tests.

  18. Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses.

    Science.gov (United States)

    Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami Ghassan; Ma, Chunlong; Hau, Raymond; Wang, Jun

    2017-09-01

    The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan; Helfer, Markus; Kraus, Birgit; Wolff, Horst; Wild, Christian; Schneider, Martha; Voolstra, Christian R.; Brack-Werner, Ruth

    2014-01-01

    -infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry

  20. Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1.

    Science.gov (United States)

    Gupta, Kavita M; Pearce, Serena M; Poursaid, Azadeh E; Aliyar, Hyder A; Tresco, Patrick A; Mitchnik, Mark A; Kiser, Patrick F

    2008-10-01

    Women-controlled methods for prevention of male-to-female sexual transmission of HIV-1 are urgently needed. Providing inhibitory concentrations of HIV-1 reverse transcriptase inhibitors to impede the replication of the virus in the female genital tissue offers a mechanism for prophylaxis of HIV-1. To this end, an intravaginal ring device that can provide long duration delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1, was developed utilizing a medical-grade polyether urethane. Monolithic intravaginal rings were fabricated and sustained release with cumulative flux linear with time was demonstrated under sink conditions for a period of 30 days. The release rate was directly proportional to the amount of drug loaded. Another release study conducted for a week utilizing liposome dispersions as sink conditions, to mimic the partitioning of dapivirine into vaginal tissue, also demonstrated release rates constant with time. These results qualify polyether urethanes for development of intravaginal rings for sustained delivery of microbicidal agents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  1. HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Lívia O Santos

    Full Text Available BACKGROUND: Leishmania is the etiologic agent of leishmanisais, a protozoan disease whose pathogenic events are not well understood. Current therapy is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the increase in the number of cases of Leishmania-HIV coinfection, due to the overlap between the AIDS epidemic and leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we have investigated the effect of HIV aspartyl peptidase inhibitors (PIs on the Leishmania amazonensis proliferation, ultrastructure, interaction with macrophage cells and expression of classical peptidases which are directly involved in the Leishmania pathogenesis. All the HIV PIs impaired parasite growth in a dose-dependent fashion, especially nelfinavir and lopinavir. HIV PIs treatment caused profound changes in the leishmania ultrastructure as shown by transmission electron microscopy, including cytoplasm shrinking, increase in the number of lipid inclusions and some cells presenting the nucleus closely wrapped by endoplasmic reticulum resembling an autophagic process, as well as chromatin condensation which is suggestive of apoptotic death. The hydrolysis of HIV peptidase substrate by L. amazonensis extract was inhibited by pepstatin and HIV PIs, suggesting that an aspartyl peptidase may be the intracellular target of the inhibitors. The treatment with HIV PIs of either the promastigote forms preceding the interaction with macrophage cells or the amastigote forms inside macrophages drastically reduced the association indexes. Despite all these beneficial effects, the HIV PIs induced an increase in the expression of cysteine peptidase b (cpb and the metallopeptidase gp63, two well-known virulence factors expressed by Leishmania spp. CONCLUSIONS/SIGNIFICANCE: In the face of leishmaniasis/HIV overlap, it is critical to further comprehend the sophisticated interplays among Leishmania

  2. BST2/Tetherin enhances entry of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Kasinath Viswanathan

    2011-11-01

    Full Text Available Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV, indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.

  3. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion

    International Nuclear Information System (INIS)

    Thomas, Elaine R.; Dunfee, Rebecca L.; Stanton, Jennifer; Bogdan, Derek; Taylor, Joann; Kunstman, Kevin; Bell, Jeanne E.; Wolinsky, Steven M.; Gabuzda, Dana

    2007-01-01

    HIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion

  4. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase.

    Science.gov (United States)

    Rowley, David C; Hansen, Mark S T; Rhodes, Denise; Sotriffer, Christoph A; Ni, Haihong; McCammon, J Andrew; Bushman, Frederic D; Fenical, William

    2002-11-01

    Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.

  5. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  6. HIV-1 integrase inhibitor resistance among treatment naïve patients in the West of Scotland.

    Science.gov (United States)

    Bradley-Stewart, A; Urcia, C; MacLean, A; Aitken, C; Gunson, R

    2017-07-01

    Transmitted integrase inhibitor resistance is rare, with only a small number of cases reported world-wide to date. The aim of this study was to assess whether transmitted integrase inhibitor resistance has occurred in Scotland and if so, could there be a case for performing genotypic integrase resistance testing at baseline. The study population consisted of 106 treatment naïve, newly diagnosed, HIV positive patients. The patient samples were collected between October 2015 and March 2016 at the time of HIV diagnosis and prior to initiation of anti-retroviral therapy. The integrase region was amplified and sequenced. We detected integrase inhibitor resistance (T66I/T) at baseline in one patient sample. This is a non-polymorphic mutation seen in patients receiving elvitegravir which confers high-level resistance to elvitegravir and intermediate resistance to raltegravir. A further 10 patients had accessory mutations which have minimal or no effect on susceptibility to integrase inhibitors. Transmitted integrase inhibitor resistance remains rare. The results of the present study do not support performing integrase resistance testing at baseline. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1'-P2' ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2017-11-01

    Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.

  8. Dissimilarities in the metabolism of antiretroviral drugs used in HIV pre-exposure prophylaxis in colon and vagina tissues.

    Science.gov (United States)

    To, Elaine E; Hendrix, Craig W; Bumpus, Namandjé N

    2013-10-01

    Attempts to prevent HIV infection through pre-exposure prophylaxis (PrEP) include topical application of anti-HIV drugs to the mucosal sites of infection; however, a potential role for local drug metabolizing enzymes in modulating the exposure of the mucosal tissues to these drugs has yet to be explored. Here we present the first report that enzymes belonging to the cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) families of drug metabolizing enzymes are expressed and active in vaginal and colorectal tissue using biopsies collected from healthy volunteers. In doing so, we discovered that dapivirine and maraviroc, a non-nucleoside reverse transcriptase inhibitor and an entry inhibitor currently in development as microbicides for HIV PrEP, are differentially metabolized in colorectal tissue and vaginal tissue. Taken together, these data should help to guide the optimization of small molecules being developed for HIV PrEP. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. CD4 Counts at Entry to HIV Care in Mexico for Patients under the "Universal Antiretroviral Treatment Program for the Uninsured Population," 2007-2014.

    Science.gov (United States)

    Hernández-Romieu, Alfonso C; del Rio, Carlos; Hernández-Ávila, Juan Eugenio; Lopez-Gatell, Hugo; Izazola-Licea, José Antonio; Uribe Zúñiga, Patricia; Hernández-Ávila, Mauricio

    2016-01-01

    In Mexico, public health services have provided universal access to antiretroviral therapy (ART) since 2004. For individuals receiving HIV care in public healthcare facilities, the data are limited regarding CD4 T-lymphocyte counts (CD4e) at the time of entry into care. Relevant population-based estimates of CD4e are needed to inform strategies to maximize the impact of Mexico's national ART program, and may be applicable to other countries implementing universal HIV treatment programs. For this study, we retrospectively analyzed the CD4e of persons living with HIV and receiving care at state public health facilities from 2007 to 2014, comparing CD4e by demographic characteristics and the marginalization index of the state where treatment was provided, and assessing trends in CD4e over time. Our sample included 66,947 individuals who entered into HIV care between 2007 and 2014, of whom 79% were male. During the study period, the male-to-female ratio increased from 3.0 to 4.3, reflecting the country's HIV epidemic; the median age at entry decreased from 34 years to 32 years. Overall, 48.6% of individuals entered care with a CD4≤200 cells/μl, ranging from 42.2% in states with a very low marginalization index to 52.8% in states with a high marginalization index, and from 38.9% among individuals aged 18-29 to 56.5% among those older than 50. The adjusted geometric mean (95% confidence interval) CD4e increased among males from 135 (131,142) cells/μl in 2007 to 148 (143,155) cells/μl in 2014 (p-valuewomen, with a geometric mean of 178 (171,186) and 171 (165,183) in 2007 and 2014, respectively. There have been important gains in access to HIV care and treatment; however, late entry into care remains an important barrier in achieving optimal outcomes of ART in Mexico. The geographic, socioeconomic, and demographic differences observed reflect important inequities in timely access to HIV prevention, care, and treatment services, and highlight the need to develop

  10. CD4 Counts at Entry to HIV Care in Mexico for Patients under the "Universal Antiretroviral Treatment Program for the Uninsured Population," 2007-2014.

    Directory of Open Access Journals (Sweden)

    Alfonso C Hernández-Romieu

    Full Text Available In Mexico, public health services have provided universal access to antiretroviral therapy (ART since 2004. For individuals receiving HIV care in public healthcare facilities, the data are limited regarding CD4 T-lymphocyte counts (CD4e at the time of entry into care. Relevant population-based estimates of CD4e are needed to inform strategies to maximize the impact of Mexico's national ART program, and may be applicable to other countries implementing universal HIV treatment programs. For this study, we retrospectively analyzed the CD4e of persons living with HIV and receiving care at state public health facilities from 2007 to 2014, comparing CD4e by demographic characteristics and the marginalization index of the state where treatment was provided, and assessing trends in CD4e over time. Our sample included 66,947 individuals who entered into HIV care between 2007 and 2014, of whom 79% were male. During the study period, the male-to-female ratio increased from 3.0 to 4.3, reflecting the country's HIV epidemic; the median age at entry decreased from 34 years to 32 years. Overall, 48.6% of individuals entered care with a CD4≤200 cells/μl, ranging from 42.2% in states with a very low marginalization index to 52.8% in states with a high marginalization index, and from 38.9% among individuals aged 18-29 to 56.5% among those older than 50. The adjusted geometric mean (95% confidence interval CD4e increased among males from 135 (131,142 cells/μl in 2007 to 148 (143,155 cells/μl in 2014 (p-value<0.0001; no change was observed among women, with a geometric mean of 178 (171,186 and 171 (165,183 in 2007 and 2014, respectively. There have been important gains in access to HIV care and treatment; however, late entry into care remains an important barrier in achieving optimal outcomes of ART in Mexico. The geographic, socioeconomic, and demographic differences observed reflect important inequities in timely access to HIV prevention, care, and treatment

  11. An Acquired Factor VIII Inhibitor in a Patient with HIV and HCV: A Case Presentation and Literature Review

    Directory of Open Access Journals (Sweden)

    S. B. Zeichner

    2013-01-01

    Full Text Available Introduction. Despite its low incidence, acquired factor VIII inhibitor is the most common autoantibody affecting the clotting cascade. The exact mechanism of acquisition remains unclear, but postpartum patients, those with autoimmune conditions or malignancies, and those with exposure to particular drugs appear most susceptible. There have been several case reports describing acquired FVIII inhibitors in patients receiving interferon alpha for HCV treatment and in patients being treated for HIV. To our knowledge, this is the first case of a patient with HCV and HIV who was not actively receiving treatment for either condition. Case Presentation. A 57-year-old Caucasian male with a history of HIV and HCV was admitted to our hospital for a several day history of progressively worsening right thigh bruising and generalized weakness. CTA of the abdominal arteries revealed large bilateral retroperitoneal hematomas. Laboratory studies revealed the presence of a high titer FVIII inhibitor. Conclusion. Our case of a very rare condition highlights the importance of recognizing and understanding the diagnosis of acquired FVIII inhibitor. Laboratory research and clinical data on the role of newer agents are needed in order to better characterize disease pathogenesis, disease associations, genetic markers, and optimal disease management.

  12. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure in Indian patients.

    Science.gov (United States)

    Neogi, Ujjwal; Rao, Shwetha D; Bontell, Irene; Verheyen, Jens; Rao, Vasudev R; Gore, Sagar C; Soni, Neelesh; Shet, Anita; Schülter, Eugen; Ekstrand, Maria L; Wondwossen, Amogne; Kaiser, Rolf; Madhusudhan, Mallur S; Prasad, Vinayaka R; Sonnerborg, Anders

    2014-09-24

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region, which appeared in protease inhibitor failure Indian HIV-1C sequences (odds ratio=17.1, P < 0.001) but was naturally present in half of untreated Ethiopian HIV-1C sequences. The insertion is predicted to restore ALIX-mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of the insertion needs to be evaluated in HIV-1C dominating regions wherein the use of protease inhibitor drugs are being scaled up.

  13. An effective HIV-1 integrase inhibitor screening platform: Rationality validation of drug screening, conformational mobility and molecular recognition analysis for PFV integrase complex with viral DNA.

    Science.gov (United States)

    Du, Wenyi; Zuo, Ke; Sun, Xin; Liu, Wei; Yan, Xiao; Liang, Li; Wan, Hua; Chen, Fengzheng; Hu, Jianping

    2017-11-01

    As an important target for the development of novel anti-AIDS drugs, HIV-1 integrase (IN) has been widely concerned. However, the lack of a complete accurate crystal structure of HIV-1 IN greatly blocks the discovery of novel inhibitors. In this work, an effective HIV-1 IN inhibitor screening platform, namely PFV IN, was filtered from all species of INs. Next, the 40.8% similarity with HIV-1 IN, as well as the high efficiency of virtual screening and the good agreement between calculated binding free energies and experimental ones all proved PFV IN is a promising screening platform for HIV-1 IN inhibitors. Then, the molecular recognition mechanism of PFV IN by its substrate viral DNA and six naphthyridine derivatives (NRDs) inhibitors was investigated through molecular docking, molecular dynamics simulations and water-mediated interactions analyses. The functional partition of NRDs IN inhibitors could be divided into hydrophobic and hydrophilic ones, and the Mg 2+ ions, water molecules and conserved DDE motif residues all interacted with the hydrophilic partition, while the bases in viral DNA and residues like Tyr212, Pro214 interacted with the hydrophobic one. Finally, the free energy landscape (FEL) and cluster analyses were performed to explore the molecular motion of PFV IN-DNA system. It is found that the association with NRDs inhibitors would obviously decrease the motion amplitude of PFV IN-DNA, which may be one of the most potential mechanisms of IN inhibitors. This work will provide a theoretical basis for the inhibitor design based on the structure of HIV-1 IN. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H

    1999-01-01

    The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...... including a protease inhibitor. Unstimulated and pokeweed mitogen (PWM)-, interleukin (IL)-2- and phytohaemagglutinin (PHA)-stimulated lymphocyte proliferative responses increased during follow-up reaching average levels from 1.3-fold (PHA) to 3.7-fold (PWM) above baseline values. The total CD4+ lymphocyte...

  15. Integrase inhibitors in late pregnancy and rapid HIV viral load reduction.

    Science.gov (United States)

    Rahangdale, Lisa; Cates, Jordan; Potter, JoNell; Badell, Martina L; Seidman, Dominika; Miller, Emilly S; Coleman, Jenell S; Lazenby, Gweneth B; Levison, Judy; Short, William R; Yawetz, Sigal; Ciaranello, Andrea; Livingston, Elizabeth; Duthely, Lunthita; Rimawi, Bassam H; Anderson, Jean R; Stringer, Elizabeth M

    2016-03-01

    Minimizing time to HIV viral suppression is critical in pregnancy. Integrase strand transfer inhibitors (INSTIs), like raltegravir, are known to rapidly suppress plasma HIV RNA in nonpregnant adults. There are limited data in pregnant women. We describe time to clinically relevant reduction in HIV RNA in pregnant women using INSTI-containing and non-INSTI-containing antiretroviral therapy (ART) options. We conducted a retrospective cohort study of pregnant HIV-infected women in the United States from 2009 through 2015. We included women who initiated ART, intensified their regimen, or switched to a new regimen due to detectable viremia (HIV RNA >40 copies/mL) at ≥20 weeks gestation. Among women with a baseline HIV RNA permitting 1-log reduction, we estimated time to 1-log RNA reduction using the Kaplan-Meier estimator comparing women starting/adding an INSTI in their regimen vs other ART. To compare groups with similar follow-up time, we also conducted a subgroup analysis limited to women with ≤14 days between baseline and follow-up RNA data. This study describes 101 HIV-infected pregnant women from 11 US clinics. In all, 75% (76/101) of women were not taking ART at baseline; 24 were taking non-INSTI containing ART, and 1 received zidovudine monotherapy. In all, 39% (39/101) of women started an INSTI-containing regimen or added an INSTI to their ART regimen. Among 90 women with a baseline HIV RNA permitting 1-log reduction, the median time to 1-log RNA reduction was 8 days (interquartile range [IQR], 7-14) in the INSTI group vs 35 days (IQR, 20-53) in the non-INSTI ART group (P pregnancy. Inclusion of an INSTI may play a role in optimal reduction of HIV RNA for HIV-infected pregnant women presenting late to care or failing initial therapy. Larger studies are urgently needed to assess the safety and effectiveness of this approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -Containing HIV-1 Protease Inhibitor, Maintains Its Favorable Antiviral Activity against Highly-Drug-Resistant HIV-1 Variants in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Miguel Salcedo-Gómez, Pedro; Yedidi, Ravikiran S.; Delino, Nicole S.; Nakata, Hirotomo; Venkateswara Rao, Kalapala; Ghosh, Arun K.; Mitsuya, Hiroaki

    2017-09-25

    We report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC50: 0.0014–0.0028 μM) with minimal cytotoxicity (CC50: 39.0 μM). Similarly, GRL-09510 efficiently blocked the replication of HIV-1NL4-3 variants, which were capable of propagating at high-concentrations of atazanavir, lopinavir, and amprenavir (APV). GRL-09510 was also potent against multi-drug-resistant clinical HIV-1 variants and HIV-2ROD. Under the selection condition, where HIV-1NL4-3 rapidly acquired significant resistance to APV, an integrase inhibitor raltegravir, and a GRL-09510 congener (GRL-09610), no variants highly resistant against GRL-09510 emerged over long-term in vitro passage of the virus. Crystallographic analysis demonstrated that the Crwn-THF moiety of GRL-09510 forms strong hydrogen-bond-interactions with HIV-1 protease (PR) active-site amino acids and is bulkier with a larger contact surface, making greater van der Waals contacts with PR than the bis-THF moiety of darunavir. The present data demonstrate that GRL-09510 has favorable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants, that the newly generated P2-Crwn-THF moiety confers highly desirable anti-HIV-1 potency. The use of the novel Crwn-THF moiety sheds lights in the design of novel PIs.

  17. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    Energy Technology Data Exchange (ETDEWEB)

    Yedidi, Ravikiran S. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Muhuhi, Joseck M. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Liu, Zhigang [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Bencze, Krisztina Z. [Department of Chemistry, Fort Hays State University, Hays, KS 67601 (United States); Koupparis, Kyriacos [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); O’Connor, Carrie E.; Kovari, Iulia A. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Spaller, Mark R. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Kovari, Ladislau C., E-mail: kovari@med.wayne.edu [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)

    2013-09-06

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.

  18. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    International Nuclear Information System (INIS)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang; Bencze, Krisztina Z.; Koupparis, Kyriacos; O’Connor, Carrie E.; Kovari, Iulia A.; Spaller, Mark R.; Kovari, Ladislau C.

    2013-01-01

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC 50 : 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the 15 N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC 50 : 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of 15 N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV

  19. Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors.

    Science.gov (United States)

    Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha

    2013-08-01

    Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: comparative structure analysis of wild and mutant HTLV-1 PR.

    Science.gov (United States)

    Selvaraj, Chandrabose; Singh, Poonam; Singh, Sanjeev Kumar

    2014-12-01

    Retroviruses HTLV-1 and HIV-1 are the primary causative agents of fatal adult T-cell leukemia and acquired immune deficiency syndrome (AIDS) disease. Both retroviruses are similar in characteristics mechanism, and it encodes for protease that mainly involved in the viral replication process. On the basis of the therapeutic success of HIV-1 PR inhibitors, the protease of HTLV-1 is mainly considered as a potential target for chemotherapy. At the same time, structural similarities in both enzymes that originate HIV PR inhibitors can also be an HTLV-1 PR inhibitor. But the expectations failed because of rejection of HIV PR inhibitors from the HTLV-1 PR binding pocket. In this present study, the reason for the HIV PR inhibitor rejection from the HTLV-1 binding site was identified through sequence analysis and molecular dynamics simulation method. Functional analysis of M37A mutation in HTLV PR clearly shows that the MET37 specificity and screening of potential inhibitors targeting MET37 is performed by using approved 90% similar HIV PR inhibitor compounds. From this approach, we report few compounds with a tendency to accept/donate electron specifically to an important site residue MET37 in HTLV-1 PR binding pocket. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Acute toxicity of second generation HIV protease-inhibitors in combination with radiotherapy: a retrospective case series

    International Nuclear Information System (INIS)

    See, Alfred P; Zeng, Jing; Tran, Phuoc T; Lim, Michael

    2011-01-01

    There is little data on the safety of combining radiation therapy and human immunodeficiency virus (HIV) protease inhibitors to treat cancers in HIV-positive patients. We describe acute toxicities observed in a series of HIV-positive patients receiving modern radiation treatments, and compare patients receiving HIV protease inhibitors (PI) with patients not receiving HIV PIs. By reviewing the clinical records beginning January 1, 2009 from the radiation oncology department, we identified 29 HIV-positive patients who received radiation therapy to 34 body sites. Baseline information, treatment regimen, and toxicities were documented by review of medical records: patient age, histology and source of the primary tumor, HIV medication regimen, pre-radiation CD4 count, systemic chemotherapy, radiation therapy dose and fractionation, irradiated body region, toxicities, and duration of follow-up. Patients were grouped according to whether they received concurrent HIV PIs and compared using Pearson's chi-square test. At baseline, the patients in the two groups were similar with the exception of HIV medication regimens, CD4 count and presence of AIDS-defining malignancy. Patients taking concurrent PIs were more likely to be taking other HIV medications (p = 0.001) and have CD4 count >500 (p = 0.006). Patients taking PIs were borderline less likely to have an AIDS-defining malignancy (p = 0.06). After radiation treatment, 100 acute toxicities were observed and were equally common in both groups (64 [median 3 per patient, IQR 1-7] with PIs; 36 [median 3 per patient, IQR 2-3] without PIs). The observed toxicities were also equally severe in the two groups (Grades I, II, III respectively: 30, 30, 4 with PIs; 23, 13, 0 without PIs: p = 0.38). There were two cases that were stopped early, one in each group; these were not attributable to toxicity. In this study of recent radiotherapy in HIV-positive patients taking second generation PIs, no difference in toxicities was

  2. Study of Structure-active Relationship for Inhibitors of HIV-1 Integrase LEDGF/p75 Interaction by Machine Learning Methods.

    Science.gov (United States)

    Li, Yang; Wu, Yanbin; Yan, Aixia

    2017-07-01

    HIV-1 integrase (IN) is a promising target for anti-AIDS therapy, and LEDGF/p75 is proved to enhance the HIV-1 integrase strand transfer activity in vitro. Blocking the interaction between IN and LEDGF/p75 is an effective way to inhibit HIV replication infection. In this work, 274 LEDGF/p75-IN inhibitors were collected as the dataset. Support Vector Machine (SVM), Decision Tree (DT), Function Tree (FT) and Random Forest (RF) were applied to build several computational models for predicting whether a compound is an active or weakly active LEDGF/p75-IN inhibitor. Each compound is represented by MACCS fingerprints and CORINA Symphony descriptors. The prediction accuracies for the test sets of all the models are over 70 %. The best model Model 3B built by FT obtained a prediction accuracy and a Matthews Correlation Coefficient (MCC) of 81.08 % and 0.62 on test set, respectively. We found that the hydrogen bond and hydrophobic interactions are important for the bioactivity of an inhibitor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Functional impact of HIV coreceptor-binding site mutations

    International Nuclear Information System (INIS)

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W.; Reeves, Jacqueline D.

    2006-01-01

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner

  4. Hydroxyethylamine derivatives as HIV-1 protease inhibitors: a predictive QSAR modelling study based on Monte Carlo optimization.

    Science.gov (United States)

    Bhargava, S; Adhikari, N; Amin, S A; Das, K; Gayen, S; Jha, T

    2017-12-01

    Application of HIV-1 protease inhibitors (as an anti-HIV regimen) may serve as an attractive strategy for anti-HIV drug development. Several investigations suggest that there is a crucial need to develop a novel protease inhibitor with higher potency and reduced toxicity. Monte Carlo optimized QSAR study was performed on 200 hydroxyethylamine derivatives with antiprotease activity. Twenty-one QSAR models with good statistical qualities were developed from three different splits with various combinations of SMILES and GRAPH based descriptors. The best models from different splits were selected on the basis of statistically validated characteristics of the test set and have the following statistical parameters: r 2 = 0.806, Q 2 = 0.788 (split 1); r 2 = 0.842, Q 2 = 0.826 (split 2); r 2 = 0.774, Q 2 = 0.755 (split 3). The structural attributes obtained from the best models were analysed to understand the structural requirements of the selected series for HIV-1 protease inhibitory activity. On the basis of obtained structural attributes, 11 new compounds were designed, out of which five compounds were found to have better activity than the best active compound in the series.

  5. Guidelines for Improving Entry Into and Retention in Care and Antiretroviral Adherence for Persons With HIV: Evidence-Based Recommendations From an International Association of Physicians in AIDS Care Panel

    Science.gov (United States)

    Thompson, Melanie A.; Mugavero, Michael J.; Amico, K. Rivet; Cargill, Victoria A.; Chang, Larry W.; Gross, Robert; Orrell, Catherine; Altice, Frederick L.; Bangsberg, David R.; Bartlett, John G.; Beckwith, Curt G.; Dowshen, Nadia; Gordon, Christopher M.; Horn, Tim; Kumar, Princy; Scott, James D.; Stirratt, Michael J.; Remien, Robert H.; Simoni, Jane M.; Nachega, Jean B.

    2014-01-01

    Description After HIV diagnosis, timely entry into HIV medical care and retention in that care are essential to the provision of effective antiretroviral therapy (ART). ART adherence is among the key determinants of successful HIV treatment outcome and is essential to minimize the emergence of drug resistance. The International Association of Physicians in AIDS Care convened a panel to develop evidence-based recommendations to optimize entry into and retention in care and ART adherence for people with HIV. Methods A systematic literature search was conducted to produce an evidence base restricted to randomized, controlled trials and observational studies with comparators that had at least 1 measured biological or behavioral end point. A total of 325 studies met the criteria. Two reviewers independently extracted and coded data from each study using a standardized data extraction form. Panel members drafted recommendations based on the body of evidence for each method or intervention and then graded the overall quality of the body of evidence and the strength for each recommendation. Recommendations Recommendations are provided for monitoring of entry into and retention in care, interventions to improve entry and retention, and monitoring of and interventions to improve ART adherence. Recommendations cover ART strategies, adherence tools, education and counseling, and health system and service delivery interventions. In addition, they cover specific issues pertaining to pregnant women, incarcerated individuals, homeless and marginally housed individuals, and children and adolescents, as well as substance use and mental health disorders. Recommendations for future research in all areas are also provided. PMID:22393036

  6. Effectiveness and cost of treatment with maraviroc in HIV infection

    Directory of Open Access Journals (Sweden)

    Viola Sacchi

    2009-12-01

    Full Text Available Since 1995, life expectancy and quality of life of HIV patients improved significantly due to the use of Highly Active Anti-Retroviral Therapy (HAART, consisting of different combinations of three classes of antiretroviral agents, nucleoside and non-nucleoside reverse transcriptase inhibitors, and protease inhibitors. Recently, new treatment options for individuals developing resistance to these drugs have become available, with the appearance of new drug classes like integrase inhibitors, fusion inhibitors and CCR5 antagonists. Maraviroc is the first antiretroviral agent belonging to the latter drug class approved for clinical use. CCR5 receptor antagonists act by blocking the interaction of the HIV virus with the CCR5 chemokine receptor, a co-receptor essential to the entry process of R5-tropic viruses. The drug is indicated, in combination with other antiretroviral products, for treatment-experienced adult patients infected with only CCR5-tropic HIV-1 detectable virus strains. Results of main phase III clinical trials indicate that maraviroc, in combination with optimized background therapy (OBT, causes significantly greater reductions in viral load and increases in CD4+ cell count, as compared to OBT alone in this kind of patients. In Italy, the monthly cost of maraviroc therapy is about € 780. A number of economic evaluations, performed for different settings, demonstrate that the therapy including maraviroc is cost-effective if compared to OBT alone, determining an ICER generally below the threshold of three times the GDP per capita. In the Italian context, the ICER determined by OBT + maraviroc vs OBT alone is approximately 45,000 €/LYG.

  7. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates.

    Science.gov (United States)

    Mulu, Andargachew; Maier, Melanie; Liebert, Uwe Gerd

    2015-12-01

    Although biochemical analysis of HIV-1 integrase enzyme suggested the use of integrase inhibitors (INIs) against HIV-1C, different viral subtypes may favor different mutational pathways potentially leading to varying levels of drug resistance. Thus, the aim of this study was to search for the occurrence and natural evolution of integrase polymorphisms and/or resistance mutations in HIV-1C Ethiopian clinical isolates prior to the introduction of INIs. Plasma samples from chronically infected drug naïve patients (N = 45), of whom the PR and RT sequence was determined previously, were used to generate population based sequences of HIV-1 integrase. HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. Resistance mutations were interpreted according to the Stanford HIV drug resistance database ( http://hivdb.stanford.edu ) and the updated International Antiviral Society (IAS)-USA mutation lists. Moreover, rates of polymorphisms in the current isolates were compared with South African and global HIV-1C isolates. All subjects were infected with HIV-1C concordant to the protease (PR) and reverse transcriptase (RT) regions. Neither major resistance-associated IN mutations (T66I/A/K, E92Q/G, T97A, Y143HCR, S147G, Q148H/R/K, and N155H) nor silent mutations known to change the genetic barrier were observed. Moreover, the DDE-catalytic motif (D64G/D116G/E152 K) and signature HHCC zinc-binding motifs at codon 12, 16, 40 and 43 were found to be highly conserved. However, compared to other South African subtype C isolates, the rate of polymorphism was variable at various positions. Although the sample size is small, the findings suggest that this drug class could be effective in Ethiopia and other southern African countries where HIV-1C is predominantly circulating. The data will contribute to define the importance of integrase polymorphism and to improve resistance interpretation algorithms in HIV-1C isolates.

  8. Clinical Improvement by Switching to an Integrase Strand Transfer Inhibitor in Hemophiliac Patients with HIV: The Japan Cohort Study of HIV Patients Infected through Blood Products.

    Science.gov (United States)

    Kawado, Miyuki; Hashimoto, Shuji; Oka, Shin-Ichi; Fukutake, Katsuyuki; Higasa, Satoshi; Yatsuhashi, Hiroshi; Ogane, Miwa; Okamoto, Manabu; Shirasaka, Takuma

    2017-01-01

    This study aimed to determine improvement in HIV RNA levels and the CD4 cell count by switching to an antiretroviral regimen with an integrase strand transfer inhibitor (INSTI) in patients with HIV. This study was conducted on Japanese patients with HIV who were infected by blood products in the 1980s. Data were collected between 2007 and 2014. Data of 564 male hemophiliac patients with HIV from the Japan Cohort Study of HIV Patients Infected through Blood Products were available. Changes in antiretroviral regimen use, HIV RNA levels, and the CD4 cell count between 2007 and 2014 were examined. From 2007 to 2014, the proportion of use of a regimen with an INSTI increased from 0.0% to 41.0%. For patients with HIV who used a regimen, including an INSTI, the proportion of HIV RNA levels products. This suggests that performing this switch in clinical practice will lead to favorable effects.

  9. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity

    NARCIS (Netherlands)

    Amadori, Céline; Ubeles van der Velden, Yme; Bonnard, Damien; Orlov, Igor; van Bel, Nikki; Le Rouzic, Erwann; Miralles, Laia; Brias, Julie; Chevreuil, Francis; Spehner, Daniele; Chasset, Sophie; Ledoussal, Benoit; Mayr, Luzia; Moreau, François; García, Felipe; Gatell, José; Zamborlini, Alessia; Emiliani, Stéphane; Ruff, Marc; Klaholz, Bruno P.; Moog, Christiane; Berkhout, Ben; Plana, Montserrat; Benarous, Richard

    2017-01-01

    HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF

  10. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Supachai Sakkhachornphop

    2015-01-01

    Full Text Available The 3′-end processing (3′P of each viral long terminal repeat (LTR during human immunodeficiency virus type-1 (HIV-1 integration is a vital step in the HIV life cycle. Blocking the 3′P using 3′P inhibitor has recently become an attractive strategy for HIV-1 therapeutic intervention. Recently, we have developed a novel real-time PCR based assay for the detection of 3′P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase (IN, and specific primers and probe. In this novel assay, we designed the HIV-1 LTR substrate based on a sequence with a homology to HIV-1 LTR labeled at its 3′ end with biotin on the sense strand. Two nucleotides at the 3′ end were subsequently removed by IN activity. Only two nucleotides labeled biotin were captured on an avidin-coated tube; therefore, inhibiting the binding of primers and probe results in late signals in the real-time PCR. This novel assay has successfully detected both the 3′P activity of HIV-1 IN and the anti-IN activity by Raltegravir and sodium azide agent. This real-time PCR assay has been shown to be effective and inexpensive for a high-throughput screening of novel IN inhibitors.

  11. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    Science.gov (United States)

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  12. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    Science.gov (United States)

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  13. Bovine parvovirus uses clathrin-mediated endocytosis for cell entry.

    Science.gov (United States)

    Dudleenamjil, Enkhmart; Lin, Chin-Yo; Dredge, Devin; Murray, Byron K; Robison, Richard A; Johnson, F Brent

    2010-12-01

    Entry events of bovine parvovirus (BPV) were studied. Transmission electron micrographs of infected cells showed virus particles in cytoplasmic vesicles. Chemical inhibitors that block certain aspects of the cellular machinery were employed to assess viral dependency upon those cellular processes. Chlorpromazine, ammonium chloride, chloroquine and bafilamicin A1 were used to inhibit acidification of endosomes and clathrin-associated endocytosis. Nystatin was used as an inhibitor of the caveolae pathway. Cytochalasin D and ML-7 were used to inhibit actin and myosin functions, respectively. Nocodazole and colchicine were employed to inhibit microtubule activity. Virus entry was assessed by measuring viral transcription using real-time PCR, synthesis of capsid protein and assembly of infectious progeny virus in the presence of inhibitor blockage. The results indicated that BPV entry into embryonic bovine trachael cells utilizes endocytosis in clathrin-coated vesicles, is dependent upon acidification, and appears to be associated with actin and microtubule dependency. Evidence for viral entry through caveolae was not obtained. These findings provide a fuller understanding of the early cell-entry events of the replication cycle for members of the genus Bocavirus.

  14. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Janela [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Margineantu, Daciana H. [Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Sweet, Ian R. [Department of Medicine (Division of Metabolism, Endocrinology, and Nutrition), University of Washington, Seattle, WA (United States); Polyak, Stephen J., E-mail: polyak@uw.edu [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Department of Global Health, University of Washington, Seattle, WA (United States)

    2014-01-20

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases.

  15. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    International Nuclear Information System (INIS)

    McClure, Janela; Margineantu, Daciana H.; Sweet, Ian R.; Polyak, Stephen J.

    2014-01-01

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases

  16. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    OpenAIRE

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-01-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritona...

  17. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    Science.gov (United States)

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-10-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity.

  18. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells.

    Science.gov (United States)

    Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah

    2015-06-01

    Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.

  19. CD4 Counts at Entry to HIV Care in Mexico for Patients under the “Universal Antiretroviral Treatment Program for the Uninsured Population,” 2007–2014

    Science.gov (United States)

    Hernández-Romieu, Alfonso C.; del Rio, Carlos; Hernández-Ávila, Juan Eugenio; Lopez-Gatell, Hugo; Izazola-Licea, José Antonio; Uribe Zúñiga, Patricia; Hernández-Ávila, Mauricio

    2016-01-01

    In Mexico, public health services have provided universal access to antiretroviral therapy (ART) since 2004. For individuals receiving HIV care in public healthcare facilities, the data are limited regarding CD4 T-lymphocyte counts (CD4e) at the time of entry into care. Relevant population-based estimates of CD4e are needed to inform strategies to maximize the impact of Mexico’s national ART program, and may be applicable to other countries implementing universal HIV treatment programs. For this study, we retrospectively analyzed the CD4e of persons living with HIV and receiving care at state public health facilities from 2007 to 2014, comparing CD4e by demographic characteristics and the marginalization index of the state where treatment was provided, and assessing trends in CD4e over time. Our sample included 66,947 individuals who entered into HIV care between 2007 and 2014, of whom 79% were male. During the study period, the male-to-female ratio increased from 3.0 to 4.3, reflecting the country's HIV epidemic; the median age at entry decreased from 34 years to 32 years. Overall, 48.6% of individuals entered care with a CD4≤200 cells/μl, ranging from 42.2% in states with a very low marginalization index to 52.8% in states with a high marginalization index, and from 38.9% among individuals aged 18–29 to 56.5% among those older than 50. The adjusted geometric mean (95% confidence interval) CD4e increased among males from 135 (131,142) cells/μl in 2007 to 148 (143,155) cells/μl in 2014 (p-valuewomen, with a geometric mean of 178 (171,186) and 171 (165,183) in 2007 and 2014, respectively. There have been important gains in access to HIV care and treatment; however, late entry into care remains an important barrier in achieving optimal outcomes of ART in Mexico. The geographic, socioeconomic, and demographic differences observed reflect important inequities in timely access to HIV prevention, care, and treatment services, and highlight the need to develop

  20. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor.

    Science.gov (United States)

    Hagiwara, Kyoji; Ishii, Hideki; Murakami, Tomoyuki; Takeshima, Shin-nosuke; Chutiwitoonchai, Nopporn; Kodama, Eiichi N; Kawaji, Kumi; Kondoh, Yasumitsu; Honda, Kaori; Osada, Hiroyuki; Tsunetsugu-Yokota, Yasuko; Suzuki, Masaaki; Aida, Yoko

    2015-01-01

    The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54-74 within the C-terminal α-helical domain (αH3) of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection.

  1. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor.

    Directory of Open Access Journals (Sweden)

    Kyoji Hagiwara

    Full Text Available The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1 therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54-74 within the C-terminal α-helical domain (αH3 of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection.

  2. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors.

    Science.gov (United States)

    Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda

    2016-01-01

    Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs.

  3. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  4. Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases

    Science.gov (United States)

    Mauro, Nicolò; Ferruti, Paolo; Ranucci, Elisabetta; Manfredi, Amedea; Berzi, Angela; Clerici, Mario; Cagno, Valeria; Lembo, David; Palmioli, Alessandro; Sattin, Sara

    2016-09-01

    The initial steps of viral infections are mediated by interactions between viral proteins and cellular receptors. Blocking the latter with high-affinity ligands may inhibit infection. DC-SIGN, a C-type lectin receptor expressed by immature dendritic cells and macrophages, mediates human immunodeficiency virus (HIV) infection by recognizing mannose clusters on the HIV-1 gp120 envelope glycoprotein. Mannosylated glycodendrimers act as HIV entry inhibitors thanks to their ability to block this receptor. Previously, an amphoteric, but prevailingly cationic polyamidoamine named AGMA1 proved effective as infection inhibitor for several heparan sulfate proteoglycan-dependent viruses, such as human papilloma virus HPV-16 and herpes simplex virus HSV-2. An amphoteric, but prevailingly anionic PAA named ISA23 proved inactive. It was speculated that the substitution of mannosylated units for a limited percentage of AGMA1 repeating units, while imparting anti-HIV activity, would preserve the fundamentals of its HPV-16 and HSV-2 infection inhibitory activity. In this work, four biocompatible linear PAAs carrying different amounts of mannosyl-triazolyl pendants, Man-ISA7, Man-ISA14, Man-AGMA6.5 and Man-AGMA14.5, were prepared by reaction of 2-(azidoethyl)-α-D-mannopyranoside and differently propargyl-substituted AGMA1 and ISA23. All mannosylated PAAs inhibited HIV infection. Both Man-AGMA6.5 and Man-AGMA14.5 maintained the HPV-16 and HSV-2 activity of the parent polymer, proving broad-spectrum, dual action mode virus infection inhibitors.

  5. Protease inhibitor associated mutations compromise the efficacy of therapy in human immunodeficiency virus – 1 (HIV-1 infected pediatric patients: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Petrova Anna

    2007-07-01

    Full Text Available Abstract Background Although the introduction of combined therapy with reverse transcriptase and protease inhibitors has resulted in considerable decrease in HIV related mortality; it has also induced the development of multiple drug-resistant HIV-1 variants. The few studies on HIV-1 mutagenesis in HIV infected children have not evaluated the impact of HIV-1 mutations on the clinical, virological and immunological presentation of HIV disease that is fundamental to optimizing the treatment regimens for these patients. Results A cross sectional study was conducted to evaluate the impact of treatment regimens and resistance mutation patterns on the clinical, virological, and immunological presentation of HIV disease in 41 children (25 male and 16 female at the Robert Wood Johnson Pediatric AIDS Program in New Brunswick, New Jersey. The study participants were symptomatic and had preceding treatment history with combined ARV regimens including protease inhibitors (PIs, nucleoside reverse transcriptase inhibitors (NRTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs. Fifteen (36.6% children were treated with NRTI+NNRTI+ PI, 6 (14.6% with NRTI+NNRTIs, 13 (31.7% with NRTI+PIs, and the remaining 7 (17.1% received NRTIs only. Combined ARV regimens did not significantly influence the incidence of NRTI and NNRTI associated mutations. The duration of ARV therapy and the child's age had no significant impact on the ARV related mutations. The clinico-immunological presentation of the HIV disease was not associated with ARV treatment regimens or number of resistance mutations. However, primary mutations in the protease (PR gene increased the likelihood of plasma viral load (PVL ≥ 10,000 copies/mL irrespective of the child's age, duration of ARV therapy, presence of NRTI and NNRTI mutation. Viremia ≥ 10,000 copies/mL was recorded in almost all the children with primary mutations in the PR region (n = 12/13, 92.3% as compared with only 50.0% (n

  6. Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors

    Directory of Open Access Journals (Sweden)

    Neamati Nouri

    2009-04-01

    Full Text Available Abstract Correction to Erik Serrao, Srinivas Odde, Kavya Ramkumar and Nouri Neamati: Raltegravir, elvitegravir, and metoogravir: the birth of "me-too" HIV-1 integrase inhibitors. Retrovirology 2009, 6:25. Since the recent publication of our article (Neamati, Retrovirology 2009, 6:25, we have noticed an error which we would like to correct and we would like to apologise to the readers for this mistake.

  7. Discovery and optimization of 2-pyridinone aminal integrase strand transfer inhibitors for the treatment of HIV.

    Science.gov (United States)

    Schreier, John D; Embrey, Mark W; Raheem, Izzat T; Barbe, Guillaume; Campeau, Louis-Charles; Dubost, David; McCabe Dunn, Jamie; Grobler, Jay; Hartingh, Timothy J; Hazuda, Daria J; Klein, Daniel; Miller, Michael D; Moore, Keith P; Nguyen, Natalie; Pajkovic, Natasa; Powell, David A; Rada, Vanessa; Sanders, John M; Sisko, John; Steele, Thomas G; Wai, John; Walji, Abbas; Xu, Min; Coleman, Paul J

    2017-05-01

    HIV integrase strand transfer inhibitors (InSTIs) represent an important class of antiviral therapeutics with proven efficacy and excellent tolerability for the treatment of HIV infections. In 2007, Raltegravir became the first marketed strand transfer inhibitor pioneering the way to a first-line therapy for treatment-naïve patients. Challenges with this class of therapeutics remain, including frequency of the dosing regimen and the genetic barrier to resistance. To address these issues, research towards next-generation integrase inhibitors has focused on imparting potency against RAL-resistent mutants and improving pharmacokinetic profiles. Herein, we detail medicinal chemistry efforts on a novel class of 2-pyridinone aminal InSTIs, inpsired by MK-0536, which led to the discovery of important lead molecules for our program. Systematic optimization carried out at the amide and aminal positions on the periphery of the core provided the necessary balance of antiviral activity and physiochemical properties. These efforts led to a novel aminal lead compound with the desired virological profile and preclinical pharmacokinetic profile to support a once-daily human dose prediction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Ana I. S. Esteves

    2011-01-01

    Full Text Available The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition. Cliona celata pellets showed low polysaccharide content (bellow 38.5% and almost no anti-HIV activity (<10% inhibition. Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%, showed only modest bioactivity (<36% HIV-1 inhibition. Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98% and the most active against HIV-1 (up to 95% inhibition. Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161 yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa, whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor.

  9. HIV Protease Inhibitor Use During Pregnancy Is Associated With Decreased Progesterone Levels, Suggesting a Potential Mechanism Contributing to Fetal Growth Restriction

    Science.gov (United States)

    Papp, Eszter; Mohammadi, Hakimeh; Loutfy, Mona R.; Yudin, Mark H.; Murphy, Kellie E.; Walmsley, Sharon L.; Shah, Rajiv; MacGillivray, Jay; Silverman, Michael; Serghides, Lena

    2015-01-01

    Background. Protease inhibitor (PI)–based combination antiretroviral therapy (cART) is administered during pregnancy to prevent perinatal human immunodeficiency virus (HIV) transmission. However, PI use has been associated with adverse birth outcomes, including preterm delivery and small-for-gestational-age (SGA) births. The mechanisms underlying these outcomes are unknown. We hypothesized that PIs contribute to these adverse events by altering progesterone levels. Methods. PI effects on trophoblast progesterone production were assessed in vitro. A mouse pregnancy model was used to assess the impact of PI-based cART on pregnancy outcomes and progesterone levels in vivo. Progesterone levels were assessed in plasma specimens from 27 HIV-infected and 17 HIV-uninfected pregnant women. Results. PIs (ritonavir, lopinavir, and atazanavir) but not nucleoside reverse transcriptase inhibitors (NRTIs) or nonnucleoside reverse transcriptase inhibitors reduced trophoblast progesterone production in vitro. In pregnant mice, PI-based cART but not dual-NRTI therapy was associated with significantly lower progesterone levels that directly correlated with fetal weight. Progesterone supplementation resulted in a significant improvement in fetal weight. We observed lower progesterone levels and smaller infants in HIV-infected women receiving PI-based cART, compared with the control group. In HIV-infected women, progesterone levels correlated significantly with birth weight percentile. Conclusions. Our data suggest that PI use in pregnancy may lead to lower progesterone levels that could contribute to adverse birth outcomes. PMID:25030058

  10. HIV protease inhibitor use during pregnancy is associated with decreased progesterone levels, suggesting a potential mechanism contributing to fetal growth restriction.

    Science.gov (United States)

    Papp, Eszter; Mohammadi, Hakimeh; Loutfy, Mona R; Yudin, Mark H; Murphy, Kellie E; Walmsley, Sharon L; Shah, Rajiv; MacGillivray, Jay; Silverman, Michael; Serghides, Lena

    2015-01-01

    Protease inhibitor (PI)-based combination antiretroviral therapy (cART) is administered during pregnancy to prevent perinatal human immunodeficiency virus (HIV) transmission. However, PI use has been associated with adverse birth outcomes, including preterm delivery and small-for-gestational-age (SGA) births. The mechanisms underlying these outcomes are unknown. We hypothesized that PIs contribute to these adverse events by altering progesterone levels. PI effects on trophoblast progesterone production were assessed in vitro. A mouse pregnancy model was used to assess the impact of PI-based cART on pregnancy outcomes and progesterone levels in vivo. Progesterone levels were assessed in plasma specimens from 27 HIV-infected and 17 HIV-uninfected pregnant women. PIs (ritonavir, lopinavir, and atazanavir) but not nucleoside reverse transcriptase inhibitors (NRTIs) or nonnucleoside reverse transcriptase inhibitors reduced trophoblast progesterone production in vitro. In pregnant mice, PI-based cART but not dual-NRTI therapy was associated with significantly lower progesterone levels that directly correlated with fetal weight. Progesterone supplementation resulted in a significant improvement in fetal weight. We observed lower progesterone levels and smaller infants in HIV-infected women receiving PI-based cART, compared with the control group. In HIV-infected women, progesterone levels correlated significantly with birth weight percentile. Our data suggest that PI use in pregnancy may lead to lower progesterone levels that could contribute to adverse birth outcomes. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  11. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor

    Science.gov (United States)

    Sainz, Bruno; Barretto, Naina; Martin, Danyelle N.; Hiraga, Nobuhiko; Imamura, Michio; Hussain, Snawar; Marsh, Katherine A.; Yu, Xuemei; Chayama, Kazuaki; Alrefai, Waddah A.; Uprichard, Susan L.

    2011-01-01

    Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side-effects and marginal efficacy, more effective antivirals are critically needed1. Although HCV protease inhibitors were just FDA approved, analogous to HIV therapy, optimal HCV therapy likely will require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a promising multi-faceted target for antiviral intervention; however, to date FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-Like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection as silencing or antibody-mediated blocking of NPC1L1 impairs cell-cultured-derived HCV (HCVcc) infection initiation. In addition, the clinically-available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol-dependent step prior to virion-cell membrane fusion. Importantly, ezetimibe inhibits infection of all major HCV genotypes in vitro, and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor, but also discovered a new antiviral target and potential therapeutic agent. PMID:22231557

  12. 5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase.

    Science.gov (United States)

    Sun, Lin; Gao, Ping; Dong, Guanyu; Zhang, Xujie; Cheng, Xiqiang; Ding, Xiao; Wang, Xueshun; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Menéndez-Arias, Luis; Zhan, Peng; Liu, Xinyong

    2018-06-18

    We reported herein the design, synthesis and biological evaluation of a series of 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as HIV-1 reverse transcriptase (RT) ribonuclease H (RNase H) inhibitors using a privileged structure-guided scaffold refining strategy. In view of the similarities between the pharmacophore model of RNase H and integrase (IN) inhibitors as well as their catalytic sites, we also performed IN inhibition assays. Notably, the majority of these derivatives inhibited RNase H and IN at micromolar concentrations. Among them, compound 7a exhibited similar inhibitory activity against RNase H and IN (IC 50 RNase H  = 1.77 μM, IC 50 IN  = 1.18 μM, ratio = 1.50). To the best of our knowledge, this is the first reported dual HIV-1 RNase H-IN inhibitor based on a 5-hydroxypyrido[2,3-b]pyrazin-6(5H)-one structure. Molecular modeling has been used to predict the binding mode of 7a in complex with the catalytic cores of HIV-1 RNase H and IN. Taken together these results strongly support the feasibility of developing HIV-1 dual inhibitors from analog-based optimization of divalent metal ion chelators. Recently, the identification of dual inhibitors proved to be a highly effective strategy for novel antivirals discovery. Therefore, these compounds appear to be useful leads that can be further modified to develop more valuable anti-HIV-1 molecules with suitable drug profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Evolving uses of oral reverse transcriptase inhibitors in the HIV-1 epidemic: From treatment to prevention

    NARCIS (Netherlands)

    R.K. Gupta (Ravindra); D.A.M.C. van de Vijver (David); S. Manicklal (Sheetal); M.A. Wainberg (Mark)

    2013-01-01

    textabstractThe HIV epidemic continues unabated, with no highly effective vaccine and no cure. Each new infection has significant economic, social and human costs and prevention efforts are now as great a priority as global antiretroviral therapy (ART) scale up. Reverse transcriptase inhibitors, the

  14. Structure-Aided Design of Novel Inhibitors of HIV Protease Based on a Benzodiazepine Scaffold

    Czech Academy of Sciences Publication Activity Database

    Schimer, Jiří; Cígler, Petr; Veselý, J.; Grantz Šašková, Klára; Lepšík, Martin; Brynda, Jiří; Řezáčová, Pavlína; Kožíšek, Milan; Císařová, I.; Oberwinkler, H.; Kraeusslich, H. G.; Konvalinka, Jan

    2012-01-01

    Roč. 55, č. 22 (2012), s. 10130-10135 ISSN 0022-2623 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP207/11/1798 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : HIV protease inhibitor * rational drug design * 1,4-benzodiazepines Subject RIV: CE - Biochemistry Impact factor: 5.614, year: 2012

  15. Differential body composition effects of protease inhibitors recommended for initial treatment of HIV infection: A randomized clinical trial

    OpenAIRE

    Martinez, Esteban; Gonzalez-Cordon, Ana; Ferrer, Elena; Domingo, Pere; Negredo, Eugenia; Gutierrez, Felix; Portilla, Joaquin; Curran, Adrià; Podzamczer, Daniel; Ribera, Esteban; Murillas, Javier; Bernardino, Jose I.; Santos, Ignacio; Carton, Jose A.; Peraire, Joaquim

    2015-01-01

    This article has been accepted for publication in Clinical Infectious Diseases ©2014 The Authors .Published by Oxford University Press on Clinical Infectious Disease 60.5. DOI: 10.1093/cid/ciu898 Background. It is unclear whether metabolic or body composition effects may differ between protease inhibitor-based regimens recommended for initial treatment of HIV infection. Methods. ATADAR is a phase IV, open-label, multicenter randomized clinical trial. Stable antiretroviral-naive HIV-in...

  16. Hyperlipidemia related to the use of HIV-protease inhibitors: natural history and results of treatment with fenofibrate

    Directory of Open Access Journals (Sweden)

    Caramelli Bruno

    2001-01-01

    Full Text Available Hyperlipidemia has been frequently recorded as a side effect of treating HIV patients with protease inhibitors (PI. This study was initiated to analyze the modifications on blood lipids in HIV-patients receiving PI and the safety and efficacy of the treatment with fenofibrate. Total (TC and HDL-cholesterol, triglycerides (TG, and CD4+ T-cell counts were measured in 30 HAART-naive patients (Group I before and after PI introduction. In a second phase of the study, the effects of fenofibrate on lipids, CPK, CD4+, and viral load were determined in 13 patients (Group II with elevated TC or TG. In Group I, 60% of the patients showed TC or TG elevations. Average increments of 31% and 146% in TC and TG respectively (p<0.0006 and p<0.0001 were observed. In Group II, fenofibrate treatment was associated with decrements of 6.6% (TC and 45.7% (TG (p=0.07 and 0.0002 and no modifications on CPK, CD4+, and viral load. In conclusion, hyperlipidemia is common during the treatment of HIV with protease inhibitors, and fenofibrate appears to be an effective and safe choice for its treatment.

  17. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  18. The Second-Generation Maturation Inhibitor GSK3532795 Maintains Potent Activity Toward HIV Protease Inhibitor-Resistant Clinical Isolates.

    Science.gov (United States)

    Ray, Neelanjana; Li, Tianbo; Lin, Zeyu; Protack, Tricia; van Ham, Petronella Maria; Hwang, Carey; Krystal, Mark; Nijhuis, Monique; Lataillade, Max; Dicker, Ira

    2017-05-01

    Protease inhibitor (PI)-resistant HIV-1 isolates with primary substitutions in protease (PR) and secondary substitutions in Gag could potentially exhibit cross-resistance to maturation inhibitors. We evaluated the second-generation maturation inhibitor, GSK3532795, for activity toward clinical isolates with genotypic and phenotypic characteristics associated with PI resistance (longitudinal). Longitudinal clinical isolates from 15 PI-treated patients and 7 highly PI-resistant (nonlongitudinal) viruses containing major and minor PI resistance-associated mutations were evaluated for GSK3532795 sensitivity. Phenotypic sensitivity was determined using the PhenoSense Gag/PR assay (Monogram Biosciences) or in-house single- and multiple-cycle assays. Changes from baseline [CFB; ratio of post- to pre-treatment FC-IC50 (fold-change in IC50 versus wild-type virus)] Monogram (11 patients)] and 1.5 (1.0-2.2) [single-cycle (4 patients)]. The 2 post-PI treatment samples showing GSK3532795 CFB >3 (Monogram) were retested using single- and multiple-cycle assays. Neither sample had meaningful sensitivity changes in the multiple-cycle assay. Gag changes were not associated with an increased GSK3532795 CFB. GSK3532795 maintained antiviral activity against PI-resistant isolates with emergent PR and/or Gag mutations. This finding supports continued development of GSK3532795 in treatment-experienced patients with or without previous PI therapy.

  19. Interactive Effects of Cocaine on HIV Infection: Implication in HIV-Associated Neurocognitive Disorder and NeuroAIDS

    Directory of Open Access Journals (Sweden)

    Santosh eDahal

    2015-09-01

    Full Text Available Substantial epidemiological studies suggest that not only, being one of the reasons for the transmission of the human immunodeficiency virus (HIV, but drug abuse also serves its role in determining the disease progression and severity among the HIV infected population. This article focuses on the drug cocaine, and its role in facilitating entry of HIV into the CNS and mechanisms of development of neurologic complications in infected individuals. Cocaine is a powerfully addictive central nervous system stimulating drug, which increases the level of neurotransmitter dopamine in the brain, by blocking the dopamine transporters (DAT which is critical for dopamine homeostasis and neurocognitive function. Tat protein of HIV acts as an allosteric modulator of DAT, where as cocaine acts as reuptake inhibitor. When macrophages in the CNS are exposed to dopamine, their number increases. These macrophages release inflammatory mediators and neurotoxins, causing chronic neuroinflammation. Cocaine abuse during HIV infection enhances the production of platelet monocyte complexes (PMCs, which may cross transendothelial barrier, and result in HIV-associated neurocognitive disorder (HAND. HAND is characterized by neuroinflammation, including astrogliosis, multinucleated giant cells, and neuronal apoptosis that is linked to progressive virus infection and immune deterioration. Cocaine and viral proteins are capable of eliciting signaling transduction pathways in neurons, involving in mitochondrial membrane potential loss, oxidative stress, activation of JNK, p38, and ERK/MAPK pathways, and results in downstream activation of NF-κB that leads to HAND. Tat-induced inflammation provokes permeability of the Blood Brain Barrier (BBB in the platelet dependent manner, which can potentially be the reason for progression to HAND during HIV infection. A better understanding on the role of cocaine in HIV infection can give a clue in developing novel therapeutic strategies

  20. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex.

    Science.gov (United States)

    Grigorov, Boyan; Bocquin, Anne; Gabus, Caroline; Avilov, Sergey; Mély, Yves; Agopian, Audrey; Divita, Gilles; Gottikh, Marina; Witvrouw, Myriam; Darlix, Jean-Luc

    2011-07-01

    Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.

  1. Role of Bruton’s Tyrosine Kinase inhibitors in HIV-1 infected cells

    Science.gov (United States)

    Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah

    2015-01-01

    Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high throughput proteomic assays, we have previously identified Bruton’s tyrosine kinase (BTK) as a host protein that was uniquely up-regulated in the plasma membrane of HIV-1 infected T-cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant up-regulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells, however new BTK protein complexes were identified and distributed in both high molecular weight (~600 kDa) and a small molecular weight complex (~60–120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1 infected cells using siRNA resulted in selective death of infected, but not uninfected, cells. Using BTK specific antibody and small molecule inhibitors including LFM-A13 and a FDA approved compound, Ibrutinib (PCI – 32765), we have found that HIV-1 infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1 infected cells are sensitive to treatments targeting BTK expressed in infected cells. PMID:25672887

  2. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome

    NARCIS (Netherlands)

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T.; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to

  3. Liver Fibrosis in HCV Monoinfected and HIV/HCV Coinfected Patients: Dysregulation of Matrix Metalloproteinases (MMPs and Their Tissue Inhibitors TIMPs and Effect of HCV Protease Inhibitors

    Directory of Open Access Journals (Sweden)

    Tiziana Latronico

    2016-03-01

    Full Text Available An imbalance between matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs may contribute to liver fibrosis in patients with hepatitis C (HCV infection. We measured the circulating levels of different MMPs and TIMPs in HCV monoinfected and HIV/HCV coinfected patients and evaluated the potential for anti-HCV therapy to modulate MMP and TIMP levels in HCV subjects. We analyzed 83 plasma samples from 16 HCV monoinfected patients undergoing dual or triple anti-HCV therapy, 15 HIV/HCV coinfected patients with undetectable HIV load, and 10 healthy donors (HD. Levels of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, TIMP-1, and TIMP-2 were measured by a SearchLight Multiplex Immunoassay Kit. MMP-2 and MMP-9 were the highest expressed MMPs among all the analyzed samples and their levels significantly increased in HCV monoinfected and HIV/HCV coinfected subjects compared to HD. TIMP-1 levels were significantly higher in HCV and HIV/HCV subjects compared to HD and were correlated with liver stiffness. These findings raise the possibility of using circulating TIMP-1 as a non-invasive marker of liver fibrosis in HCV infection. A longitudinal study demonstrated that MMP-9 levels significantly decreased (40% reduction from baseline in patients receiving dual as well as triple direct-acting antivirals (DAA anti-HCV therapy, which had no effect on MMP-2, TIMP-1, and TIMP-2. As the dysregulation of MMP-2 and MMP-9 may reflect inflammatory processes in the liver, the decrease of MMP-9 following HCV protease inhibitor treatment suggests a positive effect on the reduction of liver inflammation.

  4. The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events.

    Science.gov (United States)

    Lucera, Mark B; Tilton, Carisa A; Mao, Hongxia; Dobrowolski, Curtis; Tabler, Caroline O; Haqqani, Aiman A; Karn, Jonathan; Tilton, John C

    2014-09-01

    Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4(+) T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4(+) T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a "shock-and-kill" strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the

  5. Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors.

    Science.gov (United States)

    Rios, Adan; Quesada, Jorge; Anderson, Dallas; Goldstein, Allan; Fossum, Theresa; Colby-Germinario, Susan; Wainberg, Mark A

    2011-01-01

    We demonstrate that a photo-labeled derivative of the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine termed DAPY, when used together with exposure to ultraviolet light, was able to completely and irreversibly inactivate both HIV-1 RT activity as well as infectiousness in each of a T cell line and peripheral blood mononuclear cells. Control experiments using various concentrations of DAPY revealed that a combination of exposure to ultraviolet light together with use of the specific, high affinity photo-labeled compound was necessary for complete inactivation to occur. This method of HIV RT inactivation may have applicability toward preservation of an intact viral structure and warrants further investigation in regard to the potential of this approach to elicit a durable, broad protective immune response. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors

    Science.gov (United States)

    Barzegar, Abolfazl; Jafari Mousavi, Somaye; Hamidi, Hossein; Sadeghi, Mehdi

    2017-09-01

    The protease of human immunodeficiency virus1 (HIV-PR) is an essential enzyme for antiviral treatments. Carbon nanostructures of fullerene derivatives, have nanoscale dimension with a diameter comparable to the diameter of the active site of HIV-PR which would in turn inhibit HIV. In this research, two dimensional quantitative structure-activity relationships (2D-QSAR) of fullerene derivatives against HIV-PR activity were employed as a powerful tool for elucidation the relationships between structure and experimental observations. QSAR study of 49 fullerene derivatives was performed by employing stepwise-MLR, GAPLS-MLR, and PCA-MLR models for variable (descriptor) selection and model construction. QSAR models were obtained with higher ability to predict the activity of the fullerene derivatives against HIV-PR by a correlation coefficient (R2training) of 0.942, 0.89, and 0.87 as well as R2test values of 0.791, 0.67and 0.674 for stepwise-MLR, GAPLS-MLR, and PCA -MLR models, respectively. Leave-one-out cross-validated correlation coefficient (R2CV) and Y-randomization methods confirmed the models robustness. The descriptors indicated that the HIV-PR inhibition depends on the van der Waals volumes, polarizability, bond order between two atoms and electronegativities of fullerenes derivatives. 2D-QSAR simulation without needing receptor's active site geometry, resulted in useful descriptors mainly denoting ;C60 backbone-functional groups; and ;C60 functional groups; properties. Both properties in fullerene refer to the ligand fitness and improvement van der Waals interactions with HIV-PR active site. Therefore, the QSAR models can be used in the search for novel HIV-PR inhibitors based on fullerene derivatives.

  7. Using water and sanitation as an entry point to fight poverty and respond to HIV/AIDS: The case of Isulabasha Small Medium Enterprise

    Science.gov (United States)

    Manase, G.; Nkuna, Z.; Ngorima, E.

    South Africa is faced by a number of challenges that include low water and sanitation coverage in rural and peri-urban areas, high unemployment and increasing inequality between the rich and the poor as indicated by a Gini coefficient of 0.77; the second highest inequality in the world after Brazil. The situation is compounded by high HIV prevalence with South Africa having the largest HIV infection in the world. This case study demonstrates how water and sanitation is used as an entry point to address these major challenges and to empower communities. The project has two main components: the Small Medium Enterprise (SME) that trades in water and sanitation facilities and a community garden that ensures food security and nutrition for people living with HIV/AIDS. Income generated through these activities is ploughed back into the community through construction of sanitation facilities, maintenance of water pipes and paying school fees for orphans. In addition to creating employment, the project has also empowered the community to mobilise and address other challenges such as gender, child abuse and crime. The case study identifies weaknesses with projects designed solely to provide domestic drinking water and sanitation and calls for an integrated approach that uses water and sanitation as an entry point to unlock opportunities and empower the targeted communities.

  8. The emerging profile of cross-resistance among the nonnucleoside HIV-1 reverse transcriptase inhibitors.

    Science.gov (United States)

    Sluis-Cremer, Nicolas

    2014-07-31

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infection. For example: (1) nevirapine is used to prevent mother-to-child transmission; (2) the ASPIRE (MTN 020) study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; (3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4) a long acting rilpivirine formulation is under-development for pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited settings, as well as their low genetic barriers to resistance, there are concerns about overlapping resistance between the different NNRTIs. Consequently, a better understanding of the resistance and cross-resistance profiles among the NNRTI class is important for predicting response to treatment, and surveillance of transmitted drug-resistance.

  9. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis

    DEFF Research Database (Denmark)

    Weinl, Christina; Marquardt, Sebastian; Kuijt, Suzanne J H

    2005-01-01

    numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act...... independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells...

  10. Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation In Vitro

    Science.gov (United States)

    Gavegnano, Christina; Detorio, Mervi; Montero, Catherine; Bosque, Alberto; Planelles, Vicente

    2014-01-01

    The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals. PMID:24419350

  11. HIV Molecular Immunology 2014

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korber, Bette Tina Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States); Koup, Richard [Vaccine Research Center National Institutes of Health (United States); de Boer, Rob [Utrecht Univ. (Netherlands). Dept. of Biology; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Brander, Christian [Institucioi Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Walker, Bruce D. [Ragon Institute of Massachusetts General Hospital, Cambridge, MA (United States); Harvard Univ., Cambridge, MA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-03

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.

  12. Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium.

    Science.gov (United States)

    Vidal, Vincent; Potterat, Olivier; Louvel, Séverine; Hamy, François; Mojarrab, Mahdi; Sanglier, Jean-Jacques; Klimkait, Thomas; Hamburger, Matthias

    2012-03-23

    Despite the existence of an extended armamentarium of effective synthetic drugs to treat HIV, there is a continuing need for new potent and affordable drugs. Given the successful history of natural product based drug discovery, a library of close to one thousand plant and fungal extracts was screened for antiretroviral activity. A dichloromethane extract of the aerial parts of Daphne gnidium exhibited strong antiretroviral activity and absence of cytotoxicity. With the aid of HPLC-based activity profiling, the antiviral activity could be tracked to four daphnane derivatives, namely, daphnetoxin (1), gnidicin (2), gniditrin (3), and excoecariatoxin (4). Detailed anti-HIV profiling revealed that the pure compounds were active against multidrug-resistant viruses irrespective of their cellular tropism. Mode of action studies that narrowed the site of activity to viral entry events suggested a direct interference with the expression of the two main HIV co-receptors, CCR5 and CXCR4, at the cell surface by daphnetoxin (1).

  13. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

    Science.gov (United States)

    2016-01-01

    SUMMARY The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  14. Resistance to pyridine-based inhibitor KF116 reveals an unexpected role of integrase in HIV-1 Gag-Pol polyprotein proteolytic processing.

    Science.gov (United States)

    Hoyte, Ashley C; Jamin, Augusta V; Koneru, Pratibha C; Kobe, Matthew J; Larue, Ross C; Fuchs, James R; Engelman, Alan N; Kvaratskhelia, Mamuka

    2017-12-01

    The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2006-10-01

    Full Text Available Abstract Background Evaluation of microbicides for prevention of HIV-1 infection in macaque models for vaginal infection has indicated that the concentrations of active compounds needed for protection by far exceed levels sufficient for complete inhibition of infection in vitro. These experiments were done in the absence of seminal plasma (SP, a vehicle for sexual transmission of the virus. To gain insight into the possible effect of SP on the performance of selected microbicides, their anti-HIV-1 activity in the presence, and absence of SP, was determined. Methods The inhibitory activity of compounds against the X4 virus, HIV-1 IIIB, and the R5 virus, HIV-1 BaL was determined using TZM-bl indicator cells and quantitated by measuring β-galactosidase induced by infection. The virucidal properties of cellulose acetate 1,2-benzene-dicarboxylate (CAP, the only microbicide provided in water insoluble, micronized form, in the presence of SP was measured. Results The HIV-1 inhibitory activity of the polymeric microbicides, poly(naphthalene sulfonate, cellulose sulfate, carrageenan, CAP (in soluble form and polystyrene sulfonate, respectively, was considerably (range ≈ 4 to ≈ 73-fold diminished in the presence of SP (33.3%. Formulations of micronized CAP, providing an acidic buffering system even in the presence of an SP volume excess, effectively inactivated HIV-1 infectivity. Conclusion The data presented here suggest that the in vivo efficacy of polymeric microbicides, acting as HIV-1 entry inhibitors, might become at least partly compromised by the inevitable presence of SP. These possible disadvantages could be overcome by combining the respective polymers with acidic pH buffering systems (built-in for formulations of micronized CAP or with other anti-HIV-1 compounds, the activity of which is not affected by SP, e.g. reverse transcriptase and zinc finger inhibitors.

  16. HIV Molecular Immunology 2015

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Korber, Bette Tina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Brander, Christian [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States). Division of Vaccine Research; de Boer, Rob [Utrecht University, Utrecht (Netherlands). Faculty of Biology; Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Koup, Richard [National Inst. of Health (NIH), Bethesda, MD (United States). Vaccine Research Center; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Walker, Bruce D. [Ragon Institute, Cambridge, MA (United States); Watkins, David [Wisconsin Regional Primate Research Center, Madison, WI (United States)

    2016-04-05

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins

  17. A Mos1 transposase in vivo assay to screen new HIV-1 integrase inhibitors.

    Science.gov (United States)

    Cancian, Mariana; Loreto, Elgion L S

    2018-04-01

    The integrase and transposase enzymes of retrovirus and transposons, respectively, share the catalytic DDE domain. In vitro assays showed that inhibitors of HIV-1 integrase generally inhibit the mariner Mos1 transposase. Using a Drosophila strain in which the mobilisation of the mariner element can be quantified by mosaic eyes, we showed that flies maintained in medium containing 210 µM to 4 mM of raltegravir, or 1 or 2 mM of dolutegravir, which are HIV-1 integrase inhibitor used in AIDS treatment, have 23-33% less somatic mobilisation in mosaic eyes when treated with raltegravir and 28-32% when treated with dolutegravir. The gene expression of the mariner transposase gene, estimated by qPCR, is similar among treated and control flies. The results suggest that in vivo assays using Drosophila can be used as a primary screening of inhibitory drugs for transposase and retroviral integrase. The advantages of this assay are that it is easy, quick, cheap and is an in vivo test, meaning that the tested substance has to have been taken in by cells and has arrived at the target site, which is not the case when in vitro assays are applied.

  18. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition

    International Nuclear Information System (INIS)

    Lee-Huang, Sylvia; Huang, Philip Lin; Zhang Dawei; Lee, Jae Wook; Bao Ju; Sun Yongtao; Chang, Young-Tae; Zhang, John; Huang, Paul Lee

    2007-01-01

    We have identified oleuropein (Ole) and hydroxytyrosol (HT) as a unique class of HIV-1 inhibitors from olive leaf extracts effective against viral fusion and integration. We used molecular docking simulation to study the interactions of Ole and HT with viral targets. We find that Ole and HT bind to the conserved hydrophobic pocket on the surface of the HIV-gp41 fusion domain by hydrogen bonds with Q577 and hydrophobic interactions with I573, G572, and L568 on the gp41 N-terminal heptad repeat peptide N36, interfering with formation of the gp41 fusion-active core. To test and confirm modeling predications, we examined the effect of Ole and HT on HIV-1 fusion complex formation using native polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Ole and HT exhibit dose-dependent inhibition on HIV-1 fusion core formation with EC 50 s of 66-58 nM, with no detectable toxicity. Our findings on effects of HIV-1 integrase are reported in the subsequent article

  19. An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors.

    Science.gov (United States)

    Pagano, Nicholas; Teriete, Peter; Mattmann, Margrith E; Yang, Li; Snyder, Beth A; Cai, Zhaohui; Heil, Marintha L; Cosford, Nicholas D P

    2017-12-01

    Continuous flow (microfluidic) chemistry was employed to prepare a small focused library of dihydropyrimidinone (DHPM) derivatives. Compounds in this class have been reported to exhibit activity against the human immunodeficiency virus (HIV), but their molecular target had not been identified. We tested the initial set of DHPMs in phenotypic assays providing a hit (1i) that inhibited the replication of the human immunodeficiency virus HIV in cells. Flow chemistry-driven optimization of 1i led to the identification of HIV replication inhibitors such as 1l with cellular potency comparable with the clinical drug nevirapine (NVP). Mechanism of action (MOA) studies using cellular and biochemical assays coupled with 3D fingerprinting and in silico modeling demonstrated that these drug-like probe compounds exert their effects by inhibiting the viral reverse transcriptase polymerase (RT). This led to the design and synthesis of the novel DHPM 1at that inhibits the replication of drug resistant strains of HIV. Our work demonstrates that combining flow chemistry-driven analogue refinement with phenotypic assays, in silico modeling and MOA studies is a highly effective strategy for hit-to-lead optimization applicable to the discovery of future therapeutic agents. Copyright © 2017. Published by Elsevier Ltd.

  20. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  1. Novel tetra-peptide insertion in Gag-p6 ALIX-binding motif in HIV-1 subtype C associated with protease inhibitor failure

    Science.gov (United States)

    Neogi, Ujjwal; RAO, Shwetha D; BONTELL, Irene; VERHEYEN, Jens; RAO, Vasudev R; GORE, Sagar C; SONI, Neelesh; SHET, Anita; SCHÜLTER, Eugen; EKSTRAND, Maria L.; WONDWOSSEN, Amogne; KAISER, Rolf; MADHUSUDHAN, Mallur S.; PRASAD, Vinayaka R; SONNERBORG, Anders

    2014-01-01

    A novel tetra-peptide insertion was identified in Gag-p6 ALIX-binding region which is appears in protease inhibitor (PI) failure Indian HIV-1C sequences (Odds Ratio 17.1, p<0.001) but naturally present in half of untreated Ethiopian sequences. The insertion will probably restore the ALIX mediated virus release pathway, which is lacking in HIV-1C. The clinical importance of such insertion need to be evaluated in HIV-1C dominating regions were PI-drugs are being scaled up as second line treatment options. PMID:25102091

  2. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    Science.gov (United States)

    Borges, Andrew Rosa; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3’-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 – 7.4 µg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. PMID:20880566

  3. Reversal of atherogenic lipoprotein profile in HIV-1 infected patients with lipodystrophy after replacing protease inhibitors by nevirapine

    NARCIS (Netherlands)

    Negredo, Eugenia; Ribalta, Josep; Paredes, Roger; Ferré, Raimón; Sirera, Guillem; Ruiz, Lidia; Salazar, Juliana; Reiss, Peter; Masana, Lluís; Clotet, Bonaventura

    2002-01-01

    Background: The widespread use of protease inhibitors (PI) has been associated with abnormalities in the lipid profile of HIV-1-infected patients. Treatment simplification approaches in which PI are replaced by nevirapine (NVP) have been shown to improve PI-related toxicity. Objective: To assess the

  4. Evaluation of nevirapine and/or hydroxyurea with nucleoside reverse transcriptase inhibitors in treatment-naive HIV-1-infected subjects

    NARCIS (Netherlands)

    Blanckenberg, Daniel H.; Wood, Robin; Horban, Andrzej; Beniowski, Marek; Boron-Kaczmarska, Anna; Trocha, Hanna; Halota, Waldemar; Schmidt, Reinhold E.; Fatkenheuer, G.; Jessen, Heiko; Lange, Joep M. A.

    2004-01-01

    Objective: To examine the effect of adding nevirapine (NVP) and/or hydroxyurea (HU) to a triple nucleoside analogue reverse transcriptase inhibitor (NRTI) regimen in terms of efficacy and tolerability. Methods: HIV-1-infected, treatment-naive adults were randomized, using a factorial design, to add

  5. Fluorescent protein-tagged Vpr dissociates from HIV-1 core after viral fusion and rapidly enters the cell nucleus.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Sood, Chetan; Shi, Jiong; Nawaz, Fatima; Aiken, Christopher; Melikyan, Gregory B

    2015-10-29

    HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.

  6. Review The Emerging Profile of Cross-Resistance among the Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nicolas Sluis-Cremer

    2014-07-01

    Full Text Available Nonnucleoside reverse transcriptase inhibitors (NNRTIs are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infection. For example: (1 nevirapine is used to prevent mother-to-child transmission; (2 the ASPIRE (MTN 020 study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; (3 a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4 a long acting rilpivirine formulation is under-development for pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited settings, as well as their low genetic barriers to resistance, there are concerns about overlapping resistance between the different NNRTIs. Consequently, a better understanding of the resistance and cross-resistance profiles among the NNRTI class is important for predicting response to treatment, and surveillance of transmitted drug-resistance.

  7. HIV Structural Database

    Science.gov (United States)

    SRD 102 HIV Structural Database (Web, free access)   The HIV Protease Structural Database is an archive of experimentally determined 3-D structures of Human Immunodeficiency Virus 1 (HIV-1), Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) Proteases and their complexes with inhibitors or products of substrate cleavage.

  8. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  9. Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: new cyclic substituents at indole-2-carboxamide.

    Science.gov (United States)

    La Regina, Giuseppe; Coluccia, Antonio; Brancale, Andrea; Piscitelli, Francesco; Gatti, Valerio; Maga, Giovanni; Samuele, Alberta; Pannecouque, Christophe; Schols, Dominique; Balzarini, Jan; Novellino, Ettore; Silvestri, Romano

    2011-03-24

    New indolylarylsulfone derivatives bearing cyclic substituents at indole-2-carboxamide linked through a methylene/ethylene spacer were potent inhibitors of the WT HIV-1 replication in CEM and PBMC cells with inhibitory concentrations in the low nanomolar range. Against the mutant L100I and K103N RT HIV-1 strains in MT-4 cells, compounds 20, 24-26, 36, and 40 showed antiviral potency superior to that of NVP and EFV. Against these mutant strains, derivatives 20, 24-26, and 40 were equipotent to ETV. Molecular docking experiments on this novel series of IAS analogues have also suggested that the H-bond interaction between the nitrogen atom in the carboxamide chain of IAS and Glu138:B is important in the binding of these compounds. These results are in accordance with the experimental data obtained on the WT and on the mutant HIV-1 strains tested.

  10. Structural Basis for the Inhibition of RNase H Activity of HIV-1 Reverse Transcriptase by RNase H Active Site-Directed Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Yan, Youwei; Prasad, G. Sridhar; Smith, Robert F.; Daniels, Christopher L.; Abeywickrema, Pravien D.; Reid, John C.; Loughran, H. Marie; Kornienko, Maria; Sharma, Sujata; Grobler, Jay A.; Xu, Bei; Sardana, Vinod; Allison, Timothy J.; Williams, Peter D.; Darke, Paul L.; Hazuda, Daria J.; Munshi, Sanjeev (Merck)

    2010-09-02

    HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.

  11. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  12. Structural and Preclinical Studies of Computationally Designed Non-Nucleoside Reverse Transcriptase Inhibitors for Treating HIV infection

    Energy Technology Data Exchange (ETDEWEB)

    Kudalkar, Shalley N.; Beloor, Jagadish; Chan, Albert H.; Lee, Won-Gil; Jorgensen, William L.; Kumar, Priti; Anderson, Karen S.

    2017-02-06

    The clinical benefits of HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are hindered by their unsatisfactory pharmacokinetic (PK) properties along with the rapid development of drug-resistant variants. However, the clinical efficacy of these inhibitors can be improved by developing compounds with enhanced pharmacological profiles and heightened antiviral activity. We used computational and structure-guided design to develop two next-generation NNRTI drug candidates, compounds I and II, which are members of a class of catechol diethers. We evaluated the preclinical potential of these compounds in BALB/c mice because of their high solubility (510 µg/ml for compound I and 82.9 µg/ml for compound II), low cytotoxicity, and enhanced antiviral activity against wild-type (WT) HIV-1 RT and resistant variants. Additionally, crystal structures of compounds I and II with WT RT suggested an optimal binding to the NNRTI binding pocket favoring the high anti-viral potency. A single intraperitoneal dose of compounds I and II exhibited a prolonged serum residence time of 48 hours and concentration maximum (Cmax) of 4000- to 15,000-fold higher than their therapeutic/effective concentrations. These Cmax values were 4- to 15-fold lower than their cytotoxic concentrations observed in MT-2 cells. Compound II showed an enhanced area under the curve (0–last) and decreased plasma clearance over compound I and efavirenz, the standard of care NNRTI. Hence, the overall (PK) profile of compound II was excellent compared with that of compound I and efavirenz. Furthermore, both compounds were very well tolerated in BALB/c mice without any detectable acute toxicity. Taken together, these data suggest that compounds I and II possess improved anti-HIV-1 potency, remarkable in vivo safety, and prolonged in vivo circulation time, suggesting strong potential for further development as new NNRTIs for the potential treatment of HIV infection.

  13. Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    2018-02-01

    Full Text Available The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound to the target mimic peptide N36 demonstrated the critical intrahelical and interhelical interactions, especially verifying that the hook-like conformation was finely adopted while the methionine residue was replaced by the oxidation-less prone residue leucine, and that addition of an extra glutamic acid significantly enhanced the binding and inhibitory activities. The structure of HP23L bound to N36 with two mutations (E49K and L57R revealed the critical residues and motifs mediating drug resistance and provided new insights into the mechanism of action of inhibitors. Therefore, the present data help our understanding for the structure-activity relationship (SAR of HIV-1 fusion inhibitors and facilitate the development of novel antiviral drugs.

  14. Molecular docking and 3D-QSAR studies on triazolinone and pyridazinone, non-nucleoside inhibitor of HIV-1 reverse transcriptase.

    Science.gov (United States)

    Sivan, Sree Kanth; Manga, Vijjulatha

    2010-06-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.

  15. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles

    Directory of Open Access Journals (Sweden)

    Nguyen Albert T

    2011-12-01

    Full Text Available Abstract Background Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1 maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1 is cleaved to p24 (CA and SP1. Results In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR. Extensive prior genetic evidence suggests that the MHR is critical for virus assembly. Conclusions This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.

  16. Ex vivo response to histone deacetylase (HDAC inhibitors of the HIV long terminal repeat (LTR derived from HIV-infected patients on antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Hao K Lu

    Full Text Available Histone deacetylase inhibitors (HDACi can induce human immunodeficiency virus (HIV transcription from the HIV long terminal repeat (LTR. However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+ isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART. We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.

  17. Primary resistance to integrase strand transfer inhibitors in patients infected with diverse HIV-1 subtypes in sub-Saharan Africa

    NARCIS (Netherlands)

    Inzaule, Seth C.; Hamers, Raph L.; Noguera-Julian, Marc; Casadellà, Maria; Parera, Mariona; Rinke de Wit, Tobias F.; Paredes, Roger

    2018-01-01

    To investigate the prevalence and patterns of major and accessory resistance mutations associated with integrase strand transfer inhibitors (INSTIs), across diverse HIV-1 subtypes in sub-Saharan Africa. pol gene sequences were obtained using Illumina next-generation sequencing from 425 INSTI-naive

  18. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry

    Science.gov (United States)

    Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2015-01-01

    The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal

  19. eCD4-Ig variants that more potently neutralize HIV-1.

    Science.gov (United States)

    Fetzer, Ina; Gardner, Matthew R; Davis-Gardner, Meredith E; Prasad, Neha R; Alfant, Barnett; Weber, Jesse A; Farzan, Michael

    2018-03-28

    The HIV-1 entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralizes all HIV-1, HIV-2 and SIV isolates that it has been tested against, suggesting that it may be useful in clinical settings where antibody escape is a concern. Here we characterize three new eCD4-Ig variants, each with different architectures and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig, and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications. IMPORTANCE HIV-1 bNAbs have properties different from antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral lifecycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the

  20. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  1. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing.

    Directory of Open Access Journals (Sweden)

    Datsen George Wei

    2014-04-01

    Full Text Available Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD, a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM compared with vorinostat (VOR; EC50 = 3,950 nM and other histone deacetylase (HDAC inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM. The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART, a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.

  2. Natural Polymorphisms Conferring Resistance to HCV Protease and Polymerase Inhibitors in Treatment-Naïve HIV/HCV Co-Infected Patients in China.

    Directory of Open Access Journals (Sweden)

    Kali Zhou

    Full Text Available The advent of direct-acting agents (DAAs has improved treatment of HCV in HIV co-infection, but may be limited by primary drug resistance. This study reports the prevalence of natural polymorphisms conferring resistance to NS3/4A protease inhibitors and NS5B polymerase inhibitors in treatment-naïve HIV/HCV co-infected individuals in China.Population based NS3/4A sequencing was completed for 778 treatment-naïve HIV/HCV co-infected patients from twelve provinces. NS3 sequences were amplified by nested PCR using in-house primers for genotypes 1-6. NS5B sequencing was completed for genotyping in 350 sequences. Resistance-associated variants (RAVs were identified in positions associated with HCV resistance.Overall, 72.8% (566/778 of all HCV sequences had at least one RAV associated with HCV NS3/4A protease inhibitor resistance. Variants were found in 3.6% (7/193 of genotype 1, 100% (23/23 of genotype 2, 100% (237/237 of genotype 3 and 92% (299/325 of genotype 6 sequences. The Q80K variant was present in 98.4% of genotype 6a sequences. High-level RAVs were rare, occurring in only 0.8% of patients. 93% (64/69 patients with genotype 1b also carried the C316N variant associated with NS5B low-level resistance.The low frequency of high-level RAVs associated with primary HCV DAA resistance among all genotypes in HIV/HCV co-infected patients is encouraging. Further phenotypic studies and clinical research are needed.

  3. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model.

    Science.gov (United States)

    Ariza-Sáenz, Martha; Espina, Marta; Bolaños, Nuria; Calpena, Ana Cristina; Gomara, María José; Haro, Isabel; García, María Luisa

    2017-11-01

    Despite the great effort to decrease the HIV infectivity rate, current antiretroviral therapy has several weaknesses; poor bioavailability, development of drug resistance and poor ability to access tissues. However, molecules such as peptides have emerged asa new expectative to HIV eradication. The vaginal mucosa is the main spreading point of HIV. There are natural barriers such as the vaginal fluid which protects the vaginal epithelium from any foreign agents reaching it. This work has developed and characterized Nanoparticles (NPs) coated with glycol chitosan (GC), loaded with an HIV-1 inhibitor peptide (E2). In vitro release and ex vivo studies were carried out using the vaginal mucosa of swine and the peptide was determined by HPLC MS/MS validated method. Moreover, the peptide was labeled with 5(6)-carboxyfluoresceine and entrapped into the NPs to carried out in vivo studies and to evaluate the NPs penetration and toxicity in the vaginal mucosa of the swine. The mean size of the NPs, ξ and the loading percentage were fundamental features for to reach the vaginal tissue and to release the peptide within intercellular space. The obtained results suggesting that the fusion inhibitor peptides loaded into the NPs coated with GC might be a new way to fight the HIV-1, due to the formulation might reach the human epithelial mucosa and release peptide without any side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fluorine Substituted 1,2,4-Triazinones as Potential Anti-HIV-1 and CDK2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Mohammed S. I. Makki

    2014-01-01

    Full Text Available Fluorine substituted 1,2,4-triazinones have been synthesized via alkylation, amination, and/or oxidation of 6-(2-amino-5-fluorophenyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H-one 1 and 4-fluoro-N-(4-fluoro-2-(5-oxo-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-ylphenylbenzamide 5 as possible anti-HIV-1 and CDK2 inhibitors. Alkylation on positions 2 and 4 in 1,2,4-triazinone gave compounds 6–8. Further modification was performed by selective alkylation and amination on position 3 to form compounds 9–15. However oxidation of 5 yielded compounds 16–18. Structures of the target compounds have been established by spectral analysis data. Five compounds (5, 11, 14, 16, and 17 have shown very good anti-HIV activity in MT-4 cells. Similarly, five compounds (1, 3, and 14–16 have exhibited very significant CDK2 inhibition activity. Compounds 14 and 16 were found to have dual anti-HIV and anticancer activities.

  5. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    International Nuclear Information System (INIS)

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC 50 s ranging from 0.1 to 7.4 μg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: →Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. →MVCs inhibited infection by T cell line-adapted viruses. →MVCs inhibited infection by primary isolates of HIV-1. →MVCs inhibited Env-mediated membrane fusion.

  6. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages.Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  7. Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling.

    Science.gov (United States)

    Artico, M; Di Santo, R; Costi, R; Novellino, E; Greco, G; Massa, S; Tramontano, E; Marongiu, M E; De Montis, A; La Colla, P

    1998-10-08

    Various cinnammoyl-based structures were synthesized and tested in enzyme assays as inhibitors of the HIV-1 integrase (IN). The majority of compounds were designed as geometrically or conformationally constrained analogues of caffeic acid phenethyl ester (CAPE) and were characterized by a syn disposition of the carbonyl group with respect to the vinylic double bond. Since the cinnamoyl moiety present in flavones such as quercetin (inactive on HIV-1-infected cells) is frozen in an anti arrangement, it was hoped that fixing our compounds in a syn disposition could favor anti-HIV-1 activity in cell-based assays. Geometrical and conformational properties of the designed compounds were taken into account through analysis of X-ray structures available from the Cambridge Structural Database. The polyhydroxylated analogues were prepared by reacting 3,4-bis(tetrahydropyran-2-yloxy)benzaldehyde with various compounds having active methylene groups such as 2-propanone, cyclopentanone, cyclohexanone, 1,3-diacetylbenzene, 2, 4-dihydroxyacetophenone, 2,3-dihydro-1-indanone, 2,3-dihydro-1, 3-indandione, and others. While active against both 3'-processing and strand-transfer reactions, the new compounds, curcumin included, failed to inhibit the HIV-1 multiplication in acutely infected MT-4 cells. Nevertheless, they specifically inhibited the enzymatic reactions associated with IN, being totally inactive against other viral (HIV-1 reverse transcriptase) and cellular (RNA polymerase II) nucleic acid-processing enzymes. On the other hand, title compounds were endowed with remarkable antiproliferative activity, whose potency correlated neither with the presence of catechols (possible source of reactive quinones) nor with inhibition of topoisomerases. The SARs developed for our compounds led to novel findings concerning the molecular determinants of IN inhibitory activity within the class of cinnamoyl-based structures. We hypothesize that these compounds bind to IN featuring the

  8. Structure of HIV-1 protease determined by neutron crystallography

    International Nuclear Information System (INIS)

    Adachi, Motoyasu; Kuroki, Ryota

    2009-01-01

    HIV-1 protease is an aspartic protease, and plays an essential role in replication of HIV. To develop HIV-1 protease inhibitors through structure-based drug design, it is necessary to understand the catalytic mechanism and inhibitor recognition of HIV-1 protease. We have determined the crystal structure of HIV-1 protease in complex with KNI-272 to 1.9 A resolution by neutron crystallography in combination with 1.4 A resolution X-ray diffraction data. The results show that the carbonyl group of hydroxymethylcarbonyl (HMC) in KNI-272 forms a hydrogen bonding interaction with protonated Asp 25 and the hydrogen atom from the hydroxyl group of HMC forms a hydrogen bonding interaction with the deprotonated Asp125. This is the first neutron report for HIV-1/inhibitor complex and shows directly the locations of key hydrogen atoms in catalysis and in the binding of a transition-state analog. The results confirm key aspect of the presumed catalytic mechanism of HIV-1 protease and will aid in the further development of protease inhibitors. (author)

  9. Anti-HIV Effect of Liposomes Bearing CXCR4 Receptor Antagonist ...

    African Journals Online (AJOL)

    Keywords: Antagonist, CXCR4, Liposomes, Receptor, Inflammation, HIV. Tropical Journal of ... receptors and inhibits HIV-1 entry mediated through CCR3, CCR5, and ..... circulation, facilitating HIV-targeted drug delivery. By tissue distribution ...

  10. Etravirine and Rilpivirine Drug Resistance Among HIV-1 Subtype C Infected Children Failing Non-Nucleoside Reverse Transcriptase Inhibitor-Based Regimens in South India.

    Science.gov (United States)

    Saravanan, Shanmugam; Kausalya, Bagavathi; Gomathi, Selvamurthi; Sivamalar, Sathasivam; Pachamuthu, Balakrishnan; Selvamuthu, Poongulali; Pradeep, Amrose; Sunil, Solomon; Mothi, Sarvode N; Smith, Davey M; Kantor, Rami

    2017-06-01

    We have analyzed reverse transcriptase (RT) region of HIV-1 pol gene from 97 HIV-infected children who were identified as failing first-line therapy that included first-generation non-nucleoside RT inhibitors (Nevirapine and Efavirenz) for at least 6 months. We found that 54% and 65% of the children had genotypically predicted resistance to second-generation non-nucleoside RT inhibitors drugs Etravirine (ETR) and Rilpivirine, respectively. These cross-resistance mutations may compromise future NNRTI-based regimens, especially in resource-limited settings. To complement these investigations, we also analyzed the sequences in Stanford database, Monogram weighted score, and DUET weighted score algorithms for ETR susceptibility and found almost perfect agreement between the three algorithms in predicting ETR susceptibility from genotypic data.

  11. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Paolo Monini

    Full Text Available Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs. Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.

  12. Design, synthesis and antiviral evaluation of novel heteroarylcarbothioamide derivatives as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and RDDP functions.

    Science.gov (United States)

    Corona, Angela; Onnis, Valentina; Deplano, Alessandro; Bianco, Giulia; Demurtas, Monica; Distinto, Simona; Cheng, Yung-Chi; Alcaro, Stefano; Esposito, Francesca; Tramontano, Enzo

    2017-08-31

    In the continuous effort to identify new HIV-1 inhibitors endowed with innovative mechanisms, the dual inhibition of different viral functions would provide a significant advantage against drug-resistant variants. The HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) is the only viral-encoded enzymatic activity that still lacks an efficient inhibitor. We synthesized a library of 3,5-diamino-N-aryl-1H-pyrazole-4-carbothioamide and 4-amino-5-benzoyl-N-phenyl-2-(substituted-amino)-1H-pyrrole-3-carbothioamide derivatives and tested them against RNase H activity. We identified the pyrazolecarbothioamide derivative A15, able to inhibit viral replication and both RNase H and RNA-dependent DNA polymerase (RDDP) RT-associated activities in the low micromolar range. Docking simulations hypothesized its binding to two RT pockets. Site-directed mutagenesis experiments showed that, with respect to wt RT, V108A substitution strongly reduced A15 IC50 values (12.6-fold for RNase H inhibition and 4.7-fold for RDDP), while substitution A502F caused a 9.0-fold increase in its IC50 value for RNase H, not affecting the RDDP inhibition, reinforcing the hypothesis of a dual-site inhibition. Moreover, A15 retained good inhibition potency against three non-nucleoside RT inhibitor (NNRTI)-resistant enzymes, confirming a mode of action unrelated to NNRTIs and suggesting its potential as a lead compound for development of new HIV-1 RT dual inhibitors active against drug-resistant viruses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection.

    Directory of Open Access Journals (Sweden)

    Charles J Shoemaker

    Full Text Available Ebola virus (EBOV is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50 1.6 to 8.0 µM at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1, a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.

  14. The impact of nevirapine- versus protease inhibitor-based regimens on virological markers of HIV-1 persistence during seemingly suppressive ART.

    Science.gov (United States)

    Kiselinova, Maja; Anna, Maria; Malatinkova, Eva; Vervish, Karen; Beloukas, Apostolos; Messiaen, Peter; Bonczkowski, Pawel; Trypsteen, Wim; Callens, Steven; Verhofstede, Chris; De Spiegelaere, Ward; Vandekerckhove, Linos

    2014-01-01

    The source and significance of residual plasma HIV-1 RNA detection during suppressive ART remain controversial. It has been proposed that nevirapine (NVP)-based regimens achieve a greater HIV-1 RNA suppression than regimens containing a protease inhibitor (PI). The aim of this study was to compare the effect of receiving NVP- vs PI-based ART on the virological markers of HIV persistence in peripheral blood. The study population comprised 161 HIV-1 infected patients receiving either NVP-based (n=81) or PI-based (n=80) ART and showing a HIV-1 RNA load stably suppressed ART, with median (IQR) levels of 5 (3-6) and 5 (3-8) copies/mL, respectively. HIV-1 RNA detection was associated with shorter duration of suppressive ART regardless of treatment arm (p=0.007), and lower CD4 nadir (p=0.015). HIV-1 DNA levels were median 282 (120-484) and 213 (87-494) copies/106 PBMCs in the two groups respectively, and were lowest (ART HIV-1 RNA load (p=0.0001). In this comprehensive characterization of patients on long-term suppressive ART, we did not observe evidence for a greater suppressive activity of NVP-based over PI-based therapy on plasma and intracellular markers of virus persistence. Overall excellent correlation was observed between the markers, allowing the identification of a subset of treated patients with low HIV-1 expression as an important cohort for future HIV cure studies.

  15. Validation of Simultaneous Quantitative Method of HIV Protease Inhibitors Atazanavir, Darunavir and Ritonavir in Human Plasma by UPLC-MS/MS

    Directory of Open Access Journals (Sweden)

    Tulsidas Mishra

    2014-01-01

    Full Text Available Objectives. HIV protease inhibitors are used in the treatment of patients suffering from AIDS and they act at the final stage of viral replication by interfering with the HIV protease enzyme. The paper describes a selective, sensitive, and robust method for simultaneous determination of three protease inhibitors atazanavir, darunavir and ritonavir in human plasma by ultra performance liquid chromatography-tandem mass spectrometry. Materials and Methods. The sample pretreatment consisted of solid phase extraction of analytes and their deuterated analogs as internal standards from 50 μL human plasma. Chromatographic separation of analytes was performed on Waters Acquity UPLC C18 (50 × 2.1 mm, 1.7 μm column under gradient conditions using 10 mM ammonium formate, pH 4.0, and acetonitrile as the mobile phase. Results. The method was established over a concentration range of 5.0–6000 ng/mL for atazanavir, 5.0–5000 ng/mL for darunavir and 1.0–500 ng/mL for ritonavir. Accuracy, precision, matrix effect, recovery, and stability of the analytes were evaluated as per US FDA guidelines. Conclusions. The efficiency of sample preparation, short analysis time, and high selectivity permit simultaneous estimation of these inhibitors. The validated method can be useful in determining plasma concentration of these protease inhibitors for therapeutic drug monitoring and in high throughput clinical studies.

  16. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  17. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells.

    Directory of Open Access Journals (Sweden)

    Brett J Hilton

    Full Text Available The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR. The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP gene only in the presence of an effective PR Inhibitor (PI. Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells.

  18. Fotodegradovatelné inhibitory HIV proteasy

    Czech Academy of Sciences Publication Activity Database

    Schimer, Jiří; Pávová, Marcela; Prouzová, Hana; Weber, Jan; Cígler, Petr; Majer, Pavel; Konvalinka, Jan

    2014-01-01

    Roč. 108, č. 5 (2014), s. 549 ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /14./. 13.05.2014-16.05.2014, Milovy] Institutional support: RVO:61388963 Keywords : HIV protease * HIV PR inhibitors * Caged HIV Pr * HIV maturation Subject RIV: CE - Biochemistry

  19. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Rui Jia

    Full Text Available The interferon-inducible transmembrane (IFITM proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1 strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3 is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117-125, which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117-125 mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117-125 to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117-125, mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.

  20. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  1. Structure and dynamics of the gp120 V3 loop that confers noncompetitive resistance in R5 HIV-1(JR-FL to maraviroc.

    Directory of Open Access Journals (Sweden)

    Yuzhe Yuan

    Full Text Available Maraviroc, an (HIV-1 entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1 from using CCR5 as a coreceptor for entry into CD4(+ cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5 derived from HIV-1(JR-FLan is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1(JR-FLan to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i changes in V3 configuration on the gp120 outer domain, (ii reduction of an anti-parallel β-sheet in the V3 stem region, (iii reduction in fluctuations of the V3 tip and stem regions, and (iv a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.

  2. HIV and travel.

    Science.gov (United States)

    Schuhwerk, M A; Richens, J; Zuckerman, Jane N

    2006-01-01

    There is a high demand for travel among HIV-positive individual. This demand arises partly from those who have benefited from advances in antiretroviral therapy as well as those with disease progression. The key to a successful and uneventful holiday lies in careful pre-trip planning, yet many patients fail to obtain advice before travelling. Travel advice for HIV patients is becoming increasingly specialized. In addition to advice on common travel-related infectious diseases, HIV-positive travellers are strongly advised to carry information with them and they need specific advice regarding country entry restrictions, HIV inclusive travel insurance, safety of travel vaccinations and highly active antiretroviral therapy-related issues. A wide range of relevant issues for the HIV-positive traveller are discussed in this review and useful websites can be found at the end.

  3. Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors

    CSIR Research Space (South Africa)

    Bode, ML

    2011-06-01

    Full Text Available ? Discovery Studio 2.5.5). The crystal structures of both the wild-type and K103N mutant forms of HIV-1 RT containing the diarylpyrimidine inhibitor rilpivirine (TMC-278) were used (pdb codes MEE and 3MEG, respectively).27 Etravirine (TMC-125... These drugs act by binding to a lipophilic, non-substrate binding pocket located about 10? from the substrate binding site. Binding induces conformational changes in the catalytic site, slowing catalytic activity markedly.3 About fifty structurally diverse...

  4. Diagnosis, antiretroviral therapy, and emergence of resistance to antiretroviral agents in HIV-2 infection: a review

    Directory of Open Access Journals (Sweden)

    Maia Hightower

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 and type 2 (HIV-2 are the causative agents of AIDS. HIV-2 is prevalent at moderate to high rates in West African countries, such as Senegal, Guinea, Gambia, and Cape Verde. Diagnosis of HIV-2 is made with a positive HIV-1/HIV-2 ELISA or simple/rapid assay, followed by one or two confirmatory tests specific for HIV-2. Following CD4+ T cell counts, HIV-2 viral burden and clinical signs and symptoms of immunodeficiency are beneficial in monitoring HIV-2 disease progression. Although non-nucleoside reverse transcriptase inhibitors are ineffective in treating HIV-2, nucleoside reverse transcriptase inhibitors and protease inhibitors can be effective in dual and triple antiretroviral regimens. Their use can decrease HIV-2 viral load, increase CD4+ T cell counts and improve AIDS-related symptoms. HIV-2 resistance to various nucleoside reverse transcriptase inhibitors and protease inhibitors, including zidovudine, lamivudine, ritonavir and indinavir, has been identified in some HIV-2 infected patients on antiretroviral therapy. The knowledge of HIV-2 peculiarities, when compared to HIV-1, is crucial to helping diagnose and guide the clinician in the choice of the initial antiretroviral regimen and for monitoring therapy success.

  5. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa

    Directory of Open Access Journals (Sweden)

    Melissa eGómez

    2015-03-01

    Full Text Available In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1 and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9 and 12 min of exposure, respectively, and antagonists of TRPC5, A1 and V1 corresponding to SKF-96365 (SKF, HC-030031 (HC and capsazepin (CPZ, respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9 and 12 min which were inhibited by SKF, HC and CPZ, respectively, indicating that copper activate TRPC5, A1 and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require CaMs and CDPKs activation. In addition, copper induced membrane depolarization events at 4, 8 and 11 min and these events were inhibited by SKF, HC, CPZ and bathocuproine, a specific copper chelating agent, indicating copper entry through TRP channels leading to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that CaMs and CDPKs are required in order to activate TRPs to allow copper entry. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through these TRP channels leading to membrane depolarization.

  6. Postexposure protection of macaques from vaginal SHIV infection by topical integrase inhibitors.

    Science.gov (United States)

    Dobard, Charles; Sharma, Sunita; Parikh, Urvi M; West, Rolieria; Taylor, Andrew; Martin, Amy; Pau, Chou-Pong; Hanson, Debra L; Lipscomb, Jonathan; Smith, James; Novembre, Francis; Hazuda, Daria; Garcia-Lerma, J Gerardo; Heneine, Walid

    2014-03-12

    Coitally delivered microbicide gels containing antiretroviral drugs are important for HIV prevention. However, to date, microbicides have contained entry or reverse transcriptase inhibitors that block early steps in virus infection and thus need to be given as a preexposure dose that interferes with sexual practices and may limit compliance. Integrase inhibitors block late steps after virus infection and therefore are more suitable for post-coital dosing. We first determined the kinetics of strand transfer in vitro and confirmed that integration begins about 6 hours after infection. We then used a repeat-challenge macaque model to assess efficacy of vaginal gels containing integrase strand transfer inhibitors when applied before or after simian/human immunodeficiency virus (SHIV) challenge. We showed that gel containing the strand transfer inhibitor L-870812 protected two of three macaques when applied 30 min before SHIV challenge. We next evaluated the efficacy of 1% raltegravir gel and demonstrated its ability to protect macaques when applied 3 hours after SHIV exposure (five of six protected; P infections showed no evidence of drug resistance in plasma or vaginal secretions despite continued gel dosing after infection. We documented rapid vaginal absorption reflecting a short pharmacological lag time and noted that vaginal, but not plasma, virus load was substantially reduced in the breakthrough infection after raltegravir gel treatment. We provide a proof of concept that topically applied integrase inhibitors protect against vaginal SHIV infection when administered shortly before or 3 hours after virus exposure.

  7. Maraviroc: perspectives for use in antiretroviral-naive HIV-1-infected patients.

    Science.gov (United States)

    Vandekerckhove, Linos; Verhofstede, Chris; Vogelaers, Dirk

    2009-06-01

    Maraviroc (Pfizer's UK-427857, Selzentry or Celsentri outside the USA) is the first agent in the new class of oral HIV-1 entry inhibitors to acquire approval by the US Food and Drug Administration and the European Medicine Agency. Considering the mechanism of action, it is expected that this drug will be effective only in a subpopulation of HIV-1-infected people, namely those harbouring the R5 virus. The favourable toxicity profile of the drug has been demonstrated in Phase III clinical trials in treatment-naive (MERIT) and treatment-experienced (MOTIVATE) patients. In the latter population, maraviroc showed a superior antiviral efficacy and immunological activity compared with optimized backbone therapy + placebo. However, in MERIT, a prospective double-blind, randomized trial in treatment-naive patients, maraviroc + zidovudine/lamivudine failed to prove non-inferiority to efavirenz + zidovudine/lamivudine as standard of care regimen in the 48 week intention-to-treat analysis. Using an assay with higher sensitivity for minority CXCR4-using (X4) HIV variants (the enhanced Trofile assay-Monogram), non-inferiority was reached for the maraviroc- versus efavirenz-based combination. These data indicate the important impact of the sensitivity of tropism testing on treatment outcome of maraviroc-containing regimens. This paper discusses both the prospective and retrospective analyses of the MERIT data and highlights the impact of these results on daily practice in HIV care.

  8. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection.

    Science.gov (United States)

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent; Tremblay, Michel J

    2017-02-15

    In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4 + T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4 + T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6 + CD4 + T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6 + CD4 + T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6 + CD4 + T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4 + T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6 + CD4 + T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6 + CD4 + T cells to productive HIV-1 infection. Copyright © 2017 American Society for Microbiology.

  9. The Wonders of Phosphodiesterase‑5 Inhibitors: A Majestic History

    African Journals Online (AJOL)

    A milestone in drug discovery was the selective inhibitors of. PDE‑5 that ... the pharmacotherapeutics of PDE‑5 inhibitors and the majestic history that led to their discovery. ..... including HIV protease inhibitors, ketoconazole, itraconazole,.

  10. Spinoculation Triggers Dynamic Actin and Cofilin Activity That Facilitates HIV-1 Infection of Transformed and Resting CD4 T Cells▿

    Science.gov (United States)

    Guo, Jia; Wang, Weifeng; Yu, Dongyang; Wu, Yuntao

    2011-01-01

    Centrifugal inoculation, or spinoculation, is widely used in virology research to enhance viral infection. However, the mechanism remained obscure. Using HIV-1 infection of human T cells as a model, we demonstrate that spinoculation triggers dynamic actin and cofilin activity, probably resulting from cellular responses to centrifugal stress. This actin activity also leads to the upregulation of the HIV-1 receptor and coreceptor, CD4 and CXCR4, enhancing viral binding and entry. We also demonstrate that an actin inhibitor, jasplakinolide, diminishes spin-mediated enhancement. In addition, small interfering RNA (siRNA) knockdown of LIMK1, a cofilin kinase, decreases the enhancement. These results suggest that spin-mediated enhancement cannot be explained simply by a virus-concentrating effect; rather, it is coupled with spin-induced cytoskeletal dynamics that promote receptor mobilization, viral entry, and postentry processes. Our results highlight the importance of cofilin and a dynamic cytoskeleton for the initiation of viral infection. Our results also indicate that caution needs to be taken in data interpretation when cells are spinoculated; some of the spin-induced cellular permissiveness may be beyond the natural capacity of an infecting virus. PMID:21795326

  11. Prevalence of genotypic HIV-1 drug resistance in Thailand, 2002

    Directory of Open Access Journals (Sweden)

    Watitpun Chotip

    2003-03-01

    Full Text Available Abstract Background The prices of reverse transcriptase (RT inhibitors in Thailand have been reduced since December 1, 2001. It is expected that reduction in the price of these inhibitors may influence the drug resistance mutation pattern of HIV-1 among infected people. This study reports the frequency of HIV-1 genetic mutation associated with drug resistance in antiretroviral-treated patients from Thailand. Methods Genotypic resistance testing was performed on samples collected in 2002 from 88 HIV-1 infected individuals. Automated DNA sequencing was used to genotype the HIV-1 polymerase gene isolated from patients' plasma. Results Resistance to protease inhibitors, nucleoside and non-nucleoside reverse transcriptase inhibitors were found in 10 (12%, 42 (48% and 19 (21% patients, respectively. The most common drug resistance mutations in the protease gene were at codon 82 (8%, 90 (7% and 54 (6%, whereas resistant mutations at codon 215 (45%, 67 (40%, 41 (38% and 184 (27% were commonly found in the RT gene. This finding indicates that genotypic resistance to nucleoside reverse transcriptase inhibitors was prevalent in 2002. The frequency of resistant mutations corresponding to non-nucleoside reverse transcriptase inhibitors was three times higher-, while resistant mutation corresponding to protease inhibitors was two times lower than those frequencies determined in 2001. Conclusion This study shows that the frequencies of RT inhibitor resistance mutations have been increased after the reduction in the price of RT inhibitors since December 2001. We believe that this was an important factor that influenced the mutation patterns of HIV-1 protease and RT genes in Thailand.

  12. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction

    KAUST Repository

    Breuer, Sebastian

    2013-07-26

    The current treatment regimens for HIV include over 20 anti-retrovirals. However, adverse drug effects and the emergence of drug resistance necessitates the continued improvement of the existing drug classes as well as the development of novel drugs that target as yet therapeutically unexploited viral and cellular pathways. Here we demonstrate a strategy for the discovery of protein-protein interaction inhibitors of the viral pathogenicity factor HIV-1 Nef and its interaction with the host factor SH3. A combination of a time-resolved fluorescence resonance energy resonance energy transfer-based assay and a label-free resonant waveguide grating-based assay was optimized for high-throughput screening formats.

  13. A Biochemical/Biophysical Assay Dyad for HTS-Compatible Triaging of Inhibitors of the HIV-1 Nef/Hck SH3 Interaction

    KAUST Repository

    Breuer, Sebastian; Espinola, Sheryll; Morelli, Xavier; Torbett, Bruce E; Arold, Stefan T.; Engels, Ingo H

    2013-01-01

    The current treatment regimens for HIV include over 20 anti-retrovirals. However, adverse drug effects and the emergence of drug resistance necessitates the continued improvement of the existing drug classes as well as the development of novel drugs that target as yet therapeutically unexploited viral and cellular pathways. Here we demonstrate a strategy for the discovery of protein-protein interaction inhibitors of the viral pathogenicity factor HIV-1 Nef and its interaction with the host factor SH3. A combination of a time-resolved fluorescence resonance energy resonance energy transfer-based assay and a label-free resonant waveguide grating-based assay was optimized for high-throughput screening formats.

  14. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  15. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Lindsey M. [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Irvin, Susan C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kennedy, Steven C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Guo, Feng [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Goldstein, Harris; Herold, Betsy C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Snapp, Erik L., E-mail: erik-lee.snapp@einstein.yu.edu [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  16. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    International Nuclear Information System (INIS)

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-01-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells

  17. Novel (2,6-difluorophenyl)(2-(phenylamino)pyrimidin-4-yl) methanones with restricted conformation as potent non-nucleoside reverse transcriptase inhibitors against HIV-1

    Czech Academy of Sciences Publication Activity Database

    Šimon, Petr; Baszczyňski, Ondřej; Šaman, David; Stepan, G.; Hu, E.; Lansdon, E. B.; Jansa, P.; Janeba, Zlatko

    2016-01-01

    Roč. 122, Oct 21 (2016), s. 185-195 ISSN 0223-5234 Institutional support: RVO:61388963 Keywords : diarylpyrimidine (DAPY) * etravirine * human immunodeficiency virus ( HIV ) * non-nucleoside reverse transcriptase inhibitors * NNRTIs * rilpivirine Subject RIV: CC - Organic Chemistry Impact factor: 4.519, year: 2016

  18. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties.

    Science.gov (United States)

    Fang, Evandro Fei; Ng, Tzi Bun

    2015-04-01

    Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.

  19. Design and Synthesis of Bis-amide and Hydrazide-containing Derivatives of Malonic Acid as Potential HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nouri Neamati

    2008-10-01

    Full Text Available HIV-1 integrase (IN is an attractive and validated target for the development of novel therapeutics against AIDS. In the search for new IN inhibitors, we designed and synthesized three series of bis-amide and hydrazide-containing derivatives of malonic acid. We performed a docking study to investigate the potential interactions of the title compounds with essential amino acids on the IN active site.

  20. Performance of 3 Rapid Tests for Discrimination Between HIV-1 and HIV-2 in Guinea-Bissau, West Africa

    DEFF Research Database (Denmark)

    Hønge, Bo Langhoff; Bjarnason Obinah, Magnús Pétur; Jespersen, Sanne

    2014-01-01

    As HIV-2 is intrinsically resistant to nonnucleoside reverse transcriptase inhibitors, it is mandatory to discriminate between HIV types before initiating antiretroviral treatment. Guinea-Bissau has the world's highest prevalence of HIV-2 and HIV-1/HIV-2 dually infected individuals. We evaluated ...... (agreement 90.9%) and SD Bioline HIV-1/2 3.0 (agreement 84.5%). Our results underscore the need for evaluation of tests in relevant populations before implementation....

  1. Kager's fat pad inflammation associated with HIV infection and AIDS: MRI findings

    International Nuclear Information System (INIS)

    Godoy-Santos, Alexandre Leme; Fernandes, Tulio Diniz; Camanho, Gilberto Luis; Bordalo-Rodrigues, Marcelo; Rosemberg, Laercio; Lei Munhoz Lima, Ana Lucia; Maffulli, Nicola

    2014-01-01

    To describe magnetic resonance imaging (MRI) features of Kager's fat pad inflammation in HIV-positive patients with lipodystrophy due to protease inhibitor treatment and posterior ankle pain. A case-control, cross-sectional study; group 1 included 14 HIV-positive patients using protease inhibitors, presenting lipodystrophy syndrome and having posterior ankle pain; group 2 (CGHIV-) included 112 HIV-negative patients without lipodystrophy syndrome who were being evaluated for posterior ankle pain; group 3 (CGHIV + 1) included 23 HIV-positive patients not using a protease inhibitor, without lipodystrophy syndrome and with posterior ankle pain; group 4 (CGHIV + 2) comprised 18 HIV-positive patients who were being treated with a protease inhibitor and had lipodystrophy syndrome but did not have posterior ankle pain. Images were evaluated for the presence of edema by two radiologists who were blinded to clinical features. Fisher's exact test was used to evaluate differences among the groups. Interobserver variation was tested using Cohen's kappa (κ) statistic. The presence of edema within Kager's fat pad was strongly associated with symptoms in HIV-positive patients who had lipodystrophy (p ≤ 0.0001). Concordance between observers was excellent (κ > 0.9). MRI findings of Kager's fat pad inflammation related to HIV/AIDS is a source of symptoms in HIV patients with posterior ankle pain using protease inhibitors and having lipodystrophy syndrome. (orig.)

  2. Inhibitors of HIV-protease from computational design. A history of theory and synthesis still to be fully appreciated.

    Science.gov (United States)

    Berti, Federico; Frecer, Vladimir; Miertus, Stanislav

    2014-01-01

    Despite the fact that HIV-Protease is an over 20 years old target, computational approaches to rational design of its inhibitors still have a great potential to stimulate the synthesis of new compounds and the discovery of new, potent derivatives, ever capable to overcome the problem of drug resistance. This review deals with successful examples of inhibitors identified by computational approaches, rather than by knowledge-based design. Such methodologies include the development of energy and scoring functions, docking protocols, statistical models, virtual combinatorial chemistry. Computations addressing drug resistance, and the development of related models as the substrate envelope hypothesis are also reviewed. In some cases, the identified structures required the development of synthetic approaches in order to obtain the desired target molecules; several examples are reported.

  3. Perceptions about the acceptability and prevalence of HIV testing ...

    African Journals Online (AJOL)

    HIV counselling and testing (HCT) is considered important because it is an entry point to a comprehensive continuum of care for HIV/AIDS. The South African Department of Health launched an HCT campaign in April 2010, and this reached 13,269,746 people by June 2011, of which 16% tested HIV positive and 400,000 of ...

  4. Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection

    Science.gov (United States)

    Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang

    2016-01-01

    Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370

  5. HIV Salvage Therapy Does Not Require Nucleoside Reverse Transcriptase Inhibitors: A Randomized, Controlled Trial.

    Science.gov (United States)

    Tashima, Karen T; Smeaton, Laura M; Fichtenbaum, Carl J; Andrade, Adriana; Eron, Joseph J; Gandhi, Rajesh T; Johnson, Victoria A; Klingman, Karin L; Ritz, Justin; Hodder, Sally; Santana, Jorge L; Wilkin, Timothy; Haubrich, Richard H

    2015-12-15

    Nucleoside reverse transcriptase inhibitors (NRTIs) are often included in antiretroviral regimens in treatment-experienced patients in the absence of data from randomized trials. To compare treatment success between participants who omit versus those who add NRTIs to an optimized antiretroviral regimen of 3 or more agents. Multicenter, randomized, controlled trial. (ClinicalTrials.gov: NCT00537394). Outpatient HIV clinics. Treatment-experienced patients with HIV infection and viral resistance. Open-label optimized regimens (not including NRTIs) were selected on the basis of treatment history and susceptibility testing. Participants were randomly assigned to omit or add NRTIs. The primary efficacy outcome was regimen failure through 48 weeks using a noninferiority margin of 15%. The primary safety outcome was time to initial episode of a severe sign, symptom, or laboratory abnormality before discontinuation of NRTI assignment. 360 participants were randomly assigned, and 93% completed a 48-week visit. The cumulative probability of regimen failure was 29.8% in the omit-NRTIs group versus 25.9% in the add-NRTIs group (difference, 3.2 percentage points [95% CI, -6.1 to 12.5 percentage points]). No significant between-group differences were found in the primary safety end points or the proportion of participants with HIV RNA level less than 50 copies/mL. No deaths occurred in the omit-NRTIs group compared with 7 deaths in the add-NRTIs group. Unblinded study design, and the study may not be applicable to resource-poor settings. Treatment-experienced patients with HIV infection starting a new optimized regimen can safely omit NRTIs without compromising virologic efficacy. Omitting NRTIs will reduce pill burden, cost, and toxicity in this patient population. National Institute of Allergy and Infectious Diseases, Boehringer Ingelheim, Janssen, Merck, ViiV Healthcare, Roche, and Monogram Biosciences (LabCorp).

  6. Identification of pyrrolo[3,2-c]pyridin-4-amine compounds as a new class of entry inhibitors against influenza viruses in vitro

    International Nuclear Information System (INIS)

    Chang, So Young; Cruz, Deu John M.; Ko, Yoonae; Min, Ji-Young

    2016-01-01

    Various influenza virus entry inhibitors are being developed as therapeutic antiviral agents in ongoing preparation for emerging influenza viruses, particularly those that may possess drug resistance to the current FDA-approved neuraminidase inhibitors. In this study, small molecules having the pyrrolopyridinamine (PPA), aminothiadiazole (ATD), dihydrofuropyridine carboxamide (HPC), or imidazopyridinamine (IPA) moiety were selected from a target-focused chemical library for their inhibitory activity against influenza A virus by high-throughput screening using the PR8GFP assay. Activity was evaluated by measuring changes the proportion of GFP-expressing cells as a reflection of influenza virus infection. Among them, PPA showed broad-spectrum activity against multiple influenza A viruses and influenza B virus. PPA was found to block the early stages of influenza virus infection using a time-of-addition assay. Using additional phenotypic assays that dissect the virus entry process, it appears that the antiviral activity of PPA against influenza virus can be attributed to interference of the post-fusion process: namely, virus uncoating and nuclear import of viral nucleoprotein complexes. Based on these results, PPA is an attractive chemical moiety that can be used to develop new antiviral drug candidates against influenza viruses. - Highlights: • Four chemical classes are identified from target-focused chemical library by HTS. • PPA inhibits the infection of various influenza A viruses and influenza B virus. • PPA is identified to inhibit the early stages of influenza virus infection. • PPA compound disrupts virus uncoating and nuclear import of viral ribonucleoprotein.

  7. A qualitative study of barriers to enrollment into free HIV care: perspectives of never-in-care HIV-positive patients and providers in Rakai, Uganda.

    Science.gov (United States)

    Nakigozi, Gertrude; Atuyambe, Lynn; Kamya, Moses; Makumbi, Fredrick E; Chang, Larry W; Nakyanjo, Neema; Kigozi, Godfrey; Nalugoda, Fred; Kiggundu, Valerian; Serwadda, David; Wawer, Maria; Gray, Ronald

    2013-01-01

    Early entry into HIV care is low in Sub-Saharan Africa. In Rakai, about a third (31.5%) of HIV-positive clients who knew their serostatus did not enroll into free care services. This qualitative study explored barriers to entry into care from HIV-positive clients who had never enrolled in care and HIV care providers. We conducted 48 in-depth interviews among HIV-infected individuals aged 15-49 years, who had not entered care within six months of result receipt and referral for free care. Key-informant interviews were conducted with 12 providers. Interviews were audio-recorded and transcripts subjected to thematic content analysis based on the health belief model. Barriers to using HIV care included fear of stigma and HIV disclosure, women's lack of support from male partners, demanding work schedules, and high transport costs. Programmatic barriers included fear of antiretroviral drug side effects, long waiting and travel times, and inadequate staff respect for patients. Denial of HIV status, belief in spiritual healing, and absence of AIDS symptoms were also barriers. Targeted interventions to combat stigma, strengthen couple counseling and health education programs, address gender inequalities, and implement patient-friendly and flexible clinic service hours are needed to address barriers to HIV care.

  8. 4'-Ethynyl-2-fluoro-2'-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor.

    Science.gov (United States)

    Markowitz, Martin; Sarafianos, Stefan G

    2018-07-01

    4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside reverse transcriptase inhibitor (NRTI) with a novel mechanism of action, unique structure, and amongst NRTIs, unparalleled anti-HIV-1 activity. We will summarize its structure and function, antiviral activity, resistance profile, and potential as an antiretroviral for use in the treatment and preexposure prophylaxis of HIV-1 infection. EFdA is active against wild-type (EC50 as low as 50 pmol/l) and most highly NRTI-resistant viruses. The active metabolite, EFdA-triphosphate, has been shown to have a prolonged intracellular half-life in human and rhesus (Rh) blood cells. As a result, single drug doses tested in simian immunodeficiency virus mac251-infected Rh macaques and HIV-1-infected individuals exhibited robust antiviral activity of 7-10 days duration. Preclinical studies of EFdA as preexposure prophylaxis in the Rh macaque/simian/human immunodeficiency virus low-dose intrarectal challenge model have shown complete protection when given in clinically relevant doses. EFdA is a novel antiretroviral with activity against both wild-type and NRTI-resistant viruses. As a result of the prolonged intracellular half-life of its active moiety, it is amenable to flexibility in dosing of at least daily to weekly and perhaps longer.

  9. Cancer risk and use of protease inhibitor or nonnucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy: the D: A: D study

    NARCIS (Netherlands)

    Bruyand, M.; Ryom, L.; Shepherd, L.; Fatkenheuer, G.; Grulich, A.; Reiss, P.; Wit, S. de; Monforte, A.M.; Furrer, H.; Pradier, C.; Lundgren, J.; Sabin, C.; Warris, A.; et al.,

    2015-01-01

    BACKGROUND: The association between combination antiretroviral therapy (cART) and cancer risk, especially regimens containing protease inhibitors (PIs) or nonnucleoside reverse transcriptase inhibitors (NNRTIs), is unclear. METHODS: Participants were followed from the latest of D:A:D study entry or

  10. Cancer risk and use of protease inhibitor or nonnucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy : the D: A: D study

    NARCIS (Netherlands)

    Bruyand, Mathias; Ryom, Lene; Shepherd, Leah; Fatkenheuer, Gerd; Grulich, Andrew; Reiss, Peter; de Wit, Stéphane; D Arminio Monforte, Antonella; Furrer, Hansjakob; Pradier, Christian; Lundgren, Jens; Sabin, Caroline; Schölvinck, Elisabeth H.

    2015-01-01

    BACKGROUND: The association between combination antiretroviral therapy (cART) and cancer risk, especially regimens containing protease inhibitors (PIs) or nonnucleoside reverse transcriptase inhibitors (NNRTIs), is unclear. METHODS: Participants were followed from the latest of D:A:D study entry or

  11. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    Directory of Open Access Journals (Sweden)

    Nikki van Bel

    Full Text Available The viral integrase (IN is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs. Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  12. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    Science.gov (United States)

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  13. A silicone elastomer vaginal ring for HIV prevention containing two microbicides with different mechanisms of action.

    Science.gov (United States)

    Fetherston, Susan M; Boyd, Peter; McCoy, Clare F; McBride, Marcella C; Edwards, Karen-Leigh; Ampofo, Stephen; Malcolm, R Karl

    2013-02-14

    Vaginal rings are currently being developed for the long-term (at least 30 days) continuous delivery of microbicides against human immunodeficiency virus (HIV). Research to date has mostly focused on devices containing a single antiretroviral compound, exemplified by the 25mg dapivirine ring currently being evaluated in a Phase III clinical study. However, there is a strong clinical rationale for combining antiretrovirals with different mechanisms of action in a bid to increase breadth of protection and limit the emergence of resistant strains. Here we report the development of a combination antiretroviral silicone elastomer matrix-type vaginal ring for simultaneous controlled release of dapivirine, a non-nucleoside reverse transcriptase inhibitor, and maraviroc, a CCR5-targeted HIV-1 entry inhibitor. Vaginal rings loaded with 25mg dapivirine and various quantities of maraviroc (50-400mg) were manufactured and in vitro release assessed. The 25mg dapivirine and 100mg maraviroc formulation was selected for further study. A 24-month pharmaceutical stability evaluation was conducted, indicating good product stability in terms of in vitro release, content assay, mechanical properties and related substances. This combination ring product has now progressed to Phase I clinical testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The Case for Adolescent HIV Vaccination in South Africa

    OpenAIRE

    Moodley, Nishila; Gray, Glenda; Bertram, Melanie

    2016-01-01

    Abstract Despite comprising 0.7% of the world population, South Africa is home to 18% of the global human immunodeficiency virus (HIV) prevalence. Unyielding HIV subepidemics among adolescents threaten national attempts to curtail the disease burden. Should an HIV vaccine become available, establishing its point of entry into the health system becomes a priority. This study assesses the impact of school-based HIV vaccination and explores how variations in vaccine characteristics affect cost-e...

  15. Lignosulfonic acid exhibits broadly anti-HIV-1 activity--potential as a microbicide candidate for the prevention of HIV-1 sexual transmission.

    Directory of Open Access Journals (Sweden)

    Min Qiu

    Full Text Available Some secondary metabolites from plants show to have potent inhibitory activities against microbial pathogens, such as human immunodeficiency virus (HIV, herpes simplex virus (HSV, Treponema pallidum, Neisseria gonorrhoeae, etc. Here we report that lignosulfonic acid (LSA, a polymeric lignin derivative, exhibits potent and broad activity against HIV-1 isolates of diverse subtypes including two North America strains and a number of Chinese clinical isolates values ranging from 21.4 to 633 nM. Distinct from other polyanions, LSA functions as an entry inhibitor with multiple targets on viral gp120 as well as on host receptor CD4 and co-receptors CCR5/CXCR4. LSA blocks viral entry as determined by time-of-drug addiction and cell-cell fusion assays. Moreover, LSA inhibits CD4-gp120 interaction by blocking the binding of antibodies specific for CD4-binding sites (CD4bs and for the V3 loop of gp120. Similarly, LSA interacts with CCR5 and CXCR4 via its inhibition of specific anti-CCR5 and anti-CXCR4 antibodies, respectively. Interestingly, the combination of LSA with AZT and Nevirapine exhibits synergism in viral inhibition. For the purpose of microbicide development, LSA displays low in vitro cytotoxicity to human genital tract epithelial cells, does not stimulate NF-κB activation and has no significant up-regulation of IL-1α/β and IL-8 as compared with N-9. Lastly, LSA shows no adverse effect on the epithelial integrity and the junctional protein expression. Taken together, our findings suggest that LSA can be a potential candidate for tropical microbicide.

  16. Institutional and structural barriers to HIV testing: elements for a theoretical framework.

    Science.gov (United States)

    Meyerson, Beth; Barnes, Priscilla; Emetu, Roberta; Bailey, Marlon; Ohmit, Anita; Gillespie, Anthony

    2014-01-01

    Stigma is a barrier to HIV health seeking, but little is known about institutional and structural expressions of stigma in HIV testing. This study examines evidence of institutional and structural stigma in the HIV testing process. A qualitative, grounded theory study was conducted using secondary data from a 2011 HIV test site evaluation data in a Midwestern, moderate HIV incidence state. Expressions of structural and institutional stigma were found with over half of the testing sites and at three stages of the HIV testing visit. Examples of structural stigma included social geography, organization, and staff behavior at first encounter and reception, and staff behavior when experiencing the actual HIV test. Institutional stigma was socially expressed through staff behavior at entry/reception and when experiencing the HIV test. The emerging elements demonstrate the potential compounding of stigma experiences with deleterious effect. Study findings may inform future development of a theoretical framework. In practice, findings can guide organizations seeking to reduce HIV testing barriers, as they provide a window into how test seekers experience HIV test sites at first encounter, entry/reception, and at testing stages; and can identify how stigma might be intensified by structural and institutional expressions.

  17. 5,6-Dihydro-5-aza-2’-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors

    OpenAIRE

    Rawson, Jonathan M.; Heineman, Richard H.; Beach, Lauren B.; Martin, Jessica L.; Schnettler, Erica K.; Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2013-01-01

    The nucleoside analog 5,6-dihydro-5-aza-2’-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C ...

  18. Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry.

    Science.gov (United States)

    Wang, Jizhen; Manicassamy, Balaji; Caffrey, Michael; Rong, Lijun

    2011-06-01

    Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

  19. Cardiovascular disease and use of contemporary protease inhibitors

    DEFF Research Database (Denmark)

    Ryom, Lene; Lundgren, Jens D; El-Sadr, Wafaa

    2018-01-01

    BACKGROUND: Although earlier protease inhibitors have been associated with increased risk of cardiovascular disease, whether this increased risk also applies to more contemporary protease inhibitors is unknown. We aimed to assess whether cumulative use of ritonavir-boosted atazanavir and ritonavir......-boosted darunavir were associated with increased incidence of cardiovascular disease in people living with HIV. METHODS: The prospective Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study consists of people living with HIV-1 from 11 cohorts in Australia, Europe, and the USA. Participants were...... monitored from Jan 1, 2009, until the earliest of a cardiovascular event, 6 months after the last visit, or until Feb 1, 2016. The outcome of interest was the incidence of cardiovascular disease in adults (aged ≥16 years) living with HIV who were being treated with contemporary treatments. We defined...

  20. Teaching Foundational Topics and Scientific Skills in Biochemistry within the Conceptual Framework of HIV Protease

    Science.gov (United States)

    Johnson, R. Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a…

  1. Active methamphetamine use is associated with transmitted drug resistance to non-nucleoside reverse transcriptase inhibitors in individuals with HIV infection of unknown duration.

    Science.gov (United States)

    Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm Christopher; Smith, Davey M

    2007-01-01

    Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Cross-sectional analysis. Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI.

  2. Clinical validation and applicability of different tipranavir/ritonavir genotypic scores in HIV-1 protease inhibitor-experienced patients.

    Science.gov (United States)

    Saracino, Annalisa; Monno, Laura; Tartaglia, Alessandra; Tinelli, Carmine; Seminari, Elena; Maggiolo, Franco; Bonora, Stefano; Rusconi, Stefano; Micheli, Valeria; Lo Caputo, Sergio; Lazzaroni, Laura; Ferrara, Sergio; Ladisa, Nicoletta; Nasta, Paola; Parruti, Giustino; Bellagamba, Rita; Forbici, Federica; Angarano, Gioacchino

    2009-07-01

    Tipranavir, a non-peptidic protease inhibitor which shows in vitro efficacy against some HIV-1-resistant strains, can be used in salvage therapies for multi-experienced HIV patients due to its peculiar resistance profile including 21 mutations at 16 protease positions according to International AIDS Society (IAS). Other genotypic scores, however, which attribute a different weight to single amino-acid substitutions, have been recently proposed. To validate the clinical utility of four different genotypic scores for selecting tipranavir responders, the baseline resistance pattern of 176 HIV heavily experienced patients was correlated with virological success (HIV-RNA42.5% of patients. With univariate analysis, genotypic scores were all associated with outcome but showed a low accuracy with ROC analysis, with the weighted score (WS) by Scherer et al. demonstrating the best performance with an AUC of 68%. Only 52% of patients classified as susceptible (WSIAS mutations: L33F, I54AMV, Q58E, and non-IAS mutation: N37DES. On the contrary, the use of T20 in T20-naïve patients and the V82AFSI and F53LY non-IAS mutations were associated with virological success. The study suggests that even if the "weighted" scores are able to interpret correctly the antiretroviral resistance profile of multi-experienced patients, it is difficult to individuate a cut-off which can be easily applied to this population for discriminating responders.

  3. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue

    Science.gov (United States)

    Leroyer, Stéphanie; Vatier, Camille; Kadiri, Sarah; Quette, Joëlle; Chapron, Charles; Capeau, Jacqueline; Antoine, Bénédicte

    2011-01-01

    Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation. PMID:21068005

  4. HIV-related travel restrictions: trends and country characteristics.

    Science.gov (United States)

    Chang, Felicia; Prytherch, Helen; Nesbitt, Robin C; Wilder-Smith, Annelies

    2013-06-03

    Increasingly, HIV-seropositive individuals cross international borders. HIV-related restrictions on entry, stay, and residence imposed by countries have important consequences for this mobile population. Our aim was to describe the geographical distribution of countries with travel restrictions and to examine the trends and characteristics of countries with such restrictions. In 2011, data presented to UNAIDS were used to establish a list of countries with and without HIV restrictions on entry, stay, and residence and to describe their geographical distribution. The following indicators were investigated to describe the country characteristics: population at mid-year, international migrants as a percentage of the population, Human Development Index, estimated HIV prevalence (age: 15-49), presence of a policy prohibiting HIV screening for general employment purposes, government and civil society responses to having non-discrimination laws/regulations which specify migrants/mobile populations, government and civil society responses to having laws/regulations/policies that present obstacles to effective HIV prevention, treatment, care, and support for migrants/mobile populations, Corruption Perception Index, and gross national income per capita. HIV-related restrictions exist in 45 out of 193 WHO countries (23%) in all regions of the world. We found that the Eastern Mediterranean and Western Pacific Regions have the highest proportions of countries with these restrictions. Our analyses showed that countries that have opted for restrictions have the following characteristics: smaller populations, higher proportions of migrants in the population, lower HIV prevalence rates, and lack of legislation protecting people living with HIV from screening for employment purposes, compared with countries without restrictions. Countries with a high proportion of international migrants tend to have travel restrictions - a finding that is relevant to migrant populations and travel

  5. Kager's fat pad inflammation associated with HIV infection and AIDS: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Santos, Alexandre Leme; Fernandes, Tulio Diniz; Camanho, Gilberto Luis [University of Sao Paulo, Department of Orthopedic Surgery, Sao Paulo, SP (Brazil); Bordalo-Rodrigues, Marcelo; Rosemberg, Laercio [University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil); Lei Munhoz Lima, Ana Lucia [University of Sao Paulo, Department of Infectious Disease, Sao Paulo (Brazil); Maffulli, Nicola [Mile End Hospital, Centre for Sports and Exercise Medicine Barts and The London School of Medicine and Dentistry, London (United Kingdom)

    2014-09-15

    To describe magnetic resonance imaging (MRI) features of Kager's fat pad inflammation in HIV-positive patients with lipodystrophy due to protease inhibitor treatment and posterior ankle pain. A case-control, cross-sectional study; group 1 included 14 HIV-positive patients using protease inhibitors, presenting lipodystrophy syndrome and having posterior ankle pain; group 2 (CGHIV-) included 112 HIV-negative patients without lipodystrophy syndrome who were being evaluated for posterior ankle pain; group 3 (CGHIV + 1) included 23 HIV-positive patients not using a protease inhibitor, without lipodystrophy syndrome and with posterior ankle pain; group 4 (CGHIV + 2) comprised 18 HIV-positive patients who were being treated with a protease inhibitor and had lipodystrophy syndrome but did not have posterior ankle pain. Images were evaluated for the presence of edema by two radiologists who were blinded to clinical features. Fisher's exact test was used to evaluate differences among the groups. Interobserver variation was tested using Cohen's kappa (κ) statistic. The presence of edema within Kager's fat pad was strongly associated with symptoms in HIV-positive patients who had lipodystrophy (p ≤ 0.0001). Concordance between observers was excellent (κ > 0.9). MRI findings of Kager's fat pad inflammation related to HIV/AIDS is a source of symptoms in HIV patients with posterior ankle pain using protease inhibitors and having lipodystrophy syndrome. (orig.)

  6. Inhibitors and facilitators of willingness to participate (WTP) in an HIV vaccine trial: construction and initial validation of the Inhibitors and Facilitators of Willingness to Participate Scale (WPS) among women at risk for HIV infection.

    Science.gov (United States)

    Fincham, Dylan; Kagee, Ashraf; Swartz, Leslie

    2010-04-01

    A psychometric scale assessing inhibitors and facilitators of willingness to participate (WTP) in an HIV vaccine trial has not yet been developed. This study aimed to construct and derive the exploratory factor structure of such a scale. The 35-item Inhibitors and Facilitators of Willingness to Participate Scale (WPS) was developed and administered to a convenience sample of 264 Black females between the ages of 16 and 49 years living in an urban-informal settlement near Cape Town. The subscales of the WPS demonstrated good internal consistency with Cronbach's alpha coefficients ranging between 0.69 and 0.82. A principal components exploratory factor analysis revealed the presence of five latent factors. The factors, which accounted for 45.93% of the variance in WTP, were (1) personal costs, (2) safety and convenience, (3) stigmatisation, (4) personal gains and (5) social approval and trust. Against the backdrop of the study limitations, these results provide initial support for the reliability and construct validity of the WPS among the most eligible trial participants in the Western Cape of South Africa.

  7. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part II. Integrase inhibition

    International Nuclear Information System (INIS)

    Lee-Huang, Sylvia; Huang, Philip Lin; Zhang Dawei; Lee, Jae Wook; Bao Ju; Sun Yongtao; Chang, Young-Tae; Zhang, John; Huang, Paul Lee

    2007-01-01

    We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC 50 s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics

  8. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection.

    Science.gov (United States)

    Kozlowski, Hannah N; Lai, Eric T L; Havugimana, Pierre C; White, Carl; Emili, Andrew; Sakac, Darinka; Binnington, Beth; Neschadim, Anton; McCarthy, Stephen D S; Branch, Donald R

    2016-08-24

    It has been reported that crocodile blood contains potent antibacterial and antiviral properties. However, its effects on HIV-1 infection remain unknown. We obtained blood from saltwater crocodiles to examine whether serum or plasma could inhibit HIV-1 infection. We purified plasma fractions then used liquid chromatography-mass spectrometry to identify the inhibitory protein factor(s). We then analyzed the ability of recombinant proteins to recapitulate HIV-1 inhibition and determine their mechanism of action. Crocodylus porosus plasma was tested for inhibition of Jurkat T-cell HIV-1 infection. Inhibitor(s) were purified by reverse-phase chromatography then identified by protein liquid chromatography-mass spectrometry. Anti-HIV-1 activity of purified plasma or recombinant proteins were measured by p24 enzyme-linked immunosorbent assay and luciferase readouts, and mechanism of action was determined by measuring HIV-1 RNA, cDNA and transcription (using 1G5 cells). Crocodile plasma contains potent inhibitors of HIV-1IIIB infection, which were identified as histones. Recombinant human histones H1 and H2A significantly reduced HIV-1JR-FL infection (IC50 of 0.79 and 0.45 μmol/l, respectively), whereas H4 enhanced JR-FL luciferase activity. The inhibitory effects of crocodile plasma, recombinant H1 or recombinant H2A on HIV-1 infection were during or post-viral transcription. Circulating histones in crocodile blood, possibly released by neutrophil extracellular traps, are significant inhibitors of HIV-1 infection in-vitro. Extracellular recombinant histones have different effects on HIV-1 transcription and protein expression and are downregulated in HIV-1 patients. Circulating histones may be a novel resistance factor during HIV-1 infection, and peptide versions should be explored as future HIV-1 therapeutics that modulate viral transcription.

  9. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach.

    Science.gov (United States)

    Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto

    2013-11-14

    The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.

  10. CD4 Cell Counts at HIV Diagnosis among HIV Outpatient Study Participants, 2000–2009

    Directory of Open Access Journals (Sweden)

    Kate Buchacz

    2012-01-01

    Full Text Available Background. It is unclear if CD4 cell counts at HIV diagnosis have improved over a 10-year period of expanded HIV testing in the USA. Methods. We studied HOPS participants diagnosed with HIV infection ≤6 months prior to entry into care during 2000–2009. We assessed the correlates of CD4 count <200 cells/mm3 at HIV diagnosis (late HIV diagnosis by logistic regression. Results. Of 1,203 eligible patients, 936 (78% had a CD4 count within 3 months after HIV diagnosis. Median CD4 count at HIV diagnosis was 299 cells/mm3 and did not significantly improve over time (P=0.13. Comparing periods 2000-2001 versus 2008-2009, respectively, 39% and 35% of patients had a late HIV diagnosis (P=0.34. Independent correlates of late HIV diagnosis were having an HIV risk other than being MSM, age ≥35 years at diagnosis, and being of nonwhite race/ethnicity. Conclusions. There is need for routine universal HIV testing to reduce the frequency of late HIV diagnosis and increase opportunity for patient- and potentially population-level benefits associated with early antiretroviral treatment.

  11. Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr-Importin α interactions as a novel HIV-1 therapy

    International Nuclear Information System (INIS)

    Suzuki, Tatsunori; Yamamoto, Norio; Nonaka, Mizuho; Hashimoto, Yoshie; Matsuda, Go; Takeshima, Shin-nosuke; Matsuyama, Megumi; Igarashi, Tatsuhiko; Miura, Tomoyuki; Tanaka, Rie; Kato, Shingo; Aida, Yoko

    2009-01-01

    The development of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus (HIV) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. One such target is the interaction between Vpr, one of the accessory gene products of HIV-1 and Importin α, which is crucial, not only for the nuclear import of Vpr, but also for HIV-1 replication in macrophages. We have identified a potential parent compound, hematoxylin, which suppresses Vpr-Importin α interaction, thereby inhibiting HIV-1 replication in a Vpr-dependent manner. Analysis by real-time PCR demonstrated that hematoxylin specifically inhibited nuclear import step of pre-integration complex. Thus, hematoxylin is a new anti-HIV-1 inhibitor that targets the nuclear import of HIV-1 via the Vpr-Importin α interaction, suggesting that a specific inhibitor of the interaction between viral protein and the cellular factor may provide a new strategy for HIV-1 therapy.

  12. Active Methamphetamine Use is Associated with Transmitted Drug Resis-tance to Non-Nucleoside Reverse Transcriptase Inhibitors in Individuals with HIV Infection of Unknown Duration

    Science.gov (United States)

    Cachay, Edward R; Moini, Niousha; Kosakovsky Pond, Sergei L; Pesano, Rick; Lie, Yolanda S; Aiem, Heidi; Butler, David M; Letendre, Scott; Mathews, Wm. Christopher; Smith, Davey M

    2007-01-01

    Background: Frequent methamphetamine use among recently HIV infected individuals is associated with transmitted drug resistance (TDR) to non-nucleoside reverse transcriptase inhibitors (NNRTI); however, the reversion time of TDR to drug susceptible HIV may exceed 3 years. We assessed whether recreational substance use is associated with detectable TDR among individuals newly diagnosed with HIV infection of unknown duration. Design: Cross-sectional analysis. Methods: Subjects were enrolled at the University California, San Diego Early Intervention Program. Demographic, clinical and substance use data were collected using structured interviews. Genotypic resistance testing was performed using GeneSeq™, Monogram Biosciences. We analyzed the association between substance use and TDR using bivariate analyses and the corresponding transmission networks using phylogenetic models. Results: Between April 2004 and July 2006, 115 individuals with genotype data were enrolled. The prevalence of alcohol, marijuana and methamphetamine use were 98%, 71% and 64% respectively. Only active methamphetamine use in the 30 days prior to HIV diagnosis was independently associated with TDR to NNRTI (OR: 6.6; p=0.002). Conclusion: Despite not knowing the duration of their HIV infection, individuals reporting active methamphetamine use in the 30 days prior to HIV diagnosis are at an increased risk of having HIV strains that are resistant to NNRTI. PMID:18923691

  13. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    Martin-Garcia, Julio; Cao, Wei; Varela-Rohena, Angel; Plassmeyer, Matthew L.; Gonzalez-Scarano, Francisco

    2006-01-01

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  14. Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H.

    Science.gov (United States)

    Kankanala, Jayakanth; Kirby, Karen A; Huber, Andrew D; Casey, Mary C; Wilson, Daniel J; Sarafianos, Stefan G; Wang, Zhengqiang

    2017-12-01

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC 50  = 0.04 μM) with decent antiviral potency (EC 50  = 7.4 μM) and no cytotoxicity (CC 50  > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC 50  = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Resistance Analyses of Integrase Strand Transfer Inhibitors within Phase 3 Clinical Trials of Treatment-Naive Patients

    Directory of Open Access Journals (Sweden)

    Kirsten L. White

    2014-07-01

    Full Text Available The integrase (IN strand transfer inhibitors (INSTIs, raltegravir (RAL, elvitegravir (EVG and dolutegravir (DTG, comprise the newest drug class approved for the treatment of HIV-1 infection, which joins the existing classes of reverse transcriptase, protease and binding/entry inhibitors. The efficacy of first-line regimens has attained remarkably high levels, reaching undetectable viral loads in 90% of patients by Week 48; however, there remain patients who require a change in regimen due to adverse events, virologic failure with emergent resistance or other issues of patient management. Large, randomized clinical trials conducted in antiretroviral treatment-naive individuals are required for drug approval in this population in the US, EU and other countries, with the primary endpoint for virologic success at Week 48. However, there are differences in the definition of virologic failure and the evaluation of drug resistance among the trials. This review focuses on the methodology and tabulation of resistance to INSTIs in phase 3 clinical trials of first-line regimens and discusses case studies of resistance.

  16. HIV testing and counselling in Estonian prisons, 2012 to 2013: aims, processes and impacts.

    Science.gov (United States)

    Kivimets, K; Uuskula, A

    2014-11-27

    We present data from an observational cohort study on human immunodeficiency virus (HIV) prevention and control measures in prisons in Estonia to assess the potential for HIV transmission in this setting. HIV testing and retesting data from the Estonian prison health department were used to estimate HIV prevalence and incidence in prison. Since 2002, voluntary HIV counselling and testing has routinely been offered to all prisoners and has been part of the new prisoners health check. At the end of 2012, there were 3,289 prisoners in Estonia, including 170 women: 28.5% were drug users and 15.6% were infected with HIV. Of the HIV-positive inmates, 8.3% were newly diagnosed on prison entry. In 2012, 4,387 HIV tests (including retests) were performed in Estonian prisons. Among 1,756 initially HIV-negative prisoners who were in prison for more than one year and therefore tested for HIV twice within 12 months (at entry and annual testing), one new HIV infection was detected, an incidence of 0.067 per 100 person-years (95% confidence interval (CI): 0.025–5.572). This analysis indicates low risk of HIV transmission in Estonian prisons. Implementation of HIV management interventions could impact positively on the health of prisoners and the communities to which they return.

  17. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Richard Brad Jones

    2014-08-01

    Full Text Available Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis, such as suberanilohydroxamic acid (SAHA, romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL. Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

  18. Secretory leukocyte protease inhibitor expression and high-risk HPV infection in anal lesions of HIV positive patients

    Science.gov (United States)

    NUOVO, Gerard J.; GRINSZTEJN, Beatriz; FRIEDMAN, Ruth K.; VELOSO, Valdiléa G.; CUNHA, Cynthia B.; COUTINHO, José R.; VIANNA-ANDRADE, Cecilia; OLIVEIRA, Nathalia S.; WOODHAM, Andrew W.; DA SILVA, Diane M.; KAST, W. Martin

    2016-01-01

    Objective The aim of the current study was to evaluate secretory leukocyte protease inhibitor (SLPI) expression in anal biopsies from HIV-positive (HIV+) individuals, and compare that to anal intraepithelial neoplasia (AIN) diagnoses and human papillomavirus (HPV) status. Design This is a cross-sectional study of a cohort of 54 HIV+ (31 males and 23 females) from an AIDS clinic in Rio de Janeiro, Brazil. Methods The study material consisted of anorectal tissue biopsies obtained from HIV+ subjects, which were used to construct tissue microarray paraffin blocks for immunohistochemical analysis of SLPI expression. Biopsies were evaluated by an expert pathologist and classified as low-grade anal intraepithelial neoplasia (AIN1), high-grade anal intraepithelial neoplasia (AIN2/3), or normal squamous epithelium. Additionally, DNA from the biopsies was extracted and analyzed for the presence of low- or high-risk HPV DNA. Results Histologically normal squamous epithelium from the anorectal region showed strong positive SLPI staining in 17/20 (85%) samples. In comparison, 9/17 (53%) dysplastic squamous epithelial samples from AIN1 patients showed strong SLPI staining, and only 5/17 (29%) samples from AIN2-3 patients exhibited strong SPLI staining, which both were significantly fewer than those from normal tissue (p=0.005). Furthermore, there was a significantly higher proportion of samples in which oncogenic high-risk HPV genotypes were detected in low SLPI expressing tissues than that in tissues with high SLPI expression (p=0.040). Conclusion Taken together these results suggest that low SLPI expression is associated with high-risk HPV infections in the development of AIN. PMID:27149102

  19. A Single-Center Retrospective Cohort Analysis of Maternal and Infant Outcomes in HIV-Infected Mothers Treated with Integrase Inhibitors During Pregnancy.

    Science.gov (United States)

    Mounce, Monique L; Pontiggia, Laura; Adams, Jessica L

    2017-12-01

    Integrase strand transfer inhibitors (INSTI) are currently being investigated for the treatment of HIV in pregnancy. The purpose of this study is to evaluate the differences in maternal and infant outcomes in HIV-positive mothers treated with INSTI-containing antiretroviral therapy (ART) during pregnancy compared to protease inhibitor (PI)-containing ART. A retrospective, cohort study of INSTI- and PI-based ART used in pregnancy between 2007 and 2015 was performed. The primary objective was to evaluate the differences in viral load (VL) suppression prior to delivery. Secondary endpoints included time to and duration of VL suppression and safety parameters in both mothers and infants. For the primary analysis, the two arms were matched 1:2 INSTI to PI based on the presence or absence of viremia at the time of pregnancy determination. Additional analysis was performed on the entire matched and unmatched dataset. Twenty-one patients were matched (7 INSTI and 14 PI). There were no significant differences between groups with respect to the proportion of patients with VL suppression prior to delivery (71.4% INSTI vs. 92.9% PI, p = 0.247), and there were no significant differences in any of the secondary endpoints. Patients with documented adherence issues were statistically more likely to not be virologically suppressed prior to delivery (p = 0.002). No differences in efficacy or safety were found between patients treated with INSTIs compared to PIs. This study supports the further investigation of the use of INSTIs during pregnancy to reduce HIV transmission.

  20. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors.

    Science.gov (United States)

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.

  1. Types and delivery of emotional support to promote linkage and engagement in HIV care

    Directory of Open Access Journals (Sweden)

    Cook CL

    2017-12-01

    Full Text Available Christa L Cook,1 Shantrel Canidate,2 Nicole Ennis,3 Robert L Cook4 1Department of Family, Community, and Health System Science, College of Nursing, 2Social and Behavioral Science, College of Public Health and Health Profession, 3Department of Clinical and Health Psychology, College of Public Health and Health Professions, 4Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA Purpose: Despite recommendations for early entry into human immunodeficiency virus (HIV care, many people diagnosed with HIV delay seeking care. Multiple types of social support (ie, cognitive, emotional, and tangible are often needed for someone to transition into HIV care, but a lack of emotional support at diagnosis may be the reason why some people fail to stay engaged in care. Thus, the purpose of this study was to identify how people living with HIV conceptualized emotional support needs and delivery at diagnosis. Method: We conducted a secondary analysis of qualitative data from 27 people living with HIV, many of whom delayed entry into HIV care. Results: Participants described their experiences seeking care after an HIV diagnosis and identified components of emotional support that aided entry into care – identification, connection, and navigational presence. Many participants stated that these types of support were ideally delivered by peers with HIV. Conclusion: In clinical practice, providers often use an HIV diagnosis as an opportunity to educate patients about HIV prevention and access to services. However, this type of social support may not facilitate engagement in care if emotional support needs are not met. Keywords: linkage to care, engagement in care, social support, qualitative

  2. [Computational prediction of human immunodeficiency resistance to reverse transcriptase inhibitors].

    Science.gov (United States)

    Tarasova, O A; Filimonov, D A; Poroikov, V V

    2017-10-01

    Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS) and leads to over one million of deaths annually. Highly active antiretroviral treatment (HAART) is a gold standard in the HIV/AIDS therapy. Nucleoside and non-nucleoside inhibitors of HIV reverse transcriptase (RT) are important component of HAART, but their effect depends on the HIV susceptibility/resistance. HIV resistance mainly occurs due to mutations leading to conformational changes in the three-dimensional structure of HIV RT. The aim of our work was to develop and test a computational method for prediction of HIV resistance associated with the mutations in HIV RT. Earlier we have developed a method for prediction of HIV type 1 (HIV-1) resistance; it is based on the usage of position-specific descriptors. These descriptors are generated using the particular amino acid residue and its position; the position of certain residue is determined in a multiple alignment. The training set consisted of more than 1900 sequences of HIV RT from the Stanford HIV Drug Resistance database; for these HIV RT variants experimental data on their resistance to ten inhibitors are presented. Balanced accuracy of prediction varies from 80% to 99% depending on the method of classification (support vector machine, Naive Bayes, random forest, convolutional neural networks) and the drug, resistance to which is obtained. Maximal balanced accuracy was obtained for prediction of resistance to zidovudine, stavudine, didanosine and efavirenz by the random forest classifier. Average accuracy of prediction is 89%.

  3. Dideoxynucleoside HIV reverse transcriptase inhibitors and drug-related hepatotoxicity: a case report

    Directory of Open Access Journals (Sweden)

    Lapadula Giuseppe

    2007-05-01

    Full Text Available Abstract This report regards the case of a 43 year-old HIV-positive woman who developed an episode of serious transaminase elevation during stavudine-including antiretroviral therapy. Diagnostic assessment ruled out hepatitis virus co-infection, alcohol abuse besides other possible causes of liver damage. No signs of lactic acidosis were present. Liver biopsy showed portal inflammatory infiltrate, spotty necrosis, vacuoles of macro- and micro-vesicular steatosis, acidophil and foamy hepatocytes degeneration with organelles clumping, poorly formed Mallory bodies and neutrophil granulocytes attraction (satellitosis. A dramatic improvement in liver function tests occurred when stavudine was discontinued and a new antiretroviral regimen with different nucleoside reverse transcriptase inhibitors was used. The importance of considering hepatotoxicity as an adverse event of HAART including stavudine, even in absence of other signs of mitochondrial toxicity should therefore be underlined. Liver biopsy may provide further important information regarding patients with severe transaminase elevation, for a better understanding of the etiology of liver damage.

  4. Measuring enzymatic HIV-1 susceptibility to two reverse transcriptase inhibitors as a rapid and simple approach to HIV-1 drug-resistance testing.

    Directory of Open Access Journals (Sweden)

    Dieter Hoffmann

    Full Text Available Simple and cost-effective approaches for HIV drug-resistance testing are highly desirable for managing increasingly expanding HIV-1 infected populations who initiate antiretroviral therapy (ART, particularly in resource-limited settings. Non-nucleoside reverse trancriptase inhibitor (NNRTI-based regimens with an NRTI backbone containing lamivudine (3TC or emtricitabine (FTC are preferred first ART regimens. Failure with these drug combinations typically involves the selection of NNRTI- and/or 3TC/FTC-resistant viruses. Therefore, the availability of simple assays to measure both types of drug resistance is critical. We have developed a high throughput screening test for assessing enzymatic resistance of the HIV-1 RT in plasma to 3TC/FTC and NNRTIs. The test uses the sensitive "Amp-RT" assay with a newly-developed real-time PCR format to screen biochemically for drug resistance in single reactions containing either 3TC-triphosphate (3TC-TP or nevirapine (NVP. Assay cut-offs were defined based on testing a large panel of subtype B and non-subtype B clinical samples with known genotypic profiles. Enzymatic 3TC resistance correlated well with the presence of M184I/V, and reduced NVP susceptibility was strongly associated with the presence of K103N, Y181C/I, Y188L, and G190A/Q. The sensitivity and specificity for detecting resistance were 97.0% and 96.0% in samples with M184V, and 97.4% and 96.2% for samples with NNRTI mutations, respectively. We further demonstrate the utility of an HIV capture method in plasma by using magnetic beads coated with CD44 antibody that eliminates the need for ultracentifugation. Thus our results support the use of this simple approach for distinguishing WT from NNRTI- or 3TC/FTC-resistant viruses in clinical samples. This enzymatic testing is subtype-independent and can assist in the clinical management of diverse populations particularly in resource-limited settings.

  5. Etravirine and rilpivirine resistance in HIV-1 subtype CRF01_AE-infected adults failing non-nucleoside reverse transcriptase inhibitor-based regimens.

    Science.gov (United States)

    Bunupuradah, Torsak; Ananworanich, Jintanat; Chetchotisakd, Ploenchan; Kantipong, Pacharee; Jirajariyavej, Supunnee; Sirivichayakul, Sunee; Munsakul, Warangkana; Prasithsirikul, Wisit; Sungkanuparph, Somnuek; Bowonwattanuwong, Chureeratana; Klinbuayaem, Virat; Petoumenos, Kathy; Hirschel, Bernard; Bhakeecheep, Sorakij; Ruxrungtham, Kiat

    2011-01-01

    We studied prevalence of etravirine (ETR) and rilpivirine (RPV) resistance in HIV-1 subtype CRF01_AE infection with first-line non-nucleoside reverse transcriptase inhibitor (NNRTI) failure. A total of 225 adults failing two nucleoside reverse transcriptase inhibitors (NRTIs) plus 1 NNRTI in Thailand with HIV RNA>1,000 copies/ml were included. Genotypic resistance results and HIV-1 subtype were interpreted by Stanford DR database. ETR resistance was calculated by the new Monogram weighted score (Monogram WS; ≥ 4 indicating high-level ETR resistance) and by DUET weighted score (DUET WS; 2.5-3.5 and ≥ 4 resulted in intermediate and reduce ETR response, respectively). RPV resistance interpretation was based on previous reports. Median (IQR) age was 38 (34-42) years, 41% were female and CDC A:B:C were 22%:21%:57%. HIV subtypes were 96% CRF01_AE and 4% B. Antiretrovirals at failure were lamivudine (100%), stavudine (93%), nevirapine (90%) and efavirenz (10%) with a median (IQR) duration of 3.4 (1.8-4.5) years. Median (IQR) CD4(+) T-cell count and HIV RNA were 194 (121-280) cells/mm³ and 4.1 (3.6-4.6) log₁₀ copies/ml, respectively. The common NNRTI mutations were Y181C (41%), G190A (22%) and K103N (19%). The proportion of patients with Monogram WS score ≥ 4 was 61.3%. By DUET WS, 49.8% and 7.5% of patients were scored 2.5-3.5 and ≥4, respectively. Only HIV RNA ≥ 4 log₁₀ copies/ml at failure was associated with both Monogram WS ≥ 4 (OR 2.3, 95% CI 1.3-3.9; P=0.003) and DUET WS ≥ 2.5 (OR 1.9, 95% CI 1.1-3.3; P=0.02). The RVP resistance-associated mutations (RAMs) detected were K101P (1.8%), Y181I (2.7%) and Y181V (3.6%). All patients with RPV mutation had ETR resistance. No E138R/E138K mutations were detected. Approximately 60% of patients had high-level ETR resistance. The role of ETR in second-line therapy is limited in late NNRTI failure settings. RVP RAMs were uncommon, but cross-resistance between ETR and RVP was high.

  6. HIV cure research community engagement in North Carolina: a mixed-methods evaluation of a crowdsourcing contest.

    Science.gov (United States)

    Mathews, Allison; Farley, Samantha; Blumberg, Meredith; Knight, Kimberley; Hightow-Weidman, Lisa; Muessig, Kate; Rennie, Stuart; Tucker, Joseph

    2017-10-01

    The purpose of this study was to evaluate the feasibility of using a crowdsourcing contest to promote HIV cure research community engagement. Crowdsourcing contests are open calls for community participation to achieve a task, in this case to engage local communities about HIV cure research. Our contest solicited images and videos of what HIV cure meant to people. Contestants submitted entries to IdeaScale, an encrypted online contest platform. We used a mixed-methods study design to evaluate the contest. Engagement was assessed through attendance at promotional events and social media user analytics. Google Analytics measured contest website user-engagement statistics. Text from contest video entries was transcribed, coded and analysed using MAXQDA. There were 144 attendees at three promotional events and 32 entries from 39 contestants. Most individuals who submitted entries were black ( n =31), had some college education ( n =18) and were aged 18-23 years ( n =23). Social media analytics showed 684 unique page followers, 2233 unique page visits, 585 unique video views and an overall reach of 80,624 unique users. Contest submissions covered themes related to the community's role in shaping the future of HIV cure through education, social justice, creativity and stigma reduction. Crowdsourcing contests are feasible for engaging community members in HIV cure research. Community contributions to crowdsourcing contests provide useful content for culturally relevant and locally responsive research engagement.

  7. Determinants of Human Immunodeficiency Virus (HIV prevalence in homosexual and bisexual men screened for admission to a cohort study of HIV negatives in Belo Horizonte, Brazil: Project Horizonte

    Directory of Open Access Journals (Sweden)

    Carneiro Mariângela

    2003-01-01

    Full Text Available Project Horizonte, an open cohort of homosexual and bisexual human immunodeficiency virus (HIV-1 negative men, is a component of the AIDS Vaccine Program, in Belo Horizonte, Minas Gerais, Brazil. The objective of this study was to compare volunteers testing HIV positive at cohort entry with a sample of those who tested HIV negative in order to identify risk factors for prevalent HIV infection, in a population being screened for enrollment at Project Horizonte. A nested case-control study was conducted. HIV positive volunteers at entry (cases were matched by age and admission date to three HIV negative controls each. Selected variables used for the current analysis included demographic factors, sexual behavior and other risk factors for HIV infection. During the study period (1994-2001, among the 621 volunteers screened, 61 tested positive for HIV. Cases were matched to 183 HIV negative control subjects. After adjustments, the main risk factors associated with HIV infection were unprotected sex with an occasional partners, OR = 3.7 (CI 95% 1.3-10.6, receptive anal intercourse with an occasional partner, OR = 2.8 (95% CI 0.9-8.9 and belonging to the negro racial group, OR = 3.4 (CI 95% 1.1-11.9. These variables were associated with an increase in the risk of HIV infection among men who have sex with men at the screening for admission to an open HIV negative cohort.

  8. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism.

    Science.gov (United States)

    Moonsamy, Suri; Bhakat, Soumendranath; Soliman, Mahmoud E S

    2015-01-01

    The first account on the dynamic features of Nef or negative factor, a small myristoylated protein located in the cytoplasm believes to increase HIV-1 viral titer level, is reported herein. Due to its major role in HIV-1 pathogenicity, Nef protein is considered an emerging target in anti-HIV drug design and discovery process. In this study, comparative long-range all-atom molecular dynamics simulations were employed for apo and bound protein to unveil molecular mechanism of HIV-Nef dimerization and inhibition. Results clearly revealed that B9, a newly discovered Nef inhibitor, binds at the dimeric interface of Nef protein and caused significant separation between orthogonally opposed residues, namely Asp108, Leu112 and Gln104. Large differences in magnitudes were observed in the radius of gyration (∼1.5 Å), per-residue fluctuation (∼2 Å), C-alpha deviations (∼2 Å) which confirm a comparatively more flexible nature of apo conformation due to rapid dimeric association. Compared to the bound conformer, a more globally correlated motion in case of apo structure of HIV-Nef confirms the process of dimeric association. This clearly highlights the process of inhibition as a result of ligand binding. The difference in principal component analysis (PCA) scatter plot and per-residue mobility plot across first two normal modes further justifies the same findings. The in-depth dynamic analyses of Nef protein presented in this report would serve crucial in understanding its function and inhibition mechanisms. Information on inhibitor binding mode would also assist in designing of potential inhibitors against this important HIV target.

  9. Selection of HIV resistance associated with antiretroviral therapy initiated due to pregnancy and suspended postpartum.

    Science.gov (United States)

    Ellis, Giovanina M; Huang, Sharon; Hitti, Jane; Frenkel, Lisa M

    2011-11-01

    Compare the risk of HIV drug resistance in women stopping suppressive nelfinavir (NFV)-based or Nevirapine (NVP)-based antiretroviral therapy (ART) after pregnancy. Specimens collected after stopping ART were tested for drug resistance by an oligonucleotide ligation assay and consensus sequencing. When postpartum drug resistance was detected, specimens obtained at study entry and during ART were evaluated. Sixteen of 38 women with ART-induced suppression of viral replication suspended ART postpartum. Resistance mutations were detected in 75% who stopped NFV-ART and in 50% who stopped NVP-ART. M184V, associated with Lamivudine resistance, was more frequent among those randomized to NFV-ART compared with NVP-ART (6 of 8 versus 1 of 8; P = 0.04), and nonnucleoside reverse transcriptase inhibitor resistance was detected in 4 of 8 stopping NVP-ART. HIV drug resistance was frequently observed among women who stopped suppressive NVP-ART or NFV-ART postpartum. This suggests that NFV-ART may have suboptimal potency, that staggering discontinuation of NVP-ART may be warranted, and/or ART adherence may be lax in women who choose to stop ART postpartum.

  10. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking: anchors modified polyanions interference with the HIV-1 fusion mediator.

    Science.gov (United States)

    Tsvetkov, Vladimir B; Serbin, Alexander V

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  11. Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase†

    Science.gov (United States)

    Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2009-01-01

    Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161

  12. High HIV-1 Diversity and Prevalence of Transmitted Drug Resistance Among Antiretroviral-Naive HIV-Infected Pregnant Women from Rio de Janeiro, Brazil.

    Science.gov (United States)

    Delatorre, Edson; Silva-de-Jesus, Carlos; Couto-Fernandez, José Carlos; Pilotto, Jose H; Morgado, Mariza G

    2017-01-01

    Antiretroviral (ARV) resistance mutations in human immunodeficiency virus type 1 (HIV-1) infection may reduce the efficacy of prophylactic therapy to prevent mother-to-child transmission (PMTCT) and future treatment options. This study evaluated the diversity and the prevalence of transmitted drug resistance (TDR) in protease (PR) and reverse transcriptase (RT) regions of HIV-1 pol gene among 87 ARV-naive HIV-1-infected pregnant women from Rio de Janeiro, Brazil, between 2012 and 2015. The viral diversity comprised HIV-1 subtypes B (67.8%), F1 (17.2%), and C (4.6%); the circulating recombinant forms 12_BF (2.3%), 28/29_BF, 39_BF, 02_AG (1.1% each) and unique recombinants forms (4.5%). The overall prevalence of any TDR was 17.2%, of which 5.7% for nucleoside RT inhibitors, 5.7% for non-nucleoside RT inhibitors, and 8% for PR inhibitors. The TDR prevalence found in this population may affect the virological outcome of the standard PMTCT ARV-regimens, reinforcing the importance of continuous monitoring.

  13. eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients.

    Directory of Open Access Journals (Sweden)

    Meredith E Davis-Gardner

    2017-12-01

    Full Text Available Antibody-dependent cell-mediated cytotoxity (ADCC can eliminate HIV-1 infected cells, and may help reduce the reservoir of latent virus in infected patients. Sera of HIV-1 positive individuals include a number of antibodies that recognize epitopes usually occluded on HIV-1 envelope glycoprotein (Env trimers. We have recently described eCD4-Ig, a potent and exceptionally broad inhibitor of HIV-1 entry that can be used to protect rhesus macaques from multiple high-dose challenges with simian-human immunodeficiency virus AD8 (SHIV-AD8. Here we show that eCD4-Ig bearing an IgG1 Fc domain (eCD4-IgG1 can mediate efficient ADCC activity against HIV-1 isolates with differing tropisms, and that it does so at least 10-fold more efficiently than CD4-Ig, even when more CD4-Ig molecules bound cell surface-expressed Env. An ADCC-inactive IgG2 form of eCD4-Ig (eCD4-IgG2 exposes V3-loop and CD4-induced epitopes on cell-expressed trimers, and renders HIV-1-infected cells susceptible to ADCC mediated by antibodies of these classes. Moreover, eCD4-IgG2, but not IgG2 forms of the broadly neutralizing antibodies VRC01 and 10-1074, enhances the ADCC activities of serum antibodies from patients by 100-fold, and significantly enhanced killing of two latently infected T-cell lines reactivated by vorinostat or TNFα. Thus eCD4-Ig is qualitatively different from CD4-Ig or neutralizing antibodies in its ability to mediate ADCC, and it may be uniquely useful in treating HIV-1 infection or reducing the reservoir of latently infected cells.

  14. Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase.

    Science.gov (United States)

    Tang, Jing; Vernekar, Sanjeev Kumar V; Chen, Yue-Lei; Miller, Lena; Huber, Andrew D; Myshakina, Nataliya; Sarafianos, Stefan G; Parniak, Michael A; Wang, Zhengqiang

    2017-06-16

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not clinically validated as an antiviral target. 2-Hydroxyisoquinoline-1,3-dione (HID) is known to confer active site directed inhibition of divalent metal-dependent enzymatic functions, such as HIV RNase H, integrase (IN) and hepatitis C virus (HCV) NS5B polymerase. We report herein the synthesis and biochemical evaluation of a few C-5, C-6 or C-7 substituted HID subtypes as HIV RNase H inhibitors. Our data indicate that while some of these subtypes inhibited both the RNase H and polymerase (pol) functions of RT, potent and selective RNase H inhibition was achieved with subtypes 8-9 as exemplified with compounds 8c and 9c. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    International Nuclear Information System (INIS)

    Ebina, Hirotaka; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio

    2012-01-01

    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  16. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ebina, Hirotaka, E-mail: hebina@virus.kyoto-u.ac.jp; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio

    2012-05-25

    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  17. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues

    Science.gov (United States)

    Zhang, Zhenshan; Zheng, Mingyue; Du, Li; Shen, Jianhua; Luo, Xiaomin; Zhu, Weiliang; Jiang, Hualiang

    2006-05-01

    To find useful information for discovering dual functional inhibitors against both wild type (WT) and K103N mutant reverse transcriptases (RTs) of HIV-1, molecular docking and 3D-QSAR approaches were applied to a set of twenty-five 4,1-benzoxazepinone analogues of efavirenz (SUSTIVA®), some of them are active against the two RTs. 3D-QSAR models were constructed, based on their binding conformations determined by molecular docking, with r 2 cv values ranging from 0.656 to 0.834 for CoMFA and CoMSIA, respectively. The models were then validated to be highly predictive and extrapolative by inhibitors in two test sets with different molecular skeletons. Furthermore, CoMFA models were found to be well matched with the binding sites of both WT and K103N RTs. Finally, a reasonable pharmacophore model of 4,1-benzoxazepinones were established. The application of the model not only successfully differentiated the experimentally determined inhibitors from non-inhibitors, but also discovered two potent inhibitors from the compound database SPECS. On the basis of both the 3D-QSAR and pharmacophore models, new clues for discovering and designing potent dual functional drug leads against HIV-1 were proposed: (i) adopting positively charged aliphatic group at the cis-substituent of C3; (ii) reducing the electronic density at the position of O4; (iii) positioning a small branched aliphatic group at position of C5; (iv) using the negatively charged bulky substituents at position of C7.

  18. Management of HIV During Pregnancy

    OpenAIRE

    Chamma JP; Monteleone VF; V dos Reis L; Bonafe SM; Panão M

    2016-01-01

    According to UNAIDS, in 2015, one hundred and fifty thousand children were infected by HIV worldwide, therefore the use of antiretroviral therapy (ARV) during pregnancy is an important development for the reduction of maternal-fetal transmission. The treatment of a pregnant woman is done by combining two different ARV classes. The combination of two nucleoside reverse transcriptase inhibitors (NRTIs) with one non-nucleoside reverse transcriptase inhibitor (NNRTI) or protease inhibitor (PI) is...

  19. Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Corona, Angela; Steinmann, Casper

    2018-01-01

    is a long and expensive process that can be speeded up by in silico methods. In the present study, a structure-guided screening is coupled with a similarity-based search on the Specs database to identify a new class of HIV-1 RNase H inhibitors. Out of the 45 compounds selected for experimental testing, 15...... inhibited the RNase H function below 100 μM with three hits exhibiting IC50 values active compound, AA, inhibits HIV-1 RNase H with an IC50 of 5.1 μM and exhibits a Mg-independent mode of inhibition. Site-directed mutagenesis studies provide valuable insight into the binding mode of newly...

  20. Effects of Angiotensin Converting Enzyme Inhibitors on Liver Fibrosis in HIV and Hepatitis C Coinfection

    Directory of Open Access Journals (Sweden)

    Lindsey J. Reese

    2012-01-01

    Full Text Available Background. Liver fibrosis is accelerated in HIV and hepatitis C coinfection, mediated by profibrotic effects of angiotensin. The objective of this study was to determine if angiotensin converting enzyme inhibitors (ACE-Is attenuate liver fibrosis in coinfection. Methods. A retrospective review of 156 coinfected subjects was conducted to analyze the association between exposure to ACE-Is and liver fibrosis. Noninvasive indices of liver fibrosis (APRI, FIB-4, Forns indices were compared between subjects who had taken ACE-Is and controls who had not taken them. Linear regression was used to evaluate ACE-I use as an independent predictor of fibrosis. Results. Subjects taking ACE-Is for three years were no different than controls on the APRI and the FIB-4 but had significantly higher scores than controls on the Forns index, indicating more advanced fibrosis. The use of ACE-Is for three years remained independently associated with an elevated Forns score when adjusted for age, race, and HIV viral load (P<0.001. There were significant associations between all of the indices and significant fibrosis, as determined clinically and radiologically. Conclusions. There was not a protective association between angiotensin inhibition and liver fibrosis in coinfection. These noninvasive indices may be useful for ruling out significant fibrosis in coinfection.

  1. In vitro and ex vivo evaluations on transdermal delivery of the HIV inhibitor IQP-0410.

    Directory of Open Access Journals (Sweden)

    Anthony S Ham

    Full Text Available The aim of this study was to investigate the physicochemical and in vitro/ex vivo characteristics of the pyrmidinedione IQP-0410 formulated into transdermal films. IQP-0410 is a potent therapeutic anti-HIV nonnucleoside reverse transcriptase inhibitor that would be subjected to extensive first pass metabolism, through conventional oral administration. Therefore, IQP-0410 was formulated into ethyl cellulose/HPMC-based transdermal films via solvent casting. In mano evaluations were performed to evaluate gross physical characteristics. In vitro release studies were performed in both Franz cells and USP-4 dissolution vessels. Ex vivo release and permeability assays were performed on human epidermal tissue models, and the permeated IQP-0410 was collected for in vitro HIV-1 efficacy assays in CEM-SS cells and PBMCs. Film formulation D3 resulted in pliable, strong transdermal films that were loaded with 2% (w/w IQP-0410. Composed of 60% (w/w ethyl cellulose and 20% (w/w HPMC, the films contained < 1.2% (w/w of water and were hygroscopic resulting in significant swelling under humid conditions. The water permeable nature of the film resulted in complete in vitro dissolution and drug release in 26 hours. When applied to ex vivo epidermal tissues, the films were non-toxic to the tissue and also were non-toxic to HIV target cells used in the in vitro efficacy assays. Over a 3 day application, the films delivered IQP-0410 through the skin tissue at a zero-order rate of 0.94 ± 0.06 µg/cm(2/hr with 134 ± 14.7 µM collected in the basal media. The delivered IQP-0410 resulted in in vitro EC50 values against HIV-1 of 2.56 ± 0.40 nM (CEM-SS and 0.58 ± 0.03 nM (PBMC. The film formulation demonstrated no significant deviation from target values when packaged in foil pouches under standard and accelerated environmental conditions. It was concluded that the transdermal film formulation was a potentially viable method of administering IQP-0410 that warrants

  2. Defining the Interaction of HIV-1 with the Mucosal Barriers of the Female Reproductive Tract

    Science.gov (United States)

    Carias, Ann M.; McCoombe, Scott; McRaven, Michael; Anderson, Meegan; Galloway, Nicole; Vandergrift, Nathan; Fought, Angela J.; Lurain, John; Duplantis, Maurice; Veazey, Ronald S.

    2013-01-01

    Worldwide, HIV-1 infects millions of people annually, the majority of whom are women. To establish infection in the female reproductive tract (FRT), HIV-1 in male ejaculate must overcome numerous innate and adaptive immune factors, traverse the genital epithelium, and establish infection in underlying CD4+ target cells. How the virus achieves this remains poorly defined. By utilizing a new technique, we define how HIV-1 interacts with different tissues of the FRT using human cervical explants and in vivo exposure in the rhesus macaque vaginal transmission model. Despite previous claims of the squamous epithelium being an efficient barrier to virus entry, we reveal that HIV-1 can penetrate both intact columnar and squamous epithelial barriers to depths where the virus can encounter potential target cells. In the squamous epithelium, we identify virus entry occurring through diffusive percolation, penetrating areas where cell junctions are absent. In the columnar epithelium, we illustrate that virus does not transverse barriers as well as previously thought due to mucus impediment. We also show a statistically significant correlation between the viral load of inocula and the ability of HIV-1 to pervade the squamous barrier. Overall, our results suggest a diffusive percolation mechanism for the initial events of HIV-1 entry. With these data, we also mathematically extrapolate the number of HIV-1 particles that penetrate the mucosa per coital act, providing a biological description of the mechanism for HIV-1 transmission during the acute and chronic stages of infection. PMID:23966398

  3. Viral dynamics in primary HIV-1 infection. Karolinska Institutet Primary HIV Infection Study Group.

    Science.gov (United States)

    Lindbäck, S; Karlsson, A C; Mittler, J; Blaxhult, A; Carlsson, M; Briheim, G; Sönnerborg, A; Gaines, H

    2000-10-20

    To study the natural course of viremia during primary HIV infection (PHI). Eight patients were followed from a median of 5 days from the onset of PHI illness. Plasma HIV-1 RNA levels were measured frequently and the results were fitted to mathematical models. HIV-1 RNA levels were also monitored in nine patients given two reverse transcriptase inhibitors and a protease inhibitor after a median of 7 days from the onset of PHI illness. HIV-1 RNA appeared in the blood during the week preceding onset of PHI illness and increased rapidly during the first viremic phase, reaching a peak at a mean of 7 days after onset of illness. This was followed by a phase of rapidly decreasing levels of HIV-1 RNA to an average of 21 days after onset. Viral density continued to decline thereafter but at a 5- to 50-fold lower rate; a steady-state level was reached at a median of 2 months after onset of PHI. Peak viral density levels correlated significantly with levels measured between days 50 and 600. Initiation of antiretroviral treatment during PHI resulted in rapidly declining levels to below 50 copies/mL. This study demonstrates the kinetic phases of viremia during PHI and indicates two new contributions to the natural history of HIV-1 infection: PHI peak levels correlate with steady-state levels and HIV-1 RNA declines biphasically; an initial rapid decay is usually followed by a slow decay, which is similar to the initial changes seen with antiviral treatment.

  4. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  5. Diaryltriazine non-nucleoside reverse transcriptase inhibitors are potent candidates for pre-exposure prophylaxis in the prevention of sexual HIV transmission.

    Science.gov (United States)

    Ariën, Kevin K; Venkatraj, Muthusamy; Michiels, Johan; Joossens, Jurgen; Vereecken, Katleen; Van der Veken, Pieter; Abdellati, Saïd; Cuylaerts, Vicky; Crucitti, Tania; Heyndrickx, Leo; Heeres, Jan; Augustyns, Koen; Lewi, Paul J; Vanham, Guido

    2013-09-01

    Pre-exposure prophylaxis and topical microbicides are important strategies in the prevention of sexual HIV transmission, especially since partial protection has been shown in proof-of-concept studies. In search of new candidate drugs with an improved toxicity profile and with activity against common non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV, we have synthesized and investigated a library of 60 new diaryltriazine analogues. From this library, 15 compounds were evaluated in depth using a broad armamentarium of in vitro assays that are part of a preclinical testing algorithm for microbicide development. Antiviral activity was assessed in a cell line, and in primary human cells, against both subtype B and subtype C HIV-1 and against viruses resistant to therapeutic NNRTIs and the candidate NNRTI microbicide dapivirine. Toxicity towards primary blood-derived cells, cell lines originating from the female reproductive tract and female genital microflora was also studied. We identified several compounds with highly potent antiviral activity and toxicity profiles that are superior to that of dapivirine. In particular, compound UAMC01398 is an interesting new candidate that warrants further investigation because of its superior toxicity profile and potent activity against dapivirine-resistant viruses.

  6. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors

    Directory of Open Access Journals (Sweden)

    Lucianna Helene Santos

    2015-11-01

    Full Text Available Reverse transcriptase (RT is a multifunctional enzyme in the human immunodeficiency virus (HIV-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

  8. High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea.

    Science.gov (United States)

    Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M; Myatt, Mark; Hearps, Anna C; Jordan, Michael R

    2017-01-01

    Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented.

  9. Long-term analysis of resistance development in HIV-1 positive patients treated with protease and reverse transcriptase inhibitors: Correlation of the genotype and disease progression

    Czech Academy of Sciences Publication Activity Database

    Prejdová, Jana; Weber, Jan; Machala, L.; Reiniš, Milan; Linka, M.; Brůčková, M.; Vandasová, M.; Staňková, M.; Konvalinka, Jan

    2005-01-01

    Roč. 49, č. 1 (2005), 29-36 ISSN 0001-723X R&D Projects: GA MZd(CZ) NI6339 Grant - others:5th Framework(XE) QLK2-CT-2001-02360 Institutional research plan: CEZ:AV0Z4055905 Keywords : HIV * protease inhibitors * resistance development Subject RIV: CE - Biochemistry Impact factor: 0.696, year: 2005

  10. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    Science.gov (United States)

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious

  11. ACUTE HIV: WHAT IS NEW AND DO WE TREAT? clinical

    African Journals Online (AJOL)

    Acute HIV infection (AHI) is usually defined as the time from entry of the virus into the body to completion of seroconversion, while early-stage HIV infection gener- ally refers to the interval between seroconversion and the establishment of the viral load set point. The mag- nitude of the viral set point is prognostic for disease.

  12. Histone deacetylase inhibitors for purging HIV-1 from the latent reservoir.

    NARCIS (Netherlands)

    Matalon, S.; Rasmussen, T.A.; Dinarello, C.A.

    2011-01-01

    A reservoir of latently infected memory CD4(+) T cells is believed to be the source of HIV-1 reemergence after discontinuation of antiretroviral therapy. HIV-1 eradication may depend on depletion of this reservoir. Integrated HIV-1 is inaccessible for expression, in part because of histone

  13. Virologic failure of protease inhibitor-based second-line antiretroviral therapy without resistance in a large HIV treatment program in South Africa.

    Directory of Open Access Journals (Sweden)

    Julie H Levison

    Full Text Available We investigated the prevalence of wild-type virus (no major drug resistance and drug resistance mutations at second-line antiretroviral treatment (ART failure in a large HIV treatment program in South Africa.HIV-infected patients ≥ 15 years of age who had failed protease inhibitor (PI-based second-line ART (2 consecutive HIV RNA tests >1000 copies/ml on lopinavir/ritonavir, didanosine, and zidovudine were identified retrospectively. Patients with virologic failure were continued on second-line ART. Genotypic testing for drug resistance was performed on frozen plasma samples obtained closest to and after the date of laboratory confirmed second-line ART failure. Of 322 HIV-infected patients on second-line ART, 43 were adults with confirmed virologic failure, and 33 had available plasma for viral sequencing. HIV-1 RNA subtype C predominated (n = 32, 97%. Mean duration on ART (SD prior to initiation of second-line ART was 23 (17 months, and time from second-line ART initiation to failure was 10 (9 months. Plasma samples were obtained 7(9 months from confirmed failure. At second-line failure, 22 patients (67% had wild-type virus. There was no major resistance to PIs found. Eleven of 33 patients had a second plasma sample taken 8 (5.5 months after the first. Median HIV-1 RNA and the genotypic resistance profile were unchanged.Most patients who failed second-line ART had wild-type virus. We did not observe evolution of resistance despite continuation of PI-based ART after failure. Interventions that successfully improve adherence could allow patients to continue to benefit from second-line ART therapy even after initial failure.

  14. The Second-Generation Maturation Inhibitor GSK3532795 Maintains Potent Activity Toward HIV Protease Inhibitor–Resistant Clinical Isolates

    Science.gov (United States)

    Ray, Neelanjana; Li, Tianbo; Lin, Zeyu; Protack, Tricia; van Ham, Petronella Maria; Hwang, Carey; Krystal, Mark; Nijhuis, Monique; Lataillade, Max

    2017-01-01

    Background: Protease inhibitor (PI)-resistant HIV-1 isolates with primary substitutions in protease (PR) and secondary substitutions in Gag could potentially exhibit cross-resistance to maturation inhibitors. We evaluated the second-generation maturation inhibitor, GSK3532795, for activity toward clinical isolates with genotypic and phenotypic characteristics associated with PI resistance (longitudinal). Methods: Longitudinal clinical isolates from 15 PI-treated patients and 7 highly PI-resistant (nonlongitudinal) viruses containing major and minor PI resistance-associated mutations were evaluated for GSK3532795 sensitivity. Phenotypic sensitivity was determined using the PhenoSense Gag/PR assay (Monogram Biosciences) or in-house single- and multiple-cycle assays. Changes from baseline [CFB; ratio of post- to pre-treatment FC-IC50 (fold-change in IC50 versus wild-type virus)] Monogram (11 patients)] and 1.5 (1.0–2.2) [single-cycle (4 patients)]. The 2 post-PI treatment samples showing GSK3532795 CFB >3 (Monogram) were retested using single- and multiple-cycle assays. Neither sample had meaningful sensitivity changes in the multiple-cycle assay. Gag changes were not associated with an increased GSK3532795 CFB. Conclusions: GSK3532795 maintained antiviral activity against PI-resistant isolates with emergent PR and/or Gag mutations. This finding supports continued development of GSK3532795 in treatment-experienced patients with or without previous PI therapy. PMID:28234686

  15. Preclinical discovery and development of maraviroc for the treatment of HIV.

    Science.gov (United States)

    Veljkovic, Nevena; Vucicevic, Jelica; Tassini, Sabrina; Glisic, Sanja; Veljkovic, Veljko; Radi, Marco

    2015-06-01

    Maraviroc is a first-in-class antiretroviral (ARV) drug acting on a host cell target (CCR5), which blocks the entry of the HIV virus into the cell. Maraviroc is currently indicated for combination ARV treatment in adults infected only with CCR5-tropic HIV-1. This drug discovery case history focuses on the key studies that led to the discovery and approval of maraviroc, as well as on post-launch clinical reports. The article is based on the data reported in published preclinical and clinical studies, conference posters and on drug package data. The profound understanding of HIV's entry mechanisms has provided a strong biological rationale for targeting the chemokine receptor CCR5. The CCR5-antagonist mariviroc, with its unique mode of action and excellent safety profile, is an important therapeutic option for HIV patients. In general, the authors believe that targeting host factors is a useful approach for combating new and re-emerging transmissible diseases, as well as pathogens that easily become resistant to common antiviral drugs. Maraviroc, offering a potent and safe cellular receptor-mediated pharmacological response to HIV, has paved the way for the development of a new generation of host-targeting antivirals.

  16. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    International Nuclear Information System (INIS)

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki

    2015-01-01

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol

  17. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki, E-mail: y-yasutake@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517 (Japan)

    2015-10-23

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.

  18. Distribution of HIV RNA in CSF and Blood is linked to CD4/CD8 Ratio During Acute HIV.

    Science.gov (United States)

    Chan, Phillip; Patel, Payal; Hellmuth, Joanna; Colby, Donn J; Kroon, Eugène; Sacdalan, Carlo; Pinyakorn, Suteeraporn; Jagodzinski, Linda; Krebs, Shelly; Ananworanich, Jintanat; Valcour, Victor; Spudich, Serena

    2018-05-07

    HIV RNA levels in the plasma and cerebrospinal fluid (CSF) are correlated in chronic HIV infection but their dynamics have not been characterized during acute infection. This study analyzed predictors of CSF HIV RNA and relative degree of CNS viral transmigration expressed as plasma minus CSF HIV log10 RNA (PCratio) during untreated acute HIV infection. CSF immune markers were compared between groups with different PCratio. 117 mostly male (97%) participants in the RV254 cohort in Bangkok, Thailand, had median age 28 years and an estimated median 18 days duration of infection; forty-three (37%) were Fiebig stages I/II. Twenty-seven (23%) had CSF HIV RNA CSF HIV RNA and PCratio of 3.76 and 2.36 Log10 copies/mL, respectively. HIV RNA peaked at Fiebig III in plasma and Fiebig IV in CSF. In multivariable analyses, plasma HIV RNA and CD4/CD8 ratio independently correlated with CSF HIV RNA (pCSF neopterin, sCD163, IL-6 and sCD14 levels (all pCSF HIV RNA and PCratio, suggesting that immune responses modulate CNS viral entry at early infection.

  19. Long-term effectiveness of highly active antiretroviral therapy (HAART) in perinatally HIV-infected children in Denmark

    DEFF Research Database (Denmark)

    Bracher, Linda; Valerius, Niels Henrik; Rosenfeldt, Vibeke

    2007-01-01

    children treated with HAART. Initial HAART included 2 nucleoside reverse-transcriptase inhibitors in combination with either a protease inhibitor (n =38) or a non-nucleoside reverse-transcriptase inhibitor (n =12). 19 (39%) patients were previously treated with mono- or dual therapy. Baseline......The long-term impact of highly active antiretroviral therapy (HAART) on HIV-1 infected children is not well known. The Danish Paediatric HIV Cohort Study includes all patients ... characteristics were median CD4 percentage 14% and HIV-RNA viral load 4.9 log(10). Within the first 12 weeks of therapy approximately 60% achieved HIV-RNA viral load children changed the components of HAART. The proportion of children with CD4...

  20. What to Start: Selecting a First HIV Regimen

    Science.gov (United States)

    ... CCR5 antagonists Integrase strand transfer inhibitors (INSTIs) Post-attachment inhibitors In general, a person's first HIV regimen includes two NRTIs plus an INSTI, an NNRTI, or a PI boosted with cobicistat (brand name: Tybost) or ritonavir (brand name: Norvir). Cobicistat ...

  1. Risk of AIDS related complex and AIDS in homosexual men with persistent HIV antigenaemia.

    OpenAIRE

    de Wolf, F; Goudsmit, J; Paul, D A; Lange, J M; Hooijkaas, C; Schellekens, P; Coutinho, R A; van der Noordaa, J

    1987-01-01

    One hundred and ninety eight men seropositive for human immunodeficiency virus (HIV) antibody and 58 HIV antibody seroconverters were studied for an average of 19.3 (SEM 0.5) months to assess the relation between HIV antigenaemia and the risk of developing the acquired immune deficiency syndrome (AIDS) and AIDS related complex. Forty (20.2%) of the 198 HIV antibody seropositive men were antigen positive at entry and remained so during follow up. Eight (13.8%) of the 58 HIV antibody seroconver...

  2. Do non-nucleoside reverse transcriptase inhibitors contribute to lipodystrophy?

    Science.gov (United States)

    Nolan, David

    2005-01-01

    Lipodystrophy complications, including lipoatrophy (pathological fat loss) and metabolic complications, have emerged as important long-term toxicities associated with antiretroviral therapy in the current era. The wealth of data that has accumulated over the past 6 years has now clarified the contribution of specific antiretroviral drugs to the risk of these clinical endpoints, with evidence that lipoatrophy is strongly associated with the choice of nucleoside reverse transcriptase inhibitor therapy (specifically, stavudine and to a lesser extent zidovudine). The aetiological basis of metabolic complications of antiretroviral therapy has proven to be complex, in that the risk appears to be modulated by a number of lifestyle factors that have made the metabolic syndrome highly prevalent in the general population, with additional contributions from HIV disease status itself, as well as from individual drugs within the HIV protease inhibitor class. The currently licensed non-nucleoside reverse transcriptase inhibitor (NNRTI) drugs, efavirenz and nevirapine, have been proven to have a favourable safety profile in terms of lipodystrophy complications. However, it must be noted that NNRTI drugs also have individual toxicity profiles that must be accounted for when considering and/or monitoring their use in the treatment of HIV infection.

  3. The future of pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection.

    Science.gov (United States)

    Özdener, Ayşe Elif; Park, Tae Eun; Kalabalik, Julie; Gupta, Rachna

    2017-05-01

    People at high risk for HIV acquisition should be offered pre-exposure prophylaxis (PrEP). Tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) is currently the only medication recommended for pre-exposure prophylaxis (PrEP) by the Centers for Disease Control and Prevention (CDC) in people at high risk for HIV acquisition. This article will review medications currently under investigation and the future landscape of PrEP therapy. Areas covered: This article will review clinical trials that have investigated nontraditional regimens of TDF/FTC, antiretroviral agents from different drug classes such as integrase strand transfer inhibitors (INSTI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) as potential PrEP therapies. Expert commentary: Currently, there are several investigational drugs in the pipeline for PrEP against HIV infection. Increased utilization of PrEP therapy depends on provider identification of people at high risk for HIV transmission. Advances in PrEP development will expand options and access for people and reduce the risk of HIV acquisition.

  4. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway.

    Science.gov (United States)

    Caì, Yíngyún; Postnikova, Elena N; Bernbaum, John G; Yú, Shu Qìng; Mazur, Steven; Deiuliis, Nicole M; Radoshitzky, Sheli R; Lackemeyer, Matthew G; McCluskey, Adam; Robinson, Phillip J; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L; Jahrling, Peter B; Kuhn, Jens H

    2015-01-01

    Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin

  5. Influence of membrane fluidity on human immunodeficiency virus type 1 entry

    International Nuclear Information System (INIS)

    Harada, Shinji; Yusa, Keisuke; Monde, Kazuaki; Akaike, Takaaki; Maeda, Yosuke

    2005-01-01

    For penetration of human immunodeficiency virus type 1 (HIV-1), formation of fusion-pores might be required for accumulating critical numbers of fusion-activated gp41, followed by multiple-site binding of gp120 with receptors, with the help of fluidization of the plasma membrane and viral envelope. Correlation between HIV-1 infectivity and fluidity was observed by treatment of fluidity-modulators, indicating that infectivity was dependent on fluidity. A 5% decrease in fluidity suppressed the HIV-1 infectivity by 56%. Contrarily, a 5% increase in fluidity augmented the infectivity by 2.4-fold. An increased temperature of 40 deg C or treatment of 0.2% xylocaine after viral adsorption at room temperature enhanced the infectivity by 2.6- and 1.5-fold, respectively. These were inhibited by anti-CXCR4 peptide, implying that multiple-site binding was accelerated at 40 deg C or by xylocaine. Thus, fluidity of both the plasma membrane and viral envelope was required to form the fusion-pore and to complete the entry of HIV-1

  6. Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication

    OpenAIRE

    Zuo, Jun; Quinn, Kevin K.; Kye, Steve; Cooper, Paige; Damoiseaux, Robert; Krogstad, Paul

    2012-01-01

    No antiviral drugs currently exist for the treatment of enterovirus infections, which are often severe and potentially life threatening. Molecular screening of small molecule libraries identified fluoxetine, a selective serotonin reuptake inhibitor, as a potent inhibitor of coxsackievirus replication. Fluoxetine did not interfere with either viral entry or translation of the viral genome. Instead, fluoxetine and its metabolite norfluoxetine markedly reduced the synthesis of viral RNA and prot...

  7. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    Science.gov (United States)

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. HIV-related restrictions on entry, residence and stay in the WHO European Region: a survey

    DEFF Research Database (Denmark)

    Lazarus, Jeff; Curth, Nadja; Weait, Matthew

    2010-01-01

    Back in 1987, the World Health Organization (WHO) concluded that the screening of international travellers was an ineffective way to prevent the spread of HIV. However, some countries still restrict the entrance and/or residency of foreigners with an HIV infection. HIV-related travel restrictions...

  9. Targeting Virus-host Interactions of HIV Replication.

    Science.gov (United States)

    Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger

    2016-01-01

    Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.

  10. Dolutegravir versus placebo in subjects harbouring HIV-1 with integrase inhibitor resistance associated substitutions: 48-week results from VIKING-4, a randomized study.

    Science.gov (United States)

    Akil, Bisher; Blick, Gary; Hagins, Debbie P; Ramgopal, Moti N; Richmond, Gary J; Samuel, Rafik M; Givens, Naomi; Vavro, Cindy; Song, Ivy H; Wynne, Brian; Ait-Khaled, Mounir

    2015-01-01

    The Phase III VIKING-3 study demonstrated that dolutegravir (DTG) 50 mg twice daily was efficacious in antiretroviral therapy (ART)-experienced subjects harbouring raltegravir- and/or elvitegravir-resistant HIV-1. VIKING-4 (ING116529) included a placebo-controlled 7-day monotherapy phase to demonstrate that short-term antiviral activity was attributable to DTG. VIKING-4 is a Phase III randomized, double-blind study in therapy-experienced adults with integrase inhibitor (INI)-resistant virus randomized to DTG 50 mg twice daily or placebo while continuing their failing regimen (without raltegravir or elvitegravir) for 7 days (clinicaltrials.gov identifier NCT01568892). At day 8, all subjects switched to open-label DTG 50 mg twice daily and optimized background therapy including ≥1 fully active drug. The primary end point was change from baseline in plasma HIV-1 RNA at day 8. The study population (n=30) was highly ART-experienced with advanced HIV disease. Patients had extensive baseline resistance to all approved antiretroviral classes. Adjusted mean change in HIV-1 RNA at day 8 was 
-1.06 log10 copies/ml for the DTG arm and 0.10 log10 copies/ml for the placebo arm (treatment difference -1.16 log10 copies/ml [-1.52, -0.80]; PVIKING-3 study.

  11. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses

    Directory of Open Access Journals (Sweden)

    Arodola OA

    2015-11-01

    Full Text Available Olayide A Arodola, Mahmoud ES SolimanMolecular Modelling and Drug Design Lab, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South AfricaAbstract: Based on experimental data, the anticancer activity of nelfinavir (NFV, a US Food and Drug Administration (FDA-approved HIV-1 protease inhibitor (PI, was reported. Nevertheless, the mechanism of action of NFV is yet to be verified. It was hypothesized that the anticancer activity of NFV is due to its inhibitory effect on heat shock protein 90 (Hsp90, a promising target for anticancer therapy. Such findings prompted us to investigate the potential anticancer activity of all other FDA-approved HIV-1 PIs against human Hsp90. To accomplish this, “loop docking” – an enhanced in-house developed molecular docking approach – followed by molecular dynamic simulations and postdynamic analyses were performed to elaborate on the binding mechanism and relative binding affinities of nine FDA-approved HIV-1 PIs against human Hsp90. Due to the lack of the X-ray crystal structure of human Hsp90, homology modeling was performed to create its 3D structure for subsequent simulations. Results showed that NFV has better binding affinity (ΔG =−9.2 kcal/mol when compared with other PIs: this is in a reasonable accordance with the experimental data (IC50 3.1 µM. Indinavir, saquinavir, and ritonavir have close binding affinity to NFV (ΔG =−9.0, −8.6, and −8.5 kcal/mol, respectively. Per-residue interaction energy decomposition analysis showed that hydrophobic interaction (most importantly with Val534 and Met602 played the most predominant role in drug binding. To further validate the docking outcome, 5 ns molecular dynamic simulations were performed in order to assess the stability of the docked complexes. To our knowledge, this is the first account of detailed computational investigations aimed to investigate the potential anticancer activity and the binding

  12. Pregnancy, contraceptive use, and HIV acquisition in HPTN 039: relevance for HIV prevention trials among African women.

    Science.gov (United States)

    Reid, Stewart E; Dai, James Y; Wang, Jing; Sichalwe, Bupe N; Akpomiemie, Godspower; Cowan, Frances M; Delany-Moretlwe, Sinead; Baeten, Jared M; Hughes, James P; Wald, Anna; Celum, Connie

    2010-04-01

    Biomedical HIV prevention trials enroll sexually active women at risk of HIV and often discontinue study product during pregnancy. We assessed risk factors for pregnancy and HIV acquisition, and the effect of pregnancy on time off study drug in HIV Prevention Trials Network 039. A total of 1358 HIV negative, herpes simplex virus type 2-seropositive women from South Africa, Zambia, and Zimbabwe were enrolled and followed for up to 18 months. A total of 228 pregnancies occurred; time off study drug due to pregnancy accounted for 4% of woman-years of follow-up among women. Being pregnant was not associated with increased HIV risk (hazard ratio 0.64, 95% confidence interval 0.23-1.80, P = 0.40). However, younger age was associated with increased risk for both pregnancy and HIV. There was no association between condom use as a sole contraceptive and reduced pregnancy incidence; hormonal contraception was not associated with increased HIV risk. Bacterial vaginosis at study entry was associated with increased HIV risk (hazard ratio 2.03, P = 0.02). Pregnancy resulted in only a small amount of woman-time off study drug. Young women are at high risk for HIV and are an appropriate population for HIV prevention trials but also have higher risk of pregnancy. Condom use was not associated with reduced incidence of pregnancy.

  13. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    Science.gov (United States)

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  14. Antiretroviral drug susceptibility among drug-naive adults with recent HIV infection in Rakai, Uganda.

    Science.gov (United States)

    Eshleman, Susan H; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C; Serwadda, David; Reynolds, Steven J; Kiwanuka, Noah; Quinn, Thomas C; Gray, Ronald; Wawer, Maria

    2009-04-27

    To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Samples obtained at the time of HIV seroconversion (1998-2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hypersusceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B

  15. Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial.

    Science.gov (United States)

    Sun, Li; Li, Hankun; Willson, Kenneth; Breidinger, Sheila; Rizk, Matthew L; Wenning, Larissa; Woolf, Eric J

    2012-10-16

    HIV-1 integrase strand transfer inhibitors are an important class of compounds targeted for the treatment of HIV-1 infection. Microdosing has emerged as an attractive tool to assist in drug candidate screening for clinical development, but necessitates extremely sensitive bioanalytical assays, typically in the pg/mL concentration range. Currently, accelerator mass spectrometry is the predominant tool for microdosing support, which requires a specialized facility and synthesis of radiolabeled compounds. There have been few studies attempted to comprehensively assess a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach in the context of microdosing applications. Herein, we describe the development of automated LC-MS/MS methods to quantify five integrase inhibitors in plasma with the limits of quantification at 1 pg/mL for raltegravir and 2 pg/mL for four proprietary compounds. The assays involved double extractions followed by UPLC coupled with negative ion electrospray MS/MS analysis. All methods were fully validated to the rigor of regulated bioanalysis requirements, with intraday precision between 1.20 and 14.1% and accuracy between 93.8 and 107% at the standard curve concentration range. These methods were successfully applied to a human microdose study and demonstrated to be accurate, reproducible, and cost-effective. Results of the study indicate that raltegravir displayed linear pharmacokinetics between a microdose and a pharmacologically active dose.

  16. The development of HEPT-type HIV non-nucleoside reverse transcriptase inhibitors and its implications for DABO family.

    Science.gov (United States)

    Chen, Wenmin; Zhan, Peng; Wu, Jingde; Li, Zhenyu; Liu, Xinyong

    2012-01-01

    1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) was discovered as the first HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) in 1989. The research on HEPT derivatives (HEPTs) has been lasted for more than 20 years and HEPT family is probably the most investigated NNRTI. Extensive molecular modifications on HEPT have led to many highly potent compounds with broad-resistance spectrum and optimal pharmacokinetic profiles. Moreover, X-crystallographic studies of HEPTs/RT complexes revealed the binding mode of HEPTs and the action mechanism of NNRTI, which has greatly facilitated the design of novel NNRTIs. Recently, the development of HEPTs was accelerated by the application of the "follow-on"-based chemical evolution strategies, such as designed multiple ligands (DMLs) and molecular hybridization (MH). Herein, this article will provide an insight into the development of HEPTs, including structural modifications, crystal structure of RT complexed with HEPTs and its structure-activity relationship (SAR). Additionally, this review also covers the emerging HEPT related dual inhibitors and HEPT-pyridinone hybrids, as well as the contributions of HEPTs to the development of dihydro-alkoxy-benzyl-oxopyrimidine (DABO) family, thus highlighting the importance of HEPTs on the development of NNRTIs.

  17. Mutation V111I in HIV-2 reverse transcriptase increases the fitness of the nucleoside analogue-resistant K65R and Q151M viruses

    NARCIS (Netherlands)

    I. Deuzing (Ilona); C. Charpentier (Charlotte); D.J. Wright (David Justin); S. Matheron (Sophie); J. Paton (Jack); D. Frentz (Dineke); D.A.M.C. van de Vijver (David); P.V. Coveney (Peter); D. Descamps (Diane); C.A.B. Boucher (Charles); N. Beerens (Nancy)

    2015-01-01

    textabstractInfection with HIV-2 can ultimately lead to AIDS, although disease progression is much slower than with HIV-1. HIV-2 patients are mostly treated with a combination of nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and protease inhibitors designed for HIV-1. Many studies have

  18. Identification of Variants of Hepatitis C Virus (HCV Entry Factors in Patients Highly Exposed to HCV but Remaining Uninfected: An ANRS Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Baptiste Fouquet

    Full Text Available Hepatitis C virus (HCV causes persistent infection in 75% of cases and is a major public health problem worldwide. More than 92% of intravenous drug users (IDU infected by human immunodeficiency virus type 1 (HIV-1 are seropositive for HCV, and it is conceivable that some HIV-1-infected IDU who remain uninfected by HCV may be genetically resistant.Here we conducted a case-control study to identify mutations in HCV entry coreceptors in HIV-infected IDU who remained uninfected by HCV. We recruited 138 patients, comprising 22 HIV+ HCV- case IDU and 116 HIV+ HCV+ control IDU. We focused on coreceptors in which point mutations are known to abolish HCV infectivity in vitro. Our previous study of the Claudin-1 gene revealed no specific variants in the same case population. Here we performed direct genomic sequencing of the Claudin-6, Claudin-9, Occludin and Scavenger receptor-B1 (SCARB1 gene coding regions. Most HIV+ HCV- IDU had no mutations in HCV coreceptors. However, two HIV+ HCV- patients harbored a total of four specific mutations/variants of HCV entry factors that were not found in the HIV+ HCV+ controls. One case patient harbored heterozygous variants of both Claudin-6 and Occludin, and the other case patient harbored two heterozygous variants of SCARB1. This suggests that HCV resistance might involve complex genetic events and factors other than coreceptors, a situation similar to that reported for HIV-1 resistance.

  19. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Directory of Open Access Journals (Sweden)

    Mouhssin Oufir

    2011-01-01

    Full Text Available An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  20. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor

    Directory of Open Access Journals (Sweden)

    Guodong Hu

    2016-05-01

    Full Text Available Drug resistance of mutations in HIV-1 protease (PR is the most severe challenge to the long-term efficacy of HIV-1 PR inhibitor in highly active antiretroviral therapy. To elucidate the molecular mechanism of drug resistance associated with mutations (D30N, I50V, I54M, and V82A and inhibitor (GRL-0519 complexes, we have performed five molecular dynamics (MD simulations and calculated the binding free energies using the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA method. The ranking of calculated binding free energies is in accordance with the experimental data. The free energy spectra of each residue and inhibitor interaction for all complexes show a similar binding model. Analysis based on the MD trajectories and contribution of each residues show that groups R2 and R3 mainly contribute van der Waals energies, while groups R1 and R4 contribute electrostatic interaction by hydrogen bonds. The drug resistance of D30N can be attributed to the decline in binding affinity of residues 28 and 29. The size of Val50 is smaller than Ile50 causes the residue to move, especially in chain A. The stable hydrophobic core, including the side chain of Ile54 in the wild type (WT complex, became unstable in I54M because the side chain of Met54 is flexible with two alternative conformations. The binding affinity of Ala82 in V82A decreases relative to Val82 in WT. The present study could provide important guidance for the design of a potent new drug resisting the mutation inhibitors.

  1. Natural Immunity to HIV: A Delicate Balance between Strength and Control

    Directory of Open Access Journals (Sweden)

    Johanne Poudrier

    2012-01-01

    Full Text Available Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed, HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than 5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity to HIV, indicate that HIV resistance may be associated with the host’s capacity to preserve systemic integrity by constraining immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration of balanced, first-line and adaptive immune responses.

  2. Antiretroviral Drug Use in a Cohort of HIV-Uninfected Women in the United States: HIV Prevention Trials Network 064.

    Directory of Open Access Journals (Sweden)

    Iris Chen

    Full Text Available Antiretroviral (ARV drug use was analyzed in HIV-uninfected women in an observational cohort study conducted in 10 urban and periurban communities in the United States with high rates of poverty and HIV infection. Plasma samples collected in 2009-2010 were tested for the presence of 16 ARV drugs. ARV drugs were detected in samples from 39 (2% of 1,806 participants: 27/181 (15% in Baltimore, MD and 12/179 (7% in Bronx, NY. The ARV drugs detected included different combinations of non-nucleoside reverse transcriptase inhibitors and protease inhibitors (1-4 drugs/sample. These data were analyzed in the context of self-reported data on ARV drug use. None of the 39 women who had ARV drugs detected reported ARV drug use at any study visit. Further research is needed to evaluate ARV drug use by HIV-uninfected individuals.

  3. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) using pre-steady-state kinetics.

    Science.gov (United States)

    Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S

    2014-06-01

    The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. HIV-Associated Lung Cancer.

    Science.gov (United States)

    Kiderlen, Til R; Siehl, Jan; Hentrich, Marcus

    2017-01-01

    Lung cancer (LC) is one of the most common non-AIDS (acquired immune deficiency syndrome)-defining malignancies. It occurs more frequently in persons living with human immunodeficiency virus (PLWHIV) than in the HIV-negative population. Compared to their HIV-negative counterparts, patients are usually younger and diagnosed at more advanced stages. The pathogenesis of LC in PLWHIV is not fully understood, but immunosuppression in combination with chronic infection and the oncogenic effects of smoking and HIV itself all seem to play a role. Currently, no established preventive screening is available, making smoking cessation the most promising preventive measure. Treatment protocols and standards are the same as for the general population. Notably, immuno-oncology will also become standard of care in a significant subset of HIV-infected patients with LC. As drug interactions and hematological toxicity must be taken into account, a multidisciplinary approach should include a physician experienced in the treatment of HIV. Only limited data is available on novel targeted therapies and checkpoint inhibitors in the setting of HIV. © 2017 S. Karger GmbH, Freiburg.

  5. Osteonecrosis en pacientes infectados por HIV Osteonecrosis in HIV-infected patients

    Directory of Open Access Journals (Sweden)

    Edgardo G. Bottaro

    2004-08-01

    Full Text Available Según la literatura, la osteonecrosis tiene una mayor incidencia en los pacientes infectados con HIV que en la población general. Ello sería resultado de la confluencia de factores de riesgo clásicos y de otros propios de esta población o más prevalentes en ella, como el tratamiento con inhibidores de proteasa, la dislipemia producto de su consumo, la presencia de anticuerpos anticardiolipina séricos, la hipercoagulabilidad, la restauración inmune y las vasculitis. Presentamos una serie de 13 pacientes infectados con HIV con osteonecrosis. El motivo de consulta fue dolor en grandes articulaciones. Cuatro eran alcoholistas, 8 tabaquistas y 9 tenían dislipemia. Once habían recibido esteroides en algún momento de la vida aunque sólo uno estaba recibiéndolos al momento del inicio del dolor. En 2 se detectaron anticuerpos anticardiolipina séricos. Doce tenían sida y recibían tratamiento antirretroviral de alta eficacia (11 con inhibidores de proteasa. Ellos lograron una adecuada recuperación inmunológica. Consideramos necesario incluir la osteonecrosis como diagnóstico diferencial de artralgia persistente en pacientes infectados con HIV e investigar infección por HIV en todo paciente con osteonecrosis sin claros factores predisponentes.Osteonecrosis, also known as avascular necrosis, is chiefly characterized by death of bone caused by vascular compromise. The true incidence of osteonecrosis in HIV-infected patients is not well known and the pathogenesis remains undefined. Hypothetical risk factors peculiar to HIV-infected individuals that might play a role in the pathogenesis of osteonecrosis include the introduction of protease inhibitors and resulting hyperlipidemia, the presence of anticardiolipin antibodies in serum leading to a hypercoagulable state, immune recovery and vasculitis. Hereby we present a series of 13 HIV-infected patients with osteonecrosis. The most common symptom upon presentation was arthralgia. The majority

  6. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands.

    Science.gov (United States)

    Sancineto, Luca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Manfroni, Giuseppe; Corazza, Gianmarco; Cecchetti, Violetta; Marcello, Alessandro; Daelemans, Dirk; Pannecouque, Christophe; Tabarrini, Oriana

    2014-09-01

    It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 2-(Alkyl/aryl)amino-6-benzylpyrimidin-4(3H)-ones as inhibitors of wild-type and mutant HIV-1: enantioselectivity studies.

    Science.gov (United States)

    Rotili, Dante; Samuele, Alberta; Tarantino, Domenico; Ragno, Rino; Musmuca, Ira; Ballante, Flavio; Botta, Giorgia; Morera, Ludovica; Pierini, Marco; Cirilli, Roberto; Nawrozkij, Maxim B; Gonzalez, Emmanuel; Clotet, Bonaventura; Artico, Marino; Esté, José A; Maga, Giovanni; Mai, Antonello

    2012-04-12

    The single enantiomers of two pyrimidine-based HIV-1 non-nucleoside reverse transcriptase inhibitors, 1 (MC1501) and 2 (MC2082), were tested in both cellular and enzyme assays. In general, the R forms were more potent than their S counterparts and racemates and (R)-2 was more efficient than (R)-1 and the reference compounds, with some exceptions. Interestingly, (R)-2 displayed a faster binding to K103N RT with respect to WT RT, while (R)-1 showed the opposite behavior. © 2012 American Chemical Society

  8. Adolescent female sex workers: invisibility, violence and HIV.

    Science.gov (United States)

    Silverman, Jay G

    2011-05-01

    A large number of female sex workers are children. Multiple studies demonstrate that up to 40% of women in prostitution started this work prior to age 18. In studies across India, Nepal, Thailand and Canada, young age at entry to sex work has been found to heighten vulnerability to physical and sexual violence victimisation in the context of prostitution, and relates to a two to fourfold increase in HIV infection. Although HIV risk reduction among adult female sex workers has been a major focus of HIV prevention efforts across the globe, no public health interventions, to date, have addressed the increased hazards and HIV risk faced by adolescent female sex workers. Beyond the structural barriers that limit access to this vulnerable group, historical tensions between HIV prevention and child protection agencies must be overcome in order to develop effective strategies to address this large scale yet little recognised human rights and HIV-related crisis.

  9. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    International Nuclear Information System (INIS)

    Vancini, Ricardo; Kramer, Laura D.; Ribeiro, Mariana; Hernandez, Raquel; Brown, Dennis

    2013-01-01

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  10. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vancini, Ricardo [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Kramer, Laura D. [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY (United States); Ribeiro, Mariana; Hernandez, Raquel [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Brown, Dennis, E-mail: dennis_brown@ncsu.edu [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States)

    2013-01-20

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  11. Reported Church Attendance at the Time of Entry into HIV Care is Associated with Viral Load Suppression at 12 Months.

    Science.gov (United States)

    Van Wagoner, Nicholas; Elopre, Latesha; Westfall, Andrew O; Mugavero, Michael J; Turan, Janet; Hook, Edward W

    2016-08-01

    The Southeast has high rates of church attendance and HIV infection rates. We evaluated the relationship between church attendance and HIV viremia in a Southeastern US, HIV-infected cohort. Viremia (viral load ≥200 copies/ml) was analyzed 12 months after initiation of care. Univariate and multivariable logistic regression models were fit for variables potentially related to viremia. Of 382 patients, 74 % were virally suppressed at 12 months. Protective variables included church attendance (AOR 0.5; 95 % CI 0.2, 0.9), being on antiretroviral therapy (AOR 0.01; 95 % CI 0.004, 0.04), CD4(+) T lymphocyte count 200-350 cells/mm(3) at care entry (AOR 0.3; 95 % 0.1, 0.9), and education (AOR 0.5; 95 % CI 0.2, 0.9). Variables predicting viremia included black race (AOR 3.2; 95 % CI 1.4, 7.4) and selective disclosure of HIV status (AOR 2.7; 95 % CI 1.2, 5.6). Church attendance may provide needed support for patients entering HIV care for the first time. El Sur Este de los Estados Unidos tiene tasas altas de visitas a iglesias y de infección por VIH. Evaluamos la relación entre visitas a iglesias y viremia por VIH en una cohorte de pacientes infectados con VIH en el Sur Este de los EEUU. La viremia (carga viral ≥ 200 copias/ml) fue analizada a los 12 meses de iniciar el cuidado médico. Los modelos de regresión logística univariado y multivariado fueron ajustados para variables potencialmente relacionadas a viremia. De 382 pacientes, 75 % tuvieron supresión virológica a los 12 meses. Variables que ofrecieron protección fueron visitas a iglesias (AOR 0.5; IC95 % 0.2-0.9), recibir terapia antiretroviral (AOR 0.01; IC95 % 0.004,0.04), recuento de linfocitos T CD4 + 200-350 al iniciar cuidado médico (AOR 0.3; IC95 % 0.1,09), y educación (AOR 0.5; IC95 % 0.2,0.9). Las variables que predijeron viremia incluyeron raza negra (AOR 3.2; IC95 % 1.4,7.4) y la comunicación selectiva del diagnóstico de VIH a otras personas (AOR 2.7; 95 % IC 1

  12. Boosted protease inhibitor monotherapy versus boosted protease inhibitor plus lamivudine dual therapy as second-line maintenance treatment for HIV-1-infected patients in sub-Saharan Africa (ANRS12 286/MOBIDIP): a multicentre, randomised, parallel, open-label, superiority trial.

    Science.gov (United States)

    Ciaffi, Laura; Koulla-Shiro, Sinata; Sawadogo, Adrien Bruno; Ndour, Cheik Tidiane; Eymard-Duvernay, Sabrina; Mbouyap, Pretty Rosereine; Ayangma, Liliane; Zoungrana, Jacques; Gueye, Ndeye Fatou Ngom; Diallo, Mohamadou; Izard, Suzanne; Bado, Guillaume; Kane, Coumba Toure; Aghokeng, Avelin Fobang; Peeters, Martine; Girard, Pierre Marie; Le Moing, Vincent; Reynes, Jacques; Delaporte, Eric

    2017-09-01

    Despite satisfactory efficacy of WHO-recommended second-line antiretroviral treatment for patients with HIV in low-income countries, the need for simplified, low-cost, and less-toxic maintenance strategies remains high. We compared boosted protease inhibitor monotherapy with dual therapy with boosted protease inhibitor plus lamivudine in patients on second-line antiretrovial therapy (ART). We did a multicentre, randomised, parallel, open-label, superiority, trial in the HIV services of five hospitals in sub-Saharan Africa (Yaoundé, Cameroon; Dakar, Senegal; and Bobo Dioulasso, Burkina Faso). We recruited patients from the long-term, post-trial cohort of the ANRS 12169/2LADY study that compared the efficacy of three second-line combinations based on boosted protease inhibitors. Participants for our study were HIV-1 infected with multiple mutations including M184V, at first-line failure, aged 18 years and older, on boosted protease inhibitor plus two nucleoside reverse transcriptase inhibitors (NRTI) for at least 48 weeks with at least 48 weeks follow-up in the 2LADY trial, with two viral load measurements of less than 200 copies per mL in the previous 6 months, CD4 counts of more than 100 cells per μL, adherence of at least 90%, and no change to ART in the past 3 months. We randomly assigned participants (1:1) to receive either monotherapy with their boosted protease inhibitor (once-daily darunavir 800 mg [two 400 mg tablets] boosted with ritonavir 100 mg [one tablet] or coformulation of lopinavir 200 mg with ritonavir 50 mg [two tablets taken twice per day]) or to boosted protease inhibitor plus once-daily lamivudine 300 mg (one 300 mg tablet or two 150 mg tablets). Computer-generated randomisation was stratified by study site and viral load at screening (treatment allocation was not masked from clinicians or patients]. Patients had follow-up visits at weeks 4 and 12, and every 3 months until 96 weeks; if viral load exceeded 500 copies per mL at any visit, NRTI

  13. Factors associated with collagen deposition in lymphoid tissue in long-term treated HIV-infected patients.

    Science.gov (United States)

    Diaz, Alba; Alós, Llúcia; León, Agathe; Mozos, Anna; Caballero, Miguel; Martinez, Antonio; Plana, Montserrat; Gallart, Teresa; Gil, Cristina; Leal, Manuel; Gatell, Jose M; García, Felipe

    2010-08-24

    The factors associated with fibrosis in lymphoid tissue in long-term treated HIV-infected patients and their correlation with immune reconstitution were assessed. Tonsillar biopsies were performed in seven antiretroviral-naive patients and 29 successfully treated patients (median time on treatment, 61 months). Twenty patients received protease inhibitors-sparing regimens and nine protease inhibitor-containing regimens. Five tonsillar resections of HIV-negative individuals were used as controls. Lymphoid tissue architecture, collagen deposition (fibrosis) and the mean interfollicular CD4(+) cell count per mum were assessed. Naive and long-term treated HIV-infected patients had a higher proportion of fibrosis than did HIV-uninfected persons (P lymphoid tissue (P = 0.03) and smaller increase in peripheral CD4(+) T cells (r = -0.40, P = 0.05). The factors independently associated with fibrosis in lymphoid tissue were age (P lymphoid tissue viral load when compared with patients with undetectable lymphoid tissue viral load (median 5 vs. 12%, respectively, P = 0.017) and patients receiving a protease inhibitor-sparing vs. a protease inhibitor-containing regimen (median 8 vs. 2.5%, respectively, P = 0.04). Fibrosis in lymphoid tissue was associated with a poor reconstitution of CD4(+) T cells and long-term antiretroviral therapy did not reverse this abnormality. HIV infection, older age, a detectable level of lymphoid tissue viral load in treated patients and protease inhibitor-sparing regimens seem to favour fibrosis in lymphoid tissue.

  14. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) using pre-steady-state kinetics

    Science.gov (United States)

    Muftuoglu, Yagmur; Sohl, Christal D.; Mislak, Andrea C.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Anderson, Karen S.

    2014-01-01

    The novel antiretroviral 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3′-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3′-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. PMID:24632447

  15. Candidate Medical Countermeasures Targeting Ebola Virus Cell Entry

    Science.gov (United States)

    2017-03-31

    ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the 405 Ebola virus glycoprotein bound to an antibody from a human survivor. Nature...virus cell-entry inhibitors 21 17. Gallaher WR. Similar structural models of the transmembrane proteins of Ebola and 408 avian sarcoma viruses. Cell...85(4), 477-478 (1996). 409 18. Weissenhorn W, Carfí A, Lee K-H, Skehel JJ, Wiley DC. Crystal structure of the Ebola 410 virus membrane fusion

  16. Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro.

    Science.gov (United States)

    Jing, N; Marchand, C; Liu, J; Mitra, R; Hogan, M E; Pommier, Y

    2000-07-14

    The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation.

  17. Standardized comparison of the relative impacts of HIV-1 reverse transcriptase (RT) mutations on nucleoside RT inhibitor susceptibility.

    Science.gov (United States)

    Melikian, George L; Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W Jeffrey; Kaufman, David; Towner, William; Troia-Cancio, Paolo V; Zolopa, Andrew; Robbins, Gregory K; Kagan, Ron; Israelski, Dennis; Shafer, Robert W

    2012-05-01

    Determining the phenotypic impacts of reverse transcriptase (RT) mutations on individual nucleoside RT inhibitors (NRTIs) has remained a statistical challenge because clinical NRTI-resistant HIV-1 isolates usually contain multiple mutations, often in complex patterns, complicating the task of determining the relative contribution of each mutation to HIV drug resistance. Furthermore, the NRTIs have highly variable dynamic susceptibility ranges, making it difficult to determine the relative effect of an RT mutation on susceptibility to different NRTIs. In this study, we analyzed 1,273 genotyped HIV-1 isolates for which phenotypic results were obtained using the PhenoSense assay (Monogram, South San Francisco, CA). We used a parsimonious feature selection algorithm, LASSO, to assess the possible contributions of 177 mutations that occurred in 10 or more isolates in our data set. We then used least-squares regression to quantify the impact of each LASSO-selected mutation on each NRTI. Our study provides a comprehensive view of the most common NRTI resistance mutations. Because our results were standardized, the study provides the first analysis that quantifies the relative phenotypic effects of NRTI resistance mutations on each of the NRTIs. In addition, the study contains new findings on the relative impacts of thymidine analog mutations (TAMs) on susceptibility to abacavir and tenofovir; the impacts of several known but incompletely characterized mutations, including E40F, V75T, Y115F, and K219R; and a tentative role in reduced NRTI susceptibility for K64H, a novel NRTI resistance mutation.

  18. SUN1 Regulates HIV-1 Nuclear Import in a Manner Dependent on the Interaction between the Viral Capsid and Cellular Cyclophilin A.

    Science.gov (United States)

    Luo, Xinlong; Yang, Wei; Gao, Guangxia

    2018-07-01

    Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA. IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory

  19. Resveratrol Co-Treatment Attenuates the Effects of HIV Protease Inhibitors on Rat Body Weight and Enhances Cardiac Mitochondrial Respiration.

    Directory of Open Access Journals (Sweden)

    Burger Symington

    Full Text Available Since the early 1990s human immunodeficiency virus (HIV/acquired immunodeficiency syndrome (AIDS emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV, aspirin (ASP or vitamin C (VitC co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months. Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides, echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail.

  20. Raltegravir with optimized background therapy for resistant HIV-1 infection

    DEFF Research Database (Denmark)

    Steigbigel, Roy T; Cooper, David A; Kumar, Princy N

    2008-01-01

    BACKGROUND: Raltegravir (MK-0518) is an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase active against HIV-1 susceptible or resistant to older antiretroviral drugs. METHODS: We conducted two identical trials in different geographic regions to evaluate the safety and efficacy of...

  1. Novel cyclo-peptides inhibit Ebola pseudotyped virus entry by targeting primed GP protein.

    Science.gov (United States)

    Li, Quanjie; Ma, Ling; Yi, Dongrong; Wang, Han; Wang, Jing; Zhang, Yongxin; Guo, Ying; Li, Xiaoyu; Zhou, Jinming; Shi, Yi; Gao, George F; Cen, Shan

    2018-07-01

    Ebola virus (EBOV) causes fatal hemorrhagic fever with high death rates in human. Currently, there are no available clinically-approved prophylactic or therapeutic treatments. The recently solved crystal structure of cleavage-primed EBOV glycoprotein (GPcl) in complex with the C domain of endosomal protein Niemann-Pick C1 (NPC1) provides a new target for the development of EBOV entry inhibitors. In this work, a computational approach using docking and molecular dynamic simulations is carried out for the rational design of peptide inhibitors. A novel cyclo-peptide (Pep-3.3) was identified to target at the late stage of EBOV entry and exhibit specific inhibitory activity against EBOV-GP pseudotyped viruses, with 50% inhibitory concentration (IC50) of 5.1 μM. In vitro binding assay and molecular simulations revealed that Pep-3.3 binds to GPcl with a KD value of 69.7 μM, through interacting with predicted residues in the hydrophobic binding pocket of GPcl. Mutation of predicted residues T83 caused resistance to Pep-3.3 inhibition in viral infectivity, providing preliminary support for the model of the peptide binding to GPcl. This study demonstrates the feasibility of inhibiting EBOV entry by targeting GPcl with peptides. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses

    Directory of Open Access Journals (Sweden)

    Eileen M. Geoghegan

    2017-10-01

    Full Text Available Summary: Progressive multifocal leukoencephalopathy (PML is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV. JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies. : Geoghegan et al. show that JC polyomavirus strains that cause brain disease infect cells via a pathway involving a heparin-like attachment receptor and a non-sialylated co-receptor. Candidate therapeutic human monoclonal antibodies neutralize by blocking co-receptor engagement. Keywords: polyomavirus, JC, BK, SV40, progressive multifocal leukoencephalopathy, PML, monoclonal antibody, mAb, virus entry, receptor

  3. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  4. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults

    Science.gov (United States)

    Günthard, Huldrych F.; Saag, Michael S.; Benson, Constance A.; del Rio, Carlos; Eron, Joseph J.; Gallant, Joel E.; Hoy, Jennifer F.; Mugavero, Michael J.; Sax, Paul E.; Thompson, Melanie A.; Gandhi, Rajesh T.; Landovitz, Raphael J.; Smith, Davey M.; Jacobsen, Donna M.; Volberding, Paul A.

    2016-01-01

    IMPORTANCE New data and therapeutic options warrant updated recommendations for the use of antiretroviral drugs (ARVs) to treat or to prevent HIV infection in adults. OBJECTIVE To provide updated recommendations for the use of antiretroviral therapy in adults (aged ≥18 years) with established HIV infection, including when to start treatment, initial regimens, and changing regimens, along with recommendations for using ARVs for preventing HIV among those at risk, including preexposure and postexposure prophylaxis. EVIDENCE REVIEW A panel of experts in HIV research and patient care convened by the International Antiviral Society-USA reviewed data published in peer-reviewed journals, presented by regulatory agencies, or presented as conference abstracts at peer-reviewed scientific conferences since the 2014 report, for new data or evidence that would change previous recommendations or their ratings. Comprehensive literature searches were conducted in the PubMed and EMBASE databases through April 2016. Recommendations were by consensus, and each recommendation was rated by strength and quality of the evidence. FINDINGS Newer data support the widely accepted recommendation that antiretroviral therapy should be started in all individuals with HIV infection with detectable viremia regardless of CD4 cell count. Recommended optimal initial regimens for most patients are 2 nucleoside reverse transcriptase inhibitors (NRTIs) plus an integrase strand transfer inhibitor (InSTI). Other effective regimens include nonnucleoside reverse transcriptase inhibitors or boosted protease inhibitors with 2 NRTIs. Recommendations for special populations and in the settings of opportunistic infections and concomitant conditions are provided. Reasons for switching therapy include convenience, tolerability, simplification, anticipation of potential new drug interactions, pregnancy or plans for pregnancy, elimination of food restrictions, virologic failure, or drug toxicities. Laboratory

  5. Studies on endogenous circulating calcium entry blocker and stimulator

    International Nuclear Information System (INIS)

    Pang, P.K.T.; Yang, M.C.M.

    1986-01-01

    Several synthetic compounds have been studied extensively for their calcium entry blockade and stimulation in smooth muscles. It is hypothesized that there should be endogenous substances which control calcium entry into cells. We recently investigated the effect of some vasoactive hormones on calcium entry. Our studies on rat tail artery helical strip showed that the in vitro vasoconstriction produced by arginine vasopressin (AVP) decreased stepwise with decreasing concentration of both calcium. After exposure of the tail artery to calcium-free Ringer's solution for 1 minute or longer, the tissue lost its ability to respond to AVP. Subsequent addition of calcium to the medium produced immediate contraction. Measurements of low affinity lanthanum resistant pool of calcium with 45 Ca showed that AVP increased calcium uptake by tail artery in a dose-dependent manner. In another study rat tail artery helical strip indicated that the vasorelaxing action of parathyroid hormone (PTH) was related to an inhibition of calcium uptake. AVP or 60 mM potassium chloride increased the low affinity lanthanum resistant pool of calcium in rate tail artery and PTH inhibited the increase. In conclusion, AVP and PTH may behave like endogenous calcium entry stimulator and inhibitor respectively in vascular tissues

  6. The bile acid sensor FXR protects against dyslipidemia and aortic plaques development induced by the HIV protease inhibitor ritonavir in mice.

    Directory of Open Access Journals (Sweden)

    Andrea Mencarelli

    Full Text Available BACKGROUND: Although human immunodeficiency virus (HIV-related morbidity and mortality rates in patients treated with a combination of high active antiretroviral therapy (HAART have declined, significant metabolic/vascular adverse effects associated with the long term use of HIV protease inhibitors (PIs have emerged as a significant side effect. Here we illustrate that targeting the bile acid sensor farnesoid X receptor (FXR protects against dyslipidemia and vascular injury induced HIV-PIs in rodents. METHODOLOGY/PRINCIPAL FINDINGS: Administration of the HIV PI ritonavir to wild type mice increased plasma triacylglycerols and cholesterol levels and this effect was exacerbated by dosing ritonavir to mice harbouring a disrupted FXR. Dyslipidemia induced by ritonavir associated with a shift in the liver expression of signature genes, Sterol Regulatory Element-Binding Protein (SREBP-1 and fatty acid synthase. Treating wild type mice with the FXR agonist (chenodeoxycholic acid, CDCA protected against development of dyslipidemia induced by ritonavir. Administration of ritonavir to ApoE(-/- mice, a strain that develop spontaneously atherosclerosis, increased the extent of aortic plaques without worsening the dyslipidemia. Treating these mice with CDCA reduced the extent of aortic plaques by 70% without changing plasma lipoproteins or the liver expression of signature genes. A beneficial effect on aortic plaques was also obtained by treating ApoE(-/- mice with gemfibrozil, a PPARα agonist. FXR activation counter-regulated induction of expression/activity of CD36 caused by HIV-PIs in circulating monocytes and aortic plaques. In macrophages cell lines, CDCA attenuated CD36 induction and uptake of acetylated LDL caused by ritonavir. Natural and synthetic FXR ligands reduced the nuclear translocation of SREBP1c caused by ritonavir. CONCLUSIONS/SIGNIFICANCE: Activation of the bile acid sensor FXR protects against dyslipidemia and atherosclerotic caused by

  7. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    International Nuclear Information System (INIS)

    Endsley, Mark A.; Somasunderam, Anoma D.; Li, Guangyu; Oezguen, Numan; Thiviyanathan, Varatharasa; Murray, James L.; Rubin, Donald H.; Hodge, Thomas W.

    2014-01-01

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4 + T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4 + T lymphocytes

  8. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    Energy Technology Data Exchange (ETDEWEB)

    Endsley, Mark A., E-mail: maendsle@utmb.edu [Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555 (United States); Somasunderam, Anoma D., E-mail: asomasun@utmb.edu [Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555 (United States); Li, Guangyu, E-mail: LIG001@mail.etsu.edu [Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 (United States); Oezguen, Numan, E-mail: numan.oezguen@bcm.edu [Department of Pathology and Immunology, Microbiome Center, Texas Children' s Hospital, Houston, TX 77030 (United States); Thiviyanathan, Varatharasa, E-mail: Varatharasa.Thiviyanathan@uth.tmc.edu [Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030 (United States); Murray, James L., E-mail: jmurray100@yahoo.com [GeneTAG Technology, Inc., 3155 Northwoods Place, Norcross, GA 30071 (United States); Rubin, Donald H., E-mail: don.h.rubin@vanderbilt.edu [Research Medicine, VA Tennessee Valley Healthcare System, 1310 24th Ave. South, Nashville, TN 37212 (United States); Departments of Medicine, Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Ave South, Nashville, TN 37232 (United States); Hodge, Thomas W., E-mail: twhodge3@gmail.com [Pre-clinical and Antiviral Research, Tamir Biotechnology, Inc., 12625 High Bluff Dr., Suite 113, San Diego, CA 92130 (United States); and others

    2014-04-15

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.

  9. Prevalence of HIV Antiretroviral Drug Resistance and Its Impacts on HIV-1 Virological Failures in Jiangsu, China: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2016-01-01

    Full Text Available Antiretroviral therapy (ART has been shown to improve survival of patients with Human Immunodeficiency Virus (HIV infection and to reduce HIV-1 transmission. Therefore, the Chinese central government initiated a national program to provide ART free of charge to HIV-1 patients. We conducted a cross-sectional survey in Jiangsu province to determine the level of drug resistance (DR in HIV-1 infected patients and the correlates of DR in virological failures in 2012. Approximately 10.4% of the HIV-1 patients in the study experienced virological failure after one year of ART and were divided into drug sensitive and drug resistant groups based on genotype determination. The viral loads (VLs in the drug resistant group were significantly lower than the drug sensitive group. There were two independent predictors of virological failure: male gender and increasing duration of treatment. The primary mutations observed in the study were against nucleoside reverse transcriptase inhibitors (NRTIs which were M184V (79.45% and K103N (33.70% in nonnucleoside reverse transcriptase inhibitors (NNRTIs. The overall rate of DR in Jiangsu province is still relatively low among treated patients. However, close monitoring of drug resistance in male patients in the early stages of treatment is vital to maintaining and increasing the benefits of HIV ART achieved to date.

  10. Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4+ T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism

    OpenAIRE

    Arenaccio, Claudia; Chiozzini, Chiara; Columba-Cabezas, Sandra; Manfredi, Francesco; Affabris, Elisabetta; Baur, Andreas; Federico, Maurizio

    2014-01-01

    Resting CD4+ T lymphocytes resist human immunodeficiency virus (HIV) infection. Here, we provide evidence that exosomes from HIV-1-infected cells render resting human primary CD4+ T lymphocytes permissive to HIV-1 replication. These results were obtained with transwell cocultures of HIV-1-infected cells with quiescent CD4+ T lymphocytes in the presence of inhibitors of exosome release and were confirmed using exosomes purified from supernatants of HIV-1-infected primary CD4+ T lymphocytes. We...

  11. HIV-1-infected macrophages induce astrogliosis by SDF-1α and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Okamoto, Mika; Wang, Xin; Baba, Masanori

    2005-01-01

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1α or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1α production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1α was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1α and MMP production, which implies a mechanism of astrogliosis in HAD

  12. Low prevalence of primary HIV resistance in western Massachusetts.

    Science.gov (United States)

    Iarikov, Dmitri E; Irizarry-Acosta, Melina; Martorell, Claudia; Hoffman, Robert P; Skiest, Daniel J

    2010-01-01

    Most studies of primary antiretroviral (ARV) resistance have been conducted in large metropolitan areas with reported rates of 8% to 25%. We collected data on 99 HIV-1-infected antiretroviral-naive patients from several sites in Springfield, MA, who underwent genotypic resistance assay between 2004 and 2008. Only major resistance mutations per International AIDS Society-USA (IAS-USA) drug resistance mutations list were considered. The prevalence of resistance was 5% (5 of 99). Three patients had one nonnucleoside reverse transcriptase inhibitor (NNRTI) mutation: 103N, 103N, and 190A, 1 patient had a protease inhibitor (PI) mutation: 90M; and 1 patient had 3-class resistance with NNRTI: 181C, 190A, PI: 90M, and nucleoside analogue reverse transcriptase inhibitor (NRTI): 41L, 210W. Mean time from HIV diagnosis to resistance testing was shorter in patients with resistance versus those without: 9 (range 0.3-42 months) versus 27 (range 0.1-418 months), P = .11. There was a trend to lower mean CD4 count in those with resistance, 170 versus 318 cells/mm(3), P = .06. No differences were noted in gender, age, HIV risk category, or HIV RNA level. The low prevalence of primary resistance may be explained by differences in demographic and risk factors or may reflect the time from infection to resistance testing. Our findings emphasize the importance of continued resistance surveillance.

  13. Naturally occurring Vpr inhibitors from medicinal plants of Myanmar.

    Science.gov (United States)

    Win, Nwet Nwet; Ngwe, Hla; Abe, Ikuro; Morita, Hiroyuki

    2017-10-01

    Human immunodeficiency virus type-1 (HIV-1) is a lentiviral family member that encodes the retroviral Gag, Pol, and Env proteins, along with six additional accessory proteins, Tat, Rev, Vpu, Vif, Nef, and Vpr. The currently approved anti-HIV drugs target the Pol and Env encoded proteins. However, these drugs are only effective in reducing viral replication. Furthermore, the drugs' toxicities and the emergence of drug-resistant strains have become serious worldwide problems. Resistance eventually arises to all of the approved anti-HIV drugs, including the newly approved drugs that target HIV integrase (IN). Drug resistance likely emerges because of spontaneous mutations that occur during viral replication. Therefore, new drugs that effectively block other viral components must be developed to reduce the rate of resistance and suppress viral replication with little or no long-term toxicity. The accessory proteins may expand treatment options. Viral protein R (Vpr) is one of the promising drug targets among the HIV accessory proteins. However, the search for inhibitors continues in anti-HIV drug discovery. In this review, we summarize the naturally occurring compounds discovered from two Myanmar medicinal plants as well as their structure-activity relationships. A total of 49 secondary metabolites were isolated from Kaempferia pulchra rhizomes and Picrasama javanica bark, and the types of compounds were identified as isopimarane diterpenoids and picrasane quassinoids, respectively. Among the isolates, 7 diterpenoids and 15 quassinoids were found to be Vpr inhibitors lacking detectable toxicity, and their potencies varied according to their respective functionalities.

  14. Metabolic health across the BMI spectrum in HIV-infected and HIV-uninfected men.

    Science.gov (United States)

    Lake, Jordan E; Li, Xiuhong; Palella, Frank J; Erlandson, Kristine M; Wiley, Dorothy; Kingsley, Lawrence; Jacobson, Lisa P; Brown, Todd T

    2018-01-02

    In the general population, metabolic health often declines as BMI increases. However, some obese individuals maintain metabolic health. HIV and antiretroviral therapy have been associated with metabolic disturbances. We hypothesized that HIV-infected (HIV) men on suppressive antiretroviral therapy experience less metabolic health than HIV-uninfected (HIV) men across all BMI categories. In a cross-sectional analysis of 1018 HIV and 1092 HIV men enrolled in the multicenter AIDS cohort study, Poisson regression with robust variance determined associations between HIV serostatus and metabolic health prevalence (defined as meeting ≤2 of 5 National Cholesterol Education Program Adult Treatment Panel III metabolic syndrome criteria), adjusting for age, race, BMI category, smoking, and hepatitis C virus infection status. HIV men were younger (54 vs. 59 years) and had lower median BMI (25 vs. 27 kg/m). Nonobese HIV men had lower metabolic health prevalence than HIV men (BMI ≤25 kg/m: 80 vs. 94%, P BMI 25-29 kg/m: 64 vs. 71%, P = 0.05), but metabolic health prevalence among obese men did not differ by HIV serostatus (BMI 30-34 kg/m: 35 vs. 39%, P = 0.48; BMI ≥35 kg/m: 27 vs. 25%, P = 0.79). In the adjusted model, nonobese HIV men were less likely to demonstrate metabolic health than nonobese HIV men. Among HIV men, per year darunavir, zidovudine, and stavudine use were associated with lower metabolic health likelihood. Metabolically healthy obesity prevalence does not differ by HIV serostatus. However, among nonobese men, HIV infection is associated with lower metabolic health prevalence, with associations between lack of metabolic health and darunavir and thymidine analog nucleoside reverse transcriptase inhibitor exposure observed.

  15. HIV and pregnancy: Maternal and neonatal evolution

    Directory of Open Access Journals (Sweden)

    Diego Cecchini

    2011-10-01

    Full Text Available Data regarding epidemiological aspects, antiretroviral drug safety, and outcomes of HIV-infected pregnant women and their newborns are limited in Argentina. We underwent a retrospective analysis of registries of HIV-infected pregnant women assisted at Helios Salud, Buenos Aires, Argentina (1997-2006. Variables associated with preterm delivery and neonatal complications were analyzed by univariate and logistic regression analyses. A total of 204 mother-child binomium were included. Maternal age (median: 29 years; 32.5% without prior diagnosis of HIV-infection. Baseline median CD4 T-cell count: 417 cell/μl; 98% received antiretroviral drugs during pregnancy [2 nucleoside analogs plus either nevirapine (55% or a protease inhibitor (32%]. Overall incidence of toxicity was 12.5%: rash (8%, anemia (3.5% and hepatotoxicity (1%. Rash was associated with exposure to nevirapine. Eighty one percent and 50% reached HIV-viral loads <1000 and <50 copies/ml at the end of pregnancy, respectively. Twenty six percent had obstetric complications and 16% had preterm delivery. Of the newborns, 1.6% had congenital defects and 9% had neonatal complications. Overall neonatal mortality was 1% and perinatal transmission was 0.7%. Protease inhibitor use and obstetric complications were associated to preterm delivery while obstetric complications were associated with neonatal complications. In our population, hepatotoxicity was low despite frequent use of nevirapine. Protease inhibitor use was associated to preterm delivery. A favorable virological response and a low rate of perinatal transmission was observed, what supports the consensus that antiretroviral therapy benefits during pregnancy outweigh risks of maternal and neonatal adverse events.

  16. Comparison of cell-based assays for the identification and evaluation of competitive CXCR4 inhibitors.

    Directory of Open Access Journals (Sweden)

    Anneleen Van Hout

    Full Text Available The chemokine receptor CXCR4 is activated by its unique chemokine ligand CXCL12 and regulates many physiological and developmental processes such as hematopoietic cell trafficking. CXCR4 is also one of the main co-receptors for human immunodeficiency virus (HIV entry. Dysfunction of the CXCL12/CXCR4 axis contributes to several human pathologies, including cancer and inflammatory diseases. Consequently, inhibition of CXCR4 activation is recognized as an attractive target for therapeutic intervention. In this regard, numerous agents modifying CXCR4 activity have been evaluated in in vitro experimental studies and pre-clinical models. Here, we evaluated a CXCL12 competition binding assay for its potential as a valuable initial screen for functional and competitive CXCR4 inhibitors. In total, 11 structurally diverse compounds were included in a side-by-side comparison of in vitro CXCR4 cell-based assays, such as CXCL12 competition binding, CXCL12-induced calcium signaling, CXCR4 internalization, CXCL12-guided cell migration and CXCR4-specific HIV-1 replication experiments. Our data indicated that agents that inhibit CXCL12 binding, i.e. the anti-CXCR4 peptide analogs T22, T140 and TC14012 and the small molecule antagonists AMD3100, AMD3465, AMD11070 and IT1t showed inhibitory activity with consistent relative potencies in all further applied CXCR4-related assays. Accordingly, agents exerting no or very weak receptor binding (i.e., CTCE-9908, WZ811, Me6TREN and gambogic acid showed no or very poor anti-CXCR4 inhibitory activity. Thus, CXCL12 competition binding studies were proven to be highly valuable as an initial screening assay and indicative for the pharmacological and functional profile of competitive CXCR4 antagonists, which will help the design of new potent CXCR4 inhibitors.

  17. Back to work: vocational issues and strategies for Canadians living with HIV/AIDS.

    Science.gov (United States)

    McGinn, Fred; Gahagan, Jacqueline; Gibson, Elaine

    2005-01-01

    Much has been written since the first appearance of HIV/AIDS in 1981 about its effects on the Canadian health care and social services systems. However, researchers have given limited attention to issues of entry or re-entry to the competitive job market for HIV positive individuals. The emergence of highly active antiretroviral therapies (HAART) has allowed a significant number of persons who are HIV positive to experience a major recovery in health and energy. This increase in physical health has in turn led to a re-examination of the possibility of returning to former types and levels of activity, including the prospect of going back to work or entering the competitive workforce for the first time. The purpose of this paper is to outline some of the issues and concerns that impact HIV positive individuals' attempts to return to or enter the competitive workforce, particularly those relating to disability policies and public insurance. Data from in-depth interviews with a sample of people living with HIV/AIDS (PHAs) are used to help illustrate the disconnect between these policies and the lived experiences of PHAs. Also discussed are the opportunities for Canadian policies and practices to employ a functional definition of disability and a philosophy of early intervention in vocational rehabilitation.

  18. HIV-1 drug resistance in recently HIV-infected pregnant mother's naïve to antiretroviral therapy in Dodoma urban, Tanzania.

    Science.gov (United States)

    Vairo, Francesco; Nicastri, Emanuele; Liuzzi, Giuseppina; Chaula, Zainab; Nguhuni, Boniface; Bevilacqua, Nazario; Forbici, Federica; Amendola, Alessandra; Fabeni, Lavinia; De Nardo, Pasquale; Perno, Carlo Federico; Cannas, Angela; Sakhoo, Calistus; Capobianchi, Maria Rosaria; Ippolito, Giuseppe

    2013-09-21

    HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-child-transmission. The study aims to assess the prevalence of HIV primary resistance in pregnant women naïve to antiretrovirals. Cross sectional baseline analysis of a cohort of HIV + pregnant women (HPW) enrolled in the study entitled Antiretroviral Management of Antenatal and Natal HIV Infection (AMANI, peace in Kiswahili language). The AMANI study began in May 2010 in Dodoma, Tanzania. In this observational cohort, antiretroviral treatment was provided to all women from the 28th week of gestation until the end of the breastfeeding period. Baseline CD4 cell count, viral load and HIV drug-resistance genotype were collected. Drug-resistance analysis was performed on 97 naïve infected-mothers. The prevalence of all primary drug resistance and primary non-nucleoside reverse-transcriptase inhibitors resistance was 11.9% and 7.5%, respectively. K103S was found in two women with no M184V detection. HIV-1 subtype A was the most commonly identified, with a high prevalence of subtype A1, followed by C, D, C/D recombinant, A/C recombinant and A/D recombinant. HIV drug- resistance mutations were detected in A1 and C subtypes. Our study reports an 11.9% prevalence rate of primary drug resistance in naïve HIV-infected pregnant women from a remote area of Tanzania. Considering that the non-nucleoside reverse-transcriptase inhibitors are part of the first-line antiretroviral regimen in Tanzania and all of Africa, resistance surveys should be prioritized in settings where antiretroviral therapy programs are scaled up.

  19. Psychotropic prescribing in HIV : clinical: prescribing

    African Journals Online (AJOL)

    may also be changes in the clinical picture in patients with psychiatric disorders ... tain selective serotonin re-uptake inhibitors (SSRIs) and benzodiazepines (see .... treatment in HIV-posi- tive populations have received far more attention than.

  20. Development of aptamer based HIV-1 entry inhibitor prophylactic drugs

    CSIR Research Space (South Africa)

    London, G

    2013-08-01

    Full Text Available proliferation assay and mapped their epitopes on gp120 by site directed mutagenesis. UCLA1 and CSIR1.1 neutralized infectivity of 79 % and 84 % pseudotyped viruses, respectively. UCLA1, further inhibited > 60 % of clinical isolates. We noted that, aptamers...

  1. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rok Gaber

    2013-11-01

    Full Text Available To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity.

  2. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  3. Clinical trials for BET inhibitors run ahead of the science.

    Science.gov (United States)

    Andrieu, Guillaume; Belkina, Anna C; Denis, Gerald V

    2016-03-01

    Several cancer clinical trials for small molecule inhibitors of BET bromodomain proteins have been initiated. There is enthusiasm for the anti-proliferative effect of inhibiting BRD4, one of the targets of these inhibitors, which is thought to cooperate with MYC, a long-desired target for cancer therapeutics. However, no current inhibitor is selective for BRD4 among the three somatic BET proteins, which include BRD2 and BRD3; their respective functions are partially overlapping and none are functionally redundant with BRD4. Each BET protein controls distinct transcriptional pathways that are important for functions beyond cancer cell proliferation, including insulin production, cytokine gene transcription, T cell differentiation, adipogenesis and most seriously, active repression of dangerous latent viruses like HIV. BET inhibitors have been shown to reactivate HIV in human cells. Failure to appreciate that at concentrations used, no available BET inhibitor is member-selective, or to develop a sound biological basis to understand the diverse functions of BET proteins before undertaking for these clinical trials is reckless and likely to lead to adverse events. More mechanistic information from new basic science studies should enable proper focus on the most relevant cancers and define the expected side effect profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Naturally occurring hepatitis C virus protease inhibitors resistance-associated mutations among chronic hepatitis C genotype 1b patients with or without HIV co-infection.

    Science.gov (United States)

    Cao, Ying; Zhang, Yu; Bao, Yi; Zhang, Renwen; Zhang, Xiaxia; Xia, Wei; Wu, Hao; Xu, Xiaoyuan

    2016-05-01

    The aim of this study was to measure the frequency of natural mutations in hepatitis C virus (HCV) mono-infected and HIV/HCV co-infected protease inhibitor (PI)-naive patients. Population sequence of the non-structural (NS)3 protease gene was evaluated in 90 HCV mono-infected and 96 HIV/HCV co-infected PI treatment-naive patients. The natural prevalence of PI resistance mutations in both groups was compared. Complete HCV genotype 1b NS3 sequence information was obtained for 152 (81.72%) samples. Seven sequences (8.33%) of the 84 HCV mono-infected patients and 21 sequences (30.88%) of the 68 HIV/HCV co-infected patients showed amino acid substitutions associated with HCV PI resistance. There was a significant difference in the natural prevalence of PI resistance mutations between these two groups (P = 0.000). The mutations T54S, R117H and N174F were observed in 1.19%, 5.95% and 1.19% of HCV mono-infected patients. The mutations F43S, T54S, Q80K/R, R155K, A156G/V, D168A/E/G and V170A were found in 1.47%, 4.41%, 1.47%/1.47%, 2.94%, 23.53%/1.47%, 1.47%/1.47%/1.47% and 1.47% of HIV/HCV co-infected patients, respectively. In addition, the combination mutations in the NS3 region were detected only in HIV/HCV genotype 1b co-infected patients. Naturally occurring HCV PI resistance mutations existed in HCV mono-infected and HIV/HCV co-infected genotype 1b PI-naive patients. HIV co-infection was associated with a greater frequency of PI resistance mutations. The impact of HIV infection on baseline HCV PI resistance mutations and treatment outcome in chronic hepatitis C (CHC) patients should be further analyzed. © 2015 The Japan Society of Hepatology.

  5. Prevalence, Mutation Patterns, and Effects on Protease Inhibitor Susceptibility of the L76V Mutation in HIV-1 Protease▿ †

    Science.gov (United States)

    Young, Thomas P.; Parkin, Neil T.; Stawiski, Eric; Pilot-Matias, Tami; Trinh, Roger; Kempf, Dale J.; Norton, Michael

    2010-01-01

    Patterns of HIV-1 protease inhibitor (PI) resistance-associated mutations (RAMs) and effects on PI susceptibility associated with the L76V mutation were studied in a large database. Of 20,501 sequences with ≥1 PI RAM, 3.2% contained L76V; L76V was alone in 0.04%. Common partner mutations included M46I, I54V, V82A, I84V, and L90M. L76V was associated with a 2- to 6-fold decrease in susceptibility to lopinavir, darunavir, amprenavir, and indinavir and a 7- to 8-fold increase in susceptibility to atazanavir and saquinavir. PMID:20805393

  6. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Science.gov (United States)

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  7. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Pedro Perdigão

    Full Text Available The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  8. Cellular specificity of HIV-1 replication can be controlled by LTR sequences

    International Nuclear Information System (INIS)

    Reed-Inderbitzin, Edward; Maury, Wendy

    2003-01-01

    Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-κB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry

  9. Circumstances, experiences and processes surrounding women's entry into sex work in India.

    Science.gov (United States)

    McClarty, Leigh M; Bhattacharjee, Parinita; Blanchard, James F; Lorway, Robert R; Ramanaik, Satyanarayana; Mishra, Sharmistha; Isac, Shajy; Ramesh, B M; Washington, Reynold; Moses, Stephen; Becker, Marissa L

    2014-01-01

    Evidence suggests that in India, the early stages of a woman's career as a sex worker may be an important period to target for HIV and sexually transmitted infection prevention. Before such an intervention is designed and implemented, it is necessary to first understand the life circumstances of women at the start of their sex work careers. We performed a review to bring together available literature pertaining to entry into sex work in India and to highlight knowledge gaps. We found that historical traditions of dedication into sex work, financial insecurity, family discord, violence and coercion, and desire for financial independence are commonly reported reasons for entering into sex work. We also found that families and the broader sex worker community play an important role in the early stages of a woman's sex work career. We suggest that HIV-prevention programmes in India would substantially benefit from a deeper understanding of the life circumstances of new and young women sex workers. Further research should be conducted focusing on family and community involvement in women's entry into sex work, and on the important period of time after a woman's first commercial sex encounter, but before self-identification as a sex worker.

  10. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-11-01

    Full Text Available Abstract Background We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1 variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY, creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. Results Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R. This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. Conclusion The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY can be corrected by a second site mutation in Env (GIA-SKY-G431R that affects the interaction with the CD4 receptor.

  11. Prevalence, awareness, treatment, and control rate of hypertension in HIV-infected patients: the HIV-HY study.

    Science.gov (United States)

    De Socio, Giuseppe Vittorio; Ricci, Elena; Maggi, Paolo; Parruti, Giustino; Pucci, Giacomo; Di Biagio, Antonio; Calza, Leonardo; Orofino, Giancarlo; Carenzi, Laura; Cecchini, Enisia; Madeddu, Giordano; Quirino, Tiziana; Schillaci, Giuseppe

    2014-02-01

    We aimed to assess the prevalence of hypertension in an unselected human immunodeficiency virus (HIV)-infected population and to identify factors associated with hypertension prevalence, treatment, and control. We used a multicenter, cross-sectional, nationwide study that sampled 1,182 unselected, consecutive, HIV-infected patients. Office blood pressure was accurately measured with standard procedures. Patients were 71% men and 92% white, with a median age of 47 years (range = 18-78); 6% were antiretroviral treatment naive. The overall prevalence of hypertension was 29.3%; high-normal pressure accounted for an additional 12.3%. Among hypertensive subjects, 64.9% were aware of their hypertensive condition, 52.9% were treated, and 33.0% were controlled (blood pressure < 140/90 mm Hg). Blood pressure-lowering medications were used in monotherapy in 54.3% of the subjects. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers were the most frequently used drugs (76.1%: monotherapy = 39.1%, combination treatment = 37.0%). In multivariable regression models, hypertension was independently predicted by traditional risk factors, including age ≥50 years, male sex, family history of cardiovascular disease, body mass index ≥25 kg/m2, previous cardiovascular events, diabetes, central obesity, and metabolic syndrome, as well as by duration of HIV infection, duration of antiretroviral therapy, and nadir CD4+ T-cell count <200/μl. The choice of protease inhibitors vs. nonnucleoside reverse transcriptase inhibitors as a third antiretroviral drug was irrelevant. Hypertension affects nearly 30% of HIV adult outpatients in Italy. More than one-third of the hypertensive subjects are unaware of their condition, and more than two-thirds are uncontrolled. A higher level of attention to the diagnosis and treatment of hypertension is mandatory in this setting.

  12. The demise of multidrug-resistant HIV-1: the national time trend in Portugal.

    Science.gov (United States)

    Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Aguas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge

    2013-04-01

    Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7-8.4) in 2001-03, 6.0% (95% CI: 4.9-7.2) in 2003-05, 3.7% (95% CI: 2.8-4.8) in 2005-07 and 1.6% (95% CI: 1.1-2.2) in 2007-09 down to 0.6% (95% CI: 0.3-0.9) in 2009-12 [OR=0.80 (95% CI: 0.75-0.86); P<0.001]. In July 2011 the last new case of MDR was seen. The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains.

  13. Introducing Catastrophe-QSAR. Application on Modeling Molecular Mechanisms of Pyridinone Derivative-Type HIV Non-Nucleoside Reverse Transcriptase Inhibitors

    Directory of Open Access Journals (Sweden)

    Marius Lazea

    2011-12-01

    Full Text Available The classical method of quantitative structure-activity relationships (QSAR is enriched using non-linear models, as Thom’s polynomials allow either uni- or bi-variate structural parameters. In this context, catastrophe QSAR algorithms are applied to the anti-HIV-1 activity of pyridinone derivatives. This requires calculation of the so-called relative statistical power and of its minimum principle in various QSAR models. A new index, known as a statistical relative power, is constructed as an Euclidian measure for the combined ratio of the Pearson correlation to algebraic correlation, with normalized t-Student and the Fisher tests. First and second order inter-model paths are considered for mono-variate catastrophes, whereas for bi-variate catastrophes the direct minimum path is provided, allowing the QSAR models to be tested for predictive purposes. At this stage, the max-to-min hierarchies of the tested models allow the interaction mechanism to be identified using structural parameter succession and the typical catastrophes involved. Minimized differences between these catastrophe models in the common structurally influential domains that span both the trial and tested compounds identify the “optimal molecular structural domains” and the molecules with the best output with respect to the modeled activity, which in this case is human immunodeficiency virus type 1 HIV-1 inhibition. The best molecules are characterized by hydrophobic interactions with the HIV-1 p66 subunit protein, and they concur with those identified in other 3D-QSAR analyses. Moreover, the importance of aromatic ring stacking interactions for increasing the binding affinity of the inhibitor-reverse transcriptase ligand-substrate complex is highlighted.

  14. First line treatment response in patients with transmitted HIV drug resistance and well defined time point of HIV infection: updated results from the German HIV-1 seroconverter study.

    Directory of Open Access Journals (Sweden)

    Fabia Zu Knyphausen

    Full Text Available BACKGROUND: Transmission of drug-resistant HIV-1 (TDR can impair the virologic response to antiretroviral combination therapy. Aim of the study was to assess the impact of TDR on treatment success of resistance test-guided first-line therapy in the German HIV-1 Seroconverter Cohort for patients infected with HIV between 1996 and 2010. An update of the prevalence of TDR and trend over time was performed. METHODS: Data of 1,667 HIV-infected individuals who seroconverted between 1996 and 2010 were analysed. The WHO drug resistance mutations list was used to identify resistance-associated HIV mutations in drug-naïve patients for epidemiological analysis. For treatment success analysis the Stanford algorithm was used to classify a subset of 323 drug-naïve genotyped patients who received a first-line cART into three resistance groups: patients without TDR, patients with TDR and fully active cART and patients with TDR and non-fully active cART. The frequency of virologic failure 5 to 12 months after treatment initiation was determined. RESULTS: Prevalence of TDR was stable at a high mean level of 11.9% (198/1,667 in the HIV-1 Seroconverter Cohort without significant trend over time. Nucleotide reverse transcriptase inhibitor resistance was predominant (6.0% and decreased significantly over time (OR = 0.92, CI = 0.87-0.98, p = 0.01. Non-nucleoside reverse transcriptase inhibitor (2.4%; OR = 1.00, CI = 0.92-1.09, p = 0.96 and protease inhibitor resistance (2.0%; OR = 0.94, CI = 0.861.03, p = 0.17 remained stable. Virologic failure was observed in 6.5% of patients with TDR receiving fully active cART, 5,6% of patients with TDR receiving non-fully active cART and 3.2% of patients without TDR. The difference between the three groups was not significant (p = 0.41. CONCLUSION: Overall prevalence of TDR remained stable at a rather high level. No significant differences in the frequency of virologic failure were

  15. HIV infection of T cells: actin-in and actin-out.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Shaw, Stephen

    2009-04-14

    Three studies shed light on the decade-old observation that the actin cytoskeleton is hijacked to facilitate entry of HIV into its target cells. Polymerization of actin is required to assemble high concentrations of CD4 and CXCR4 at the plasma membrane, which promote viral binding and entry in both the simple model of infection by free virus and the more physiologically relevant route of infection through the virological synapse. Three types of actin-interacting proteins-filamin, ezrin/radixin/moesin (ERM), and cofilin-are now shown to play critical roles in this process. Filamin binds to both CD4 and CXCR4 in a manner promoted by signaling of the HIV gp120 glycoprotein. ERM proteins attach actin filaments to the membrane and may promote polymerization of actin. Early in the process of viral entry, cofilin is inactivated, which is proposed to facilitate the early assembly of actin filaments, but cofilin is reported to be activated soon thereafter to facilitate postentry events. This complex role of cofilin may help to reconcile the paradox that actin polymerization promotes initial binding and fusion steps but inhibits some subsequent early postentry events.

  16. Development and Characterization of a Vaginal Film Containing Dapivirine, a Non- nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission.

    Science.gov (United States)

    Akil, Ayman; Parniak, Michael A; Dezzuitti, Charlene S; Moncla, Bernard J; Cost, Marilyn R; Li, Mingguang; Rohan, Lisa Cencia

    2011-06-01

    Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is a potent and promising anti-HIV molecule. It is currently being investigated for use as a vaginal microbicide in two dosage forms, a semi-solid gel and a silicone elastomer ring. Quick-dissolving films are promising and attractive dosage forms that may provide an alternative platform for the vaginal delivery of microbicide drug candidates. Vaginal films may provide advantages such as discreet use, no product leakage during use, lack of requirement for an applicator for insertion, rapid drug release and minimal packaging and reduced wastage. Within this study the in vitro bioactivity of dapivirine as compared to the NNRTI UC781 was further established and a quick dissolve film was developed for vaginal application of dapivirine for prevention of HIV infection. The developed film was characterized with respect to its physical and chemical attributes including water content, mechanical strength, drug release profile, permeability, compatibility with lactobacilli and bioactivity. The anti-HIV activity of the formulated dapivirine film was confirmed in in vitro and ex vivo models. Importantly the physical and chemical properties of the film as well as its bioactivity were maintained for a period of 18 months. In conclusion, a vaginal film containing dapivirine was developed and characterized. The film was shown to prevent HIV-1 infection in vitro and ex vivo and have acceptable characteristics which make this film a promising candidate for testing as vaginal microbicide.

  17. Engaging African and Caribbean Immigrants in HIV Testing and Care in a Large US City: Lessons Learned from the African Diaspora Health Initiative.

    Science.gov (United States)

    Kwakwa, Helena A; Wahome, Rahab; Goines, Djalika S; Jabateh, Voffee; Green, Arraina; Bessias, Sophia; Flanigan, Timothy P

    2017-08-01

    The lifting in 2010 of the HIV entry ban eliminated an access point for HIV testing of the foreign-born. The African Diaspora Health Initiative (ADHI) was developed to examine alternative pathways to testing for African and Caribbean persons. The ADHI consists of Clinics Without Walls (CWW) held in community settings. HIV testing is offered to participants along with hypertension and diabetes screening. A survey is administered to participants. Descriptive data were analyzed using SAS 9.2. Between 2011 and 2015, 4152 African and Caribbean individuals participated in 352 CWW. Participants were mostly (67.7 %) African. HIV rates were lowest in Caribbean women (0.4 %) and highest in Caribbean men (8.4 %). Efforts to engage African and Caribbean communities in HIV testing are important given the elimination of the HIV entry ban and continued immigration to the US from areas of higher prevalence. The ADHI offers a successful model of engagement.

  18. The Impact of Human Papilloma Viruses, Matrix Metallo-Proteinases and HIV Protease Inhibitors on the Onset and Progression of Uterine Cervix Epithelial Tumors: A Review of Preclinical and Clinical Studies

    Directory of Open Access Journals (Sweden)

    Giovanni Barillari

    2018-05-01

    Full Text Available Infection of uterine cervix epithelial cells by the Human Papilloma Viruses (HPV is associated with the development of dysplastic/hyperplastic lesions, termed cervical intraepithelial neoplasia (CIN. CIN lesions may regress, persist or progress to invasive cervical carcinoma (CC, a leading cause of death worldwide. CIN is particularly frequent and aggressive in women infected by both HPV and the Human Immunodeficiency Virus (HIV, as compared to the general female population. In these individuals, however, therapeutic regimens employing HIV protease inhibitors (HIV-PI have reduced CIN incidence and/or clinical progression, shedding light on the mechanism(s of its development. This article reviews published work concerning: (i the role of HPV proteins (including HPV-E5, E6 and E7 and of matrix-metalloproteinases (MMPs in CIN evolution into invasive CC; and (ii the effect of HIV-PI on events leading to CIN progression such as basement membrane and extracellular matrix invasion by HPV-positive CIN cells and the formation of new blood vessels. Results from the reviewed literature indicate that CIN clinical progression can be monitored by evaluating the expression of MMPs and HPV proteins and they suggest the use of HIV-PI or their derivatives for the block of CIN evolution into CC in both HIV-infected and uninfected women.

  19. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge

    Science.gov (United States)

    Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J.

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  20. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge.

    Science.gov (United States)

    Perryman, Alexander L; Santiago, Daniel N; Forli, Stefano; Martins, Diogo Santos; Olson, Arthur J

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  1. How Does Sex Trafficking Increase the Risk of HIV Infection? An Observational Study From Southern India

    Science.gov (United States)

    Wirth, Kathleen E.; Tchetgen Tchetgen, Eric J.; Silverman, Jay G.; Murray, Megan B.

    2013-01-01

    Studies have documented the substantial risk of human immunodeficiency virus (HIV) infection endured by sex-trafficked women, but it remains unclear how exposure to trafficking puts its victims at risk. We assessed whether the association between sex trafficking and HIV could be explained by self-reported forced prostitution or young age at entry into prostitution using cross-sectional data collected from 1,814 adult female sex workers in Karnataka, India, between August 2005 and August 2006. Marginal structural logistic regression was used to estimate adjusted odds ratios for HIV infection. Overall, 372 (21%) women met 1 or both criteria used to define sex trafficking: 278 (16%) began sex work before age 18 years, and 107 (5%) reported being forcibly prostituted. Thirteen (0.7%) met both criteria. Forcibly prostituted women were more likely to be HIV-infected than were women who joined the industry voluntarily, independent of age at entering prostitution (odds ratio = 2.30, 95% confidence interval: 1.08, 4.90). Conversely, after adjustment for forced prostitution and other confounders, no association between age at entry into prostitution and HIV was observed. The association between forced prostitution and HIV infection became stronger in the presence of sexual violence (odds ratio = 11.13, 95% confidence interval: 2.41, 51.40). These findings indicate that forced prostitution coupled with sexual violence probably explains the association between sex trafficking and HIV. PMID:23324332

  2. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    Energy Technology Data Exchange (ETDEWEB)

    Di Nunzio, Francesca, E-mail: francesca.di-nunzio@pasteur.fr [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Fricke, Thomas [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Miccio, Annarita [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Valle-Casuso, Jose Carlos; Perez, Patricio [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Souque, Philippe [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Rizzi, Ermanno; Severgnini, Marco [Institute of Biomedical Technologies, CNR, Milano (Italy); Mavilio, Fulvio [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Genethon, Evry (France); Charneau, Pierre [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Diaz-Griffero, Felipe, E-mail: felipe.diaz-griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States)

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  3. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    International Nuclear Information System (INIS)

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-01-01

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites

  4. From genome to antivirals: SARS as a test tube.

    Science.gov (United States)

    Kliger, Yossef; Levanon, Erez Y; Gerber, Doron

    2005-03-01

    The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.

  5. Respiratory Failure Associated with the Lipodystrophy Syndrome in an HIV-Positive Patient with Compromised Lung Function

    Directory of Open Access Journals (Sweden)

    Natasha Press

    2001-01-01

    Full Text Available Protease inhibitors, used as treatment in human immunodeficiency virus (HIV infection, are associated with a syndrome of peripheral lipodystrophy, central adiposity, hyperlipidemia and insulin resistance. An HIV-positive patient with chronic obstructive pulmonary disease is presented who developed the lipodystrophy syndrome that is associated with the use of protease inhibitors. It is postulated that the lipodystrophy syndrome further compromised his lung function, leading to respiratory failure. Patients who have pulmonary disease and are taking protease inhibitors require monitoring of clinical status and pulmonary function tests.

  6. Identification and characterization of HIV-2 strains obtained from asymptomatic patients that do not use CCR5 or CXCR4 coreceptors

    International Nuclear Information System (INIS)

    Azevedo-Pereira, J.M.; Santos-Costa, Q.; Mansinho, K.; Moniz-Pereira, J.

    2003-01-01

    In vivo, human immunodeficiency virus type 2 (HIV-2) infection reveals several unique characteristics when compared to HIV-1 infection, the most remarkable of which is the extraordinarily long asymptomatic period. Here we describe two HIV-2 primary isolates, obtained from asymptomatic individuals, which do not infect any coreceptor-expressing cell lines tested. In those cells, we show that the absence of replication is directly related to cell entry events. Furthermore, productive infection observed in peripheral blood mononuclear cells (PBMC) was not inhibited by natural ligands and monoclonal antibodies directed to CCR5 and CXCR4. Finally, viral entry efficiency and viral progeny production of these viruses are markedly impaired in PBMC, indicating a reduced replicative fitness of both viruses. In conclusion, our data suggest that in some HIV-2 asymptomatic individuals, the circulating viruses are unable to use the major coreceptors to infect PBMC. This fact should have important implications in HIV-2 pathogenesis and transmission

  7. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance.

    Directory of Open Access Journals (Sweden)

    Meytal Galilee

    2018-01-01

    Full Text Available Reverse transcriptase (RT is the target for the majority of anti-HIV-1 drugs. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV. FIV closely parallels HIV-1 in its replication and pathogenicity, however, is resistant to all non-nucleoside inhibitors (NNRTI. The intrinsic resistance of FIV RT is particularly interesting since FIV harbors the Y181 and Y188 sensitivity residues absent in both HIV-2 and SIV. Unlike RT from HIV-2 or SIV, previous efforts have failed to make FIV RT susceptible to NNRTIs concluding that the structure or flexibility of the feline enzyme must be profoundly different. We report the first crystal structure of FIV RT and, being the first structure of an RT from a non-primate lentivirus, enrich the structural and species repertoires available for RT. The structure demonstrates that while the NNRTI binding pocket is conserved, minor subtleties at the entryway can render the FIV RT pocket more restricted and unfavorable for effective NNRTI binding. Measuring NNRTI binding affinity to FIV RT shows that the "closed" pocket configuration inhibits NNRTI binding. Mutating the loop residues rimming the entryway of FIV RT pocket allows for NNRTI binding, however, it does not confer sensitivity to these inhibitors. This reveals a further layer of resistance caused by inherent FIV RT variances that could have enhanced the dissociation of bound inhibitors, or, perhaps, modulated protein plasticity to overcome inhibitory effects of bound NNRTIs. The more "closed" conformation of FIV RT pocket can provide a template for the development of innovative drugs that could unlock the constrained pocket, and the resilient mutant version of the enzyme can offer a fresh model for the study

  8. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy

    Directory of Open Access Journals (Sweden)

    Dobson Wendy

    2011-06-01

    Full Text Available Abstract Background RNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK family of SR protein kinases on HIV-1 expression and RNA processing was examined. Results Despite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication. Conclusions Together, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.

  9. HIV or HIV-Therapy? Causal attributions of symptoms and their impact on treatment decisions among women and men with HIV

    Directory of Open Access Journals (Sweden)

    Kremer H

    2009-04-01

    Full Text Available Abstract Objectives Among people with HIV, we examined symptom attribution to HIV or HIV-therapy, awareness of potential side effects and discontinuation of treatment, as well as sex/gender differences. Methods HIV-patients (N = 168, 46% female completed a comprehensive symptom checklist (attributing each endorsed symptom to HIV, HIV-therapy, or other causes, reported reasons for treatment discontinuations and potential ART-related laboratory abnormalities. Results Main symptom areas were fatigue/sleep/energy, depression/mood, lipodystrophy, and gastrointestinal, dermatological, and neurological problems. Top HIV-attributed symptoms were lack of stamina/energy in both genders, night sweats, depression, mood swings in women; and fatigue, lethargy, difficulties concentrating in men. Women attributed symptoms less frequently to HIV than men, particularly fa-tigue(p Top treatment-attributed symptoms were lipodystrophy and gastrointestinal problems in both genders. Symptom attribution to HIV-therapy did not differ between genders. Over the past six months, 22% switched/interrupted ART due to side effects. In women, side effect-related treatment decisions were more complex, involving more side effects and substances. Remarkably, women took predominantly protease inhibitor-sparing regimens (p = .05. Both genders reported only 15% of potential ART-related laboratory abnormalities but more than 50% had laboratory abnormalities. Notably, women had fewer elevated renal parameters (p Conclusions Men may attribute symptoms more often to HIV and maintain a treatment-regimen despite side effects, whereas women may be more prudent in avoiding treatment side effects. Lacking awareness of laboratory abnormalities in both genders potentially indicates gaps in physician-patient communication. Gender differences in causal attributions of symptoms/side effects may influence treatment decisions.

  10. Intravaginal ring delivery of the reverse transcriptase inhibitor TMC 120 as an HIV microbicide.

    Science.gov (United States)

    Woolfson, A David; Malcolm, R Karl; Morrow, Ryan J; Toner, Clare F; McCullagh, Stephen D

    2006-11-15

    TMC 120 (Dapivirine) is a potent non-nucleoside reverse transcriptase inhibitor that is presently being developed as a vaginal HIV microbicide. To date, most vaginal microbicides under clinical investigation have been formulated as single-dose semi-solid gels, designed for application to the vagina before each act of intercourse. However, a clear rationale exists for providing long-term, controlled release of vaginal microbicides in order to afford continuous protection against heterosexually transmitted HIV infection and to improve user compliance. In this study we report on the incorporation of various pharmaceutical excipients into TMC 120 silicone, reservoir-type intravaginal rings (IVRs) in order to modify the controlled release characteristics of the microbicide. The results demonstrate that TMC 120 is released in zero-order fashion from the rings over a 28-day period and that release parameters could be modified by the inclusion of release-modifying excipients in the IVR. The hydrophobic liquid excipient isopropyl myristate had little effect on steady-state daily release rates, but did increase the magnitude and duration of burst release in proportion to excipient loading in the IVR. By comparison, the hydrophobic liquid poly(dimethylsiloxane) had little effect on TMC 120 release parameters. A hydrophilic excipient, lactose, had the surprising effect of decreasing TMC 120 burst release while increasing the apparent steady-state daily release in a concentration-dependent manner. Based on previous cell culture data and vaginal physiology, TMC120 is released from the various ring formulations in amounts potentially capable of maintaining a protective vaginal concentration. It is further predicted that the observed release rates may be maintained for at least a period of 1 year from a single ring device. TMC 120 release profiles and the mechanical properties of rings could be modified by the physicochemical nature of hydrophobic and hydrophilic excipients

  11. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration

    DEFF Research Database (Denmark)

    Sabin, Caroline A; Worm, Signe W; Weber, Rainer

    2008-01-01

    cohort of HIV-infected patients. METHODS: We used Poisson regression models to quantify the relation between cumulative, recent (currently or within the preceding 6 months), and past use of zidovudine, didanosine, stavudine, lamivudine, and abacavir and development of myocardial infarction in 33 347......BACKGROUND: Whether nucleoside reverse transcriptase inhibitors increase the risk of myocardial infarction in HIV-infected individuals is unclear. Our aim was to explore whether exposure to such drugs was associated with an excess risk of myocardial infarction in a large, prospective observational...... patients enrolled in the D:A:D study. We adjusted for cardiovascular risk factors that are unlikely to be affected by antiretroviral therapy, cohort, calendar year, and use of other antiretrovirals. FINDINGS: Over 157,912 person-years, 517 patients had a myocardial infarction. We found no associations...

  12. Molecular Pathology of Neuro-AIDS (CNS-HIV

    Directory of Open Access Journals (Sweden)

    Eliezer Masliah

    2009-03-01

    Full Text Available The cognitive deficits in patients with HIV profoundly affect the quality of life of people living with this disease and have often been linked to the neuro-inflammatory condition known as HIV encephalitis (HIVE. With the advent of more effective anti-retroviral therapies, HIVE has shifted from a sub-acute to a chronic condition. The neurodegenerative process in patients with HIVE is characterized by synaptic and dendritic damage to pyramidal neurons, loss of calbindin-immunoreactive interneurons and myelin loss. The mechanisms leading to neurodegeneration in HIVE might involve a variety of pathways, and several lines of investigation have found that interference with signaling factors mediating neuroprotection might play an important role. These signaling pathways include, among others, the GSK3b, CDK5, ERK, Pyk2, p38 and JNK cascades. Of these, GSK3b has been a primary focus of many previous studies showing that in infected patients, HIV proteins and neurotoxins secreted by immune-activated cells in the brain abnormally activate this pathway, which is otherwise regulated by growth factors such as FGF. Interestingly, modulation of the GSK3b signaling pathway by FGF1 or GSK3b inhibitors (lithium, valproic acid is protective against HIV neurotoxicity, and several pilot clinical trials have demonstrated cognitive improvements in HIV patients treated with GSK3b inhibitors. In addition to the GSK3b pathway, the CDK5 pathway has recently been implicated as a mediator of neurotoxicity in HIV, and HIV proteins might activate this pathway and subsequently disrupt the diverse processes that CDK5 regulates, including synapse formation and plasticity and neurogenesis. Taken together, the GSK3b and CDK5 signaling pathways are important regulators of neurotoxicity in HIV, and modulation of these factors might have therapeutic potential in the treatment of patients suffering from HIVE. In this context, the subsequent sections will focus on reviewing the

  13. Identification of a coumarin-based antihistamine-like small molecule as an anti-filoviral entry inhibitor.

    Science.gov (United States)

    Cheng, Han; Schafer, Adam; Soloveva, Veronica; Gharaibeh, Dima; Kenny, Tara; Retterer, Cary; Zamani, Rouzbeh; Bavari, Sina; Peet, Norton P; Rong, Lijun

    2017-09-01

    Filoviruses, consisting of Ebola virus, Marburg virus and Cuevavirus, cause severe hemorrhagic fevers in humans with high mortality rates up to 90%. Currently, there is no approved vaccine or therapy available for the prevention and treatment of filovirus infection in humans. The recent 2013-2015 West African Ebola epidemic underscores the urgency to develop antiviral therapeutics against these infectious diseases. Our previous study showed that GPCR antagonists, particularly histamine receptor antagonists (antihistamines) inhibit Ebola and Marburg virus entry. In this study, we screened a library of 1220 small molecules with predicted antihistamine activity, identified multiple compounds with potent inhibitory activity against entry of both Ebola and Marburg viruses in human cancer cell lines, and confirmed their anti-Ebola activity in human primary cells. These small molecules target a late-stage of Ebola virus entry. Further structure-activity relationship studies around one compound (cp19) reveal the importance of the coumarin fused ring structure, especially the hydrophobic substituents at positions 3 and/or 4, for its antiviral activity, and this identified scaffold represents a favorable starting point for the rapid development of anti-filovirus therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Homeostatic properties of Lactobacillus jensenii engineered as a live vaginal anti-HIV microbicide.

    Science.gov (United States)

    Yamamoto, Hidemi S; Xu, Qiang; Fichorova, Raina N

    2013-01-08

    Vaginal probiotics are investigated as a binary strategy for prevention of bacterial vaginosis and HIV. We applied an innovative experimental model using primary and immortalized human cervical and vaginal epithelial cells to assess the functional properties of Lactobacillus jensenii, a predominant constituent of the healthy vaginal microbiome, engineered to express the HIV-1 entry inhibitor modified cyanovirin-N (mCV-N). In this model bacteria colonize the epithelial cells over a period of 24-72 h. Staurosporine and the Toll-like receptor 2/6 ligand macrophage-activating lipopeptide-2 (MALP-2) serve as positive controls for apoptosis and proinflammatory activation, respectively. In 24-hour intervals, the colonized epithelium is assessed microscopically, supernatants are collected for measurement of soluble immunoinflammatory mediators and production of CV-N, and cells are lysed for assessment of: 1) apoptosis by cleaved versus total caspase-3 assay; 2) NF-κB activation by a luciferase reporter assay; or 3) epithelia-associated colony forming units (CFU) in Brucella agar. Wild type (WT) L. jensenii 1153 consistently colonized cervical and vaginal cells in the absence of epithelial damage and apoptosis. The bioengineered derivatives expressing mCV-N or control plasmids showed the same stable colonization pattern, which was reproducible between technologists and bacterial batches (CFU coefficient of variation <10% within and between experiments and epithelial cell types). MALP-2 activated NF-κB and caused fold-increased levels of proinflammatory mediators with clinically established significance in the cervicovaginal environment (IL-1α, IL-1β, IL-6, TNF-α, IL-8, RANTES, MIP-3α, and ICAM-1), measured by a multiplex electrochemiluminescence assay. At the same time levels of protective anti-inflammatory mediators interleukin 1 receptor antagonist (IL-1RA) and secretory leukocyte protease inhibitor (SLPI), both measured by ELISA, remained constant (IL-1RA) or

  15. Robust mitotic entry is ensured by a latching switch

    Directory of Open Access Journals (Sweden)

    Chloe Tuck

    2013-07-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011. Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  16. Robust mitotic entry is ensured by a latching switch.

    Science.gov (United States)

    Tuck, Chloe; Zhang, Tongli; Potapova, Tamara; Malumbres, Marcos; Novák, Béla

    2013-01-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  17. Ethyl malonate amides: a diketo acid offspring fragment for HIV integrase inhibition.

    Science.gov (United States)

    Serafin, Katarzyna; Mazur, Pawel; Bak, Andrzej; Laine, Elodie; Tchertanov, Luba; Mouscadet, Jean-François; Polanski, Jaroslaw

    2011-08-15

    While searching for new HIV integrase inhibitors we discovered that some ethyl malonate amides (EMA) are active against this enzyme. Surprisingly, the main function can only very rarely be found among the reported drug candidates. We synthesised a series of compounds in order to establish and analyse the structure-activity relationship. The similarity to the important classes of HIV integrase inhibitors as well as the synthetic availability of the different targets including this pharmacophore makes EMA compounds an interesting object of investigations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Implementing a routine, voluntary HIV testing program in a Massachusetts county prison.

    Science.gov (United States)

    Liddicoat, Rebecca V; Zheng, Hui; Internicola, Jeanne; Werner, Barbara G; Kazianis, Arthur; Golan, Yoav; Rubinstein, Eric P; Freedberg, Kenneth A; Walensky, Rochelle P

    2006-11-01

    Although U.S. prison inmates have higher rates of HIV infection than the general population, most inmates are not routinely tested for HIV infection at prison entry. The study objective was to implement a routine, voluntary HIV testing program in a Massachusetts county prison. During admission, inmates were given group HIV pre-test counseling and were subsequently offered private HIV testing. This intervention was compared to a control period during which HIV testing was provided only upon inmate or physician request. Between November 2004 and April 2005, 1,004 inmates met inclusion criteria and were offered routine, voluntary HIV testing. Of these, 734 (73.1%) accepted, 2 (0.3%) were HIV-infected, and 457 (45.5%) had been tested for HIV in the previous year. The testing rate of 73.1% was significantly increased from the rate of 18.0% (318 of 1,723) during the control period (pprison setting. Careful attention should be paid to prevent redundancy of testing efforts in the prison population. Implementing a routine HIV testing program among prison inmates greatly increased testing rates compared to on-request testing.

  19. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1...

  20. Reverse transcriptase inhibitors as microbicides.

    Science.gov (United States)

    Lewi, Paul; Heeres, Jan; Ariën, Kevin; Venkatraj, Muthusamy; Joossens, Jurgen; Van der Veken, Pieter; Augustyns, Koen; Vanham, Guido

    2012-01-01

    The CAPRISA 004 study in South Africa has accelerated the development of vaginal and rectal microbicides containing antiretrovirals that target specific enzymes in the reproduction cycle of HIV, especially reverse transcriptase inhibitors (RTI). In this review we discuss the potential relevance of HIV-1 RTIs as microbicides, focusing in the nucleotide RTI tenofovir and six classes of nonnucleoside RTIs (including dapivirine, UC781, urea and thiourea PETTs, DABOs and a pyrimidinedione). Although tenofovir and dapivirine appear to be most advanced in clinical trials as potential microbicides, several issues remain unresolved, e.g., the importance of nonhuman primates as a "gatekeeper" for clinical trials, the emergence and spread of drug-resistant mutants, the combination of microbicides that target different phases of viral reproduction and the accessibility to microbicides in low-income countries. Thus, here we discuss the latest research on RTI as microbicides in the light of the continuing spread of the HIV pandemic from the point of view of medicinal chemistry, virological, and pharmaceutical studies.

  1. Rheumatic diseases in HIV-infected patients in the post-antiretroviral therapy era: a tertiary care center experience.

    Science.gov (United States)

    Parperis, Konstantinos; Abdulqader, Yasir; Myers, Robert; Bhattarai, Bikash; Al-Ani, Muhsen

    2018-04-04

    The aim of the study was to calculate the proportion of rheumatic diseases in HIV patients who were receiving ART and to identify association of the HIV medications with the development of rheumatologic diseases. We conducted a retrospective chart review during the period of 2010 to 2016. We identified 2996 patients as having chronic HIV infection and on ART, and we collected data regarding patient's demographic characteristics, comorbidities, CD 4 count, HIV viral load, and ART. One hundred thirteen out of 2996 HIV patients (3.8%) were found to have a rheumatic condition (mean age of 48.6 years, 83% male). The most frequent musculoskeletal condition was avascular necrosis (AVN) in 39 (1.3%), and the most frequent autoimmune condition was psoriasis in 28 patients (1%). Compared with the 200 HIV patients without any diagnosis of rheumatic disease were the older patients with rheumatic conditions (mean age of 48.9 vs. 42.7 years; p rheumatic conditions were 1.7 times higher in males (relative to females). Those who received integrase inhibitors were more likely (63.3%) to develop rheumatologic manifestations relative to those who never received integrase inhibitors (21.6%; p rheumatic diseases in HIV patients appears to be comparable to the prevalence in the US population. Older age, longer duration of HIV infection, and the use of ART regimens containing integrase inhibitors, appear to increase the risk of developing a rheumatic condition.

  2. Oxidative Stress Predicts All-Cause Mortality in HIV-Infected Patients.

    Directory of Open Access Journals (Sweden)

    Mar Masiá

    Full Text Available We aimed to assess whether oxidative stress is a predictor of mortality in HIV-infected patients.We conducted a nested case-control study in CoRIS, a contemporary, multicentre cohort of HIV-infected patients, antiretroviral-naïve at entry, launched in 2004. Cases were patients who died with available stored plasma samples collected. Two age and sex-matched controls for each case were selected. We measured F2-isoprostanes (F2-IsoPs and malondialdehyde (MDA plasma levels in the first blood sample obtained after cohort engagement.54 cases and 93 controls were included. Median F2-IsoPs and MDA levels were significantly higher in cases than in controls. When adjustment was performed for age, HIV-transmission category, CD4 cell count and HIV viral load at cohort entry, and subclinical inflammation measured with highly-sensitive C-reactive protein (hsCRP, the association of F2-IsoPs with mortality remained significant (adjusted OR per 1 log10 increase, 2.34 [1.23-4.47], P = 0.009. The association of MDA with mortality was attenuated after adjustment: adjusted OR (95% CI per 1 log10 increase, 2.05 [0.91-4.59], P = 0.080. Median hsCRP was also higher in cases, and it also proved to be an independent predictor of mortality in the adjusted analysis: OR (95% CI per 1 log10 increase, 1.39 (1.01-1.91, P = 0.043; and OR (95% CI per 1 log10 increase, 1.46 (1.07-1.99, P = 0.014, respectively, when adjustment included F2-IsoPs and MDA.Oxidative stress is a predictor of all-cause mortality in HIV-infected patients. For plasma F2-IsoPs, this association is independent of HIV-related factors and subclinical inflammation.

  3. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors.

    Science.gov (United States)

    Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan

    2010-12-12

    Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm.

  4. Accumulation of MxB/Mx2-resistant HIV-1 Capsid Variants During Expansion of the HIV-1 Epidemic in Human Populations.

    Science.gov (United States)

    Wei, Wei; Guo, Haoran; Ma, Min; Markham, Richard; Yu, Xiao-Fang

    2016-06-01

    Recent studies have identified human myxovirus resistance protein 2 (MxB or Mx2) as an interferon induced inhibitor of HIV-1 replication. However, whether HIV-1 can overcome MxB restriction without compromise of viral fitness has been undefined. Here, we have discovered that naturally occurring capsid (CA) variants can render HIV-1 resistant to the activity of MxB without losing viral infectivity or the ability to escape from interferon induction. Moreover, these MxB resistant HIV-1 variants do not lose MxB recognition. Surprisingly, MxB resistant CA variants are most commonly found in the Clade C HIV-1 that is the most rapidly expanding Clade throughout the world. Accumulation of MxB resistant mutations is also observed during HIV-1 spreading in human populations. These findings support a potential role for MxB as a selective force during HIV-1 transmission and evolution. Copyright © 2016. Published by Elsevier B.V.

  5. Employment discrimination and HIV stigma: survey results from civil society organisations and people living with HIV in Africa.

    Science.gov (United States)

    Sprague, Laurel; Simon, Sara; Sprague, Courtenay

    2011-01-01

    The article presents findings from three surveys of people living with HIV (PLHIV) and civil society organisations about the experience of employment discrimination and stigma in the workplace. The work seeks to contribute to efforts by businesses and other organisations to effectively respond to the HIV epidemic within the world of work, and to deepen our understanding of the ways in which HIV stigma and employment discrimination persist in the workplace. The findings of global and regional surveys indicate the existence of high levels of employment discrimination based on HIV status worldwide, including forced disclosure of HIV status, exclusion in the workplace, refusals to hire or promote, and terminations of people known to be living with HIV. The survey findings show that employment discrimination based on HIV status is experienced in all African subregions. Country-level surveys conducted in Kenya and Zambia indicated that PLHIV face marked barriers to employment, including discrimination in hiring, loss of promotions, and termination because of HIV status. Additionally, large variances were found in the degree of support versus discrimination that employees living with HIV in those two countries received following their disclosure. The discussion emphasises the importance of the workplace as a site for intervention and behaviour change. To address this, we introduce a conceptual framework - the employment continuum - that maps multiple points of entry within the workplace to address HIV-related stigma and discrimination. Additional recommendations include: actions to ensure equal opportunity in hiring for PLHIV; ensuring that HIV testing is voluntary, never mandatory, and that disclosure is not necessary for employment; ensuring confidentiality of HIV status; communicating and enforcing HIV-related antidiscrimination policies; establishing support groups in the workplace; providing safe and confidential processes for resolving complaints of employment

  6. Application of 3D-QSAR, Pharmacophore, and Molecular Docking in the Molecular Design of Diarylpyrimidine Derivatives as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors.

    Science.gov (United States)

    Liu, Genyan; Wang, Wenjie; Wan, Youlan; Ju, Xiulian; Gu, Shuangxi

    2018-05-11

    Diarylpyrimidines (DAPYs), acting as HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs), have been considered to be one of the most potent drug families in the fight against acquired immunodeficiency syndrome (AIDS). To better understand the structural requirements of HIV-1 NNRTIs, three-dimensional quantitative structure⁻activity relationship (3D-QSAR), pharmacophore, and molecular docking studies were performed on 52 DAPY analogues that were synthesized in our previous studies. The internal and external validation parameters indicated that the generated 3D-QSAR models, including comparative molecular field analysis (CoMFA, q 2 = 0.679, R 2 = 0.983, and r pred 2 = 0.884) and comparative molecular similarity indices analysis (CoMSIA, q 2 = 0.734, R 2 = 0.985, and r pred 2 = 0.891), exhibited good predictive abilities and significant statistical reliability. The docking results demonstrated that the phenyl ring at the C₄-position of the pyrimidine ring was better than the cycloalkanes for the activity, as the phenyl group was able to participate in π⁻π stacking interactions with the aromatic residues of the binding site, whereas the cycloalkanes were not. The pharmacophore model and 3D-QSAR contour maps provided significant insights into the key structural features of DAPYs that were responsible for the activity. On the basis of the obtained information, a series of novel DAPY analogues of HIV-1 NNRTIs with potentially higher predicted activity was designed. This work might provide useful information for guiding the rational design of potential HIV-1 NNRTI DAPYs.

  7. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    Science.gov (United States)

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  8. Virtual Screening Models for Prediction of HIV-1 RT Associated RNase H Inhibition

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Kongsted, Jacob

    2013-01-01

    The increasing resistance to current therapeutic agents for HIV drug regiment remains a major problem for effective acquired immune deficiency syndrome (AIDS) therapy. Many potential inhibitors have today been developed which inhibits key cellular pathways in the HIV cycle. Inhibition of HIV-1...... databases. The methods used here include machine-learning algorithms (e.g. support vector machine, random forest and kappa nearest neighbor), shape similarity (rapid overlay of chemical structures), pharmacophore, molecular interaction fields-based fingerprints for ligands and protein (FLAP) and flexible...... for identifying structurally diverse and selective RNase H inhibitors from large chemical databases. In addition, pharmacophore models suggest that the inter-distance between hydrogen bond acceptors play a key role in inhibition of the RNase H domain through metal chelation....

  9. Could Rice Endosperm Be the Answer for Inexpensive HIV Protection? | Poster

    Science.gov (United States)

    According to a study in Plant Biotechnology Journal, genetically modified rice could be an inexpensive production platform for microbicides that inhibit HIV entry into target cells. Such a method could be one sustainable option for poverty-stricken countries with high rates of AIDS.

  10. Current status and prospects of HIV treatment.

    Science.gov (United States)

    Cihlar, Tomas; Fordyce, Marshall

    2016-06-01

    Current antiviral treatments can reduce HIV-associated morbidity, prolong survival, and prevent HIV transmission. Combination antiretroviral therapy (cART) containing preferably three active drugs from two or more classes is required for durable virologic suppression. Regimen selection is based on virologic efficacy, potential for adverse effects, pill burden and dosing frequency, drug-drug interaction potential, resistance test results, comorbid conditions, social status, and cost. With prolonged virologic suppression, improved clinical outcomes, and longer survival, patients will be exposed to antiretroviral agents for decades. Therefore, maximizing the safety and tolerability of cART is a high priority. Emergence of resistance and/or lack of tolerability in individual patients require availability of a range of treatment options. Development of new drugs is focused on improving safety (e.g. tenofovir alafenamide) and/or resistance profile (e.g. doravirine) within the existing drug classes, combination therapies with improved adherence (e.g. single-tablet regimens), novel mechanisms of action (e.g. attachment inhibitors, maturation inhibitors, broadly neutralizing antibodies), and treatment simplification with infrequent dosing (e.g. long-acting injectables). In parallel with cART innovations, research and development efforts focused on agents that target persistent HIV reservoirs may lead to prolonged drug-free remission and HIV cure. Copyright © 2016 Gilead Sciences, Inc. Published by Elsevier B.V. All rights reserved.

  11. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women.

    Directory of Open Access Journals (Sweden)

    Ruizhong Shen

    Full Text Available Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT. Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process.

  12. Testing of viscous anti-HIV microbicides using Lactobacillus

    OpenAIRE

    Moncla, B.J.; Pryke, K.; Rohan, L. C.; Yang, H.

    2011-01-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30 min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To...

  13. Primary resistance to integrase strand-transfer inhibitors in Europe.

    NARCIS (Netherlands)

    M. Casadellá; P.M. van Ham (Petra); M. Noguera-Julian; A. van Kessel; C. Pou; L.M. Hofstra (Marije); G.A. Metcalf (Ginger A.); F. Garcia; D. Struck (Daniel); I. Alexiev (Ivailo); A.M. Bakken Kran; A.I.M. Hoepelman; L.G. Kostrikis (Leondios); S. Somogyi; K. Liitsola (Kirsi); M. Linka (Marek); C. Nielsen; D. Otelea (Dan); D. Paraskevis (Dimitrios); M. Poljak (Mario); E. Puchhammer-Stöckl (Elisabeth); D. Stanekova (Danica); M. Stanojevic (Maja); K. Van Laethem (Kristel); S. Zidovec Lepej (Snjezana); B. Clotet; C.A.B. Boucher (Charles); R. Paredes (Roger); A.M.J. Wensing (Annemarie)

    2015-01-01

    markdownabstractThe objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. This was a multicentre, cross-sectional study within the European SPREAD

  14. Primary resistance to integrase strand-transfer inhibitors in Europe

    NARCIS (Netherlands)

    Casadella, M.; van Ham, P. M.; Noguera-Julian, M.; van Kessel, A.; Pou, C.; Hofstra, L. M.; Santos, J. R.; Garcia, F.; Struck, D.; Alexiev, I.; Kran, A. M. Bakken; Hoepelman, A. I.; Kostrikis, L. G.; Somogyi, S.; Liitsola, K.; Linka, M.; Nielsen, C.; Otelea, D.; Paraskevis, D.; Poljak, M.; Puchhammer-Stoeckl, E.; Stanekova, D.; Stanojevic, M.; Van Laethem, K.; Lepej, S. Zidovec; Clotet, B.; Boucher, C. A. B.; Paredes, R.; Wensing, A. M. J.; Schuurman, R

    2015-01-01

    Objectives: The objective of this study was to define the natural genotypic variation of the HIV-1 integrase gene across Europe for epidemiological surveillance of integrase strand-transfer inhibitor (InSTI) resistance. Methods: This was a multicentre, cross-sectional study within the European

  15. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... inhibitors (PIs), have resulted in significant suppression of viral replication. ... thymus, with the potential for immune reconstitution when ..... HIV-exposed but uninfected Gambian women [published erratum appears in. Nat Med ...

  16. Nonnucleoside Reverse-transcriptase Inhibitor- vs Ritonavir-boosted Protease Inhibitor-based Regimens for Initial Treatment of HIV Infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Lundh, Andreas; Tendal, Britta

    2016-01-01

    BACKGROUND: Previous studies suggest that nonnucleoside reverse-transcriptase inhibitors (NNRTIs) cause faster virologic suppression, while ritonavir-boosted protease inhibitors (PI/r) recover more CD4 cells. However, individual trials have not been powered to compare clinical outcomes. METHODS: ...

  17. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396.

    Science.gov (United States)

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K; Westwood, Nicholas J; Adamson, Catherine S

    2016-09-15

    HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation inhibitors are novel as they

  18. The dual action of poly(ADP-ribose polymerase -1 (PARP-1 inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    Directory of Open Access Journals (Sweden)

    Slava eRom

    2015-08-01

    Full Text Available The transcription of HIV-1 (HIV is regulated by complex mechanisms involving various cellular factors and virus-encoded transactivators. Poly(ADP-ribose polymerase 1 (PARP-1 inhibition has emerged recently as a potent anti-inflammatory tool, since PARP-1 is involved in the regulation of some genes through its interaction with various transcription factors. We propose a novel approach to diminish HIV replication via PARP-1 inhibition using human primary monocyte-derived macrophages (MDM as an in vitro model system. PARP-1 inhibitors were able to reduce HIV replication in MDM by 60-80% after 7 days infection. Long Terminal Repeat (LTR acts as a switch in virus replication and can be triggered by several agents such as: Tat, tumor necrosis factor α (TNFα, and phorbol 12-myristate 13-acetate (PMA. Overexpression of Tat in MDM transfected with an LTR reporter plasmid led to a 4.2-fold increase in LTR activation; PARP inhibition resulted in 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%. MDM treated with PARP inhibitors showed 90% reduction in NFκB activity (known to mediate PMA- and TNFα-induced HIV LTR activation. Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These findings suggest that HIV replication in MDM could be suppressed by PARP inhibition via NFκB suppression, diminution of LTR activation and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide a potent approach to treatment of HIV infection.

  19. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS.

    Science.gov (United States)

    Chung, Janet; DiGiusto, David L; Rossi, John J

    2013-03-01

    HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.

  20. Supporting adolescent girls to stay in school, reduce child marriage and reduce entry into sex work as HIV risk prevention in north Karnataka, India: protocol for a cluster randomised controlled trial.

    Science.gov (United States)

    Beattie, Tara S; Bhattacharjee, Parinita; Isac, Shajy; Davey, Calum; Javalkar, Prakash; Nair, Sapna; Thalinja, Raghavendra; Sudhakar, Gautam; Collumbien, Martine; Blanchard, James F; Watts, Charlotte; Moses, Stephen; Heise, Lori

    2015-03-25

    Low caste adolescent girls living in rural northern Karnataka are at increased risk of school drop-out, child marriage, and entry into sex-work, which enhances their vulnerability to HIV, early pregnancy and adverse maternal and child health outcomes. This protocol describes the evaluation of Samata, a comprehensive, multi-level intervention designed to address these structural drivers of HIV risk and vulnerability. The Samata study is a cluster randomised controlled trial that will be conducted in eighty village clusters (40 intervention; 40 control) in Bijapur and Bagalkot districts in northern Karnataka. The intervention seeks to reach low caste girls and their families; adolescent boys; village communities; high school teachers and school governing committees; and local government officials. All low caste (scheduled caste/tribe) adolescent girls attending 7th standard (final year of primary school) will be recruited into the study in two consecutive waves, one year apart. Girls (n = 2100), their families (n = 2100) and school teachers (n = 650) will be interviewed at baseline and at endline. The study is designed to assess the impact of the intervention on four primary outcomes: the proportion of low caste girls who (i) enter into secondary school; (ii) complete secondary school; (iii) marry before age 15; and (iv) engage in sex before age 15. Observers assessing the outcomes will be blinded to group assignment. The primary outcome will be an adjusted, cluster-level intention to treat analysis, comparing outcomes in intervention and control villages at follow-up. We will also conduct survival analyses for the following secondary outcomes: marriage, sexual debut, pregnancy and entry into sex work. Complementary monitoring and evaluation, qualitative and economic research will be used to explore and describe intervention implementation, the pathways through which change occurs, and the cost-effectiveness of the intervention. This is an innovative