WorldWideScience

Sample records for hiv candidate vaccine

  1. HIV-1 Immunogen: an overview of almost 30 years of clinical testing of a candidate therapeutic vaccine.

    Science.gov (United States)

    Graziani, Gina M; Angel, Jonathan B

    2016-07-01

    Although current antiretroviral therapy (ART) has transformed HIV infection into a chronic, manageable disease, ART does not cure HIV infection. Furthermore, the majority of the world's infected individuals live in resource-limited countries in which access to ART is limited. Thus, the development of an effective therapeutic HIV vaccine would be an invaluable treatment alternative. Developed by the late Dr. Jonas Salk, HIV-1 Immunogen (Remune®) is a candidate therapeutic vaccine that has been studied in thousands of HIV-infected individuals in more than a dozen clinical trials during almost three decades. This Drug Evaluation, which summarizes the results of these trials that have shown the vaccine to be safe and immunogenic, also discusses the contradictory and controversial conclusions drawn from the phases 2, 2/3 and 3 trials that assessed the clinical efficacy of this vaccine. Given the lack of unequivocal clinical benefits of HIV-1 Immunogen despite almost 30 years of extensive testing, it does not appear, in our view, that this vaccine is a clinically effective immunotherapy. However, inclusion of this vaccine in the newly proposed 'Kick/Shock and Kill' strategy for HIV eradication, or use as a prophylactic vaccine, could be considered for future trials.

  2. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  3. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987.

  4. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques.

    Science.gov (United States)

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Grand, Roger Le; Fomsgaard, Anders

    2013-07-19

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  5. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

    Directory of Open Access Journals (Sweden)

    Roger Le Grand

    2013-07-01

    Full Text Available HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb. We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  6. Vaccines for HIV | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

  7. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    Science.gov (United States)

    Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter

    2013-01-01

    Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different

  8. Combining biomedical preventions for HIV: Vaccines with pre-exposure prophylaxis, microbicides or other HIV preventions.

    Science.gov (United States)

    McNicholl, Janet M

    2016-12-01

    Biomedical preventions for HIV, such as vaccines, microbicides or pre-exposure prophylaxis (PrEP) with antiretroviral drugs, can each only partially prevent HIV-1 infection in most human trials. Oral PrEP is now FDA approved for HIV-prevention in high risk groups, but partial adherence reduces efficacy. If combined as biomedical preventions (CBP) an HIV vaccine could provide protection when PrEP adherence is low and PrEP could prevent vaccine breakthroughs. Other types of PrEP or microbicides may also be partially protective. When licensed, first generation HIV vaccines are likely to be partially effective. Individuals at risk for HIV may receive an HIV vaccine combined with other biomedical preventions, in series or in parallel, in clinical trials or as part of standard of care, with the goal of maximally increasing HIV prevention. In human studies, it is challenging to determine which preventions are best combined, how they interact and how effective they are. Animal models can determine CBP efficacy, whether additive or synergistic, the efficacy of different products and combinations, dose, timing and mechanisms. CBP studies in macaques have shown that partially or minimally effective candidate HIV vaccines combined with partially effective oral PrEP, vaginal PrEP or microbicide generally provided greater protection than either prevention alone against SIV or SHIV challenges. Since human CBP trials will be complex, animal models can guide their design, sample size, endpoints, correlates and surrogates of protection. This review focuses on animal studies and human models of CBP and discusses implications for HIV prevention.

  9. A Randomized, Controlled Safety, and Immunogenicity Trial of the M72/AS01 Candidate Tuberculosis Vaccine in HIV-Positive Indian Adults.

    Science.gov (United States)

    Kumarasamy, Nagalingeswaran; Poongulali, Selvamuthu; Bollaerts, Anne; Moris, Philippe; Beulah, Faith Esther; Ayuk, Leo Njock; Demoitié, Marie-Ange; Jongert, Erik; Ofori-Anyinam, Opokua

    2016-01-01

    Human immunodeficiency virus (HIV)-associated tuberculosis is a major public health threat. We evaluated the safety and immunogenicity of the candidate tuberculosis vaccine M72/AS01 in HIV-positive and HIV-negative Indian adults.Randomized, controlled observer-blind trial (NCT01262976).We assigned 240 adults (1:1:1) to antiretroviral therapy (ART)-stable, ART-naive, or HIV-negative cohorts. Cohorts were randomized 1:1 to receive M72/AS01 or placebo following a 0, 1-month schedule and followed for 12 months (time-point M13). HIV-specific and laboratory safety parameters, adverse events (AEs), and M72-specific T-cell-mediated and humoral responses were evaluated.Subjects were predominantly QuantiFERON-negative (60%) and Bacille Calmette-Guérin-vaccinated (73%). Seventy ART-stable, 73 ART-naive, and 60 HIV-negative subjects completed year 1. No vaccine-related serious AEs or ART-regimen adjustments, or clinically relevant effects on laboratory parameters, HIV-1 viral loads or CD4 counts were recorded. Two ART-naive vaccinees died of vaccine-unrelated diseases. M72/AS01 induced polyfunctional M72-specific CD4 T-cell responses (median [interquartile range] at 7 days postdose 2: ART-stable, 0.9% [0.7-1.5]; ART-naive, 0.5% [0.2-1.0]; and HIV-negative, 0.6% [0.4-1.1]), persisting at M13 (0.4% [0.2-0.5], 0.09% [0.04-0.2], and 0.1% [0.09-0.2], respectively). Median responses were higher in the ART-stable cohort versus ART-naive cohort from day 30 onwards (P ≤ 0.015). Among HIV-positive subjects (irrespective of ART-status), median responses were higher in QuantiFERON-positive versus QuantiFERON-negative subjects up to day 30 (P ≤ 0.040), but comparable thereafter. Cytokine-expression profiles were comparable between cohorts after dose 2. At M13, M72-specific IgG responses were higher in ART-stable and HIV-negative vaccinees versus ART-naive vaccinees (P ≤ 0.001).M72/AS01 was well-tolerated and immunogenic in this population of ART-stable and ART-naive HIV

  10. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Science.gov (United States)

    Currier, Jeffrey R; Ngauy, Viseth; de Souza, Mark S; Ratto-Kim, Silvia; Cox, Josephine H; Polonis, Victoria R; Earl, Patricia; Moss, Bernard; Peel, Sheila; Slike, Bonnie; Sriplienchan, Somchai; Thongcharoen, Prasert; Paris, Robert M; Robb, Merlin L; Kim, Jerome; Michael, Nelson L; Marovich, Mary A

    2010-11-15

    We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7) or 10(8) pfu) or intradermally (ID; 10(6) or 10(7) pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51)Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6) PBMC at 10(8) pfu IM), but high in response rate (70% (51)Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8) pfu IM); (ii) predominantly HIV Env-specific CD4(+) T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 10(8) pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8) pfu IM). MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  11. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Currier

    2010-11-01

    Full Text Available We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7 or 10(8 pfu or intradermally (ID; 10(6 or 10(7 pfu at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2. Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6 PBMC at 10(8 pfu IM, but high in response rate (70% (51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8 pfu IM; (ii predominantly HIV Env-specific CD4(+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route; (iv dose- and route-dependent with 10(8 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8 pfu IM.MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  12. What is a Preventive HIV Vaccine?

    Science.gov (United States)

    ... Entire Series Related Content AIDSource | Vaccine Research HIV Vaccines History of HIV Vaccine Research Need Help? Call 1- ... Entire Series Related Content AIDSource | Vaccine Research HIV Vaccines History of HIV Vaccine Research Need Help? Call 1- ...

  13. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  14. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  15. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  16. Motivators of enrolment in HIV vaccine trials: a review of HIV vaccine preparedness studies.

    Science.gov (United States)

    Dhalla, Shayesta; Poole, Gary

    2011-11-01

    HIV vaccine preparedness studies (VPS) are important precursors to HIV vaccine trials. As well, they contribute to an understanding of motivators and barriers for participation in hypothetical HIV vaccine trials. Motivators can take the form of altruism and a desire for social benefits. Perceived personal benefits, including psychological, personal, and financial well-being, may also motivate participation. The authors performed a systematic review of HIV VPS using the Cochrane Database for Systematic Reviews, Medline, PubMed, Embase, and Google Scholar. The authors independently searched the literature for individual HIV VPS that examined motivators of participation in a hypothetical HIV vaccine trial, using the same search strategy. As the denominators employed in the literature varied across studies, the denominators were standardized to the number of respondents per survey item, regardless of their willingness to participate (WTP) in an HIV vaccine trial. The authors retrieved eight studies on social benefits (i.e., altruism) and 11 studies on personal benefits conducted in the Organization for Economic Co-operation and Development (OECD) countries, as well as 19 studies on social benefits and 20 studies on personal benefits in the non-OECD countries. Various different forms of altruism were found to be the major motivators for participation in an HIV vaccine trial in both the OECD and the non-OECD countries. In a large number of studies, protection from HIV was cited as a personal motivator for participation in a hypothetical HIV vaccine trial in the OECD and the non-OECD countries. Knowledge of motivators can inform and target recruitment for HIV vaccine trials, although it must be remembered that hypothetical motivators may not always translate into motivators in an actual vaccine trial.

  17. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B'/C candidate vaccine.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available BACKGROUND: We conducted a Phase I dose-escalation trial of ADMVA, a Clade-B'/C-based HIV-1 candidate vaccine expressing env, gag, pol, nef, and tat in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers. METHODOLOGY/PRINCIPAL FINDINGS: ADMVA or placebo was administered intramuscularly at months 0, 1 and 6 to 50 healthy adult volunteers not at high risk for HIV-1. In each dosage group [1x10(7 (low, 5x10(7 (mid, or 2.5x10(8 pfu (high] volunteers were randomized in a 3:1 ratio to receive ADMVA or placebo in a double-blinded design. Subjects were followed for local and systemic reactogenicity, adverse events including cardiac adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA, immunoflourescent staining, and HIV-1 neutralization. Cellular immunogenicity was assessed by a validated IFNgamma ELISpot assay and intracellular cytokine staining. Anti-vaccinia binding titers were measured by ELISA. ADMVA was generally well-tolerated, with no vaccine-related serious adverse events or cardiac adverse events. Local or systemic reactogenicity events were reported by 77% and 78% of volunteers, respectively. The majority of events were of mild intensity. The IFNgamma ELISpot response rate to any HIV antigen was 0/12 (0% in the placebo group, 3/12 (25% in the low dosage group, 6/12 (50% in the mid dosage group, and 8/13 (62% in the high dosage group. Responses were often multigenic and occasionally persisted up to one year post vaccination. Antibodies to gp120 were detected in 0/12 (0%, 8/13 (62%, 6/12 (50% and 10/13 (77% in the placebo, low, mid, and high dosage groups, respectively. Antibodies persisted up to 12 months after vaccination, with a trend toward agreement

  18. Are Clade Specific HIV Vaccines a Necessity? An Analysis Based on Mathematical Models

    Directory of Open Access Journals (Sweden)

    Dobromir Dimitrov

    2015-12-01

    Full Text Available As HIV-1 envelope immune responses are critical to vaccine related protection, most candidate HIV vaccines entering efficacy trials are based upon a clade specific design. This need for clade specific vaccine prototypes markedly reduces the implementation of potentially effective HIV vaccines. We utilized a mathematical model to determine the effectiveness of immediate roll-out of a non-clade matched vaccine with reduced efficacy compared to constructing clade specific vaccines, which would take considerable time to manufacture and test in safety and efficacy trials. We simulated the HIV epidemic in San Francisco (SF and South Africa (SA and projected effectiveness of three vaccination strategies: i immediate intervention with a 20–40% vaccine efficacy (VE non-matched vaccine, ii delayed intervention by developing a 50% VE clade-specific vaccine, and iii immediate intervention with a non-matched vaccine replaced by a clade-specific vaccine when developed. Immediate vaccination with a non-clade matched vaccine, even with reduced efficacy, would prevent thousands of new infections in SF and millions in SA over 30 years. Vaccination with 50% VE delayed for five years needs six and 12 years in SA to break-even with immediate 20 and 30% VE vaccination, respectively, while not able to surpass the impact of immediate 40% VE vaccination over 30 years. Replacing a 30% VE with a 50% VE vaccine after 5 years reduces the HIV acquisition by 5% compared to delayed vaccination. The immediate use of an HIV vaccine with reduced VE in high risk communities appears desirable over a short time line but higher VE should be the pursued to achieve strong long-term impact. Our analysis illustrates the importance of developing surrogate markers (correlates of protection to allow bridging types of immunogenicity studies to support more rapid assessment of clade specific vaccines.

  19. Differences in HIV vaccine acceptability between genders

    Science.gov (United States)

    Kakinami, Lisa; Newman, Peter A.; Lee, Sung-Jae; Duan, Naihua

    2010-01-01

    The development of safe and efficacious preventive HIV vaccines offers the best long-term hope of controlling the AIDS pandemic. Nevertheless, suboptimal uptake of safe and efficacious vaccines that already exist suggest that HIV vaccine acceptability cannot be assumed, particularly among communities most vulnerable to HIV. The present study aimed to identify barriers and motivators to future HIV vaccine acceptability among low socioeconomic, ethnically diverse men and women in Los Angeles County. Participants completed a cross-sectional survey assessing their attitudes and beliefs regarding future HIV vaccines. Hypothetical HIV vaccine scenarios were administered to determine HIV vaccine acceptability. Two-sided t-tests were performed, stratified by gender, to examine the association between vaccine acceptability and potential barriers and motivators. Barriers to HIV vaccine acceptability differed between men and women. For women, barriers to HIV vaccine acceptability were related to their intimate relationships (p Motivators for women included the ability to conceive a child without worrying about contracting HIV (p Motivators for men included feeling safer with sex partners (p motivator for both men and women (p <0.10). Gender-specific interventions may increase vaccine acceptability among men and women at elevated risk for HIV infection. Among women, interventions need to focus on addressing barriers due to gendered power dynamics in relationships and discrimination in health care. Among men, education that addresses fears and misconceptions about adverse effects of HIV vaccination on health and the importance of vaccination as one component of integrated HIV prevention may increase vaccine acceptability. PMID:18484322

  20. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  1. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  2. Time will tell: community acceptability of HIV vaccine research before and after the “Step Study” vaccine discontinuation

    Directory of Open Access Journals (Sweden)

    Paula M Frew

    2010-09-01

    Full Text Available Paula M Frew1,2,3,4, Mark J Mulligan1,2,3, Su-I Hou5, Kayshin Chan3, Carlos del Rio1,2,3,61Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; 2Emory Center for AIDS Research, Atlanta, Georgia, USA; 3The Hope Clinic of the Emory Vaccine Center, Decatur, Georgia, USA; 4Department of Behavioral Sciences and Health Education, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA; 5Department of Health Promotion and Behavior, College of Public Health, University of Georgia, Athens, Georgia, USA; 6Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USAObjective: This study examines whether men-who-have-sex-with-men (MSM and transgender (TG persons’ attitudes, beliefs, and risk perceptions toward human immunodeficiency virus (HIV vaccine research have been altered as a result of the negative findings from a phase 2B HIV vaccine study.Design: We conducted a cross-sectional survey among MSM and TG persons (N = 176 recruited from community settings in Atlanta from 2007 to 2008. The first group was recruited during an active phase 2B HIV vaccine trial in which a candidate vaccine was being evaluated (the “Step Study”, and the second group was recruited after product futility was widely reported in the media.Methods: Descriptive statistics, t tests, and chi-square tests were conducted to ascertain differences between the groups, and ordinal logistic regressions examined the influences of the above-mentioned factors on a critical outcome, future HIV vaccine study participation. The ordinal regression outcomes evaluated the influences on disinclination, neutrality, and inclination to study participation.Results: Behavioral outcomes such as future recruitment, event attendance, study promotion, and community mobilization did not reveal any differences in participants’ intentions between the groups. However, we observed

  3. Sieve analysis in HIV-1 vaccine efficacy trials.

    Science.gov (United States)

    Edlefsen, Paul T; Gilbert, Peter B; Rolland, Morgane

    2013-09-01

    The genetic characterization of HIV-1 breakthrough infections in vaccine and placebo recipients offers new ways to assess vaccine efficacy trials. Statistical and sequence analysis methods provide opportunities to mine the mechanisms behind the effect of an HIV vaccine. The release of results from two HIV-1 vaccine efficacy trials, Step/HVTN-502 (HIV Vaccine Trials Network-502) and RV144, led to numerous studies in the last 5 years, including efforts to sequence HIV-1 breakthrough infections and compare viral characteristics between the vaccine and placebo groups. Novel genetic and statistical analysis methods uncovered features that distinguished founder viruses isolated from vaccinees from those isolated from placebo recipients, and identified HIV-1 genetic targets of vaccine-induced immune responses. Studies of HIV-1 breakthrough infections in vaccine efficacy trials can provide an independent confirmation to correlates of risk studies, as they take advantage of vaccine/placebo comparisons, whereas correlates of risk analyses are limited to vaccine recipients. Through the identification of viral determinants impacted by vaccine-mediated host immune responses, sieve analyses can shed light on potential mechanisms of vaccine protection.

  4. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    than is possible with a wild-type protein, (2) reducing the number of low-prevalence k-mers minimizes the likelihood of undesirable immunodominance, and (3) excluding exogenous k-mers will result in mosaic proteins whose processing for presentation is close to what occurs with wild-type proteins. The first and second applications of the mosaic method were to HIV and Hepatitis C Virus (HCV). HIV is the virus with the largest number of known sequences, and consequently a plethora of information for the CTL vaccine designer to incorporate into their mosaics. Experience with HIV and HCV mosaics supports the validity of the three conjectures above. The available FILV sequences are probably closer to the minimum amount of information needed to make a meaningful mosaic vaccine candidate. There were 532 protein sequences in the National Institutes of Health GenPept database in November 2007 when our reference set was downloaded. These sequences come from both Ebola and Marburg viruses (EBOV and MARV), representing transcripts of all 7 genes. The coverage of viral diversity by the 7 genes is variable, with genes 1 (nucleoprotein, NP), 4 (glycoprotein, GP; soluble glycoprotein, sGP) and 7 (polymerase, L) giving the best coverage. Broadly-protective vaccine candidates for diverse viruses, such as HIV or Hepatitis C virus (HCV) have required pools of antigens. FILV is similar in this regard. While we have designed CTL mosaic proteins using all 7 types of filoviral proteins, only NP, GP and L proteins are reported here. If it were important to include other proteins in a mosaic CTL vaccine, additional sequences would be required to cover the space of known viral diversity.

  5. HIV vaccines: current challenges and future directions.

    Science.gov (United States)

    Avrett, Sam; Collins, Chris

    2002-07-01

    Volume seven of the Review will mark the tenth anniversary of the Canadian HIV/AIDS Legal Network with a series of articles that describe past developments and future directions in several areas of policy and law related to HIV/AIDS. The following article is the first of these, discussing current challenges and future directions in the development of and access to HIV vaccines. It argues that governments are under public health, ethical, and legal obligations to develop and provide access to HIV vaccines. It further explains what is required for governments to fulfill their obligations: additional commitment and resources for HIV vaccine development in the context of increased global research and development regarding diseases of the poor; increased support and advocacy for partnerships to develop HIV vaccines; enhanced regulatory capacity in every country to review, approve, and monitor HIV vaccines; and assurance of global supply of, procurement of, delivery of, and access to vaccines in the context of efforts to increase global access to public health measures and technologies.

  6. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  7. The future of HIV vaccine research and the role of the Global HIV Vaccine Enterprise.

    Science.gov (United States)

    Voronin, Yegor; Manrique, Amapola; Bernstein, Alan

    2010-09-01

    This review covers the role of the Global HIV Vaccine Enterprise (the Enterprise), an alliance of independent organizations committed to development of a safe and effective HIV vaccine. It discusses the history, impact on the field, and future directions and initiatives of the alliance in the context of recent progress in HIV vaccine research and development. Significant progress has been made in the field since the release of the 2005 Scientific Strategic Plan (the Plan) of the Enterprise. Over the last year, the Enterprise embarked on an impact assessment of the 2005 Plan and the development of the 2010 Plan. Enterprise Working Groups identified key priorities in the field, several of which are discussed in this review, including changing the nature, purpose and process of clinical trials, increasing and facilitating data sharing, and optimizing existing and mobilizing new resources. This time is an important moment in HIV vaccine research. New clinical trial and laboratory results have created new opportunities to advance the search for an HIV vaccine and reinvigorated the field. The Enterprise will publish its 2010 Plan this year, providing a framework for setting new priorities and directions and encouraging new and existing partners to embark on a shared scientific agenda.

  8. Designing Peptide-Based HIV Vaccine for Chinese

    Science.gov (United States)

    Fan, Xiaojuan

    2014-01-01

    CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese. PMID:25136573

  9. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    International Nuclear Information System (INIS)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  10. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    Science.gov (United States)

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  11. A phase I randomized clinical trial of candidate human immunodeficiency virus type 1 vaccine MVA.HIVA administered to Gambian infants.

    Directory of Open Access Journals (Sweden)

    Muhammed O Afolabi

    Full Text Available A vaccine to decrease transmission of human immunodeficiency virus type 1 (HIV-1 during breast-feeding would complement efforts to eliminate infant HIV-1 infection by antiretroviral therapy. Relative to adults, infants have distinct immune development, potentially high-risk of transmission when exposed to HIV-1 and rapid progression to AIDS when infected. To date, there have been only three published HIV-1 vaccine trials in infants.We conducted a randomized phase I clinical trial PedVacc 001 assessing the feasibility, safety and immunogenicity of a single dose of candidate vaccine MVA.HIVA administered intramuscularly to 20-week-old infants born to HIV-1-negative mothers in The Gambia.Infants were followed to 9 months of age with assessment of safety, immunogenicity and interference with Expanded Program on Immunization (EPI vaccines. The trial is the first stage of developing more complex prime-boost vaccination strategies against breast milk transmission of HIV-1.From March to October 2010, 48 infants (24 vaccine and 24 no-treatment were enrolled with 100% retention. The MVA.HIVA vaccine was safe with no difference in adverse events between vaccinees and untreated infants. Two vaccine recipients (9% and no controls had positive ex vivo interferon-γ ELISPOT assay responses. Antibody levels elicited to the EPI vaccines, which included diphtheria, tetanus, whole-cell pertussis, hepatitis B virus, Haemophilus influenzae type b and oral poliovirus, reached protective levels for the vast majority and were similar between the two arms.A single low-dose of MVA.HIVA administered to 20-week-old infants in The Gambia was found to be safe and without interference with the induction of protective antibody levels by EPI vaccines, but did not alone induce sufficient HIV-1-specific responses. These data support the use of MVA carrying other transgenes as a boosting vector within more complex prime-boost vaccine strategies against transmission of HIV-1 and

  12. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  13. Approaches to Preventative and Therapeutic HIV vaccines

    Science.gov (United States)

    Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence

    2016-01-01

    Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884

  14. Yellow fever vaccine for patients with HIV infection.

    Science.gov (United States)

    Barte, Hilary; Horvath, Tara H; Rutherford, George W

    2014-01-23

    Yellow fever (YF) is an acute viral haemorrhagic disease prevalent in tropical Africa and Latin America. The World Health Organization (WHO) estimates that there are 200,000 cases of YF and 30,000 deaths worldwide annually. Treatment for YF is supportive, but a live attenuated virus vaccine is effective for preventing infection. WHO recommends immunisation for all individuals > 9 months living in countries or areas at risk. However, the United States Advisory Committee on Immunization Practices (ACIP) advises that YF vaccine is contraindicated in individuals with HIV. Given the large populations of HIV-infected individuals living in tropical areas where YF is endemic, YF vaccine may be an important intervention for preventing YF in immunocompromised populations. To assess the risk and benefits of YF immunisation for people infected with HIV. We used standard Cochrane methods to search electronic databases and conference proceedings with relevant search terms without limits to language. Randomised controlled trials and cohort studies of individuals with HIV infection who received YF vaccine (17DD or 17D-204). Two authors screened abstracts of references identified by electronic or bibliographic searches according to inclusion and exclusion criteria as detailed in the protocol. We identified 199 references and examined 19 in detail for study eligibility. Data were abstracted independently using a standardised abstraction form. Three cohort studies were included in the review. They examined 484 patients with HIV infection who received YF immunisation. Patients with HIV infection developed significantly lower concentrations of neutralising antibodies in the first year post immunisation compared to uninfected patients, though decay patterns were similar for recipients regardless of HIV infection. No study patient with HIV infection suffered serious adverse events as a result of YF vaccination. YF vaccination can produce protective levels of neutralising antibodies in

  15. Virus-like-vaccines against HIV

    DEFF Research Database (Denmark)

    Andersson, Anne Marie C.; Schwerdtfeger, Melanie; Holst, Peter J.

    2018-01-01

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (......Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus...... of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production...

  16. In "Step" with HIV Vaccines? A Content Analysis of Local Recruitment Campaigns for an International HIV Vaccine Study.

    Science.gov (United States)

    Frew, Paula M; Macias, Wendy; Chan, Kayshin; Harding, Ashley C

    2009-01-01

    During the past two decades of the HIV/AIDS pandemic, several recruitment campaigns were designed to generate community involvement in preventive HIV vaccine clinical trials. These efforts utilized a blend of advertising and marketing strategies mixed with public relations and community education approaches to attract potential study participants to clinical trials (integrated marketing communications). Although more than 30,000 persons worldwide have participated in preventive HIV vaccine studies, no systematic analysis of recruitment campaigns exists. This content analysis study was conducted to examine several United States and Canadian recruitment campaigns for one of the largest-scale HIV vaccine trials to date (the "Step Study"). This study examined persuasive features consistent with the Elaboration Likelihood Model (ELM) including message content, personal relevance of HIV/AIDS and vaccine research, intended audiences, information sources, and other contextual features. The results indicated variation in messages and communication approaches with gay men more exclusively targeted in these regions. Racial/ethnic representations also differed by campaign. Most of the materials promote affective evaluation of the information through heuristic cueing. Implications for subsequent campaigns and research directions are discussed.

  17. College Student Invulnerability Beliefs and HIV Vaccine Acceptability

    Science.gov (United States)

    Ravert, Russell D.; Zimet, Gregory D.

    2009-01-01

    Objective: To examine behavioral history, beliefs, and vaccine characteristics as predictors of HIV vaccine acceptability. Methods: Two hundred forty-five US under graduates were surveyed regarding their sexual history, risk beliefs, and likelihood of accepting hypothetical HIV vaccines. Results: Multivariate regression analysis indicated that…

  18. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference.

    Science.gov (United States)

    Ross, Anna Laura; Bråve, Andreas; Scarlatti, Gabriella; Manrique, Amapola; Buonaguro, Luigi

    2010-05-01

    The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Is a HIV vaccine a viable option and at what price? An economic evaluation of adding HIV vaccination into existing prevention programs in Thailand

    OpenAIRE

    Leelahavarong, Pattara; Teerawattananon, Yot; Werayingyong, Pitsaphun; Akaleephan, Chutima; Premsri, Nakorn; Namwat, Chawetsan; Peerapatanapokin, Wiwat; Tangcharoensathien, Viroj

    2011-01-01

    Abstract Background This study aims to determine the maximum price at which HIV vaccination is cost-effective in the Thai healthcare setting. It also aims to identify the relative importance of vaccine characteristics and risk behavior changes among vaccine recipients to determine how they affect this cost-effectiveness. Methods A semi-Markov model was developed to estimate the costs and health outcomes of HIV prevention programs combined with HIV vaccination in comparison to the existing HIV...

  20. Modeling HIV vaccines in Brazil: assessing the impact of a future HIV vaccine on reducing new infections, mortality and number of people receiving ARV.

    Directory of Open Access Journals (Sweden)

    Maria Goretti P Fonseca

    2010-07-01

    Full Text Available The AIDS epidemic in Brazil remains concentrated in populations with high vulnerability to HIV infection, and the development of an HIV vaccine could make an important contribution to prevention. This study modeled the HIV epidemic and estimated the potential impact of an HIV vaccine on the number of new infections, deaths due to AIDS and the number of people receiving ARV treatment, under various scenarios.The historical HIV prevalence was modeled using Spectrum and projections were made from 2010 to 2050 to study the impact of an HIV vaccine with 40% to 70% efficacy, and 80% coverage of adult population, specific groups such as MSM, IDU, commercial sex workers and their partners, and 15 year olds. The possibility of disinhibition after vaccination, neglecting medium- and high-risk groups, and a disease-modifying vaccine were also considered. The number of new infections and deaths were reduced by 73% and 30%, respectively, by 2050, when 80% of adult population aged 15-49 was vaccinated with a 40% efficacy vaccine. Vaccinating medium- and high-risk groups reduced new infections by 52% and deaths by 21%. A vaccine with 70% efficacy produced a great decline in new infections and deaths. Neglecting medium- and high-risk population groups as well as disinhibition of vaccinated population reduced the impact or even increased the number of new infections. Disease-modifying vaccine also contributed to reducing AIDS deaths, the need for ART and new HIV infections.Even in a country with a concentrated epidemic and high levels of ARV coverage, such as Brazil, moderate efficacy vaccines as part of a comprehensive package of treatment and prevention could have a major impact on preventing new HIV infections and AIDS deaths, as well as reducing the number of people on ARV. Targeted vaccination strategies may be highly effective and cost-beneficial.

  1. HIV vaccine development: would more (public) money bring quicker results?

    Science.gov (United States)

    Winsbury, R

    1999-01-01

    Globally, $200-250 million/year are devoted to HIV vaccine research. Most of those funds pay for basic research rather than product development. Moreover, most of the funds are aimed at the HIV strain commonly found in the US and Europe, and not at the strains common to Africa and other developing countries. While US President Bill Clinton set in 1997 a 10-year target for the development of an HIV vaccine, that target date is looking increasingly unlikely. International vaccine and pharmaceutical companies typically drive vaccine research and development. However, concern over the ultimate profitability of developing and marketing an HIV vaccine, and the fear of major litigation should an eventual vaccine go awry have caused such firms to shy away from investing large amounts of money into HIV vaccine development. These companies somehow have to be attracted back into the field. A World Bank special task force is slated to present its report by mid-1999 on possible funding mechanisms to promote HIV vaccine development. It remains to be resolved whether public funds could and should be used, perhaps through a pooled international vaccine development fund. 2 new International AIDS Vaccine Initiative projects are described.

  2. Is an HIV vaccine possible?

    OpenAIRE

    Wilson,Nancy A.; Watkins,David I.

    2009-01-01

    The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against h...

  3. The Case for Adolescent HIV Vaccination in South Africa

    OpenAIRE

    Moodley, Nishila; Gray, Glenda; Bertram, Melanie

    2016-01-01

    Abstract Despite comprising 0.7% of the world population, South Africa is home to 18% of the global human immunodeficiency virus (HIV) prevalence. Unyielding HIV subepidemics among adolescents threaten national attempts to curtail the disease burden. Should an HIV vaccine become available, establishing its point of entry into the health system becomes a priority. This study assesses the impact of school-based HIV vaccination and explores how variations in vaccine characteristics affect cost-e...

  4. DNA/MVA Vaccines for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Smita S. Iyer

    2014-02-01

    Full Text Available Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous “prime-boost” vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  5. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV.

    Science.gov (United States)

    de Goede, A L; Vulto, A G; Osterhaus, A D M E; Gruters, R A

    2015-05-01

    HIV infection leads to a gradual loss CD4(+) T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive lifelong adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore, there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies. Copyright © 2014. Published by Elsevier Masson SAS.

  6. Continued Follow-Up of Phambili Phase 2b Randomized HIV-1 Vaccine Trial Participants Supports Increased HIV-1 Acquisition among Vaccinated Men.

    Directory of Open Access Journals (Sweden)

    Zoe Moodie

    Full Text Available The Phase 2b double-blinded, randomized Phambili/HVTN 503 trial evaluated safety and efficacy of the MRK Ad5 gag/pol/nef subtype B HIV-1 preventive vaccine vs placebo in sexually active HIV-1 seronegative participants in South Africa. Enrollment and vaccinations stopped and participants were unblinded but continued follow-up when the Step study evaluating the same vaccine in the Americas, Caribbean, and Australia was unblinded for non-efficacy. Final Phambili analyses found more HIV-1 infections amongst vaccine than placebo recipients, impelling the HVTN 503-S recall study.HVTN 503-S sought to enroll all 695 HIV-1 uninfected Phambili participants, provide HIV testing, risk reduction counseling, physical examination, risk behavior assessment and treatment assignment recall. After adding HVTN 503-S data, HIV-1 infection hazard ratios (HR vaccine vs. placebo were estimated by Cox models.Of the 695 eligible, 465 (67% enrolled with 230 from the vaccine group and 235 from the placebo group. 38% of the 184 Phambili dropouts were enrolled. Enrollment did not differ by treatment group, gender, or baseline HSV-2. With the additional 1286 person years of 503-S follow-up, the estimated HR over Phambili and HVTN 503-S follow-up was 1.52 (95% CI 1.08-2.15, p = 0.02, 82 vaccine/54 placebo infections. The HR was significant for men (HR = 2.75, 95% CI 1.49, 5.06, p = 0.001 but not for women (HR = 1.12, 95% CI 0.73, 1.72, p = 0.62.The additional follow-up from HVTN 503-S supported the Phambili finding of increased HIV-1 acquisition among vaccinated men and strengthened the evidence of lack of vaccine effect among women.clinicaltrials.gov NCT00413725 SA National Health Research Database DOH-27-0207-1539.

  7. Antibody Responses with Fc-Mediated Functions after Vaccination of HIV-Infected Subjects with Trivalent Influenza Vaccine

    DEFF Research Database (Denmark)

    Kristensen, Anne B; Lay, William N; Ana-Sosa-Batiz, Fernanda

    2016-01-01

    to immunize this at-risk group. IMPORTANCE: Infection with HIV is associated with increasing disease severity following influenza infections, and annual influenza vaccinations are recommended for this target group. However, HIV-infected individuals respond relatively poorly to vaccination compared to healthy......This study seeks to assess the ability of seasonal trivalent inactivated influenza vaccine (TIV) to induce nonneutralizing antibodies (Abs) with Fc-mediated functions in HIV-uninfected and HIV-infected subjects. Functional influenza-specific Ab responses were studied in 30 HIV-negative and 27 HIV......-positive subjects immunized against seasonal influenza. All 57 subjects received the 2015 TIV. Fc-mediated antihemagglutinin (anti-HA) Ab activity was measured in plasma before and 4 weeks after vaccination using Fc-receptor-binding assays, NK cell activation assays, and phagocytosis assays. At baseline, the HIV...

  8. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    Science.gov (United States)

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  9. Advanced Vaccine Candidates for Lassa Fever

    Directory of Open Access Journals (Sweden)

    Igor S. Lukashevich

    2012-10-01

    Full Text Available Lassa virus (LASV is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF. LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.

  10. Vaccination of HIV-infected pregnant women: implications for protection of their young infants.

    Science.gov (United States)

    Dangor, Ziyaad; Nunes, Marta C; Kwatra, Gaurav; Lala, Sanjay G; Madhi, Shabir A

    2017-01-01

    The prevention of mother to child transmission of HIV has resulted in reduced burden of pediatric HIV-infection, but the prevalence of maternal HIV infection remains high in sub-Saharan African countries. HIV-exposed-uninfected infants have an increased risk of morbidity and mortality due to infectious diseases than HIV-unexposed infants, particularly during the first six months of life, which in part might be due to lower levels of pathogen-specific protective antibodies acquired transplacentally from their mothers. This could be mitigated by vaccinating pregnant women to boost antibody levels; although vaccine responses among HIV-infected pregnant women might differ compared to HIV-uninfected women. We reviewed studies that compared natural and vaccine-induced antibody levels to different epitopes between HIV-infected and HIV-uninfected pregnant women. Most studies reported lower baseline/pre-vaccination antibody levels in HIV-infected pregnant women, which may not be reversed by antiretroviral therapy during pregnancy. There were only few studies on vaccination of HIV-infected pregnant women, mainly on influenza virus and group B Streptococcus (GBS) vaccines. Immunogenicity studies on influenza vaccines indicated that HIV-infected pregnant women had lower vaccine induced hemagglutination inhibition antibody titers and a decreased likelihood of seroconversion compared to HIV-uninfected women; and while higher CD4+ T-lymphocyte levels were associated with better immune responses to vaccination, HIV viral load was not associated with responses. Furthermore, infants born to influenza vaccinated HIV-infected pregnant women also had lower antibody levels and a lower proportion of HIV-exposed infants had titers above the putative correlate of protection compared to HIV-unexposed infants. The immunogenicity of a CRM 197 -conjugated trivalent GBS vaccine was also lower in HIV-infected pregnant women compared to HIV-uninfected women, irrespective of CD4+ T

  11. Long-term follow-up of HIV-1-infected adults who received the F4/AS01B HIV-1 vaccine candidate in two randomised controlled trials.

    Science.gov (United States)

    Harrer, Thomas; Dinges, Warren; Roman, François

    2018-05-03

    This Phase I/II, open, long-term follow-up study was conducted in antiretroviral therapy (ART)-naïve (N = 212) and ART-treated (N = 19) human immunodeficiency virus 1 (HIV-1)-infected adults, who received an HIV-1 investigational vaccine (F4/AS01 B ) or placebo in two previous studies (NCT00814762 and NCT01218113). After a minimum of two years and a maximum of four years of follow-up post-vaccination per patient, no significant differences were observed between F4/AS01 B and placebo groups in terms of viral load, CD4 + T-cell count and incidence of specific clinical events. Vaccine-induced polyfunctional CD4 + T-cells persisted up to study end and no relevant vaccine-related safety events were reported in F4/AS01 B groups. This study has been registered at ClinicalTrials.gov (NCT01092611). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Is a HIV vaccine a viable option and at what price? An economic evaluation of adding HIV vaccination into existing prevention programs in Thailand

    Directory of Open Access Journals (Sweden)

    Peerapatanapokin Wiwat

    2011-07-01

    Full Text Available Abstract Background This study aims to determine the maximum price at which HIV vaccination is cost-effective in the Thai healthcare setting. It also aims to identify the relative importance of vaccine characteristics and risk behavior changes among vaccine recipients to determine how they affect this cost-effectiveness. Methods A semi-Markov model was developed to estimate the costs and health outcomes of HIV prevention programs combined with HIV vaccination in comparison to the existing HIV prevention programs without vaccination. The estimation was based on a lifetime horizon period (99 years and used the government perspective. The analysis focused on both the general population and specific high-risk population groups. The maximum price of cost-effective vaccination was defined by using threshold analysis; one-way and probabilistic sensitivity analyses were performed. The study employed an expected value of perfect information (EVPI analysis to determine the relative importance of parameters and to prioritize future studies. Results The most expensive HIV vaccination which is cost-effective when given to the general population was 12,000 Thai baht (US$1 = 34 Thai baht in 2009. This vaccination came with 70% vaccine efficacy and lifetime protection as long as risk behavior was unchanged post-vaccination. The vaccine would be considered cost-ineffective at any price if it demonstrated low efficacy (30% and if post-vaccination risk behavior increased by 10% or more, especially among the high-risk population groups. The incremental cost-effectiveness ratios were the most sensitive to change in post-vaccination risk behavior, followed by vaccine efficacy and duration of protection. The EVPI indicated the need to quantify vaccine efficacy, changed post-vaccination risk behavior, and the costs of vaccination programs. Conclusions The approach used in this study differentiated it from other economic evaluations and can be applied for the economic

  13. Is a HIV vaccine a viable option and at what price? An economic evaluation of adding HIV vaccination into existing prevention programs in Thailand.

    Science.gov (United States)

    Leelahavarong, Pattara; Teerawattananon, Yot; Werayingyong, Pitsaphun; Akaleephan, Chutima; Premsri, Nakorn; Namwat, Chawetsan; Peerapatanapokin, Wiwat; Tangcharoensathien, Viroj

    2011-07-05

    This study aims to determine the maximum price at which HIV vaccination is cost-effective in the Thai healthcare setting. It also aims to identify the relative importance of vaccine characteristics and risk behavior changes among vaccine recipients to determine how they affect this cost-effectiveness. A semi-Markov model was developed to estimate the costs and health outcomes of HIV prevention programs combined with HIV vaccination in comparison to the existing HIV prevention programs without vaccination. The estimation was based on a lifetime horizon period (99 years) and used the government perspective. The analysis focused on both the general population and specific high-risk population groups. The maximum price of cost-effective vaccination was defined by using threshold analysis; one-way and probabilistic sensitivity analyses were performed. The study employed an expected value of perfect information (EVPI) analysis to determine the relative importance of parameters and to prioritize future studies. The most expensive HIV vaccination which is cost-effective when given to the general population was 12,000 Thai baht (US$1 = 34 Thai baht in 2009). This vaccination came with 70% vaccine efficacy and lifetime protection as long as risk behavior was unchanged post-vaccination. The vaccine would be considered cost-ineffective at any price if it demonstrated low efficacy (30%) and if post-vaccination risk behavior increased by 10% or more, especially among the high-risk population groups. The incremental cost-effectiveness ratios were the most sensitive to change in post-vaccination risk behavior, followed by vaccine efficacy and duration of protection. The EVPI indicated the need to quantify vaccine efficacy, changed post-vaccination risk behavior, and the costs of vaccination programs. The approach used in this study differentiated it from other economic evaluations and can be applied for the economic evaluation of other health interventions not available in

  14. In “Step” with HIV Vaccines? A Content Analysis of Local Recruitment Campaigns for an International HIV Vaccine Study

    Science.gov (United States)

    Frew, Paula M.; Macias, Wendy; Chan, Kayshin; Harding, Ashley C.

    2009-01-01

    During the past two decades of the HIV/AIDS pandemic, several recruitment campaigns were designed to generate community involvement in preventive HIV vaccine clinical trials. These efforts utilized a blend of advertising and marketing strategies mixed with public relations and community education approaches to attract potential study participants to clinical trials (integrated marketing communications). Although more than 30,000 persons worldwide have participated in preventive HIV vaccine studies, no systematic analysis of recruitment campaigns exists. This content analysis study was conducted to examine several United States and Canadian recruitment campaigns for one of the largest-scale HIV vaccine trials to date (the “Step Study”). This study examined persuasive features consistent with the Elaboration Likelihood Model (ELM) including message content, personal relevance of HIV/AIDS and vaccine research, intended audiences, information sources, and other contextual features. The results indicated variation in messages and communication approaches with gay men more exclusively targeted in these regions. Racial/ethnic representations also differed by campaign. Most of the materials promote affective evaluation of the information through heuristic cueing. Implications for subsequent campaigns and research directions are discussed. PMID:19609373

  15. AIDS vaccine: Present status and future challenges

    Directory of Open Access Journals (Sweden)

    Nigam P

    2006-01-01

    Full Text Available Development of a preventive vaccine for HIV is the best hope of controlling the AIDS pandemic. HIV has, however, proved a difficult pathogen to vaccinate against because of its very high mutation rate and capability to escape immune responses. Neutralizing antibodies that can neutralize diverse field strains have so far proved difficult to induce. Adjuvanting these vaccines with cytokine plasmids and a "prime-boost," approach is being evaluated in an effort to induce both CTL and antibody responses and thereby have immune responses active against both infected cells and free viral particles, thereby necessitating fewer doses of recombinant protein to reach maximum antibodies titers. Although obstacles exist in evaluation of candidate HIV vaccines, evidence from natural history studies, new molecular tools in virology and immunology, new adjuvants, new gene expression systems, new antigen delivery systems, recent discoveries in HIV entry and pathogenesis, and promising studies of candidate vaccines in animal models have provided reasons to hope that developing a safe and effective AIDS vaccine is possible and within reach.

  16. ORIGINAL ARTICLES HIV prevention responsibilities in HIV vaccine ...

    African Journals Online (AJOL)

    HIV/AIDS Vaccines Ethics Group (HAVEG), School of Psychology, University of. KwaZulu-Natal ... receive access to risk reduction counselling on safer sex, education .... debate regarding how to proceed should acyclovir have shown to decrease HIV ... or a single pivotal trial (phase III trial) that provides as much evidence of ...

  17. Promising new vaccine candidates against Campylobacter in broilers.

    Directory of Open Access Journals (Sweden)

    Marine Meunier

    Full Text Available Campylobacter is the leading cause of human bacterial gastroenteritis in the European Union. Birds represent the main reservoir of the bacteria, and human campylobacteriosis mainly occurs after consuming and/or handling poultry meat. Reducing avian intestinal Campylobacter loads should impact the incidence of human diseases. At the primary production level, several measures have been identified to reach this goal, including vaccination of poultry. Despite many studies, however, no efficient vaccine is currently available. We have recently identified new vaccine candidates using the reverse vaccinology strategy. This study assessed the in vivo immune and protective potential of six newly-identified vaccine antigens. Among the candidates tested on Ross broiler chickens, four (YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1 significantly reduced cecal Campylobacter loads by between 2 and 4.2 log10 CFU/g, with the concomitant development of a specific humoral immune response. In a second trial, cecal load reductions results were not statistically confirmed despite the induction of a strong immune response. These vaccine candidates need to be further investigated since they present promising features.

  18. What Has 30 Years of HIV Vaccine Research Taught Us?

    Directory of Open Access Journals (Sweden)

    José Esparza

    2013-10-01

    Full Text Available When HIV was discovered and established as the cause of AIDS in 1983–1984, many people believed that a vaccine would be rapidly developed. However, 30 years have passed and we are still struggling to develop an elusive vaccine. In trying to achieve that goal, different scientific paradigms have been explored. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. Major lessons learned are: the development of an HIV vaccine is an extremely difficult challenge; the temptation of just following the fashion should be avoided; clinical trials are critical, especially large-scale efficacy trials; HIV vaccine research will require long-term commitment; and sustainable collaborations are needed to accelerate the development of an HIV vaccine. Concrete actions must be implemented with the sense of urgency imposed by the severity of the AIDS epidemic.

  19. HIV Vaccine for Prevention and Cure, A Mission Possible.

    Science.gov (United States)

    Lu, Da-Yong; Wu, Hong-Ying; Ding, Jian; Sastry, Nagendra; Lu, Ting-Ren

    2016-01-01

    HIV/AIDS was once a highly deadly infective disease that killed the global people of a million annually two decades ago. While we are enjoying the HIV therapeutic advances (mostly important from HAART invention), one obvious drawback is still unresolved-unable to clearance all HIV from infected human bodies. As a result, a series of different therapeutic attempts have been proposed based on present knowledge of different features of HIV-induced pathogenesis and human mortalities. Facing this shortcoming, innovative designs and update of HIV vaccines and other types of HIV therapeutic inventions can be a final solution for completely HIV clearance and infection managements in human beings. Owing to these scientific and medical significances, several experimental and clinical attempts have to be made. Among these attempts, part of them (updating HIV vaccine developments and clinical routines) are quite promising and noteworthy. In this article, we offer the general information of this attempt and discuss it separately, especially on the respects of HIV vaccine strategic innovations.

  20. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  1. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies

    Science.gov (United States)

    Chin'ombe, Nyasha; Ruhanya, Vurayai

    2015-01-01

    More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa. PMID:26185576

  2. The Case for Adolescent HIV Vaccination in South Africa: A Cost-Effectiveness Analysis.

    Science.gov (United States)

    Moodley, Nishila; Gray, Glenda; Bertram, Melanie

    2016-01-01

    Despite comprising 0.7% of the world population, South Africa is home to 18% of the global human immunodeficiency virus (HIV) prevalence. Unyielding HIV subepidemics among adolescents threaten national attempts to curtail the disease burden. Should an HIV vaccine become available, establishing its point of entry into the health system becomes a priority. This study assesses the impact of school-based HIV vaccination and explores how variations in vaccine characteristics affect cost-effectiveness. The cost per quality adjusted life year (QALY) gained associated with school-based adolescent HIV vaccination services was assessed using Markov modeling that simulated annual cycles based on national costing data. The estimation was based on a life expectancy of 70 years and employs the health care provider perspective. The simultaneous implementation of HIV vaccination services with current HIV management programs would be cost-effective, even at relatively higher vaccine cost. At base vaccine cost of US$ 12, the incremental cost effectiveness ratio (ICER) was US$ 43 per QALY gained, with improved ICER values yielded at lower vaccine costs. The ICER was sensitive to duration of vaccine mediated protection and variations in vaccine efficacy. Data from this work demonstrate that vaccines offering longer duration of protection and at lower cost would result in improved ICER values. School-based HIV vaccine services of adolescents, in addition to current HIV prevention and treatment health services delivered, would be cost-effective.

  3. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  4. Virus-Like-Vaccines against HIV.

    Science.gov (United States)

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  5. A novel live-attenuated vaccine candidate for mayaro Fever.

    Directory of Open Access Journals (Sweden)

    William J Weise

    2014-08-01

    Full Text Available Mayaro virus (MAYV is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  6. Executive summary and recommendations from WHO/UNAIDS and AAVP consultation on: 'The inclusion of adolescents in HIV vaccine trials', 16-18 March 2006 in Gaborone, Botswana.

    Science.gov (United States)

    Osmanov, Saladin

    2007-09-12

    This report summarizes the discussions and recommendations from a consultation held in Gaborone, Botswana (16-19 March 2006), organized by the joint World Health Organization (WHO)/United Nations Programme on HIV/AIDS (UNAIDS) HIV Vaccine Initiative (HVI) and the African AIDS Vaccine Programme (AAVP). The consultation considered key challenges and strategies in enrolling adolescents into HIV vaccine clinical trials, relevant to developing countries, in particular in eastern and southern Africa. Approaches were identified that might address and resolve country-specific challenges related to scientific, legal, ethical, regulatory and community aspects of the involvement of adolescents in HIV vaccine trials. This executive summary is formulated for a broader dissemination of the outcomes of the meeting to the general clinical, scientific and regulatory community involved in the review, approval and monitoring of clinical trials and potential licensing of HIV vaccine candidates. Four major topics were discussed and recommendations developed with regard to: (i) criteria for products selection and clinical trial design; (ii) ethical and legal issues; (iii) community acceptance and participation; and (iv) regulatory considerations. The recommendations of this meeting were further discussed and endorsed by the WHO/UNAIDS HIV Vaccine Advisory Committee.

  7. [Vaccine for human immunodeficiency virus (HIV)--relevance of these days].

    Science.gov (United States)

    Laiskonis, Alvydas; Pukenyte, Evelina

    2005-01-01

    Since 1980 more than 25 million people have died from acquired immunodeficiency syndrome (AIDS), which results from infection with human immunodeficiency virus (HIV). Number of new cases increases very threateningly. One and the most effective method to stop the progress of epidemic is the development of the vaccine for HIV. There is the presentation of the first stage of the vaccine for HIV testing (structure, methodology), which is now on trial in St. Pierre hospital, Brussels University. HIV characteristics which inflame the process of the vaccine development, historical facts and facts about vaccines on trial in these days are reviewed in this article. More than 10,000 volunteers have been participating in various clinical trials since 1987. The development of the vaccine is a very difficult, long-terming (about 8-10 years) and costly process. The process of the vaccine testing is very difficult in developing countries where the infection spreads the most rapidly. Available data confirm that the vaccine must be multi-componential, inducing cellular, humoral immunity against various subtypes of HIV. The vaccine cannot protect fully but the changes of the natural infection course could decrease virulence, distance the stage of AIDS, and retard the spread of the epidemic.

  8. Organizing the HIV vaccine development effort.

    Science.gov (United States)

    Voronin, Yegor; Snow, William

    2013-09-01

    To describe and compare the diverse organizational structures and funding mechanisms applied to advance HIV preventive vaccine research and development and to help explain and inform evolving infrastructures and collaborative funding models. On the basis of models that have been tried, improved or abandoned over three decades, the field seems to have settled into a relatively stable set of diverse initiatives, each with its own organizational signature. At the same time, this set of organizations is forging cross-organizational collaborations, which promise to acquire newly emergent beneficial properties. Strong motivation to expedite HIV vaccine R&D has driven a diversity of customized and inventive organizational approaches, largely government and foundation funded. Although no one approach has proven a panacea, the field has evolved into a constellation of often overlapping organizations that complement or reinforce one another. The Global HIV Vaccine Enterprise, a responsive, rapidly evolving loose infrastructure, is an innovative collaboration to catalyze that evolution.

  9. Patent data mining: a tool for accelerating HIV vaccine innovation.

    Science.gov (United States)

    Clark, K; Cavicchi, J; Jensen, K; Fitzgerald, R; Bennett, A; Kowalski, S P

    2011-05-31

    Global access to advanced vaccine technologies is challenged by the interrelated components of intellectual property (IP) management strategies, technology transfer (legal and technical) capabilities and the capacity necessary for accelerating R&D, commercialization and delivery of vaccines. Due to a negative association with the management of IP, patents are often overlooked as a vast resource of freely available, information akin to scientific journals as well as business and technological information and trends fundamental for formulating policies and IP management strategies. Therefore, a fundamental step towards facilitating global vaccine access will be the assembly, organization and analysis of patent landscapes, to identify the amount of patenting, ownership (assignees) and fields of technology covered. This is critical for making informed decisions (e.g., identifying licensees, building research and product development collaborations, and ascertaining freedom to operate). Such information is of particular interest to the HIV vaccine community where the HIV Vaccine Enterprise, have voiced concern that IP rights (particularly patents and trade secrets) may prevent data and materials sharing, delaying progress in research and development of a HIV vaccine. We have compiled and analyzed a representative HIV vaccine patent landscape for a prime-boost, DNA/adenoviral vaccine platform, as an example for identifying obstacles, maximizing opportunities and making informed IP management strategy decisions towards the development and deployment of an efficacious HIV vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Influenza vaccination of HIV-1-positive and HIV-1-negative former intravenous drug users.

    Science.gov (United States)

    Amendola, A; Boschini, A; Colzani, D; Anselmi, G; Oltolina, A; Zucconi, R; Begnini, M; Besana, S; Tanzi, E; Zanetti, A R

    2001-12-01

    The immunogenicity of an anti-influenza vaccine was assessed in 409 former intravenous drug user volunteers and its effect on the levels of HIV-1 RNA, proviral DNA and on CD4+ lymphocyte counts in a subset HIV-1-positive subjects was measured. HIV-1-positive individuals (n = 72) were divided into three groups on the basis of their CD4+ lymphocyte counts, while the 337 HIV-1-negative participants were allocated into group four. Haemagglutination inhibiting (HI) responses varied from 45.8 to 70% in the HIV-1-positive subjects and were significantly higher in group four (80.7% responses to the H1N1 strain, 81.6% to the H3N2 strain, and 83% to the B strain). The percentage of subjects with HI protective antibody titres (> or = 1:40) increased significantly after vaccination, especially in HIV-1 uninfected subjects. Immunization caused no significant changes in CD4+ counts and in neither plasma HIV-1 RNA nor proviral DNA levels. Therefore, vaccination against influenza may benefit persons infected by HIV-1. Copyright 2001 Wiley-Liss, Inc.

  11. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effect (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of the

  12. Safety of licensed vaccines in HIV-infected persons: a systematic review protocol

    Science.gov (United States)

    2014-01-01

    Background Safety of vaccines remains a cornerstone of building public trust on the use of these cost-effective and life-saving public health interventions. In some settings, particularly Sub-Saharan Africa, there is a high prevalence of HIV infection and a high burden of vaccine-preventable diseases. There is evidence suggesting that the immunity induced by some commonly used vaccines is not durable in HIV-infected persons, and therefore, repeated vaccination may be considered to ensure optimal vaccine-induced immunity in this population. However, some vaccines, particularly the live vaccines, may be unsafe in HIV-infected persons. There is lack of evidence on the safety profile of commonly used vaccines among HIV-infected persons. We are therefore conducting a systematic review to assess the safety profile of routine vaccines administered to HIV-infected persons. Methods/Design We will select studies conducted in any setting where licensed and effective vaccines were administered to HIV-infected persons. We will search for eligible studies in PubMed, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, Africa-Wide, PDQ-Evidence and CINAHL as well as reference lists of relevant publications. We will screen search outputs, select studies and extract data in duplicate, resolving discrepancies by discussion and consensus. Discussion Globally, immunisation is a major public health strategy to mitigate morbidity and mortality caused by various infectious disease-causing agents. In general, there are efforts to increase vaccination coverage worldwide, and for these efforts to be successful, safety of the vaccines is paramount, even among people living with HIV, who in some situations may require repeated vaccination. Results from this systematic review will be discussed in the context of the safety of routine vaccines among HIV-infected persons. From the safety perspective, we will also discuss whether repeat vaccination strategies may be

  13. Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates.

    Directory of Open Access Journals (Sweden)

    E M D L van der Heijden

    Full Text Available Conventional control and eradication strategies for bovine tuberculosis (BTB face tremendous difficulties in developing countries; countries with wildlife reservoirs, a complex wildlife-livestock-human interface or a lack of veterinary and veterinary public health surveillance. Vaccination of cattle and other species might in some cases provide the only suitable control strategy for BTB, while in others it may supplement existing test-and-slaughter schemes. However, the use of live BCG has several limitations and the global rise of HIV/AIDS infections has furthermore warranted the exploration of inactivated vaccine preparations. The aim of this study was to compare the immune response profiles in response to parenteral vaccination with live BCG and two inactivated vaccine candidates in cattle. Twenty-four mixed breed calves (Bos taurus aged 4-6 months, were allocated to one of four groups and vaccinated sub-cutaneously with live M. bovis BCG (Danish 1331, formalin-inactivated M. bovis BCG, heat-killed M. bovis or PBS/Montanide™ (control. Interferon-γ responsiveness and antibody production were measured prior to vaccination and at weekly intervals thereafter for twelve weeks. At nine weeks post-priming, animals were skin tested using tuberculins and MTBC specific protein cocktails and subsequently challenged through intranodular injection of live M. bovis BCG. The animals in the heat-killed M. bovis group demonstrated strong and sustained cell-mediated and humoral immune responses, significantly higher than the control group in response to vaccination, which may indicate a protective immune profile. Animals in this group showed reactivity to the skin test reagents, confirming good vaccine take. Lastly, although not statistically significant, recovery of BCG after challenge was lowest in the heat-killed M. bovis group. In conclusion, the parenteral heat-killed M. bovis vaccine proved to be clearly immunogenic in cattle in the present study

  14. Impact of aging and HIV infection on serologic response to seasonal influenza vaccination.

    Science.gov (United States)

    Pallikkuth, Suresh; De Armas, Lesley R; Pahwa, Rajendra; Rinaldi, Stefano; George, Varghese K; Sanchez, Celeste M; Pan, Li; Dickinson, Gordon; Rodriguez, Allan; Fischl, Margaret; Alcaide, Maria; Pahwa, Savita

    2018-02-08

    To determine influence of age and HIV infection on influenza vaccine responses. Evaluate serologic response to seasonal trivalent influenza vaccine (TIV) as the immunologic outcome in HIV-infected (HIV) and age-matched HIV negative (HIV) adults. During 2013-2016, 151 virologically controlled HIV individuals on antiretroviral therapy and 164 HIV volunteers grouped by age as young (<40 years), middle aged (40-59 years) and old (≥60 years) were administered TIV and investigated for serum antibody response to vaccine antigens. At prevaccination (T0) titers were in seroprotective range in more than 90% of participants. Antibody titers increased in all participants postvaccination but frequency of classified vaccine responders to individual or all three vaccine antigens at 3-4 weeks was higher in HIV than HIV adults with the greatest differences manifesting in the young age group. Of the three vaccine strains in TIV, antibody responses at T2 were weakest against H3N2 with those to H1N1 and B antigens dominating. Among the age groups, the titers for H1N1 and B were lowest in old age, with evidence of an age-associated interaction in HIV persons with antibody to B antigen. Greater frequencies of vaccine nonresponders are seen in HIV young compared with HIV adults and the observed age-associated interaction for B antigen in HIV persons are supportive of the concept of premature immune senescence in controlled HIV infection. High-potency influenza vaccination recommended for healthy aging could be considered for HIV adults of all ages.

  15. Optimization of a multi-gene HIV-1 recombinant subtype CRF02AG DNA vaccine for expression of multiple immunogenic forms

    International Nuclear Information System (INIS)

    Ellenberger, Dennis; Li Bin; Smith, James; Yi Hong; Folks, Thomas; Robinson, Harriet; Butera, Salvatore

    2004-01-01

    We developed an AIDS vaccine for Western and West-Central Africa based on a DNA plasmid vector expressing HIV-1 recombinant subtype CRF02 A G gag, pol, and env genes. To optimize the production of noninfectious HIV-like particles (VLPs) and potentially improve the effectiveness of the vaccine, we generated four potential vaccine constructs: the parental (IC2) and three modifications (IC25, IC48, and IC90) containing mutations within the HIV protease. While the parental construct IC2 expressed aggregates of Gag proteins, the IC25 construct resulted in the production of immature VLPs (the core comprises unprocessed Pr 55Gag ). The remaining two constructs (IC48 and IC90) produced mature VLPs (the core comprises processed capsid p24) in addition to immature VLPs and aggregates of Gag proteins. VLPs incorporated significant levels of mature gp120 envelope glycoprotein. Importantly, the mature VLPs were fusion competent and entered coreceptor-specific target cells. The production of multiple antigenic forms, including fusion-competent VLPs, by candidate DNA vaccine constructs may provide immunologic advantages for induction of protective cellular and humoral responses against HIV-1 proteins

  16. Adolescent decision making about participation in a hypothetical HIV vaccine trial.

    Science.gov (United States)

    Alexander, Andreia B; Ott, Mary A; Lally, Michelle A; Sniecinski, Kevin; Baker, Alyne; Zimet, Gregory D

    2015-03-10

    The purpose of this study was to examine the process of adolescent decision-making about participation in an HIV vaccine clinical trial, comparing it to adult models of informed consent with attention to developmental differences. As part of a larger study of preventive misconception in adolescent HIV vaccine trials, we interviewed 33 male and female 16-19-year-olds who have sex with men. Participants underwent a simulated HIV vaccine trial consent process, and then completed a semistructured interview about their decision making process when deciding whether or not to enroll in and HIV vaccine trial. An ethnographic content analysis approach was utilized. Twelve concepts related to adolescents' decision-making about participation in an HIV vaccine trial were identified and mapped onto Appelbaum and Grisso's four components of decision making capacity including understanding of vaccines and how they work, the purpose of the study, trial procedures, and perceived trial risks and benefits, an appreciation of their own situation, the discussion and weighing of risks and benefits, discussing the need to consult with others about participation, motivations for participation, and their choice to participate. The results of this study suggest that most adolescents at high risk for HIV demonstrate the key abilities needed to make meaningful decisions about HIV vaccine clinical trial participation. Published by Elsevier Ltd.

  17. The economics of HIV vaccines - Projecting the impact of HIV vaccination of infants in sub-Saharan Africa

    NARCIS (Netherlands)

    Bos, JM; Postma, MJ

    2001-01-01

    Objectives: (i) To project vaccine parameters, economic consequences and market size associated with HIV-1 vaccination of infants in sub-Saharan Africa through the Expanded Program on Immunisation (EPI); and (ii) to assess threshold values for price and effectiveness. Study design and methods:

  18. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Carmen Elena Gómez

    2017-12-01

    Full Text Available An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors—TLR—interferon, cytokines/chemokines, as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.

  19. Update on the Clinical Development of Candidate Malaria Vaccines

    National Research Council Canada - National Science Library

    Ballou, W. R; Arevalo-Herrera, Myriam; Carucci, Daniel; Richie, Thomas L; Corradin, Giampietro; Diggs, Carter; Druilhe, Pierre; Giersing, Birgitte K; Saul, Allan; Heppner, D. G

    2004-01-01

    ... powerful driver for stimulating clinical development of candidate vaccines for malaria. This new way forward promises to greatly increase the likelihood of bringing a safe and effective vaccine to licensure...

  20. Resolving legal, ethical, and human rights challenges in HIV vaccine research.

    Science.gov (United States)

    Patterson, D

    2000-01-01

    In the absence of a cure for AIDS, attention has turned to the possibility of developing a preventive vaccine for HIV infection. Yet many scientific, ethical, legal, and economic obstacles remain. At the current rate, the development and production of an effective vaccine could take 15 to 20 years or longer. If tens of millions more HIV infections and deaths are to be avoided in the coming decades, vaccine research needs to be greatly expedited. Furthermore, it must be undertaken ethically, and the products of this research must benefit people in developing countries. This article, an edited and updated version of a paper presented at "Putting Third First," addresses challenges arising in HIV preventive vaccine research in developing countries. It does not address clinical research in developing countries relating to treatments or therapeutic vaccines. Nor does it address legal and ethical issues relating to HIV vaccine research in industrialized countries, although similar issues arise in both contexts. The article concludes that while ethical codes are silent on the obligation to undertake research and development, international law provides strong legal obligations--particularly with regard to industrialized states--that should be invoked to accelerate HIV vaccine development, and distribution.

  1. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies.

    Science.gov (United States)

    Ahmed, Yousuf; Tian, Meijuan; Gao, Yong

    2017-09-12

    The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.

  2. Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates

    Directory of Open Access Journals (Sweden)

    Georgia D. Tomaras

    2013-12-01

    Full Text Available Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA, VAX004 (Vaxgen, Inc., HIV-1 Vaccine Trials Network (HVTN 502 (Step, HVTN 503 (Phambili, RV144 (sponsored by the U.S. Military HIV Research Program, MHRP and HVTN 505. Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine.

  3. Now that you want to take your HIV/AIDS vaccine/biological product research concept into the clinic: what are the "cGMP"?

    Science.gov (United States)

    Sheets, Rebecca L; Rangavajhula, Vijaya; Pullen, Jeffrey K; Butler, Chris; Mehra, Vijay; Shapiro, Stuart; Pensiero, Michael

    2015-04-08

    The Division of AIDS Vaccine Research Program funds the discovery and development of HIV/AIDS vaccine candidates. Basic researchers, having discovered a potential vaccine in the laboratory, next want to take that candidate into the clinic to test the concept in humans, to see if it translates. Many of them have heard of "cGMP" and know that they are supposed to make a "GMP product" to take into the clinic, but often they are not very familiar with what "cGMP" means and why these good practices are so important. As members of the Vaccine Translational Research Branch, we frequently get asked "can't we use the material we made in the lab in the clinic?" or "aren't Phase 1 studies exempt from cGMP?" Over the years, we have had many experiences where researchers or their selected contract manufacturing organizations have not applied an appropriate degree of compliance with cGMP suitable for the clinical phase of development. We share some of these experiences and the lessons learned, along with explaining the importance of cGMP, just what cGMP means, and what they can assure, in an effort to de-mystify this subject and facilitate the rapid and safe translational development of HIV vaccines. Published by Elsevier Ltd.

  4. New approaches to design HIV-1 T-cell vaccines.

    Science.gov (United States)

    Perrin, Hélène; Canderan, Glenda; Sékaly, Rafick-Pierre; Trautmann, Lydie

    2010-09-01

    Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.

  5. A brief history of HIV vaccine research: stepping back to the drawing board?

    Science.gov (United States)

    Miedema, Frank

    2008-09-12

    In September 2007, it was announced that the most promising HIV vaccine trial had to be stopped because it had failed to show the protection that was hoped for. Here, the history of HIV vaccine development from the discovery of HIV-1 in 1983 until 2008, the underlying ideas on protective immunity to HIV and potential avenues for vaccine research are discussed.

  6. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2017-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  7. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Directory of Open Access Journals (Sweden)

    Yonas Bekele

    2018-01-01

    Full Text Available During anti-retroviral therapy (ART HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV and hepatitis B virus (HBV vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory and CD8+ (central memory T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced

  8. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2018-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  9. Volunteer motivators for participating in HIV vaccine clinical trials in Nairobi, Kenya.

    Science.gov (United States)

    Nyaoke, Borna A; Mutua, Gaudensia N; Sajabi, Rose; Nyasani, Delvin; Mureithi, Marianne W; Anzala, Omu A

    2017-01-01

    1.5 million Kenyans are living with HIV/AIDS as per 2015 estimates. Though there is a notable decline in new HIV infections, continued effort is still needed to develop an efficacious, accessible and affordable HIV vaccine. HIV vaccine clinical trials bear risks, hence a need to understand volunteer motivators for enrolment, retention and follow-up. Understanding the factors that motivate volunteers to participate in a clinical trial can help to strategize, refine targeting and thus increase enrolment of volunteers in future HIV vaccine clinical trials. The health belief model classifies motivators into social benefits such as 'advancing research' and collaboration with science, and personal benefits such as health benefits and financial interests. A thematic analysis was carried out on data obtained from four HIV clinical trials conducted at KAVI-Institute of Clinical Research in Nairobi Kenya from 2009 to 2015. Responses were obtained from a Questionnaire administered to the volunteers during their screening visit at the research site. Of the 281 healthy, HIV-uninfected volunteers participating in this study; 38% were motivated by personal benefits including, 31% motivated by health benefits and 7% motivated by possible financial gains. In addition, 62% of the volunteers were motivated by social benefits with 20% of who were seeking to help their family/society/world while 42% were interested in advancing research. The majority of volunteers in the HIV vaccine trials at our site were motivated by social benefits, suggesting that altruism can be a major contributor to participation in HIV vaccine studies. Personal benefits were a secondary motivator for the volunteers. The motivators to volunteer in HIV clinical trials were similar across ages, education level and gender. Education on what is needed (including volunteer participation) to develop an efficacious vaccine could be the key to greater volunteer motivation to participate in HIV vaccine clinical trials.

  10. Volunteer motivators for participating in HIV vaccine clinical trials in Nairobi, Kenya.

    Directory of Open Access Journals (Sweden)

    Borna A Nyaoke

    Full Text Available 1.5 million Kenyans are living with HIV/AIDS as per 2015 estimates. Though there is a notable decline in new HIV infections, continued effort is still needed to develop an efficacious, accessible and affordable HIV vaccine. HIV vaccine clinical trials bear risks, hence a need to understand volunteer motivators for enrolment, retention and follow-up. Understanding the factors that motivate volunteers to participate in a clinical trial can help to strategize, refine targeting and thus increase enrolment of volunteers in future HIV vaccine clinical trials. The health belief model classifies motivators into social benefits such as 'advancing research' and collaboration with science, and personal benefits such as health benefits and financial interests.A thematic analysis was carried out on data obtained from four HIV clinical trials conducted at KAVI-Institute of Clinical Research in Nairobi Kenya from 2009 to 2015. Responses were obtained from a Questionnaire administered to the volunteers during their screening visit at the research site.Of the 281 healthy, HIV-uninfected volunteers participating in this study; 38% were motivated by personal benefits including, 31% motivated by health benefits and 7% motivated by possible financial gains. In addition, 62% of the volunteers were motivated by social benefits with 20% of who were seeking to help their family/society/world while 42% were interested in advancing research.The majority of volunteers in the HIV vaccine trials at our site were motivated by social benefits, suggesting that altruism can be a major contributor to participation in HIV vaccine studies. Personal benefits were a secondary motivator for the volunteers. The motivators to volunteer in HIV clinical trials were similar across ages, education level and gender. Education on what is needed (including volunteer participation to develop an efficacious vaccine could be the key to greater volunteer motivation to participate in HIV vaccine

  11. Community perspectives on the ethical issues surrounding adolescent HIV vaccine trials in South Africa.

    Science.gov (United States)

    Jaspan, Heather B; Soka, Nosiphiwo F; Strode, Ann E; Mathews, Catherine; Mark, Daniella; Flisher, Alan J; Wood, Robin; Bekker, Linda-Gail

    2008-10-23

    Adolescents globally are at high risk for HIV acquisition and are the targets of HIV prevention interventions such as HIV vaccines. In order to understand stakeholders' attitudes towards the ethical issues of adolescent involvement in HIV vaccine trials, we conducted focus group discussions with key members of a semi-urban, informal Cape Town community with high HIV prevalence in which HIV vaccine trials are taking place. Themes were identified from focus group transcripts by four researchers, and included necessity of guardian consent, age of independent consent, and confidentiality of in-trial medical results. In general, ethical adolescent HIV vaccine trials will be feasible in this community.

  12. Relationship of HIV Reservoir Characteristics with Immune Status and Viral Rebound Kinetics in an HIV Therapeutic Vaccine Study

    Science.gov (United States)

    Li, Jonathan Z.; Heisey, Andrea; Ahmed, Hayat; Wang, Hongying; Zheng, Lu; Carrington, Mary; Wrin, Terri; Schooley, Robert T.; Lederman, Michael M.; Kuritzkes, Daniel R.

    2014-01-01

    Objectives To evaluate the impact of therapeutic HIV vaccination on the HIV reservoir, and assess the relationship of the viral reservoir with HIV-specific immune status and viral rebound kinetics. Design Retrospective analysis of ACTG A5197, a randomized, placebo-controlled trial of a therapeutic rAd5 HIV-1 gag vaccine. Methods Participants received vaccine/placebo at weeks 0, 4, and 26 prior to a 16-week analytic treatment interruption (ATI) at week 38. Cell-associated HIV-1 RNA and DNA (CA-RNA and CA-DNA) and HIV-1 residual viremia (RV) were quantified at weeks 0, 8, and 38. HIV-specific CD4+/CD8+ activity were assessed by an intracellular cytokine staining assay. Results At study entry, CA-RNA and CA-DNA levels were correlated inversely with the numbers of HIV-specific CD4+ interferon-γ-producing cells (CA-RNA: r = −0.23, P=0.03 and CA-DNA: r = −0.28, P<0.01, N=93). Therapeutic HIV vaccination induced HIV-specific CD4+ activity, but did not significantly affect levels of CA-RNA or CA-DNA. Vaccine recipients with undetectable RV at week 8 had higher frequencies of HIV-specific CD4+ and CD8+ interferon-γ-producing cells (undetectable versus detectable RV: 277 versus 161 CD4+ cells/106 lymphocytes, P=0.03 and 1326 versus 669 CD8+ cells/106 lymphocytes, P=0.04). Pre-ATI CA-RNA and CA-DNA were associated with post-ATI plasma HIV set point (CA-RNA: r = 0.51, P<0.01 and CA-DNA: r = 0.47, P<0.01). Conclusions Vaccine-induced T-cell responses were associated with a modest transient effect on RV, but more potent immune responses and/or combination treatment with latency-reversing agents are needed to reduce the HIV reservoir. HIV reservoir measures may act as biomarkers of post-ATI viral rebound kinetics. PMID:25254301

  13. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy.

    Science.gov (United States)

    Halim, S S; Collins, D N; Ramsingh, A I

    2000-10-10

    The ultimate goal in the treatment of HIV-infected persons is to prevent disease progression. A strategy to accomplish this goal is to use chemotherapy to reduce viral load followed by immunotherapy to stimulate HIV-specific immune responses that are observed in long-term asymptomatic individuals. An effective, live, recombinant virus, expressing HIV sequences, would be capable of inducing both CTL and CD4(+) helper T cell responses. To accomplish these goals, the viral vector must be immunogenic yet retain its avirulent phenotype in a T cell-deficient host. We have identified a coxsackievirus variant, CB4-P, that can induce protective immunity against a virulent variant. In addition, the CB4-P variant remains avirulent in mice lacking CD4(+) helper T cells, suggesting that CB4-P may be uniquely suited as a viral vector for a therapeutic HIV vaccine. Two strategies designed to elicit CTL and CD4(+) helper T cell responses were used to construct CB4-P/HIV recombinants. Recombinant viruses were viable, genetically stable, and retained the avirulent phenotype of the parental virus. In designing a viral vector for vaccine development, an issue that must be addressed is whether preexisting immunity to the vector would affect subsequent administration of the recombinant virus. Using a test recombinant, we showed that prior exposure to the parental CB4-P virus did not affect the ability of the recombinant to induce a CD4(+) T cell response against the foreign sequence. The results suggest that a "cocktail" of coxsackie/HIV recombinants may be useful as a therapeutic HIV vaccine.

  14. Achieving an HIV vaccine: the need for an accelerated national campaign.

    Science.gov (United States)

    Marlink, R

    1997-11-01

    The development of an effective HIV vaccine has become a crucial national healthcare goal. To develop a worldwide AIDS vaccine, an international collaboration with developing countries is needed. The global approach rationale is threefold: millions of lives can be saved, a vaccine preparation can be tested more rapidly and economically among populations with high rates of infections; and the HIV epidemic comprises at least ten different subtypes. Although a number of barriers to the successful development of an HIV vaccine exist, the polio vaccine can be used as an example to show researchers how to overcome the obstacles. Jonas Salk, the polio vaccine developer, used killed whole virus in a technique that critics argued would not be fully effective. However, the Salk vaccine reduced polio-related paralysis by 72 percent, while the more effective Sabin oral vaccine did not become available until several years later. The lesson to be learned is that any percent of effectiveness is better than nothing, and researchers should not abandon uncertain HIV vaccine development efforts because they believe a better solution may develop in the future. The existence of traditional research should not preclude the development of new solutions that might prove more effective. For example, in the case of polio, the March of Dimes campaign pushed both the Salk and Sabin vaccines despite the skepticism of many academic research groups.

  15. Efficacy of chimeric Pestivirus vaccine candidates against classical swine fever: protection and DIVA characteristics.

    Science.gov (United States)

    Eblé, P L; Geurts, Y; Quak, S; Moonen-Leusen, H W; Blome, S; Hofmann, M A; Koenen, F; Beer, M; Loeffen, W L A

    2013-03-23

    Currently no live DIVA (Differentiating Infected from Vaccinated Animals) vaccines against classical swine fever (CSF) are available. The aim of this study was to investigate whether chimeric pestivirus vaccine candidates (CP7_E2alf, Flc11 and Flc9) are able to protect pigs against clinical signs, and to reduce virus shedding and virus transmission, after a challenge with CSF virus (CSFV), 7 or 14 days after a single intramuscular vaccination. In these vaccine candidates, either the E2 or the E(rns) encoding genome region of a bovine viral diarrhoea virus strain were combined with a cDNA copy of CSFV or vice versa. Furthermore, currently available serological DIVA tests were evaluated. The vaccine candidates were compared to the C-strain. All vaccine candidates protected against clinical signs. No transmission to contact pigs was detected in the groups vaccinated with C-strain, CP7_E2alf and Flc11. Limited transmission occurred in the groups vaccinated with Flc9. All vaccine candidates would be suitable to stop on-going transmission of CSFV. For Flc11, no reliable differentiation was possible with the current E(rns)-based DIVA test. For CP7_E2alf, the distribution of the inhibition percentages was such that up to 5% false positive results may be obtained in a large vaccinated population. For Flc9 vaccinated pigs, the E2 ELISA performed very well, with an expected 0.04% false positive results in a large vaccinated population. Both CP7_E2alf and Flc9 are promising candidates to be used as live attenuated marker vaccines against CSF, with protection the best feature of CP7_E2alf, and the DIVA principle the best feature of Flc9. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies

    NARCIS (Netherlands)

    Chung, Nancy P. Y.; Matthews, Katie; Kim, Helen J.; Ketas, Thomas J.; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W.; Klasse, Per Johan; Wilson, Ian A.; Ward, Andrew B.; Marozsan, Andre J.; Moore, John P.; Cupo, Albert

    2014-01-01

    Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate

  17. Hepatitis B and A vaccination in HIV-infected adults: A review.

    Science.gov (United States)

    Mena, G; García-Basteiro, A L; Bayas, J M

    2015-01-01

    Hepatitis B and A account for considerable morbidity and mortality worldwide. Immunization is the most effective means of preventing hepatitis B and A. However, the immune response to both hepatitis vaccines seems to be reduced in HIV-infected subjects. The aim of this review was to analyze the immunogenicity, safety, long-term protection and current recommendations of hepatitis B and A vaccination among HIV-infected adults. The factors most frequently associated with a deficient level of anti-HBs or IgG anti-HAV after vaccination are those related to immunosuppression (CD4 level and HIV RNA viral load) and to the frequency of administration and/or the amount of antigenic load per dose. The duration of the response to both HBV and HAV vaccines is associated with suppression of the viral load at vaccination and, in the case of HBV vaccination, with a higher level of antibodies after vaccination. In terms of safety, there is no evidence of more, or different, adverse effects compared with HIV-free individuals. Despite literature-based advice on the administration of alternative schedules, revaccination after the failure of primary vaccination, and the need for periodic re-evaluation of antibody levels, few firm recommendations are found in the leading guidelines.

  18. Hepatitis B and A vaccination in HIV-infected adults: A review

    Science.gov (United States)

    Mena, G; García-Basteiro, AL; Bayas, JM

    2015-01-01

    Hepatitis B and A account for considerable morbidity and mortality worldwide. Immunization is the most effective means of preventing hepatitis B and A. However, the immune response to both hepatitis vaccines seems to be reduced in HIV-infected subjects. The aim of this review was to analyze the immunogenicity, safety, long-term protection and current recommendations of hepatitis B and A vaccination among HIV-infected adults. The factors most frequently associated with a deficient level of anti-HBs or IgG anti-HAV after vaccination are those related to immunosuppression (CD4 level and HIV RNA viral load) and to the frequency of administration and/or the amount of antigenic load per dose. The duration of the response to both HBV and HAV vaccines is associated with suppression of the viral load at vaccination and, in the case of HBV vaccination, with a higher level of antibodies after vaccination. In terms of safety, there is no evidence of more, or different, adverse effects compared with HIV-free individuals. Despite literature-based advice on the administration of alternative schedules, revaccination after the failure of primary vaccination, and the need for periodic re-evaluation of antibody levels, few firm recommendations are found in the leading guidelines. PMID:26208678

  19. Now That You Want to Take Your HIV/AIDS Vaccine/Biological Product Research Concept into the Clinic: What are “cGMP”?

    Science.gov (United States)

    Sheets, Rebecca L.; Rangavajhula, Vijaya; Pullen, Jeffrey K.; Butler, Chris; Mehra, Vijay; Shapiro, Stuart

    2015-01-01

    The Division of AIDS Vaccine Research Program funds the discovery and development of HIV/AIDS vaccine candidates. Basic researchers, having discovered a potential vaccine in the laboratory, next want to take that candidate into the clinic to test the concept in humans, to see if it translates. Many of them have heard of “cGMP” and know that they are supposed to make a “GMP product” to take into the clinic, but often they are not very familiar with what “cGMP” means and why these good practices are so important. As members of the Vaccine Translational Research Branch, we frequently get asked “can’t we use the material we made in the lab in the clinic?” or “aren’t Phase 1 studies exempt from cGMP?” Over the years, we have had many experiences where researchers or their selected contract manufacturing organizations have not applied an appropriate degree of compliance with cGMP suitable for the clinical phase of development. We share some of these experiences and the lessons learned, along with explaining the importance of cGMP, just what cGMP means, and what they can assure, in an effort to de-mystify this subject and facilitate the rapid and safe translational development of HIV vaccines. PMID:25698494

  20. Motivators to participation in actual HIV vaccine trials.

    Science.gov (United States)

    Dhalla, Shayesta; Poole, Gary

    2014-02-01

    An examination of actual HIV vaccine trials can contribute to an understanding of motivators for participation in these studies. Analysis of these motivators reveals that they can be categorized as social and personal benefits. Social benefits are generally altruistic, whereas personal benefits are psychological, physical, and financial. In this systematic review, the authors performed a literature search for actual preventive HIV vaccine trials reporting motivators to participation. Of studies conducted in the Organization for Economic Co-operation and Development (OECD) countries, the authors retrieved 12 studies reporting on social benefits and seven reporting on personal benefits. From the non-OECD countries, nine studies reported on social benefits and eight studies on personal benefits. Social benefits were most frequently described on macroscopic, altruistic levels. Personal benefits were most frequently psychological in nature. Rates of participation were compared between the OECD and the non-OECD countries. Knowledge of actual motivators in specific countries and regions can help target recruitment in various types of actual HIV vaccine trials.

  1. HIV vaccine trials: critical issues in informed consent.

    Science.gov (United States)

    Lindegger, G; Richter, L M

    2000-06-01

    Informed consent (IC), a fundamental principle of ethics in medical research, is recognized as a vital component of HIV vaccine trials. There are different notions of IC, some legally based and others based on ethics. It is argued that, though legal indemnity is necessary, vaccine trials should be founded on fully ethical considerations. Various contentious aspects of IC are examined, especially the problem of social desirability and of adequate comprehension. The need for sensitivity to cultural norms in implementing IC procedures is critically reviewed, and some of the potential conflict between ethos and ethics is considered. The transmission of information is examined as a particular aspect of IC in HIV vaccine trials.

  2. Future HIV Vaccine Acceptability among Young Adults in South Africa

    Science.gov (United States)

    Sayles, Jennifer N.; Macphail, Catherine L.; Newman, Peter A.; Cunningham, William E.

    2010-01-01

    Developing and disseminating a preventive HIV vaccine is a primary scientific and public health objective. However, little is known about HIV vaccine acceptability in the high-prevalence setting of South Africa--where young adults are likely to be targeted in early dissemination efforts. This study reports on six focus groups (n = 42) conducted in…

  3. Uptake of genital mucosal sampling in HVTN 097, a phase 1b HIV vaccine trial in South Africa.

    Directory of Open Access Journals (Sweden)

    Erica Maxine Lazarus

    Full Text Available Because sexual transmission of HIV occurs across mucosal membranes, understanding the immune responses of the genital mucosa to vaccines may contribute knowledge to finding an effective candidate HIV vaccine. We describe the uptake of rectal secretion, cervical secretion and seminal mucosal secretion sampling amongst volunteers in a Phase 1b HIV vaccine trial. Age at screening, gender, study site and the designation of the person conducting the informed consent procedure were collected for volunteers who screened for the HVTN 097 study. A total of 211 volunteers (54% female were screened at three sites in South Africa: Soweto (n = 70, 33%, Cape Town (n = 68, 32% and Klerksdorp (n = 73, 35%. Overall uptake of optional mucosal sampling amongst trial volunteers was 71% (n = 149. Compared to Cape Town, volunteers from Soweto and Klerksdorp were less likely to consent to sampling (Soweto OR 0.08 CI: 0.03-0.25 p<0.001 and Klerksdorp OR 0.13 CI: 0.04-0.41 p = 0.001. In contrast, volunteers over 25 years of age were 2.39 times more likely to consent than younger volunteers (CI: 1.13-5.08, p = 0.02. Further studies are required to better understand the cultural, demographic and sociobehavioral factors which influence willingness to participate in mucosal sampling in HIV prevention studies.ClinicalTrials.gov: NCT02109354.

  4. HIV vaccines in Canada: legal and ethical issues--an overview.

    Science.gov (United States)

    Garmaise, David

    2002-07-01

    In July 2002 the Legal Network released an overview paper on legal and ethical issues related to an HIV vaccine in Canada. The paper, which is based on a more detailed report prepared in collaboration with the Centre for Bioethics of the Clinical Research Institute of Montréal, calls for the establishment of a Canadian HIV Vaccine Plan.

  5. Scientific and regulatory challenges in evaluating clinical trial protocols for HIV-1/AIDS vaccines - A review from a regulatory perspective.

    Science.gov (United States)

    Sheets, Rebecca L; Zhou, TieQun; Knezevic, Ivana

    2016-03-01

    Clinical development of prophylactic HIV/AIDS vaccines presents many scientific challenges that result in challenges for regulators reviewing clinical trial applications (CTAs). The World Health Organization (WHO) has the responsibility to provide technical support to these regulators. The search for an HIV/AIDS vaccine will only succeed through well-designed, -conducted and -controlled human efficacy studies reviewed and approved by regulators in countries worldwide, particularly in countries where the epidemic has hit hardest, such as in sub-Saharan Africa and Asia. This review summarizes the current candidates in development and focuses on challenges regulators face when reviewing CTAs, such as the evolving landscape of "standard of prevention," trials in adolescents, adaptive trial designs, correlates of protection and their analysis, and access to successful vaccines. There are many unknowns in the field of HIV/AIDS vaccine development and often, there is not a clear right or wrong approach because of the scientific challenges described in this review. Consequently, regulators should not feel that decisions need be made in isolation, when there are many available international collaborative efforts and opportunities to seek expert advice. The WHO provides many such opportunities and support to regulators across the globe. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A New Scientific Paradigm may be Needed to Finally Develop an HIV Vaccine.

    Science.gov (United States)

    Esparza, José

    2015-01-01

    The bulk of current HIV vaccine research is conducted within the infectious disease paradigm that has been very successful in developing vaccines against many other viral diseases. Different HIV vaccine concepts, based on the induction of neutralizing antibodies and/or cell mediated immunity, have been developed and clinically tested over the last 30 years, resulting in a few small successes and many disappointments. As new scientific knowledge is obtained, HIV vaccine concepts are constantly modified with the hope that the newly introduced tweaks (or paradigm drifts) will provide the solution to one of the most difficult challenges that modern biomedical research is confronting. Efficacy trials have been critical in guiding HIV vaccine development. However, from the five phase III efficacy trials conducted to date, only one (RV144) resulted in modest efficacy. The results from RV144 were surprising in many ways, including the identified putative correlates of protection (or risk), which did not include neutralizing antibodies or cytotoxic T-cells. The solution to the HIV vaccine challenge may very well come from approaches based on the current paradigm. However, at the same time, out-of-the-paradigm ideas should be systematically explored to complement the current efforts. New mechanisms are needed to identify and support the innovative research that will hopefully accelerate the development of an urgently needed HIV vaccine.

  7. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development.

    Science.gov (United States)

    Schiffer, Joshua T; Gottlieb, Sami L

    2017-09-25

    Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag elements (CE induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.

  9. Response to 2009 pandemic and seasonal influenza vaccines co-administered to HIV-infected and HIV-uninfected former drug users living in a rehabilitation community in Italy.

    Science.gov (United States)

    Pariani, Elena; Boschini, Antonio; Amendola, Antonella; Poletti, Raffaella; Anselmi, Giovanni; Begnini, Marco; Ranghiero, Alberto; Cecconi, Gianluca; Zanetti, Alessandro R

    2011-11-15

    2009 A(H1N1) pandemic influenza vaccination was recommended as a priority to essential workers and high-risk individuals, including HIV-infected patients and people living in communities. HIV-infected and HIV-uninfected former drug-users (18-60 years old) living in a rehabilitation community (San Patrignano, Italy) received one dose of a MF59-adjuvanted 2009 pandemic influenza vaccine and one dose of a 2009-2010 seasonal trivalent inactivated influenza vaccine (containing A/Brisbane/59/2007(H1N1), A/Brisbane/10/2007(H3N2), B/Brisbane/60/2008) simultaneously. Antibodies against each vaccine antigen were determined at the time of vaccination and one and six months post-vaccination by hemagglutination-inhibition test. 49 HIV-infected and 60 HIV-uninfected subjects completed the study. Most (98%) HIV-infected participants were on antiretroviral treatment, the median CD4+ cell count was 350 (IQR 300)cells/μl and viremia was suppressed in 91.8% of cases. One month post-vaccination, no significant changes in immune-virological parameters were observed. One month post-vaccination, the immune responses to both pandemic and seasonal vaccine met the EMA-CPMP criteria for immunogenicity of influenza vaccines in both HIV-infected and HIV-uninfected subjects. No difference in vaccine responses was observed between the two groups. Six months after vaccination, the percentages of vaccinees with antibody titres ≥1:40 and antibody geometric mean titres significantly decreased in both groups. However, they were significantly lower in HIV-infected than in HIV-uninfected vaccinees. In subjects who had been primed to seasonal influenza the year before (through either vaccination or natural infection), levels of antibodies against 2009 A(H1N1) were higher than those measured in unprimed subjects, both one month and six months post-vaccination. The co-administration of a single dose of 2009 pandemic MF59-adjuvanted influenza vaccine with a seasonal vaccine provided a protective immune

  10. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults

    Science.gov (United States)

    Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H.; García, Felipe.; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L.; Mounzer, Karam; Swindells, Susan; Baxter, John D.; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François

    2016-01-01

    Abstract The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults. This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4+ T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks. At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): −0.088; 0.235]), or F4/AS01B_3 and control group (−0.096 log10 copies/mL [97.5% CI: −0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4+ T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4+ T-cells, but had no significant impact on F4-specific CD8+ T-cell and anti-F4 antibody levels. F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4+ T-cell responses, but did not reduce HIV-1 VL, impact CD4+ T-cells count, delay ART initiation, or prevent HIV-1 related clinical events. PMID:26871794

  11. Social Justice and HIV Vaccine Research in the Age of Pre-Exposure Prophylaxis and Treatment as Prevention

    Science.gov (United States)

    Bailey, Theodore C.; Sugarman, Jeremy

    2014-01-01

    The advent of pre-exposure prophylaxis (PrEP) and treatment as prevention (TasP) as means of HIV prevention raises issues of justice concerning how most fairly and equitably to apportion resources in support of the burgeoning variety of established HIV treatment and prevention measures and further HIV research, including HIV vaccine research. We apply contemporary approaches to social justice to assess the ethical justification for allocating resources in support of HIV vaccine research given competing priorities to support broad implementation of HIV treatment and prevention measures, including TasP and PrEP. We argue that there is prima facie reason to believe that a safe and effective preventive HIV vaccine would offer a distinct set of ethically significant benefits not provided by current HIV treatment or prevention methods. It is thereby possible to justify continued support for HIV vaccine research despite tension with priorities for treatment, prevention, and other research. We then consider a counter-argument to such a justification based on the uncertainty of successfully developing a safe and effective preventive HIV vaccine. Finally, we discuss how HIV vaccine research might now be ethically designed and conducted given the new preventive options of TasP and PrEP, focusing on the ethically appropriate standard of prevention for HIV vaccine trials. PMID:24033297

  12. Vaccinations for Adults with HIV Infection

    Science.gov (United States)

    ... for example, lack of a functioning spleen, need vac- influenzae type b) cination with Hib. Talk to ... of developing severe complications because of your HIV infection. Meningococcal ACWY (Men- ACWY, MCV4) Yes! MenACWY vaccine ...

  13. Extended Follow-up Confirms Early Vaccine-Enhanced Risk of HIV Acquisition and Demonstrates Waning Effect Over Time Among Participants in a Randomized Trial of Recombinant Adenovirus HIV Vaccine (Step Study)

    Science.gov (United States)

    Duerr, Ann; Huang, Yunda; Buchbinder, Susan; Coombs, Robert W.; Sanchez, Jorge; del Rio, Carlos; Casapia, Martin; Santiago, Steven; Gilbert, Peter; Corey, Lawrence; Robertson, Michael N.

    2012-01-01

    Background. The Step Study tested whether an adenovirus serotype 5 (Ad5)–vectored human immunodeficiency virus (HIV) vaccine could prevent HIV acquisition and/or reduce viral load set-point after infection. At the first interim analysis, nonefficacy criteria were met. Vaccinations were halted; participants were unblinded. In post hoc analyses, more HIV infections occurred in vaccinees vs placebo recipients in men who had Ad5-neutralizing antibodies and/or were uncircumcised. Follow-up was extended to assess relative risk of HIV acquisition in vaccinees vs placebo recipients over time. Methods. We used Cox proportional hazard models for analyses of vaccine effect on HIV acquisition and vaccine effect modifiers, and nonparametric and semiparametric methods for analysis of constancy of relative risk over time. Results. One hundred seventy-two of 1836 men were infected. The adjusted vaccinees vs placebo recipients hazard ratio (HR) for all follow-up time was 1.40 (95% confidence interval [CI], 1.03–1.92; P = .03). Vaccine effect differed by baseline Ad5 or circumcision status during first 18 months, but neither was significant for all follow-up time. The HR among uncircumcised and/or Ad5-seropositive men waned with time since vaccination. No significant vaccine-associated risk was seen among circumcised, Ad5-negative men (HR, 0.97; P = 1.0) over all follow-up time. Conclusions. The vaccine-associated risk seen in interim analysis was confirmed but waned with time from vaccination. Clinical Trials Registration. NCT00095576. PMID:22561365

  14. Challenges in HIV vaccine research for treatment and prevention

    Directory of Open Access Journals (Sweden)

    Barbara eEnsoli

    2014-09-01

    Full Text Available Many attempts have been made or are ongoing for HIV prevention and HIV cure. Many successes are in the list, particularly for HIV drugs, recently proposed also for prevention. However, no eradication of infection has been achieved so far with any drug.Further, a residual immune dysregulation associated to chronic immune activation and incomplete restoration of B and T cell subsets, together with HIV DNA persistence in reservoirs, are still unmet needs of the highly active antiretroviral therapy (HAART, causing novel non-AIDS related diseases that account for a higher risk of death even in virologically suppressed patients. These ART unmet needs represent a problem, which is expected to increase by ART roll out. Further, in countries such as South Africa, where 6 millions of individuals are infected, ART appears unable to contain the epidemics. Regretfully, all the attempts at developing a preventative vaccine have been largely disappointing. However, recent therapeutic immunization strategies have opened new avenues for HIV treatment, which might be exploitable also for preventative vaccine approaches. For example, immunization strategies aimed at targeting key viral products responsible of virus transmission, activation and maintenance of virus reservoirs may intensify drug efficacy and lead to a functional cure providing new perspectives also for prevention and future virus eradication strategies. However, this approach imposes new challenges to the scientific community, vaccine developers and regulatory bodies, such as the identification of novel immunological and virological biomarkers to assess efficacy endpoints, taking advantage from the natural history of infection and exploiting lessons from former trials.This review will focus first on recent advancement of therapeutic strategies, then on the progresses made in preventative approaches, discussing concepts and problems for the way ahead for the development of vaccines for HIV treatment

  15. Population-level effect of potential HSV2 prophylactic vaccines on HIV incidence in sub-Saharan Africa

    Science.gov (United States)

    Freeman, Esther E.; White, Richard G.; Bakker, Roel; Orroth, Kate K.; Weiss, Helen A.; Buvé, Anne; Hayes, Richard J.; Glynn, Judith R.

    2009-01-01

    Herpes simplex virus type-2 (HSV2) infection increases HIV transmission. We explore the impact of a potential prophylactic HSV2 vaccination on HIV incidence in Africa using STDSIM an individual-based model. A campaign that achieved 70% coverage over 5 years with a vaccine that reduced susceptibility to HSV2 acquisition and HSV2 reactivation by 75% for 10 years, reduced HIV incidence by 30–40% after 20 years (range 4–66%). Over 20 years, in most scenarios fewer than 100 vaccinations were required to avert one HIV infection. HSV2 vaccines could have a substantial impact on HIV incidence. Intensified efforts are needed to develop an effective HSV2 vaccine. PMID:19071187

  16. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L.

    1991-01-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  17. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    Science.gov (United States)

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and

  18. Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans.

    Directory of Open Access Journals (Sweden)

    Samuel O Pine

    2011-04-01

    Full Text Available The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732. Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36 or Ad5-seropositive (titer >200; n = 34. Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes. At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008, and significantly more IP-10 (p = 0.0009, IL-2 (p = 0.006 and IL-10 (p = 0.05 in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these

  19. Adherence to hepatitis A virus vaccination in HIV-infected men who have sex with men.

    Science.gov (United States)

    Kourkounti, Sofia; Paparizos, Vassilios; Leuow, Kirsten; Paparizou, Eleni; Antoniou, Christina

    2015-10-01

    Although vaccination against hepatitis A virus (HAV) is essential for human immunodeficiency virus (HIV)-infected patients, the uptake of HAV vaccine is reported to be very low. From 2007 to 2012, 912 HIV-infected men in Athens, Greece were screened for exposure to HAV. Two doses of an HAV vaccine were recommended to 569 eligible patients. Reminder cards with scheduled vaccination visits were given to each patient. Among eligible patients, 62.2% (354/569) received both doses. Patients who were fully vaccinated compared with non-adherent patients were natives, older, had undetectable HIV viral load, higher CD4 T cell counts and lower nadir CD4 T cell counts. Multivariate logistic regression revealed that the patient's country of origin (p = 0.024; OR = 2.712; 95% CI, 1.139-6.457), CD4 T cell count (p < 0.001) and nadir CD4 T cell count (p < 0.001) were factors directly associated with adherence. In conclusion, adherence to HAV vaccination was better than in previously published data. Because many of the factors related to vaccination completion are parameters of HIV infection, it appears that physician interest in HIV care and vaccination planning is crucial to enhancing vaccine uptake. © The Author(s) 2015.

  20. Effect of race/ethnicity on participation in HIV vaccine trials and comparison to other trials of biomedical prevention.

    Science.gov (United States)

    Dhalla, Shayesta; Poole, Gary

    2014-01-01

    Racial/ethnic minorities are underrepresented in actual HIV vaccine trials in North America, and willingness to participate (WTP) and retention in an HIV vaccine trial may differ from that in Whites. In this review, the authors identified HIV vaccine preparedness studies (VPS) in North America in high-risk populations that examined the relationship between race/ethnicity and WTP in a preventive phase 3 HIV vaccine trial, and the relationship to retention. Studies were categorized by risk group, and comparison group (Whites vs. non-Whites). Other types of trials of biomedical prevention were also identified, and WTP and retention rates were compared and contrasted to actual HIV vaccine trials. In the studies identified, WTP in a hypothetical trial HIV vaccine trial did not differ by race/ethnicity. In contrast, actual HIV vaccine trials, an HIV acquisition trial, and a phase 2B preexposure prophylaxis (PrEP) trial have enrolled a large percentage of White men. Human papilloma virus (HPV) privately-funded trials have also enrolled a large number of Whites, due to convenience sampling. Retention in the HIV acquisition trial was lower in African-Americans compared with Whites. Strategies to increase WTP and enhanced retention (ER) strategies may help in recruiting and retaining minority participants in actual HIV vaccine trials and other trials of biomedical prevention.

  1. Plant-based anti-HIV-1 strategies: vaccine molecules and antiviral approaches.

    Science.gov (United States)

    Scotti, Nunzia; Buonaguro, Luigi; Tornesello, Maria Lina; Cardi, Teodoro; Buonaguro, Franco Maria

    2010-08-01

    The introduction of highly active antiretroviral therapy has drastically changed HIV infection from an acute, very deadly, to a chronic, long-lasting, mild disease. However, this requires continuous care management, which is difficult to implement worldwide, especially in developing countries. Sky-rocketing costs of HIV-positive subjects and the limited success of preventive recommendations mean that a vaccine is urgently needed, which could be the only effective strategy for the real control of the AIDS pandemic. To be effective, vaccination will need to be accessible, affordable and directed against multiple antigens. Plant-based vaccines, which are easy to produce and administer, and require no cold chain for their heat stability are, in principle, suited to such a strategy. More recently, it has been shown that even highly immunogenic, enveloped plant-based vaccines can be produced at a competitive and more efficient rate than conventional strategies. The high variability of HIV epitopes and the need to stimulate both humoral neutralizing antibodies and cellular immunity suggest the importance of using the plant system: it offers a wide range of possible strategies, from single-epitope to multicomponent vaccines, modulators of the immune response (adjuvants) and preventive molecules (microbicides), either alone or in association with plant-derived monoclonal antibodies, besides the potential use of the latter as therapeutic agents. Furthermore, plant-based anti-HIV strategies can be administered not only parenterally but also by the more convenient and safer oral route, which is a more suitable approach for possible mass vaccination.

  2. Comparative Infectivity Determinations of Dengue Virus Vaccine Candidates in Rhesus Monkeys, Mosquitoes, and Cell Cultures

    Science.gov (United States)

    1993-01-28

    34 are required for the evaluation of these vaccine candidates. RE: DAMDI7-89-C-9175 Page 16 REFERENCES 1. Sabin AB, Sclesinger RW, 1945. Production of...AD-A261 892 CONTRACT NO: DAMD17-89-C-9 175 \\II\\IllI\\I\\I1\\\\~il\\ TITLE: COMPARATIVE INFECTIVITY DETERMINATIONS OF DENGUE VIRUS VACCINE CANDIDATES IN... Vaccine Candidates in Rhesus Monkeys, 63002A Mosquitoes, and Cell Cultures 3M263002D870 AC 6. AUTHOR(S) DA335475 Edmundo Kraiselburd 7. PERFORMING

  3. Conceptual framework for behavioral and social science in HIV vaccine clinical research.

    Science.gov (United States)

    Lau, Chuen-Yen; Swann, Edith M; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I; Stansbury, James P

    2011-10-13

    HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. Published by Elsevier Ltd.

  4. Identification of conserved subdominant HIV Type 1 CD8(+) T Cell epitopes restricted within common HLA Supertypes for therapeutic HIV Type 1 vaccines

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Kløverpris, Henrik; Jensen, Kristoffer Jarlov

    2012-01-01

    The high HIV-1 prevalence, up to 4.6% in Guinea-Bissau, West Africa, makes it a relevant location for testing of therapeutic vaccines. With the aim of performing a clinical study in Guinea-Bissau, after first testing the vaccine for safety in Denmark, Europe, we here describe the design...... of a universal epitope peptide-based T cell vaccine with relevance for any geographic locations. The two major obstacles when designing such a vaccine are the high diversities of the HIV-1 genome and of the human major histocompatibility complex (MHC) class I. We selected 15 CD8-restricted epitopes predicted......-specific, HLA-restricted T cell specificities using peptide-MHC class I tetramer labeling of CD8(+) T cells from HIV-1-infected individuals. The selected vaccine epitopes are infrequently targeted in HIV-1-infected individuals from both locations. Moreover, we HLA-typed HIV-1-infected individuals...

  5. Decreased HIV-specific T-regulatory responses are associated with effective DC-vaccine induced immunity.

    Directory of Open Access Journals (Sweden)

    Vedran Brezar

    2015-03-01

    Full Text Available The role of regulatory T cells (Tregs in vaccination has been poorly investigated. We have reported that vaccination with ex vivo-generated dendritic-cells (DC loaded with HIV-lipopeptides (LIPO-5-DC vaccine in HIV-infected patients was well tolerated and highly immunogenic. These responses and their relation to viral replication following analytical treatment interruption (ATI were variable. Here, we investigated whether the presence of HIV-specific Tregs might explain these differences. Co-expression of CD25, CD134, CD39 and FoxP3 was used to delineate both antigen-specific Tregs and effectors T cells (Teffs. Median LIPO-5 specific-CD25+CD134+ polyfunctional T cells increased from 0.1% (IQR 0-0.3 before vaccination (week -4 to 2.1% (IQR 1.1-3.9 at week 16 following 4 immunizations (p=0.001 and were inversely correlated with maximum viral load following ATI (r=-0.77, p=0.001. Vaccinees who displayed lower levels of HIV-specific CD4+CD134+CD25+CD39+FoxP3+ Tregs responded better to the LIPO-5-DC vaccine. After vaccination, the frequency of HIV-specific Tregs decreased (from 69.3 at week -4 to 31.7% at week 16 and inversely correlated with HIV-specific IFN-γ-producing cells (r=-0.64, p=0.002. We show that therapeutic immunization skewed the HIV-specific response from regulatory to effector phenotype which impacts on the magnitude of viral replication following ATI.

  6. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Gloria P. Monterrubio-López

    2015-01-01

    Full Text Available Tuberculosis (TB is a chronic infectious disease, considered as the second leading cause of death worldwide, caused by Mycobacterium tuberculosis. The limited efficacy of the bacillus Calmette-Guérin (BCG vaccine against pulmonary TB and the emergence of multidrug-resistant TB warrants the need for more efficacious vaccines. Reverse vaccinology uses the entire proteome of a pathogen to select the best vaccine antigens by in silico approaches. M. tuberculosis H37Rv proteome was analyzed with NERVE (New Enhanced Reverse Vaccinology Environment prediction software to identify potential vaccine targets; these 331 proteins were further analyzed with VaxiJen for the determination of their antigenicity value. Only candidates with values ≥0.5 of antigenicity and 50% of adhesin probability and without homology with human proteins or transmembrane regions were selected, resulting in 73 antigens. These proteins were grouped by families in seven groups and analyzed by amino acid sequence alignments, selecting 16 representative proteins. For each candidate, a search of the literature and protein analysis with different bioinformatics tools, as well as a simulation of the immune response, was conducted. Finally, we selected six novel vaccine candidates, EsxL, PE26, PPE65, PE_PGRS49, PBP1, and Erp, from M. tuberculosis that can be used to improve or design new TB vaccines.

  7. Theory-Based Analysis of Interest in an HIV Vaccine for Reasons Indicative of Risk Compensation Among African American Women.

    Science.gov (United States)

    Painter, Julia E; Temple, Brandie S; Woods, Laura A; Cwiak, Carrie; Haddad, Lisa B; Mulligan, Mark J; DiClemente, Ralph J

    2018-06-01

    Licensure of an HIV vaccine could reduce or eliminate HIV among vulnerable populations. However, vaccine effectiveness could be undermined by risk compensation (RC), defined by an increase in risky behavior due to a belief that the vaccine will confer protection. Interest in an HIV vaccine for reasons indicative of RC may serve as an indicator of actual RC in a postlicensure era. This study assessed factors associated with interest in an HIV vaccine for reasons indicative of RC among African American women aged 18 to 55 years, recruited from a hospital-based family planning clinic in Atlanta, Georgia ( N = 321). Data were collected using audio-computer-assisted surveys. Survey items were guided by risk homeostasis theory and social cognitive theory. Multivariable logistic regression was used to assess determinants of interest in an HIV vaccine for reasons indicative of RC. Thirty-eight percent of the sample expressed interest in an HIV vaccine for at least one reason indicative of RC. In the final model, interest in an HIV vaccine for reasons indicative of RC was positively associated with higher impulsivity, perceived benefits of sexual risk behaviors, and perceived benefits of HIV vaccination; it was negatively associated with having at least some college education, positive future orientation, and self-efficacy for sex refusal. Results suggest that demographic, personality, and theory-based psychosocial factors are salient to wanting an HIV vaccine for reasons indicative of RC, and underscore the need for risk-reduction counseling alongside vaccination during the eventual rollout of an HIV vaccine.

  8. Status of vaccine research and development of vaccines for herpes simplex virus.

    Science.gov (United States)

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  9. Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial.

    Directory of Open Access Journals (Sweden)

    Susan Zolla-Pazner

    Full Text Available The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV and two gp120 proteins (AIDSVAX B and E was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2. This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165-178, immediately N-terminal to the putative α4β7 binding motif in the mid-loop region of V2. Odds ratios (ORs were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ≤1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine.

  10. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection.

    Science.gov (United States)

    French, Martyn A; Abudulai, Laila N; Fernandez, Sonia

    2013-08-09

    The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  11. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection

    Directory of Open Access Journals (Sweden)

    Sonia Fernandez

    2013-08-01

    Full Text Available The development of vaccines to treat and prevent human immunodeficiency virus (HIV infection has been hampered by an incomplete understanding of “protective” immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8+ T-cell responses restricted by “protective” HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK cell responses and plasmacytoid dendritic cell (pDC responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  12. Development of an inactivated candidate vaccine against Chandipura virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Jadi, R S; Sudeep, A B; Barde, P V; Arankalle, V A; Mishra, A C

    2011-06-20

    A Vero cell based vaccine candidate against Chandipura (CHP) virus (Rhabdoviridae: Vesiculovirus), was developed and evaluated for immunogenicity in mice. Virus was purified by ultracentrifugation on 30% glycerol cushion followed by differential centrifugation on 10-60% sucrose gradient and inactivated with β-propio lactone at a concentration of 1:3500. The inactivated product was blended with aluminium phosphate (3%) and immunized 4-week-old Swiss albino mice. Neutralizing antibodies in the range of 1:10 to 160 and 1:80 to 1:320 was detected with 85% and 100% sero-conversion after 2nd and 3rd dose, respectively. All the immunized mice with antibody titer above 1:20 survived live virus challenge. The vaccine candidate has potential to be an efficient vaccine against CHP virus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology

    Directory of Open Access Journals (Sweden)

    Alan John Alexander McBride

    2017-04-01

    Full Text Available Leptospira spp. are diderm (two membranes bacteria that infect mammals causing leptospirosis, a public health problem with global implications. Thousands of people die every year due to leptospirosis, especially in developing countries with tropical climates. Prophylaxis is difficult due to multiple factors, including the large number of asymptomatic hosts that transmit the bacteria, poor sanitation, increasing numbers of slum dwellers, and the lack of an effective vaccine. Several leptospiral recombinant antigens were evaluated as a replacement for the inactivated (bacterin vaccine; however, success has been limited. A prospective vaccine candidate is likely to be a surface-related protein that can stimulate the host immune response to clear leptospires from blood and organs. In this study, a comprehensive bioinformatics approach based on reverse and structural vaccinology was applied toward the discovery of novel leptospiral vaccine candidates. The Leptospira interrogans serovar Copenhageni strain L1-130 genome was mined in silico for the enhanced identification of conserved β-barrel (βb transmembrane proteins and outer membrane (OM lipoproteins. Orthologs of the prospective vaccine candidates were screened in the genomes of 20 additional Leptospira spp. Three-dimensional structural models, with a high degree of confidence, were created for each of the surface-exposed proteins. Major histocompatibility complex II (MHC-II epitopes were identified, and their locations were mapped on the structural models. A total of 18 βb transmembrane proteins and 8 OM lipoproteins were identified. These proteins were conserved among the pathogenic Leptospira spp. and were predicted to have epitopes for several variants of MHC-II receptors. A structural and functional analysis of the sequence of these surface proteins demonstrated that most βb transmembrane proteins seem to be TonB-dependent receptors associated with transportation. Other proteins

  14. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses.

    Directory of Open Access Journals (Sweden)

    Michele Tameris

    Full Text Available Vaccination against tuberculosis (TB should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb. The current TB vaccine, Bacille Calmette-Guerin (BCG, protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone.We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011.Of 252 potential participants, 183 (72.6% consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA-CCR7+ central memory or CD45RA-CCR7- effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3-5 years after vaccination.MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not

  15. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design.

    Directory of Open Access Journals (Sweden)

    Pratima Kunwar

    Full Text Available A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i increasing the breadth of vaccine-induced responses or (ii increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8(+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8(+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS by three different methods (prevalence, entropy and conseq on clade-B and group-M sequence alignments. The majority of CD8(+ T cell responses were directed against variable epitopes (p<0.01. Interestingly, increasing breadth of CD8(+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009. Moreover, subjects possessing CD8(+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021. The association between viral control and the breadth of conserved CD8(+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215. The associations with viral control were independent of functional avidity of CD8(+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus

  16. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    National Research Council Canada - National Science Library

    Rohrbough, James G

    2007-01-01

    Presented in this dissertation are proteomic analysis studies focused on identifying proteins to be used as vaccine candidates against Coccidioidomycosis, a potentially fatal human pulmonary disease...

  17. Comparative evaluation of phenol and thimerosal as preservatives for a candidate vaccine against American cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Wilson Mayrink

    2010-02-01

    Full Text Available For decades thimerosal has been used as a preservative in the candidate vaccine for cutaneous leishmaniasis, which was developed by Mayrink et al. The use of thimerosal in humans has been banned due to its mercury content. This study addresses the standardization of phenol as a new candidate vaccine preservative. We have found that the proteolytic activity was abolished when the test was conducted using the candidate vaccine added to merthiolate (MtVac as well as to phenol (PhVac. The Montenegro's skin test conversion rates induced by MtVac and by PhVac was 68.06% and 85.9%, respectively, and these values were statistically significant (p < 0.05. The proliferative response of peripheral mononuclear blood cells shows that the stimulation index of mice immunized with both candidate vaccines was higher than the one in control animals (p < 0.05. The ability of the candidate vaccines to induce protection in C57BL/10 mice against a challenge with infective Leishmania amazonensis promastigotes was tested and the mice immunized with PhVac developed smaller lesions than the mice immunized with MtVac. Electrophoresis of phenol-preserved antigen revealed a number of proteins, which were better preserved in PhVac. These results do in fact encourage the use of phenol for preserving the immunogenic and biochemical properties of the candidate vaccine for cutaneous leishmaniasis.

  18. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines.

    Directory of Open Access Journals (Sweden)

    Ling Ye

    Full Text Available Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14 in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.

  19. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag.

    Science.gov (United States)

    Garrod, Tamsin J; Gargett, Tessa; Yu, Wenbo; Major, Lee; Burrell, Christopher J; Wesselingh, Steven; Suhrbier, Andreas; Grubor-Bauk, Branka; Gowans, Eric J

    2014-11-04

    Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    Science.gov (United States)

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Biohazard Analysis of Select Biodefense Vaccine Candidates - Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella Tularensis LVS

    International Nuclear Information System (INIS)

    Rao, V.

    2007-01-01

    Biohazard assessment of biodefense vaccine candidates forms the basis for a facility- and activity-specific risk assessment performed to determine the biosafety levels and general safety standards required for biological product development. As a part of our support to the US biodefense vaccine development program, we perform a systematic biohazard assessment of potential vaccine candidates with the primary objective to, (a) Identify and characterize hazard elements associated with the wild type and vaccine strains, (b) Provide biohazard information on the etiologic agent (vaccine candidate) to assess Phase 1 clinical trial facility sites, (c) Provide a baseline to conduct an agent and facility-specific risk assessment at clinical trial facilities interested in performing phase 1 clinical trial, (d) Provide comparative hazard profiles of the vaccine candidates wit MSDS for wild-type to identify and establish appropriate protective biosafety levels, and (e) Support determination of a hazard level to select personal protective equipment as required under the OSHA guidelines. This paper will describe the biohazard analysis of two vaccine candidates, Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella tularensis LVS, a viral and bacterial agent, respectively. As part of the biohazard assessment we preformed a thorough review of published literature on medical pathology, epidemiology, pre-clinical investigational studies, and environmental data on the etiologic agent subtypes and the vaccine candidates. Using standard analytical procedures, the data were then analyzed relative to two intrinsic hazard parameters-health hazard and environmental hazard. Using a weight-of-evidence (WOE) approach, the potential hazards of etiologic agent wild subtypes and vaccine candidates were ranked under three main categories: Public Health Hazard, Environmental Hazard, and Overall Hazard. A WOE scoring system allows for both a determination of the intrinsic hazard of each

  2. Biohazard Analysis of Select Biodefense Vaccine Candidates - Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella Tularensis LVS

    Energy Technology Data Exchange (ETDEWEB)

    Rao, V [National Security Programs, Computer Science Corporation, Alexandria (United States)

    2007-07-01

    Biohazard assessment of biodefense vaccine candidates forms the basis for a facility- and activity-specific risk assessment performed to determine the biosafety levels and general safety standards required for biological product development. As a part of our support to the US biodefense vaccine development program, we perform a systematic biohazard assessment of potential vaccine candidates with the primary objective to, (a) Identify and characterize hazard elements associated with the wild type and vaccine strains, (b) Provide biohazard information on the etiologic agent (vaccine candidate) to assess Phase 1 clinical trial facility sites, (c) Provide a baseline to conduct an agent and facility-specific risk assessment at clinical trial facilities interested in performing phase 1 clinical trial, (d) Provide comparative hazard profiles of the vaccine candidates wit MSDS for wild-type to identify and establish appropriate protective biosafety levels, and (e) Support determination of a hazard level to select personal protective equipment as required under the OSHA guidelines. This paper will describe the biohazard analysis of two vaccine candidates, Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella tularensis LVS, a viral and bacterial agent, respectively. As part of the biohazard assessment we preformed a thorough review of published literature on medical pathology, epidemiology, pre-clinical investigational studies, and environmental data on the etiologic agent subtypes and the vaccine candidates. Using standard analytical procedures, the data were then analyzed relative to two intrinsic hazard parameters-health hazard and environmental hazard. Using a weight-of-evidence (WOE) approach, the potential hazards of etiologic agent wild subtypes and vaccine candidates were ranked under three main categories: Public Health Hazard, Environmental Hazard, and Overall Hazard. A WOE scoring system allows for both a determination of the intrinsic hazard of each

  3. Projected economic evaluation of the national implementation of a hypothetical HIV vaccination program among adolescents in South Africa, 2012

    Directory of Open Access Journals (Sweden)

    Nishila Moodley

    2016-04-01

    Full Text Available Abstract Background Adolescents in South Africa are at high risk of acquiring HIV. The HIV vaccination of adolescents could reduce HIV incidence and mortality. The potential impact and cost-effectiveness of a national school-based HIV vaccination program among adolescents was determined. Method The national HIV disease and cost burden was compared with (intervention and without HIV vaccination (comparator given to school-going adolescents using a semi-Markov model. Life table analysis was conducted to determine the impact of the intervention on life expectancy. Model inputs included measures of disease and cost burden and hypothetical assumptions of vaccine characteristics. The base-case HIV vaccine modelled cost at US$ 12 per dose; vaccine efficacy of 50 %; duration of protection of 10 years achieved at a coverage rate of 60 % and required annual boosters. Incremental cost-effectiveness ratios (ICER were calculated using life years gained (LYG serving as the outcome measure. Sensitivity analyses were conducted on the vaccine characteristics to assess parameter uncertainty. Results The HIV vaccination model yielded an ICER of US$ 5 per LYG (95 % CI ZAR 2.77–11.61 compared with the comparator, which is considerably less than the national willingness-to-pay threshold of cost-effectiveness. This translated to an 11 % increase in per capita costs from US$ 80 to US$ 89. National implementation of this intervention could potentially result in an estimated cumulative gain of 23.6 million years of life (95 % CI 8.48–34.3 million years among adolescents age 10–19 years that were vaccinated. The 10 year absolute risk reduction projected by vaccine implementation was 0.42 % for HIV incidence and 0.41 % for HIV mortality, with an increase in life expectancy noted across all age groups. The ICER was sensitive to the vaccine efficacy, coverage and vaccine pricing in the sensitivity analysis. Conclusions A national HIV vaccination program would

  4. The multi-epitope polypeptide approach in HIV-1 vaccine development.

    Science.gov (United States)

    Cano, C A

    1999-11-01

    The application of a preventive HIV vaccine is the only hope for most developing countries to halt the AIDS pandemic. A project aimed to develop a preventive AIDS vaccine is being carried out since 1992 by three Cuban research institutions: Centro de Ingeniería Genética y Biotecnologia de La Habana, Instituto de Medicina Tropical 'Pedro Kouri' and Laboratorio de Investigaciones de SIDA de La Habana. The project includes two main strategies: (a) generation of recombinant multi-epitope polypeptides (MEPs) bearing several copies of the V3 loop from different HIV-1 isolates; and (b) development of immunogens capable of inducing a cytotoxic T cell response (CTL) specific for human immunodeficiency virus type 1 (HIV-1) antigens. This article summarizes the work in the first of these strategies. Based on the sequence of the V3 loop of HIV-1 we constructed a series of MEPs and evaluated their immunogenicity in mice, rabbits and macaques. The MEP TAB9, containing six V3 epitopes from isolates LR10, JY1, RF, MN, BRVA and IIIB, was selected together with the oil adjuvant Montanide ISA720 (SEPPIC, France) to perform a Phase I clinical trial in HIV seronegative Cuban volunteers. The trial was double blinded, randomized, and fulfilled all ethical and regulatory requirements. All TAB9 vaccinated volunteers developed a strong immune response and neutralizing antibodies were observed in the 50% of the subjects. However the second and third inoculations of the vaccine were not well tolerated because transient severe local reactions appeared in some individuals. A new formulation of TAB9 is currently in pre-clinical studies and is expected to enter clinical trials in 1999.

  5. Exploring barriers and facilitators to participation of male-to-female transgender persons in preventive HIV vaccine clinical trials.

    Science.gov (United States)

    Andrasik, Michele Peake; Yoon, Ro; Mooney, Jessica; Broder, Gail; Bolton, Marcus; Votto, Teress; Davis-Vogel, Annet

    2014-06-01

    Observed seroincidence and prevalence rates in male-to-female (MTF) transgender individuals highlight the need for effective targeted HIV prevention strategies for this community. In order to develop an effective vaccine that can be used by transgender women, researchers must understand and address existing structural issues that present barriers to this group's participation in HIV vaccine clinical trials. Overcoming barriers to participation is important for ensuring HIV vaccine acceptability and efficacy for the MTF transgender community. To explore barriers and facilitators to MTF transgender participation in preventive HIV vaccine clinical trials, the HIV Vaccine Trials Network conducted focus groups among transgender women in four urban areas (Atlanta, Boston, Philadelphia, and San Francisco). Barriers and facilitators to engagement of transgender women in preventive HIV vaccine clinical trials led to the following recommendations: (a) transgender cultural competency training, (b) creating trans-friendly environments, (c) true partnerships with local trans-friendly organizations and health care providers, (d) protocols that focus on transgender specific issues, and (e) data collection and tracking of transgender individuals. These results have implications for the conduct of HIV vaccine trials, as well as engagement of transgender women in research programs in general.

  6. Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura

    DEFF Research Database (Denmark)

    Esen, Meral; Mordmüller, Benjamin; de Salazar, Pablo Martinez

    2012-01-01

    BACKGROUND: Helminth infections are highly prevalent in the tropics and may have an effect on immune responses to vaccines due to their immunomodulatory effect. The prevalence of helminth infections in young children, the target group for malaria and most other vaccines, is high. Therefore we...... assessed the influence of helminth infection on vaccine-induced immune responses in a phase I clinical trial of the malaria vaccine candidate GMZ2. METHODS: Twenty Gabonese preschool-age children were vaccinated with GMZ2, a blood stage malaria vaccine candidate. Humoral immune response against the vaccine...... antigens and parasitological status were assessed. Vaccine-specific antibody concentrations and memory B-cell numbers were compared in worm infected and non-infected participants. RESULTS: Antibody response to GMZ2 was 3.4-fold (95% confidence interval: 1.6, 7.4) higher in Trichuris trichiura negative...

  7. Understanding HIV infection for the design of a therapeutic vaccine. Part I: Epidemiology and pathogenesis of HIV infection.

    Science.gov (United States)

    de Goede, A L; Vulto, A G; Osterhaus, A D M E; Gruters, R A

    2015-03-01

    HIV infection leads to a gradual loss CD4+ T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive life-long adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Eric S Rosenberg

    2010-05-01

    Full Text Available An effective therapeutic vaccine that could augment immune control of HIV-1 replication may abrogate or delay the need for antiretroviral therapy. AIDS Clinical Trials Group (ACTG A5187 was a phase I/II, randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of an HIV-1 DNA vaccine (VRC-HVDNA 009-00-VP in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. (clinicaltrials.gov NCT00125099Twenty healthy HIV-1 infected subjects who were treated with antiretroviral therapy during acute/early HIV-1 infection and had HIV-1 RNA<50 copies/mL were randomized to receive either vaccine or placebo. The objectives of this study were to evaluate the safety and immunogenicity of the vaccine. Following vaccination, subjects interrupted antiretroviral treatment, and set-point HIV-1 viral loads and CD4 T cell counts were determined 17-23 weeks after treatment discontinuation.Twenty subjects received all scheduled vaccinations and discontinued antiretroviral therapy at week 30. No subject met a primary safety endpoint. No evidence of differences in immunogenicity were detected in subjects receiving vaccine versus placebo. There were also no significant differences in set-point HIV-1 viral loads or CD4 T cell counts following treatment discontinuation. Median set-point HIV-1 viral loads after treatment discontinuation in vaccine and placebo recipients were 3.5 and 3.7 log(10 HIV-1 RNA copies/mL, respectively.The HIV-1 DNA vaccine (VRC-HIVDNA 009-00-VP was safe but poorly immunogenic in subjects treated with antiretroviral therapy during acute/early HIV-1 infection. Viral set-points were similar between vaccine and placebo recipients following treatment interruption. However, median viral load set-points in both groups were lower than in historical controls, suggesting a possible role for antiretroviral therapy in persons with acute or early HIV-1 infection and supporting the safety of

  9. Predicting hypothetical willingness to participate (WTP) in a future phase III HIV vaccine trial among high-risk adolescents.

    Science.gov (United States)

    Giocos, Georgina; Kagee, Ashraf; Swartz, Leslie

    2008-11-01

    The present study sought to determine whether the Theory of Planned Behaviour predicted stated hypothetical willingness to participate (WTP) in future Phase III HIV vaccine trials among South African adolescents. Hierarchical logistic regression analyses showed that The Theory of Planned Behaviour (TPB) significantly predicted WTP. Of all the predictors, Subjective norms significantly predicted WTP (OR = 1.19, 95% C.I. = 1.06-1.34). A stepwise logistic regression analysis revealed that Subjective Norms (OR = 1.19, 95% C.I. = 1.07-1.34) and Attitude towards participation in an HIV vaccine trial (OR = 1.32, 95% C.I. = 1.00-1.74) were significant predictors of WTP. The addition of Knowledge of HIV vaccines and HIV vaccine trials, Perceived self-risk of HIV infection, Health-promoting behaviours and Attitudes towards HIV/AIDS yielded non-significant results. These findings provide support for the Theory of Reasoned Action (TRA) and suggest that psychosocial factors may play an important role in WTP in Phase III HIV vaccine trials among adolescents.

  10. Capacity building among african american faith leaders to promote HIV prevention and vaccine research.

    Science.gov (United States)

    Alio, Amina P; Lewis, Cindi A; Bunce, Catherine A; Wakefield, Steven; Thomas, Weldon G; Sanders, Edwin; Keefer, Michael C

    2014-01-01

    In light of the increasing rates of HIV infection in African Americans, it is essential that black faith leaders become more proactive in the fight against the epidemic. The study aim was to engage faith leaders in a sustainable partnership to increase community participation in preventive HIV vaccine clinical research while improving their access to and utilization of HIV/AIDS prevention services. Leadership Development Seminars were adapted for faith leaders in Rochester, NY, with topics ranging from the importance of preventive HIV vaccine research to social issues surrounding HIV/AIDs within a theological framework. Seminars were taught by field-specific experts from the black community and included the development of action plans to institute HIV preventive ministries. To assess the outcome of the Seminars, baseline and post-training surveys were administered and analyzed through paired sample t Tests and informal interviews. 19 faith leaders completed the intervention. In general, the majority of clergy felt that their understanding of HIV vaccine research and its goals had increased postintervention. A critical outcome was the subsequent formation of the Rochester Faith Collaborative by participating clergy seeking to sustain the collaborative and address the implementation of community action plans. Providing scientific HIV/AIDS knowledge within the context of clergy members' belief structure was an effective method for engaging black Church leaders in Rochester, NY. Collaborative efforts with various local institutions and community-based organizations were essential in building trust with the faith leaders, thereby building bridges for better understanding of HIV/AIDS prevention efforts, including HIV vaccine research.

  11. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to statistic......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited...... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  12. Generation of a parvovirus B19 vaccine candidate.

    Science.gov (United States)

    Chandramouli, Sumana; Medina-Selby, Angelica; Coit, Doris; Schaefer, Mary; Spencer, Terika; Brito, Luis A; Zhang, Pu; Otten, Gillis; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Settembre, Ethan C

    2013-08-20

    Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Immunogenicity of mumps virus vaccine candidates matching circulating genotypes in the United States and China.

    Science.gov (United States)

    Zengel, James; Phan, Shannon I; Pickar, Adrian; Xu, Pei; He, Biao

    2017-07-13

    Mumps virus (MuV) causes acute infection in humans with characteristic swelling of the parotid gland. While vaccination has greatly reduced the incidence of MuV infection, there have been multiple large outbreaks of mumps virus (MuV) in highly vaccinated populations. The most common vaccine strain, Jeryl Lynn, belongs to genotype A, which is no longer a circulating genotype. We have developed two vaccine candidates that match the circulating genotypes in the United States (genotype G) and China (genotype F). We found that there was a significant decrease in the ability of the Jeryl Lynn vaccine to produce neutralizing antibody responses to non-matched viruses, when compared to either of our vaccine candidates. Our data suggests that an updated vaccine may allow for better immunity against the circulating MuV genotypes G and F. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Impact of a new vaccine clinic on hepatitis B vaccine completion and immunological response rates in an HIV-positive cohort.

    Science.gov (United States)

    Rock, Clare; de Barra, Eoghan; Sadlier, Corinna; Kelly, Sinead; Dowling, Catherine; McNally, Cora; Bergin, Colm

    2013-06-01

    Hepatitis B virus vaccination (HBVV) in the HIV-infected population has poor reported completion rates and immunological response rates. At our HIV clinic, we established a vaccine clinic to improve HBVV outcomes using interventions such as SMS text reminders and double-dose (DD) HBVV for standard-dose non-responders (SD NRs). A five-year (2003-2008) retrospective review of the completion rates and immunological response rates for HBVV after the establishment of the dedicated vaccine clinic was conducted. Statistical significance was assumed at presponse rate to DD HBVV among SD NRs. On-treatment analysis showed an 88% (155/176) overall immunological response to SD HBVV and DD HBVV, if required. High HBVV completion and response rates in this HIV cohort were enabled through the use of multiple interventions, including the use of SMS text message reminders and routine referral for DD vaccination. Copyright © 2012 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  15. CD4/CD8 Ratio and KT Ratio Predict Yellow Fever Vaccine Immunogenicity in HIV-Infected Patients.

    Science.gov (United States)

    Avelino-Silva, Vivian I; Miyaji, Karina T; Hunt, Peter W; Huang, Yong; Simoes, Marisol; Lima, Sheila B; Freire, Marcos S; Caiaffa-Filho, Helio H; Hong, Marisa A; Costa, Dayane Alves; Dias, Juliana Zanatta C; Cerqueira, Natalia B; Nishiya, Anna Shoko; Sabino, Ester Cerdeira; Sartori, Ana M; Kallas, Esper G

    2016-12-01

    HIV-infected individuals have deficient responses to Yellow Fever vaccine (YFV) and may be at higher risk for adverse events (AE). Chronic immune activation-characterized by low CD4/CD8 ratio or high indoleamine 2,3-dioxygenase-1 (IDO) activity-may influence vaccine response in this population. We prospectively assessed AE, viremia by the YFV virus and YF-specific neutralizing antibodies (NAb) in HIV-infected (CD4>350) and -uninfected adults through 1 year after vaccination. The effect of HIV status on initial antibody response to YFV was measured during the first 3 months following vaccination, while the effect on persistence of antibody response was measured one year following vaccination. We explored CD4/CD8 ratio, IDO activity (plasma kynurenine/tryptophan [KT] ratio) and viremia by Human Pegivirus as potential predictors of NAb response to YFV among HIV-infected participants with linear mixed models. 12 HIV-infected and 45-uninfected participants were included in the final analysis. HIV was not significantly associated with AE, YFV viremia or NAb titers through the first 3 months following vaccination. However, HIV-infected participants had 0.32 times the NAb titers observed for HIV-uninfected participants at 1 year following YFV (95% CI 0.13 to 0.83, p = 0.021), independent of sex, age and prior vaccination. In HIV-infected participants, each 10% increase in CD4/CD8 ratio predicted a mean 21% higher post-baseline YFV Nab titer (p = 0.024). Similarly, each 10% increase in KT ratio predicted a mean 21% lower post-baseline YFV Nab titer (p = 0.009). Viremia by Human Pegivirus was not significantly associated with NAb titers. HIV infection appears to decrease the durability of NAb responses to YFV, an effect that may be predicted by lower CD4/CD8 ratio or higher KT ratio.

  16. A brief history of the global effort to develop a preventive HIV vaccine.

    Science.gov (United States)

    Esparza, José

    2013-08-02

    Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.

  17. An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.

    Science.gov (United States)

    Pore, Debasis; Chakrabarti, Manoj K

    2016-01-01

    Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.

  18. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Dinges, Warren; Girard, Pierre-Marie; Podzamczer, Daniel; Brockmeyer, Norbert H; García, Felipe; Harrer, Thomas; Lelievre, Jean-Daniel; Frank, Ian; Colin De Verdière, Nathalie; Yeni, Guy-Patrick; Ortega Gonzalez, Enrique; Rubio, Rafael; Clotet Sala, Bonaventura; DeJesus, Edwin; Pérez-Elias, Maria Jesus; Launay, Odile; Pialoux, Gilles; Slim, Jihad; Weiss, Laurence; Bouchaud, Olivier; Felizarta, Franco; Meurer, Anja; Raffi, François; Esser, Stefan; Katlama, Christine; Koletar, Susan L; Mounzer, Karam; Swindells, Susan; Baxter, John D; Schneider, Stefan; Chas, Julie; Molina, Jean-Michel; Koutsoukos, Marguerite; Collard, Alix; Bourguignon, Patricia; Roman, François

    2016-02-01

    The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults.This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4 T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks.At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): -0.088; 0.235]), or F4/AS01B_3 and control group (-0.096 log10 copies/mL [97.5% CI: -0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4 T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4 T-cells, but had no significant impact on F4-specific CD8 T-cell and anti-F4 antibody levels.F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4 T-cell responses, but did not reduce HIV-1 VL, impact CD4 T-cells count, delay ART initiation, or prevent HIV-1 related clinical events.

  19. Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines.

    Directory of Open Access Journals (Sweden)

    Fausto Titti

    Full Text Available Here we describe a prime-boost regimen of vaccination in Macaca fascicularis that combines priming with novel anionic microspheres designed to deliver the biologically active HIV-1 Tat protein and boosting with Tat in Alum. This regimen of immunization modulated the IgG subclass profile and elicited a balanced Th1-Th2 type of humoral and cellular responses. Remarkably, following intravenous challenge with SHIV89.6Pcy243, vaccinees significantly blunted acute viremia, as compared to control monkeys, and this control was associated with significantly lower CD4+ T cell depletion rate during the acute phase of infection and higher ability to resume the CD4+ T cell counts in the post-acute and chronic phases of infection. The long lasting control of viremia was associated with the persistence of high titers anti-Tat antibodies whose profile clearly distinguished vaccinees in controllers and viremics. Controllers, as opposed to vaccinated and viremic cynos, exhibited significantly higher pre-challenge antibody responses to peptides spanning the glutamine-rich and the RGD-integrin-binding regions of Tat. Finally, among vaccinees, titers of anti-Tat IgG1, IgG3 and IgG4 subclasses had a significant association with control of viremia in the acute and post-acute phases of infection. Altogether these findings indicate that the Tat/H1D/Alum regimen of immunization holds promise for next generation vaccines with Tat protein or other proteins for which maintenance of the native conformation and activity are critical for optimal immunogenicity. Our results also provide novel information on the role of anti-Tat responses in the prevention of HIV pathogenesis and for the design of new vaccine candidates.

  20. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration, a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice

  1. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Science.gov (United States)

    Chou, Ai-Hsiang; Liu, Chia-Chyi; Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. These

  2. CD4/CD8 Ratio and KT Ratio Predict Yellow Fever Vaccine Immunogenicity in HIV-Infected Patients

    Science.gov (United States)

    Hunt, Peter W.; Huang, Yong; Simoes, Marisol; Lima, Sheila B.; Freire, Marcos S.; Caiaffa-Filho, Helio H.; Hong, Marisa A.; Costa, Dayane Alves; Dias, Juliana Zanatta C.; Cerqueira, Natalia B.; Nishiya, Anna Shoko; Sabino, Ester Cerdeira; Sartori, Ana M.; Kallas, Esper G.

    2016-01-01

    Background HIV-infected individuals have deficient responses to Yellow Fever vaccine (YFV) and may be at higher risk for adverse events (AE). Chronic immune activation–characterized by low CD4/CD8 ratio or high indoleamine 2,3-dioxygenase-1 (IDO) activity—may influence vaccine response in this population. Methods We prospectively assessed AE, viremia by the YFV virus and YF-specific neutralizing antibodies (NAb) in HIV-infected (CD4>350) and -uninfected adults through 1 year after vaccination. The effect of HIV status on initial antibody response to YFV was measured during the first 3 months following vaccination, while the effect on persistence of antibody response was measured one year following vaccination. We explored CD4/CD8 ratio, IDO activity (plasma kynurenine/tryptophan [KT] ratio) and viremia by Human Pegivirus as potential predictors of NAb response to YFV among HIV-infected participants with linear mixed models. Results 12 HIV-infected and 45-uninfected participants were included in the final analysis. HIV was not significantly associated with AE, YFV viremia or NAb titers through the first 3 months following vaccination. However, HIV–infected participants had 0.32 times the NAb titers observed for HIV-uninfected participants at 1 year following YFV (95% CI 0.13 to 0.83, p = 0.021), independent of sex, age and prior vaccination. In HIV-infected participants, each 10% increase in CD4/CD8 ratio predicted a mean 21% higher post-baseline YFV Nab titer (p = 0.024). Similarly, each 10% increase in KT ratio predicted a mean 21% lower post-baseline YFV Nab titer (p = 0.009). Viremia by Human Pegivirus was not significantly associated with NAb titers. Conclusions HIV infection appears to decrease the durability of NAb responses to YFV, an effect that may be predicted by lower CD4/CD8 ratio or higher KT ratio. PMID:27941965

  3. HIV-infected children living in Central Africa have low persistence of antibodies to vaccines used in the Expanded Program on Immunization.

    Directory of Open Access Journals (Sweden)

    Mathurin C Tejiokem

    Full Text Available BACKGROUND: The Expanded Program on Immunization (EPI is the most cost-effective measures to control vaccine-preventable diseases. Currently, the EPI schedule is similar for HIV-infected children; the introduction of antiretroviral therapy (ART should considerably prolong their life expectancy. METHODS AND PRINCIPAL FINDINGS: To evaluate the persistence of antibodies to the EPI vaccines in HIV-infected and HIV-exposed uninfected children who previously received these vaccines in routine clinical practice, we conducted a cross-sectional study of children, aged 18 to 36 months, born to HIV-infected mothers and living in Central Africa. We tested blood samples for antibodies to the combined diphtheria, tetanus, and whole-cell pertussis (DTwP, the measles and the oral polio (OPV vaccines. We enrolled 51 HIV-infected children of whom 33 were receiving ART, and 78 HIV-uninfected children born to HIV-infected women. A lower proportion of HIV-infected children than uninfected children had antibodies to the tested antigens with the exception of the OPV types 1 and 2. This difference was substantial for the measles vaccine (20% of the HIV-infected children and 56% of the HIV-exposed uninfected children, p<0.0001. We observed a high risk of low antibody levels for all EPI vaccines, except OPV types 1 and 2, in HIV-infected children with severe immunodeficiency (CD4(+ T cells <25%. CONCLUSIONS AND SIGNIFICANCE: Children were examined at a time when their antibody concentrations to EPI vaccines would have still not undergone significant decay. However, we showed that the antibody concentrations were lowered in HIV-infected children. Moreover, antibody concentration after a single dose of the measles vaccine was substantially lower than expected, particularly low in HIV-infected children with low CD4(+ T cell counts. This study supports the need for a second dose of the measles vaccine and for a booster dose of the DTwP and OPV vaccines to maintain the

  4. PROTECTIVE ACTIVITY STUDY OF A CANDIDATE VACCINE AGAINST ROTAVIRUS INFECTION BASED ON RECOMBINANT PROTEIN FliCVP6VP8

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2016-01-01

    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  5. Immunogenicity of novel mumps vaccine candidates generated by genetic modification.

    Science.gov (United States)

    Xu, Pei; Chen, Zhenhai; Phan, Shannon; Pickar, Adrian; He, Biao

    2014-03-01

    Mumps is a highly contagious human disease, characterized by lateral or bilateral nonsuppurative swelling of the parotid glands and neurological complications that can result in aseptic meningitis or encephalitis. A mumps vaccination program implemented since the 1960s reduced mumps incidence by more than 99% and kept the mumps case numbers as low as hundreds of cases per year in the United States before 2006. However, a large mumps outbreak occurred in vaccinated populations in 2006 and again in 2009 in the United States, raising concerns about the efficacy of the vaccination program. Previously, we have shown that clinical isolate-based recombinant mumps viruses lacking expression of either the V protein (rMuVΔV) or the SH protein (rMuVΔSH) are attenuated in a neurovirulence test using newborn rat brains (P. Xu et al., Virology 417:126-136, 2011, http://dx.doi.org/10.1016/j.virol.2011.05.003; P. Xu et al., J. Virol. 86:1768-1776, 2012, http://dx.doi.org/10.1128/JVI.06019-11) and may be good candidates for vaccine development. In this study, we examined immunity induced by rMuVΔSH and rMuVΔV in mice. Furthermore, we generated recombinant mumps viruses lacking expression of both the V protein and the SH protein (rMuVΔSHΔV). Analysis of rMuVΔSHΔV indicated that it was stable in tissue culture cell lines. Importantly, rMuVΔSHΔV was immunogenic in mice, indicating that it is a promising candidate for mumps vaccine development.

  6. Therapeutic DNA vaccination of vertically HIV-infected children: report of the first pediatric randomised trial (PEDVAC).

    Science.gov (United States)

    Palma, Paolo; Romiti, Maria Luisa; Montesano, Carla; Santilli, Veronica; Mora, Nadia; Aquilani, Angela; Dispinseri, Stefania; Tchidjou, Hyppolite K; Montano, Marco; Eriksson, Lars E; Baldassari, Stefania; Bernardi, Stefania; Scarlatti, Gabriella; Wahren, Britta; Rossi, Paolo

    2013-01-01

    Twenty vertically HIV-infected children, 6-16 years of age, with stable viral load control and CD4+ values above 400 cells/mm(3). Ten subjects continued their ongoing antiretroviral treatment (ART, Group A) and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B). The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96. Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047), whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031). No increased CD8+ perforin levels were observed in control Group A. The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population. clinicaltrialsregister.eu _2007-002359-18IT.

  7. Therapeutic DNA vaccination of vertically HIV-infected children: report of the first pediatric randomised trial (PEDVAC.

    Directory of Open Access Journals (Sweden)

    Paolo Palma

    Full Text Available SUBJECTS: Twenty vertically HIV-infected children, 6-16 years of age, with stable viral load control and CD4+ values above 400 cells/mm(3. INTERVENTION: Ten subjects continued their ongoing antiretroviral treatment (ART, Group A and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B. The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96. RESULTS: Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047, whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031. No increased CD8+ perforin levels were observed in control Group A. CONCLUSIONS: The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population. TRIAL REGISTRATION: clinicaltrialsregister.eu _2007-002359-18IT.

  8. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Science.gov (United States)

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). Copyright © 2016 Gray et al.

  9. Barcelona 2002: law, ethics, and human rights. Advancing research and access to HIV vaccines: a framework for action.

    Science.gov (United States)

    Avrett, Sam

    2002-12-01

    In light of the continuing spread of HIV infection and the devastating impact of the disease on lives, communities, and economies, particularly in the developing world, the investment in new treatments, vaccines, and microbicides has clearly been inadequate. Efforts must be intensified to develop effective HIV vaccines and to ensure that they are accessible to people in all parts of the world. This article is a summary of a paper by Sam Avrett presented at "Putting Third First: Vaccines, Access to Treatments and the Law," a satellite meeting held at Barcelona on 5 July 2002 and organized by the Canadian HIV/AIDS Legal Network, the AIDS Law Project, South Africa, and the Lawyers Collective HIV/AIDS Unit, India. In the article, Avrett calls for immediate action to increase commitment and funding for HIV vaccines, enhance public support and involvement, accelerate vaccine development, and plan for the eventual delivery of the vaccines. The article briefly outlines steps that governments need to take to implement each of these objectives. The article also provides a menu of potential actions for vaccine advocates to consider as they lobby governments.

  10. Rational design of HIV vaccines and microbicides: report of the EUROPRISE annual conference 2011.

    Science.gov (United States)

    Ruffin, Nicolas; Borggren, Marie; Euler, Zelda; Fiorino, Fabio; Grupping, Katrijn; Hallengärd, David; Javed, Aneele; Mendonca, Kevin; Pollard, Charlotte; Reinhart, David; Saba, Elisa; Sheik-Khalil, Enas; Sköld, Annette; Ziglio, Serena; Scarlatti, Gabriella; Gotch, Frances; Wahren, Britta; Shattock, Robin J

    2012-07-11

    Europrise is a Network of Excellence supported by the European Commission within the 6th Framework programme from 2007 to 2012. The Network has involved over 50 institutions from 13 European countries together with 3 industrial partners and 6 African countries. The Network encompasses an integrated program of research, training, dissemination and advocacy within the field of HIV vaccines and microbicides. A central and timely theme of the Network is the development of the unique concept of co-usage of vaccines and microbicides. Training of PhD students has been a major task, and some of these post-graduate students have here summarized novel ideas emanating from presentations at the last annual Europrise meeting in Prague. The latest data and ideas concerning HIV vaccine and microbicide studies are included in this review; these studies are so recent that the majority have yet to be published. Data were presented and discussed concerning novel immunisation strategies; microbicides and PrEP (alone and in combination with vaccines); mucosal transmission of HIV/SIV; mucosal vaccination; novel adjuvants; neutralizing antibodies; innate immune responses; HIV/SIV pathogenesis and disease progression; new methods and reagents. These - necessarily overlapping topics - are comprehensively summarised by the Europrise students in the context of other recent exciting data.

  11. Rational design of HIV vaccines and microbicides: report of the EUROPRISE annual conference 2011

    Directory of Open Access Journals (Sweden)

    Ruffin Nicolas

    2012-07-01

    Full Text Available Abstract Europrise is a Network of Excellence supported by the European Commission within the 6th Framework programme from 2007 to 2012. The Network has involved over 50 institutions from 13 European countries together with 3 industrial partners and 6 African countries. The Network encompasses an integrated program of research, training, dissemination and advocacy within the field of HIV vaccines and microbicides. A central and timely theme of the Network is the development of the unique concept of co-usage of vaccines and microbicides. Training of PhD students has been a major task, and some of these post-graduate students have here summarized novel ideas emanating from presentations at the last annual Europrise meeting in Prague. The latest data and ideas concerning HIV vaccine and microbicide studies are included in this review; these studies are so recent that the majority have yet to be published. Data were presented and discussed concerning novel immunisation strategies; microbicides and PrEP (alone and in combination with vaccines; mucosal transmission of HIV/SIV; mucosal vaccination; novel adjuvants; neutralizing antibodies; innate immune responses; HIV/SIV pathogenesis and disease progression; new methods and reagents. These – necessarily overlapping topics - are comprehensively summarised by the Europrise students in the context of other recent exciting data.

  12. The potential global market size and public health value of an HIV-1 vaccine in a complex global market.

    Science.gov (United States)

    Marzetta, Carol A; Lee, Stephen S; Wrobel, Sandra J; Singh, Kanwarjit J; Russell, Nina; Esparza, José

    2010-07-05

    An effective HIV vaccine will be essential for the control of the HIV pandemic. This study evaluated the potential global market size and value of a hypothetical HIV vaccine and considered clade diversity, disease burden, partial prevention of acquisition, impact of a reduction in viral load resulting in a decrease in transmission and delay to treatment, health care system differences regarding access, and HIV screening and vaccination, across all public and private markets. Vaccine product profiles varied from a vaccine that would have no effect on preventing infection to a vaccine that would effectively prevent infection and reduce viral load. High disease burden countries (HDBC; HIV prevalence > or = 1%) were assumed to routinely vaccinate pre-sexually active adolescents (10 years old), whereas low disease burden countries (LDBC; HIV prevalence rate market value of $210 million to $2.7 billion, depending on the vaccine product profile. If one-time catch-up campaigns were included (11-14 years old for HDBC and higher risk groups for LDBC), the additional cumulative approximately 70-237 million doses were needed over a 10-year period with a potential market value of approximately $695 million to $13.4 billion, depending on the vaccine product profile. Market size and value varied across market segments with the majority of the value in high income countries and the majority of the demand in low income countries. However, the value of the potential market in low income countries is still significant with up to $550 million annually for routine vaccination only and up to $1.7 billion for a one-time only catch-up campaign in 11-14 years old. In the most detail to date, this study evaluated market size and value of a potential multi-clade HIV vaccine, accounting for differences in disease burden, product profile and health care complexities. These findings provide donors and suppliers highly credible new data to consider in their continued efforts to develop an HIV-1

  13. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  14. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1......G concentrations. The two P. pastoris-produced MSP-1(19)-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating...

  15. Identification of Novel Vaccine Candidates against Campylobacter through Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Marine Meunier

    2016-01-01

    Full Text Available Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union. Human cases are mainly due to Campylobacter jejuni or Campylobacter coli, and contamination is associated with the handling and/or consumption of poultry meat. In fact, poultry constitutes the bacteria’s main reservoir. A promising way of decreasing the incidence of campylobacteriosis in humans would be to decrease avian colonization. Poultry vaccination is of potential for this purpose. However, despite many studies, there is currently no vaccine available on the market to reduce the intestinal Campylobacter load in chickens. It is essential to identify and characterize new vaccine antigens. This study applied the reverse vaccinology approach to detect new vaccine candidates. The main criteria used to select immune proteins were localization, antigenicity, and number of B-epitopes. Fourteen proteins were identified as potential vaccine antigens. In vitro and in vivo experiments now need to be performed to validate the immune and protective power of these newly identified antigens.

  16. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  17. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Nielsen, M; Lamberth, K

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  18. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C.; Nielsen, Morten; Lamberth, K.

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly, from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  19. Reasons for ineligibility in phase 1 and 2A HIV vaccine clinical trials at Kenya AIDS vaccine initiative (KAVI, Kenya.

    Directory of Open Access Journals (Sweden)

    Gloria S Omosa-Manyonyi

    2011-01-01

    Full Text Available With the persistent challenges towards controlling the HIV epidemic, there is an ongoing need for research into HIV vaccines and drugs. Sub-Saharan African countries--worst affected by the HIV pandemic--have participated in the conduct of clinical trials for HIV vaccines. In Kenya, the Kenya AIDS Vaccine Initiative (KAVI at the University of Nairobi has conducted HIV vaccine clinical trials since 2001.Participants were recruited after an extensive informed consent process followed by screening to determine eligibility. Screening included an assessment of risk behavior, medical history and physical examination, and if clinically healthy, laboratory testing. In the absence of locally derived laboratory reference ranges, the ranges used in these trials were derived from populations in the West.Two hundred eighty-one participants were screened between 2003 and 2006 for two clinical trials. Of these, 167 (59.4% met the inclusion/exclusion criteria. Overall, laboratory abnormalities based on the non-indigenous laboratory references used were the most frequent reasons (61.4% for ineligibility. Medical abnormalities contributed 30.7% of the total reasons for ineligibility. Based on the laboratory reference intervals now developed from East and Southern Africa, those ineligible due to laboratory abnormalities would have been 46.3%. Of the eligible participants, 18.6% declined enrollment.Participant recruitment for HIV vaccine clinical trials is a rigorous and time-consuming exercise. Over 61% of the screening exclusions in clinically healthy people were due to laboratory abnormalities. It is essential that laboratory reference ranges generated from local populations for laboratory values be used in the conduct of clinical trials to avoid unnecessary exclusion of willing participants and to avoid over-reporting of adverse events for enrolled participants.Protocol IAVI VRC V001 [1]. ClinicalTrials.gov NCT00124007 Protocol IAVI 010 [2](registration with

  20. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate

    DEFF Research Database (Denmark)

    Esen, Meral; Kremsner, Peter G; Schleucher, Regina

    2009-01-01

    Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily....... Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi...... is a safe and immunogenic malaria vaccine candidate suitable for further clinical development....

  1. Socio-behaviour challenges to phase III HIV vaccine trials in Sub ...

    African Journals Online (AJOL)

    Abstract. Background: A number of countries in sub-Saharan Africa are preparing for HIV vaccine efficacy trials. Social and behavioural factors related to HIV transmission require examination in each setting where these trials are considered. As part of this, several countries have also recently begun preparatory research ...

  2. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate.

    Directory of Open Access Journals (Sweden)

    Kenneth S Plante

    Full Text Available We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV, both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from 30% and mortality (from 0 to 100%, CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality. These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing.

  3. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine.

    Directory of Open Access Journals (Sweden)

    Adriana Weinberg

    Full Text Available Influenza infections have high frequency and morbidity in HIV-infected pregnant women, underscoring the importance of vaccine-conferred protection. To identify the factors that determine vaccine immunogenicity in this group, we characterized the relationship of B- and T-cell responses to pandemic H1N1 (pH1N1 vaccine with HIV-associated immunologic and virologic characteristics. pH1N1 and seasonal-H1N1 (sH1N1 antibodies were measured in 119 HIV-infected pregnant women after two double-strength pH1N1 vaccine doses. pH1N1-IgG and IgA B-cell FluoroSpot, pH1N1- and sH1N1-interferon γ (IFNγ and granzyme B (GrB T-cell FluoroSpot, and flow cytometric characterization of B- and T-cell subsets were performed in 57 subjects. pH1N1-antibodies increased after vaccination, but less than previously described in healthy adults. pH1N1-IgG memory B cells (Bmem increased, IFNγ-effector T-cells (Teff decreased, and IgA Bmem and GrB Teff did not change. pH1N1-antibodies and Teff were significantly correlated with each other and with sH1N1-HAI and Teff, respectively, before and after vaccination. pH1N1-antibody responses to the vaccine significantly increased with high proportions of CD4+, low CD8+ and low CD8+HLADR+CD38+ activated (Tact cells. pH1N1-IgG Bmem responses increased with high proportions of CD19+CD27+CD21- activated B cells (Bact, high CD8+CD39+ regulatory T cells (Treg, and low CD19+CD27-CD21- exhausted B cells (Bexhaust. IFNγ-Teff responses increased with low HIV plasma RNA, CD8+HLADR+CD38+ Tact, CD4+FoxP3+ Treg and CD19+IL10+ Breg. In conclusion, pre-existing antibody and Teff responses to sH1N1 were associated with increased responses to pH1N1 vaccination in HIV-infected pregnant women suggesting an important role for heterosubtypic immunologic memory. High CD4+% T cells were associated with increased, whereas high HIV replication, Tact and Bexhaust were associated with decreased vaccine immunogenicity. High Treg increased antibody responses but

  4. Live attenuated vaccines: Historical successes and current challenges.

    Science.gov (United States)

    Minor, Philip D

    2015-05-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. Motivations to participate in a Phase I/II HIV vaccine trial: A descriptive study from Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    E. A. M. Tarimo

    2016-02-01

    Full Text Available Abstract Background The search for an efficacious HIV vaccine is a global priority. To date only one HIV vaccine trial (RV144 has shown modest efficacy in a phase III trial. With existing different HIV-1 subtypes and frequent mutations, multiple trials are needed from different geographical sites particularly in sub-Saharan Africa where most HIV infections occur. Thus, motivations to participate in HIV vaccine trials among Tanzanians need to be assessed. This paper describes the motives of Police Officers who showed great interest to volunteer in HIVIS-03 in Dar es Salaam, Tanzania. Methods A descriptive cross-sectional study was conducted among Police Officers who showed interest to participate in the HIVIS-03, a phase I/II HIV vaccine trial in Dar es Salaam. Prior to detailed training sessions about HIV vaccine trials, the potential participants narrated their individual motives to participate in the trial on a piece of paper. Descriptive analysis using content approach and frequency distributions were performed. Results Of the 265 respondents, 242 (91.3 % provided their socio-demographic characteristics as well as reasons that would make them take part in the proposed trial. Majority, (39.7 %, cited altruism as the main motive. Women were more likely to volunteer due to altruism compared to men (P < 0.01. Researchers’ explanations about HIV/AIDS vaccine studies motivated 15.3 %. More men (19.6 % than women (1.7 % were motivated to volunteer due to researchers’ explanations (P < 0.001. Also, compared to other groups, those unmarried and educated up to secondary level of education were motivated to volunteer due to researchers’ explanation (P < 0.05. Other reasons were: desire to become a role model (18.6 %; to get knowledge for educating others (14.0 %; to cooperate with researchers in developing an HIV vaccine (9.5 %; to get protection against HIV infection (7.0 %, and severity of the disease within families (6.2

  6. SieveSifter: a web-based tool for visualizing the sieve analyses of HIV-1 vaccine efficacy trials.

    Science.gov (United States)

    Fiore-Gartland, Andrew; Kullman, Nicholas; deCamp, Allan C; Clenaghan, Graham; Yang, Wayne; Magaret, Craig A; Edlefsen, Paul T; Gilbert, Peter B

    2017-08-01

    Analysis of HIV-1 virions from participants infected in a randomized controlled preventive HIV-1 vaccine efficacy trial can help elucidate mechanisms of partial protection. By comparing the genetic sequence of viruses from vaccine and placebo recipients to the sequence of the vaccine itself, a technique called 'sieve analysis', one can identify functional specificities of vaccine-induced immune responses. We have created an interactive web-based visualization and data access tool for exploring the results of sieve analyses performed on four major preventive HIV-1 vaccine efficacy trials: (i) the HIV Vaccine Trial Network (HVTN) 502/Step trial, (ii) the RV144/Thai trial, (iii) the HVTN 503/Phambili trial and (iv) the HVTN 505 trial. The tool acts simultaneously as a platform for rapid reinterpretation of sieve effects and as a portal for organizing and sharing the viral sequence data. Access to these valuable datasets also enables the development of novel methodology for future sieve analyses. Visualization: http://sieve.fredhutch.org/viz . Source code: https://github.com/nkullman/SIEVE . Data API: http://sieve.fredhutch.org/data . agartlan@fredhutch.org. © The Author(s) 2017. Published by Oxford University Press.

  7. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    Science.gov (United States)

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    Science.gov (United States)

    Edlefsen, Paul T; Rolland, Morgane; Hertz, Tomer; Tovanabutra, Sodsai; Gartland, Andrew J; deCamp, Allan C; Magaret, Craig A; Ahmed, Hasan; Gottardo, Raphael; Juraska, Michal; McCoy, Connor; Larsen, Brendan B; Sanders-Buell, Eric; Carrico, Chris; Menis, Sergey; Kijak, Gustavo H; Bose, Meera; Arroyo, Miguel A; O'Connell, Robert J; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Rerks-Ngarm, Supachai; Robb, Merlin L; Kirys, Tatsiana; Georgiev, Ivelin S; Kwong, Peter D; Scheffler, Konrad; Pond, Sergei L Kosakovsky; Carlson, Jonathan M; Michael, Nelson L; Schief, William R; Mullins, James I; Kim, Jerome H; Gilbert, Peter B

    2015-02-01

    The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.

  9. Sexual behavior, risk perception, and HIV transmission can respond to HIV antiviral drugs and vaccines through multiple pathways

    OpenAIRE

    Stephen Tully; Monica Cojocaru; Chris T. Bauch

    2015-01-01

    There has been growing use of highly active antiretroviral treatment (HAART) for HIV and significant progress in developing prophylactic HIV vaccines. The simplest theories of counterproductive behavioral responses to such interventions tend to focus on single feedback mechanisms: for instance, HAART optimism makes infection less scary and thus promotes risky sexual behavior. Here, we develop an agent based, age-structured model of HIV transmission, risk perception, and partner selection in a...

  10. The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006.

    Directory of Open Access Journals (Sweden)

    Erik Billings

    Full Text Available Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999-2000 and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006. Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D. This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope, which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic.

  11. The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006

    Science.gov (United States)

    Billings, Erik; Sanders-Buell, Eric; Bose, Meera; Bradfield, Andrea; Lei, Esther; Kijak, Gustavo H.; Arroyo, Miguel A.; Kibaya, Rukia M.; Scott, Paul T.; Wasunna, Monique K.; Sawe, Frederick K.; Shaffer, Douglas N.; Birx, Deborah L.; McCutchan, Francine E.; Michael, Nelson L.; Robb, Merlin L.; Kim, Jerome H.; Tovanabutra, Sodsai

    2015-01-01

    Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999–2000) and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006). Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G) and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D). This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope), which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic. PMID:26287814

  12. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana.

    Science.gov (United States)

    Pêra, Francisco F P G; Mutepfa, David L R; Khan, Ayesha M; Els, Johann H; Mbewana, Sandiswa; van Dijk, Alberdina A A; Rybicki, Edward P; Hitzeroth, Inga I

    2015-12-02

    Human rotaviruses are the main cause of severe gastroenteritis in children and are responsible for over 500 000 deaths annually. There are two live rotavirus vaccines currently available, one based on human rotavirus serotype G1P[8], and the other a G1-G4 P[8] pentavalent vaccine. However, the recent emergence of the G9 and other novel rotavirus serotypes in Africa and Asia has prompted fears that current vaccines might not be fully effective against these new varieties. We report an effort to develop an affordable candidate rotavirus vaccine against the new emerging G9P[6] (RVA/Human-wt/ZAF/GR10924/1999/G9P[6]) strain. The vaccine is based on virus-like particles which are both highly immunogenic and safe. The vaccine candidate was produced in Nicotiana benthamiana by transient expression, as plants allow rapid production of antigens at lower costs, without the risk of contamination by animal pathogens. Western blot analysis of plant extracts confirmed the successful expression of two rotavirus capsid proteins, VP2 and VP6. These proteins assembled into VLPs resembling native rotavirus particles when analysed by transmission electron microscopy (TEM). Expression of the rotavirus glycoprotein VP7 and the spike protein VP4 was also tried. However, VP7 expression caused plant wilting during the course of the time trial and expression could never be detected for either protein. We therefore created three fusion proteins adding the antigenic part of VP4 (VP8*) to VP6 in an attempt to produce more appropriately immunogenic particles. Fusion protein expression in tobacco plants was detected by western blot using anti-VP6 and anti-VP4 antibodies, but no regular particles were observed by TEM, even when co-expressed with VP2. Our results suggest that the rotavirus proteins produced in N. benthamiana are candidates for a subunit vaccine specifically for the G9P[6] rotavirus strain. This could be more effective in developing countries, thereby possibly providing a higher

  13. Low tetanus, diphtheria and acellular pertussis (Tdap) vaccination coverage among HIV infected individuals in Austria.

    Science.gov (United States)

    Grabmeier-Pfistershammer, K; Herkner, H; Touzeau-Roemer, V; Rieger, A; Burgmann, H; Poeppl, W

    2015-07-31

    Current management guidelines of HIV infected adults include recommendation to immunization against common vaccine preventable diseases. This effort is hindered by the scarce knowledge regarding the immunization status of this especially vulnerable patient group. This study analyzed the serostatus for pertussis, diphtheria and tetanus of more than 700 HIV infected individuals residing in Austria. These individuals were representative for the Austrian HIV cohort regarding sex, age, transmission risk and HIV progression markers. Overall, 73.6% were on suppressive HAART, mean CD4 cell count was 603c/μl. Seropositivity was 84% for diphtheria, 51% for tetanus and 1% for pertussis. Migrants had a lower chance of tetanus seropositivity (OR 0.30 (CI 0.21 to 0.43)). Increase in CDC classification were associated with increased diphtheria seropositivity (OR 1.42 (CI 1.02 to 1.98)) and a CD4 nadir200c/μl, 95% lacked seroprotection to at least one of the antigens included in the triple vaccine Tdap and could be vaccinated. Thus, a proactive approach would largely reduce the number of patients at risk for these vaccine-preventable diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Feasibility and acceptability of conducting HIV vaccine trials in adolescents in South Africa: Going beyond willingness to participate towards implementation

    Directory of Open Access Journals (Sweden)

    M Wallace

    2018-03-01

    Full Text Available Background. HIV/AIDS remains a leading cause of death in adolescents (aged 15 - 25 years, and in sub-Saharan Africa HIV-related deaths continue to rise in this age group despite a decline in both adult and paediatric populations. This is attributable in part to high adolescent infection rates and supports the urgent need for more efficacious prevention strategies. In particular, an even partially effective HIV vaccine, given prior to sexual debut, is predicted to significantly curb adolescent infection rates. While adolescents have indicated willingness to participate in HIV vaccine trials, there are concerns around safety, uptake, adherence, and ethical and logistic issues.Objectives. To initiate a national, multisite project with the aim of identifying obstacles to conducting adolescent HIV vaccine trials in South Africa (SA.Method. A simulated HIV vaccine trial was conducted in adolescents aged 12 - 17 years across five SA research sites, using the already licensed Merck human papillomavirus vaccine Gardasil as a proxy for an HIV vaccine. Adolescents were recruited at community venues and, following a vaccine discussion group, invited to participate in the trial. Consent for trial enrolment was obtained from a parent or legal guardian, and participants aged 16 - 17 years were eligible only if sexually active. Typical vaccine trial procedures were applied during the five study visits, including the administration of vaccination injections at study visits 2, 3 and 4.Results. The median age of participants was 14 years (interquartile range 13 - 15, with 81% between the ages of 12 and 15 years at enrolment. Overall, 98% of screened participants opted to receive the vaccine, 588 participants enrolled, and 524 (89% attended the final visit.Conclusions. This trial showed that adolescents can be recruited, enrolled and retained in clinical prevention trials with parental support. While promising, these results were tempered by the coupling of sexual

  15. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120.

    Science.gov (United States)

    deCamp, Allan C; Rolland, Morgane; Edlefsen, Paul T; Sanders-Buell, Eric; Hall, Breana; Magaret, Craig A; Fiore-Gartland, Andrew J; Juraska, Michal; Carpp, Lindsay N; Karuna, Shelly T; Bose, Meera; LePore, Steven; Miller, Shana; O'Sullivan, Annemarie; Poltavee, Kultida; Bai, Hongjun; Dommaraju, Kalpana; Zhao, Hong; Wong, Kim; Chen, Lennie; Ahmed, Hasan; Goodman, Derrick; Tay, Matthew Z; Gottardo, Raphael; Koup, Richard A; Bailer, Robert; Mascola, John R; Graham, Barney S; Roederer, Mario; O'Connell, Robert J; Michael, Nelson L; Robb, Merlin L; Adams, Elizabeth; D'Souza, Patricia; Kublin, James; Corey, Lawrence; Geraghty, Daniel E; Frahm, Nicole; Tomaras, Georgia D; McElrath, M Juliana; Frenkel, Lisa; Styrchak, Sheila; Tovanabutra, Sodsai; Sobieszczyk, Magdalena E; Hammer, Scott M; Kim, Jerome H; Mullins, James I; Gilbert, Peter B

    2017-01-01

    Although the HVTN 505 DNA/recombinant adenovirus type 5 vector HIV-1 vaccine trial showed no overall efficacy, analysis of breakthrough HIV-1 sequences in participants can help determine whether vaccine-induced immune responses impacted viruses that caused infection. We analyzed 480 HIV-1 genomes sampled from 27 vaccine and 20 placebo recipients and found that intra-host HIV-1 diversity was significantly lower in vaccine recipients (P ≤ 0.04, Q-values ≤ 0.09) in Gag, Pol, Vif and envelope glycoprotein gp120 (Env-gp120). Furthermore, Env-gp120 sequences from vaccine recipients were significantly more distant from the subtype B vaccine insert than sequences from placebo recipients (P = 0.01, Q-value = 0.12). These vaccine effects were associated with signatures mapping to CD4 binding site and CD4-induced monoclonal antibody footprints. These results suggest either (i) no vaccine efficacy to block acquisition of any viral genotype but vaccine-accelerated Env evolution post-acquisition; or (ii) vaccine efficacy against HIV-1s with Env sequences closest to the vaccine insert combined with increased acquisition due to other factors, potentially including the vaccine vector.

  16. Conditional live virus as a novel approach towards a safe live attenuated HIV vaccine

    NARCIS (Netherlands)

    Das, Atze T.; Zhou, Xue; Vink, Monique; Klaver, Bep; Berkhout, Ben

    2002-01-01

    To control the worldwide spread of HIV, a safe and effective prophylactic vaccine is urgently needed. Studies with the simian immunodeficiency virus demonstrated that a live attenuated virus can be effective as a vaccine, but serious concerns about the safety of such a vaccine virus have arisen. We

  17. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults.

    Science.gov (United States)

    Harro, Clayton D; Robertson, Michael N; Lally, Michelle A; O'Neill, Lori D; Edupuganti, Srilatha; Goepfert, Paul A; Mulligan, Mark J; Priddy, Frances H; Dubey, Sheri A; Kierstead, Lisa S; Sun, Xiao; Casimiro, Danilo R; DiNubile, Mark J; Shiver, John W; Leavitt, Randi Y; Mehrotra, Devan V

    2009-01-01

    Vaccines inducing pathogen-specific cell-mediated immunity are being developed using attenuated adenoviral (Ad) vectors. We report the results of two independent Phase I trials of similar replication-deficient Ad5 vaccines containing a near-consensus HIV-1 clade B gag transgene. Healthy HIV-uninfected adults were enrolled in two separate, multicenter, dose-escalating, blinded, placebo-controlled studies to assess the safety and immunogenicity of a three-dose homologous regimen of Ad5 and MRKAd5 HIV-1 gag vaccines given on day 1, week 4, and week 26. Adverse events were collected for 29 days following each intradeltoid injection. The primary immunogenicity endpoint was the proportion of subjects with a positive unfractionated Gag-specific IFN-gamma ELISPOT response measured 4 weeks after the last dose (week 30). Analyses were performed after combining data for each dose group from both protocols, stratifying by baseline Ad5 titers. Overall, 252 subjects were randomized to receive either vaccine or placebo, including 229 subjects (91%) who completed the study through week 30. Tolerability and immunogenicity did not appear to differ between the Ad5 and MRKAd5 vaccines. The frequency of injection-site reactions was dose dependent. Systemic adverse events were also dose dependent and more frequent in subjects with baseline Ad5 titers or =200, especially after the first dose. The percent of ELISPOT responders and the ELISPOT geometric means overall were significantly higher for all four vaccine doses studied compared to placebo, and were generally higher in vaccine recipients with baseline Ad5 titers or = 200. Ad5 titers increased after vaccination in a dose-dependent fashion. Both Ad5-vectored HIV-1 vaccines were generally well tolerated and induced cell-mediated immune responses against HIV Gag-peptides in the majority of healthy adults with baseline Ad5 titers vaccine-induced immunity to the Ad5 vector may dampen the CMI response to HIV Gag.

  18. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    Directory of Open Access Journals (Sweden)

    Paul T Edlefsen

    2015-02-01

    Full Text Available The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients. A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro. The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021. In particular, site 317 in the third variable loop (V3 overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1 more than did non-signature sites (mean = 0.9 (p < 0.0001, suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine

  19. Highlight: Building a strong future for African-led HIV prevention ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The search for an HIV vaccine is shifting from labs in North America and Europe, to include a greater number of African institutions. African researchers are leading the charge. Based in cities at the centre of the epidemic, they are familiar with the affected populations, and are best placed to conduct testing of HIV candidate ...

  20. Status of prophylactic and therapeutic genital herpes vaccines.

    Science.gov (United States)

    Awasthi, Sita; Friedman, Harvey M

    2014-06-01

    A half billion people have genital herpes infections worldwide. Approximately one-fifth of American women between ages 14 and 49 are HSV-2 seropositive. The development of an effective genital herpes vaccine is a global health necessity based on the mental anguish genital herpes causes for some individuals, the fact that pregnant women with genital herpes risk transmitting infection to their newborn children, and the observation that HSV-2 infection is associated with a 3-fold to 4-fold increased probability of HIV acquisition. We review the strengths and limitations of preclinical animal models used to assess genital herpes vaccine candidates and the goals of prophylactic and therapeutic vaccines. We also discuss the current pipeline of vaccine candidates and lessons learned from past clinical trials that serve as a stimulus for new strategies, study designs and endpoint determinations. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Architectural Insight into Inovirus-Associated Vectors (IAVs and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    Directory of Open Access Journals (Sweden)

    Kyriakos A. Hassapis

    2014-12-01

    Full Text Available Inovirus-associated vectors (IAVs are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  2. Assessment of the HBV vaccine response in a group of HIV-infected children in Morocco.

    Science.gov (United States)

    Haban, Houda; Benchekroun, Soumia; Sadeq, Mina; Benjouad, Abdelaziz; Amzazi, Said; Oumzil, Hicham; Elharti, Elmir

    2017-09-29

    Since its development in the early 1980s, Hepatitis B virus (HBV) vaccine has been proven to be highly protective. However, its immunogenicity may be ineffective among HIV-infected children. In Morocco, HBV vaccine was introduced in 1999, and since then all infants, including vertically HIV-infected infants, have been following the vaccination schedule, implemented by the Moroccan ministry of health. An assessment of the immunization of these children is important to optimize efforts aimed at tackling Hepatitis B coinfection, within the country. Forty-nine HIV-infected children (HIV group) and 112 HIV uninfected children (control group) were enrolled in this study. Samples were tested by Elisa (Monolisa Anti-HBs, Biorad) to quantify the anti-HBs antibodies. The % of lymphocyte subsets i.e. CD4+ T cells, CD8+ T cells, B cells, and NK, was determined by flow cytometry, using CellQuest Pro software (Becton-Dickinson), and for HIV group, HIV viral load was measured by real time PCR assay (Abbott). All variables were statistically compared in the two groups. The median age was 51 ± 35 months for the HIV group and 50 ± 36 months (p > 0.05) for the control group. Female represented 63% and 41% (p = 0.01), among the HIV group and the control group, respectively. Among HIV-infected children, 71.4% (35/49) were under HAART therapy at the enrollment in the study. Seroprotection titer i.e. anti-HBs ≥10mUI/ml among control group was 76% (85/112), and only 29% (14/49) among the perinatally HIV-infected children (p Morocco, in order to revaccinate non-immunized children.

  3. Identification of synthetic vaccine candidates against SARS CoV infection

    International Nuclear Information System (INIS)

    Lien, Shu-Pei; Shih, Yi-Ping; Chen, Hsin-Wei; Tsai, Jy-Ping; Leng, Chih-Hsiang; Lin, Min-Han; Lin, Li-Hsiu; Liu, Hsin-Yu; Chou, Ai-Hsiang; Chang, Yu-Wen; Chen, Yi-Ming A.; Chong, Pele; Liu, Shih-Jen

    2007-01-01

    Three peptides, D1 (amino acid residues 175-201), D2 (a.a. 434-467), and TM (a.a. 1128-1159), corresponding to the spike protein (S) of severe acute respiratory syndrome corona virus (SARS CoV) were synthesized and their immunological functions were investigated in three different animals models (mice, guinea pigs, and rabbits). The peptides mixture formulated either with Freund's adjuvant or synthetic adjuvant Montanide ISA-51/oligodeoxy nucleotide CpG (ISA/CpG) could elicit antisera in immunized animals which were capable of inhibiting SARS/HIV pseudovirus entry into HepG2 cells. The neutralizing epitopes were identified using peptides to block the neutralizing effect of guinea pig antisera. The major neutralizing epitope was located on the D2 peptide, and the amino acid residue was fine mapped to 434-453. In BALB/c mice T-cell proliferation assay revealed that only D2 peptide contained T-cell epitope, the sequence of which corresponded to amino acid residue 434-448. The ISA/CpG formulation generated anti-D2 IgG titer comparable to those obtained from Freund's adjuvant formulation, but generated fewer antibodies against D1 or TM peptides. The highly immunogenic D2 peptide contains both neutralizing and Th cell epitopes. These results suggest that synthetic peptide D2 would be useful as a component of SARS vaccine candidates

  4. On modeling HIV and T cells in vivo: assessing causal estimators in vaccine trials.

    Directory of Open Access Journals (Sweden)

    W David Wick

    2006-06-01

    Full Text Available The first efficacy trials--named STEP--of a T cell vaccine against HIV/AIDS began in 2004. The unprecedented structure of these trials raised new modeling and statistical challenges. Is it plausible that memory T cells, as opposed to antibodies, can actually prevent infection? If they fail at prevention, to what extent can they ameliorate disease? And how do we estimate efficacy in a vaccine trial with two primary endpoints, one traditional, one entirely novel (viral load after infection, and where the latter may be influenced by selection bias due to the former? In preparation for the STEP trials, biostatisticians developed novel techniques for estimating a causal effect of a vaccine on viral load, while accounting for post-randomization selection bias. But these techniques have not been tested in biologically plausible scenarios. We introduce new stochastic models of T cell and HIV kinetics, making use of new estimates of the rate that cytotoxic T lymphocytes--CTLs; the so-called killer T cells--can kill HIV-infected cells. Based on these models, we make the surprising discovery that it is not entirely implausible that HIV-specific CTLs might prevent infection--as the designers explicitly acknowledged when they chose the endpoints of the STEP trials. By simulating thousands of trials, we demonstrate that the new statistical methods can correctly identify an efficacious vaccine, while protecting against a false conclusion that the vaccine exacerbates disease. In addition to uncovering a surprising immunological scenario, our results illustrate the utility of mechanistic modeling in biostatistics.

  5. HIV vaccine: it may take two to tango, but no party time yet

    NARCIS (Netherlands)

    Berkhout, Ben; Paxton, William A.

    2009-01-01

    ABSTRACT: A press conference on Thursday September 24 in Bangkok, Thailand, released data that an experimental vaccine provided mild protection against HIV-1 infection. This is the first positive signal of any degree of vaccine efficacy in humans, more than a quarter-century after scientists

  6. Identification and development of a promising novel mumps vaccine candidate strain.

    Science.gov (United States)

    Liang, Yan; Ma, Shaohui; Liu, Longding; Zhao, Hongling; Wang, Lichun; Jiang, Li; Xie, Zhongping; Dong, Chenghong; Li, Qihan

    2010-12-01

    Mumps epidemics are usually caused by airborne transmission of mumps virus (MuV) and have high morbidity in non-immunized children. Epidemiological studies in many regions of China show that the genotype F viral strain is the most prevalent. However, the genotype A strain is currently used to prepare vaccines. Regional epidemiological MuV data suggest a significant application for the development of live attenuated mumps vaccines targeting specific genotypes. This article reports the isolation and culture of a genotype F MuV candidate strain that could be used to prepare a live attenuated mumps vaccine. This strain is shown to have good immunological efficacy and stability in neurovirulence evaluations. This work should facilitate the implementation of mumps vaccination in mainland China by targeting the most prevalent MuV genotype, genotype F. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  7. Candidíase oral como marcador de prognóstico em pacientes portadores do HIV

    OpenAIRE

    Cavassani Valdinês Gonçalves dos Santos; Andrade Sobrinho Jozias de; Homem Maria da Graça Naclério; Rapoport Abrão

    2002-01-01

    Introdução: A candidíase oral é uma das doenças oportunistas mais fortemente associadas à infecção pelo Vírus da Imunodeficiência Humana (HIV). Vários relatos epidemiológicos enfatizam a prevalência da candidíase em pacientes HIV positivos e ressaltam a sua importância como marcador da progressão da doença e preditivo para o aumento da imunodepressão. Objetivo: Verificar as alterações estomatológicas em pacientes portadores do HIV tratados no Hospital Heliópolis - São Paulo, Brasil e comparar...

  8. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2014-01-01

    Full Text Available Human immunodeficiency virus type-1 (HIV-1-specific dendritic cell (DC vaccines have been applied to clinical trials that show only induction of some degree of immune responses, warranting the search of other more efficient vaccine strategies. Since HIV-1-specific CD8+ cytotoxic T lymphocytes (CTLs have been found to recognize some HIV-1 structural protein Gag conserved and cross-strain epitopes, Gag has become one of the most attractive target candidates for HIV-1 vaccine development. In this study, we generated HIV-1 Gag-specific Gag-Texo vaccine by using ConA-stimulated polyclonal CD8+ T-cells with uptake of Gag-expressing adenoviral vector AdVGag-transfected DC (DCGag-released exosomes (EXOs, and assessed its stimulation of Gag-specific CD8+ CTL responses and antitumor immunity. We demonstrate that Gag-Texo and DCGag vaccines comparably stimulate Gag-specific effector CD8+ CTL responses. Gag-Texo-stimulated CTL responses result in protective immunity against Gag-expressing BL6-10Gag melanoma in 8/8 wild-type C57BL/6 mice. In addition, we show that Gag-Texo vaccine also induces CTL responses leading to protective and long-term immunity against Gag/HLA-A2-expressing BL6-10Gag/A2 melanoma in 8/8 and 2/8 transgenic HLA-A2 mice, respectively. The average number of lung tumor colonies in mice with 30-days post-immunization is only 23, which is significantly less than that (>300 in control ConA-T-immunized HLA-A2 mice. Furthermore, Gag-Texo vaccine also induces some degree of therapeutic immunity. The average number (50 and size (0.23 mm in diameter of lung tumor colonies in Gag-Texo-immunized HLA-A2 mice bearing 6-day-established lung BL6-10Gag/A2 melanoma metastasis are significantly less than the average number (>300 and size (1.02 mm in diameter in control ConA-T-immunized HLA-A2 mice. Taken together, HIV-1 Gag-Texo vaccine capable of stimulating Gag-specific CTL responses and therapeutic immunity may be useful as a new immunotherapeutic

  9. Modern Vaccines/Adjuvants Formulation—Session 2 (Plenary II)

    Science.gov (United States)

    Collin, Nicolas

    2013-01-01

    On the 15–17th May 2013, the Fourth International Conference on Modern Vaccines/Adjuvants Formulation was organized in Lausanne, Switzerland, and gathered stakeholders from academics and from the industry to discuss several challenges, advances and promises in the field of vaccine adjuvants. Plenary session 2 of the meeting was composed of four different presentations covering: (1) the recent set-up of an adjuvant technology transfer and training platform in Switzerland, (2) the proposition to revisit existing paradigms of modern vaccinology, (3) the properties of polyethyleneimine as potential new vaccine adjuvant, and (4) the progresses in the design of HIV vaccine candidates able to induce broadly neutralizing antibodies. PMID:23966098

  10. Immunogenicity and Safety of the 13-Valent Pneumococcal Conjugate Vaccine versus the 23-Valent Polysaccharide Vaccine in Unvaccinated HIV-Infected Adults: A Pilot, Prospective Controlled Study.

    Directory of Open Access Journals (Sweden)

    Francesca Lombardi

    Full Text Available Definition of the optimal pneumococcal vaccine strategy in HIV-infected adults is still under evaluation. We aimed to compare immunogenicity and safety of the 13-valent pneumococcal conjugate vaccine (PCV13 versus the 23-valent polysaccharide vaccine (PPSV23 in HIV-infected adults.We performed a pilot, prospective controlled study enrolling HIV-infected pneumococcal vaccine-naïve outpatients, aged 18-65 years with CD4 counts ≥200 cells/μL. Eligible subjects were recruited into two parallel groups: group 1 (n = 50 received two doses of PCV13 eight weeks apart, and group 2 (n = 50 received one dose of PPSV23, as part of their standard of care. Anti-pneumococcal capsular polysaccharide immunoglobulin G concentrations were quantified by ELISA at baseline, 8, 24 and 48 weeks. Clinical and viro-immunological follow-up was performed at the same time points. Unvaccinated, age-matched HIV-negative adults (n = 100 were also enrolled as baseline controls.Pre-vaccination specific IgG titers for each pneumococcal antigen did not differ between study groups but they were constantly lower than those from the HIV-negative controls. After immunization, significant increases in IgG titers were observed in both study groups at each time point compared to baseline, but response to serotype 3 was blunted in group 1. Antibody titers for each antigen did not differ between study groups at week 48. Overall, the proportion of subjects achieving seroprotection and seroconversion to all serotypes was comparable between groups. A marked decrease in IgG levels over time was observed with both vaccines. No relevant adverse reactions were reported in either group.In this population with favorable immune profile, no relevant differences were observed in immunogenicity between PCV13 and PPSV23. Both vaccines were safe and well tolerated.ClinicalTrials.gov NCT02123433.

  11. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    Science.gov (United States)

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  12. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  13. Sexual behavior, risk perception, and HIV transmission can respond to HIV antiviral drugs and vaccines through multiple pathways

    Science.gov (United States)

    Tully, Stephen; Cojocaru, Monica; Bauch, Chris T.

    2015-01-01

    There has been growing use of highly active antiretroviral treatment (HAART) for HIV and significant progress in developing prophylactic HIV vaccines. The simplest theories of counterproductive behavioral responses to such interventions tend to focus on single feedback mechanisms: for instance, HAART optimism makes infection less scary and thus promotes risky sexual behavior. Here, we develop an agent based, age-structured model of HIV transmission, risk perception, and partner selection in a core group to explore behavioral responses to interventions. We find that interventions can activate not one, but several feedback mechanisms that could potentially influence decision-making and HIV prevalence. In the model, HAART increases the attractiveness of unprotected sex, but it also increases perceived risk of infection and, on longer timescales, causes demographic impacts that partially counteract HAART optimism. Both HAART and vaccination usually lead to lower rates of unprotected sex on the whole, but intervention effectiveness depends strongly on whether individuals over- or under-estimate intervention coverage. Age-specific effects cause sexual behavior and HIV prevalence to change in opposite ways in old and young age groups. For complex infections like HIV—where interventions influence transmission, demography, sexual behavior and risk perception—we conclude that evaluations of behavioral responses should consider multiple feedback mechanisms. PMID:26507957

  14. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  15. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease

    Science.gov (United States)

    Hines, Murray E.; Turnquist, Sue E.; Ilha, Marcia R. S.; Rajeev, Sreekumari; Jones, Arthur L.; Whittington, Lisa; Bannantine, John P.; Barletta, Raúl G.; Gröhn, Yrjö T.; Katani, Robab; Talaat, Adel M.; Li, Lingling; Kapur, Vivek

    2014-01-01

    Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a major threat to the dairy industry and possibly some cases of Crohn's disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were (1) to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne's Disease Integrated Program (JDIP) Animal Model Standardization Committee (AMSC), and (2) to validate the AMSC Johne's disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis), or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 × 109 CFU divided in two consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate). All kids were necropsied at 13 months post-challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318) do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329) reduced fecal shedding and tissue colonization. PMID

  16. Evaluation of Novel Oral Vaccine Candidates and Validation of a Caprine Model of Johne's Disease

    Directory of Open Access Journals (Sweden)

    Murray E. Hines

    2014-03-01

    Full Text Available Johne’s disease (JD caused by Mycobacterium avium subspecies paratuberculosis (MAP is a major threat to the dairy industry and possibly some cases of Crohn’s disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were 1 to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne’s Disease Integrated Program (JDIP Animal Model Standardization Committee (AMSC, and 2 to validate the AMSC Johne’s disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis, or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 X 10^9 CFU divided in 2 consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate. All kids were necropsied at 13 months post challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318 do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329 reduced fecal shedding and tissue

  17. Preliminary Report on HIV-1 Vaccine Preparedness in Nigeria: Advantages of Recruiting University Students

    Directory of Open Access Journals (Sweden)

    Ruth Guyit

    2010-01-01

    Full Text Available The national HIV seroprevalence in Nigeria has risen steeply from about 3% in 1993 to 5-8% in 2001 and now stands at 4.4%. HIV epidemic continues to be a serious threat to the most populous country in Africa with a population of 140 million, with limited use of antiviral drugs that is taken for life since it only suppresses the virus without completely eliminating the virus or leading to cure. Only a change in social behavior and an affordable vaccine can halt the epidemic in Africa. We report here results of a pilot study on the recruitment strategies, sociodemographic aspects and HIV risk behavior of a cohort of normal volunteers recruited at the University of Jos, Nigeria. Our study recorded a high degree of interest and zeal to participate in HIV vaccine studies by volunteers, and demonstrated the superiority of snowballing over invitation by mail, as a recruitment strategy. A cohort of university students may be particularly suitable for conducting HIV vaccine trials because of the assurance of prospective follow-up for up to four years (time to graduation, and a good understanding of the risks and benefits of participation as outlined in the informed consent. We had 100% retention during a follow-up period of two years. Most importantly, the cohort reflected a relatively low HIV seroprevalence, which gives preventive programs the potential to blunt or halt the epidemic.

  18. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine

    DEFF Research Database (Denmark)

    De Groot, Anne S; Levitz, Lauren; Ardito, Matthew T

    2012-01-01

    Two major obstacles confronting HIV vaccine design have been the extensive viral diversity of HIV-1 globally and viral evolution driven by escape from CD8(+) cytotoxic T-cell lymphocyte (CTL)-mediated immune pressure. Regions of the viral genome that are not able to escape immune response...

  19. Immunogenicity and safety of high-dose trivalent inactivated influenza vaccine compared to standard-dose vaccine in children and young adults with cancer or HIV infection.

    Science.gov (United States)

    Hakim, Hana; Allison, Kim J; Van de Velde, Lee-Ann; Tang, Li; Sun, Yilun; Flynn, Patricia M; McCullers, Jonathan A

    2016-06-08

    Approaches to improve the immune response of immunocompromised patients to influenza vaccination are needed. Children and young adults (3-21 years) with cancer or HIV infection were randomized to receive 2 doses of high-dose (HD) trivalent influenza vaccine (TIV) or of standard-dose (SD) TIV. Hemagglutination inhibition (HAI) antibody titers were measured against H1, H3, and B antigens after each dose and 9 months later. Seroconversion was defined as ≥4-fold rise in HAI titer comparing pre- and post-vaccine sera. Seroprotection was defined as a post-vaccine HAI titer ≥1:40. Reactogenicity events (RE) were solicited using a structured questionnaire 7 and 14 days after each dose of vaccine, and adverse events by medical record review for 21 days after each dose of vaccine. Eighty-five participants were enrolled in the study; 27 with leukemia, 17 with solid tumor (ST), and 41 with HIV. Recipients of HD TIV had significantly greater fold increase in HAI titers to B antigen in leukemia group and to H1 antigen in ST group compared to SD TIV recipients. This increase was not documented in HIV group. There were no differences in seroconversion or seroprotection between HD TIV and SD TIV in all groups. There was no difference in the percentage of solicited RE in recipients of HD TIV (54% after dose 1 and 38% after dose 2) compared to SD TIV (40% after dose 1 and 20% after dose 2, p=0.27 and 0.09 after dose 1 and 2, respectively). HD TIV was more immunogenic than SD TIV in children and young adults with leukemia or ST, but not with HIV. HD TIV was safe and well-tolerated in children and young adults with leukemia, ST, or HIV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The human immunodeficiency virus preventive vaccine research at the French National Agency for acquired immunodeficiency syndrome research

    Directory of Open Access Journals (Sweden)

    Elizabeth Fischer

    2005-02-01

    Full Text Available The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS epidemic is of unprecedented gravity and is spreading rapidly, notably in the most disadvantaged regions of the world. The search for a preventive vaccine is thus an absolute priority. For over 10 years the French National Agency for AIDS research (ANRS has been committed to an original program combining basic science and clinical research. The HIV preventive vaccine research program run by the ANRS covers upstream research for the definition of immunogens, animal models, and clinical research to evaluate candidate vaccines. Most researchers in 2004 believe that it should be possible to obtain partial vaccine protection through the induction of a strong and multiepitopic cellular response. Since 1992, the ANRS has set up 15 phases I and II clinical trials in order to evaluate the safety and the capacity of the candidate vaccines for inducing cellular immune responses. The tested candidate vaccines were increasingly complex recombinant canarypox viruses (Alvac containing sequences coding for certain viral proteins, utilized alone or combined with other immunogens (whole or truncated envelope proteins. ANRS has also been developing an original strategy based on the utilization of lipopeptides. These comprise synthetic fragments of viral proteins associated with lipids that facilitate the induction of a cellular immune response. These approaches promptly allowed the assessment of a prime-boost strategy combining a viral vector and lipopeptides.

  1. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults.

    Directory of Open Access Journals (Sweden)

    Spyros A Kalams

    Full Text Available DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques.We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37 DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug IL-12 DNA. However, after three doses, 44.4% (4/9 of vaccinees receiving gag DNA and intermediate dose (500 ug of IL-12 DNA demonstrated a detectable cellular immune response.This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity.Clinicaltrials.gov NCT00115960 NCT00111605.

  2. Egg-Independent Influenza Vaccines and Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Ilaria Manini

    2017-07-01

    Full Text Available Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines.

  3. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    Science.gov (United States)

    2016-06-02

    evidence that oral vaccines fail in populations with disturbed microbiota, poor nutrition , and high intestinal inflammation [102-104]. Additionally...countermeasure development against Ebola virus disease becoming a global public- health priority. This review summarizes the status quo of candidate...members of the mononegaviral family Filoviridae) cause two diseases recognized by the World Health Organization (WHO): Ebola virus disease (EVD) can be

  4. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    that fascinating fungus known as Coccidioides. I also want to thank the UA Mass Spectrometry Facility and the UA Proteomics Consortium, especially...W. & N. N. Kav. 2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995-6007. 127. de Godoy, L. M., J. V...IDENTIFICATION OF PROTEIN VACCINE CANDIDATES USING COMPREHENSIVE PROTEOMIC ANALYSIS STRATEGIES by James G. Rohrbough

  5. The Potential of Vaccines for the Control of AIDS

    Directory of Open Access Journals (Sweden)

    Margaret I Johnston

    1994-01-01

    of attenuated and whole-killed products have led to the pursuit of alternativc designs. including recombinant proteins, vectors and particles, synthetic peptides and naked DNA. Seven recombinant envelope. two recombinant vector and four other candidate vaccines that have entered into phase 1 trials in noninfected individuals have proven safe to date, and have differed In their ability lo induce functional antibody and Cytotoxic T lymphocytes. Two recombinant envelope products have recently progressed to phase 2 testing, Five envelope-based and six other products have entered trial in HIV-infected and individuals and have appeared to be safe, Evidence of new antibody, increased T cell proliferation and lncreased cytotoxic T lymphocyte activity have been reported. Additional placebo controlled trials will be required to evaluate the impact of therapeutic vaccination on CD4 cell count. viral burdrn and clinical end-points. The status of HIV/AIDS vaccine development is reviewed. with emphasis on the challenging task of finding an effieacious, safe, prophylactic vaccine.

  6. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development.

    Science.gov (United States)

    Franco, David; Li, Wenjing; Qing, Fang; Stoyanov, Cristina T; Moran, Thomas; Rice, Charles M; Ho, David D

    2010-08-09

    The failure to develop an effective vaccine against HIV-1 infection has led the research community to seek new ways of raising qualitatively different antibody and cellular immune responses. Towards this goal, we investigated the yellow fever 17D vaccine strain (YF17D), one of the most effective vaccines ever made, as a platform for HIV-1 vaccine development. A test antigen, HIV-1 p24 (clade B consensus), was inserted near the 5' end of YF17D, in frame and upstream of the polyprotein (YF-5'/p24), or between the envelope and the first non-structural protein (YF-E/p24/NS1). In vitro characterization of these recombinants indicated that the gene insert was more stable in the context of YF-E/p24/NS1. This was confirmed in immunogenicity studies in mice. CD8(+) IFN-gamma T-cell responses against p24 were elicited by the YF17D recombinants, as were specific CD4(+) T cells expressing IFN-gamma and IL-2. A balanced CD4(+) and CD8(+) T-cell response was notable, as was the polyfunctionality of the responding cells. Finally, the protective efficacy of the YF17D recombinants, particularly YF-E/p24/NS1, in mice challenged with a vaccinia expressing HIV-1 Gag was demonstrated. These results suggest that YF17D warrants serious consideration as a live-attenuated vector for HIV-1 vaccine development. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Science.gov (United States)

    Shcherbik, Svetlana V; Pearce, Nicholas C; Levine, Marnie L; Klimov, Alexander I; Villanueva, Julie M; Bousse, Tatiana L

    2014-01-01

    Live attenuated influenza vaccine viruses (LAIVs) can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV) and a seasonal wild-type (wt) virus. The vaccine candidates contain hemagglutinin (HA) and neuraminidase (NA) genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2) (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012) or influenza A (H7N9) (A/Anhui/1/2013) wt viruses with the MDV A/Leningrad/134/17/57(H2N2). Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  8. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  9. HIV vaccine trial willingness among injection and non-injection drug users in two urban centres, Barcelona and San Francisco.

    Science.gov (United States)

    Etcheverry, M Florencia; Lum, Paula J; Evans, Jennifer L; Sanchez, Emilia; de Lazzari, Elisa; Mendez-Arancibia, Eva; Sierra, Ernesto; Gatell, José M; Page, Kimberly; Joseph, Joan

    2011-02-24

    Being able to recruit high-risk volunteers who are also willing to consider future participation in vaccine trials are critical features of vaccine preparedness studies. We described data from two cohorts of injection- and non-injection drug users in Barcelona, Spain [Red Cross centre] and in San Francisco, USA, [UFO-VAX study] at high risk of HIV/HCV infection to assess behaviour risk exposure and willingness to participate in future preventive HIV vaccine trials. We successfully identified drug-using populations that would be eligible for future HIV vaccine efficacy trials, based on reported levels of risk during screening and high levels of willingness to participate. In both groups, Red Cross and UFO-VAX respectively, HCV infection was highly prevalent at baseline (41% and 34%), HIV baseline seroprevalence was 4.2% and 1.5%, and high levels of willingness were seen (83% and 78%). Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A study of vaccine-induced immune pressure on breakthrough infections in the Phambili phase 2b HIV-1 vaccine efficacy trial

    Science.gov (United States)

    Rolland, M.; Magaret, C.A.; Rademeyer, C.; Fiore-Gartland, A.; Edlefsen, P.T.; DeCamp, A.; Ahmed, H.; Ngandu, N.; Larsen, B.B.; Frahm, N.; Marais, J.; Thebus, R.; Geraghty, D.; Hural, J.; Corey, L.; Kublin, J.; Gray, G.; McElrath, M.J.; Mullins, J.I.; Gilbert, P.B.; Williamson, C.

    2016-01-01

    Introduction The Merck Adenovirus-5 Gag/Pol/Nef HIV-1 subtype-B vaccine evaluated in predominately subtype B epidemic regions (Step Study), while not preventing infection, exerted vaccine-induced immune pressure on HIV-1 breakthrough infections. Here we investigated if the same vaccine exerted immune pressure when tested in the Phambili Phase 2b study in a subtype C epidemic. Materials and methods A sieve analysis, which compares breakthrough viruses from placebo and vaccine arms, was performed on 277 near full-length genomes generated from 23 vaccine and 20 placebo recipients. Vaccine coverage was estimated by computing the percentage of 9-mers that were exact matches to the vaccine insert. Results There was significantly greater protein distances from the vaccine immunogen sequence in Gag (p = 0.045) and Nef (p = 0.021) in viruses infecting vaccine recipients compared to placebo recipients. Twenty-seven putative sites of vaccine-induced pressure were identified (p sieve effect in Step was driven by HLA A*02:01; an allele which was found in low frequency in Phambili participants compared to Step participants. Furthermore, the coverage of the vaccine against subtype C Phambili viruses was 31%, 46% and 14% for Gag, Pol and Nef, respectively, compared to subtype B Step virus coverage of 56%, 61% and 26%, respectively. Discussion This study presents evidence of sieve effects in Gag and Nef; however could not confirm effects on specific amino acid sites. We propose that this weaker signal of vaccine immune pressure detected in the Phambili study compared to the Step study may have been influenced by differences in host genetics (HLA allele frequency) and reduced impact of vaccine-induced immune responses due to mismatch between the viral subtype in the vaccine and infecting subtypes. PMID:27756485

  11. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Science.gov (United States)

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  12. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    2011-01-01

    Full Text Available We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old and adult (7 weeks old BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.

  13. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Science.gov (United States)

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  14. Expected epidemiological impact of the introduction of a partially effective HIV vaccine among men who have sex with men in Australia.

    Science.gov (United States)

    Gray, Richard T; Ghaus, Mohammad H; Hoare, Alexander; Wilson, David P

    2011-08-18

    A trial of the ALVAC-AIDSVAX HIV vaccine was recently found to be partially effective in preventing HIV transmission among study participants in Thailand. The success of this trial means that vaccination may become a viable intervention for the prevention of HIV infection in the medium-term future. Assuming that the vaccine has similar relative protective effectiveness per exposure event for reducing transmission among men who have sex with men (MSM) in high-income settings we investigated the potential population-level impact of rolling out such a vaccine among MSM in New South Wales, Australia. Using a detailed individual-based transmission model that simulates a population of sexually active MSM it was found that one-off intervention of 60% or 30% coverage of a vaccine with characteristics like the ALVAX-AIDSVAX vaccine would likely reduce the cumulative incidence of HIV by 9.6% and 5.1%, respectively, over a 10-year period. Due to the waning of vaccine efficacy, a booster vaccination could be required to maintain this reduction in incidence over the long term. If the previously vaccinated population is given a booster vaccine, with the same protection conferred as with the initial vaccination, every 5 years or every 2 years then the cumulative incidence over 10 years for 60% coverage could be reduced by 14.4% and 22.8%, respectively. Such a weak vaccine, with boosting, may be a potential intervention strategy for the prevention of HIV infection in MSM in high-income countries if further trials show boosting to be safe, acceptable, and cost-effective. However, the moderately low population-level impact suggests that a public health strategy involving such a vaccine should be supplemented with other biomedical and educational strategies. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation

    Energy Technology Data Exchange (ETDEWEB)

    Ciepluch, Karol, E-mail: ciepluch@biol.uni.lodz.pl [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Ionov, Maksim [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Majoral, Jean-Pierre [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 Route de Narbonne, F-31077 Toulouse cedex 4 (France); Muñoz-Fernández, Maria Angeles [Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Bryszewska, Maria [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland)

    2014-04-15

    In this study, dendrimers emerge as an alternative approach for delivery of HIV peptides to dendritic cells. Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH peptides were complexed with two types of positively charged phosphorus-containing dendrimers (CPD). Fluorescence polarization, dynamic light scattering, transmission and electron microscopy (TEM) techniques were chosen to evaluate the dendriplexes stability. We were able to show that complexes were stable in time and temperature. This is crucial for using these peptide/dendrimer nano-complexes in a new vaccine against HIV-1 infection. -- Highlights: • The phosphorus dendrimers as nanocarriers of HIV-peptides are proposed. • The complexes of dendrimers and HIV-peptides were stable in time, temperature. • The results convince that phosphorus dendrimers could be consider as anti-HIV vaccine candidates.

  16. Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation

    International Nuclear Information System (INIS)

    Ciepluch, Karol; Ionov, Maksim; Majoral, Jean-Pierre; Muñoz-Fernández, Maria Angeles; Bryszewska, Maria

    2014-01-01

    In this study, dendrimers emerge as an alternative approach for delivery of HIV peptides to dendritic cells. Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH peptides were complexed with two types of positively charged phosphorus-containing dendrimers (CPD). Fluorescence polarization, dynamic light scattering, transmission and electron microscopy (TEM) techniques were chosen to evaluate the dendriplexes stability. We were able to show that complexes were stable in time and temperature. This is crucial for using these peptide/dendrimer nano-complexes in a new vaccine against HIV-1 infection. -- Highlights: • The phosphorus dendrimers as nanocarriers of HIV-peptides are proposed. • The complexes of dendrimers and HIV-peptides were stable in time, temperature. • The results convince that phosphorus dendrimers could be consider as anti-HIV vaccine candidates

  17. Association of asymptomatic oral candidal carriage, oral candidiasis and CD4 lymphocyte count in HIV-positive patients in China.

    Science.gov (United States)

    Liu, X; Liu, H; Guo, Z; Luan, W

    2006-01-01

    To compare the prevalence of asymptomatic oral candidal carriage in healthy volunteers with human immunodeficiency virus (HIV)-positive patients in China, as well as to investigate the relationship between CD4+ lymphocyte count and oral candidal colonization or oral candidiasis. Oral candidal carriage and oral candidiasis were investigated in 101 patients with HIV-infection seen at Youan Hospital, Beijing, China. Two hundred and seventeen healthy volunteers were involved as a control. Culture from saliva was used to test for the presence of oral Candida. CD4+ lymphocyte count was measured by flow cytometry. All data were analyzed statistically by SAS. Asymptomatic oral candidal carriage rate (28.6%) in HIV-positive group was similar to that in the healthy group (18.0%; P = 0.07). No significant difference in CD4+ lymphocyte count was found between oral Candida carriers and non-carriers among HIV-positive subjects (P = 0.89). However, the frequency of oral candidiasis increased with the decrease in CD4+ lymphocyte count (P < 0.0001), and pseudomembranous candidiasis was predominant in HIV-positive patients with CD4+ <200 cells microl(-1) (66.7%). In HIV-positive subjects, asymptomatic oral candidal colonization is not related to CD4+ lymphocyte count of blood, and the carriage rate is similar to that in the healthy population. Oral candidiasis is more likely to be observed in HIV-positive patients who have a low CD4+ lymphocyte count.

  18. Immunogenicity and safety of yellow fever vaccine among 115 HIV-infected patients after a preventive immunisation campaign in Mali.

    Science.gov (United States)

    Sidibe, Mariam; Yactayo, Sergio; Kalle, Abdoulaye; Sall, Amadou A; Sow, Samba; Ndoutabe, Modjirom; Perea, William; Avokey, Fenella; Lewis, Rosamund F; Veit, Olivia

    2012-07-01

    The immune response to yellow fever (YF) vaccine and its safety among HIV-infected individuals living in YF endemic areas is not well understood. Following a national YF preventive immunisation campaign in Mali in April 2008, we assessed the immunogenicity and safety of 17D yellow fever vaccine (17DV) among HIV-infected patients in two HIV treatment centres in Bamako, Mali, by testing for neutralising antibodies and identifying serious adverse events following immunisation (AEFI). A YF neutralisation titre (NT) of 1:≥20 was considered to be adequate and protective. A serious AEFI included hospitalisation, any life-threatening condition, or death, occurring within 30 days following 17DV administration. Of 115 HIV-infected patients who reported having received 17DV, 110 (96%) were on combination antiretroviral therapy and 83 patients were tested for neutralising antibodies. Around the time of vaccination, median CD4 cell count was 389 cells/mm(3) (IQR 227-511cells/mm(3)); HIV-RNA was undetectable in 24 of 46 patients tested. Seventy-six (92%) of 83 participants had adequate immune titres 9 months after the immunisation campaign. Previous vaccination or flavivirus exposure could contribute to this finding. No serious AEFI was found in the 115 participants. In this small series, YF vaccine appeared to be immunogenic with a favourable safety profile in HIV-infected patients on antiretroviral therapy. Higher CD4 cell counts and suppressed HIV-RNA were associated with the presence of an adequate immune titre and higher NTs. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  19. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate.

    Science.gov (United States)

    Wang, Xiaoyun; Chen, Wenjun; Tian, Yanli; Mao, Qiang; Lv, Xiaoli; Shang, Mei; Li, Xuerong; Yu, Xinbing; Huang, Yan

    2014-03-10

    Clonorchis sinensis (C. sinensis) infections remain the common public health problem in freshwater fish consumption areas. New effective prevention strategies are still the urgent challenges to control this kind of foodborne infectious disease. The biochemical importance and biological relevance render C. sinensis enolase (Csenolase) as a potential vaccine candidate. In the present study, we constructed Escherichia coli/Bacillus subtilis shuttle genetic engineering system and investigated the potential of Csenolase as an oral vaccine candidate for C. sinensis prevention in different immunization routes. Our results showed that, compared with control groups, both recombinant Csenolase protein and nucleic acid could induce a mixed IgG1/IgG2a immune response when administrated subcutaneously (Psinensis infection. Csenolase derived oral vaccine conferred worm reduction rate and egg reduction rate at 60.07% (Psinensis prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen.

    Science.gov (United States)

    Arias, Mauricio A; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin

    2011-02-01

    Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Feasibility and acceptability of conducting HIV vaccine trials in ...

    African Journals Online (AJOL)

    AIDS epidemic in terms of infection rates, vulnerability and impact, with the Joint .... 17-year-old, HIV-negative male and female adolescents. Sites at five ..... the HPV vaccine was framed in this study as a means to prevent STI, rather than the more ... thank Merck Sharp & Dohme (MSD) for their generous donation of. Gardasil ...

  2. A recoding method to improve the humoral immune response to an HIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Yaoxing Huang

    Full Text Available This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine.

  3. Human Papillomavirus neutralizing and cross-reactive antibodies induced in HIV-positive subjects after vaccination with quadrivalent and bivalent HPV vaccines

    DEFF Research Database (Denmark)

    Faust, Helena; Nielsen, Lars Toft; Sehr, Peter

    2016-01-01

    Ninety-one HIV-infected individuals (61 men and 30 women) were randomized to vaccination either with quadrivalent (Gardasil™) or bivalent (Cervarix™) HPV vaccine. Neutralizing and specific HPV-binding serum antibodies were measured at baseline and 12 months after the first vaccine dose. Presence...... of neutralizing and binding antibodies had good agreement (average Kappa for HPV types 6, 11, 16, 18, 31, 33 and 45 was 0.65). At baseline, 88% of subjects had antibodies against at least one genital HPV. Following vaccination with Cervarix™, all subjects became seropositive for HPV16 and 18. After Gardasil......™ vaccination, 96% of subjects seroconverted for HPV16 and 73% for HPV18. Levels of HPV16-specific antibodies were 10IU in 85% of study subjects after vaccination. Antibodies against non-vaccine HPV types appeared after Gardasil...

  4. Durability of response to vaccination against viral hepatitis A in HIV-infected patients: a 5-year observation.

    Science.gov (United States)

    Jabłonowska, E; Kuydowicz, J

    2014-09-01

    The aim of this study was to estimate the prevalence of total antibodies to hepatitis A virus (anti-HAV-T) in the group of HIV-positive adults in Lodz region of Poland, and to evaluate the response and long-term immunity after vaccination against hepatitis A virus. In the group of 234 HIV-infected patients, 72 persons (30.8%) were anti-HAV-T positive (>20 IU/L). In multivariate analysis, two independent factors associated with the presence of anti-HAV-T were identified: the age of patients (OR = 1.07) and the presence of antibodies to hepatitis C virus (OR = 2.87). Vaccination was completed in 83 patients. Good response (anti-HAV-T >20 IU/L one month after the booster dose) was obtained in 79.5% of patients. In patients with CD4 >200 cells/µL in multivariate analysis only presence of antibodies to hepatitis C virus was a prognostic factor for the response to vaccination (OR = 0.13). Among responders available for the follow-up, 82% (50 out of 61) had detectable anti-HAV-T at 1 year and 75.5% (37 out of 49) at 5 years. Our results demonstrate that most of the studied HIV-positive patients were susceptible to hepatitis A virus infection. Most HIV-infected adults with high CD4 counts had a durable response even up to 5 years after vaccination. Patients with a HIV/hepatitis C virus coinfection displayed a worse response to vaccination. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. A vaccine encoding conserved promiscuous HIV CD4 epitopes induces broad T cell responses in mice transgenic to multiple common HLA class II molecules.

    Directory of Open Access Journals (Sweden)

    Susan Pereira Ribeiro

    Full Text Available Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, "promiscuous" (multiple HLA-DR-binding B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8. Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.

  6. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors.

    Directory of Open Access Journals (Sweden)

    Esther D Quakkelaar

    Full Text Available Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs, RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.

  7. Pregnancy incidence and correlates during the HVTN 503 Phambili HIV vaccine trial conducted among South African women.

    Directory of Open Access Journals (Sweden)

    Mary H Latka

    Full Text Available HIV prevention trials are increasingly being conducted in sub-Saharan Africa. Women at risk for HIV are also at risk of pregnancy. To maximize safety, women agree to avoid pregnancy during trials, yet pregnancies occur. Using data from the HVTN 503/"Phambili" vaccine trial, we report pregnancy incidence during and after the vaccination period and identify factors, measured at screening, associated with incident pregnancy.To enrol in the trial, women agreed and were supported to avoid pregnancy until 1 month after their third and final vaccination ("vaccination period", corresponding to the first 7 months of follow-up. Unsterilized women, pooled across study arms, were analyzed. Poisson regression compared pregnancy rates during and after the vaccination period. Cox proportional hazards regression identified associations with first pregnancy.Among 352 women (median age 23 yrs; median follow-up 1.5 yrs, pregnancy incidence was 9.6/100 women-years overall and 6.8/100 w-yrs and 11.3/100 w-yrs during and after the vaccination period, respectively [Rate Ratio = 0.60 (0.32-1.14, p = 0.10]. In multivariable analysis, pregnancy was reduced among women who: enrolled at sites providing contraception on-site [HR = 0.43, 95% CI (0.22-0.86]; entered the trial as injectable contraceptive users [HR = 0.37 (0.21-0.67] or as consistent condom users (trend [HR = 0.54 (0.28-1.04]. Compared with women with a single partner of HIV-unknown status, pregnancy rates were increased among women with: a single partner whose status was HIV-negative [HR = 2.34(1.16-4.73] and; 2 partners both of HIV-unknown status [HR = 4.42(1.59-12.29]. Women with 2 more of these risk factors: marijuana use, heavy drinking, or use of either during sex, had increased pregnancy incidence [HR = 2.66 (1.24-5.72].It is possible to screen South African women for pregnancy risk at trial entry. Providing injectable contraception for free on-site and supporting consistent condom use may reduce

  8. Stakeholder views of ethical guidance regarding prevention and care in HIV vaccine trials.

    Science.gov (United States)

    Moorhouse, Rika; Slack, Catherine; Quayle, Michael; Essack, Zaynab; Lindegger, Graham

    2014-06-30

    South Africa is a major hub of HIV prevention trials, with plans for a licensure trial to start in 2015. The appropriate standards of care and of prevention in HIV vaccine trials are complex and debated issues and ethical guidelines offer some direction. However, there has been limited empirical exploration of South African stakeholders' perspectives on ethical guidance related to prevention and care in HIV vaccine trials. Site staff, Community Advisory Board members and Research Ethics Committee members involved with current HIV vaccine trials in South Africa were invited to participate in an exploration of their views. A questionnaire listed 10 care and 10 prevention recommendations drawn from two widely available sets of ethical guidelines for biomedical HIV prevention trials. Respondents (n = 98) rated each recommendation on five dimensions: "Familiarity with", "Ease of Understanding", "Ease of Implementing", "Perceived Protection", and "Agreement with" each ethical recommendation. The ratings were used to describe stakeholder perspectives on dimensions for each recommendation. Dimension ratings were averaged across the five dimensions and used as an indication of overall merit for each recommendation. Differences were explored across dimensions, between care-oriented and prevention-oriented recommendations, and between stakeholder groups. Both care and prevention recommendations were rated highly overall, with median ratings well above the scale midpoint. In general, informed consent recommendations were most positively rated. Care-related recommendations were rated significantly more positively than prevention-related recommendations, with the five lowest-rated recommendations being prevention-related. The most problematic dimension across all recommendations was "Ease of Implementing," and the least problematic was "Agreement with," suggesting the most pressing stakeholder concerns are practical rather than theoretical; that is, respondents agree with

  9. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  10. Comparison of the immunogenicity of Cervarix(®) and Gardasil(®) human papillomavirus vaccines for oncogenic non-vaccine serotypes HPV-31, HPV-33, and HPV-45 in HIV-infected adults

    DEFF Research Database (Denmark)

    Toft, Lars; Tolstrup, Martin; Müller, Martin

    2014-01-01

    (®) (HPV-16/18, GlaxoSmithKline Biologicals, GSK) and Gardasil(®) (HPV-6/11/16/18, Merck) have demonstrated partial cross-protection against certain oncogenic non-vaccine HPV-types. Currently, there are no available data on vaccine-induced cross-protection in men and little is known about cross......-reactive immunity after HPV-vaccination of HIV-infected individuals. In an investigator-initiated trial, we randomized 91 HIV-positive men and women to receive vaccination with Cervarix(®) or Gardasil(®). The HPV-DNA status of the participants was determined with pcr before and after immunization. Cross...

  11. Therapeutic Vaccination Using Cationic Liposome-Adjuvanted HIV Type 1 Peptides Representing HLA-Supertype-Restricted Subdominant T Cell Epitopes

    DEFF Research Database (Denmark)

    Román, Victor Raúl Gómez; Jensen, Kristoffer Jarlov; Jensen, Sanne Skov

    2013-01-01

    We have designed a therapeutic HIV-1 vaccine concept based on peptides together with the adjuvant CAF01. Peptides represented 15 HLA-supertype-restricted subdominant and conserved CD8 T cell epitopes and three CD4 T-helper cell epitopes. In this phase I clinical trial, safety and immunogenicity...... were assessed in untreated HIV-1-infected individuals in Guinea-Bissau, West Africa. Twenty-three HIV-1-infected individuals were randomized to receive placebo (n=5) or vaccine (n=18). Safety was appraised by clinical follow-up combined with monitoring of biochemistry, hematology, CD4 T cell counts......, and HIV-1 viral loads. T cell immunogenicity was monitored longitudinally by interferon (IFN)-γ ELISpot. New vaccine-specific T cell responses were induced in 6/14 vaccinees for whom ELISpot data were valid. CD4 T cell counts and viral loads were stable. The study shows that therapeutic immunization...

  12. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies.

    Science.gov (United States)

    deCamp, Allan; Hraber, Peter; Bailer, Robert T; Seaman, Michael S; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K; Zolla-Pazner, Susan; LaBranche, Celia C; Mascola, John R; Korber, Bette T; Montefiori, David C

    2014-03-01

    Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit

  13. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  14. Natural Immunity to HIV: A Template for Vaccine Strategies.

    Science.gov (United States)

    Fourcade, Lyvia; Poudrier, Johanne; Roger, Michel

    2018-04-23

    Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4⁺ and CD8⁺ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.

  15. Natural Immunity to HIV: A Template for Vaccine Strategies

    Directory of Open Access Journals (Sweden)

    Lyvia Fourcade

    2018-04-01

    Full Text Available Africa accounts for the majority of global human immunodeficiency virus (HIV infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN individuals among African female commercial sex workers (CSWs. Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as immunoglobulins (Igs, and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF, known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.

  16. Construction of a trivalent candidate vaccine against Shigella species with DNA recombination

    Institute of Scientific and Technical Information of China (English)

    王恒樑; 冯尔玲; 林云; 廖翔; 金明; 黄留玉; 苏国富; 黄翠芬

    2002-01-01

    In this work asd gene of Shigella flexneri 2a strain T32 was replaced by Vibrio cholerae toxin B subunit (ctxB) gene with DNA recombination in vivo and in vitro. The resulting derivative of T32, designed as FWL01, could stably express CtxB, but its growth in LB medium depended on the presence of diaminopimelic acid (DAP). Then form I plasmid of Shigella sonnei strain S7 was labeled with strain T32 asd gene and mobilized into FWL01. Thus a trivalent candidate oral vaccine strain, designed as FSW01, was constructed. In this candidate strain, a balanced-lethal system was constituted between the host strain and the form I plasmid expressing S. sonnei O antigen. Therefore the candidate strain can express stably not only its own O antigen but also CtxB and O antigen of S. sonnei in the absence of any antibiotic. Experiments showed that FSW01 did not invade HeLa cells or cause keratoconjunctivitis in guinea pigs. However, rabbits immunized FSW01 can elicit significant immune responses. In mice and rhesus monkey models, vaccinated animals were protected against the challenges of wild S. flexneri 2a strain 2457T and S. sonnei strain S9.

  17. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development.

    Directory of Open Access Journals (Sweden)

    Tim-Henrik Bruun

    Full Text Available An increasing number of broadly neutralizing monoclonal antibodies (bnMAb against the HIV-1 envelope (Env protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i to determine and quantify the enrichment nMAb binders and (ii to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.

  18. Promoting HIV Vaccine Research in African American Communities: Does the Theory of Reasoned Action Explain Potential Outcomes of Involvement?

    Science.gov (United States)

    Frew, Paula M; Archibald, Matthew; Martinez, Nina; del Rio, Carlos; Mulligan, Mark J

    2007-01-01

    The HIV/AIDS pandemic continues to challenge the African American community with disproportionate rates of infection, particularly among young women ages 25 to 34 years. Development of a preventive HIV vaccine may bring a substantial turning point in this health crisis. Engagement of the African American community is necessary to improve awareness of the effort and favorably influence attitudes and referent norms. The Theory of Reasoned Action (TRA) may be a useful framework for exploration of community engagement outcomes including future attendance, community mobilization, and study participation. Within the context of HIV vaccine outreach, we conducted a cross-sectional survey in early 2007 with 175 African-American adults (>/= 18 years). Confirmatory factor analysis and structural equation modeling were performed and the findings support the potential of the model in understanding behavioral intentions toward HIV vaccine research.

  19. Live attenuated vaccines: Historical successes and current challenges

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  20. Live attenuated vaccines: Historical successes and current challenges

    International Nuclear Information System (INIS)

    Minor, Philip D.

    2015-01-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues

  1. Use of HIV PEPSE and Hepatitis B vaccine following the introduction of a SARC.

    Science.gov (United States)

    Bennett, Judy; Johnson, Sandie

    2011-11-01

    Adherence to local guidelines on the use of HIV post exposure prophylaxis (PEP) and hepatitis B vaccine following sexual assault was evaluated by means of audit. Forensic Medical Examiners (FMEs) were asked to complete an audit form after conducting sexual offence examinations at Gloucester Sexual Assault Referral Centre (SARC). Only one HIV PEP pack was prescribed during the six and a half month audit period. Examination of the SARC records of the allegations made by complainants did not reveal any high-risk cases involving a failure to offer HIV post-exposure prophylaxis following sexual exposure (PEPSE). The majority of the examinations performed at the SARC were carried out by trained sexual offence examiners (SOEs). The audit indicates that these SOEs were considering the appropriate use of HIV PEPSE and hepatitis B vaccine when they performed examinations. Some examinations were performed by general forensic medical examiners who completed the audit forms infrequently. It was not possible to determine whether these examiners were considering the appropriate use of HIV PEPSE and hepatitis treatments. Copyright © 2011 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+ T cell responses in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Núria Climent

    Full Text Available Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B in human monocyte-derived dendritic cells (MDDC and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α. MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

  3. Candidíase oral como marcador de prognóstico em pacientes portadores do HIV Oral candidiasis as prognostic marker of HIV-infected patients

    Directory of Open Access Journals (Sweden)

    Valdinês Gonçalves dos Santos Cavassani

    2002-10-01

    Full Text Available Introdução: A candidíase oral é uma das doenças oportunistas mais fortemente associadas à infecção pelo Vírus da Imunodeficiência Humana (HIV. Vários relatos epidemiológicos enfatizam a prevalência da candidíase em pacientes HIV positivos e ressaltam a sua importância como marcador da progressão da doença e preditivo para o aumento da imunodepressão. Objetivo: Verificar as alterações estomatológicas em pacientes portadores do HIV tratados no Hospital Heliópolis - São Paulo, Brasil e comparar com a literatura. Forma de Estudo: Retrospectivo clínico não-randomizado. Casuística e Método: Foram analisados 431 pacientes HIV+/AIDS (298 homens e 133 mulheres no Hospital Heliópolis - São Paulo, Brasil, no período de 1995 a 2001. Resultados: A idade média mais comum foi dos 31 aos 40 anos (47,10%; a via de contágio mais comum foi a sexual (71,26%. Dentre as patologias, a candidíase apresentou maior prevalência (29,69%, seguida pela gengivite (16,70% e queilite angular (14,15%. Conclusões: Concluímos que o exame oral e o diagnóstico precoce da candidíase em pacientes infectados pelo HIV são fundamentais para o tratamento imediato, melhorando a sua qualidade de vida, uma vez que a candidíase é uma lesão bucal muito freqüente nesta população.Introduction: Strongly associated with Human Immunodeficiency Virus(HIV, oral candidiasis is one of the most common opportunistic infections. Various epedemiological data now emphasize the prevalence of candidiasis in HIV-infected patients and its importance as useful marker for disease progression and prediction for increasing immunossupression. Aim: The purposes of this study were to assess a group of HIV positive patients treated in Heliopólis Hospital, Hosphel - São Paulo, Brazil and refer the oral changing related to the syndrom and compared the results to the literature. Study design: Retrospective clinical no randomized. Casuistic and method: Four hundred thirty one

  4. Feline immunodeficiency virus model for designing HIV/AIDS vaccines.

    Science.gov (United States)

    Yamamoto, Janet K; Sanou, Missa P; Abbott, Jeffrey R; Coleman, James K

    2010-01-01

    Feline immunodeficiency virus (FIV) discovered in 1986 is a lentivirus that causes AIDS in domestic cats. FIV is classified into five subtypes (A-E), and all subtypes and circulating intersubtype recombinants have been identified throughout the world. A commercial FIV vaccine, consisting of inactivated subtype-A and -D viruses (Fel-O-Vax FIV, Fort Dodge Animal Health), was released in the United States in 2002. The United States Department of Agriculture approved the commercial release of Fel-O-Vax FIV based on two efficacy trials using 105 laboratory cats and a major safety trial performed on 689 pet cats. The prototype and commercial FIV vaccines had broad prophylactic efficacy against global FIV subtypes and circulating intersubtype recombinants. The mechanisms of cross-subtype efficacy are attributed to FIV-specific T-cell immunity. Findings from these studies are being used to define the prophylactic epitopes needed for an HIV-1 vaccine for humans.

  5. Immunoglobulin G1 Allotype Influences Antibody Subclass Distribution in Response to HIV gp140 Vaccination

    Directory of Open Access Journals (Sweden)

    Sven Kratochvil

    2017-12-01

    Full Text Available Antibody subclasses exhibit extensive polymorphisms (allotypes that could potentially impact the quality of HIV-vaccine induced B cell responses. Allotypes of immunoglobulin (Ig G1, the most abundant serum antibody, have been shown to display altered functional properties in regard to serum half-life, Fc-receptor binding and FcRn-mediated mucosal transcytosis. To investigate the potential link between allotypic IgG1-variants and vaccine-generated humoral responses in a cohort of 14 HIV vaccine recipients, we developed a novel protocol for rapid IgG1-allotyping. We combined PCR and ELISA assays in a dual approach to determine the IgG1 allotype identity (G1m3 and/or G1m1 of trial participants, using human plasma and RNA isolated from PBMC. The IgG1-allotype distribution of our participants mirrored previously reported results for caucasoid populations. We observed elevated levels of HIV gp140-specific IgG1 and decreased IgG2 levels associated with the G1m1-allele, in contrast to G1m3 carriers. These data suggest that vaccinees homozygous for G1m1 are predisposed to develop elevated Ag-specific IgG1:IgG2 ratios compared to G1m3-carriers. This elevated IgG1:IgG2 ratio was further associated with higher FcγR-dimer engagement, a surrogate for potential antibody-dependent cellular cytotoxicity (ADCC and antibody-dependent cellular phagocytosis (ADCP function. Although preliminary, these results suggest that IgG1 allotype may have a significant impact on IgG subclass distribution in response to vaccination and associated Fc-mediated effector functions. These results have important implications for ongoing HIV vaccine efficacy studies predicated on engagement of FcγR-mediated cellular functions including ADCC and ADCP, and warrant further investigation. Our novel allotyping protocol provides new tools to determine the potential impact of IgG1 allotypes on vaccine efficacy.

  6. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    Directory of Open Access Journals (Sweden)

    Marc H. V. Van Regenmortel

    2018-01-01

    Full Text Available Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly

  7. Pregnancy Incidence and Correlates during the HVTN 503 Phambili HIV Vaccine Trial Conducted among South African Women

    Science.gov (United States)

    Latka, Mary H.; Fielding, Katherine; Gray, Glenda E.; Bekker, Linda-Gail; Nchabeleng, Maphoshane; Mlisana, Koleka; Nielson, Tanya; Roux, Surita; Mkhize, Baningi; Mathebula, Matsontso; Naicker, Nivashnee; de Bruyn, Guy; Kublin, James; Churchyard, Gavin J.

    2012-01-01

    Background HIV prevention trials are increasingly being conducted in sub-Saharan Africa. Women at risk for HIV are also at risk of pregnancy. To maximize safety, women agree to avoid pregnancy during trials, yet pregnancies occur. Using data from the HVTN 503/“Phambili” vaccine trial, we report pregnancy incidence during and after the vaccination period and identify factors, measured at screening, associated with incident pregnancy. Methods To enrol in the trial, women agreed and were supported to avoid pregnancy until 1 month after their third and final vaccination (“vaccination period”), corresponding to the first 7 months of follow-up. Unsterilized women, pooled across study arms, were analyzed. Poisson regression compared pregnancy rates during and after the vaccination period. Cox proportional hazards regression identified associations with first pregnancy. Results Among 352 women (median age 23 yrs; median follow-up 1.5 yrs), pregnancy incidence was 9.6/100 women-years overall and 6.8/100 w-yrs and 11.3/100 w-yrs during and after the vaccination period, respectively [Rate Ratio = 0.60 (0.32–1.14), p = 0.10]. In multivariable analysis, pregnancy was reduced among women who: enrolled at sites providing contraception on-site [HR = 0.43, 95% CI (0.22–0.86)]; entered the trial as injectable contraceptive users [HR = 0.37 (0.21–0.67)] or as consistent condom users (trend) [HR = 0.54 (0.28–1.04)]. Compared with women with a single partner of HIV-unknown status, pregnancy rates were increased among women with: a single partner whose status was HIV-negative [HR = 2.34(1.16–4.73)] and; 2 partners both of HIV-unknown status [HR = 4.42(1.59–12.29)]. Women with 2 more of these risk factors: marijuana use, heavy drinking, or use of either during sex, had increased pregnancy incidence [HR = 2.66 (1.24–5.72)]. Conclusions It is possible to screen South African women for pregnancy risk at trial entry. Providing injectable

  8. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals.

    Directory of Open Access Journals (Sweden)

    Henrik N Kløverpris

    Full Text Available HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation.We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach 'OPAL-HIV-Gag(c'. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6, 24 mg (n = 7, 48 mg (n = 2 or matching placebo (n = 8 with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS.The OPAL-HIV-Gag(c peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c, 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours in OPAL-HIV-Gag(c but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001, compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16.Despite strong immunogenicity observed in

  9. A multi-country study of dengue vaccination strategies with Dengvaxia and a future vaccine candidate in three dengue-endemic countries: Vietnam, Thailand, and Colombia.

    Science.gov (United States)

    Lee, Jung-Seok; Lourenço, José; Gupta, Sunetra; Farlow, Andrew

    2018-04-19

    The dengue vaccination era began when Dengvaxia (CYD-TDV) became available in 2016. In addition, several second-generation vaccine candidates are currently in phase 3 trials, suggesting that a broader availability of dengue vaccines may be possible in the near future. Advancing on the recent WHO-SAGE recommendations for the safe and effective use of CYD-TDV at the regional level on average, this study investigates the vaccination impacts and cost-effectiveness of CYD-TDV and of a hypothetical new vaccine candidate (NVC) in a country-specific manner for three endemic countries: Vietnam, Thailand, and Colombia. The vaccination impacts of CYD-TDV and NVC were derived by fitting the empirical seroprevalence rates of 9 year olds into an individual-based meta-population transmission model, previously used for the WHO-SAGE working group. The disability-adjusted life years were estimated by applying country-specific parametric values. The cost-effectiveness analyses of four intervention strategies in combination with routine and catch-up campaigns were compared for both vaccines to inform decision makers regarding the most suitable immunization program in each of the three countries. Both CYD-TDV and NVC could be cost-effective at the DALY threshold cost of $2000 depending upon vaccination costs. With CYD-TDV, targeting 9 year olds in routine vaccination programs and 10-29 year olds as a one-off catch-up campaign was the most cost-effective strategy in all three countries. With NVC, while the most cost-effective strategy was to vaccinate 9-29 and 9-18 year olds in Vietnam and Thailand respectively, vaccinating younger age cohorts between 1 and 5 years old in Colombia was more cost-effective than other strategies. Given that three countries will soon face decisions regarding whether and how to incorporate CYD-TDV or future dengue vaccines into their budget-constrained national immunization programs, the current study outcomes can be used to help decision makers

  10. Vaccination status of people living with HIV/AIDS in outpatient care in Fortaleza, Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Gilmara Holanda da Cunha

    2016-09-01

    Full Text Available Antiretroviral therapy has increased the survival of patients with HIV/AIDS, thus necessitating health promotion practice with immunization. Vaccines are critical components for protecting people living with HIV/AIDS (PLWHA. The purpose of study was to analyze the vaccination status of PLWHA in outpatient care in Fortaleza, Ceará, Brazil. Cross-sectional study performed from June 2014 to June 2015. The screening was done with patients in antiretroviral therapy, 420 patients underwent screening, but only 99 met the inclusion criteria. Data were collected for interviews using forms to characterize sociodemographic, clinical and vaccination situations. Only 14 patients had complete vaccination schedules. The most used vaccines were hepatitis B, influenza vaccine and 23-valent pneumococcal. There was no difference between men and women regarding the proportion of PLWHA with full vaccination schedule or between sex, skin color, marital status, sexual orientation, religion or occupational status. There was no difference between having or not having a complete vaccination schedule and age, years of education, family income or number of hospitalizations. CD4+ T-cells count of patients with incomplete immunization was lower than patients with complete immunization. Health education strategies can be done individually or in groups to explain the importance of vaccination and to remind about doses to be administered. Most patients did not have proper adherence to vaccination schedules, especially due to lack of guidance. Results implied that education in health is important for vaccination adhesion, knowledge of adverse events and continuation of schemes.

  11. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  12. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials

    Directory of Open Access Journals (Sweden)

    Julia L. Hurwitz

    2010-02-01

    Full Text Available Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of ‘original antigenic sin’ is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.

  13. Evaluation of Lethal Giant Larvae as a Schistosomiasis Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Yufan Cao

    2016-01-01

    Full Text Available Schistosomiasis is a neglected tropical disease of humans, and it is considered to be the second most devastating parasitic disease after malaria. Eggs produced by normally developed female worms are important in the transmission of the parasite, and they responsible for the pathogenesis of schistosomiasis. The tumor suppressor gene lethal giant larvae (lgl has an essential function in establishing apical-basal cell polarity, cell proliferation, differentiation, and tissue organization. In our earlier study, downregulation of the lgl gene induced a significant reduction in the egg hatching rate of Schistosoma japonicum (Sj eggs. In this study, the Sjlgl gene was used as a vaccine candidate against schistosomiasis, and vaccination achieved and maintained a stable reduction of the egg hatching rate, which is consistent with previous studies, in addition to reducing the worm burden and liver egg burden in some trials.

  14. Peru-15 (Choleragarde(®)), a live attenuated oral cholera vaccine, is safe and immunogenic in human immunodeficiency virus (HIV)-seropositive adults in Thailand.

    Science.gov (United States)

    Ratanasuwan, W; Kim, Y H; Sah, B K; Suwanagool, S; Kim, D R; Anekthananon, A; Lopez, A L; Techasathit, W; Grahek, S L; Clemens, J D; Wierzba, T F

    2015-09-11

    Many areas with endemic and epidemic cholera report significant levels of HIV transmission. According to the World Health Organization (WHO), over 95% of reported cholera cases occur in Africa, which also accounts for nearly 70% of people living with HIV/AIDS globally. Peru-15, a promising single dose live attenuated oral cholera vaccine (LA-OCV), was previously found to be safe and immunogenic in cholera endemic areas. However, no data on the vaccine's safety among HIV-seropositive adults had been collected. This study was a double-blinded, individually randomized, placebo-controlled trial enrolling HIV-seropositive adults, 18-45 years of age, conducted in Bangkok, Thailand, to assess the safety of Peru-15 in a HIV-seropositive cohort. 32 HIV infected subjects were randomized to receive either a single oral dose of the Peru-15 vaccine with a buffer or a placebo (buffer only). No serious adverse events were reported during the follow-up period in either group. The geometric mean fold (GMF) rise in V. cholerae O1 El Tor specific antibody titers between baseline and 7 days after dosing was 32.0 (pcholerae was isolated from the stool of one vaccinee, and found to be genetically identical to the Peru-15 vaccine strain. There were no significant changes in HIV viral load or CD4 T-cell counts between vaccine and placebo groups. Peru-15 was shown to be safe and immunogenic in HIV-seropositive Thai adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Essack Zaynab

    2010-03-01

    Full Text Available Abstract Background Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. Methods In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Results Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. Conclusion The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  16. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa.

    Science.gov (United States)

    Mamotte, Nicole; Wassenaar, Douglas; Koen, Jennifer; Essack, Zaynab

    2010-03-09

    Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB) and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  17. Stakeholder views of ethical guidance regarding prevention and care in HIV vaccine trials

    Science.gov (United States)

    2014-01-01

    Background South Africa is a major hub of HIV prevention trials, with plans for a licensure trial to start in 2015. The appropriate standards of care and of prevention in HIV vaccine trials are complex and debated issues and ethical guidelines offer some direction. However, there has been limited empirical exploration of South African stakeholders’ perspectives on ethical guidance related to prevention and care in HIV vaccine trials. Methods Site staff, Community Advisory Board members and Research Ethics Committee members involved with current HIV vaccine trials in South Africa were invited to participate in an exploration of their views. A questionnaire listed 10 care and 10 prevention recommendations drawn from two widely available sets of ethical guidelines for biomedical HIV prevention trials. Respondents (n = 98) rated each recommendation on five dimensions: “Familiarity with”, “Ease of Understanding”, “Ease of Implementing”, “Perceived Protection”, and “Agreement with” each ethical recommendation. The ratings were used to describe stakeholder perspectives on dimensions for each recommendation. Dimension ratings were averaged across the five dimensions and used as an indication of overall merit for each recommendation. Differences were explored across dimensions, between care-oriented and prevention-oriented recommendations, and between stakeholder groups. Results Both care and prevention recommendations were rated highly overall, with median ratings well above the scale midpoint. In general, informed consent recommendations were most positively rated. Care-related recommendations were rated significantly more positively than prevention-related recommendations, with the five lowest-rated recommendations being prevention-related. The most problematic dimension across all recommendations was “Ease of Implementing,” and the least problematic was “Agreement with,” suggesting the most pressing stakeholder concerns are practical

  18. Generation and Characterization of Live Attenuated Influenza A(H7N9 Candidate Vaccine Virus Based on Russian Donor of Attenuation.

    Directory of Open Access Journals (Sweden)

    Svetlana Shcherbik

    Full Text Available Avian influenza A (H7N9 virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV to provide temperature sensitive, cold-adapted and attenuated phenotypes.LAIV candidate A/Anhui/1/2013(H7N9-CDC-LV7A (abbreviated as CDC-LV7A, based on the Russian MDV, A/Leningrad/134/17/57 (H2N2, was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9RG-LV1 and A(H7N9RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9 virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.Our data indicate that the A/Anhui/1/2013(H7N9-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for

  19. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity

    KAUST Repository

    Pahil, Sapna

    2017-08-02

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  20. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    Science.gov (United States)

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G P S

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  1. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity

    KAUST Repository

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G. P. S.

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  2. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    Directory of Open Access Journals (Sweden)

    Sapna Pahil

    Full Text Available Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I, a putative heat shock protein (EL PGI II, Spa32 (EL PGI III, IcsB (EL PGI IV and a hypothetical protein (EL PGI V. These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  3. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  4. Virus-like particles as nanovaccine candidates

    International Nuclear Information System (INIS)

    Guillen, G; Aguilar, J C; Dueñas, S; Hermida, L; Iglesias, E; Penton, E; Lobaina, Y; Lopez, M; Mussachio, A; Falcon, V; Alvarez, L; Martinez, G; Gil, L; Valdes, I; Izquierdo, A; Lazo, L; Marcos, E; Guzman, G; Muzio, V; Herrera, L

    2013-01-01

    The existing vaccines are mainly limited to the microorganisms we are able to culture and produce and/or to those whose killing is mediated by humoral response (antibody mediated). It has been more difficult to develop vaccines capable of inducing a functional cellular response needed to prevent or cure chronic diseases. New strategies should be taken into account in the improvement of cell-based immune responses in order to prevent and control the infections and eventually clear the virus. Preclinical and clinical results with vaccine candidates developed as a vaccine platform based on virus-like particles (VLPs) evidenced their ability to stimulate mucosal as well as systemic immunity. Particles based on envelope, membrane or nucleocapsid microbial proteins induce a strong immune response after nasal or parenteral administration in mice, non-human primates and humans. In addition, the immune response obtained was modulated in a Th1 sense. The VLPs were also able to immunoenhance the humoral and cellular immune responses against several viral pathogens. Studies in animals and humans with nasal and systemic formulations evidenced that it is possible to induce functional immune response against HBV, HCV, HIV and dengue virus. (paper)

  5. The ethical and legal regulation of HIV-vaccine research in Africa ...

    African Journals Online (AJOL)

    We discuss the general findings of the audit and the complex issues arising from HIV-vaccine research, specifically. Lastly, we propose specific ways in which the ethical/legal frameworks guiding research with human participants in these countries can be improved. Keywords: Africa, clinical trials, country profiles, ethics, ...

  6. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of Electroporated HIV DNA with or without Interleukin 12 in Prime-Boost Combinations with an Ad35 HIV Vaccine in Healthy HIV-Seronegative African Adults.

    Directory of Open Access Journals (Sweden)

    Juliet Mpendo

    Full Text Available Strategies to enhance the immunogenicity of DNA vaccines in humans include i co-administration of molecular adjuvants, ii intramuscular administration followed by in vivo electroporation (IM/EP and/or iii boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study.Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG plasmid DNA (pDNA vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12 (GENEVAX IL-12 given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM.All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse events (SAEs were reported. T cell and antibody response rates after HIVMAG (x3 prime-Ad35 (x1 boost were independent of IL-12, while the magnitude of interferon gamma (IFN-γ ELISPOT responses was highest after HIVMAG (x3 without IL-12. The quality and phenotype of T cell responses shown by intracellular cytokine staining (ICS were similar between groups. Inhibition of HIV replication by autologous T cells was demonstrated after HIVMAG (x3 prime and was boosted after Ad35. HIV specific antibodies were detected only after Ad35 boost, although there was a priming effect with 3 doses of HIVMAG with or without IL-12. No anti-IL-12 antibodies were detected.The vaccines were safe, well tolerated and moderately immunogenic. Repeated administration IM/EP was well accepted. An adjuvant effect of co-administered plasmid IL-12 was not detected.ClinicalTrials.gov NCT01496989.

  7. Risk factors for pneumococcal nasopharyngeal colonization before and after pneumococcal conjugate vaccination in persons with HIV

    DEFF Research Database (Denmark)

    Öbrink-Hansen, Kristina; Søgaard, Ole S; Harboe, Zitta B

    HIV-infected individuals have excess rates of invasive pneumococcal disease. We investigated risk factors for nasopharyngeal pneumococcal colonization at baseline and after 9 months in 96 HIV patients immunized twice with 7- valent pneumococcal conjugate vaccine ±1mg CPG 7909. In total, 22 patients...

  8. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults.

    Directory of Open Access Journals (Sweden)

    Gloria Omosa-Manyonyi

    Full Text Available Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01 plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN may lead to a unique immune profile, inducing both strong T-cell and antibody responses.In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured.The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration.Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses.ClinicalTrials.gov NCT01264445.

  9. Rational design of HIV vaccine and microbicides: report of the EUROPRISE annual conference.

    Science.gov (United States)

    Wahren, Britta; Biswas, Priscilla; Borggren, Marie; Coleman, Adam; Da Costa, Kelly; De Haes, Winni; Dieltjens, Tessa; Dispinseri, Stefania; Grupping, Katrijn; Hallengärd, David; Hornig, Julia; Klein, Katja; Mainetti, Lara; Palma, Paolo; Reudelsterz, Marc; Seifried, Janna; Selhorst, Philippe; Sköld, Annette; Uchtenhagen, Hannes; van Gils, Marit J; Weber, Caroline; Shattock, Robin; Scarlatti, Gabriella

    2010-07-26

    EUROPRISE is a Network of Excellence sponsored from 2007 to 2011 by the European Commission within the 6th Framework Program. The Network encompasses a wide portfolio of activities ranging from an integrated research program in the field of HIV vaccines and microbicides to training, dissemination and advocacy. The research program covers the whole pipeline of vaccine and microbicide development from discovery to early clinical trials. The Network is composed of 58 partners representing more than 65 institutions from 13 European countries; it also includes three major pharmaceutical companies (GlaxoSmithKline, Novartis and Sanofi-Pasteur) involved in HIV microbicide and vaccine research. The Network displays a dedicated and informative web page: http://www.europrise.org. Finally, a distinguishing trait of EUROPRISE is its PhD School of students from across Europe, a unique example in the world of science aimed at spreading excellence through training. EUROPRISE held its second annual conference in Budapest in November, 2009. The conference had 143 participants and their presentations covered aspects of vaccine and microbicide research, development and discovery. Since training is a major task of the Network, the students of the EUROPRISE PhD program summarized certain presentations and their view of the conference in this paper.

  10. Rational design of HIV vaccine and microbicides: report of the EUROPRISE annual conference

    Directory of Open Access Journals (Sweden)

    Mainetti Lara

    2010-07-01

    Full Text Available Abstract EUROPRISE is a Network of Excellence sponsored from 2007 to 2011 by the European Commission within the 6th Framework Program. The Network encompasses a wide portfolio of activities ranging from an integrated research program in the field of HIV vaccines and microbicides to training, dissemination and advocacy. The research program covers the whole pipeline of vaccine and microbicide development from discovery to early clinical trials. The Network is composed of 58 partners representing more than 65 institutions from 13 European countries; it also includes three major pharmaceutical companies (GlaxoSmithKline, Novartis and Sanofi-Pasteur involved in HIV microbicide and vaccine research. The Network displays a dedicated and informative web page: http://www.europrise.org. Finally, a distinguishing trait of EUROPRISE is its PhD School of students from across Europe, a unique example in the world of science aimed at spreading excellence through training. EUROPRISE held its second annual conference in Budapest in November, 2009. The conference had 143 participants and their presentations covered aspects of vaccine and microbicide research, development and discovery. Since training is a major task of the Network, the students of the EUROPRISE PhD program summarized certain presentations and their view of the conference in this paper.

  11. A single dose of live-attenuated 638 Vibrio cholerae oral vaccine is safe and immunogenic in adult volunteers in Mozambique

    Directory of Open Access Journals (Sweden)

    Hilda María García

    2011-12-01

    Full Text Available A placebo-controlled randomized, double-blind, clinical trial was carried out to assess the safety, reactogenicity, and immunogenicity of the lyophilized vaccine candidate against cholera derived from the live attenuated 638 Vibrio cholerae O1 El Tor Ogawa strain. One hundred and twenty presumably healthy female and male adult volunteers aged between 18 and 50 years were included. They were from Maputo, Mozambique a cholera endemic area, where, in addition, human immunodeficiency virus (HIV seroprevalence is from 20 to 30%. A dose of 2 x 10 9 colony forming units (CFU was given to 80 subjects and other 40 received only vaccine lyoprotectors as a placebo control. Out-patient follow-up of adverse events was carried out during the following 30 days after vaccination. The immune response was evaluated by the estimation of seroconversion rate and the geometric mean titer (GMT of vibriocidal antibodies in the sera from volunteers that was collected previously, and at days 14 and 21 after immunization. No serious adverse events were reported. The adverse events found in the vaccine group were similar to those of the placebo groups. They were independent from the detection of antibodies against HIV-1, HIV-2, hepatitis (H A; HC and hepatitis B surface antigen. The presence of helminthes did not modify the incidence of adverse events. The 638 vaccine strain was isolated in 37 (46.25% vaccinated volunteer's feces. The peak of the GMT of vibriocidal antibodies in the vaccine group was 9056 versus 39 in the placebo group at 14 days with a total seroconversion of 97.4% at 21 days. The 638 vaccine candidate is safe and immunogenic in a cholera endemic region.

  12. Factors associated with self-reported HBV vaccination among HIV-negative MSM participating in an online sexual health survey: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Jonathan E Matthews

    Full Text Available A substantial proportion of men who have sex with men (MSM in the United States remain unvaccinated against hepatitis B. We sought to understand which factors are associated with vaccination among HIV-negative MSM.Data were from a 2010 web-based survey of adult MSM. We calculated the prevalence of self-reported hepatitis B vaccination among 1,052 HIV-negative or HIV-untested men who knew their hepatitis B vaccination status, and used multivariate logistic regression to determine associated factors. 679 (64.5% MSM reported being vaccinated. Younger men were more likely to report being vaccinated than older men, and there was a significant interaction between age and history of hepatitis B testing. Men with at least some college education were at least 2.1 times as likely to be vaccinated as men with a high school education or less (95% CI = 1.4-3.1. Provider recommendation for vaccination (aOR = 4.2, 95% CI = 2.4-7.4 was also significantly associated with receipt of vaccination.Providers should assess sexual histories of male patients and offer those patients with male sex partners testing for hepatitis infection and vaccinate susceptible patients. There may be particular opportunities for screening and vaccination among older and more socioeconomically disadvantaged MSM.

  13. The fimbrial protein FlfA from Gallibacterium anatis is a virulence factor and vaccine candidate

    DEFF Research Database (Denmark)

    Bager, Ragnhild Jørgensen; Nesta, Barbara; Pors, Susanne Elisabeth

    2013-01-01

    in the natural chicken host. Furthermore, protection against G. anatis 12656-12 could be induced by immunizing chickens with recombinant FlfA. Finally, in vitro expression of FlfA homologs was observed in a genetically diverse set of G. anatis strains, suggesting the potential of FlfA as a serotype-independent...... vaccine candidate This is the first study describing a fimbrial subunit protein of G. anatis with a clear potential as a vaccine antigen....

  14. Ethical considerations in HIV prevention and vaccine research in resource-limited settings.

    Science.gov (United States)

    Garner, Samual A; Anude, Chuka J; Adams, Elizabeth; Dawson, Liza

    2014-09-01

    HIV prevention research has been facing increasing ethical and operational challenges. Factors influencing the design and conduct of HIV prevention trials include a rapidly changing evidence base, new biomedical prevention methods and modalities being tested, a large diversity of countries, sites and populations affected by HIV and participating in trials, and challenges of developing and making available products that will be feasible and affordable for at-risk populations. To discuss these challenges, a meeting, Ethical considerations around novel combination prevention modalities in HIV prevention and vaccine trials in resource-limited settings, was convened by NIH/NIAID/Division of AIDS on April 22-23, 2013. Several themes emerged from the meeting: (1) because of both trial design and ethical complexities, choosing prevention packages and designing combination prevention research trials will need to be evaluated on a case by case basis in different clinical trials, countries, and health systems; (2) multilevel stakeholder engagement from the beginning is vital to a fair and transparent process and also to designing ethical and relevant trials; (3) research should generally be responsive to a host country's needs, and sponsors and stakeholders should work together to address potential barriers to future access; and finally, (4) another meeting including a broader group of stakeholders is needed to address many of the outstanding ethical issues raised by this meeting. We offer an overview of the meeting and the key discussion points and recommendations to help guide the design and conduct of future HIV prevention and vaccine research in resource-limited settings.

  15. Vacuna contra la fiebre hemorrágica argentina Candid#1 producida en la Argentina: Inmunogenicidad y seguridad Candid#1 vaccine against Argentine Hemorrhagic Fever produced in Argentina: Immunogenicity and safety

    Directory of Open Access Journals (Sweden)

    Delia A. Enria

    2010-06-01

    Full Text Available Se realizó un estudio clínico en 946 voluntarios humanos sanos, donde se comparó la vacuna Candid#1 producida en Argentina con la elaborada en EE.UU., que había sido utilizada en estudios previos. Como objetivo primario se evaluó la equivalencia en la eficacia utilizando como marcador subrogante a la inmunogenicidad medida por detección de anticuerpos neutralizantes. Como objetivo secundario se evaluó la equivalencia en inocuidad comparando las tasas de reacciones adversas. Ambas vacunas mostraron una tasa equivalente de inmunogenicidad ligeramente superior al 95.5%, que es la eficacia estimada para Candid #1 en estudios previos. No se observaron eventos adversos graves relacionados con la vacuna. Los eventos adversos generales considerados relacionados fueron de escasa significación clínica y de resolución espontánea o con tratamiento sintomático; se presentaron en los receptores de ambas vacunas en tasas equivalentes (29.9% para la vacuna fabricada en la Argentina y 35.0% para la fabricada en EE.UU., e incluyeron: cefalea, decaimiento, mialgias, plaquetopenia leve (A clinical study in 946 human volunteers was done to compare Candid #1 vaccine manufactured in Argentina with the vaccine produced in USA that had been previously used. The efficacy was evaluated using immunogenicity measured by the detection of neutralizing antibodies as a subrogate marker. Safety was evaluated comparing the rate of adverse events. Both vaccines showed a comparable rate of seroconversion, slighty higher than the efficacy estimated from previous studies (95.5%. There were no severe adverse events related to the vaccines. The general events considered related to the vaccines were not clinically relevant and disappeared either spontaneously or with symptomatic treatment. Similar rates of adverse events (29.9% for the Argentine vaccine and 35.0% for the USA vaccine were found for both vaccines. These included: headache, weakness, myalgias, mild low blood

  16. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010

    Directory of Open Access Journals (Sweden)

    Uchtenhagen Hannes

    2011-04-01

    Full Text Available Abstract Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda, and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.

  17. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010.

    Science.gov (United States)

    Brinckmann, Sarah; da Costa, Kelly; van Gils, Marit J; Hallengärd, David; Klein, Katja; Madeira, Luisa; Mainetti, Lara; Palma, Paolo; Raue, Katharina; Reinhart, David; Reudelsterz, Marc; Ruffin, Nicolas; Seifried, Janna; Schäfer, Katrein; Sheik-Khalil, Enas; Sköld, Annette; Uchtenhagen, Hannes; Vabret, Nicolas; Ziglio, Serena; Scarlatti, Gabriella; Shattock, Robin; Wahren, Britta; Gotch, Frances

    2011-04-12

    Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda), and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.

  18. Adjuvant-Associated Peripheral Blood mRNA Profiles and Kinetics Induced by the Adjuvanted Recombinant Protein Candidate Tuberculosis Vaccine M72/AS01 in Bacillus Calmette–Guérin-Vaccinated Adults

    Directory of Open Access Journals (Sweden)

    Robert A. van den Berg

    2018-03-01

    Full Text Available Systems biology has the potential to identify gene signatures associated with vaccine immunogenicity and protective efficacy. The main objective of this study was to identify optimal postvaccination time points for evaluating peripheral blood RNA expression profiles in relation to vaccine immunogenicity and potential efficacy in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096; https://clinicaltrials.gov/, healthy Bacillus Calmette–Guérin-primed, HIV-negative adults were administered two doses (30 days apart of M72/AS01. Twenty subjects completed the study and 18 subjects received two doses. Blood samples were collected pre-dose 1, pre-dose 2, and 1, 7, 10, 14, 17, and 30 days post-dose 2. RNA expression in whole blood (WB and peripheral blood mononuclear cells (PBMCs was quantified using microarray technology. Serum interferon-gamma responses and M72-specific CD4+ T cell responses to vaccination, and the observed safety profile were similar to previous trials. Two different approaches were utilized to analyze the RNA expression data. First, a kinetic analysis of RNA expression changes using blood transcription modules revealed early (1 day post-dose 2 activation of several pathways related to innate immune activation, both in WB and PBMC. Second, using a previously identified gene signature as a classifier, optimal postvaccination time points were identified. Since M72/AS01 efficacy remains to be established, a PBMC-derived gene signature associated with the protective efficacy of a similarly adjuvanted candidate malaria vaccine was used as a proxy for this purpose. This approach was based on the assumption that the AS01 adjuvant used in both studies could induce shared innate immune pathways. Subjects were classified as gene signature positive (GS+ or gene signature negative (GS−. Assignments of subjects to GS+ or GS− groups were confirmed by significant differences in RNA

  19. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Directory of Open Access Journals (Sweden)

    Dhanasekaran Govindarajan

    Full Text Available Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  20. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children.

    Science.gov (United States)

    Walker, Richard I

    2015-02-18

    Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Oral administration of live Shigella vaccine candidates in rhesus monkeys show no evidence of competition for colonization and immunogenicity between different serotypes.

    Science.gov (United States)

    Ranallo, R T; Kaminski, R; Baqar, S; Dutta, M; Lugo-Roman, L A; Boren, T; Barnoy, S; Venkatesan, M M

    2014-03-26

    Live oral monovalent Shigella flexneri 2a vaccine candidates as well as bivalent formulations with Shigella sonnei were evaluated in a rhesus monkey model for colonization and immunogenicity. Freshly harvested suspensions of S. flexneri 2a vaccine candidates WRSf2G12 and WRSf2G15 as well as S. sonnei vaccine candidate WRSs3 were nasogastrically administered to groups of rhesus monkeys, Macaca mulatta, either in a monovalent form or when combined with each other. The animals were monitored daily for physical well-being, stools were subjected to quantitative colony immunoblot assays for bacterial excretion and blood and stools were evaluated for humoral and mucosal immune responses. No clinical symptoms were noted in any group of animals and the vaccine candidates were excreted robustly for 48-72h without significant changes in either the magnitude or duration of excretion when given as a monovalent or as bivalent mixtures. Similarly, immunological interferences were not apparent in the magnitude of humoral and mucosal immune responses observed toward Shigella-specific antigens when monkeys were fed monovalent or bivalent formulations. These results predict that a multivalent live oral vaccine of more than one serotype can have a favorable outcome for protection against shigellosis. Published by Elsevier Ltd.

  2. Population immunity to measles virus and the effect of HIV-1 infection after a mass measles vaccination campaign in Lusaka, Zambia: a cross-sectional survey.

    Science.gov (United States)

    Lowther, Sara A; Curriero, Frank C; Kalish, Brian T; Shields, Timothy M; Monze, Mwaka; Moss, William J

    2009-03-21

    Measles control efforts are hindered by challenges in sustaining high vaccination coverage, waning immunity in HIV-1-infected children, and clustering of susceptible individuals. Our aim was to assess population immunity to measles virus after a mass vaccination campaign in a region with high HIV prevalence. 3 years after a measles supplemental immunisation activity (SIA), we undertook a cross-sectional survey in Lusaka, Zambia. Households were randomly selected from a satellite image. Children aged 9 months to 5 years from selected households were eligible for enrolment. A questionnaire was administered to the children's caregivers to obtain information about measles vaccination history and history of measles. Oral fluid samples were obtained from children and tested for antibodies to measles virus and HIV-1 by EIA. 1015 children from 668 residences provided adequate specimens. 853 (84%) children had a history of measles vaccination according to either caregiver report or immunisation card. 679 children (67%) had antibodies to measles virus, and 64 (6%) children had antibodies to HIV-1. Children with antibodies to HIV-1 were as likely to have no history of measles vaccination as those without antibodies to HIV-1 (odds ratio [OR] 1.17, 95% CI 0.57-2.41). Children without measles antibodies were more likely to have never received measles vaccine than those with antibodies (adjusted OR 2.50, 1.69-3.71). In vaccinated children, 33 (61%) of 54 children with antibodies to HIV-1 also had antibodies to measles virus, compared with 568 (71%) of 796 children without antibodies to HIV-1 (p=0.1). 3 years after an SIA, population immunity to measles was insufficient to interrupt measles virus transmission. The use of oral fluid and satellite images for sampling are potential methods to assess population immunity and the timing of SIAs.

  3. Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate.

    Science.gov (United States)

    Delgado, Maité; Yero, Daniel; Niebla, Olivia; González, Sonia; Climent, Yanet; Pérez, Yusleydis; Cobas, Karem; Caballero, Evelín; García, Darien; Pajón, Rolando

    2007-12-05

    Polysaccharide-based vaccines for serogroup B Neisseria meningitidis have failed to induce protective immunity. As a result, efforts to develop vaccines for serogroup B meningococcal disease have mostly focused on outer membrane proteins (OMP). Vaccine candidates based on meningococcal OMP have emerged in the form of outer membrane vesicles (OMVs) or, more recently, purified recombinant proteins, as alternative strategies for serogroup B vaccine development. In our group, the protein composition of the Cuban OMVs-based vaccine VA-MENGOC-BC was elucidated using two-dimensional gel electrophoresis and mass spectrometry. The proteomic map of this product allowed the identification of new putative protective proteins not previously reported as components of an antimeningococcal vaccine. In the present study, we have determined the immunogenicity and protective capacity of NMB0928, one of those proteins present in the OMVs. The antigen was obtained as a recombinant protein in Escherichia coli, purified and used to immunize mice. The antiserum produced against the protein was capable to recognize the natural protein in different meningococcal strains by whole-cell ELISA and Western blotting. After immunization, recombinant NMB0928 induced bactericidal antibodies, and when the protein was administered inserted into liposomes, the elicited antibodies were protective in the infant rat model. These results suggest that NMB0928 is a novel antigen worth to be included in a broadly protective meningococcal vaccine.

  4. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-09-21

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in Escherichia coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. Published by Elsevier Ltd.

  5. Priming B cell-mediated anti-HIV envelope responses by vaccination allows for the long-term control of infection in macaques exposed to a R5-tropic SHIV

    International Nuclear Information System (INIS)

    Buckner, Clarisa; Gines, Leoned G.; Saunders, Cheryl J.; Vojtech, Lucia; Srivastava, Indresh; Gettie, Agegnehu; Bohm, Rudolph; Blanchard, James; Barnett, Susan W.; Safrit, Jeffrey T.; Stamatatos, Leonidas

    2004-01-01

    The potential of vaccine-elicited anti-HIV envelope antibodies to control HIV-infection was evaluated by immunizing macaques with the HIV envelope protein and transiently depleting them of their CD8+ cells before intravenous challenge with the pathogenic CCR5-tropic SIV/HIV chimeric virus, SHIV SF162P4 . Although sterilizing immunity was not achieved, all vaccinated animals effectively controlled infection and remained free of disease for the duration of observation (over 3 years). In contrast, during the same period, the control animals progressed to disease. Both the vaccinees and the controls developed robust cell-mediated antiviral and neutralizing antibody responses following infection. A comparative analysis of these responses suggests that the more effective long-term control of infection by the vaccinated animals is due to the more rapid development of anti-HIV envelope antibodies. These studies suggest that priming by vaccination of B cell anti-HIV envelope responses maybe crucial for the long-term control of HIV infection

  6. Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12–24 months

    Directory of Open Access Journals (Sweden)

    Segeja Method D

    2009-07-01

    Full Text Available Abstract Background Development and deployment of an effective malaria vaccine would complement existing malaria control measures. A blood stage malaria vaccine candidate, Merozoite Surface Protein-3 (MSP3, produced as a long synthetic peptide, has been shown to be safe in non-immune and semi-immune adults. A phase Ib dose-escalating study was conducted to assess the vaccine's safety and immunogenicity in children aged 12 to 24 months in Korogwe, Tanzania (ClinicalTrials.gov number: NCT00469651. Methods This was a double-blind, randomized, controlled, dose escalation phase Ib trial, in which children were given one of two different doses of the MSP3 antigen (15 μg or 30 μg or a control vaccine (Engerix B. Children were randomly allocated either to the MSP3 candidate malaria vaccine or the control vaccine administered at a schedule of 0, 1, and 2 months. Immunization with lower and higher doses was staggered for safety reasons starting with the lower dose. The primary endpoint was safety and reactogenicity within 28 days post-vaccination. Blood samples were obtained at different time points to measure immunological responses. Results are presented up to 84 days post-vaccination. Results A total of 45 children were enrolled, 15 in each of the two MSP3 dose groups and 15 in the Engerix B group. There were no important differences in reactogenicity between the two MSP3 groups and Engerix B. Grade 3 adverse events were infrequent; only five were detected throughout the study, all of which were transient and resolved without sequelae. No serious adverse event reported was considered to be related to MSP3 vaccine. Both MSP3 dose regimens elicited strong cytophilic IgG responses (subclasses IgG1 and IgG3, the isotypes involved in the monocyte-dependant mechanism of Plasmodium falciparum parasite-killing. The titers reached are similar to those from African adults having reached a state of premunition. Furthermore, vaccination induced seroconversion in

  7. Vaccination coverage in a cohort of HIV-infected patients receiving care at an AIDS outpatient clinic in Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Lauro Ferreira da Silva Pinto Neto

    2017-09-01

    Full Text Available This cross-sectional study assessed the immunization status of human immune deficiency virus (HIV-infected patients receiving care at an outpatient clinic in Brazil. The sociodemographic characteristics, CD4 count and HIV viral load of 281 out of 612 adult outpatients were analyzed. A total of 331 patients were excluded because of no availability of vaccination cards. Chi-square or Fisher's exact test were used. Immunization coverage was higher for diphtheria/tetanus (59.79% and hepatitis B (56.7%, and lowest for hepatitis A (6.8% and for meningococcal group C (6%. Only 11.74% of the patients had received the influenza virus vaccine yearly since their HIV-infection diagnosis. No vaccination against influenza (p < 0.034 or hepatitis B (p < 0.029 were associated with CD4 counts <500 cells/mL; no vaccination against flu or pneumococcus were associated with detectable HIV viral load (p < 0.049 and p < 0.002, respectively. Immunization coverage is still very low among HIV-infected adults in this setting despite recommendations and high infection-related mortality.

  8. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  9. Harnessing Novel Imaging Approaches to Guide HIV Prevention and Cure Discoveries-A National Institutes of Health and Global HIV Vaccine Enterprise 2017 Meeting Report.

    Science.gov (United States)

    Sanders-Beer, Brigitte E; Voronin, Yegor; McDonald, David; Singh, Anjali

    2018-01-01

    Advances in imaging technologies have greatly increased our understanding of cellular and molecular interactions in humans and their corresponding animal models of infectious diseases. In the HIV/SIV field, imaging has provided key insights into mucosal viral transmission, local and systemic virus spread, host-virus dynamics, and chronic inflammation/immune activation and the resultant immunopathology. Recent developments in imaging applications are yielding physical, spatial, and temporal measurements to enhance insight into biological functions and disease processes, while retaining important cellular, microenvironmental, organ, and intact organism contextual details. Taking advantage of the latest advancements in imaging technologies may help answer important questions in the HIV field. The Global HIV Vaccine Enterprise in collaboration with the National Institutes of Health (NIH) sponsored a meeting on May 8 and 9, 2017 to provide a platform to review state-of-the-art imaging technologies and to foster multidisciplinary collaborations in HIV/AIDS research. The meeting covered applications of imaging in studies of early events and pathogenesis, reservoirs, and cure, as well as in vaccine development. In addition, presentations and discussions of imaging applications from non-HIV biomedical research areas were included. This report summarizes the presentations and discussions at the meeting.

  10. Comparative Immunogenicity of HIV-1 gp140 Vaccine Delivered by Parenteral, and Mucosal Routes in Female Volunteers; MUCOVAC2, A Randomized Two Centre Study.

    Directory of Open Access Journals (Sweden)

    Catherine A Cosgrove

    Full Text Available Defining optimal routes for induction of mucosal immunity represents an important research priority for the HIV-1 vaccine field. In particular, it remains unclear whether mucosal routes of immunization can improve mucosal immune responses.In this randomized two center phase I clinical trial we evaluated the systemic and mucosal immune response to a candidate HIV-1 Clade C CN54gp140 envelope glycoprotein vaccine administered by intramuscular (IM, intranasal (IN and intravaginal (IVAG routes of administration in HIV negative female volunteers. IM immunizations were co-administered with Glucopyranosyl Lipid Adjuvant (GLA, IN immunizations with 0.5% chitosan and IVAG immunizations were administered in an aqueous gel.Three IM immunizations of CN54 gp140 at either 20 or 100 μg elicited significantly greater systemic and mucosal antibodies than either IN or IVAG immunizations. Following additional intramuscular boosting we observed an anamnestic antibody response in nasally primed subjects. Modest neutralizing responses were detected against closely matched tier 1 clade C virus in the IM groups. Interestingly, the strongest CD4 T-cell responses were detected after IN and not IM immunization.These data show that parenteral immunization elicits systemic and mucosal antibodies in women. Interestingly IN immunization was an effective prime for IM boost, while IVAG administration had no detectable impact on systemic or mucosal responses despite IM priming.EudraCT 2010-019103-27 and the UK Clinical Research Network (UKCRN Number 11679.

  11. Testing for HIV

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability (Biologics) HIV Home Test Kits Testing for HIV Share Tweet Linkedin Pin it More ...

  12. Modern Vaccines/Adjuvants Formulation--Session 2 (Plenary II): May 15-17, 2013--Lausanne, Switzerland.

    Science.gov (United States)

    Collin, Nicolas

    2013-09-01

    On the 15-17th May 2013, the Fourth International Conference on Modern Vaccines/Adjuvants Formulation was organized in Lausanne, Switzerland, and gathered stakeholders from academics and from the industry to discuss several challenges, advances and promises in the field of vaccine adjuvants. Plenary session 2 of the meeting was composed of four different presentations covering: (1) the recent set-up of an adjuvant technology transfer and training platform in Switzerland, (2) the proposition to revisit existing paradigms of modern vaccinology, (3) the properties of polyethyleneimine as potential new vaccine adjuvant, and (4) the progresses in the design of HIV vaccine candidates able to induce broadly neutralizing antibodies.

  13. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    Science.gov (United States)

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  14. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano

    2017-11-01

    Full Text Available Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  15. An extended model of reasoned action to understand the influence of individual- and network-level factors on African Americans' participation in HIV vaccine research.

    Science.gov (United States)

    Frew, Paula M; Archibald, Matthew; Diallo, Dazon Dixon; Hou, Su-I; Horton, Takeia; Chan, Kayshin; Mulligan, Mark J; del Rio, Carlos

    2010-06-01

    In the United States, the number and proportion of HIV/AIDS cases among black/African Americans continue to highlight the need for new biomedical prevention interventions, including an HIV vaccine, microbicide, or new antiretroviral (ARV) prevention strategies such as pre-exposure prophylaxis (PrEP) to complement existing condom usage, harm reduction methods, and behavioral change strategies to stem the HIV epidemic. Although black/African Americans are disproportionately impacted by HIV/AIDS, their participation in HIV clinical research continues to have unique challenges. We theorize that interaction among multilevel factors creates ideal alignment for minority participation in HIV clinical studies. Thus, we initially set out to test an extended model of reasoned action with 362 participants to understand the interplay of sociopsychological and network-level considerations influencing minority participation in HIV prevention research efforts. In this study, we linked the intrapersonal dimensions of attitudes, beliefs, and normative concerns to community-level components, appraisal of involvement with the clinical research organization, an entity which operates within a networked structure of community partner agencies, and identification with coalition advocacy aims. Various participatory outcomes were explored including involvement in future HIV vaccine community functions, participation in community promotion of HIV vaccine research, and community mobilization. Three-stage least squares estimates indicated similar findings across three models. Significant effects demonstrate the importance of positive attitudes toward HIV vaccine research, favorable health research beliefs, perceived social support for participation, HIV/AIDS issue engagement, and perceived relevance of the clinical research site's mission and values. Identification of these nuanced pathway effects provides implications for tailored community program development.

  16. Beyond the checklist: assessing understanding for HIV vaccine trial participation in South Africa.

    Science.gov (United States)

    Lindegger, Graham; Milford, Cecilia; Slack, Catherine; Quayle, Michael; Xaba, Xolani; Vardas, Eftyhia

    2006-12-15

    Informed consent and understanding are essential ethical requirements for clinical trial participation. Traditional binary measures of understanding may be limited and not be the best measures of level of understanding. This study designed and compared 4 measures of understanding for potential participants being prepared for enrollment in South African HIV vaccine trials, using detailed operational scoring criteria. Assessment of understanding of 7 key trial components was compared via self-report, checklist, vignettes, and narrative measures. Fifty-nine participants, including members of vaccine preparedness groups and 1 HIV vaccine trial, took part. There were significant differences across the measures for understanding of 5 components and for overall understanding. Highest scores were obtained on self-report and checklist measures, and lowest scores were obtained for vignettes and narrative descriptions. The findings suggest that levels of measured understanding are dependent on the tools used. Forced-choice measures like checklists tend to yield higher scores than open-ended measures like narratives or vignettes. Consideration should be given to complementing checklists and self-reports with open-ended measures, particularly for critical trial concepts, where the consequences of misunderstanding are potentially severe.

  17. Therapeutic Vaccine Against HIV, Viral Variability, Cytotoxic T Lymphocyte Epitopes, and Genetics of Patients.

    Science.gov (United States)

    Fleury, Herve; Tumiotto, Camille; Bellecave, Pantxika; Recordon-Pinson, Patricia

    2018-01-01

    The scientific and medical community is seeking to cure HIV. Several pathways have been or are being explored including therapeutic vaccination. Viroimmunological studies on primary infection as well as on elite controllers have demonstrated the importance of the cytotoxic CD8 response and have mainly oriented research on vaccine constructs toward this type of response. The results of these trials are clearly not commensurate with the hope placed in them. Might there be one or more uncontrolled variables? The genetics of patients need to be taken into consideration, especially their human lymphocyte antigen (HLA) alleles. There is a need to find a balance between the conservation of cytotoxic T lymphocyte (CTL) epitopes and presentation by HLA alleles. The pathway is a narrow one between adaptation of the virus to HLA I restriction and the definition of conserved proviral CTL epitopes presentable by HLA I alleles. It is likely that the genetics of patients will need to be considered for HIV-1 vaccine studies and that multidisciplinary collaboration will be essential in this field of infectious diseases.

  18. Willingness to Participate in HIV Vaccine Trials among Men Who Have Sex with Men in Chennai and Mumbai, India: A Social Ecological Approach

    Science.gov (United States)

    Chakrapani, Venkatesan; Newman, Peter A.; Singhal, Neeti; Jerajani, Jhalak; Shunmugam, Murali

    2012-01-01

    Background Recruitment of low- and middle-income country volunteers from most-at-risk populations in HIV vaccine trials is essential to vaccine development. In India, men who have sex with men (MSM) are at disproportionately high risk for HIV infection and an important population for trial recruitment. Investigations of willingness to participate (WTP) in HIV vaccine trials have focused predominantly on individual-level determinants. We explored multi-level factors associated with WTP among MSM in India. Methods We conducted 12 focus groups (n = 68) with low socioeconomic MSM in Chennai and Mumbai, and 14 key informant interviews with MSM community leaders and service providers. Focus groups/interviews were recorded, transcribed and translated into English. Two bilingual investigators conducted thematic analysis using line-by-line coding and a constant comparative method, with member-checking by community representatives. Results Factors associated with WTP were evidenced across the social ecology of MSM–social-structural: poverty, HIV-, sexual- and gender non-conformity stigma, institutionalized discrimination and government sponsorship of trials; community-level: endorsement by MSM community leaders and organizations, and fear of within-group discrimination; interpersonal: anticipated family discord, partner rejection, having financially-dependent family members and disclosure of same-sex sexuality; and individual-level: HIV vaccine trial knowledge and misconceptions, safety concerns, altruism and preventive misconception. Conclusion Pervasive familial, community and social-structural factors characteristic of the Indian sociocultural context may complicate individual-focused approaches to WTP and thereby constrain the effectiveness of interventions to support recruitment and retention in HIV vaccine trials. Interventions to reduce stigma and discrimination against MSM and people living with HIV, capacity-building of MSM community organizations and

  19. Willingness to participate in HIV vaccine trials among men who have sex with men in Chennai and Mumbai, India: a social ecological approach.

    Directory of Open Access Journals (Sweden)

    Venkatesan Chakrapani

    Full Text Available Recruitment of low- and middle-income country volunteers from most-at-risk populations in HIV vaccine trials is essential to vaccine development. In India, men who have sex with men (MSM are at disproportionately high risk for HIV infection and an important population for trial recruitment. Investigations of willingness to participate (WTP in HIV vaccine trials have focused predominantly on individual-level determinants. We explored multi-level factors associated with WTP among MSM in India.We conducted 12 focus groups (n = 68 with low socioeconomic MSM in Chennai and Mumbai, and 14 key informant interviews with MSM community leaders and service providers. Focus groups/interviews were recorded, transcribed and translated into English. Two bilingual investigators conducted thematic analysis using line-by-line coding and a constant comparative method, with member-checking by community representatives.Factors associated with WTP were evidenced across the social ecology of MSM-social-structural: poverty, HIV-, sexual- and gender non-conformity stigma, institutionalized discrimination and government sponsorship of trials; community-level: endorsement by MSM community leaders and organizations, and fear of within-group discrimination; interpersonal: anticipated family discord, partner rejection, having financially-dependent family members and disclosure of same-sex sexuality; and individual-level: HIV vaccine trial knowledge and misconceptions, safety concerns, altruism and preventive misconception.Pervasive familial, community and social-structural factors characteristic of the Indian sociocultural context may complicate individual-focused approaches to WTP and thereby constrain the effectiveness of interventions to support recruitment and retention in HIV vaccine trials. Interventions to reduce stigma and discrimination against MSM and people living with HIV, capacity-building of MSM community organizations and transparent communications tailored to

  20. Willingness to participate in HIV vaccine trials among men who have sex with men in Chennai and Mumbai, India: a social ecological approach.

    Science.gov (United States)

    Chakrapani, Venkatesan; Newman, Peter A; Singhal, Neeti; Jerajani, Jhalak; Shunmugam, Murali

    2012-01-01

    Recruitment of low- and middle-income country volunteers from most-at-risk populations in HIV vaccine trials is essential to vaccine development. In India, men who have sex with men (MSM) are at disproportionately high risk for HIV infection and an important population for trial recruitment. Investigations of willingness to participate (WTP) in HIV vaccine trials have focused predominantly on individual-level determinants. We explored multi-level factors associated with WTP among MSM in India. We conducted 12 focus groups (n = 68) with low socioeconomic MSM in Chennai and Mumbai, and 14 key informant interviews with MSM community leaders and service providers. Focus groups/interviews were recorded, transcribed and translated into English. Two bilingual investigators conducted thematic analysis using line-by-line coding and a constant comparative method, with member-checking by community representatives. Factors associated with WTP were evidenced across the social ecology of MSM-social-structural: poverty, HIV-, sexual- and gender non-conformity stigma, institutionalized discrimination and government sponsorship of trials; community-level: endorsement by MSM community leaders and organizations, and fear of within-group discrimination; interpersonal: anticipated family discord, partner rejection, having financially-dependent family members and disclosure of same-sex sexuality; and individual-level: HIV vaccine trial knowledge and misconceptions, safety concerns, altruism and preventive misconception. Pervasive familial, community and social-structural factors characteristic of the Indian sociocultural context may complicate individual-focused approaches to WTP and thereby constrain the effectiveness of interventions to support recruitment and retention in HIV vaccine trials. Interventions to reduce stigma and discrimination against MSM and people living with HIV, capacity-building of MSM community organizations and transparent communications tailored to the knowledge

  1. Does message framing predict willingness to participate in a hypothetical HIV vaccine trial: an application of Prospect Theory.

    Science.gov (United States)

    Evangeli, Michael; Kafaar, Zuhayr; Kagee, Ashraf; Swartz, Leslie; Bullemor-Day, Philippa

    2013-01-01

    It is vital that enough participants are willing to participate in clinical trials to test HIV vaccines adequately. It is, therefore, necessary to explore what affects peoples' willingness to participate (WTP) in such trials. Studies have only examined individual factors associated with WTP and not the effect of messages about trial participation on potential participants (e.g., whether losses or gains are emphasized, or whether the outcome is certain or uncertain). This study explores whether the effects of message framing on WTP in a hypothetical HIV vaccine trial are consistent with Prospect Theory. This theory suggests that people are fundamentally risk averse and that (1) under conditions of low risk and high certainty, gain-framed messages will be influential (2) under conditions of high risk and low certainty, loss-framed messages will be influential. This cross-sectional study recruited 283 HIV-negative students from a South African university who were given a questionnaire that contained matched certain gain-framed, certain loss-framed, uncertain gain-framed, and uncertain loss-framed statements based on common barriers and facilitators of WTP. Participants were asked to rate how likely each statement was to result in their participation in a hypothetical preventative HIV vaccine trial. Consistent with Prospect Theory predictions, for certain outcomes, gain-framed messages were more likely to result in WTP than loss-framed messages. Inconsistent with predictions, loss-framed message were not more likely to be related to WTP for uncertain outcomes than gain-framed messages. Older students were less likely to express their WTP across the different message frames. Recruitment for HIV vaccine trials should pay attention to how messages about the trial are presented to potential participants.

  2. HIV vaccine research and discovery in the nonhuman primates model: a unified theory in acquisition prevention and control of SIV infection.

    Science.gov (United States)

    Lynch, Rebecca M; Yamamoto, Takuya; McDermott, Adrian B

    2013-07-01

    Here we highlight the latest advances in HIV vaccine concepts that will expand our knowledge on how to elicit effective acquisition-prevention and/or control of simian immunodeficiency virus (SIV) replication in the nonhuman primate (NHP) model. In the context of the promising analyses from the RV144 Thai Trial and the effective control of SIV replication exerted by rhCMV-(SIV) elicited EM CD8 T cells, the HIV field has recently shifted toward vaccine concepts that combine protection from acquisition with effective control of SIV replication. Current studies in the NHP model have demonstrated the efficacy of HIV-neutralizing antibodies via passive transfer, the potential importance of the CD4 Tfh subset, the ability to effectively model the RV144 vaccine trial and the capacity of an Ad26 prime and modified vaccinia Ankara virus boost to elicit Env-specific antibody and cellular responses that both limit acquisition and control heterologous SIVmac251 challenge. The latest work in the NHP model suggests that the next generation HIV-1 vaccines should aim to provoke a comprehensive adaptive immune response for both prevention of SIV acquisition as well as control of replication in breakthrough infection.

  3. South African Research Ethics Committee Review of Standards of Prevention in HIV Vaccine Trial Protocols.

    Science.gov (United States)

    Essack, Zaynab; Wassenaar, Douglas R

    2018-04-01

    HIV prevention trials provide a prevention package to participants to help prevent HIV acquisition. As new prevention methods are proven effective, this raises ethical and scientific design complexities regarding the prevention package or standard of prevention. Given its high HIV incidence and prevalence, South Africa has become a hub for HIV prevention research. For this reason, it is critical to study the implementation of relevant ethical-legal frameworks for such research in South Africa. This qualitative study used in-depth interviews to explore the practices and perspectives of eight members of South African research ethics committees (RECs) who have reviewed protocols for HIV vaccine trials. Their practices and perspectives are compared with ethics guideline requirements for standards of prevention.

  4. Safety and immunogenicity of RTS,S/AS01 malaria vaccine in infants and children with WHO stage 1 or 2 HIV disease: a randomised, double-blind, controlled trial.

    Science.gov (United States)

    Otieno, Lucas; Oneko, Martina; Otieno, Walter; Abuodha, Joseph; Owino, Emmanuel; Odero, Chris; Mendoza, Yolanda Guerra; Andagalu, Ben; Awino, Norbert; Ivinson, Karen; Heerwegh, Dirk; Otsyula, Nekoye; Oziemkowska, Maria; Usuf, Effua Abigail; Otieno, Allan; Otieno, Kephas; Leboulleux, Didier; Leach, Amanda; Oyieko, Janet; Slutsker, Laurence; Lievens, Marc; Cowden, Jessica; Lapierre, Didier; Kariuki, Simon; Ogutu, Bernhards; Vekemans, Johan; Hamel, Mary J

    2016-10-01

    Malaria remains a major global public health concern, especially in sub-Saharan Africa. The RTS,S/AS01 malaria candidate vaccine was reviewed by the European Medicines Agency and received a positive scientific opinion; WHO subsequently recommended pilot implementation in sub-Saharan African countries. Because malaria and HIV overlap geographically, HIV-infected children should be considered for RTS,S/AS01 vaccination. We therefore aimed to assess the safety of RTS,S/AS01 in HIV-infected children at two sites in western Kenya. We did a randomised, double-blind, controlled trial at the clinical trial sites of the Kenya Medical Research Institute (KEMRI)-Walter Reed Army Institute of research in Kisumu and the KEMRI/US Centers for Disease Control and Prevention in Siaya. Eligible participants were infants and children aged from 6 weeks to 17 months with WHO stage 1 or 2 HIV disease (documented positive by DNA PCR), whether or not they were receiving antiretroviral therapy (ART). We randomly assigned participants (1:1) to receive three doses of either RTS,S/AS01 or rabies vaccine (both 0·5 mL per dose by intramuscular injection), given once per month at 0, 1, and 2 months. We did the treatment allocation using a web-based central randomisation system stratified by age (6 weeks-4 months, 5-17 months), and by baseline CD4% (vaccine recipient, their parent or carer, the funder, and investigators responsible for the assessment of endpoints were all masked to treatment allocation (only staff responsible for the preparation and administration of the vaccines were aware of the assignment and these individuals played no other role in the study). We provided ART, even if the participants were not receiving ART before the study, and daily co-trimoxazole for prevention of opportunistic infections. The primary outcome was the occurrence of serious adverse events until 14 months after dose 1 of the vaccine, assessed in the intention-to-treat population. This trial was registered

  5. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations.

    Directory of Open Access Journals (Sweden)

    Siriwat Akapirat

    Full Text Available Sexual transmission is the principal driver of the human immunodeficiency virus (HIV pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080 efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2 previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE and Case A2 (subtype B in cervico-vaginal mucus (CVM, seminal plasma (SP and rectal secretions (RS from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively, followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11-17 fold and SP (2 fold two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS, gp70V1V2 92TH023 (CVM, SP, and Case A2 (CVM correlated with plasma IgG levels (p<0.001. Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA in anogenital secretions will help determine their role in preventing mucosal HIV acquisition.

  6. Expression of HIV-1 antigens in plants as potential subunit vaccines

    CSIR Research Space (South Africa)

    Meyers, A

    2008-06-23

    Full Text Available Open AcceResearch article Expression of HIV-1 antigens in plants as potential subunit vaccines Ann Meyers1,2, Ereck Chakauya1,2,3, Enid Shephard1,4, Fiona L Tanzer1,2, James Maclean1,2, Alisson Lynch1,2, Anna-Lise Williamson1,5 and Edward P Rybicki...Figure 1 The HIV-1 Gag-derived proteins used in this study. Scale diagram showing (A) native Pr55Gag ORF organisation in the Page 2 of 15 (page number not for citation purposes) gag gene, (B) the p17/p24 fusion protein ORF, (C) p24 ORF. ORFs labelled p7...

  7. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    Science.gov (United States)

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  8. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    2006-09-01

    Full Text Available Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA and a wild-type (wt N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2, were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 10(6 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3 that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.

  9. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  10. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Dimiter S. Dimitrov

    2009-11-01

    Full Text Available Several human monoclonal antibodies (hmAbs and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i antibodies in HIV-1-infected patients (X5 is a CD4i antibody as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and

  11. An Extended Model of Reasoned Action to Understand the Influence of Individual- and Network-Level Factors on African Americans’ Participation in HIV Vaccine Research

    Science.gov (United States)

    Frew, Paula M.; Archibald, Matthew; Diallo, Dazon Dixon; Hou, Su-I; Horton, Takeia; Chan, Kayshin; Mulligan, Mark J.; del Rio, Carlos

    2010-01-01

    In the United States, the number and proportion of HIV/AIDS cases among black/African Americans continue to highlight the need for new biomedical prevention interventions, including an HIV vaccine, microbicide, or new antiretroviral (ARV) prevention strategies such as pre-exposure prophylaxis (PrEP) to complement existing condom usage, harm reduction methods, and behavioral change strategies to stem the HIV epidemic. Although black/African Americans are disproportionately impacted by HIV/AIDS, their participation in HIV clinical research continues to have unique challenges. We theorize that interaction among multilevel factors creates ideal alignment for minority participation in HIV clinical studies. Thus, we initially set out to test an extended model of reasoned action with 362 participants to understand the interplay of sociopsychological and network-level considerations influencing minority participation in HIV prevention research efforts. In this study, we linked the intrapersonal dimensions of attitudes, beliefs, and normative concerns to community-level components, appraisal of involvement with the clinical research organization, an entity which operates within a networked structure of community partner agencies, and identification with coalition advocacy aims. Various participatory outcomes were explored including involvement in future HIV vaccine community functions, participation in community promotion of HIV vaccine research, and community mobilization. Three-stage least squares estimates indicated similar findings across three models. Significant effects demonstrate the importance of positive attitudes toward HIV vaccine research, favorable health research beliefs, perceived social support for participation, HIV/AIDS issue engagement, and perceived relevance of the clinical research site’s mission and values. Identification of these nuanced pathway effects provides implications for tailored community program development. PMID:20012200

  12. HIV-1 p24(gag derived conserved element DNA vaccine increases the breadth of immune response in mice.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag region according to two principles: the immunogen must (i include strictly conserved elements of the virus that cannot mutate readily, and (ii exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24(gag DNA immunogens that express 7 highly Conserved Elements (CE of 12-24 amino acids in length and differ by only 1 amino acid in each CE ('toggle site', together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55(gag DNA induced poor, CD4(+ mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4(+ and CD8(+ T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55(gag, which recognize the virus encoded p24(gag protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4(+ and CD8(+ T cells to additional regions of Gag compared to vaccination with p55(gag DNA, achieving maximal cross-clade reactive cellular and humoral responses.

  13. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    Science.gov (United States)

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  14. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Directory of Open Access Journals (Sweden)

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  15. Dynamic profiles of neutralizing antibody responses elicited in rhesus monkeys immunized with a combined tetravalent DTaP-Sabin IPV candidate vaccine.

    Science.gov (United States)

    Sun, Mingbo; Ma, Yan; Xu, Yinhua; Yang, Huijuan; Shi, Li; Che, Yanchun; Liao, Guoyang; Jiang, Shude; Zhang, Shumin; Li, Qihan

    2014-02-19

    The World Health Organization has recommended that a Sabin inactivated polio vaccine (IPV) should gradually and synchronously replace oral polio vaccines for routine immunizations because its benefits in eliminating vaccine-associated paralytic poliomyelitis have been reported in different phases of clinical trials. It is also considered important to explore new tetravalent diphtheria, tetanus, and acellular pertussis-Sabin IPV (DTaP-sIPV) candidate vaccines for possible use in developing countries. In this study, the immunogenicity of a combined tetravalent DTaP-sIPV candidate vaccine was investigated in primates by evaluating the neutralizing antibody responses it induced. The dynamic profiles of the antibody responses to each of the separate antigenic components and serotypes of Sabin IPV were determined and their corresponding geometric mean titers were similar to those generated by the tetravalent diphtheria, tetanus, and acellular pertussis-conventional IPV (DTaP-cIPV), the tetravalent diphtheria, tetanus, and acellular pertussis (DTaP), and Sabin IPV vaccines in the control groups. This implies that protective immunogenic effects are conferred by this combined tetravalent formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

    Science.gov (United States)

    Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

    2013-01-01

    Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

  17. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds.

    Directory of Open Access Journals (Sweden)

    Debmalya Barh

    Full Text Available Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC for most of the pathogenic Vibrio strains. Two targets (uppP and yajC are novel to Vibrio, and two targets (uppP and ompU can be used to develop both drugs and vaccines (dual targets against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species.

  18. HIV As Trojan Exosome: Immunological Paradox Explained?

    Science.gov (United States)

    Hildreth, James E K

    2017-01-01

    The HIV pandemic is still a major global challenge, despite the widespread availability of antiretroviral drugs. An effective vaccine would be the ideal approach to bringing the pandemic to an end. However, developing an effective HIV vaccine has proven to be an elusive goal. Three major human HIV vaccine trials revealed a strong trend toward greater risk of infection among vaccine recipients versus controls. A similar observation was made in a macaque SIV vaccine study. The mechanism explaining this phenomenon is not known. Here, a model is presented that may explain the troubling results of vaccine studies and an immunological paradox of HIV pathogenesis: preferential infection of HIV-specific T cells. The central hypothesis of this perspective is that as "Trojan exosomes" HIV particles can directly activate HIV-specific T cells enhancing their susceptibility to infection. Understanding the biology of HIV as an exosome may provide insights that enable novel approaches to vaccine development.

  19. Comparison of the nucleotide sequence of wild-type hepatitis - A virus and its attenuated candidate vaccine derivative

    International Nuclear Information System (INIS)

    Cohen, J.I.; Rosenblum, B.; Ticehurst, J.R.; Daemer, R.; Feinstone, S.; Purcell, R.H.

    1987-01-01

    Development of attenuated mutants for use as vaccines is in progress for other viruses, including influenza, rotavirus, varicella-zoster, cytomegalovirus, and hepatitis-A virus (HAV). Attenuated viruses may be derived from naturally occurring mutants that infect human or nonhuman hosts. Alternatively, attenuated mutants may be generated by passage of wild-type virus in cell culture. Production of attenuated viruses in cell culture is a laborious and empiric process. Despite previous empiric successes, understanding the molecular basis for attenuation of vaccine viruses could facilitate future development and use of live-virus vaccines. Comparison of the complete nucleotide sequences of wild-type (virulent) and vaccine (attenuated) viruses has been reported for polioviruses and yellow fever virus. Here, the authors compare the nucleotide sequence of wild-type HAV HM-175 with that of a candidate vaccine derivative

  20. Rational design of HIV vaccine and microbicides: report of the EUROPRISE annual conference

    NARCIS (Netherlands)

    Wahren, Britta; Biswas, Priscilla; Borggren, Marie; Coleman, Adam; Da Costa, Kelly; de Haes, Winni; Dieltjens, Tessa; Dispinseri, Stefania; Grupping, Katrijn; Hallengärd, David; Hornig, Julia; Klein, Katja; Mainetti, Lara; Palma, Paolo; Reudelsterz, Marc; Seifried, Janna; Selhorst, Philippe; Sköld, Annette; Uchtenhagen, Hannes; van Gils, Marit J.; Weber, Caroline; Shattock, Robin; Scarlatti, Gabriella

    2010-01-01

    EUROPRISE is a Network of Excellence sponsored from 2007 to 2011 by the European Commission within the 6th Framework Program. The Network encompasses a wide portfolio of activities ranging from an integrated research program in the field of HIV vaccines and microbicides to training, dissemination

  1. Participation in two phase II prophylactic HIV vaccine trials in the UK.

    Science.gov (United States)

    Gray, Kimberly; Legg, K; Sharp, A; Mackie, N; Olarinde, F; De Souza, C; Weber, J; Peters, B

    2008-06-02

    There will be a continued imperative to recruit large numbers of healthy volunteers to early phase prophylactic HIV vaccine (PHV) trials. We studied mechanisms associated with participation in two related phase II PHV trials. The most cited reasons for volunteering were altruism and a personal connection to HIV. The most successful recruiting strategies targeted organisations dealing with HIV, health or social issues, or were directed to large audiences through the mass media. However, circulated emails and word of mouth were the most resource-effective approaches. Group discussions and the collection of a pool of potential volunteers were much less effective than one-to-one discussions and immediate screening after recruitment. We utilised our findings to devise key recommendations to assist PHV trial teams who are planning future studies.

  2. Characteristics and quantities of HIV host cells in human genital tract secretions.

    Science.gov (United States)

    Politch, Joseph A; Marathe, Jai; Anderson, Deborah J

    2014-12-15

    Human immunodeficiency virus (HIV)-infected leukocytes have been detected in genital secretions from HIV-infected men and women and may play an important role in the sexual transmission of HIV. However, they have been largely overlooked in studies on mechanisms of HIV transmission and in the design and testing of HIV vaccine and microbicide candidates. This article describes the characteristics and quantities of leukocytes in male and female genital secretions under various conditions and also reviews evidence for the involvement of HIV-infected cells in both horizontal and vertical cell-associated HIV transmission. Additional research is needed in this area to better target HIV prevention strategies. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Repeated Vaccination of Cows with HIV Env gp140 during Subsequent Pregnancies Elicits and Sustains an Enduring Strong Env-Binding and Neutralising Antibody Response.

    Directory of Open Access Journals (Sweden)

    Behnaz Heydarchi

    Full Text Available An important feature of a potential vaccine against HIV is the production of broadly neutralising antibodies (BrNAbs capable of potentially blocking infectivity of a diverse array of HIV strains. BrNAbs naturally arise in some HIV infected individuals after several years of infection and their serum IgG can neutralise various HIV strains across different subtypes. We previously showed that vaccination of cows with HIV gp140 AD8 trimers resulted in a high titre of serum IgG against HIV envelope (Env that had strong BrNAb activity. These polyclonal BrNAbs concentrated into the colostrum during the late stage of pregnancy and can be harvested in vast quantities immediately after calving. In this study, we investigated the effect of prolonged HIV gp140 vaccination on bovine colostrum IgG HIV Env-binding and BrNAb activity over subsequent pregnancies. Repeated immunisation led to a maintained high titre of HIV Env specific IgG in the colostrum batches, but this did not increase through repeated cycles. Colostrum IgG from all batches also strongly competed with sCD4 binding to gp140 Env trimer and with human-derived monoclonal VRC01 and b12 BrNAbs that bind the CD4 binding site (CD4bs. Furthermore, competition neutralisation assays using RSC3 Env gp120 protein core and a derivative CD4bs mutant, RSC3 Δ371I/P363N, showed that CD4bs neutralising antibodies contribute to the neutralising activity of all batches of purified bovine colostrum IgG. This result indicates that the high IgG titre/avidity of anti-CD4bs antibodies with BrNAb activity was achieved during the first year of vaccination and was sustained throughout the years of repeated vaccinations in the cow tested. Although IgG of subsequent colostrum batches may have a higher avidity towards the CD4bs, the overall breadth in neutralisation was not enhanced. This implies that the boosting vaccinations over 4 years elicited a polyclonal antibody response that maintained the proportion of both

  4. Induction of IL21 in Peripheral T Follicular Helper Cells Is an Indicator of Influenza Vaccine Response in a Previously Vaccinated HIV-Infected Pediatric Cohort.

    Science.gov (United States)

    de Armas, Lesley R; Cotugno, Nicola; Pallikkuth, Suresh; Pan, Li; Rinaldi, Stefano; Sanchez, M Celeste; Gonzalez, Louis; Cagigi, Alberto; Rossi, Paolo; Palma, Paolo; Pahwa, Savita

    2017-03-01

    HIV-infected patients of all ages frequently underperform in response to seasonal influenza vaccination, despite virologic control of HIV. The molecular mechanisms governing this impairment, as well as predictive biomarkers for responsiveness, remain unknown. This study was performed in samples obtained prevaccination (T0) from HIV-infected children who received the 2012-2013 seasonal influenza vaccine. Response status was determined based on established criterion for hemagglutination inhibition titer; participants with a hemagglutination titer ≥1:40 plus a ≥4-fold increase over T0 at 3 wk postvaccination were designated as responders. All children had a history of prior influenza vaccinations. At T0, the frequencies of CD4 T cell subsets, including peripheral T follicular helper (pTfh) cells, which provide help to B cells for developing into Ab-secreting cells, were similar between responders and nonresponders. However, in response to in vitro stimulation with influenza A/California/7/2009 (H1N1) Ag, differential gene expression related to pTfh cell function was observed by Fluidigm high-density RT-PCR between responders and nonresponders. In responders, H1N1 stimulation at T0 also resulted in CXCR5 induction (mRNA and protein) in CD4 T cells and IL21 gene induction in pTfh cells that were strongly associated with H1N1-specific B cell responses postvaccination. In contrast, CD4 T cells of nonresponders exhibited increased expression of IL2 and STAT5 genes, which are known to antagonize peripheral Tfh cell function. These results suggest that the quality of pTfh cells at the time of immunization is important for influenza vaccine responses and provide a rationale for targeted, ex vivo Ag-driven molecular profiling of purified immune cells to detect predictive biomarkers of the vaccine response. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Daniela Santoro Rosa

    Full Text Available T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+ T cells are important for the generation and maintenance of functional CD8(+ cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18, capable of eliciting broad CD4(+ T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+/CD8(+ T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+ and CD8(+ T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2 simultaneously in response to HIV-1 peptides. For CD4(+ T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2. The vaccine also generated long-lived central and effector memory CD4(+ T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+ T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+ T cells and antibody responses- elicited by other HIV immunogens.

  6. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate.

    Science.gov (United States)

    Kabanova, Anna; Margarit, Immaculada; Berti, Francesco; Romano, Maria R; Grandi, Guido; Bensi, Giuliano; Chiarot, Emiliano; Proietti, Daniela; Swennen, Erwin; Cappelletti, Emilia; Fontani, Paola; Casini, Daniele; Adamo, Roberto; Pinto, Vittoria; Skibinski, David; Capo, Sabrina; Buffi, Giada; Gallotta, Marilena; Christ, William J; Campbell, A Stewart; Pena, John; Seeberger, Peter H; Rappuoli, Rino; Costantino, Paolo

    2010-12-10

    Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Thomas W Geisbert

    2008-11-01

    Full Text Available Ebola virus (EBOV is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV. All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.

  8. Nuclear Magnetic Resonance (NMR Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Rahima Khatun

    Full Text Available This study describes the NMR-based method to determine the limit of quantitation (LOQ and limit of detection (LOD of cholesterol, a process-related impurity in the replication-deficient Herpes Simplex Virus (HSV type 2 candidate vaccine HSV529. Three signature peaks from the 1D 1H NMR of a cholesterol reference spectrum were selected for the identification of cholesterol. The LOQ for a cholesterol working standard was found to be 1 μg/mL, and the LOD was found to be 0.1 μg/mL. The identity of cholesterol, separated from the formulation of growth supplement by thin layer chromatography (TLC, was confirmed by 1D 1H NMR and 2D 1H-13C HSQC NMR. The three signature peaks of cholesterol were detected only in a six-times concentrated sample of HSV529 candidate vaccine sample and not in the single dose HSV529 vaccine sample under similar experimental conditions. Taken together, the results demonstrated that NMR is a direct method that can successfully identify and quantify cholesterol in viral vaccine samples, such as HSV529, and as well as in the growth supplement used during the upstream stages of HSV529 manufacturing. Keywords: Herpes simplex virus type 2 (HSV-2, Viral vaccine, NMR, Residuals, LOD and LOQ, TLC, Growth supplement

  9. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections.

    Science.gov (United States)

    Romero-Saavedra, Felipe; Laverde, Diana; Budin-Verneuil, Aurélie; Muller, Cécile; Bernay, Benoit; Benachour, Abdellah; Hartke, Axel; Huebner, Johannes

    2015-01-01

    Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier proteins

  10. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    NARCIS (Netherlands)

    Jones, S; Grignard, L.; Nebie, I.; Chilongola, J.; Dodoo, D.; Sauerwein, R.W.; Theisen, M.; Roeffen, W.F.; Singh, S.K; Singh, R.K.; Kyei-Baafour, E.; Tetteh, K.; Drakeley, C.; Bousema, T.

    2015-01-01

    OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the

  11. Collaborative study to assess the suitability of a candidate International Standard for yellow fever vaccine.

    Science.gov (United States)

    Ferguson, Morag; Heath, Alan

    2004-12-01

    Yellow fever vaccines are routinely assayed by plaque assay. However, the results of these assays are then converted into mouse LD(50) using correlations/conversion factors which, in many cases, were established many years ago. The minimum required potency in WHO Recommendations is 10(3) LD(50)/dose. Thirteen participants from 8 countries participated in a collaborative study whose aim was to assess the suitability of two candidate preparations to serve as an International Standard for yellow fever vaccine. In addition, the study investigated the relationship between the mouse LD(50) test and plaque forming units with a view to updating the WHO recommendations. Plaque assays were more reproducible than mouse assays, as expected. Differences in sensitivities of plaque assays were observed between laboratories but these differences appear to be consistent within a laboratory for all samples and the expression of potency relative to the candidate standard vaccine improved the reproducibility of assays between laboratories. However, the use of potencies had little effect on the between laboratory variability in mouse LD(50) assays. There appears to be a consistent relationship between overall mean LD(50) and plaques titre for all study preparations other than sample E. The slope of the correlation curve is >1 and it would appear that 10(3) LD(50) is approximately equivalent to 10(4) plaque forming units (PFU), based on the overall means of all laboratory results. The First International Standard for yellow fever vaccine, NIBSC Code 99/616, has been established as the First International Standard for yellow fever vaccine by the Expert Committee of Biological Standards of the World Health Organisation. The International Standard has been arbitrarily assigned a potency of 10(4.5) International Units (IU) per ampoule. Manufacturers and National Control Laboratories are including the First International Standard for yellow fever vaccine in routine assays so that the minimum

  12. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum.

    Science.gov (United States)

    Farrance, Christine E; Rhee, Amy; Jones, R Mark; Musiychuk, Konstantin; Shamloul, Moneim; Sharma, Satish; Mett, Vadim; Chichester, Jessica A; Streatfield, Stephen J; Roeffen, Will; van de Vegte-Bolmer, Marga; Sauerwein, Robert W; Tsuboi, Takafumi; Muratova, Olga V; Wu, Yimin; Yusibov, Vidadi

    2011-08-01

    Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the surfaces of the sexual forms of the parasite and where antibodies against these proteins have been shown to block the progression of the parasite's life cycle in the mosquito and thus block transmission to the next human host. We have successfully produced a region of the Pfs230 antigen in our plant-based transient-expression system and evaluated this vaccine candidate in an animal model. This plant-produced protein, 230CMB, is expressed at approximately 800 mg/kg in fresh whole leaf tissue and is 100% soluble. Administration of 230CMB with >90% purity induces strong immune responses in rabbits with high titers of transmission-blocking antibodies, resulting in a greater than 99% reduction in oocyst counts in the presence of complement, as determined by a standard membrane feeding assay. Our data provide a clear perspective on the clinical development of a Pfs230-based transmission-blocking malaria vaccine.

  13. Potential future impact of a partially effective HIV vaccine in a southern African setting

    DEFF Research Database (Denmark)

    Phillips, Andrew N; Cambiano, Valentina; Nakagawa, Fumiyo

    2014-01-01

    of a realistic future implementation scenario in resource limited settings. METHODS: An individual level model of HIV transmission, progression and the effect of antiretroviral therapy was used to predict the outcome to 2060 of introduction in 2025 of a partially effective vaccine with various combinations...

  14. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang

    2010-09-27

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Bioinformatics curation and ontological representation of Brucella vaccines

  15. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Acceptance and tolerability of an adjuvanted nH1N1 vaccine in HIV-infected patients in the cologne-bonn cohort

    Directory of Open Access Journals (Sweden)

    Steffens B

    2011-07-01

    Full Text Available Abstract Objective To evaluate the acceptance and tolerability of the nH1N1 2009 vaccine in HIV-positive individuals. Method 758 patients were included in this prospective study. Different study populations were formed: The Tolerability Study Group consists of HIV-infected patients who visited three outpatient clinics (Cologne, Bonn, Freiburg during a predefined time period. Patients were offered nH1N1 vaccination. Those accepting were administered a standard dose AS03 adjuvant nH1N1 vaccine. Questionnaires to report side effects occurring within 7 days after immunization were handed out. In a substudy conducted during the same time period, acceptance towards immunization was recorded. This Acceptance Study Group consists of all HIV-infected patients visiting the Cologne clinic. They were offered vaccination. In case of refusal, motivation was recorded. Results In the Tolerability Study Group, a total of 475 patient diaries returned in the three study centres could be evaluated, 119 of those (25% reported no side effects. Distribution of symptoms was as follows: Pain 285/475 patients (60%, swelling 96 (20%, redness 54 (11%, fever 48/475 (10%, muscle/joint ache 173 (36%, headache 127 (27%, and fatigue 210 (44%. Association of side effects with clinical data was calculated for patients in Cologne and Bonn. Incidence of side effects was significantly associated with CDC stages A, B compared to C, and with a detectable viral load (> 50 copies/mL. No correlation was noted for CD4 cell count, age, gender or ethnicity. In the Acceptance Study Group, 538 HIV-infected patients were offered vaccination, 402 (75% accepted, while 136 (25% rejected. Main reasons for rejection were: Negative media coverage (35%, indecisiveness with preference to wait until a later date (23%, influenza not seen as personal threat (19% and scepticism towards immunization in general (10%. Conclusion A total of 622 HIV-infected patients were vaccinated against nH1N1-influenza in

  17. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.

    Science.gov (United States)

    Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta

    2014-06-01

    Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    Science.gov (United States)

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  19. Replacement of the Ectodomains of the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Recombinant Parainfluenza Virus Type 3 (PIV3) with Their Counterparts from PIV2 Yields Attenuated PIV2 Vaccine Candidates

    OpenAIRE

    Tao, Tao; Skiadopoulos, Mario H.; Davoodi, Fatemeh; Riggs, Jeffrey M.; Collins, Peter L.; Murphy, Brian R.

    2000-01-01

    We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955–2961, 1998; M. H. Skiadopoul...

  20. Randomized Phase I: Safety, Immunogenicity and Mucosal Antiviral Activity in Young Healthy Women Vaccinated with HIV-1 Gp41 P1 Peptide on Virosomes.

    Directory of Open Access Journals (Sweden)

    Geert Leroux-Roels

    Full Text Available Mucosal antibodies harboring various antiviral activities may best protect mucosal surfaces against early HIV-1 entry at mucosal sites and they should be ideally induced by prophylactic HIV-1 vaccines for optimal prevention of sexually transmitted HIV-1. A phase I, double-blind, randomized, placebo-controlled trial was conducted in twenty-four healthy HIV-uninfected young women. The study objectives were to assess the safety, tolerability and immunogenicity of virosomes harboring surface HIV-1 gp41-derived P1 lipidated peptides (MYM-V101. Participants received placebo or MYM-V101 vaccine at 10 μg/dose or 50 μg/dose intramuscularly at week 0 and 8, and intranasally at week 16 and 24. MYM-V101 was safe and well-tolerated at both doses administered by the intramuscular and intranasal routes, with the majority of subjects remaining free of local and general symptoms. P1-specific serum IgGs and IgAs were induced in all high dose recipients after the first injection. After the last vaccination, vaginal and rectal P1-specific IgGs could be detected in all high dose recipients. Approximately 63% and 43% of the low and high dose recipients were respectively tested positive for vaginal P1-IgAs, while 29% of the subjects from the high dose group tested positive for rectal IgAs. Serum samples had total specific IgG and IgA antibody concentrations ≥ 0.4 μg/mL, while mucosal samples were usually below 0.01 μg/mL. Vaginal secretions from MYM-V101 vaccinated subjects were inhibiting HIV-1 transcytosis but had no detectable neutralizing activity. P1-specific Th1 responses could not be detected on PBMC. This study demonstrates the excellent safety and tolerability of MYM-V101, eliciting systemic and mucosal antibodies in the majority of subjects. Vaccine-induced mucosal anti-gp41 antibodies toward conserved gp41 motifs were harboring HIV-1 transcytosis inhibition activity and may contribute to reduce sexually-transmitted HIV-1.ClinicalTrials.gov NCT01084343.

  1. DHEC: Vaccinations

    Science.gov (United States)

    Data, Maps - SC Public Health Diseases and Conditions Flu Tuberculosis STD/HIV and Viral Hepatitis Zika Illnesses E. coli Listeriosis Salmonella Hepatitis A Shellfish Monitoring and Regulation Certified Shippers Vaccines Teen and Preteen Vaccines Vaccines Needed for School Admission Related Topics Perinatal Hepatitis

  2. Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy.

    Science.gov (United States)

    Montefiori, David C

    2014-01-01

    This commentary describes a rationale for the use of breakthrough viruses from clinical trial participants to assess neutralizing antibodies as a correlate of HIV-1 vaccine efficacy. The rationale is based on principles of a genetic sieve analysis, where the 2 analyses may be cooperative for delineating neutralizing antibodies as a mechanistic correlate of protection.

  3. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    Science.gov (United States)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-02-01

    Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. [Figure not available: see fulltext.

  4. Preclinical assessment of HIV vaccines and microbicides by repeated low-dose virus challenges.

    Directory of Open Access Journals (Sweden)

    Roland R Regoes

    2005-08-01

    Full Text Available Trials in macaque models play an essential role in the evaluation of biomedical interventions that aim to prevent HIV infection, such as vaccines, microbicides, and systemic chemoprophylaxis. These trials are usually conducted with very high virus challenge doses that result in infection with certainty. However, these high challenge doses do not realistically reflect the low probability of HIV transmission in humans, and thus may rule out preventive interventions that could protect against "real life" exposures. The belief that experiments involving realistically low challenge doses require large numbers of animals has so far prevented the development of alternatives to using high challenge doses.Using statistical power analysis, we investigate how many animals would be needed to conduct preclinical trials using low virus challenge doses. We show that experimental designs in which animals are repeatedly challenged with low doses do not require unfeasibly large numbers of animals to assess vaccine or microbicide success.Preclinical trials using repeated low-dose challenges represent a promising alternative approach to identify potential preventive interventions.

  5. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    Science.gov (United States)

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  6. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  7. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Science.gov (United States)

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  8. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy.

    Directory of Open Access Journals (Sweden)

    Jason W Bennett

    2016-02-01

    Full Text Available A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001, a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP and a truncated repeat region that contains repeat sequences from both the VK210 (type 1 and the VK247 (type 2 parasites, was developed as a vaccine candidate for global use.We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls.The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period.This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.

  9. An Investigation of Immunogenicity of Chitosan-Based Botulinum Neurotoxin E Binding Domain Recombinant Candidate Vaccine via Mucosal Route

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Bagheripour

    2017-01-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by serotypes A-G of neurotoxins of Clostridium genus. Neurotoxin binding domain is an appropriate vaccine candidate due to its immunogenic activity. In this study, the immunogenicity of chitosan-based botulinum neurotoxin E binding domain recombinant candidate vaccine was investigated via mucosal route of administration. Methods: In this experimental study, chitosan nanoparticles containing rBoNT/E protein were synthesized by ionic gelation method and were administered orally and intranasally to mice. After each administration, IgG antibody titer was measured by ELISA method. Finally, all groups were challenged with active botulinum neurotoxin type E. Data were analyzed using Duncan and repeated ANOVA tests. The significance level was considered as p0.05, even intranasal route reduced the immunogenicity.

  10. Broad antibody mediated cross-neutralization and preclinical immunogenicity of new codon-optimized HIV-1 clade CRF02_AG and G primary isolates.

    Directory of Open Access Journals (Sweden)

    Simon M Agwale

    Full Text Available Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary "street strain" isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G. Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G and consensus tat (CRF02_AG and G antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G.

  11. Broad antibody mediated cross-neutralization and preclinical immunogenicity of new codon-optimized HIV-1 clade CRF02_AG and G primary isolates.

    Science.gov (United States)

    Agwale, Simon M; Forbi, Joseph C; Notka, Frank; Wrin, Terri; Wild, Jens; Wagner, Ralf; Wolf, Hans

    2011-01-01

    Creation of an effective vaccine for HIV has been an elusive goal of the scientific community for almost 30 years. Neutralizing antibodies are assumed to be pivotal to the success of a prophylactic vaccine but previous attempts to make an immunogen capable of generating neutralizing antibodies to primary "street strain" isolates have resulted in responses of very limited breadth and potency. The objective of the study was to determine the breadth and strength of neutralizing antibodies against autologous and heterologous primary isolates in a cohort of HIV-1 infected Nigerians and to characterize envelopes from subjects with particularly broad or strong immune responses for possible use as vaccine candidates in regions predominated by HIV-1 CRF02_AG and G subtypes. Envelope vectors from a panel of primary Nigerian isolates were constructed and tested with plasma/sera from the same cohort using the PhenoSense HIV neutralizing antibody assay (Monogram Biosciences Inc, USA) to assess the breadth and potency of neutralizing antibodies. The immediate goal of this study was realized by the recognition of three broadly cross-neutralizing sera: (NG2-clade CRF02_AG, NG3-clade CRF02_AG and NG9- clade G). Based on these findings, envelope gp140 sequences from NG2 and NG9, complemented with a gag sequence (Clade G) and consensus tat (CRF02_AG and G) antigens have been codon-optimized, synthesized, cloned and evaluated in BALB/c mice. The intramuscular administration of these plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial specific humoral response against all constructs and strong cellular responses against the gag and tat constructs. These preclinical findings provide a framework for the design of candidate vaccine for use in regions where the HIV-1 epidemic is driven by clades CRF02_AG and G.

  12. IMMUNOLOGICAL CHARACTERISTIC OF SYNTHETIC PEPTIDES SIMILAR TO ACTUAL HIV ANTIGEN DETERMINANTS

    Directory of Open Access Journals (Sweden)

    S. V. Korobova

    2016-01-01

    Full Text Available The development of HIV vaccine remains an important goal in prophylaxis and therapy of HIV/ AIDS epidemics. There are various approaches for development of а candidate vaccine based on induction of neutralizing antibodies and cell-mediated immunity. Synthetic peptides are considered promising vaccine antigens since they are capable of activating both humoral and cellular immune response. HIV-1 envelope gp120 is the target for neutralizing antiviral antibodies. The V3 region of the HIV-1 gp120 is highly immunogenic and important for the virus-coreceptor interaction. In a RV144 vaccine trial, the levels of vaccine-induced IgG antibodies recognizing V1V2 regions from multiple HIV-1 subtypes show inverse correlations with a risk for HIV-1 infection. Meanwhile, HIV is characterized by high diversity. The consensus and mosaic immunogens are complete but artificial proteins, which are computationally designed to elicit immune responses with improved cross-reactive broadness. We have been studied immunogenic properties of synthetic peptides derived from V1, V2, V3 loop regions of the consensus M HIV1 (CON-S sequence group of the gp 120 envelope protein and V3 loop derived from a Russian RUA022a2 isolate. These peptides specifically reacted to HIV-positive sera in ELISA, thus indicating their similarity to appropriate HIV proteins. The peptides proved to be weakly immunogenic. Therefore, Freund complete adjuvant was used to enhance peptide immunogenicity. To assess the immunogenicity, the mice were immunized with a peptide mixture. Antibodies have been developed to every peptide from the mixture, being, predominantly, of IgG isotype. The antibody titers depended on the length of peptide sequences. However, the sera from immunized mice did not have a HIV neutralizing activity. The serum neutralization was assessed by pseudovirus-based assay, using a molecular clone of virus isolates CAP 45.2.00.G3 and QH.209.14.M.EnvA2. The virus neutralization is a

  13. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  14. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant.

    Science.gov (United States)

    Padte, Neal N; Li, Xiangming; Tsuji, Moriya; Vasan, Sandhya

    2011-08-01

    Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that can harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including dendritic cells (DCs) to provide a significant adjuvant effect for several vaccines. This review discusses the discovery and characterization of 7DW8-5 and the practical considerations of its preclinical and clinical development as a potential glycolipid adjuvant for candidate malaria and HIV vaccines. Copyright © 2010. Published by Elsevier Inc.

  15. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes.

    Science.gov (United States)

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi

    2015-05-01

    Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted

  16. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  17. Implications of the ethical-legal framework for adolescent HIV vaccine trials--report of a consultative forum.

    Science.gov (United States)

    Slack, Catherine; Strode, Ann; Grant, Catherine; Milford, Cecilia

    2005-09-01

    The ethical-legal framework in South Africa is in a period of transition, with a number of new developments changing the substantive principles and procedures for health research in the country. Some of the changing dynamics include both law reform and the review of ethical guidelines. This changing environment poses many complexities for researchers, research ethics committees and participating communities involved in planning, implementing and reviewing research with child participants, including HIV vaccine trials. This paper presents the major themes and outcomes of a consultative meeting convened by the HIV AIDS Vaccines Ethics Group in July 2004 for key stakeholder groups. At this forum participants discussed the complexities posed by a transitional and sometimes contradictory ethical-legal framework and how the framework could be improved to simultaneously promote critical research and the welfare of child participants.

  18. Hepatitis B virus prevalence and vaccine response in HIV-infected children and adolescents on combination antiretroviral therapy in Kigali, Rwanda

    NARCIS (Netherlands)

    Mutwa, Philippe R.; Boer, Kimberly R.; Rusine, John B.; Muganga, Narcisse; Tuyishimire, Diane; Reiss, Peter; Lange, Joep M. A.; Geelen, Sibyl P. M.

    2013-01-01

    The aim of this study was to determine the prevalence of hepatitis B virus (HBV) infection in a cohort of HIV-infected Rwandan children and adolescents on combination antiretroviral therapy (cART), and the success rate of HBV vaccination in those children found to be HBV negative. HIV-infected

  19. Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate

    Science.gov (United States)

    Shin, Min-Kyoung; Jung, Myung Hwan; Lee, Won-Jung; Choi, Pil Son; Jang, Yong-Suk

    2011-01-01

    Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection. PMID:22122907

  20. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination.

    Directory of Open Access Journals (Sweden)

    Danushka K Wijesundara

    Full Text Available Qualitative characteristics of cytotoxic CD8+ T cells (CTLs are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV-HIV prime followed by a recombinant vaccinia virus (VV-HIV booster were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold, to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.

  1. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Ranasinghe, Charani; Jackson, Ronald J; Lidbury, Brett A; Parish, Christopher R; Quah, Benjamin J C

    2014-01-01

    Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.

  2. HIV-infection, atherosclerosis and the inflammatory pathway: candidate gene study in a Spanish HIV-infected population.

    Directory of Open Access Journals (Sweden)

    Laura Ibáñez

    Full Text Available BACKGROUND: Higher prevalence of atherosclerosis and higher cardiovascular risk is observed in HIV-infected individuals. The biological mechanisms underlying these processes are unclear. Several studies have implicated genetic variants in the inflammatory genes in cardiovascular disease and in HIV natural course infection. METHODS & FINDINGS: In this study we have tested the possible association between genetic variants in several inflammatory genes and asymptomatic cardiovascular disease measured by carotid intima media thickness (cIMT and atherosclerotic plaque presence as dependent variables in 213 HIV-infected individuals. A total of 101 genetic variants in 25 candidate genes have been genotyped. Results were analyzed using Plink and SPSS statistical packages. We have found several polymorphisms in the genes ALOX5 (rs2115819 p = 0.009, ALOX5AP (rs9578196 p = 0.007; rs4769873 p = 0.004 and rs9315051 p = 0.0004, CX3CL1 (rs4151117 p = 0.040 and rs614230 p = 0.015 and CCL5 (rs3817655 p = 0.018 and rs2107538 p = 0.018 associated with atherosclerotic plaque. cIMT mean has been associated with CRP (1130864 p = 0.0003 and rs1800947 p = 0.008, IL1RN (rs380092 p = 0.002 and ALOX5AP (rs3885907 p = 0.02 genetic variants. CONCLUSIONS: In this study we have found modest associations between genetic variants in several inflammatory genes and atherosclerotic plaque or cIMT. Nevertheless, our study adds evidence to the association between inflammatory pathway genetic variants and the atherosclerotic disease in HIV-infected individuals.

  3. Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected Individuals: An Open-Label, Controlled Clinical Phase II Trial

    Science.gov (United States)

    Overton, Edgar Turner; Stapleton, Jack; Frank, Ian; Hassler, Shawn; Goepfert, Paul A.; Barker, David; Wagner, Eva; von Krempelhuber, Alfred; Virgin, Garth; Meyer, Thomas Peter; Müller, Jutta; Bädeker, Nicole; Grünert, Robert; Young, Philip; Rösch, Siegfried; Maclennan, Jane; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2015-01-01

    Background. First- and second-generation smallpox vaccines are contraindicated in individuals infected with human immunodeficiency virus (HIV). A new smallpox vaccine is needed to protect this population in the context of biodefense preparedness. The focus of this study was to compare the safety and immunogenicity of a replication-deficient, highly attenuated smallpox vaccine modified vaccinia Ankara (MVA) in HIV-infected and healthy subjects. Methods. An open-label, controlled Phase II trial was conducted at 36 centers in the United States and Puerto Rico for HIV-infected and healthy subjects. Subjects received 2 doses of MVA administered 4 weeks apart. Safety was evaluated by assessment of adverse events, focused physical exams, electrocardiogram recordings, and safety laboratories. Immune responses were assessed using enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT). Results. Five hundred seventy-nine subjects were vaccinated at least once and had data available for analysis. Rates of ELISA seropositivity were comparably high in vaccinia-naive healthy and HIV-infected subjects, whereas PRNT seropositivity rates were higher in healthy compared with HIV-infected subjects. Modified vaccinia Ankara was safe and well tolerated with no adverse impact on viral load or CD4 counts. There were no cases of myo-/pericarditis reported. Conclusions. Modified vaccinia Ankara was safe and immunogenic in subjects infected with HIV and represents a promising smallpox vaccine candidate for use in immunocompromised populations. PMID:26380340

  4. Immunogenicity and safety of two doses of catch-up immunization with Haemophilus influenzae type b conjugate vaccine in Indian children living with HIV.

    Science.gov (United States)

    Arya, Bikas K; Bhattacharya, Sangeeta Das; Sutcliffe, Catherine G; Saha, Malay K; Bhattacharyya, Subhasish; Niyogi, Swapan Kumar; Moss, William J; Panda, Samiran; Das, Ranjan Saurav; Mallick, Mausom; Mandal, Sutapa

    2016-04-27

    Children living with HIV are at increased risk of disease from Haemophilus influenzae type b (Hib). Data are limited on the immunogenicity of a two-dose, catch-up schedule for Hib conjugate vaccine (HibCV) among HIV-infected children accessing antiretroviral therapy (ART) late. The objectives of the study were to: (1) evaluate baseline immunity to Hib and the immunogenicity and safety of two doses of HibCV among HIV-infected Indian children; and (2) document the threshold antibody level required to prevent Hib colonization among HIV-infected children following immunization. We conducted a prospective cohort study among HIV-infected children 2-15 years of age and HIV-uninfected children 2-5 years of age. HIV-infected children received two doses of HibCV and uninfected children received one. Serum anti-Hib PRP IgG antibodies were measured at baseline and two months after immunization in the HIV-infected children. Nasopharyngeal (NP) swabs were collected at baseline and follow-up. 125 HIV-infected and 44 uninfected children participated. 40% of HIV-infected children were receiving ART and 26% had a viral load >100,000 copies/mL. The geometric mean concentration of serum anti-Hib PRP antibody increased from 0.25 μg/mL at baseline to 2.65 μg/mL after two doses of HibCV, representing a 10.6-fold increase (pchildren mounted an immune response. Moderate or severe immune suppression, trimethoprim/sulfamethoxazole prophylaxis, and lower baseline antibody levels were associated with lower post-vaccine serum anti-Hib PRP IgG antibodies. A serum anti-Hib PRP IgG antibody level ≥ 3.3 μg/mL was protective against Hib NP colonization. There were no differences in adverse events between HIV-infected and uninfected children. Including a catch-up immunization schedule for older HIV infected children in countries introducing Hib vaccines is important. Older HIV-infected children with delayed access to ART and without suppressed viral loads mounted an adequate immune response

  5. Points for Consideration for dengue vaccine introduction - recommendations by the Dengue Vaccine Initiative.

    Science.gov (United States)

    Lim, Jacqueline Kyungah; Lee, Yong-Seok; Wilder-Smith, Annelies; Thiry, Georges; Mahoney, Richard; Yoon, In-Kyu

    2016-01-01

    Dengue is a public health problem in the tropics and subtropics. There are several vaccine candidates in clinical development. However, there may be gaps in the new vaccine introduction after vaccine licensure before it becomes available in developing countries. In anticipation of the first dengue vaccine candidate to be licensed, Dengue Vaccine Initiative (DVI) and, its predecessor, Pediatric Dengue Vaccine Initiative (PDVI) have been working on points for consideration to accelerate evidence-based dengue vaccine introduction, once a vaccine becomes available. In this paper, we review the history of PDVI and its successor, the DVI, and elaborate on the points of consideration for dengue vaccine introduction.

  6. Enrolling adolescents in HIV vaccine trials: reflections on legal complexities from South Africa.

    Science.gov (United States)

    Slack, Catherine; Strode, Ann; Fleischer, Theodore; Gray, Glenda; Ranchod, Chitra

    2007-05-13

    South Africa is likely to be the first country in the world to host an adolescent HIV vaccine trial. Adolescents may be enrolled in late 2007. In the development and review of adolescent HIV vaccine trial protocols there are many complexities to consider, and much work to be done if these important trials are to become a reality. This article sets out essential requirements for the lawful conduct of adolescent research in South Africa including compliance with consent requirements, child protection laws, and processes for the ethical and regulatory approval of research. This article outlines likely complexities for researchers and research ethics committees, including determining that trial interventions meet current risk standards for child research. Explicit recommendations are made for role-players in other jurisdictions who may also be planning such trials. This article concludes with concrete steps for implementing these important trials in South Africa and other jurisdictions, including planning for consent processes; delineating privacy rights; compiling information necessary for ethics committees to assess risks to child participants; training trial site staff to recognize when disclosures trig mandatory reporting response; networking among relevant ethics committees; and lobbying the National Regulatory Authority for guidance.

  7. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults.

    Directory of Open Access Journals (Sweden)

    Michael C Keefer

    Full Text Available We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35 vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN and env (Ad35-ENV, both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults.Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively within one of four dosage groups: Ad35-GRIN/ENV 2×10(9 (A, 2×10(10 (B, 2×10(11 (C, or Ad35-GRIN 1×10(10 (D viral particles.No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A-D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC per 10(6 PBMC to any antigen was 78-139 across Groups A-C and 158-174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A-C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination.Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional

  8. Safety of the malaria vaccine candidate, RTS,S/AS01E in 5 to 17 month old Kenyan and Tanzanian Children.

    Directory of Open Access Journals (Sweden)

    John Lusingu

    2010-11-01

    Full Text Available The malaria vaccine candidate, RTS,S/AS01(E, showed promising protective efficacy in a trial of Kenyan and Tanzanian children aged 5 to 17 months. Here we report on the vaccine's safety and tolerability. The experimental design was a Phase 2b, two-centre, double-blind (observer- and participant-blind, randomised (1∶1 ratio controlled trial. Three doses of study or control (rabies vaccines were administered intramuscularly at 1 month intervals. Solicited adverse events (AEs were collected for 7 days after each vaccination. There was surveillance and reporting for unsolicited adverse events for 30 days after each vaccination. Serious adverse events (SAEs were recorded throughout the study period which lasted for 14 months after dose 1 in Korogwe, Tanzania and an average of 18 months post-dose 1 in Kilifi, Kenya. Blood samples for safety monitoring of haematological, renal and hepatic functions were taken at baseline, 3, 10 and 14 months after dose 1. A total of 894 children received RTS,S/AS01(E or rabies vaccine between March and August 2007. Overall, children vaccinated with RTS,S/AS01(E had fewer SAEs (51/447 than children in the control group (88/447. One SAE episode in a RTS,S/AS01(E recipient and nine episodes among eight rabies vaccine recipients met the criteria for severe malaria. Unsolicited AEs were reported in 78% of subjects in the RTS,S/AS01(E group and 74% of subjects in the rabies vaccine group. In both vaccine groups, gastroenteritis and pneumonia were the most frequently reported unsolicited AE. Fever was the most frequently observed solicited AE and was recorded after 11% of RTS,S/AS01(E doses compared to 31% of doses of rabies vaccine. The candidate vaccine RTS,S/AS01(E showed an acceptable safety profile in children living in a malaria-endemic area in East Africa. More data on the safety of RTS,S/AS01(E will become available from the Phase 3 programme.

  9. Leishmaniasis vaccine candidates for development: a global overview.

    Science.gov (United States)

    Khamesipour, Ali; Rafati, Sima; Davoudi, Noushin; Maboudi, Fereidoun; Modabber, Farrokh

    2006-03-01

    A vaccine against different forms of leishmaniasis should be feasible considering the wealth of information on genetics and biology of the parasite, clinical and experimental immunology of leishmaniasis, and the availability of vaccines that can protect experimental animals against challenge with different Leishmania species. However, there is no vaccine against any form of leishmaniasis for general human use. One major factor is the lack of a conceived market for human leishmaniasis vaccines. Hence pharmaceutical industries involved in vaccine development are not interested in investing millions of dollars and a decade that is required for developing a new vaccine. Besides, leishmaniasis is a local/regional problem and not a global one. According to the estimates of the World Health Organization, 90 per cent of visceral leishmaniasis occurs in five countries (Bangladesh, Brazil, India, Nepal and Sudan). Those in need are amongst the poorest people in these countries. It should therefore be the objectives of these countries to develop a vaccine. Fortunately, both Brazil and India have designated the control of visceral leishmaniasis as a top priority for their respective Ministries of Health. The purpose of this review is to present only the vaccines in use and those in development for use in dogs or humans. This is not an exhaustive review of vaccine discovery or the principles of clinical immunology underlying vaccine development.

  10. Structure and interactions of a malarial vaccine candidate, AMA1, form the parasite plasmodium falciparum

    International Nuclear Information System (INIS)

    Miles, L.A.; Keizer, D.W.; Hodder, A.N.; Nair, M.; Hinds, M.G.; Norton, R.S.; Li, F.; Foley, M.; Coley, A.; Anders, R.F.

    2001-01-01

    Full text: Apical membrane antigen 1 (AMA1), a merozoite surface protein found in all species of Plasmodium and other apicomplexan parasites, is a strong candidate for inclusion in a malarial vaccine. Recombinant AMA1 protected against P. fragile in monkeys and P. chabaudi adami in mice. P. falciparum AMA1 which has a 62-kDa ectodomain consisting of three disulphide-stabilised domains, is a target of antibodies that inhibit merozoite invasion in vitro. Here we describe the solution structure of domain III (14 kDa), determined by NMR on 15 N- and 13 C/ 15 N-labelled samples. It has a well-defined disulphide-stabilised core interrupted by a disordered loop, and both the N- and C-terminal regions of the molecule are unstructured. The structured region includes all three disulphide bonds. Naturally-occurring mutations across 11 different P falciparum strains that are located far apart in the sequence cluster around the disulphide core in the 3D structure of domain III, suggesting that this region contains the major epitopes recognised by neutralising antibodies. Consistent with this, the disulphide-bond stabilised conformation of the ectodomain was essential for protection, as the antigen was not an effective vaccine after reduction and alkylation. Peptides have been found by phage display that bind to AMA1 and block merozoite invasion of erythrocytes. We have investigated their solution structures and interaction with full-length AMA1 ectodomain in an effort to understand the structure-function relationships of this important vaccine candidate

  11. Immunogenicity and effectiveness of Haemophilus influenzae type b conjugate vaccine in HIV infected and uninfected African children.

    Science.gov (United States)

    Madhi, Shabir A; Kuwanda, Locadiah; Saarinen, Leena; Cutland, Clare; Mothupi, Rosalia; Käyhty, Helena; Klugman, Keith P

    2005-12-01

    The quantitative (anti-Hib capsular polysaccharide antibody concentrations; anti-HibPS) and qualitative (bactericidal activity and avidity) aspects in immune responses to Haemophilus influenzae type b polyribosyl ribitol phospshate-CRM(197) conjugate vaccine (HibCV; HibTiter) were evaluated in 66 HIV infected children not receiving anti-retroviral therapy and 127 HIV uninfected children. Surveillance was conducted for invasive Hib disease in a cohort of 39,865 (approximately 6.4% of whom were HIV infected) children from March 1998 to June 2004. HIV infected children had lower anti-HibPS geometric mean antibody concentrations 1 month post-immunisation than HIV uninfected children (Por=1.0 microg/ml (RR 0.54; 95% CI 0.43-0.69). A lower proportion of HIV infected children than HIV uninfected children (RR 0.78; 95% CI 0.66-0.93) had measurable anti-Hib serum bactericidal activity (SBA) and the HibPS antibody concentration required for 50% killing of Hib bacteria was greater among HIV infected than HIV uninfected children (P=0.001). The estimated risk of HibCV failure was 35.1-fold greater (95% CI 14.6-84.6) amongst HIV infected than HIV uninfected children.

  12. Punica granatum (Pomegranate juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2004-10-01

    Full Text Available Abstract Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1 infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2 binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored.

  13. Immune response after one or two doses of pandemic influenza A (H1N1) monovalent, AS03-adjuvanted vaccine in HIV infected adults

    DEFF Research Database (Denmark)

    Bybeck Nielsen, Allan; Nielsen, Henriette Schjønning; Nielsen, Lars

    2012-01-01

    INTRODUCTION: Continued research is needed to evaluate and improve the immunogenicity of influenza vaccines in HIV infected patients. We aimed to determine the antibody responses after one or two doses of the AS03-adjuvanted pandemic influenza A (H1N1) vaccine in HIV infected patients. METHOD......: Following the influenza season 2009/2010, 219 HIV infected patients were included and divided into three groups depending on whether they received none (n=60), one (n=31) or two (n=128) doses of pandemic influenza A (H1N1) vaccine. At inclusion, antibody titers for all patients were analyzed and compared...... to pre-pandemic antibody titers analyzed from serum samples in a local storage facility. RESULTS: 4-9 months after a single immunization, we found a seroprotection rate of 77.4% and seroconversion rate of 67.7%. After two immunizations the rates increased significantly to seroprotection rate of 97...

  14. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults.

    Science.gov (United States)

    Pathan, Ansar A; Minassian, Angela M; Sander, Clare R; Rowland, Rosalind; Porter, David W; Poulton, Ian D; Hill, Adrian V S; Fletcher, Helen A; McShane, Helen

    2012-08-17

    A non-randomised, open-label, Phase I safety and immunogenicity dose-finding study to assess the safety and immunogenicity of the candidate TB vaccine Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) from Mycobacterium tuberculosis (MTB) in healthy adult volunteers previously vaccinated with BCG. Healthy BCG-vaccinated volunteers were vaccinated with either 1×10(7) or 1×10(8)PFU of MVA85A. All adverse events were documented and antigen specific T cell responses were measured using an ex vivo IFN-γ ELISPOT assay. Safety and immunogenicity were compared between the 2 dose groups and with a previous trial in which a dose of 5×10(7)PFU MVA85A had been administered. There were no serious adverse events recorded following administration of either 1×10(7) or 1×10(8)PFU of MVA85A. Systemic adverse events were more frequently reported following administration of 1×10(8)PFU of MVA85A when compared to either 5×10(7) or 1×10(7)PFU of MVA85A but were mild or moderate in severity and resolved completely within 7 days of immunisation. Antigen specific T cell responses as measured by the IFN-γ ELISPOT were significantly higher following immunisation in adults receiving 1×10(8)PFU compared to the 5×10(7) and 1×10(7) doses. Additionally, a broader range of Ag85A epitopes are detected following 1×10(8)PFU of MVA85A. A higher dose of 1×10(8)PFU of MVA85A is well-tolerated, increases the frequency of IFN-γ secreting T cells detected following immunisation and broadens the range of Ag85A epitopes detected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2009-07-01

    Full Text Available Abstract Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1 regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007, we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms. The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges

  16. Diaryltriazine non-nucleoside reverse transcriptase inhibitors are potent candidates for pre-exposure prophylaxis in the prevention of sexual HIV transmission.

    Science.gov (United States)

    Ariën, Kevin K; Venkatraj, Muthusamy; Michiels, Johan; Joossens, Jurgen; Vereecken, Katleen; Van der Veken, Pieter; Abdellati, Saïd; Cuylaerts, Vicky; Crucitti, Tania; Heyndrickx, Leo; Heeres, Jan; Augustyns, Koen; Lewi, Paul J; Vanham, Guido

    2013-09-01

    Pre-exposure prophylaxis and topical microbicides are important strategies in the prevention of sexual HIV transmission, especially since partial protection has been shown in proof-of-concept studies. In search of new candidate drugs with an improved toxicity profile and with activity against common non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV, we have synthesized and investigated a library of 60 new diaryltriazine analogues. From this library, 15 compounds were evaluated in depth using a broad armamentarium of in vitro assays that are part of a preclinical testing algorithm for microbicide development. Antiviral activity was assessed in a cell line, and in primary human cells, against both subtype B and subtype C HIV-1 and against viruses resistant to therapeutic NNRTIs and the candidate NNRTI microbicide dapivirine. Toxicity towards primary blood-derived cells, cell lines originating from the female reproductive tract and female genital microflora was also studied. We identified several compounds with highly potent antiviral activity and toxicity profiles that are superior to that of dapivirine. In particular, compound UAMC01398 is an interesting new candidate that warrants further investigation because of its superior toxicity profile and potent activity against dapivirine-resistant viruses.

  17. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Avril, Marion; Kulasekara, Bridget R; Gose, Severin O

    2008-01-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 k...

  18. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis

    Science.gov (United States)

    Gurung, Ratna B.; Purdie, Auriol C.; Whittington, Richard J.; Begg, Douglas J.

    2014-01-01

    Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate. PMID:25077074

  19. Diphtheria, tetanus, poliomyelitis, yellow fever and hepatitis B seroprevalence among HIV1-infected migrants. Results from the ANRS VIHVO vaccine sub-study.

    Science.gov (United States)

    Mullaert, Jimmy; Abgrall, Sophie; Lele, Nathalie; Batteux, Frederic; Slama, Lilia Ben; Meritet, Jean-Francois; Lebon, Pierre; Bouchaud, Olivier; Grabar, Sophie; Launay, Odile

    2015-09-11

    Few data are available on the seroprotection status of HIV1-infected patients with respect to vaccine-preventable diseases. To describe, in a population of HIV1-infected migrants on stable, effective ART therapy, the seroprevalence of diphtheria, poliomyelitis, tetanus, yellow fever antibodies and serostatus for hepatitis B, and to identify factors associated with seroprotection. Vaccine responses against diphtheria, tetanus, poliomyelitis and yellow fever were also studied. Sub-Saharan African patients participating in the ANRS-VIHVO cohort were enrolled prior to travel to their countries of origin. Serologic analyses were performed in a central laboratory before and after the trip. Univariate and multivariate logistic regression was used to identify factors associated with initial seroprotection. 250 patients (99 men and 151 women) were included in the seroprevalence study. Median age was 45 years (IQR 39-52), median CD4 cell count was 440/μL (IQR 336-571), and 237 patients (95%) had undetectable HIV1 viral load. The initial seroprevalence rates were 69.0% (95%CI 63.2-74.7) for diphtheria, 70.7% (95%CI 65.0-76.3) for tetanus, and 85.9% (95%CI 81.6-90.2) for yellow fever. Only 64.4% (95%CI 58.5-70.3) of patients had protective antibody titers against all three poliomyelitis vaccine strains before travel. No serological markers of hepatitis B were found in 18.6% of patients (95%CI 13.7-23.3). Patient declaration of prior vaccination was the only factor consistently associated with initial seroprotection. We found a low prevalence of seroprotection against diphtheria, poliomyelitis, tetanus and hepatitis B. HIV infected migrants living in France and traveling to their native countries need to have their vaccine schedule completed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  1. Transcription status of vaccine candidate genes of Plasmodium falciparum during the hepatic phase of its life cycle.

    NARCIS (Netherlands)

    Bodescot, M.; Silvie, O.; Siau, A.; Refour, P.; Pino, P.; Franetich, J.F.; Hannoun, L.; Sauerwein, R.W.; Mazier, D.

    2004-01-01

    The CSP, EMP2/MESA, MSP2, MSP3, MSP5, RAP1, RAP2, RESA1, SERA1 and SSP2/TRAP genes of Plasmodium falciparum are vaccine candidates. The hepatic phase of the infection is of major interest due to the protection induced by immunization with radiation-attenuated sporozoites. We therefore performed

  2. High-sensitive and rapid detection of Mycobacterium tuberculosis infection by IFN-γ release assay among HIV-infected individuals in BCG-vaccinated area

    Directory of Open Access Journals (Sweden)

    Jiang Weimin

    2009-05-01

    Full Text Available Abstract Background An accurate test for Mycobacterium tuberculosis infection is urgently needed in immunosuppressed populations. The aim of this study was to investigate the diagnostic power of enzyme-linked immunospot (ELISPOT-based IFN-γ release assay in detecting active and latent tuberculosis in HIV-infected population in bacillus Calmette-Guerin (BCG-vaccinated area. A total of 100 HIV-infected individuals including 32 active tuberculosis patients were recruited. An ELISPOT-based IFN-γ release assay, T-SPOT.TB, was used to evaluate the M. tuberculosis ESAT-6 and CFP-10 specific IFN-γ response. Tuberculin skin test (TST was performed for all recruited subjects. Results The subjects were divided into group HIV+ATB (HIV-infected individuals with active tuberculosis, n = 32, group HIV+LTB (HIV-infected individuals with positive results of T-SPOT.TB assay, n = 46 and group HIV only (HIV-infected individuals with negative results of T-SPOT.TB assay and without evidence of tuberculosis infection, n = 22. In group HIV+ATB and HIV+LTB, T-SPOT.TB positive rate in subjects with TST P 85% in patients with TB treatment for less than 1 month and CD4+ T cells ≥200/μl, while for patients treated for more than 3 months and CD4+ T cells Conclusion ELISPOT-based IFN-γ release assay is more sensitive and rapid for the diagnosis of TB infection in Chinese HIV-infected individuals with history of BCG vaccination, and could be an effective tool for guiding preventive treatment with isoniazid in latently infected people and for TB control in China.

  3. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  4. Vaccines and immunization

    African Journals Online (AJOL)

    Prof Ezechukwu

    vaccines for malaria and HIV infection. Despite the ... decades, effective vaccines against the major causes of ... challenge antibodies, specific helper and effector T lymphocytes ... materials to produced immunity to a disease. It was originally ...

  5. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Directory of Open Access Journals (Sweden)

    Emma-Jo Hayton

    Full Text Available HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported.Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination.Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern.These data demonstrate safety and good tolerability of the pSG2

  6. A Phase III, randomized study to evaluate the immunogenicity and safety of an MF59®-adjuvanted A/H1N1 pandemic influenza vaccine in HIV-positive adults

    Directory of Open Access Journals (Sweden)

    Ricardo Sobhie Diaz

    2014-01-01

    Conclusion: Antibody responses in HIV-positive subjects were acceptable but lower than those in healthy control subjects, whether subjects were immunized with one or two doses of adjuvanted or unadjuvanted vaccine. Vaccination did not affect rates of HIV replication, CD4+ T cells counts, or levels of CD38 expression among patients under successful antiretroviral treatment.

  7. Induction of immunity to human immunodeficiency virus type-1 by vaccination.

    Science.gov (United States)

    McElrath, M Juliana; Haynes, Barton F

    2010-10-29

    Recent findings have brought optimism that development of a successful human immunodeficiency virus type-1 (HIV-1) vaccine lies within reach. Studies of early events in HIV-1 infection have revealed when and where HIV-1 is potentially vulnerable to vaccine-targeted immune responses. With technical advances in human antibody production, clues about how antibodies recognize HIV-1 envelope proteins have uncovered new targets for immunogen design. A recent vaccine regimen has shown modest efficacy against HIV-1 acquisition. However, inducing long-term T and B cell memory and coping with HIV-1 diversity remain high priorities. Mediators of innate immunity may play pivotal roles in blocking infection and shaping immunity; vaccine strategies to capture these activities are under investigation. Challenges remain in integrating basic, preclinical and clinical research to improve predictions of types of immunity associated with vaccine efficacy, to apply these insights to immunogen design, and to accelerate evaluation of vaccine efficacy in persons at-risk for infection. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Gauging the Acceptability of HIV Vaccines: An Exploratory Study Examining Knowledge, Attitudes, and Beliefs among Injecting Drug Users in Viet Nam

    Science.gov (United States)

    Nguyen, France

    2007-01-01

    In contrast to other countries in Southeast Asia, the HIV/ AIDS epidemic is in the initial stages in Viet Nam, although the rates have increased notably since 1997. This study examined attitudes towards the use of an HIV vaccine (when one becomes available) as a means for preventing the disease. Since injecting drug users are the great majority of…

  9. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates.

    Science.gov (United States)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa; Chilongola, Jaffu; Dodoo, Daniel; Sauerwein, Robert; Theisen, Michael; Roeffen, Will; Singh, Shrawan Kumar; Singh, Rajesh Kumar; Singh, Sanjay; Kyei-Baafour, Eric; Tetteh, Kevin; Drakeley, Chris; Bousema, Teun

    2015-07-01

    Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso. We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p < 0.001) and 230CMB (p = 0.031). Membrane feeding assays on a separate dataset demonstrated an association between functional transmission reducing activity and antibody prevalence for both 10C (p = 0.017) and 230CMB (p = 0.049). 17 single nucleotide polymorphisms were found in pfs48/45 (from 126 samples), with 5 non-synonymous SNPs in the Pfs48/45 10C region. We conclude there are naturally acquired antibody responses to both vaccine candidates which have functional relevance by reducing the transmissibility of infected individuals. We identified genetic polymorphisms, in pfs48/45 which exhibited geographical specificity. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Protection against Fasciola gigantica using paramyosin antigen as a candidate for vaccine production.

    Science.gov (United States)

    Abou-Elhakam, H; Rabee, I; El Deeb, S; El Amir, A

    2013-11-15

    Yet no vaccine to protect ruminants against liver fluke infection has been commercialized. In an attempt to develop a suitable vaccine against Fasciola gigantica (F. gigantica) infection in rabbits, using 97 kDa Pmy antigen. It was found that, the mean worm burdens and bile egg count after challenge were reduced significantly by 58.40 and 61.40%, respectively. On the other hand, immunization of rabbits with Pmy induced a significant expression of humoral antibodies (IgM, total IgG, IgG1, IgG2 and IgG4) and different cytokines (IL-6, IL-10, L-12 and TNF-alpha). Among Ig isotypes, IgG2 and IgG4 were most dominant Post-infection (PI) while, recording a low IgG1 level. The dominance of IgG2 and IgG4 suggested late T helper1 (Th1) involvement in rabbit's cellular response. While, the low IgG1 level suggested Th2 response to adult F. gigantica worm Pmy. Among all cytokines, IL-10 was the highest in rabbits immunized with Pmy PI suggesting also the enhancement of Th2 response. It was clear that the native F. gigantica Pmy is considered as a relevant candidate for vaccination against fascioliasis. Also, these data suggested the immunoprophylactic effect of the native F. gigantica Pmy which is mediated by a mixed Th1/Th2 response.

  11. Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K.

    Science.gov (United States)

    Cha, Seung Bin; Kim, Woo Sik; Kim, Jong-Seok; Kim, Hongmin; Kwon, Kee Woong; Han, Seung Jung; Cho, Sang-Nae; Coler, Rhea N; Reed, Steven G; Shin, Sung Jae

    2016-04-27

    The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea. Mice immunized with ID93/GLA-SE exhibited a significant reduction in bacteria and reduced lung inflammation against Mtb K when compared to non-immunized controls. In addition, we analyzed the immune responses in the lungs of ID93/GLA-SE-immunized mice, and showed that ID93/GLA-SE was able to elicit sustained Th1-biased immune responses including antigen-specific multifunctional CD4(+) T cell co-producing IFN-γ, TNF-α, and IL-2 as well as a high magnitude of IFN-γ response for up to 10 weeks post-challenge. Notably, further investigation of T cell subsets in the lung following challenge showed remarkable generation of CD8(+) central memory T cells by ID93/GLA-SE-immunization. Our findings showed that ID93/GLA-SE vaccine confers a high level of robust protection against the hypervirulent Mtb Beijing infection which was characterized by pulmonary Th1-polarized T-cell immune responses. These findings may also provide relevant information for potential utility of this vaccine candidate in East-Asian countries where the Beijing genotype is highly prevalent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Incorporation of chimeric HIV-SIV-Env and modified HIV-Env proteins into HIV pseudovirions

    International Nuclear Information System (INIS)

    Devitt, Gerard; Emerson, Vanessa; Holtkotte, Denise; Pfeiffer, Tanya; Pisch, Thorsten; Bosch, Valerie

    2007-01-01

    Low level incorporation of the viral glycoprotein (Env) into human immunodeficiency virus (HIV) particles is a major drawback for vaccine strategies against HIV/AIDS in which HIV particles are used as immunogen. Within this study, we have examined two strategies aimed at achieving higher levels of Env incorporation into non-infectious pseudovirions (PVs). First, we have generated chimeric HIV/SIV Env proteins containing the truncated C-terminal tail region of simian immunodeficiency virus (SIV)mac239-Env767 stop , which mediates strongly increased incorporation of SIV-Env into SIV particles. In a second strategy, we have employed a truncated HIV-Env protein (Env-Tr752 N750K ) which we have previously demonstrated to be incorporated into HIV virions, generated in infected T-cells, to a higher level than that of Wt-HIV-Env. Although the chimeric HIV/SIV Env proteins were expressed at the cell surface and induced increased levels of cell-cell fusion in comparison to Wt-HIV-Env, they did not exhibit increased incorporation into either HIV-PVs or SIV-PVs. Only Env-Tr752 N750K exhibited significantly higher (threefold) levels of incorporation into HIV-PVs, an improvement, which, although not dramatic, is worthwhile for the large-scale preparation of non-infectious PVs for vaccine studies aimed at inducing Env humoral responses

  13. Comparison of the Immunogenicity and Reactogenicity of Cervarix and Gardasil Human Papillomavirus Vaccines in HIV-Infected Adults

    DEFF Research Database (Denmark)

    Nielsen, Lars Toft; Storgaard, Merete; Müller, Martin

    2013-01-01

    Objectives. To compare the immunogenicity and reactogenicity of Cervarix(®) or Gardasil(®) Human Papillomavirus (HPV) vaccines in HIV-infected adults.Methods. A double-blind, controlled trial randomizing HIV-positive adults to receive three doses of Cervarix(®) or Gardasil(®) at 0, 1.5 and 6 months.......Results. Ninety-two participants were included in the study. Anti-HPV-18 antibody titers were higher in the Cervarix(®) group compared with the Gardasil(®) group at 7 and 12 months. No significant differences in anti-HPV-16 antibody titers were found among vaccine groups. Among Cervarix(®) vaccinees, women had...... higher anti-HPV-16/-18 antibody titers compared to men. No gender-specific differences in antibody titers were found in the Gardasil(®) group. Mild injection site reactions were more common in the Cervarix(®) group than in the Gardasil(®) group (91.1% vs. 69.6%; P=.02). No serious adverse events occurred...

  14. Immunoprotective efficacy of Acinetobacter baumannii outer membrane protein, FilF, predicted in silico as a potential vaccine candidate

    Directory of Open Access Journals (Sweden)

    Ravinder eSingh

    2016-02-01

    Full Text Available Acinetobacter baumannii is emerging as a serious nosocomial pathogen with multidrug resistance that has made it difficult to cure and development of efficacious treatment against this pathogen is direly needed. This has led to investigate vaccine approach to prevent and treat A. baumannii infections. In this work, an outer membrane putative pilus assembly protein, FilF, was predicted as vaccine candidate by in silico analysis of A. baumannii proteome and was found to be conserved among the A. baumannii strains. It was cloned and expressed in E. coli BL21(DE3 and purified by Ni-NTA chromatography. Immunization with FilF generated high antibody titer (>64000 and provided 50% protection against a standardized lethal dose (10*8 CFU of A. baumannii in murine pneumonia model. FilF immunization reduced the bacterial load in lungs by 2 and 4 log cycles, 12 and 24 h post infection as compared to adjuvant control; reduced the levels of pro-inflammatory cytokines TNF-α, IL-6, IL-33, IFN-γ and IL-1β significantly and histology of lung tissue supported the data by showing considerably reduced damage and infiltration of neutrophils in lungs. These results demonstrate the in vivo validation of immunoprotective efficacy of a protein predicted as a vaccine candidate by in silico proteomic analysis and open the possibilities for exploration of a large array of uncharacterized proteins.

  15. HIV vaccine: it may take two to tango, but no party time yet

    Directory of Open Access Journals (Sweden)

    Paxton William A

    2009-10-01

    Full Text Available Abstract A press conference on Thursday September 24 in Bangkok, Thailand, released data that an experimental vaccine provided mild protection against HIV-1 infection. This is the first positive signal of any degree of vaccine efficacy in humans, more than a quarter-century after scientists discovered the virus that causes AIDS. The research was conducted by a team including Thai researchers, the U.S. Army and the U.S. National Institutes of Health. The RV144 Phase III clinical trial, which began in 2003, had been disparaged by many critics as a waste of time and money because each of the two components had been shown to produce no benefit as individual vaccines and because the scientific rationales behind the immunogens were just wrong. It was nevertheless speculated that using them together in the prime-boost scenario could be more effective, with the aim to induce heightened CD4+ cellular immune responses against the viral Envelope protein. This optimism seems to have been validated. In fact, this would not be the first time that the discovery of an effective vaccine relied as much on serendipity as opposed to scientific rationale. On the other hand, many questions remain about the RV144 trial, and these issues will be addressed in this editorial.

  16. Conservation and diversity of influenza A H1N1 HLA-restricted T cell epitope candidates for epitope-based vaccines.

    Directory of Open Access Journals (Sweden)

    Paul Thiamjoo Tan

    2010-01-01

    Full Text Available The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated.HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54 peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-gamma ELISpot assay. The 54 peptides were compared to the 2007-2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes.Seventeen (17 T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.

  17. GapA, a potential vaccine candidate antigen against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zhang, Ze; Yu, Angen; Lan, Jiangfeng; Zhang, Hua; Hu, Minqiang; Cheng, Jiewei; Zhao, Lijuan; Lin, Li; Wei, Shun

    2017-04-01

    Streptococcosis due to the bacterium Streptococcus agalactiae (S. agalactiae) has resulted in enormous economic losses in aquaculture worldwide, especially in the tilapia culture industry. Previously, there were limited vaccines that could be employed against streptococcosis in tilapia. This study aimed to develop a vaccine candidate using the glyceraldehyde-phosphate dehydrogenase protein (GapA) of S. agalactiae encoded by the gapA gene. Tilapia were intraperitoneally injected with PBS, PBS + Freund's adjuvant, PBS + Montanide's adjuvant, GapA + Freund's adjuvant, GapA + Montanide's adjuvant, killed S. agalactiae whole cells (WC)+Freund's adjuvant, or killed S. agalactiae whole cells (WC)+ Montanide's adjuvant. They were then challenged with S. agalactiae, and the relative percentage survival (RPS) was monitored 14 days after the challenge. The highest RPSs were observed in the WC groups, with 76.7% in WC + Freund's adjuvant and 74.4% in WC + Montanide's adjuvant groups; these were followed by the GapA groups, with 63.3% in GapA + Freund's adjuvant and 45.6% in GapA + Montanide's adjuvant groups. The RPS of the PBS group was 0%, and those of PBS + Freund's adjuvant and PBS + Montanide's adjuvant groups were 6.7% and 3.3%, respectively. Additionally, the IgM antibody responses elicited in GapA groups and WC groups were significantly higher than those in PBS groups. Furthermore, the expressions of cytokine (IL-1β and TNF-α) mRNAs in the GapA groups and WC groups were significantly higher than those in the PBS groups. Taken together, these results reveal that the GapA protein is a promising vaccine candidate that could be used to prevent streptococcosis in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Phase 1 Human Immunodeficiency Virus Vaccine Trial for Cross-Profiling the Kinetics of Serum and Mucosal Antibody Responses to CN54gp140 Modulated by Two Homologous Prime-Boost Vaccine Regimens

    Directory of Open Access Journals (Sweden)

    Sven Kratochvil

    2017-05-01

    Full Text Available A key aspect to finding an efficacious human immunodeficiency virus (HIV vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months. The two homologous prime-boost regimens were well tolerated and induced CN54gp140-specific responses that were observed in both the systemic and mucosal compartments. Levels of vaccine-induced IgG-subclass antibodies correlated significantly with FcγR engagement, and both vaccine regimens were associated with strikingly similar patterns in antibody titer and FcγR-binding profiles. In both groups, identical changes in the antigen (Ag-specific IgG-subclass fingerpr