WorldWideScience

Sample records for hitrap facility hochgeladene

  1. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, D. [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Stiebing, K.E., E-mail: stiebing@em.uni-frankfurt.de [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Winters, D.F.A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Quint, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, D-69120, Heidelberg (Germany); Varentsov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Facility for Antiproton and Ion Research in Europe (FAIR), Darmstadt (Germany); Warczak, A.; Malarz, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisch-Astronomische Fakultät der Friedrich-Schiller-Universität Jena, Helmholtz-Institut Jena, Fröbelstieg 3, D-07743, Jena (Germany)

    2014-11-11

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×10{sup 12} atoms/cm{sup 3} for helium and 8.1×10{sup 12} atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  2. HITRAP - a facility for experiments on heavy highly charged ions and on antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Andjelkovic, Z; Barth, W; Brantjes, N P M; Braeuning-Demian, A; Dahl, L; Herfurth, F; Kester, O; Kluge, H J; Koszudowski, S; Kozhuharov, C; Maero, G; Noertershaeuser, W [GSI, Darmstadt (Germany); Birkl, G [Technische Universitaet Darmstadt (Germany); Blank, I; Goetz, S [Universitaet Freiburg (Germany); Blaum, K [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Bodewits, E; Hoekstra, R [KVI Groningen (Netherlands); Church, D [Texas AM University, Texas (United States); Pfister, J, E-mail: w.quint@gsi.d [Universitaet Frankfurt (Germany)

    2009-11-01

    HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has been demonstrated and studied in detail. The commissioning of the RFQ structure and the cooler trap is ongoing.

  3. Construction and building of a compact RFQ spiral structure for the stopping of highly charged heavy ion beams for the HITRAP project of the GSI; Konstruktion und Aufbau einer kompakten RFQ-Spiral-Struktur zum Abbremsen hochgeladener Schwerionenstrahlen fuer das HITRAP-Projekt der GSI

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, B.

    2007-07-01

    For experiments of the atomic-physics group of the GSI in Darmstadt an ion stopper is built, which will make low-energetic, extremely highly charged ions available. The plannings for the so-called HITRAP (highly charged ion's trap) began at the beginning of the ninetieth. With this facility highly-charged heavy ions shall be stopped in two stages to very low, thermal velocities, and be available for highly precise mass spectroscopy, measurements of the g factor of the bound electron of hydrogen-like ions, and other atomic-physics experiments. This decelerator facility shall first be built in the reinjection channel behind the ESR with the possibility, to apply all components later in teh extension of the GSI in the framework of the FAIR project in the facility for low-energetic antiprotons and ions to be newly built. the present thesis treats the development and the building of an integrated RFQ debuncher stopping accelerator, which represents a part of the HITRAP stopping structures. By this the ion beam is stopped from the IH stopping accelerator with an energy of 500 keV/u to 5 keV/u. By the integrated spiral buncher the beam can be fitted in energy and energy deviation to the subsequent cooler trap. In this thesis the foundations of the particle dynamics in a RFQ accelerator for the stopping of particle beams were worked out and realized, the particle-dynamics calculations necessary for the lay-out of such a structure performed with RFQSim, suitable RF structures with the simulation program Microwave Studio developed and studied, as well as the thermal load of the structures studied with the finite-element code ALGOR. A further, central topic of this thesis is the building and the tuning of the RFQ structure in order to reach a homogeneous as possible field distribution along the electrodes. Measurements of the fields in the RFQ were performed with a disturbing condenser, at the debuncher with a disturbing body. After successfully performed vacuum tests at

  4. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  5. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Alexey

    2010-01-29

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  6. Developments for the HITRAP cooler trap and mass measurements around A = 96 at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Koszudowski, Stephen

    2009-07-08

    The HITRAP (Highly charged Ions Trap) facility is currently being set up and commissioned at GSI in Darmstadt. It will provide bunches of 10{sup 5} heavy highly-charged ions, for example hydrogen-like uranium (U{sup 91+}), to high-precision atomic physics experiments. The ions are produced by the GSI accelerator complex and decelerated to 4 MeV/u in the Experimental Storage Ring. Then the ions are decelerated by a two-step linear decelerator down to 6 keV/u. The first deceleration step down to 500 keV/u was successfully commissioned. The decelerated ions are injected into a Penning trap (the Cooler Trap), where they are cooled to 4 K by electron and resistive cooling. Resonant circuits for non-destructive detection and the resistive cooling of the trapped particles were designed and tested. The time control of the trap-cycle (trapping, cooling, extraction) with a time resolution of 25 ns was implemented into the control system CS. CS is also used at the mass measurement Penning trap SHIPTRAP, where the new time control is successfully operated. SHIPTRAP measures radioactive ions stemming from fusion evaporation reactions at the velocity filter SHIP. The masses of 9 nuclides ({sup 93,94,95}Technetium, {sup 94,96}Ruthenium, {sup 95,96,97,98}Rhodium) near the line of stability were precisely measured and compared with the Atomic Mass Evaluation. The detection of isomeric states with the present SHIPTRAP set-up was studied. (orig.)

  7. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  8. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  9. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  10. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  11. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  12. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  13. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  14. Planning Facilities.

    Science.gov (United States)

    Flynn, Richard B., Ed.; And Others

    1983-01-01

    Nine articles give information to help make professionals in health, physical education, recreation, dance, and athletics more knowledgeable about planning facilities. Design of natatoriums, physical fitness laboratories, fitness trails, gymnasium lighting, homemade play equipment, indoor soccer arenas, and dance floors is considered. A…

  15. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  16. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  17. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric values. In addition, the experimental results are compared with computer simulations based on the extended dynamical over-the-barrier model. From these calculations, the ratio of deposited potential energy that is transformed into kinetic energy before deposition due to the image charge acceleration can be maintained. (orig.)

  18. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to estimate recombination rates and survival probabilities of a charge state. These are calculated and compared for different ion and electron densities. In a further step the external trap potential and the shape of the electron plasma is included. A full analytic approximation (except for the calculation of the energy loss) of the ion movement in the trap is developed. With this model the time dependence of ion distributions is investigated. (orig.)

  19. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  20. Breadboard Facility

    Science.gov (United States)

    1977-01-01

    In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service

  1. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  2. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  3. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  4. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  5. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  6. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  7. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  8. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  9. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  10. Sports Facility Management.

    Science.gov (United States)

    Walker, Marcia L., Ed.; Stotlar, David K., Ed.

    The numbers of both sports facility management college courses and sport and exercise facilities are increasing, along with the need for an understanding of the trends and management concepts of these facilities. This book focuses exclusively on managing facilities where sporting events occur and includes examples in physical education, athletics,…

  11. Reliable Facility Location Problem with Facility Protection.

    Science.gov (United States)

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  12. Reliable Facility Location Problem with Facility Protection.

    Directory of Open Access Journals (Sweden)

    Luohao Tang

    Full Text Available This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  13. Shapley Facility Location Games

    OpenAIRE

    Ben-Porat, Omer; Tennenholtz, Moshe

    2017-01-01

    Facility location games have been a topic of major interest in economics, operations research and computer science, starting from the seminal work by Hotelling. Spatial facility location models have successfully predicted the outcome of competition in a variety of scenarios. In a typical facility location game, users/customers/voters are mapped to a metric space representing their preferences, and each player picks a point (facility) in that space. In most facility location games considered i...

  14. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  15. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  16. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  17. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  18. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  19. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  20. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  1. Lesotho - Health Facility Survey

    Data.gov (United States)

    Millennium Challenge Corporation — The main objective of the 2011 Health Facility Survey (HFS) was to establish a baseline for informing the Health Project performance indicators on health facilities,...

  2. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  3. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  4. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  5. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  6. Robustness in facility location

    OpenAIRE

    Van Lokven, Sander W.M.

    2009-01-01

    Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input da...

  7. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  8. Facility Measures Magnetic Fields

    Science.gov (United States)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  9. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  10. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  11. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  12. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  13. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  14. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  15. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  16. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  17. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  18. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  19. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  20. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  1. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  2. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  3. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  4. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  5. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  6. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  7. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  8. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  9. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  10. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  11. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  12. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  13. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  14. Biotechnology Facility: An ISS Microgravity Research Facility

    Science.gov (United States)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  15. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  16. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  17. Inpatient Rehabilitation Facility - Conditions

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of inpatient rehabilitation facilities with data on the number of times people with Medicare who had certain medical conditions were treated in the last year.

  18. Powder Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The facility is uniquely equipped as the only laboratory within DA to conduct PM processing of refractory metals and alloys as well as the processing of a wide range...

  19. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  20. Laser Guidance Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  1. Waste Water Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset contains the locations of municipal and industrial direct discharge wastewater treatment facilities throughout the state of Vermont. Spatial data is not...

  2. Dialysis Facility Compare Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — These are the official datasets used on the Medicare.gov Dialysis Facility Compare Website provided by the Centers for Medicare and Medicaid Services. These data...

  3. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  4. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  5. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  6. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  7. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  8. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  9. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  10. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  11. VT Telecommunication Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_TELEFAC data layer contains points which are intended to represent the location of telecommunications facilities (towers and/or...

  12. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  13. TNO HVAC facilities

    NARCIS (Netherlands)

    Hammink, H.A.J.

    2015-01-01

    TNO has extensive knowledge of heating, ventilation and air conditioning (HVAC), and can offer its services through theoretical studies, laboratory experiments and field measurements. This complete scope, made possible through our test facilities, enables the effective development of new products,

  14. Skilled Nursing Facility PPS

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 4432(a) of the Balanced Budget Act (BBA) of 1997 modified how payment is made for Medicare skilled nursing facility (SNF) services. Effective with cost...

  15. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  16. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  17. Urban Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has access to various facilities for use in urban testing applications,including an agreement with the Hazardous Devices School (HDS): a restrictedaccess Urban...

  18. Electra Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  19. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  20. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  1. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  2. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  3. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  4. Chemical Facility Security

    National Research Council Canada - National Science Library

    Schierow, Linda-Jo

    2006-01-01

    .... Because few terrorist attacks have been attempted against chemical facilities in the United States, the risk of death and injury in the near future is estimated to be low, relative to the likelihood...

  5. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  6. Airborne & Field Sensors Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC facilities include an 800' x 60' paved UAV operational area, clearapproach/departure zone, concrete pads furnished with 208VAC, 3 phase,200 amp power, 20,000 sq...

  7. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  8. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  9. Advanced Microscopy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a facility for high-resolution studies of complex biomolecular systems. The goal is an understanding of how to engineer biomolecules for various...

  10. Pit Fragment Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility contains two large (20 foot high by 20 foot diameter) double walled steel tubs in which experimental munitions are exploded while covered with sawdust....

  11. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  12. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  13. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  14. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  15. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  16. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  17. Indoor Ground Ejection Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This climate controlled facility is used to evaluate air stores and equipment to determine ejection velocities, store pitch rates, and arming wire and device system...

  18. Skilled nursing or rehabilitation facilities

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000435.htm Skilled nursing or rehabilitation facilities To use the sharing features ... facility. Who Needs to go to a Skilled Nursing or Rehabilitation Facility? Your health care provider may ...

  19. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  20. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  1. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  2. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  3. Modernizing sports facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dustin, R. [McKenney`s, Inc., Atlanta, GA (United States)

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  4. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  5. Competitive facility location models

    Science.gov (United States)

    Kononov, A. V.; Kochetov, Yu. A.; Plyasunov, A. V.

    2009-06-01

    Two classes of competitive facility location models are considered, in which several persons (players) sequentially or simultaneously open facilities for serving clients. The first class consists of discrete two-level programming models. The second class consists of game models with several independent players pursuing selfish goals. For the first class, its relationship with pseudo-Boolean functions is established and a novel method for constructing a family of upper and lower bounds on the optimum is proposed. For the second class, the tight PLS-completeness of the problem of finding Nash equilibriums is proved.

  6. Robust facility location

    OpenAIRE

    Carrizosa Priego, Emilio José; Nickel, Stefan

    2003-01-01

    Let A be a nonempty finite subset of the plane representing the geographical coordinates of a set of demand points (towns, …), to be served by a facility, whose location within a given region S is sought. Assuming that the unit cost for a∈A if the facility is located at x∈S is proportional to dist(x,a) — the distance from x to a — and that demand of point a is given by ωa, minimizing the total transportation cost TC(ω,x) amounts to solving the Weber problem. In practice, it may be the case, h...

  7. National geothermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    A brief description of the East Mesa test site is given. The test facility is supplied by brines from three of the existing production wells, each brine having distinctive physical characteristics. Some of the experimental programs involving heat exchangers and power cycles are briefly discussed. These include binary fluid cycles, two-phase expansion cycles, and combination cycles. (MOW)

  8. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  9. Facility Modernization Report

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  10. Facilities of Environmental Distinction

    Science.gov (United States)

    Pascopella, Angela

    2011-01-01

    Three of nine school buildings that have won the latest Educational Facility Design Awards from the American Institute of Architects (AIA) Committee on Architecture for Education stand out from the crowd of other school buildings because they are sustainable and are connected to the nature that surrounds them. They are: (1) Thurston Elementary…

  11. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  12. Variable gravity research facility

    Science.gov (United States)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  13. SHORT COMMUNICATION FACILE ENANTIOSELECTIVE ...

    African Journals Online (AJOL)

    FACILE ENANTIOSELECTIVE PALLADIUM CATALYSED TRANSFER. HYDROGENATION OF α-METHYLCINNAMIC ACID IN THE PRESENCE OF. OPTICAL PURE ORGANIC ACIDS. Reginah N. Bwire, Runner R. T. Majinda and Ishmael B. Masesane*. Chemistry Department, University of Botswana, P/Bag UB00704, ...

  14. Optimal Facility-Location.

    Science.gov (United States)

    Goldman, A J

    2006-01-01

    Dr. Christoph Witzgall, the honoree of this Symposium, can count among his many contributions to applied mathematics and mathematical operations research a body of widely-recognized work on the optimal location of facilities. The present paper offers to non-specialists a sketch of that field and its evolution, with emphasis on areas most closely related to Witzgall's research at NBS/NIST.

  15. EPA Facility Registry Service (FRS): Facility Interests Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  16. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in...

  17. EPA Facility Registry Service (FRS): Facility Interests Dataset Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  18. EPA Facility Registry Service (FRS): AIRS_AFS Sub Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Facility System (AFS) contains compliance and permit data for stationary sources regulated by EPA, state and local air pollution agencies. The sub facility...

  19. EPA Facility Registry Service (FRS): Facility Interests Dataset - Intranet Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — This downloadable data package consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are...

  20. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  1. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  2. The ISOLDE facility

    Science.gov (United States)

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23–42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204–207).

  3. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  4. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  5. Facility Response Plan

    Science.gov (United States)

    1992-10-06

    otherwise described in specialized publications. Identifying and delineating these ESAU will require professional judgment. Categories of...consistent with these broader plans. Also, ensure that the ESAU identified in the ACP are considered in the FRP. Place emphasis on ensuring that the following...section 4.1 requires the identification of Environmentally Sensitive Areas (ESAs). If ESAU are located near the facility, more stringent protective

  6. Future Facilities Summary

    CERN Document Server

    De Roeck, Albert

    2009-01-01

    For the session on future facilities at DIS09 discussions were organized on DIS related measurements that can be expected in the near and medium - or perhaps far - future, including plans from JLab, CERN and FNAL fixed target experiments, possible measurements and detector upgrades at RHIC, as well as the plans for possible future electron proton/ion colliders such as the EIC and the LHeC project.

  7. Future Facilities Summary

    Energy Technology Data Exchange (ETDEWEB)

    Albert De Roeck, Rolf Ent

    2009-10-01

    For the session on future facilities at DIS09 discussions were organized on DIS related measurements that can be expected in the near and medium –or perhaps far– future, including plans from JLab, CERN and FNAL fixed target experiments, possible measurements and detector upgrades at RHIC, as well as the plans for possible future electron proton/ion colliders such as the EIC and the LHeC project.

  8. Optimal Facility-Location

    OpenAIRE

    Goldman, A. J.

    2006-01-01

    Dr. Christoph Witzgall, the honoree of this Symposium, can count among his many contributions to applied mathematics and mathematical operations research a body of widely-recognized work on the optimal location of facilities. The present paper offers to non-specialists a sketch of that field and its evolution, with emphasis on areas most closely related to Witzgall?s research at NBS/NIST.

  9. Hot Hydrogen Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  10. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  11. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  12. New Ideas on Facilities Management.

    Science.gov (United States)

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  13. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  14. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  15. IPFQR FUH Quality Measures Facility

    Data.gov (United States)

    U.S. Department of Health & Human Services — Psychiatric facilities that are eligible for the Inpatient Psychiatric Facility Quality Reporting (IPFQR) program are required to meet all program requirements,...

  16. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  17. Environmentally Regulated Facilities in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — A unique record for each facility site with an environmental interest by DNR (such as permits). This brings together core environmental information in one place for...

  18. Tandem Van de Graaff facility

    Data.gov (United States)

    Federal Laboratory Consortium — Completed in 1970, the Tandem Van de Graaff facility was for many years the world's largest electrostatic accelerator facility. It can provide researchers with beams...

  19. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  20. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  1. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics by the Ministry of Land, Infrastructure and Transport, the total floor space of all building construction started was 188.87 million m2 (1.5% increase y/y), marking the fourth straight year of increase. Many large-scale buildings under construction in central Tokyo become fully occupied by tenants before completion. As for office buildings, it is required to develop comfortable and functional office spaces as working styles are becoming more and more diversified, and lighting is also an element of such functionalities. The total floor space of construction started for exhibition pavilions, multipurpose halls, conference halls and religious architectures decreased 11.1% against the previous year. This marked a decline for 10 consecutive years and the downward trend continues. In exhibition pavilions, the light radiation is measured and adjusted throughout the year so as not to damage the artworks by lighting. Hospitals, while providing higher quality medical services and enhancing the dwelling environment of patients, are expected to meet various restrictions and requirements, including the respect for privacy. Meanwhile, lighting designs for school classrooms tend to be homogeneous, yet new ideas are being promoted to strike a balance between the economical and functional aspects. The severe economic environment continues to be hampering the growth of theaters and halls in both the private and public sectors. Contrary to the downsizing trend of such facilities, additional installations of lighting equipment were conspicuous, and the adoption of high efficacy lighting appliances and intelligent function control circuits are becoming popular. In the category of stores/commercial facilities, the construction of complex facilities is a continuing trend. Indirect lighting, high luminance discharge lamps with excellent color rendition and LEDs are being effectively used in these facilities, together with the introduction of lighting designs

  2. The Francium facility at TRIUMF

    Science.gov (United States)

    Aubin, S.; Behr, J. A.; Chen, G.; Collister, R.; Flambaum, V. V.; Gomez, E.; Gwinner, G.; Jackson, K. P.; Melconian, D.; Orozco, L. A.; Pearson, M. R.; Ruiz, M. C.; Sheng, D.; Shin, Y. H.; Sprouse, G. D.; Tandecki, M.; Zhang, J.; Zhao, Y.

    2013-04-01

    We present the current status of the Francium Trapping Facility at ISAC at TRIUMF. The facility will enable future experiments on the weak interaction with measurements of atomic parity non-conservation laser-cooled samples of artificially produced francium. These experiments require a precisely controlled environment, which the facility is designed to provide. The facility has been constructed and is being prepared for a series of commissioning runs.

  3. Instrumentation Design and Development Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has facilities for design, development and fabrication of: custominstrumentation, mobile instrumentation, miniaturized instrumentation, wirelessinstrumentation,...

  4. Capital Ideas for Facilities Management.

    Science.gov (United States)

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  5. Facilities removal working group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  6. Test Track Facilities

    Science.gov (United States)

    1979-12-01

    Gradients 48 16/19 3.17 Offset Towing Course 52 20 3.18 Straight and Level course 56 22 3.19 Suspension Courses 589a. Mrv 58 8 b. Boulder 59 8I c. Camera...Track 59 d. Setts 59 5/6t 3.20 Wading Pool 66 34 3.21 Field Dynamometer 68 39 3.22 Winch Test Facility 70 10 3.23 General Vehicle ( Dynamometer ) 73 4...PERCENT GRADE (1 IN 2) 18 TEST GRADIENT 33.3 PERCENT GRAD (1 IN 3) 19 TEST GRADIENT 25 PERCENT GRADE (I IN 4) 20 OFFSET TOWING SUSPENSION COURSE 21 OUTER

  7. The ESO Spectroscopic facility

    OpenAIRE

    Pasquini, Luca; Delabre, B.; Ellis, R. S.; Marrero, J.; L. Cavaller; de Zeeuw, Tim

    2017-01-01

    We present the concept of a novel facility dedicated to massively-multiplexed spectroscopy. The telescope has a very wide field Cassegrain focus optimised for fibre feeding. With a Field of View (FoV) of 2.5 degrees diameter and a 11.4m pupil, it will be the largest etendue telescope. The large focal plane can easily host up to 16.000 fibres. In addition, a gravity invariant focus for the central 10 arc-minutes is available to host a giant integral field unit (IFU). The 3 lenses corrector inc...

  8. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A; Nguyen, F

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  9. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    .... The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, facility maintenance strategies, and the conclusion and final analysis...

  10. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  11. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  12. SPHERES National Lab Facility

    Science.gov (United States)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  13. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  14. The LLNL AMS facility

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.L.; Bench, G.S.; Brown, T.A. [Lawrence Livermore National Lab., CA (United States). Center for Accelerator Mass Spectrometry] [and others

    1996-05-01

    The AMS facility at Lawrence Livermore National Laboratory (LLNL) routinely measures the isotopes {sup 3}H, {sup 7}Be, {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, {sup 59,63}Ni, and {sup 129}I. During the past two years, over 30,000 research samples have been measured. Of these samples, approximately 30% were for {sup 14}C bioscience tracer studies, 45% were {sup 14}C samples for archaeology and the geosciences, and the other isotopes constitute the remaining 25%. During the past two years at LLNL, a significant amount of work has gone into the development of the Projectile X-ray AMS (PXAMS) technique. PXAMS uses induced characteristic x-rays to discriminate against competing atomic isobars. PXAMS has been most fully developed for {sup 63}Ni but shows promise for the measurement of several other long lived isotopes. During the past year LLNL has also conducted an {sup 129}I interlaboratory comparison exercise. Recent hardware changes at the LLNL AMS facility include the installation and testing of a new thermal emission ion source, a new multianode gas ionization detector for general AMS use, re-alignment of the vacuum tank of the first of the two magnets that make up the high energy spectrometer, and a new cryo-vacuum system for the AMS ion source. In addition, they have begun design studies and carried out tests for a new high-resolution injector and a new beamline for heavy element AMS.

  15. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Simiele, G.A.

    1994-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  16. Indoor Lighting Facilities

    Science.gov (United States)

    Matsushima, Koji; Saito, Yoshinori; Ichikawa, Shigenori; Kawauchi, Takao; Tanaka, Tsuneo; Hirano, Rika; Tazuke, Fuyuki

    According to the statistics on building construction floor area from the Ministry of Land, Infrastructure, Transport and Tourism, the total floor area of building construction started in Japan in 2007 was 160,991 thousand square meters, or 14.8% less than the area of the previous year, and the reduction was the first reduction in the past five years. The office markets in Tokyo and Nagoya were active, as represented by the supplies of skyscrapers, and energy saving measures, such as the adoption of high efficiency lighting equipment, the control for initial stage illuminance, daylight harvesting, and the use of occupancy sensors, were well established. In the field of public construction, including museums, multi-purpose halls, and religious buildings, the total area of the new construction was 10.8% less than the total for the previous year, and this reduction was a continuation of an eleven-year trend. In spaces with high ceiling, the innovation for easy replacement of light sources used with reflection mirror systems and optical fibers was noted. Hospitals adapted to the expectation for improved services in their selection of lighting facilities to improve the residential environment for patients while taking into consideration the needs of the aging population, by their use of devices in corridors to help maintain a continuity of light. In libraries, a pendant system was developed to illuminate both ceilings and book shelves. In the field of theaters and halls, the time limit for repairing existing systems had come for the large facilities that were opened during the theater and hall construction boom of the 1960s through 1980s, and around 26 renovations were done. Almost all the renovations were conversions to intelligent dimming systems and lighting control desks. In the field of stores and commercial facilities, the atmosphere and glitter of the selling floor was produced by new light sources, such as ceramic metal halide lamps and LEDs, which have high

  17. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  18. Regulatory facility guide for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  19. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  20. Electronic Combat Integrated Test Facilities

    National Research Council Canada - National Science Library

    1992-01-01

    ... and evaluating weapons systems hardware and software in a controlled ground test environment. These facilities consist of anechoic chambers connected to various simulation and instrumentation laboratories...

  1. Agency Data on User Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Aerospace Technical Facility Inventory is to facilitate the sharing of specialized capabilities within the aerospace research/engineering...

  2. Low background infrared (LBIR) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  3. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  4. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  5. Poultry Slaughtering and Processing Facilities

    Data.gov (United States)

    Department of Homeland Security — Agriculture Production Poultry Slaughtering and Processing in the United States This dataset consists of facilities which engage in slaughtering, processing, and/or...

  6. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  7. Service quality in contracted facilities.

    Science.gov (United States)

    Rabbani, Fauziah; Pradhan, Nousheen Akber; Zaidi, Shehla; Azam, Syed Iqbal; Yousuf, Farheen

    2015-01-01

    The purpose of this paper is to explore the readiness of contracted and non-contracted first-level healthcare facilities in Pakistan to deliver quality maternal and neonatal health (MNH) care. A balanced scorecard (BSC) was used as the assessment framework. Using a cross-sectional study design, two rural health centers (RHCs) contracted out to Aga Khan Health Service, Pakistan were compared with four government managed RHCs. A BSC was designed to assess RHC readiness to deliver good quality MNH care. In total 20 indicators were developed, representing five BSC domains: health facility functionality, service provision, staff capacity, staff and patient satisfaction. Validated data collection tools were used to collect information. Pearson χ2, Fisher's Exact and the Mann-Whitney tests were applied as appropriate to detect significant service quality differences among the two facilities. Contracted facilities were generally found to be better than non-contracted facilities in all five BSC domains. Patients' inclination for facility-based delivery at contracted facilities was, however, significantly higher than non-contracted facilities (80 percent contracted vs 43 percent non-contracted, p=0.006). The study shows that contracting out initiatives have the potential to improve MNH care. This is the first study to compare MNH service delivery quality across contracted and non-contracted facilities using BSC as the assessment framework.

  8. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  9. National Ignition Facility system design requirements conventional facilities SDR001

    Energy Technology Data Exchange (ETDEWEB)

    Hands, J.

    1996-04-09

    This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

  10. Electron emission yields from boron-like Ar ions impinging on Au(100)

    NARCIS (Netherlands)

    Bodewits, E.; Bekker, H.; de Nijs, A. J.; Hoekstra, R.; Winklehner, D.; Daniel, B.; Kowarik, G.; Dobes, K.; Aumayr, F.

    2011-01-01

    Using a new experimental station to be installed at the HITRAP facility at GSI we studied electron emission yields of Ar13+ ions impinging on a clean Au(1 00) surface. By taking data under different incidence angles and at different initial kinetic energies, contributions from kinetic and potential

  11. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  12. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  13. Accreditation for Indoor Climbing Facilities.

    Science.gov (United States)

    Mayfield, Peter

    To ensure that the rapidly growing climbing gym industry maintains the excellent safety record established so far, the Climbing Gym Association (CGA) has developed the Peer Review and Accreditation Program, a process of review between qualified and experienced CGA reviewers and a climbing facility operator to assess the facility's risk management…

  14. Designing Facilities for Collaborative Operations

    Science.gov (United States)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  15. Facility effluent monitoring plan for the 325 Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  16. Hanford surplus facilities programs facilities listings and descriptions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kiser, S.K.; Witt, T.L.

    1994-01-01

    On the Hanford Site, many surplus facilities exist (including buildings, stacks, tanks, cribs, burial grounds, and septic systems) that are scheduled to be decommissioned. Many of these facilities contain large inventories of radionuclides, which present potential radiological hazards on and off the Hanford Site. Some structures with limited structural deterioration present potential radiological and industrial safety hazards to personnel. Because of the condition of these facilities, a systematic surveillance and maintenance program is performed to identify and correct potential hazards to personnel and the environment until eventual decommissioning operations are completed.

  17. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  18. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  19. 33 CFR 154.1216 - Facility classification.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Facility classification. 154.1216... Vegetable Oils Facilities § 154.1216 Facility classification. (a) The Coast Guard classifies facilities that... classification of a facility that handles, stores, or transports animal fats or vegetable oils. The COTP may...

  20. Technical merits and leadership in facility management

    OpenAIRE

    Shoemaker, Jerry J

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible. This document explores those complexities and challenges, and presents several philosophies and strategies practiced in facility management. The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, fac...

  1. Window Observational Research Facility (WORF)

    Science.gov (United States)

    Pelfrey, Joseph; Sledd, Annette

    2007-01-01

    This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.

  2. Design Integration of Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2009-01-01

    One of the problems in the building industry is a limited degree of learning from experiences of use and operation of existing buildings. Development of professional facilities management (FM) can be seen as the missing link to bridge the gap between building operation and building design....... Involvement of professional facilities managers in the design process is an obvious strategy, but increased competences are needed among building clients, designers and the operational staff. More codification of operational knowledge is also needed, for instance in IT systems. The paper is based...... of considerations for facilities management....

  3. TREAT neutron-radiography facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.J.

    1981-01-01

    The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists.

  4. PLANS FOR FUTURE MEGAWATT FACILITIES.

    Energy Technology Data Exchange (ETDEWEB)

    ROSER,T.

    2004-10-13

    Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

  5. Facility effluent monitoring plan for 242-A evaporator facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  6. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, Troy P.; Andrus, Jason

    2016-07-01

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excess of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the

  7. Welding and Production Metallurgy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  8. Multi-Directional Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ATLSS Multi-directional Experimental Laboratory was constructed in 1987 under funding from the National Science Foundation to be a major facility for large-scale...

  9. The radioactive beam facility ALTO

    Energy Technology Data Exchange (ETDEWEB)

    Essabaa, Saïd, E-mail: essabaa@ipno.in2p3.fr; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-15

    Highlights: • Research at the ALTO TNA-facility. • R and D on radioactive ion sources. • R and D on the lanthanide beam production by fluorination. • Recent developments on uranium carbide targets. -- Abstract: The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 10{sup 11} fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R and D program on the target ion source system is being developed.

  10. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  11. Reverse Ballistic Air Gun Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This custom-designed facility houses a suite of three air guns capable of generating accelerations up to 100,000 Gs and velocities up to 2,000 ft/s. In addition to a...

  12. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  13. Knowledge Map of Facilities Management

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Jensen, Per Anker; Lindahl, Göran

    2014-01-01

    Purpose This paper aims to draft a knowledge map of the fragmented and multidisciplinary research of and relevant to FM. Facilities management knowledge map is a tool for presenting what relevant data and knowledge, a.k.a. knowledge, resides in different disciplines. Knowledge mapping is a step...... in creating an inventory of knowledge (i.e. the knowledge base) and developing/improving the processes of knowledge sharing in research, education and practice. Theory Knowledge mapping is discussed in terms of knowledge management. The research is connected to knowledge mapping in the facilities management...... profession, research and education. The knowledge map aims to contrast perspectives on how to map interdisciplinary research. Design/methodology/approach The Knowledge map is based on classification of 83 articles, including volume 2013 of Facilities (40 articles) and of Journal of Facilities Management (21...

  14. CLAIMS OF SUSTAINABLE FACILITIES MANAGEMENT

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    Purpose: The purpose of the paper is to provide an overview of current practices within the emergent management discipline: Sustainable Facilities Management (SFM). Background: To develop a sustainable society, facilities managers must become change agents for sustainability in the built...... environment. Facilities Management (FM) is contributing to the environmental, social and economical problems, but can at the same time also be a part of the solution. However, to integrate sustainability in FM is still an emergent niche within FM, and the examples of SFM so far seems to come out of very......-creating of new socio-technical services and technologies These SFM understandings are concluded to be coexisting claims of SFM definitions. Practical Implications: Facilities managers will be able to identify the mindset behind different services and technologies that are promoted as SFM. But maybe just...

  15. Nursing Facility Initiative Annual Report

    Data.gov (United States)

    U.S. Department of Health & Human Services — This annual report summarizes impacts from the Initiative to Reduce Avoidable Hospitalizations among Nursing Facility Residents in 2014. This initiative is designed...

  16. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  17. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  18. Color and appearance metrology facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NIST Physical Measurement Laboratory has established the color and appearance metrology facility to support calibration services for 0°/45° colored samples, 20°,...

  19. Design & layout of recreation facilities

    Science.gov (United States)

    Howard R. Orr

    1971-01-01

    Design and layout of recreation facilities is a problem solving process that must be divorced from the emotionalism that has shrouded outdoor recreation and must deal deliberately with the growing information concerning people and natural resources.

  20. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  1. Regulatory Facility Guide for Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28

    This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

  2. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  3. Production Facility SCADA Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  4. Region 7 Title V facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web map shows the Region 7 Title V facilities (Clean Air Act major sources), any Class I areas within 300 km of R7 States, and any Tribal areas within 50 miles...

  5. Indonesia - Green Prosperity - Grant Facility

    Data.gov (United States)

    Millennium Challenge Corporation — The evaluation is designed to assess the design and operations of the GP Facility, which consists of Activities 2-3 of the GP Project. It is a performance evaluation...

  6. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  7. Aircraft Horizontal Thrust Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is designed to support the DoD mission by providing unique air vehicle installed engine performance (thrust output) measurements. This system consists...

  8. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  9. Critical Facilities for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The critical facilities data are derived from the USGS Structures Inventory Database (June, 2016). The structures in the derived dataset displays aggregated totals...

  10. URAM-2 Cryogenic Irradiation Facility

    CERN Document Server

    Shabalin, E P; Kulikov, S A; Kulagin, E N; Melihov, V V; Belyakov, A A; Golovanov, L B; Borzunov, Yu T; Konstantinov, V I; Androsov, A V

    2002-01-01

    The URAM-2 irradiation facility has been built and mounted at the channel No. 3 of the IBR-2 reactor. It was constructed for study of radiolysis effects by fast neutron irradiation in some suitable for effective cold neutron production materials (namely: solid methane, methane hydrate, water ice, etc.). The facility cooling system is based on using liquid helium as a coolant material. The original charging block of the rig allows the samples to be loaded by condensing gas into irradiation cavity or by charging beads of ice prepared before. Preliminary tests for each facility block and assembling them at the working position were carried out. Use of the facility for study accumulation of chemical energy under irradiation at low temperature in materials mentioned above and its spontaneous release was started.

  11. Critical Facilities for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The critical facilities data are derived from the USGS Structures Inventory Database (June, 2015). The structures in the derived dataset displays aggregated totals...

  12. Standoff Detection Technology Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Standoff Detection Technology Evaluation facility is the only one of its kind in the country and allows researchers to release a known amount of material while...

  13. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  14. EPA Facility Registry Service (FRS): TRI

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  15. EPA Facility Registry Service (FRS): BIA

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  16. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  17. EPA Facility Registry Service (FRS): RADINFO

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  18. EPA Facility Registry Service (FRS): OIL

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Oil...

  19. EPA Facility Registry Service (FRS): RMP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  20. EPA Facility Registry Service (FRS): SDWIS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  1. Skilled nursing and rehabilitation facilities - choosing

    Science.gov (United States)

    ... gov/ency/patientinstructions/000436.htm Choosing a skilled nursing and rehabilitation facility To use the sharing features ... you may need to go to a skilled nursing or rehabilitation facility . Skilled nursing facilities provide care ...

  2. 48 CFR 970.3770 - Facilities management.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  3. EPA Facility Registry System (FRS): NCES

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  4. EPA Facility Registry Service (FRS): NEI

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  5. EPA Facility Registry Service (FRS): ICIS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  6. EPA Facility Registry Service (FRS): CAMDBS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  7. Bidding strategy for an energy storage facility

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Zareipour, Hamidreza; Rosehart, William D.

    2016-01-01

    This paper studies operation decisions of energy storage facilities in perfectly and imperfectly competitive markets. In a perfectly competitive market, the storage facility is operated to maximize the social welfare. However, in a imperfectly competitive market, the storage facility operates...

  8. EPA Facility Registry Service (FRS): RBLC

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  9. EPA Facility Registry System (FRS): NEPT

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  10. EPA Facility Registry Service (FRS): NCDB

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  11. EPA Facility Registry Service (FRS): BRAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  12. LAMPF: a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies.

  13. Two-sided Facility Location

    OpenAIRE

    Alijani, Reza; Banerjee, Siddhartha; Gollapudi, Sreenivas; Kollias, Kostas; Munagala, Kamesh

    2017-01-01

    Recent years have witnessed the rise of many successful e-commerce marketplace platforms like the Amazon marketplace, AirBnB, Uber/Lyft, and Upwork, where a central platform mediates economic transactions between buyers and sellers. Motivated by these platforms, we formulate a set of facility location problems that we term Two-sided Facility location. In our model, agents arrive at nodes in an underlying metric space, where the metric distance between any buyer and seller captures the quality...

  14. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  15. Status of the SXFEL Facility

    Directory of Open Access Journals (Sweden)

    Zhentang Zhao

    2017-06-01

    Full Text Available The Shanghai soft X-ray Free-Electron Laser facility (SXFEL is being developed in two steps; the SXFEL test facility (SXFEL-TF, and the SXFEL user facility (SXFEL-UF. The SXFEL-TF is a critical development step towards the construction a soft X-ray FEL user facility in China, and is under commissioning at the Shanghai Synchrotron Radiation Facility (SSRF campus. The test facility is going to generate 8.8 nm FEL radiation using an 840 MeV electron linac passing through the two-stage cascaded HGHG-HGHG or EEHG-HGHG (high-gain harmonic generation, echo-enabled harmonic generation scheme. The construction of the SXFEL-TF started at the end of 2014. Its accelerator tunnel and klystron gallery were ready for equipment installation in April 2016, and the installation of the SXFEL-TF linac and radiator undulators were completed by the end of 2016. In the meantime, the SXFEL-UF, with a designated wavelength in the water window region, began construction in November 2016. This was based on upgrading the linac energy to 1.5 GeV, and the building of a second undulator line and five experimental end-stations. Construction status and the future plans of the SXFEL are reported in this paper.

  16. Subsurface Facility System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  17. Site maps and facilities listings

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  18. Oil Pollution Act (OPA) and Federal Facilities

    Science.gov (United States)

    The Oil Pollution Prevention regulation sets forth requirements for prevention of, preparedness for, and response to oil discharges at specific non-transportation-related facilities, including federal facilities.

  19. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  20. Thorium-U Recycle Facility (7930)

    Data.gov (United States)

    Federal Laboratory Consortium — The Thorium-U Recycle Facility (7930), along with the Transuranic Processing Facility (7920). comprise the Radiochemical Engineering Development Complex. 7930 is a...

  1. EPA Facility Registry Service (FRS): Facility Interests Dataset

    Science.gov (United States)

    This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for all sites that are available in the FRS individual feature layers. The layers comprise the FRS major program databases, including:Assessment Cleanup and Redevelopment Exchange System (ACRES) : brownfields sites ; Air Facility System (AFS) : stationary sources of air pollution ; Air Quality System (AQS) : ambient air pollution data from monitoring stations; Bureau of Indian Affairs (BIA) : schools data on Indian land; Base Realignment and Closure (BRAC) facilities; Clean Air Markets Division Business System (CAMDBS) : market-based air pollution control programs; Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) : hazardous waste sites; Integrated Compliance Information System (ICIS) : integrated enforcement and compliance information; National Compliance Database (NCDB) : Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Toxic Substances Control Act (TSCA); National Pollutant Discharge Elimination System (NPDES) module of ICIS : NPDES surface water permits; Radiation Information Database (RADINFO) : radiation and radioactivity facilities; RACT/BACT/LAER Clearinghouse (RBLC) : best available air pollution technology requirements; Resource Conservation and Recovery Act Information System (RCRAInfo) : tracks generators, transporters, treaters, storers, and disposers of haz

  2. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  3. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  4. Integrated Facilities and Infrastructure Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Reisz Westlund, Jennifer Jill

    2017-03-01

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continued to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.

  5. AGING FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  6. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  7. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  8. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  9. An Information Framework for Facility Operators

    Science.gov (United States)

    1991-01-01

    Information Organization ................................................................................. 82 6.2.2. Identifying Facility Operators Information...overview of facility operations. The chapter identified information organization as the topic of the thesis and addressed a major problem facing...below. 82 6.2.1. Defining Facility Operations and Information Organization The first objective involved defining the role of the facility operator and

  10. 30 CFR 57.20008 - Toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 57.20008 Section 57.20008....20008 Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with... kept clean and sanitary. Separate toilet facilities shall be provided for each sex except where toilet...

  11. 30 CFR 56.20008 - Toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 56.20008 Section 56.20008... Toilet facilities. (a) Toilet facilities shall be provided at locations that are compatible with the mine... sanitary. Separate toilet facilities shall be provided for each sex except where toilet rooms will be...

  12. The Biological Flight Research Facility

    Science.gov (United States)

    Johnson, Catherine C.

    1993-01-01

    NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  13. Hot Fuel Examination Facility/North Facility safety report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.M.; Hampson, D.C.; Ferguson, K.R.; Hylsky, E.

    1975-02-01

    Design and safety-related construction features of the Hot Fuel Examination Facility/North, located on the Argonne--West site at the Idaho National Engineering Laboratory are described. The proposed operations, the organizational structure, and emergency plans are given. Evaluations of potential accident situations are presented and it is concluded that HFEF/N can be operated safely and without undue hazard.

  14. Tandem mirror technology demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  15. Laundry monitor for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Mitsuo (Toshiba Corp., Fuchu (Japan). Fuchu Works)

    1984-06-01

    A laundry monitor has been developed for the detection and cleansification of radiation contamination on the clothes, headgear, footgear, etc. of workers in nuclear facilities. With this monitor, measurement is made irrespective of the size and shape of the objects; a large-area plastic scintillation detector is incorporated; it has stable and highly sensitive characteristics, with the merits of swift measurement, economical operation and easy maintenance. Connected with a folding machine, automatic carrying and storing compartment through a conveyor, it is capable of saving energy and man power, contributing to scheduled operation, and improving the efficiency of the facilities.

  16. Fire detection in warehouse facilities

    CERN Document Server

    Dinaburg, Joshua

    2013-01-01

    Automatic sprinklers systems are the primary fire protection system in warehouse and storage facilities. The effectiveness of this strategy has come into question due to the challenges presented by modern warehouse facilities, including increased storage heights and areas, automated storage retrieval systems (ASRS), limitations on water supplies, and changes in firefighting strategies. The application of fire detection devices used to provide early warning and notification of incipient warehouse fire events is being considered as a component of modern warehouse fire protection.Fire Detection i

  17. REMEDIATION FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. Arakali; E. Faillace

    2004-02-27

    The purpose of this design calculation is to estimate radiation doses received by personnel in the Remediation Facility performing operations to receive, prepare, open, repair, recover, disposition, and correct off-normal and non-standard conditions with casks, canisters, spent nuclear fuel (SNF) assemblies, and waste packages (WP). The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the Remediation Facility and provide occupational dose estimates for the License Application.

  18. NIST display colorimeter calibration facility

    Science.gov (United States)

    Brown, Steven W.; Ohno, Yoshihiro

    2003-07-01

    A facility has been developed at the National Institute of Standards and Technology (NIST) to provide calibration services for color-measuring instruments to address the need for improving and certifying the measurement uncertainties of this type of instrument. While NIST has active programs in photometry, flat panel display metrology, and color and appearance measurements, these are the first services offered by NIST tailored to color-measuring instruments for displays. An overview of the facility, the calibration approach, and associated uncertainties are presented. Details of a new tunable colorimetric source and the development of new transfer standard instruments are discussed.

  19. Universal Design for Academic Facilities

    Science.gov (United States)

    Salmen, John P. S.

    2011-01-01

    Universal design (UD) can play a role in many aspects of academic life and is often thought of in the context of learning. However, this chapter focuses on the impact of UD on the design of facilities in a university or campus setting. Universal design has the potential for transforming universities into truly egalitarian institutions that…

  20. Holifield heavy ion research facility

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

    1988-05-20

    Development of the Holifield facility has continued with resulting improvements in the number of ion species provided, in the ion energy for tandem-only operations, and in utilization efficiency. In this report, we describe our recent operational experience, development activities, and future development plans.

  1. The Facilities Management Value Map

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2008-01-01

    The paper is based on research from 21 cases studies on Facilities Management (FM) in the Nordic countries. The work also relates to a working group on “Highlighting the Added Value of FM” under Nordic FM. The aim has been to establish a conceptual framework to discuss, understand and explain...

  2. Utilizing Interns in Facilities Management

    Science.gov (United States)

    Judkins, Clarissa; Morris, John P.; Molocznik, Chuck

    2011-01-01

    Facilities management is rapidly changing and developing from a position an individual stumbles into--or work one's way up through--to a discipline and vocation all of its own. There is a need for a collaborative strategy among leaders in practice, education, and research to share knowledge and experience and to establish professional and ethical…

  3. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  4. Weapons engineering tritium facility overview

    Energy Technology Data Exchange (ETDEWEB)

    Najera, Larry [Los Alamos National Laboratory

    2011-01-20

    Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

  5. (ICSID) ADDITIONAL FACILITY IN INTERNA

    African Journals Online (AJOL)

    Fr. Ikenga

    Traditionally, ICSID is. “a forum for investor-state arbitration and conciliation”2, which focuses on settlement of legal disputes arising directly out of investment between “contracting” states or state entities and nationals of other. “Contracting” states which the parties consent in writing to submit to the centre.3 Additional facility.

  6. Medical facility statistics in Japan.

    Science.gov (United States)

    Hamajima, Nobuyuki; Sugimoto, Takuya; Hasebe, Ryo; Myat Cho, Su; Khaing, Moe; Kariya, Tetsuyoshi; Mon Saw, Yu; Yamamoto, Eiko

    2017-11-01

    Medical facility statistics provide essential information to policymakers, administrators, academics, and practitioners in the field of health services. In Japan, the Health Statistics Office of the Director-General for Statistics and Information Policy at the Ministry of Health, Labour and Welfare is generating these statistics. Although the statistics are widely available in both Japanese and English, the methodology described in the technical reports are primarily in Japanese, and are not fully described in English. This article aimed to describe these processes for readers in the English-speaking world. The Health Statistics Office routinely conduct two surveys called the Hospital Report and the Survey of Medical Institutions. The subjects of the former are all the hospitals and clinics with long-term care beds in Japan. It comprises a Patient Questionnaire focusing on the numbers of inpatients, admissions, discharges, and outpatients in one month, and an Employee Questionnaire, which asks about the number of employees as of October 1. The Survey of Medical Institutions consists of the Dynamic Survey, which focuses on the opening and closing of facilities every month, and the Static Survey, which focuses on staff, facilities, and services as of October 1, as well as the number of inpatients as of September 30 and the total number of outpatients during September. All hospitals, clinics, and dental clinics are requested to submit the Static Survey questionnaire every three years. These surveys are useful tools for collecting essential information, as well as providing occasions to implicitly inform facilities of the movements of government policy.

  7. Facilities Management and Added Value

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2010-01-01

    Aim: This paper aims to present different models of the concept of the added value of Facilities Management (FM), including the FM Value Map, which forms the basis of research group in EuroFM, and to present some of the results of this research collaboration. Approach and methodology: The paper i...

  8. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adams, N

    2007-07-08

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to

  9. The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF)

    Science.gov (United States)

    2015-10-01

    Aerodynamic Experimental Facility (AEF) by Charith R Ranawake Approved for public release; distribution is unlimited...Laboratory The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF) by Charith R Ranawake Weapons...To) 05/2015–08/2015 4. TITLE AND SUBTITLE The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility

  10. PSL Icing Facility Upgrade Overview

    Science.gov (United States)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  11. Facility design, construction, and operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, including uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.

  12. FACILITY

    African Journals Online (AJOL)

    smoking. Clinical Evaluation: A detailed history was obtained from each patient or close relatives when patient was ... obtained after the fluid retention had resolved. Overweight and .... gender difference in the prevalence of TOD /ACC was not ...

  13. Optimal control of hydroelectric facilities

    Science.gov (United States)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the

  14. Chemical facility vulnerability assessment project.

    Science.gov (United States)

    Jaeger, Calvin D

    2003-11-14

    Sandia National Laboratories, under the direction of the Office of Science and Technology, National Institute of Justice, conducted the chemical facility vulnerability assessment (CFVA) project. The primary objective of this project was to develop, test and validate a vulnerability assessment methodology (VAM) for determining the security of chemical facilities against terrorist or criminal attacks (VAM-CF). The project also included a report to the Department of Justice for Congress that in addition to describing the VAM-CF also addressed general observations related to security practices, threats and risks at chemical facilities and chemical transport. In the development of the VAM-CF Sandia leveraged the experience gained from the use and development of VAs in other areas and the input from the chemical industry and Federal agencies. The VAM-CF is a systematic, risk-based approach where risk is a function of the severity of consequences of an undesired event, the attack potential, and the likelihood of adversary success in causing the undesired event. For the purpose of the VAM-CF analyses Risk is a function of S, L(A), and L(AS), where S is the severity of consequence of an event, L(A) is the attack potential and L(AS) likelihood of adversary success in causing a catastrophic event. The VAM-CF consists of 13 basic steps. It involves an initial screening step, which helps to identify and prioritize facilities for further analysis. This step is similar to the prioritization approach developed by the American Chemistry Council (ACC). Other steps help to determine the components of the risk equation and ultimately the risk. The VAM-CF process involves identifying the hazardous chemicals and processes at a chemical facility. It helps chemical facilities to focus their attention on the most critical areas. The VAM-CF is not a quantitative analysis but, rather, compares relative security risks. If the risks are deemed too high, recommendations are developed for

  15. Orientation to pollution prevention for facility design

    Energy Technology Data Exchange (ETDEWEB)

    Raney, E.A.; Whitehead, J.K.; Encke, D.B. [Westinghouse Hanford Co., Richland, WA (United States); Dorsey, J.A. [Kaiser Engineers Hanford Co., Richland, WA (United States)

    1994-01-01

    This material was developed to assist engineers in incorporating pollution prevention into the design of new or modified facilities within the U.S. Department of Energy (DOE). The material demonstrates how the design of a facility can affect the generation of waste throughout a facility`s entire life and it offers guidance on how to prevent the generation of waste during design. Contents include: Orientation to pollution prevention for facility design training course booklet; Pollution prevention design guideline; Orientation to pollution prevention for facility design lesson plan; Training participant survey and pretest; and Training facilitator`s guide and schedule.

  16. Sports Facility Statistics : Overview of built sports facilities and analysis of sports hall costs in Norway

    OpenAIRE

    Öhman, Camilla

    2016-01-01

    The current statistics on sports facilities suggests that 4 billion NOK (divided on 700 facilities) are planned to be used annually for new sports facility projects and renovation projects of old sports facilities. These statistics are based on planned projects and not on realized projects. In addition, it is not distinguished between new facility projects and facility renovation projects. The current statistics is based on applications for so-called gaming funds, which are all registered in ...

  17. High Exposure Facility Technical Description

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  18. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  19. Near-facility environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the routine near-facility environmental monitoring programs which are presently being conducted at the Hanford Site. Several types of environmental media are sampled near nuclear facilities to monitor the effectiveness of waste management and restoration activities, and effluent treatment and control practices. These media include air, surface water and springs, surface contamination, soil and vegetation, investigative sampling (which can include wildlife), and external radiation. Sampling and analysis information and analytical results for 1994 for each of these media are summarized in this section. Additional data and more detailed information may be found in Westinghouse Hanford Company Operational Environmental Monitoring Annual Report, Calendar Year 1994.

  20. Interaction of slow, highly charged ions with the surface of ionic crystals; Wechselwirkung langsamer hochgeladener Ionen mit der Oberflaeche von Ionenkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Rene

    2009-08-15

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v{<=}5 x 10{sup 5} m/s) highly charged (q{<=}40) ions on the ionic crystal surfaces of CaF{sub 2} and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E{sup grenz}{sub pot}(E{sub kin}) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF{sub 2}(111) surfaces could be verified for lowest kinetic energies (E{sub kin}{<=}150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by complementary investigations of the secondary electron statistics. Thereby, total electron yields for an insulating surface at lowest projectile velocities (v{<=}1 x 10{sup 5} m/s) were determined for the first time. For velocities v{<=}5 x 10{sup 4} m/s a significant drop of the electron yield was observed for decreasing kinetic energy on the insulator representing a large contrast to metallic surfaces. Based on different models possible reasons for this effect are discussed. (orig.)

  1. Heritage Park Facilities PV Project

    Energy Technology Data Exchange (ETDEWEB)

    Hobaica, Mark [City of Henderson Nevada, Henderson, NV (United States)

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  2. Holifield Heavy Ion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

    1986-02-15

    The Holifield Heavy Ion Research Facility has been in routine operation since July 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we discuss our operational experience and recent development activities.

  3. Holifield Heavy Ion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

    1985-01-01

    The Holifield Heavy Ion Research Facility has been in routine operation since July 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we discuss our operational experience and recent development activities.

  4. Fumigation success for California facility.

    Science.gov (United States)

    Hacker, Robert

    2010-02-01

    As Robert Hacker, at the time director of facilities management at the St John's Regional Medical Center in Oxnard, California, explains, the hospital, one of the area's largest, recently successfully utilised a new technology to eliminate mould, selecting a cost and time-saving fumigation process in place of the traditional "rip and tear" method. Although hospital managers knew the technology had been used extremely effectively in other US buildings, this was reportedly among the first ever healthcare applications.

  5. Facile Enzymatic Synthesis of Ketoses.

    Science.gov (United States)

    Wen, Liuqing; Huang, Kenneth; Wei, Mohui; Meisner, Jeffrey; Liu, Yunpeng; Garner, Kristina; Zang, Lanlan; Wang, Xuan; Li, Xu; Fang, Junqiang; Zhang, Houcheng; Wang, Peng George

    2015-10-19

    Studies of rare ketoses have been hampered by a lack of efficient preparation methods. A convenient, efficient, and cost-effective platform for the facile synthesis of ketoses is described. This method enables the preparation of difficult-to-access ketopentoses and ketohexoses from common and inexpensive starting materials with high yield and purity and without the need for a tedious isomer separation step. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Instrumentation of VISTA test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok; Choi, Ki Young; Park, Hyun Sik; Lee, Seong Jae; Park, Chun Kyong; Chung, Moon Ki

    2003-11-01

    VISTA (Experimental Verification by Integral Simulation of Transients and Accidents) is experimental facility to verify the performance and safety issues of SMART-P(Pilot plant of the System-integrated Modular Advanced Reactor), basic design of which has been completed by KAERI. The present report provide instrumentation details of VISTA in order to improve understanding on the phenomena and to certify the experimental data.

  7. Facility Location Using Cross Decomposition

    OpenAIRE

    Jackson, Leroy A.

    1995-01-01

    The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. Determining the best base stationing for military units can be modeled as a capacitated facility location problem with sole sourcing and multiple resource categories. Computational experience suggests that cross decomposition, a unification of Benders Decomposition and Lagrangean relaxation, is superior to other contempo...

  8. Triple ion beam irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.B.; Allen, W.R.; Buhl, R.A.; Packan, N.H.; Cook, S.W.; Mansur, L.K.

    1988-12-01

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm/sup 2/ in area. Typical depth ranges are 0.1 to 1.0 ..mu..m. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab.

  9. EPA Facility Registry Service (FRS): LANDFILL

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of non-hazardous waste...

  10. EPA Facility Registry Service (FRS): RCRA

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of hazardous waste...

  11. Skilled nursing facilities after joint replacement

    Science.gov (United States)

    ... may need to be transferred to a skilled nursing facility. You should talk about this issue with ... Medicare and Medicaid Services. Medicare coverage of skilled nursing facility care. Revised January 2015. www.caretelinns.com/ ...

  12. Chemical Transfer (Single Small-Scale) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF)  is the only U.S. single small-scale  facility, a single repository for the Army’s...

  13. National Cryo-Electron Microscopy Facility

    Science.gov (United States)

    Information about the National Cryo-EM Facility at NCI, created to provide researchers access to the latest cryo-EM technology for high resolution imaging. Includes timeline for installation and how to access the facility.

  14. Design, Evaluation and Test Technology Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of this facility, which is composed of numerous specialized facilities, is to provide capabilities to simulate a wide range of environments for component...

  15. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible...

  16. EPA Facility Registry Service (FRS): ACRES

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service consists of location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of sites that link to...

  17. COSPAS-SARSAT Beacon Certification Facility

    Data.gov (United States)

    Federal Laboratory Consortium — EPG's COSPAS-SARSAT Beacon Certification Facility is one of five certification facilities in the world. Formal certifications are available for all beacon types and...

  18. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  19. Successful start for new CLIC test facility

    CERN Multimedia

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  20. Medicare Provider Payment Data - Skilled Nursing Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Skilled Nursing Facility Utilization and Payment Public Use File (Skilled Nursing Facility PUF) provides information on services provided to Medicare...

  1. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  2. Multi-Unit Facility Location Games

    OpenAIRE

    Ben-Porat, Omer; Tennenholtz, Moshe

    2016-01-01

    Motivated by applications in clustering and information retrieval, we extend the classical Hotelling setting to deal with multi-facility location duels. In the classical Hotelling setting, customers' locations are taken from the uniform distribution on the $[0,1]$ segment, and there are two facility owners, each needs to decide on the location of her (single) facility, aiming to maximize the proportion of customers closer to it. We extend the Hotelling setting to multi-unit facility location ...

  3. A Program Management Framework for Facilities Managers

    Science.gov (United States)

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…

  4. 7 CFR 210.13 - Facilities management.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Facilities management. 210.13 Section 210.13... Participation § 210.13 Facilities management. Link to an amendment published at 74 FR 66216, Dec. 15, 2009. (a..., the added text is set forth as follows: § 210.13 Facilities management. (c) Food safety program. The...

  5. 9 CFR 3.50 - Facilities, general.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, general. 3.50 Section 3.50 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Facilities and Operating Standards § 3.50 Facilities, general. (a) Structural strength. Indoor and outdoor...

  6. 9 CFR 590.534 - Freezing facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the premises, shall be capable of freezing all liquid egg products in accordance with the freezing requirements...

  7. Effect of Information Communication Technology Facilities on ...

    African Journals Online (AJOL)

    This study examined the effect of ICT facilities on students' performance by comparing Federal Government College with ICT facilities and Bosso Secondary without ICT facilities,. The comparison was conducted using subtests of English language and Mathematics on 62 JSS students from the two secondary schools both in ...

  8. 75 FR 18572 - Facility Control Numbers

    Science.gov (United States)

    2010-04-12

    ... Internal Revenue Service Facility Control Numbers AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of planned use of Facility Control Numbers. SUMMARY: The IRS has developed and is publishing in this issue of the Federal Register, Facility Control Numbers to communicate to the motor fuel industry...

  9. 9 CFR 149.6 - Slaughter facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Slaughter facilities. 149.6 Section... AGRICULTURE LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.6 Slaughter facilities. Only slaughter facilities that are under continuous inspection by the Food Safety and Inspection Service or under...

  10. 42 CFR 136.110 - Facilities construction.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Facilities construction. 136.110 Section 136.110..., DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH Grants for Development, Construction, and Operation of Facilities and Services § 136.110 Facilities construction. In addition to other requirements of this subpart...

  11. Approximation algorithms for facility location problems

    NARCIS (Netherlands)

    Bumb, A.F.

    2002-01-01

    Facility location problems are among the most well-studied problems in optimization literature. The simplest variant is the uncapacitated facility location problem, which we denoted by the UFLP. In the UFLP, we are given a set of possible facility locations and a set of clients. The problem seeks to

  12. What Is Equitable in Athletic Facilities?

    Science.gov (United States)

    Emmons, Paul; Wendt, Diane

    1996-01-01

    College and university planners can help ensure federal standards for sex equity are met in athletic facilities by studying the Office of Civil Rights inspectors' manual, consulting a summary of violations of Title IX, reviewing existing facilities-related litigation, and becoming aware of the realities of financing athletic facilities and…

  13. Mission analysis report - deactivation facilities at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Lund, D.P.

    1996-09-27

    This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.

  14. New Trends in Facility Asset Management.

    Science.gov (United States)

    Adams, Matt

    2000-01-01

    Explains new, positive trends in facility asset management that encompasses greater acceptance and involvement of facility managers in the financial planning process, greater awareness of the need for maintenance, and facility administrators taking a greater role with business officers. The new climate for alternative renewal financing proposals…

  15. Facility Interface Capability Assessment (FICA) project report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States); MacDonald, R.R. [ed.] [Civilian Radioactive Waste Management System, Vienna, VA (United States); Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  16. The National Ignition Facility project

    Energy Technology Data Exchange (ETDEWEB)

    Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.

    1996-06-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KD0), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, the authors completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. This article presents an overview of the NIF project.

  17. Orion: a commissioned user facility

    Science.gov (United States)

    Treadwell, P. A.; Allan, P.; Cann, N.; Danson, C.; Duffield, S.; Elsmere, S.; Edwards, R.; Egan, D.; Girling, M.; Gumbrell, E.; Harvey, E.; Hill, M.; Hillier, D.; Hoarty, D.; Hobbs, L.; Hopps, N.; Hussey, D.; Oades, K.; James, S.; Norman, M.; Palmer, J.; Parker, S.; Winter, D.; Bett, T.

    2013-05-01

    The Orion Laser Facility at AWE in the UK consists of ten nanosecond beamlines and two sub-picosecond beamlines. The nanosecond beamlines each nominally deliver 500 J at 351 nm in a 1 ns square temporal profile, but can also deliver a user-definable temporal profile with durations between 0.1 ns and 5 ns. The sub-picosecond beamlines each nominally deliver 500 J at 1053 nm in a 500 fs pulse, with a peak irradiance of greater than 1021 W/cm2. One of the sub-picosecond beamlines can also be frequency-converted to deliver 100 J at 527 nm in a 500 fs pulse, although this is at half the aperture of the 1053 nm beam. Commissioning of all twelve beamlines has been completed, including the 527 nm sub-picosecond option. An overview of the design of the Orion beamlines will be presented, along with a summary of the commissioning and subsequent performance data. The design of Orion was underwritten by running various computer simulations of the beamlines. Work is now underway to validate these simulations against real system data, with the aim of creating predictive models of beamline performance. These predictive models will enable the user's experimental requirements to be critically assessed ahead of time, and will ultimately be used to determine key system settings and parameters. The facility is now conducting high energy density physics experiments. A capability experiment has already been conducted that demonstrates that Orion can generate plasmas at several million Kelvin and several times solid density. From March 2013 15% of the facility operating time will be given over to external academic users in addition to collaborative experiments with AWE scientists.

  18. 42 CFR 440.140 - Inpatient hospital services, nursing facility services, and intermediate care facility services...

    Science.gov (United States)

    2010-10-01

    ... Definitions § 440.140 Inpatient hospital services, nursing facility services, and intermediate care facility... 42 Public Health 4 2010-10-01 2010-10-01 false Inpatient hospital services, nursing facility services, and intermediate care facility services for individuals age 65 or older in institutions for...

  19. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... flush toilet facilities. 71.400 Section 71.400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... sanitary flush toilet facilities, as hereinafter prescribed, for the use of miners employed in the surface...

  20. The European Synchrotron Radiation Facility

    DEFF Research Database (Denmark)

    Buras, B.; Materlik, G.

    1986-01-01

    In recent years, X-ray synchrotron radiation became a powerful tool for studies of condensed matter, and in view of that a proposal for the construction of a European Synchrotron Radiation Facility (ESRF) was elaborated in some detail by the European Synchrotron Radiation Project. The heart...... by a great flexibility and a small emittance (7×10−9 rad m) leading to a very high brilliance (1019 photons/(s mm2 mrad2) in a relative bandwidth of 0.1% in case of a 1 Å undulator). The overview, as seen from the users point of view, gives a brief account of the storage ring, emitted radiation...

  1. DOE facilities solar design handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, Bruce D.; Balcomb, J. Douglas

    1978-01-01

    This handbook covers design of solar heating systems for commercial and laboratory buildings at Department of Energy Facilities. It includes discussions of solar energy fundamentals, solar heating and cooling technology, systems, and components, as well as a discussion of solar system economics. Quantitative analysis, with generalized design and sizing curves, is presented for solar heating so that collector and other system parameters can be cost-economically sized without a computer simulation. Solar system design considerations and guidelines, as well as guidelines for developing subsystem specifications, are presented. Thus this handbook is both a primer for the solar novice and a reference manual for the solar system designer.

  2. The Ames Resource Recovery facility

    Science.gov (United States)

    Chantland, A. O.

    The diminishing availability of natural gas, the use of high-sulfur coal and the need to dispose of waste material prompted the City of Ames, IA, to build a facility to produce refuse-derived fuel (RDF) and to recover other valuable resources from the city's solid waste. Recovery is through mechanical processes. The fuel is used to fire two types of boilers as a supplement to coal in an electric generating plant. Ferrous metals and miscellaneous materials are also recovered and marketed.

  3. On Voting and Facility Location

    OpenAIRE

    Feldman, Michal; Fiat, Amos; Golomb, Iddan

    2015-01-01

    We study mechanisms for candidate selection that seek to minimize the social cost, where voters and candidates are associated with points in some underlying metric space. The social cost of a candidate is the sum of its distances to each voter. Some of our work assumes that these points can be modeled on a real line, but other results of ours are more general. A question closely related to candidate selection is that of minimizing the sum of distances for facility location. The difference is ...

  4. WIRELESS FOR A NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  5. Solid Waste Management Facilities with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  6. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  7. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  8. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  9. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the

  10. Facility overview for commercial application of selected Rocky Flats facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

  11. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  12. EPA Facility Registry Service (FRS): CAMDBS

    Science.gov (United States)

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the Clean Air Markets Division Business System (CAMDBS). Administered by the EPA Clean Air Markets Division, within the Office of Air and Radiation, CAMDBS supports the implementation of market-based air pollution control programs, including the Acid Rain Program and regional programs designed to reduce the transport of ozone. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to CAMDBS facilities once the CAMDBS data has been integrated into the FRS database. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs.

  13. Automated protein crystal growth facility

    Science.gov (United States)

    Donald, Stacey

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  14. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  15. Smart facility location planning using GIS technology & facility provision standards for pro-active planning of social facilities

    CSIR Research Space (South Africa)

    Green, Cheri

    2016-08-01

    Full Text Available .csir.co.za Smart City concept in planning Geertman (2015) two main discourses in smart city concept: • Smart growth leading to environmental & financial sustainability • How ICT can contribute to more efficient planning & management of cities 4... www.csir.co.za Smart facility location planning using GIS technology & facility provision standards for pro- active planning of social facilities Cheri Green BRICS Smart Cites, Jaipur India 17-19 August 2016 Council for Scientific...

  16. EPA Facility Registry Service (FRS): ER_FRP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to Facility...

  17. 9 CFR 71.20 - Approval of livestock facilities.

    Science.gov (United States)

    2010-01-01

    ... facility's sale days, which shall indicate the types of animals that will be handled at the facility on... facility will handle equine infectious anemia (EIA) reactors: —This facility will not handle horses known...

  18. Uncapacitated facility location problems: contributions

    Directory of Open Access Journals (Sweden)

    Galvão Roberto Diéguez

    2004-01-01

    Full Text Available The objective of the present paper is to review my personal contributions in the field of uncapacitated facility location problems. These contributions took place throughout my academic career, from the time I was a Ph.D. student at Imperial College to the present day. They cover approximately 30 years, from 1973 to 2003; they address: algorithms developed for the p-median problem and for a general formulation of uncapacitated location problems; the study of dynamic location models; covering and hierarchical location problems; queuing-based probabilistic location models. The contributions encompass theoretical developments, computational algorithms and practical applications. All work took place in an academic environment, with the invaluable collaboration of colleagues (both in Brazil and abroad and research students at COPPE. Each section in the paper is dedicated to a topic that involves a personal contribution. Every one of them is placed within the context of the existing literature.

  19. SLAC Cosmic Ray Telescope Facility

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  20. Modeling discrete competitive facility location

    CERN Document Server

    Karakitsiou, Athanasia

    2015-01-01

    This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...

  1. Long-term care facilities: important participants of the acute care facility social network?

    Directory of Open Access Journals (Sweden)

    Bruce Y Lee

    Full Text Available Acute care facilities are connected via patient sharing, forming a network. However, patient sharing extends beyond this immediate network to include sharing with long-term care facilities. The extent of long-term care facility patient sharing on the acute care facility network is unknown. The objective of this study was to characterize and determine the extent and pattern of patient transfers to, from, and between long-term care facilities on the network of acute care facilities in a large metropolitan county.We applied social network constructs principles, measures, and frameworks to all 2007 annual adult and pediatric patient transfers among the healthcare facilities in Orange County, California, using data from surveys and several datasets. We evaluated general network and centrality measures as well as individual ego measures and further constructed sociograms. Our results show that over the course of a year, 66 of 72 long-term care facilities directly sent and 67 directly received patients from other long-term care facilities. Long-term care facilities added 1,524 ties between the acute care facilities when ties represented at least one patient transfer. Geodesic distance did not closely correlate with the geographic distance among facilities.This study demonstrates the extent to which long-term care facilities are connected to the acute care facility patient sharing network. Many long-term care facilities were connected by patient transfers and further added many connections to the acute care facility network. This suggests that policy-makers and health officials should account for patient sharing with and among long-term care facilities as well as those among acute care facilities when evaluating policies and interventions.

  2. Assessing the Security Vulnerabilities of Correctional Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.S.; Spencer, D.S.

    1998-10-27

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  3. Chemical facility preparedness a comprehensive approach

    OpenAIRE

    Pennington, Daniel

    2006-01-01

    CHDS State/Local Experts agree that the nation's chemical facilities are attractive targets for terrorists. This consensus is due to several conditions. First, there are thousands of facilities scattered across the country that use, manufacture or store large stockpiles of toxic and/or flammable substances. Many sites are clustered together in densely populated areas and are poorly protected. If terrorists cause catastrophic chemical releases or explosions at these key facilities, large nu...

  4. Sustainable facilities management through building information modelling

    OpenAIRE

    Carbonari, Giulia; Jones, Keith G.

    2014-01-01

    Building Information Modelling (BIM) is an approach to improving the efficiency of the building process and potentially providing the key data set needed by facilities managers to operate buildings in a more sustainable manner. Whilst the design/construction phase of BIM is well advanced, the facilities management phase is not. Although attempts to develop similar facilities management models have been tried before, they have failed because of the complexity of data analysis and the inadequac...

  5. Performance specifications for proton medical facility

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  6. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  7. US EPA Region 4 RMP Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  8. Navigation and Ancillary Information Facility's SPICE

    Data.gov (United States)

    National Aeronautics and Space Administration — The Navigation and Ancillary Information Facility (NAIF), acting under the directions of NASA's Planetary Science Division, has built an information system named...

  9. 2014 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  10. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  11. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  12. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  13. EPA Facility Registry Service (FRS): CERCLIS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data provides location and attribute information on Facilities regulated under the Comprehensive Environmental Responsibility Compensation and Liability...

  14. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  15. Electronics and Telemetry Engineering and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronics Laboratory is a fully equipped facility providing the capability to support electronic product development from highly complex weapon system sensors,...

  16. AERIAL DELIVERY DESIGN AND FABRICATION FACILITY

    Data.gov (United States)

    Federal Laboratory Consortium — Skilled personnel are equipped to design and develop various prototype airdrop items. This facility has all classes of sewing machines, ranging from lightweight to...

  17. Optimal Location of an Oil Storage Facility

    Directory of Open Access Journals (Sweden)

    Giovanni Quiel

    2010-01-01

    Full Text Available Given three oil drilling sites, we devise a method to determine the optimal location for a storage facility such that the total length of pipeline required to connect each site to the facility is minimized. First we represent the total distance of piping as the sum of the individual distances between the storage facility and each oil well. From this, both the optimal overall pipeline length and the location of the storage facility which realizes the minimal length can be determined through the first and second partial derivative tests.

  18. 2015 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  19. 30 CFR 75.1712-3 - Minimum requirements of surface bathing facilities, change rooms, and sanitary toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... facilities, change rooms, and sanitary toilet facilities. 75.1712-3 Section 75.1712-3 Mineral Resources MINE... facilities, change rooms, and sanitary toilet facilities. (a) All bathing facilities, change rooms, and sanitary toilet facilities shall be provided with adequate light, heat, and ventilation so as to maintain a...

  20. National Ignition Facility Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This

  1. Inpatient Psychiatric Facility Quality Measure Data – by Facility

    Data.gov (United States)

    U.S. Department of Health & Human Services — Psychiatric facilities that are eligible for the Inpatient Psychiatric Facility Quality Reporting (IPFQR) program are required to meet all program requirements,...

  2. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  3. Assisted Living Facilities - CARE_LONG_TERM_FACILITIES_ISDH_IN: Residential Care Facilities, Nursing Homes, and Hospices in Indiana in 2007 (Indiana State Department of Health, Point Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — CARE_LONG_TERM_FACILITIES_ISDH_IN is a point shapefile showing the locations of 86 residential care facilities, 525 long-term care facilities (nursing homes), and 81...

  4. Increase in healthcare facilities and rapid environmental ...

    African Journals Online (AJOL)

    The scenario of waste management in many Nigerian cities has been complicated by the non segregation of healthcare wastes from domestic wastes in many healthcare facilities (HCFs). Incidentally, the healthcare facilities have soared in numbers over a 50 - year period in all the six geopolitical zones of Nigeria.

  5. 30 CFR 77.1608 - Dumping facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities. 77.1608 Section 77.1608... Haulage § 77.1608 Dumping facilities. (a) Dumping locations and haulage roads shall be kept reasonably free of water, debris, and spillage. (b) Where the ground at a dumping place may fail to support the...

  6. Does PDC Belong in Facilities Management?

    Science.gov (United States)

    Dessoff, Alan

    2012-01-01

    Whether planning, design, and construction (PDC) of buildings should be part of facilities management, with its traditional operations and maintenance functions, or separated from it, has been a divisive question on many campuses for a long time. Now, although it is not happening everywhere, facilities managers at a number of institutions, public…

  7. Do School Facilities Affect Academic Outcomes?

    Science.gov (United States)

    Schneider, Mark

    This review explores which facility attributes affect academic outcomes the most and in what manner and degree. The research is examined in six categories: indoor air quality, ventilation, and thermal comfort; lighting; acoustics; building age and quality; school size; and class size. The review concludes that school facilities affect learning.…

  8. 9 CFR 3.103 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... effective natural barrier that restricts the marine mammals to the facility and restricts entry by animals... free of solid ice to allow for entry and exit of the animals. (2) The water surface of pools in outdoor... defined by low tide to the other end of the natural seawater facility shoreline defined by low tide. A...

  9. Sophisticated test facility to detect land mines

    NARCIS (Netherlands)

    Jong, W. de; Lensen, H.A.; Janssen, Y.H.L.

    1999-01-01

    In the framework of the Dutch government humanitarian demining project 'HOM-2000', an outdoor test facility has been realized to test, improve and develop detection equipment for land mines. This sophisticated facility, allows us to access and compare the performance of the individual and of a

  10. Safety Management for Water Play Facilities.

    Science.gov (United States)

    Thompson, Claude

    1986-01-01

    Modern aquatic facilities, which include wave pools, water slides, and shallow water activity play pools, have a greater potential for injuries and lawsuits than conventional swimming pools. This article outlines comprehensive safety management for such facilities, including potential accident identification and injury control planning. (MT)

  11. Indicators of Dysphagia in Aged Care Facilities

    Science.gov (United States)

    Pu, Dai; Murry, Thomas; Wong, May C. M.; Yiu, Edwin M. L.; Chan, Karen M. K.

    2017-01-01

    Purpose: The current cross-sectional study aimed to investigate risk factors for dysphagia in elderly individuals in aged care facilities. Method: A total of 878 individuals from 42 aged care facilities were recruited for this study. The dependent outcome was speech therapist-determined swallowing function. Independent factors were Eating…

  12. Springfield Processing Plant (SPP) Facility Information

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  13. 9 CFR 3.125 - Facilities, general.

    Science.gov (United States)

    2010-01-01

    ... facility must be constructed of such material and of such strength as appropriate for the animals involved... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, general. 3.125 Section 3.125 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  14. 9 CFR 3.25 - Facilities, general.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, general. 3.25 Section 3.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... strength. Indoor and outdoor housing facilities for guinea pigs or hamsters shall be structurally sound and...

  15. Computerized Facilities Layout Design | Mulugeta | Zede Journal

    African Journals Online (AJOL)

    Facilities are crucial as they usually represent the largest and the most expensive assets of an organization. Determining location of machines, workstations, and other facilities are layout problems in a manufacturing plant. Different computerized algorithms have been developed to optimize the flow of materials within a ...

  16. Federal Spending on PK-12 School Facilities

    Science.gov (United States)

    Filardo, Mary; O'Donnell, Sean

    2010-01-01

    Methodology: There is no national source of data or information on the federal role in funding and oversight for public PK-12 school facilities. To address this shortcoming, 21st Century School Fund has prepared this study with the support of the National Clearinghouse for Educational Facilities. In collecting data and information for this report,…

  17. Preventive Maintenance Guidelines for School Facilities.

    Science.gov (United States)

    Maciha, John C.

    This five-part manual, intended to increase the integrity and support the longevity of school facilities, provides easy-to-use preventive maintenance (PM) system guidelines. Part 1 outlines the special considerations of school maintenance as compared to other facilities. Part 2 establishes the basic components of a PM program and provides Work…

  18. CRPG facilities available through Europlanet 2020 RI

    Science.gov (United States)

    Cloquet, C.; Galy, A.

    2017-09-01

    Europlanet H2020 program include Transnational Access (TA) supporting travel and local accommodation costs of European researchers to conduct their own research. At CRPG, TA3-Distributed Sample Analysis Facility is available, giving access to the state of the art of 4 analytical facilities

  19. 48 CFR 871.208 - Rehabilitation facilities.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rehabilitation facilities... DEPARTMENT SUPPLEMENTARY REGULATIONS LOAN GUARANTY AND VOCATIONAL REHABILITATION AND EMPLOYMENT PROGRAMS Vocational Rehabilitation and Employment Service 871.208 Rehabilitation facilities. Charges by rehabilitation...

  20. Large Indoor Sports and Recreation Facilities.

    Science.gov (United States)

    Seidler, Todd

    This paper presents an overview and analysis of field houses, stadiums, arenas, and campus recreation centers. All are large indoor sports or recreation facilities. In general, stadiums and arenas are spectator facilities while field houses and campus recreation centers are primarily designed for activity. A college field house is a structure that…

  1. Impact of Technology on School Facility Design.

    Science.gov (United States)

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Planning.

    This publication offers aid for North Carolina schools in planning new and renovated facilities to accommodate technology. It is a supplement to the North Carolina Public School Facilities Guidelines and should be used in conjunction with the STS-1000 Telecommunications Wiring Guidelines and the North Carolina School Technology Plan and other…

  2. Exploratory shaft facility concepts and general design

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, B.T. [Fenix and Scisson, Inc., Las Vegas, NV (USA)

    1990-10-01

    This paper is an overview of engineering and concept development for the Exploratory Shaft Facility (ESF) of the Yucca Mountain Project. The author presents a general description of the overall ESF design effort, the site geology, and the general arrangement of the ESF, including its major facilities. A review of the environmental , safety, and health aspects is included.

  3. Active use of urban park facilities

    DEFF Research Database (Denmark)

    Lindberg, Michael; Schipperijn, Jasper

    2015-01-01

    Abstract Urban green spaces (UGS), and more specific a higher number of facilities in UGS, have been positively associated with physical activity (PA). However, more detailed studies of which facilities generate high levels of PA, for which type of users, are relevant as existing knowledge...

  4. Planning and Managing School Facilities. Second Edition.

    Science.gov (United States)

    Kowalski, Theodore J.

    This book addresses the administrative procedures associated with planning and managing school facilities. As noted at the outset, practitioner interest in school facilities has been growing rapidly in recent years because decades of neglect, poor planning, and cost cutting have created a situation in which large numbers of America's school…

  5. Safety of magnetic fusion facilities: Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  6. Fast flux test facility hazards assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, L.N.

    1994-10-24

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  7. 340 Facility emergency preparedness hazards assessment

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, L.R.

    1998-11-25

    This document establishes the technical basis in support of Emergency Planning activities for the 340 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone, is demonstrated.

  8. 233-S plutonium concentration facility hazards assessment

    Energy Technology Data Exchange (ETDEWEB)

    Broz, R.E.

    1994-12-19

    This document establishes the technical basis in support of Emergency Planning activities for the 233-S Plutonium Concentration Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  9. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  10. MSFC ESL Facility and Beamline Studies

    Science.gov (United States)

    Rogers, J. R.; Hyers, R. W.; Rathz, T. J.; Robinson, M. B.; Kelton, K. F.; Gangopadhyay, A. K.; Woo, G. L.; Fountain, G.; Huie, D.; Allen, T.; hide

    2002-01-01

    The poster presentation provides an overview of the MSFC ESL facility. The technical capabilities and accomplishments of the facility are summarized. Future plans including the development of a pressurized processing chamber and additional high-energy X-ray beamline studies are outlined.

  11. 9 CFR 3.65 - Terminal facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Terminal facilities. 3.65 Section 3.65... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of Rabbits Transportation Standards § 3.65 Terminal facilities. No person subject to the Animal Welfare regulations shall...

  12. 9 CFR 3.141 - Terminal facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Terminal facilities. 3.141 Section 3... ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of... Mammals Transportation Standards § 3.141 Terminal facilities. Carriers and intermediate handlers shall not...

  13. 9 CFR 3.40 - Terminal facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Terminal facilities. 3.40 Section 3.40... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Transportation Standards § 3.40 Terminal facilities. No person subject to the Animal...

  14. Locating Educational Facilities. An Annotated Reference List.

    Science.gov (United States)

    Wakefield, Howard E.

    An annotated reference list of documents received and processed by the ERIC Clearinghouse on Educational Facilities. These documents are concerned wholly or partially with school and facilities location and site selection. All levels of education are covered and each document i s indexed and abstracted. (NI)

  15. Multiple criteria facility location problems: A survey

    National Research Council Canada - National Science Library

    Farahani, Reza Zanjirani; SteadieSeifi, Maryam; Asgari, Nasrin

    2010-01-01

    .... There are many decision making problems whose information is spatial (geographical). These kinds of decisions are called location decisions. Location decisions are now a major part of operations research and management science (named location science). Facility location, location science and location models are terms that can be used instead. Facility lo...

  16. Marketing Sports Facilities: Perspectives from Botswana

    Science.gov (United States)

    Bohutsana, Basuti; Akpata, Dele

    2013-01-01

    The provision of sports facilities contributes immensely to the growth of sports and leisure activities in the countries where they are provided. In some countries, as was the case in Botswana, the government had to spend millions of dollars to provide new Integrated Sports Facilities (ISF's) as a panacea for the continued poor performance of its…

  17. Design Study of Beijing XFEL Test Facility

    CERN Document Server

    Dai, J P

    2005-01-01

    As R&D of X-ray Free Electron Laser facility in China, the construction of Beijing XFEL Test Facility (BTF) has been proposed. And the start to end simulation of BTF was made with codes PARMELA, ELEGANT and TDA. This paper presents the motivation, the scheme and the simulation results of BTF.

  18. 7 CFR 15b.18 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... access to otherwise inaccessible areas or features of historic properties; (ii) Using audio-visual... visits, delivery of services at alternate accessible sites, alteration of exiting facilities and... significant alteration in its existing facilities, the recipient may, as an alternative, refer the handicapped...

  19. Facilities Planning for Interactive Distance Education.

    Science.gov (United States)

    Carter, Alex

    1997-01-01

    Provides basic information relating to the different aspects of facilities planning for interactive distance education, including site selection, acoustics, lighting, environmental considerations, and electrical power. The importance of facilities planning during the developmental stages of an interactive distance education project is emphasized.…

  20. Mars mission science operations facilities design

    Science.gov (United States)

    Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.

    2002-01-01

    A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.

  1. Status of RNB facilities in North America

    CERN Document Server

    Nolen, J A

    1998-01-01

    This paper presents the status of accelerator facilities in North America that are involved in research using radioactive nuclear beams (RNB), including existing and operating facilities, ones currently under construction or undergoing major upgrades, and ones being planned or proposed for the future. Existing RNB facilities are located at TRIUMF (TISOL) in Vancouver, B.C., the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, the Argonne Tandem Linear Accelerator System (ATLAS) at Argonne National Laboratory, the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University, the Nuclear Structure Laboratory at the University of Notre Dame, the 88" Cyclotron at Lawrence Berkeley National Laboratory, and the Cyclotron Institute at Texas A&M University. Currently, there are two major RNB facility upgrades in progress in North America, one at TRIUMF, the ISAC project, and one at NSCL, the Intensity Upgrade project. For the future, the U.S. Nuclear Science A...

  2. Remote oil and gas facility construction--

    Energy Technology Data Exchange (ETDEWEB)

    Wyrick, D.A.; Eschenbach, T.G. (Missouri Univ., Rolla, MO (USA). Dept. of Engineering Management)

    1989-06-01

    The construction of oil and gas facilities on integrated barge units (IBUs) is presented. This technique of construction could be useful in remote wilderness locations. The function of the facilities, alternate construction techniques, and the effects of location and terrain conditions are discussed. Construction costs using the IBU method are estimated to represent a 16% savings in capitol costs over modular construction, and facility startup can be advanced by up to five months. Using an IBU instead of a stickbuilt facility may represent a 44% savings in cost. In addition, maintenance, abandonment, and site rehabilitation are discussed and compared. For every aspect of cost presented, the integrated barge unit offers a less costly alternative. Depending on the specific location, this technique could also represnt less of an impact to the surrounding environment than the more traditional techniques of oil and gas facility construction.

  3. Lightning interaction with launch facilities

    Science.gov (United States)

    Mata, C. T.; Rakov, V. A.

    2009-12-01

    Lightning is a major threat to launch facilities. In 2008 and 2009 there have been a significant number of strikes within 5 nautical miles of Launch Complexes 39A and 39B at the Kennedy Space Center. On several occasions, the Shuttle Space Vehicle (SSV) was at the pad. Fortunately, no accidents or damage to the flight hardware occurred, but these events resulted in many launch delays, one launch scrub, and many hours of retesting. For complex structures, such as launch facilities, the design of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some “unprotected” or “exposed” areas. In order to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for a large number of years using a long term ground flash density that corresponds to the geographical region where the structures being analyzed are located or will be installed. The output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution. This tool was used in designing the lightning protection system of Launch Complex 39B at the Kennedy Space Center, FL, for NASA’s Constellation program. The tool allowed the designers to select the position of the towers and to design the catenary wire system to minimize the probability of direct strikes to the spacecraft and associated ground support equipment. This tool can be used to evaluate

  4. Calorimetric Low-Temperature Detectors for X-Ray Spectroscopy on Trapped Highly-Charged Heavy Ions

    Science.gov (United States)

    Kilbourne, Caroline; Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Ilieva, S.; Kilbourne, C.; McCammon, D.

    2012-01-01

    The application of Calorimetric Low-Temperature Detectors (CLTDs) has been proposed at the Heavy-Ion TRAP facility HITRAP which is currently being installed at the Helmholtz Research Center for Heavy Ion Research GSI. This cold ion trap setup will allow the investigation of X-rays from ions practically at rest, for which the excellent energy resolution of CLTDs can be used to its full advantage. However, the relatively low intensities at HITRAP demand larger solid angles and an optimized cryogenic setup. The influence of external magnetic fields has to be taken into account. CLTDs will also be a substantial part of the instrumental equipment at the future Facility for Antiproton and Heavy Ion Research (FAIR), for which a wide variety of high-precision X-ray spectroscopy experiments has been proposed. This contribution will give an overview on the chances and challenges for the application of CLTDs at HITRAP as well as perspectives for future experiments at the FAIR facility.

  5. A system approach to nuclear facility monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-09-01

    Sensor technology for use in nuclear facility monitoring has reached and advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, we take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Are we monitoring only the facility itself, or might we also monitor the processing that occurs there? How are we going to combine the output from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a systems proposed for an actual facility. Our focus will be on the data analysis aspect of the problem.

  6. Initial operation of the Holifield facility

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.B.

    1982-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new Pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility.

  7. X-ray Cryogenic Facility (XRCF) Handbook

    Science.gov (United States)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama

  8. Design considerations for healthcare simulation facilities.

    Science.gov (United States)

    Seropian, Michael; Lavey, Robert

    2010-12-01

    The number of simulation facilities across the United States and internationally is growing rapidly. The capital investment required can be substantive regardless of size. This article focuses on ways to optimize expenditures and maximize utility. Several key factors will play decisive roles in the successful launch of a new simulation facility. Mission/vision, budget, functional need, and space are partners in determining the final design of the simulation facility. Ideally, the budget is based on the functional requirements and desired capacity; but when this is not the case, of course, the owner must prioritize the needs of the new center. The type of space allocated for the facility is also critical and can seriously impact the budget because renovating a space that is fitted for another purpose versus constructing the center in an open shell space can add considerable cost. A well-balanced design team led by a diligent and knowledgeable project manager who can keep the team focused is integral to the success of designing and constructing a new facility. Users should inform themselves about each of the issues that a design team may consider to ensure that the issues are resolved in a way that meets the needs and vision of the program(s). A simulation facility, such as any education facility, should be built around the concepts of the overall mission, vision, and values of the institution(s) and stakeholder(s). For any new educational facility to be a success, the thoughts, ideas, and creativity of the owner, users, and stakeholders must find its way into the ultimate built environment. The experience base of simulation facility design is fragmented and not standardized. Therefore, we live at a time where the risk of ineffective design is higher than one would like given the costs involved. It behooves the owner to set parameters with the planning and design team that they want a balanced, controlled, collaborative, and inclusive design process.

  9. Planning Facilities for Athletics, Physical Education, and Recreation. Revised.

    Science.gov (United States)

    American Alliance for Health, Physical Education, and Recreation, Washington, DC.

    This guide for the planning and construction of recreational facilities is divided into the following five parts: (a) fundamental procedures, (b) indoor facilities, (c) sport and athletic facilities, (d) recreational and park areas and facilities, and (e) indoor and outdoor swimming pools. Part one concerns planning the facility and dealing with…

  10. 30 CFR 75.1712 - Bath houses and toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bath houses and toilet facilities. 75.1712... and toilet facilities. The Secretary may require any operator to provide adequate facilities for the... to shift, and to provide sanitary and bathing facilities. Sanitary toilet facilities shall be...

  11. In-facility transport code review

    Energy Technology Data Exchange (ETDEWEB)

    Spore, J.W.; Boyack, B.E.; Bohl, W.R. [and others

    1996-07-01

    The following computer codes were reviewed by the In-Facility Transport Working Group for application to the in-facility transport of radioactive aerosols, flammable gases, and/or toxic gases: (1) CONTAIN, (2) FIRAC, (3) GASFLOW, (4) KBERT, and (5) MELCOR. Based on the review criteria as described in this report and the versions of each code available at the time of the review, MELCOR is the best code for the analysis of in-facility transport when multidimensional effects are not significant. When multi-dimensional effects are significant, GASFLOW should be used.

  12. Biomass Gasifier Facility (BGF). Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The Pacific International Center for High Technology Research (PICHTR) is planning, to design, construct and operate a Biomass Gasifier Facility (BGF). This facility will be located on a site easement near the Hawaiian Commercial & Sugar company (KC&S) Paia Sugar Factory on Maui, Hawaii. The proposed BGF Project is a scale-up facility, intended to demonstrate the technical and economic feasibility of emerging biomass gasification technology for commercialization. This Executive Summary summarizes the uses of this Environmental Assessment, the purpose and need for the project, project,description, and project alternatives.

  13. New radiation protection calibration facility at CERN.

    Science.gov (United States)

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The Facility for Rare Isotope Beams

    Directory of Open Access Journals (Sweden)

    Wrede C.

    2015-01-01

    Full Text Available The Facility for Rare Isotope Beams (FRIB is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental symmetries, and societal applications will be enabled by this future world-leading rare-isotope beam facility.

  15. The Facility for Rare Isotope Beams

    Science.gov (United States)

    Wrede, C.

    2015-05-01

    The Facility for Rare Isotope Beams (FRIB) is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental symmetries, and societal applications will be enabled by this future world-leading rare-isotope beam facility.

  16. Environmental analysis of biomass-ethanol facilities

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  17. Innovations at a European Planetary Simulation Facility

    Science.gov (United States)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2017-09-01

    This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  18. Perimeter security for Minnesota correctional facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crist, D. [Minnesota Department of Corrections, St. Paul, MN (United States); Spencer, D.D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  19. Competitive Facility Location with Random Demands

    Science.gov (United States)

    Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke

    2009-10-01

    This paper proposes a new location problem of competitive facilities, e.g. shops and stores, with uncertain demands in the plane. By representing the demands for facilities as random variables, the location problem is formulated to a stochastic programming problem, and for finding its solution, three deterministic programming problems: expectation maximizing problem, probability maximizing problem, and satisfying level maximizing problem are considered. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic vibration. Efficiency of the solution method is shown by applying to numerical examples of the facility location problems.

  20. 30 CFR 71.402 - Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities.

    Science.gov (United States)

    2010-07-01

    ..., change rooms, and sanitary flush toilet facilities. 71.402 Section 71.402 Mineral Resources MINE SAFETY... Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.402 Minimum requirements for bathing facilities, change rooms, and sanitary flush toilet facilities. (a) All bathing facilities, change...

  1. EPA Facility Registry Service (FRS): Power Plants

    Science.gov (United States)

    This GIS dataset contains data on power plants, based on the Energy Information Administration's EIA-860 dataset and supplemented with data from EPA's Facility Registry Service (FRS) compiled from various EPA programs.

  2. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  3. Uniform Facility Data Set US (UFDS-1997)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Uniform Facility Data Set (UFDS), formerly the National Drug and Alcohol Treatment Unit Survey or NDATUS, was designed to measure the scope and use of drug abuse...

  4. Uniform Facility Data Set US (UFDS-1998)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Uniform Facility Data Set (UFDS) was designed to measure the scope and use of drug abuse treatment services in the United States. The survey collects information...

  5. American College of Radiology Accredited Facility Search

    Science.gov (United States)

    ... Presentations Resources Breast Imaging Resources CMS/MIPPA Resources Digital Mammography QC Manual Resources RaySafe Phantom Supertech Phantom Marketing Toolkit Accredited Facility Showcase Testimonials Validation Site Survey ...

  6. Ballistic Rail Gun Soft Recovery Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Rail Gun Soft Recovery Facility accommodates a 155mm Howitzer, fired horizontally into a 104-foot long water trough to slow the projectile and recover...

  7. EPA Facility Registry Service (FRS): Power Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on power plants, based on the Energy Information Administration's EIA-860 dataset and supplemented with data from EPA's Facility...

  8. 30 CFR 57.6160 - Main facilities.

    Science.gov (United States)

    2010-07-01

    ... facility; (4) At least 200 feet from work places or shafts; (5) At least 50 feet from electric substations... specifically designed for use in magazines. (c) Electrical switches and outlets shall be located outside the...

  9. Location - Managed Facility - St. Paul District (MVP)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — St. Paul District - US Army Corps of Engineers Managed Facility locations. District headquarters, Natural Resource, Recreation, Lock and Dam, and Regulatory offices...

  10. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  11. Facility Modeling Capability Demonstration Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, Brian P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sadasivan, Pratap [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aleman, Sebastian E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chiswell, Steven R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-01

    A joint effort has been initiated by Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Savanah River National Laboratory (SRNL), Pacific Northwest National Laboratory (PNNL), sponsored by the National Nuclear Security Administration’s (NNSA’s) office of Proliferation Detection, to develop and validate a flexible framework for simulating effluents and emissions from spent fuel reprocessing facilities. These effluents and emissions can be measured by various on-site and/or off-site means, and then the inverse problem can ideally be solved through modeling and simulation to estimate characteristics of facility operation such as the nuclear material production rate. The flexible framework called Facility Modeling Toolkit focused on the forward modeling of PUREX reprocessing facility operating conditions from fuel storage and chopping to effluent and emission measurements.

  12. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  13. Biological and Chemical Impact to Educational Facilities.

    Science.gov (United States)

    Manicone, Santo

    2002-01-01

    Discusses preparing an educational facility to address the threat of biological or chemical terrorism, including understanding the potential impact, implementing information and communication systems, and improving medical surveillance and awareness. (EV)

  14. Chemical Facility Preparedness: A Comprehensive Approach

    National Research Council Canada - National Science Library

    Pennington, Daniel

    2006-01-01

    .... Many sites are clustered together in densely populated areas. If terrorists cause catastrophic chemical releases or explosions at these key facilities, large numbers of Americans will be put at risk of injury or death...

  15. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  16. Trisonic Gas-Dynamics Facility (TGF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The TGF is a two-foot square, continuous-flow, closed-circuit wind tunnel which is optimal for conducting research experiments. The facility provides a...

  17. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  18. MAUDE (Manufacturer and User Facility Device Experience)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MAUDE data represents reports of adverse events involving medical devices. The data consists of all voluntary reports since June, 1993, user facility reports since...

  19. SRS Process Facility Significance Fire Frequency

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1995-10-01

    This report documents the method and assumptions of a study performed to determine a site generic process facility significant fire initiator frequency and explains the proper way this value should be used.

  20. sUAS Facility Map - Download dataset

    Data.gov (United States)

    Department of Transportation — sUAS Facility Maps (UASFM) that indicate “pre-approved fly altitudes.” Within each grid on the map, FAA would identify maximum altitudes at which flight is permitted...

  1. Enforcement and Compliance History Online (ECHO) Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide. Its features range from simple to advanced,...

  2. Cryogenic magnet test facility for fair

    CERN Document Server

    Schroeder, C; Marzouki, F; Stafiniac, A; Floch, E; Schnizer, P; Moritz, G; Xiang, Y; Kauschke, M; Meier, J; Hess, G ,

    2009-01-01

    For testing fast-pulsed superconducting model and pre-series magnets for FAIR (Facility of Antiproton and Ion Research), a cryogenic magnet test facility was built up at GSI. The facility is able to cool either cold masses in a universal cryostat or complete magnets in their own cryo-module. It is possible to operate bath cooled, 2 phase cooled, and supercritical cooled magnets with a maximum current up to 11 kA and a ramp rate up to 14 kA/s. Measurements of magnet heat loss, with calorimetric and a V-I methods, are available, as are quench and magnetic field measurements. Design and functionality of the test facility will be described. Results of measurements with a supercritical cooled magnet and with a 2 phase cooled SIS100 model magnet will be shown.

  3. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  4. Corporate Statements in the Facilities Industry

    DEFF Research Database (Denmark)

    Holzweber, Markus

    In today’s services business domain, especially in facility services and facilities management (FM), customers are becoming more informed as to the level of choice and competition for their custom. This has led businesses to develop and maintain strategic elements of corporate statements that wil......In today’s services business domain, especially in facility services and facilities management (FM), customers are becoming more informed as to the level of choice and competition for their custom. This has led businesses to develop and maintain strategic elements of corporate statements...... statements from FM organizations was selected and linked to financial data. The article reveals that the FM services industry would benefit from the concept of capability coherence. Findings showed that FM organizations showing higher scores of capability coherence have higher profitability scores....

  5. State Wildlife Management Area Public Facilities - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — This line theme contains facilities and features for WMAs that are best represented as lines. WMAs are part of the Minnesota state recreation system created to...

  6. Traffic impacts of bicycle facilities : final report.

    Science.gov (United States)

    2017-06-01

    Engineers need information about interactions between vehicles and bicyclists to design efficient, safe transportation systems. This study involved a review of design guidelines for bicycle facilities, observation of bicycle-vehicle interactions at n...

  7. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  8. New Equipment Training Center-Satellite Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Satellite Facility is a 24-hour on-site military satellite transmission and downlink capability to Southwest Asia and all other military OCONUS and CONUS...

  9. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  10. Low Speed Wind Tunnel Facility (LSWTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility consists of a large-scale, low-speed open-loop induction wind tunnel which has been modified to house a linear turbine cascade. A 125-hp...

  11. Twin Screw Mixer/Fine Grind Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  12. Service quality for facilities management in hospitals

    CERN Document Server

    Sui Pheng, Low

    2016-01-01

    This book examines the Facilities Management (FM) of hospitals and healthcare facilities, which are among the most complex, costly and challenging kind of buildings to manage. It presents and evaluates the FM service quality standards in Singapore’s hospitals from the patient’s perspective, and provides recommendations on how to successfully improve FM service quality and achieve higher patient satisfaction. The book also features valuable supplementary materials, including a checklist of 32 key factors for successful facilities management and another checklist of 24 service attributes for hospitals to achieve desirable service quality in connection with facilities management. The book adopts a unique approach of combining service quality and quality theory to provide a more holistic view of how FM service quality can be achieved in hospitals. It also integrates three instruments, namely the SERVQUAL model, the Kano model and the QFD model to yield empirical results from surveys for implementation in hosp...

  13. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  14. Precision Munition Electro-Sciences Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility allows the characterization of the electro-magnetic environment produced by a precision weapon in free flight. It can measure the radiofrequency (RF)...

  15. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  16. Zero Gravity Research Facility (Zero-G)

    Data.gov (United States)

    Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...

  17. Competitive Facility Location with Fuzzy Random Demands

    Science.gov (United States)

    Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke

    2010-10-01

    This paper proposes a new location problem of competitive facilities, e.g. shops, with uncertainty and vagueness including demands for the facilities in a plane. By representing the demands for facilities as fuzzy random variables, the location problem can be formulated as a fuzzy random programming problem. For solving the fuzzy random programming problem, first the α-level sets for fuzzy numbers are used for transforming it to a stochastic programming problem, and secondly, by using their expectations and variances, it can be reformulated to a deterministic programming problem. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic oscillation. The efficiency of the proposed method is shown by applying it to numerical examples of the facility location problems.

  18. Figure 5, Biofuel refinery facility locations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains the locations and types of current and anticipated biofuel feedstock processing facilities assumed under the simulated scenarios. This dataset...

  19. Educational Specifications for Special Education Facility.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    Educational specifications for an educational facility are detailed in the report. Space requirements, daily schedules, and equipment (for the aurally, visually, intellectually, emotionally, learning, and motor disabled) are discussed and diagrams are provided. (CD)

  20. Assisted Living Facilities - MDC_NursingHome

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Label (point) feature class of Miami-Dade County Nursing Homes Facilities. As of May 2004 the Office of Emergency Management (OEM) will provide updates for Nursing...

  1. Regional Park-n-Ride Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Southwestern Pennsylvania Commission maintains an inventory of the region’s park-n-ride facilities that contains detailed information for each of the more than...

  2. Shock Thermodynamic Applied Research Facility (STAR)

    Data.gov (United States)

    Federal Laboratory Consortium — The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only...

  3. State Wildlife Management Area Public Facilities - points

    Data.gov (United States)

    Minnesota Department of Natural Resources — This point theme contains facilities and features for WMAs that are best represented as points. WMAs are part of the Minnesota state recreation system created to...

  4. EPA Facility Registry Service (FRS): ER_RMP

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  5. EPA Facility Registry Service (FRS): ER_TSCA

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  6. EPA Facility Registry Service (FRS): AIRS_AFS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  7. EPA Facility Registry Service (FRS): ER_CERCLIS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  8. EPA Facility Registry Service (FRS): AIRS_AFS_MAJOR

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  9. EPA Facility Registry Service (FRS): ER_EPLAN

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  10. EPA Facility Registry Service (FRS): CERCLIS_NPL

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that are...

  11. EPA Facility Registry Service (FRS): RCRA_LQG

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  12. EPA Facility Registry Service (FRS): PCS_NPDES

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  13. EPA Facility Registry Service (FRS): AIRS_AQS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  14. EPA Facility Registry Service (FRS): ER_TRI

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  15. EPA Facility Registry Service (FRS): ER_RCRATSD

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link...

  16. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Science.gov (United States)

    2012-08-15

    ...), Manufacturing facilities for components, parts, and accessories (including, but not limited to, cigarette paper, tipping paper, filters), and Manufacturing facilities for materials used for further processing in... HUMAN SERVICES Food and Drug Administration Tobacco Product Manufacturing Facility Visits AGENCY: Food...

  17. EPA Facility Registry Service (FRS): RCRA_TRANS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link...

  18. Liberia_WADC00004_OHDR_Health_Facilities2010

    Data.gov (United States)

    United Nations Cartographic Section — This data is based on the survey questionnaire, which are included in the table belowWhat county is this facility in?What is the facility name?Is this facility a...

  19. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  20. 33 CFR 6.01-4 - Waterfront facility.

    Science.gov (United States)

    2010-07-01

    ... facility. Waterfront facility. “Waterfront facility,” as used in this part, means all piers, wharves, docks, or similar structures to which vessels may be secured and naval yards, stations, and installations...