Sample records for historical underground storage

  1. Underground Storage Tanks in Iowa (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  2. Underground Storage Tanks - Storage Tank Locations (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  3. Leaking Underground Storage Tank (LUST) Trust Fund (United States)

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  4. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective (United States)

    Wiersma, Bruce J.


    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of the instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.

  5. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)


    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  6. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)



    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  7. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system. (United States)


    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  8. Energy Policy Act of 2005 and Underground Storage Tanks (USTs) (United States)

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  9. 100-N Area underground storage tank closures

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.A.


    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  10. Underground-Energy-Storage Program, 1982 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.


    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  11. A new principle for underground pumped hydroelectric storage

    DEFF Research Database (Denmark)

    Olsen, Jan; Paasch, Kasper; Lassen, Benny


    This paper presents the basic idea, design considerations and field test results for a novel concept of an energy storage system. The system is of the underground pumped hydro storage (UPHS) type where energy is stored by lifting a mass of soil through the pumping of water into an underground...

  12. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith


    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  13. Historical development of underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Olness, D.; Gregg, D.W.


    The development of underground coal gasification is traced through a discussion of the significant, early experiments with in situ gasification. Emphasized are the features of each experiment that were important in helping to alter and refine the process to its present state. Experimental details, coal characteristics, and gasification data are supplied for many of the experiments. 69 refs.


    Energy Technology Data Exchange (ETDEWEB)



    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  15. Inspecting Underground Storage Tanks - 2005 Energy Policy Act (United States)

    these grant guidelines implement the inspection provisions in Sections 9005(c)(1) and 9005(c)(2) of the Solid Waste Disposal Act, enacted by the Underground Storage Tank Compliance Act, part of the Energy Policy Act of 2005.

  16. Public Record About Underground Storage Tanks - 2005 Energy Policy Act (United States)

    These grant guidelines implement the public record provision in Section 9002(d) of the Solid Waste Disposal Act, enacted by the Underground Storage Tank Compliance Act, part of the Energy Policy Act of 2005.

  17. Underground storage systems for high-pressure air and gases (United States)

    Beam, B. H.; Giovannetti, A.


    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  18. Early warning indicators for challenges in underground coal storage. (United States)

    Sipilä, Juha; Auerkari, Pertti; Holmström, Stefan; Vela, Iris


    Early warning or leading indicators are discussed for unexpected incidences in case of large-scale underground coal storage at a power plant. The experience is compared with above-ground stockpiles for which established procedures are available but where access for prevention and mitigation are much easier. It is suggested that while the explicit organization, procedures, and the general safety systems aim to provide the targeted levels of performance for the storage, representing new technology without much precedence elsewhere in the world, the extensive experience and tacit knowledge from above-ground open and closed storage systems can help to prepare for and to prevent unwanted incidents in the underground storage. This kind of experience has been also found useful for developing the leading or early warning indicators for underground storage. Examples are given on observed autoignition and freezing of coal in the storage silos, and on occupational hazards. Selection of the leading indicators needs to consider the specific features of the unique underground facility. © 2014 Society for Risk Analysis.

  19. EPA settles underground storage tank violations at RFK Stadium (United States)

    PHILADELPHIA (November 18, 2015) - The District of Columbia Department of General Services has agreed to pay a $10,000 penalty to settle alleged violations of underground storage tank regulations at Robert F. Kennedy Stadium, the U.S. Environmental Protect

  20. Life cycle analysis of underground thermal energy storage

    NARCIS (Netherlands)

    Tomasetta, Camilla; van Ree, Derk; Griffioen, Jasper


    Underground Thermal Energy Storage (UTES) systems are used to buffer the seasonal difference between heat and cold supply and demand and, therefore, represent an interesting option to conserve energy. Even though UTES are considered environmental friendly solutions they are not completely free of

  1. Indian Country Leaking Underground Storage Tanks, Region 9, 2016 (United States)

    This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and locational information, status of LUST case, operating status of facility, inspection dates, and links to No Further Action letters for closed LUST cases. This database contains 1230 features, with 289 features having a LUST status of open, closed with no residual contamination, or closed with residual contamination.

  2. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.


    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  3. Residual waste volume measurement for Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.


    The Acquire Commercial Technology for Retrieval program seeks commercial solutions to measure any waste residual (i.e., heel)left after waste retrieval operations of underground radioactive storage tanks. The technology identified should operate in a range of waste depth thickness of 0 - 6 inches. This report provides a description of the need, requirements, and constraints for the residual waste volume measurement system; describes a logical approach to measuring waste volume; provides a brief review and assessment of available technologies; and outlines a set of integrated tests that will evaluate the performance of candidate technologies.

  4. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.


    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  5. Environmental projects. Volume 2: Underground storage tanks compliance program (United States)

    Kushner, L.


    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel and hydraulic oil. These essential fluids are stored in underground storage tanks (USTs). Because USTs may develop leaks with the resultant seepage of their hazardous contents into the surrounding soil, local, State and Federal authorities have adopted stringent regulations for the testing and maintenance of USTs. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a year-long program has brought 27 USTs at the Goldstone Complex into compliance with Federal, State of California and County of San Bernadino regulations. Of these 27 USTs, 15 are operating today, 11 have been temporary closed down, and 1 abandoned in place. In 1989, the 15 USTs now operating at the Goldstone DSCC will be replaced either by modern, double-walled USTs equipped with automatic sensors for leak detection, or by above ground storage tanks. The 11 inactivated USTs are to be excavated, removed and disposed of according to regulation.

  6. 30 CFR 57.4160 - Underground electric substations and liquid storage facilities. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground electric substations and liquid... Underground electric substations and liquid storage facilities. The requirements of this standard apply to...) Electric substations. (2) Unburied, combustible liquid storage tanks. (3) Any group of containers used for...

  7. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson


    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  8. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms... (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground transformer stations, combustible... and Control Firefighting Equipment § 57.4262 Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. Transformer stations, storage...

  9. Lower Colorado River GRP Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  10. Lower Colorado River GRP Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  11. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    Energy Technology Data Exchange (ETDEWEB)



    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting

  12. The underground nuclear wastes storage; Le stockage des dechets nucleaires en site profond

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Institut des Sciences Nucleaires, CNRS/IN2P3, 38 - Grenoble (France); Ouzounian, G. [Agence Nationale pour la Gestion des Dechets Radioactifs ANDRA, 92 - Chatenay Malabry (France)


    In the radioactive wastes management, the underground storage seems to be the long dated solution and the reference strategy. Then this storage has to be studied in term of accidental diffusion of radionuclides in the geologic site and in the food chain transfer. This document presents analytical models of diffusion which may help physicists to evaluate underground storage sites and the impacts on the environment and the human health. (A.L.B.)

  13. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.


    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  14. Leaking Underground Storage Tank Points, Region 9 Indian Country, 2017, US EPA Region 9 (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and...

  15. Study on the Maximization of Durable Years of the Underground Oil Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Young; Koh, Young Kwon; Bae, Dae Seok; Kim, Kyung Su; Ryu, Ji Hoon; Park, Kyung Woo; Ji, Sung Hoon


    Objectives of the study on the maximization of durable years of the underground oil storage facility are as follows - Establishment of the detailed field of study and methodology for the preparation of guideline of operation and maintenance of underground oil storage facility - Preparation of program for the assessment of the impedimental factor of safety such as clogging and seawater intrusion. The study sites are Yeosu, Pyeongtaek, Ulsan underground oil storage facilities which are operated by KNOC, SK gas and E1. Various pending problems of each facilities were summarized and assessed. Long-term program for the maximization of durable years of the underground oil storage facility was prepared based on the results of the assessment of each study sites

  16. Secondary Containment for Underground Storage Tank Systems - 2005 Energy Policy Act (United States)

    These grant guidelines implement the secondary containment provision in Section 9003(i)(1) of the Solid Waste Disposal Act, enacted by the Underground Storage Tank Compliance Act, part of the Energy Policy Act of 2005.

  17. Indian Country Leaking Underground Storage Tanks (LUST) Map Service, Region 9, 2016, US EPA Region 9 (United States)

    U.S. Environmental Protection Agency — This map service displays Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. The service is composed of three layers; one for each unique LUST...

  18. 76 FR 46798 - Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction (United States)


    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Notice; correction. SUMMARY: This document contains a...

  19. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)



    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  20. Βedrock instability of underground storage systems in the Czech Republic, Central Europe (United States)

    Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir


    Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.

  1. Transient electromagnetic detection method in water-sealed underground storage caverns

    Directory of Open Access Journals (Sweden)

    Fang Lin


    Full Text Available Taking advantage of the water sensitivity of the transient electromagnetic method (TEM, this study assesses the effectiveness of the water curtain system for underground LPG storage caverns during the excavation period. It also detects fracture water flow during the excavation process in light of the practice of two pilot large underground LPG storage caverns in China. Comparative maps of apparent resistivity derived from TEM measurements before and after water-filling during the excavation process have been discussed to improve the quality of the water curtain system. This is the first case to apply TEM to detect the quality of the water curtain system during the construction of underground LPG storage cavern projects, and it is found to be practical, more visualized and worth popularizing.

  2. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi


    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  3. The underground retrievable storage (URS) high-level waste management concept

    Energy Technology Data Exchange (ETDEWEB)

    Ramspott, L.D.


    This papers presents the concept of long-term underground retrievable storage (URS) of spent reactor fuel in unsaturated rock. Emplacement would be incremental and the system is planned to be experimental and flexible. The rationale for retrievability is examined, and a technical basis for 300-year retrievability is presented. Maximum isolation is the rationale for underground as opposed to surface storage. Although the potential repository site at Yucca Mountain Nevada would be suitable for a URS, alternate sites are discussed. The technical issues involved in licensing a URS for 300 years are simpler than licensing a 10,000 year repository. 16 refs.

  4. Use of carbon dioxide in underground natural gas storage processes

    Directory of Open Access Journals (Sweden)

    Nagy Stanislaw


    Full Text Available The possibility of use of carbon dioxide in gas storage processes is presented. The model of mixing process between CO2 and methane in porous media is given. The process of injection of carbon dioxide into a lower part of storage near the water –gas contact is modeled. The example of changes in the mixing zone is presented and discussed.

  5. 77 FR 25366 - Underground Storage Tank Program: Approved State Program for the State of Oregon (United States)


    ... under ORS 466.710 and also any tank used to store heating oil for consumptive use on the premises where... under ORS 466.710, and any tank used to store heating oil for consumptive use on the premises where... an underground storage tank, excluding tanks used to store heating oil for consumptive use on the...

  6. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    NARCIS (Netherlands)

    Balk, M.; Mehboob, F.; Gelder, van A.H.; Rijpstra, I.; Sinninghe-Damsté, J.S.; Stams, A.J.M.


    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells

  7. Paradigms of underground gas storage operation; Paradigmas del funcionamiento de un almacenamiento subterraneo de gas

    Energy Technology Data Exchange (ETDEWEB)

    Bonoris, Patricia; Vizcarra, Rodolfo; Buciak, Jorge [Companias Asociadas Petroleras S.A. (Argentina)


    The main objective of the study was to determine, for the underground storage of gas, the Current Useful Volume and Maximum Useful Current of operation, as well as have an acceptable interpretation that allows calculating the investment needed to reach this Maximum Usable Volume.

  8. Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    CW Enderlin; DG Alberts; JA Bamberger; M White


    This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

  9. Correction: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg


    Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479.......Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479....

  10. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox


    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  11. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  12. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  13. Storage of Residual Fuel Oil in Underground Unlined Rock Caverns. (United States)


    mentioned a roof collapse in a limestone mine owned by Fenix and Scissons (site not given) in a similar manner as an abandoned iron mine owned by...May 1980 (courtesy of Fenix and Scissions, Inc., Tulsa, Oklahoma). Data Contains: a). Areas Favorable for Mined Storage in the United States. b


    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski


    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  15. Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage (United States)


    United States (US). It also created the US’s only known active “full” ( warm and cold) Aquifer Thermal Energy Storage (ATES) system. in the U.S. are not designed to achieve. Deliberately engineered UTES systems not only allow for the waste heat of cooling systems and the...Ingenieure (Largest Engineering Association in Western Europe) VAV Variable Air Volume vii Page Intentionally Left

  16. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.


    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  17. Reducing drinking water supply chemical contamination: risks from underground storage tanks. (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard


    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  18. CARE - computer aided reservoir engineering. An integrated approach for a computer assisted underground gas storage management system

    Energy Technology Data Exchange (ETDEWEB)

    Zemke, J.; Boor, C.; Lenk, G. [UGS GmbH, Mittenwald (Germany); Schmidt, H.W. [Elpro AG (Germany)


    The CARE software is an effective assistant for optimal management of an underground gas storage facility that is customized to the specific characteristics of each reservoir and customer's requirements. Developed from many years of practical experience of the storage operation, reservoir determination and well parameters, CARE ensures an optimal operation mode, which increases the storage performance and permit a longer durability of each well completion. Apart from cost saving effects the operation risk can be reduced by early recognition of failures. The program is modular developed and can be arranged according to customer's specifications. The most comprehensive tool is the process control module, which enables the evaluation and analysis of all relevant data, determination of target and limiting values as well as advanced prognosis function. Therefore with the assistance of CARE the underground storage facility could be operated almost automatically. All relevant technical and geological data as well as available historical measured values are stored in a module-spreading data base, which is currently updated. The report generator creates templates in accordance with the customer's requirements, which can be converted into standard documents or diagrams for the use of management reports or authorities. Moreover there is a package of further high-capacity applications. Interactive coupling with 3-D reservoir simulation is also possible. In this report exemplary of the realisation of well pass and well test are performed. The well pass module provides quick access to all specific geological and well data. The survey over the entire well is just as possible as the zoom in to a special section. (orig.)

  19. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel


    Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.

  20. Underground storage with floating cover. An overview; Erdbeckenspeicher mit schwimmender Abdeckung. Eine Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.; Maureschat, G.; Duer, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Buildings and Energy


    A number of underground stores have been developed in recent years in Denmark. The development has been subsidised with funds of `Development program renewable energy` launched by the Danish Ministry for Environment and Energy. First experience reports on underground storage show that more emphasis must be put on the development of storage sealing and cover construction. Hence research works currently focuses on the investigation of liner material and further development of floating cover constructions. The target is the development of underground storage using solar energy for heating that can compete with conventional heating systems technically and economically. (orig.) [Deutsch] In Daenemark hat man in den letzten Jahren eine Reihe von Erdbeckenspeichern entwickelt. Die Entwicklung wird mit Mitteln aus dem `Entwicklungsprogramm Erneuerbare Energie` vom daenischen Umwelt- und Energieministerium finanziell gefoerdert. Die ersten Erfahrungen mit Erdbeckenspeichern haben gezeigt, dass ein verstaerkter Einsatz bei der Entwicklung von Abdichtungen des Speichers und von Deckelkonstruktionen gefordert ist. Deshalb wird in Daenemark aktuell mit der Untersuchung von Linermaterialien und der Weiterentwicklung von schwimmenden Deckelkonstruktionen gearbeitet. Das Ziel dieser Arbeit ist es, Erdbeckenspeicher zu entwickeln, die die Ausnutzung von Sonnenenergie zur Waermeversorgung im Vergleich mit herkoemmlicher Waermeversorgung sowohl technisch als auch oekonomisch konkurrenzfaehig macht. (orig.)

  1. Polymers for subterranean containment barriers for underground storage tanks (USTs). Letter report on FY 1992 activities

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, J.H.; Colombo, P.; Clinton, J.


    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks.

  2. Evaluation of Seawater Intrusion Potential into a Coastal Underground Oil Storage Cavern in Korea (United States)

    Lee, E.; Lim, J.; Moon, H.; Lee, K.


    Underground oil storage caverns have been operated in Korea since 1990s, and the facility at Yeosu, south coast of Korea, is one of the largest underground oil storage facilities in Korea. Hydrologic and water quality monitoring of the facility has been performed to find out whether the facility maintains secure containment condition and long-term stability. Recently, seawater intrusion into the base of the storage cavern was suspected based on the long-term monitoring of water levels and chemical analyses of seepage water pumped out from cavern bottom. The sudden decrease of water pressure during the construction of storage tunnel seems to cause the inland movement of saline water. In this study, numerical analysis was performed to estimate the potential of seawater intrusion into underground oil storage cavern using a three dimensional groundwater simulation model, FEFLOW (Diersch, 2005). The geometry of the cavern and water curtain was represented by using the implemented functions. The groundwater flow field and seawater intrusion in response to construction activity was also estimated. The simulation results were validated by comparing EC and salinity of seepage water monitoring data. Sensitivity analyses on hydraulic conductivity and water pressure from the water curtain or injection well were also conducted. Relatively high groundwater level was observed at this site due to the low hydraulic conductivity of base rock and high altitude of the mountains. Therefore, the amount of intruded seawater does not seem to be significant. However, apparent decrease of water level was observed along the main fracture zone and seawater could be intruded along these paths. Simulation results show that the seawater intrusion to the cavern is mainly controlled by the fracture zone, which would be the main channel of groundwater movement. The injection of fresh water to the injection wells along the coast may retard the intrusion of seawater.

  3. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg


    , but unfortunately it is limited to mountainous regions and therefore difficult to expand. Emerging technologies like adiabatic compressed air energy storage (ACAES) or storage using conventional power-to-gas (P2G) technology combined with underground gas storage can be more widely deployed, but unfortunately...

  4. Water chemical evolution in Underground Pumped Storage Hydropower plants and induced consequences (United States)

    Pujades, Estanislao; Orban, Philippe; Jurado, Anna; Ayora, Carlos; Brouyère, Serge; Dassargues, Alain


    Underground Pumped Storage Hydropower (UPSH) using abandoned mines is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs; the upper reservoir is located at the surface or at shallow depth, while the lower reservoir is underground. These plants have potentially less constraints that the classical Pumped Storage Hydropower plants because more sites are available and impacts on landscape, land use, environment and society seem lower. Still, it is needed to consider the consequences of the groundwater exchanges occurring between the underground reservoir and surrounding porous media. Previous studies have been focused on the influence of these groundwater exchanges on the efficiency and on groundwater flow impacts. However, hydrochemical variations induced by the surface exposure of pumped water and their consequences have not been yet addressed. The objective of this work is to evaluate the hydrochemical evolution of the water in UPSH plants and its effects on the environment and on the UPSH efficiency. The problem is studied numerically by means of reactive transport modelling. Different scenarios are considered varying the chemical properties of the surrounding porous medium and groundwater. Results show that the dissolution and/or precipitation of some compounds may affect (1) the groundwater quality, and (2) the efficiency and the useful life of the used pumps and turbines of the UPSH system.

  5. Traditional Underground Grain Storage in Clay Soils in Sudan Improved by Recent Innovations

    Directory of Open Access Journals (Sweden)

    Abdalla, AT.


    Full Text Available In the central clay plain of the Sudan, traditional subsistence farmers and small farmers that also produce for local markets want to keep the region near food self-sufficiency. They combine annual production of sorghum with underground pit storage of part of the harvest. With increasing climate variability this food security is coming more and more under pressure. Farmers recently experimented with pit innovations that would allow storage for more than one season. These innovations were quantified and further improvements were suggested. It was found that in the most abundantly occurring cracking clay soils, wide shallow pits, using thick chaff linings, with wider above ground soil caps, are most suitable for longer term storage.

  6. Underground Pumped Storage Hydroelectricity using Abandoned Works (open pits and deep mines) (United States)

    Pujades, E.; Willems, T.; Bodeux, S.; Orban, P.; Dassargues, A.


    Pumped Storage Hydroelectricity (PSH) is a good alternative to increase the efficiency of power plants, which cannot regulate the amount of electricity generated according to the demand (wind, solar or even nuclear power plants). PSH plants, which consist in two reservoirs located at different heights (upper and lower), can store energy during low demand periods (pumping water from the lower to the upper reservoir) and generate electricity during the high demand peaks (falling water from the upper to the lower reservoir). Given that the two reservoirs must be located at different heights, PSH plants cannot be constructed in flat regions. Nevertheless, in these regions, an alternative could be to use abandoned underground works (open pits or deep mines) as lower reservoirs to construct Underground Pumped Storage Hydroelectricity (UPSH) plants. To select the best place to construct a plant, two considerations must be taken into account regarding the interaction between UPSH plants and groundwater: 1) the alteration of the natural conditions of aquifers and 2), the efficiency of the plant since the electricity generated depends on the hydraulic head inside the underground reservoir. Obviously, a detailed numerical model must be necessary before to select a location. However, a screening methodology to reject the most disadvantageous sites in a short period of time would be useful. Groundwater flow impacts caused by UPSH plants are analyzed numerically and the main variables involved in the groundwater evolution are identified. The most noticeable effect consists in an oscillation of the groundwater. The hydraulic head around which groundwater oscillates, the magnitude of the oscillations and the time to achieve a "dynamic steady state" depend on the boundaries, the parameters of the aquifer and the characteristics of the underground reservoir. A screening methodology is proposed to assess the main impacts caused in aquifers by UPSH plants. Finally, the efficiency

  7. High-temperature acquifer thermal storage and underground heat storage; IEA ECES Annex 12: Hochtemperatur-Erdwaermesonden- und Aquiferwaermespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B.; Knoblich, K. [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften; Koch, M.; Adinolfi, M. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete und Abfallwirtschaft


    Heat storage is essential for the reconciliation of heat supply and demand. The earth has already proved to be an excellent medium for storing large amounts of heat over longer periods of time, for instance during the cold and hot season. The efficiency of the storage is the better the lower storage losses are at high temperature levels. Unfortunately this can not be easily achieved. While thermal underground stores, which are widely used for cold storage, have proved to perform quite well at temperatures between 10 C - 40 C, it has been rather difficult to achieve similar results at higher temperatures up to 150 C as test and demonstration plants of the 1980s proved. This issue has again attracted so much interest that the IEA launched a project on high temperature underground storage in December 1998. (orig.) [Deutsch] Waermespeicherung ist von entscheidender Bedeutung, wenn es darum geht, ein Waermeangebot mit einer Waermenachfrage zeitlich zur Deckung zu bringen. Der Untergrund hat sich schon seit vielen Jahren als ein geeignetes Medium erwiesen, groessere Waermepumpen ueber laengere Zeitraeume wie etwa die kalten und warmen Jahreszeiten zu speichern. Die Effizienz eines solchen Speichers steigt mit der Hoehe des erreichten Temperaturniveaus und mit sinkenden Speicherverlusten, was leider eher gegenlaeufige Erscheinungen sind. Waehrend thermische Untergrundspeicher im Temperaturbereich von 10-40 C inzwischen erfolgreich demonstriert wurden und vor allem zur Kaeltespeicherung auch bereits vielfach eingesetzt werden, haben hoehere Temperaturen bis etwa 150 C in den Versuchs- und Demonstrationsanlagen der 80er Jahre vielfaeltige Probleme bereitet. Im Gefolge eines erneuten Interesses an unterirdischer thermischer Energiespeicherung wurde im Dezember 1997 ein Vorhaben des IEA Energiespeicherprogramms zu Untergrund-Waermespeichern hoeherer Temperatur eingerichtet. (orig.)

  8. Efficiency and impacts of hythane (CH4+H2) underground storage (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Grandia, Fidel


    The foreseen increase share of renewable energy production requires energy storage to mitigate shortage periods of energy supply. Hydrogen is an efficient energy carrier that can be transported and storage. A very promising way to store large amounts of hydrogen is underground geological reservoirs. Hydrogen can be stored, among other options, as a mixture of natural gas and less than 20% of hydrogen (hythane) to avoid damages on the existing infrastructure for gas transport. This technology is known as power-to-gas and is being considered by a number of European countries (Simon et al., 2015). In this study, the feasibility of a deep aquifer to store CH4-H2 mixtures in the Lower Triassic of the Paris Basin is numerically analyzed. The solubility of gas mixture in the groundwater is extremely low (Panfilov, 2015) and, therefore, gas and water are considered immiscible and non-reactive. An immiscible multiphase flow model is developed using the coefficient-form PDE interface of the finite element method code, COMSOL Multiphysics. The modelled domain is a 2D section of 2500 x 290 m resembling the Lower Triassic aquifer of the Paris basin, consisting of 2 layers of sandstone separated by a layer of conglomerates. The domain dips 0.5% from east to west. The top of the aquifer is 500 m-deep and the lateral boundaries are assumed to be open. This case is considered conservative compared to a dome-like geological trap, which could be more favorable to retain higher gas concentration. A number of cycles of gas production and injection were modelled. An automatic shut-down of the pump is implemented in case pressure on the well exceeds an upper or lower threshold. The influence of the position of the well, the uncertain residual gas saturation and the regional flow are studied. The model shows that both gas and aquifer properties have a significant impact on storage. Due to its low viscosity, the mobility of the hythane is quite high and gas expands significantly, reducing

  9. Going underground

    Energy Technology Data Exchange (ETDEWEB)

    Winqvist, T.; Mellgren, K.-E. (eds.)


    Contains over 100 short articles on underground structures and tunneling based largely on Swedish experience. Includes papers on underground workers - attitudes and prejudices, health investigations, the importance of daylight, claustrophobia; excavation, drilling and blasting; hydroelectric power plants; radioactive waste disposal; district heating; oil storage; and coal storage.

  10. Challenges to and proposals for underground gas storage (UGS business in China

    Directory of Open Access Journals (Sweden)

    Gangxiong Zhang


    Full Text Available Underground gas storage (UGS is one of the major storage and peak-shaving means in the world among numerous storage ways via gas fields, small-scale LNG, etc. With the rapid development of natural gas industry in China, the seasonal peak-shaving issues are increasingly prominent, so how to achieve sustainable development of UGS business has become a major problem at present. In view of this, we studied the present status and trend of UGS development abroad and analyzed the following challenges encountered by UGS in China. (1 UGS construction falls behind the world and peak-shaving capacity is insufficient. (2 There is lack of quality gas sources for storage and the complicated geological conditions make the cost of UGS construction high. (3 UGS construction is still at the preliminary stage, so experience is not enough in safety and scientific operation and management. (4 UGS construction, management and operation are not unified as a whole, so its maximum efficiency fails to be exerted. (5 The economic benefit of UGS is difficult to be shown without independent cost accounting. Based on the experience of other countries, some proposals were put forward on UGS development under the actual present situation: to strengthen strategic UGS layout, intensify storage site screening in key areas and steadily promote UGS construction; to establish professional UGS technical and management teams and intensify the research of key technologies; and to set up a complete and rationally-distributed UGS construction, operation and management system.

  11. 3rd Sino-German Conference “Underground Storage of CO2 and Energy”

    CERN Document Server

    Xie, Heping; Were, Patrick


    Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group “Underground Storage of CO2 and Energy”, is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme “Clean Energy Systems in the Subsurface: Production, Storage and Conversion”.   This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coa...

  12. Feasibility study of underground energy storage using high-pressure, high-temperature water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.L.; Frost, G.P.; Gore, L.A.; Hammond, R.P.; Rawson, D.L.; Ridgway, S.L.


    A technical, operational and economic feasibility study on the storage of energy as heated high pressure water in underground cavities that utilize the rock overburden for containment is presented. Handling peak load requirements of electric utility power networks is examined in some detail. The cavity is charged by heating water with surplus steaming capacity during periods of low power requirement. Later this hot water supplies steam to peaking turbines when high load demands must be met. This system can be applied to either new or existing power plants of nuclear or fossil fuel type. The round trip efficiency (into storage and back) is higher than any other system - over 90%. Capital costs are competitive and the environmental impact is quite benign. Detailed installation and design problems are studied and costs are estimated. The continental United States is examined for the most applicable geology. Formations favorable for these large cavities exist in widespread areas.

  13. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production. (United States)

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin


    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  14. Integrated underground gas storage of CO2 and CH4 for renewable energy storage for a test case in China (United States)

    Kühn, Michael; Li, Qi; Nakaten, Natalie, Christine; Kempka, Thomas


    Integration and further development of the energy supply system in China is a major challenge for the years to come. Part of the strategy is the implementation of a low carbon energy system based on carbon dioxide capture and storage (CCS). The innovative idea presented here is based on an extension of the power-to-gas-to-power (PGP) technology by establishing a closed carbon dioxide cycle [1]. Thereto, hydrogen generated from excess renewable energy is transformed into methane for combustion in a combined cycle gas power plant. To comply with the fluctuating energy demand, carbon dioxide produced during methane combustion and required for the methanation process as well as excess methane are temporarily stored in two underground reservoirs located close to each other [2]. Consequently, renewable energy generation units can be operated even if energy demand is below consumption, while stored energy can be fed into the grid as energy demand exceeds production [3]. We studied a show case for Xinjiang in China [4] to determine the energy demand of the entire process chain based on numerical computer simulations for the operation of the CO2 and CH4 storage reservoirs, and to ascertain the pressure regimes present in the storage formations during the injection and production phases of the annual cycle. [1] Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [2] Kühn M., Streibel M., Nakaten N.C., Kempka T. (2014) Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the "Power-to-gas-to-gas-to-power" Technology. Energy Procedia 59, 9-15. doi: 10.1016/j.egypro.2014.10.342 [3] Kühn M., Nakaten N.C., Streibel M., Kempka T. (2014) CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-gas-to-power" Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia 63, 8044-8049. doi: 10.1016/j.egypro.2014

  15. Diversity and abundance of bacteria in an underground oil-storage cavity

    Directory of Open Access Journals (Sweden)

    Kodama Yumiko


    Full Text Available Abstract Background Microorganisms inhabiting subterranean oil fields have recently attracted much attention. Since intact groundwater can easily be obtained from the bottom of underground oil-storage cavities without contamination by surface water, studies on such oil-storage cavities are expected to provide valuable information to understand microbial ecology of subterranean oil fields. Results DNA was extracted from the groundwater obtained from an oil-storage cavity situated at Kuji in Iwate, Japan, and 16S rRNA gene (16S rDNA fragments were amplified by PCR using combinations of universal and Bacteria-specific primers. The sequence analysis of 154 clones produced 31 different bacterial sequence types (a unique clone or group of clones with sequence similarity of > 98. Major sequence types were related to Desulfotomaculum, Acetobacterium, Desulfovibrio, Desulfobacula, Zoogloea and Thiomicrospira denitrificans. The abundance in the groundwater of bacterial populations represented by these major sequence types was assessed by quantitative competitive PCR using specific primers, showing that five rDNA types except for that related to Desulfobacula shared significant proportions (more than 1% of the total bacterial rDNA. Conclusions Bacteria inhabiting the oil-storage cavity were unexpectedly diverse. A phylogenetic affiliation of cloned 16S rDNA sequences suggests that bacteria exhibiting different types of energy metabolism coexist in the cavity.

  16. A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany (United States)

    Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.


    We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is

  17. Geochemistry research planning for the underground storage of high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.


    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  18. An Assessment of Hydrological Safety for the Yeosu Underground Oil Storage Caverns, U-1-1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Geon Young; Koh, Yong Kwon; Bae, Dae Seok; Park, Kyung Woo; Ji, Sung Hoon; Ryu, Ji Hun


    The objectives of this report are as follows: -Assessment of overall hydrological safety for the Yeosu underground oil storage caverns U-1-1 prior to the completion of the construction -Assessment of the efficiency of water curtain in the facility and establishment of the comprehensive countermeasures. This report has following contents: -Examination of the geological properties - geology and fracture distribution -Investigation of hydrological system - groundwater flow system and main water conductive feature - hydrochemical properties -Investigation of the safety of the facility - efficiency of the water curtain system - amount of inflow water to the caverns - suitability of the observation boreholes in the facility -Overall interpretation and assessment -Suggestion of the guideline for the operation problems.

  19. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. [Pacific Northwest Lab., Richland, WA (United States); Zollars, R.L. [Washington State Univ., Pullman, WA (United States)


    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  20. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, K.R.; Mayes, E.L.


    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  1. Advice on Sustainable Use of the Underground for Heat and Cold Storage; Advies Duurzaam Gebruik van de Bodem voor WKO

    Energy Technology Data Exchange (ETDEWEB)

    Oomes, J.


    Insights and ideas are given and discussed with regard to sustainable use of soil and underground for heat and cold storage. Also attention is paid to the marginal conditions for the application of heat and cold storage [Dutch] Inzichten en ideeen worden gegeven en besproken over duurzaam gebruik van de bodem voor warmte- koudeopslag (WKO). Daarnaast worden ook de randvoorwaarden van WKO in kaart gebracht.

  2. Root cause analysis of the fatigue failures of the pulsation dampers of a large underground gas storage (UGS) system

    NARCIS (Netherlands)

    Eijk, A.; Lange, D. de; Maljaars, J.; Tenbrock-Ingenhorst, A.; Gottmer, A.


    Two large identical 6-cylinder Ariel JGB/6 reciprocating compressors each of 7.5 MW, are used for an underground gas storage system (UGS) plant of RWE Gasspeicher GmbH located in Epe, Germany. The system is in operation since 2005. In 2011 several internals parts (baffle plates and baffle choke

  3. Monitoring induced seismicity from underground gas storage: first steps in Italy (United States)

    Mucciarelli, Marco; Priolo, Enrico


    The supply of natural gas and its storage are focal points of the Italian politics of energy production and will have increasing importance in the coming years. About a dozen reservoirs are currently in use and fifteen are in development or awaiting approval. Some of these are found in the vicinity of geological structures that are seismically active. The assessment of seismic hazard (both for natural background and induced seismicity) for a geological gas storage facility has a number of unconventional aspects that must be recognized and traced in a clear, ordered way and using guidelines and rules that leave less room as possible for interpretation by the individual applicant / verification body. Similarly, for control and monitoring there are not clearly defined procedures or standard instrumentation, let alone tools for analysing and processing data. Finally, governmental organizations in charge of permission grants and operative control tend to have appropriate scientific knowledge only in certain areas and not in others (e.g. the seismic one), and the establishment of an independent multidisciplinary inspection body appears desirable. The project StoHaz ( aims to initiate a series of actions to overcome these deficiencies and allow to define procedures and standards for the seismic hazard assessment and control of the activities of natural gas storage in underground reservoirs. OGS will take advantage of the experience gained with the design, installation and maintenance of the seismic network monitoring the Collalto reservoir, at the moment the only example in Italy of a public research institution monitoring independently the activities of a private gas storage company.

  4. Heat storage in underground caverns - measurements and simulations; Speicherung von Waerme in Grubenraeumen - Messung und Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, A.; Krause, H.; Poetke, W. [TU Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Technische Thermodynamik


    Among the different discussed underground concepts for longterm storing of solar or waste heat old waterfilled mines can be an interesting solution. To examine the temperature behaviour of this storage type a testing store is built in a mine belonging to the Freiberg University of Mining and Technology in Saxonia. In a longterm project temperatures are measured inside the water volume and in the adjacent rock. The temperature behaviour depends on the operating conditions. Inside the water volume temperature stratification can be observed. During loading and standstill heat is transported into the rock surrounding. A certain part of this amount of heat can be discharged again. For designing and optimizing this storage type a numerical modell is developed. The modell is validated with experimental data from the testing plant. (orig.) [Deutsch] Unter den verschiedenen, in der Diskussion stehenden Untegrund-Waermespeichern fuer Solarwaerme oder Abwaerme bieten sich auch geflutete Gruben als Waermespeicher an. Zur Untersuchung des Temperaturverhaltens dieses Speichertyps ist im Saechsischen Lehr- und Besucherbergwerk der TU Bergakademie Freiberg ein Versuchsspeicher errichtet worden. In einem Langzeitversuch wird das Temperaturfeld im Wasser und im angrenzenden Gestein aufgezeichnet. Das Temperaturverhalten ist von den Betriebsgroessen abhaengig. Im Grubenwasser stellt sich eine stabile Temperaturschichtung ein. Waehrend der Beladung und der Stillstandszeiten wird Waerme in die Gesteinsumgebung transportiert. Ein Teil dieser Waermemenge kann wider entspeichert werden. Zur Auslegung und Optimierung von Gruben-Waermespeichern ist ein numerisches Modell entwickelt worden. Das Modell ist anhand der Messergebnisse des Versuchsspeichers validiert worden. (orig.)

  5. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex (United States)

    Bengelsdorf, Irv


    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  6. A visual assessment of the concrete vaults which surround underground waste storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.J.; Shurrab, M.S.


    Radioactive waste produced at the Savannah River Site (SRS) is stored in underground tanks. There are four different waste tank designs. For each waste tank design the outermost containment shield between the waste and the soil is a concrete vault surrounding the carbon steel liner(s). Should the primary and/or secondary liner be breached, the concrete vault would slow transport of the waste so that contamination of the soil is minimized. The type 3 waste tanks have a stated design life of 40--60 years. With the uncertainty of the schedule for transfer of the waste to the Defense Waste Processing Facility, it is conceivable that the tanks will be required to function past their design life. The Department of Energy formed a Waste Tank Structural Integrity Panel to investigate the potential for aging and degradation of underground radioactive waste storage tanks employed in the weapons complex. The panel is focusing on how each site in the complex: (1) inspects the waste tanks for degradation, (2) understands the potential degradation mechanisms which may occur at their sites, and (3) mitigates the known potential degradation mechanisms. In addition to the carbon steel liners, the degradation of the concrete vault has also been addressed by the panel. High Level Waste Engineering (HLWE) at SRS has formed a task team to identify key issues that determine and/or effect the condition of the concrete. In June 1993, slides were reviewed which showed the inside of the concrete vault in Type 1, 2, and 4 tanks. The authors subsequently visited the tank farm and assessed the visible portions of the outer concrete vault. Later a team of engineers knowledgeable in concrete degradation performed a walk-down. Photographs showing the concrete condition were taken at this time. This report summarizes the findings of these walk-downs and reinforces previous recommendations.

  7. Assessment of pore pressures and specific storage within sedimentary strata overlying underground mines (United States)

    Timms, W.; David, K.; Barbour, L. S.


    Realistic values of specific storage (Ss) for groundwater systems are important to determine the spatial extent and timing of c pore pressure changes when the groundwater system is stressed. However, numerical groundwater models of underground excavations typically assume constant literature values of Ss. One part of our research program utilised high frequency pore pressure data to evaluate variability and changes in Ss within sedimentary strata overlying a longwall coal mine. Pore pressure data from a vertical series of 6 vibrating wire piezometers (50 to 278 m depth) recording at hourly intervals were compared with barometric pressure data over a period of several years, including data before and during mining. The site was located near the centre of a longwall panel that extracted 3 m of coal at a depth of 330 m. The data was processed to calculate loading efficiency and Ss values by multi-method analyses of barometric and earth tide responses. In situ Ss results varied over one to two orders of magnitude and indicated that Ss changed before and after excavation of underlying coal seams. The vertical leakage of groundwater within the constrained zone ( 10 to 150 m depth) was found to be limited, although some degree of vertical hydraulic connectivity was observed. Depressurization was evident in the fractured zone directly overlying the coal seam, and Ss changes at 250 m depth indicated this confined aquifer may have become unconfined. Our results demonstrate that high frequency pore pressure data can provide realistic Ss values. In situ Ss values were an order of magnitude lower than Ss measured by geomechnical tests of cores, and were significantly different to textbook values set in most local groundwater models. The timing and extent of groundwater level drawdown predicted by models may therefore be underestimated. We have shown, for the first time, that variability of Ss can be significant, and that these changes can provide important insights into how

  8. The role of the underground for massive storage of energy: a preliminary glance of the French case (United States)

    Audigane, Pascal; Gentier, Sylvie; Bader, Anne-Gaelle; Beccaletto, Laurent; Bellenfant, Gael


    The question of storing energy in France has become of primary importance since the launch of a road map from the government which places in pole position this topic among seven major milestones to be challenged in the context of the development of innovative technology in the country. The European objective to reach 20% of renewables in the energy market, from which a large part would come from wind and solar power generation, raises several issues regarding the capacity of the grid to manage the various intermittent energy sources in line with the variability of the public demand and offer. These uncertainties are highly influenced by unpredictable weather and economic fluctuations. To facilitate the large-scale integration of variable renewable electricity sources in grids, massive energy storage is needed. In that case, electric energy storage techniques involving the use of underground are often under consideration as they offer a large storage capacity volume with a adapted potential of confining and the space required for the implantation. Among the panel of massive storage technologies, one can find (i) the Underground Pumped Hydro-Storage (UPHS) which are an adaptation of classical Pumped Hydro Storage system often connected with dam constructions, (ii) the compressed air storage (CAES) and (iii) the hydrogen storage from conversion of electricity into H2 and O2 by electrolysis. UPHS concept is based on using the potential energy between two water reservoirs positioned at different heights. Favorable natural locations like mountainous areas or cliffs are spatially limited given the geography of the territory. This concept could be extended with the integration of one of these reservoirs in an underground cavities (specifically mined or reuse of preexisting mines) to increase opportunities on the national territory. Massive storage based on compression and relaxation of air (CAES) requires high volume and confining pressure around the storage that exists

  9. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply? (United States)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.


    research project, funded by Mercator Research Center Ruhr has been performed to investigate the field of application of coal mines for underground pumped storage plants (UPP). In further research, in co-operation with the Ruhrkohle AG coal mines in the Ruhr Area will be investigated (Niemann, 2011). The coal mine "Prosper-Haniel" is located in the northern part of the Ruhr Area and shafts have a maximum depth of 1,159 m. It will be closed in 2018. In principal two different designs had been investigated (Luick 2011). The first is a closed system in which water circulates isolated from surrounding groundwater in drifts and shafts supported by casings. The second one is an open system, with a varying groundwater table at a defined depth. Problems resulting from this are the stability of the surrounding rock, its porosity and fissurization, composition of mine waters, the necessity of new drifts and shafts or the upgrading of old ones. In addition, the configuration and arrangement of turbines, pumps and ventilation shafts play an important role. The presentation gives an outline towards problems and challenges which have to be solved in order to establish an innovative contribution for future energy storage.

  10. Relics of manual rock disintegration in historical underground spaces and their presentation in mining tourism

    National Research Council Canada - National Science Library

    Pavel Hronček; Pavol Rybár


    ... Štiavnica Mining Museum. We offer examples of relics after the manual disintegration of rocks in the underground, according to the development of the technology of the disintegration and hardness of rocks...

  11. Implementation plan for underground waste storage tank surveillance and stabilization improvements

    Energy Technology Data Exchange (ETDEWEB)

    Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.; Washenfelder, D.J.


    Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate the interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.

  12. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)



    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  13. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike


    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  14. Hydrogen underground storage in siliciclastic reservoirs - intention and topics of the H2STORE project (United States)

    Pudlo, Dieter; Ganzer, Leonhard; Henkel, Steven; Liebscher, Axel; Kühn, Michael; De Lucia, Marco; Panfilov, Michel; Pilz, Peter; Reitenbach, Viktor; Albrecht, Daniel; Würdemann, Hilke; Gaupp, Reinhard


    The transfer of energy supply from nuclear and CO2-emitting power generation to renewable energy production sources is strongly reliant to the potential of storing high capacities of energy in a safe and reliable way in time spans of several months. One conceivable option can be the storage of hydrogen and (related) synthetic natural gas (SNG) production in appropriate underground structures, like salt caverns and pore space reservoirs. Successful storage of hydrogen in the form of town gas in salt caverns has been proven in several demonstration projects and can be considered as state of the art technology. However, salt structures have only limited importance for hydrogen storage due to only small cavern volumes and the limited occurrence of salt deposits suitable for flushing of cavern constructions. Thus, regarding potential high-volume storage sites, siliciclastic deposits like saline aquifers and depleted gas reservoirs are of increasing interest. Motivated by a project call and sponsored by the German government the H2STORE ("Hydrogen to Store") collaborative project will investigate the feasibility and the requirements for pore space storage of hydrogen. Thereby depleted gas reservoirs are a major concern of this study. This type of geological structure is chosen because of their well investigated geological settings and proved sealing capacities, which already enable a present (and future) use as natural (and synthetic) reservoir gas storages. Nonetheless hydrogen and hydrocarbon in porous media exhibit major differences in physico-chemical behaviour, essentially due to the high diffusivity and reactivity of hydrogen. The biotic and abiotic reactions of hydrogen with rocks and fluids will be necessary observed in siliciclastic sediments which consist of numerous inorganic and organic compounds and comprise original formation fluids. These features strongly control petrophysical behaviour (e.g. porosity, permeability) and therefore fluid (hydrogen

  15. Underground seasonal storage of industrial waste heat; Saisonale Speicherung industrieller Abwaerme im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M.; Mueller, J. [Bayerische Landesanstalt fuer Landtechnik, TU Muenchen-Weihenstephan, Freising (Germany)


    The thermal efficiency of subject systems, especially at higher temperatures is influenced by heat and humidity transport underground. Thermal conductivity and specific thermal capacity depend on the humidity content of the soil. A simulation model was developed that describes the coupled heat and humidity transport in the temperature range up to 90 C. This model will be validated in laboratory and field tests and then be used for designing and analysing underground stores. Pilot plants for the storage of industrial waste heat were designed and planned on the basis of this simulation. In both cases these are cogeneration plants whose waste heat was to be used for space heating and as process energy. Both plants have a very high demand of electric energy which is mostly supplied by the cogeneration plant. The waste heat is put into the store during the summer. In the winter heat is supplied by both the store and the cogeneration plant. In both cases the store has a volume of approx. 15,000 cubic metres with 140 and 210 pits located in a depth of 30 and 40 metres. The plants are used to carry out extensive measurements for the validation of simulation models. (orig.) [Deutsch] Die thermische Leistungsfaehigkeit solcher Systeme wird insbesondere im hoeheren Temperaturbereich durch den Waerme- und Feuchtetransport im Untergrund beeinflusst. Sowohl die Waermeleitfaehigkeit als auch die spezifische Waermekapazitaet sind vom Feuchtegehalt des Bodens abhaengig. Es wurde ein Simulationsmodell entwickelt, das den gekoppelten Waerme- und Feuchtetransport im Temperaturbereich bis 90 C beschreibt. Dieses Modell wird an Labor- und Feldexperimenten validiert und dient dann zur Auslegung und Analyse von Erdwaermesonden-Speichern. Basierend auf diesen theoretischen Grundlagenarbeiten wurden Pilotanlagen zur saisonalen Speicherung industrieller Abwaerme ausgelegt und geplant. In beiden Faellen handelt es sich um Kraft/Waermekopplungsanlagen, deren Abwaerme zur Gebaeudeheizung und

  16. Visualization of hydraulic connections using Borehole Array around LPG Underground Storage Cavern (United States)

    Shimo, M.; Mashimo, H.; Maejima, T.; Aoki, K.


    This paper presents a systematic approach to visualize the hydraulic connections within the fractured rock mass around the underground LPG storage caverns using array of water injection boreholes. By taking advantage that water injection boreholes are located so as to cover the storage caverns, a complete sketch of hydraulic conditions around the caverns, such as locations of water conducting fractures, hydraulic conductivity and groundwater pressure can be obtained. Applicability of the proposed techniques have been tested in an on-going construction project operated by JOGMEC, Japan Oil, Gas and Metals National Corporation, at Namikata, Western part of Japan. Three 26m x 30m x 485m caverns, located at 150 - 200 m below the ground surface in a granitic rock, are under construction. By systematically monitoring the pressure responses between the neighboring boreholes during drilling of total 387 boreholes around the two propane caverns, a spatial profile of the hydraulic connections and hydraulic conductivity around the caverns has been successfully obtained. Locations of localized depressurized zones created during an arch excavation have been detected by monitoring pressure in each borehole after stopping water supply to that borehole temporarily. Measurement has been conducted using each one of the 302 boreholes, one at a time. Observation shows that there is a clear correlation between total pressure drop and pressure gradient versus time curve on semi-logarithmic plot, dH/log10t, as expected by the numerical prediction. Regions where dH/log10t is larger than a certain criteria, determined by a numerical simulation for flow around a cavern in a rock with uniform hydraulic conductivity, have been evaluated as a depressurized zone caused by insufficient water supply, possibly due to existence of the high permeable zones. Separate pore pressure measurement around the caverns also supports this interpretation that a low pressure is prevailing near the borehole

  17. Corrective Action Decision Document for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office


    This corrective action decision document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, under the Federal Facility Agreement and Consent Order. Located on the Nevada Test Site (NTS), CAU 135 consists of three Corrective Action Sites (CASs): 25-02-01, Underground Storage Tanks, referred to as the Engine, Maintenance, Assembly, and Disassembly Waste Holdup Tanks and Vault; 25-02-03, Underground Electrical Vault, referred to as the Deluge Valve Pit at the Test Cell A Facility; and 25-02-10, Underground Storage Tank, referred to as the former location of an aboveground storage tank for demineralized water at the Test Cell A Facility. Two of these CASs (25-02-03 and 25-02-10) were originally considered as underground storage tanks, but were found to be misidentified. Further, radio logical surveys conducted by Bechtel Nevada in January 1999 found no radiological contamination detected above background levels for these two sites; therefore, the closure report for CAU 135 will recommend no further action at these two sites. A corrective action investigation for the one remaining CAS (25-02-01) was conducted in June 1999, and analytes detected during this investigation were evaluated against preliminary action levels. It was determined that contaminants of potential concern included polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Two corrective action objectives were identified for this CAS (i.e., prevention and mitigation of human exposure to sediments and surrounding areas), and subsequently two CAAs developed for consideration based on a review of existing data, future use, and current operations at the NTS. These CAAs were: Alternative 1 - No Further Action

  18. Estimation of the proximity of private domestic wells to underground storage tanks: Oklahoma pilot study. (United States)

    Weaver, James W; Murray, Andrew R; Kremer, Fran V


    For protecting drinking water supplies, the locations of areas with reliance on private domestic wells (hereafter referred to as "wells") and their relationship to contaminant sources need to be determined. A key resource in the U.S. was the 1990 Census where the source of domestic drinking water was a survey question. Two methods are developed to update estimates of the areal density of well use using readily accessible data. The first uses well logs reported to the states and the addition of housing units reported to the Census Bureau at the county, census tract and census block group scales. The second uses housing units reported to the Census and an estimated well use fraction. To limit the scope and because of abundant data, Oklahoma was used for a pilot project. The resulting well density estimates were consistent among spatial scales, and were statistically similar. High rates of well use were identified to the north and east of Oklahoma City, primarily in expanding cities located over a productive aquifer. In contrast, low rates of well use were identified in rural areas without public water systems and in Oklahoma's second largest city, Tulsa, each attributable to lack of suitable ground water. High densities of well use may be expected in rural areas without public water systems, expanding cities and suburbs, and legacy areas of well usage. The completeness of reported well logs was tested by counts from neighborhoods with known reliance on wells which showed reporting rates of 20% to 98%. Well densities in these neighborhoods were higher than the larger-scale estimates indicating that locally high densities typically exist within analysis units. A Monte Carlo procedure was used to determine that 27% of underground storage tanks that had at least one well within a typical distance of concern of 300m (1000ft). Published by Elsevier B.V.


    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Hansen, A.


    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations

  20. Report from SG 1.2: use of 3-D seismic data in exploration, production and underground storage

    Energy Technology Data Exchange (ETDEWEB)



    The objective of this study was to investigate the experience gained from using 3D and 4D techniques in exploration, production and underground storage. The use of 3D seismic data is increasing and considerable progress in the application of such data has been achieved in recent years. 3D is now in extensive use in exploration, field and storage development planning and reservoir management. By using 4D (or time-lapse) seismic data from a given producing area, it is also possible to monitor gas movement as a function of time in a gas field or storage. This emerging technique is therefore very useful in reservoir management, in order to obtain increased recovery, higher production, and to reduce the risk of infill wells. These techniques can also be used for monitoring underground gas storage. The study gives recommendations on the use of 3D and 4D seismic in the gas industry. For this purpose, three specific questionnaires were proposed: the first one dedicated to exploration, development and production of gas fields (Production questionnaire), the second one dedicated to gas storages (Storage questionnaire) and the third one dedicated to the servicing companies. The main results are: - The benefit from 3D is clear for both producing and storage operators in improving structural shape, fault pattern and reservoir knowledge. The method usually saves wells and improve gas volume management. - 4D seismic is an emerging technique with high potential benefits for producers. Research in 4D must focus on the integration of seismic methodology and interpretation of results with production measurements in reservoir models. (author)

  1. FY 1999 research and development results. Preparatory study for the underground thermal energy storage system; 1999 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)



    The study is conducted for the underground thermal energy storage system which utilizes heat capacity of the underground, e.g., aquifer, to exchange heat with the underground, and the FY 1999 results are described. For establishment of the concept of the underground heat storage systems, 2 sites are selected for each of Tokyo, Osaka and Sapporo for the study as the geological ground models, for their weather characteristics. Two cases are considered for the site where underground heat exchangers are installed, open space and immediately below a building. The heat-storage system comprises a high-efficiency heat pump, water heat-storage tank and cooling tower. The evaluation results indicate that energy saving rate of 37% or more and CO2 reduction rate of 9.5% or more are achievable in all areas except Sapporo, i.e., Tokyo and Osaka. The economic evaluation results indicate that the simple pay-out period is around 100 years for Tokyo and Osaka, and 80 years for Sapporo. The underground heat storage system is approximately 10% lower in life-cycle cost than the conventional system, 3 versus 3.3 billion yen for the period of 60 years. (NEDO)

  2. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox


    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  3. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE (United States)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.


    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.


    Directory of Open Access Journals (Sweden)

    I. K. Romanovich


    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  5. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    Energy Technology Data Exchange (ETDEWEB)

    Bitz, D.A. [Independent Consultant, Kirkland, WA (United States); Berry, D.L. [Sandia National Labs., Albuquerque, NM (United States); Jardine, L.J. [Lawrence Livermore National Lab., CA (United States)


    Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

  6. Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL


    include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a

  7. Seasonal heat storage in underground caverns. Final report; Saisonale Waermespeicherung in Grubenraeumen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eikmeier, B.; Mohr, M.; Unger, H.


    The solar assisted heat supply of buildings can provide an important contribution in order to achieve the targets of minimization of primary energy consumption and reduction of greenhouse gas emissions. However, the problem of the seasonal divergence between the high solar energy supply in the summer and the high demand in the winter consists; therefore seasonal heat storage is indispensable. Here, a considerable fraction of the investments must be addressed to the central reservoir. An approach towards the reduction of the investment costs for the installation of seasonal storages in the use of cavities, which are already available in mines. In the Ruhr-Area a complex net of subterranean cavities is available. For the cost estimation of solar assisted heat supply with integrated storage in mines, the reference suburban colony 'Essen-Stoppenberg' with 42 double family houses is chosen. The specific storage costs are estimated for different technical options (tunnel- or shaft storage, direct or indirect charging system). In most cases these costs are comparable to other seasonal heat storage projects. With advantageous conditions specific capital expenditures can be achieved, which are lower than those of conventional seasonal storage. However, it must be considered, that the operating costs of pit storages are expected to be higher. (orig.)

  8. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Dalpiaz, E.L. [ICF Kaiser Hanford Co., Richland, WA (United States)


    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  9. Optimal Design of Cogeneration Systems in Industrial Plants Combined with District Heating/Cooling and Underground Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Vincenzo Dovì


    Full Text Available Combined heat and power (CHP systems in both power stations and large plants are becoming one of the most important tools for reducing energy requirements and consequently the overall carbon footprint of fundamental industrial activities. While power stations employ topping cycles where the heat rejected from the cycle is supplied to domestic and industrial consumers, the plants that produce surplus heat can utilise bottoming cycles to generate electrical power. Traditionally the waste heat available at high temperatures was used to generate electrical power, whereas energy at lower temperatures was either released to the environment or used for commercial or domestic heating. However the introduction of new engines, such as the ones using the organic Rankine cycle, capable of employing condensing temperatures very close to the ambient temperature, has made the generation of electrical power at low temperatures also convenient. On the other hand, district heating is becoming more and more significant since it has been extended to include cooling in the warm months and underground storage of thermal energy to cope with variable demand. These developments imply that electric power generation and district heating/cooling may become alternative and not complementary solutions for waste energy of industrial plants. Therefore the overall energy management requires the introduction of an optimisation algorithm to select the best strategy. In this paper we propose an algorithm for the minimisation of a suitable cost function, for any given variable heat demand from commercial and domestic users, with respect to all independent variables, i.e., temperatures and flowrates of warm fluid streams leaving the plants and volume and nature of underground storage. The results of the preliminary process integration analysis based on pinch technology are used in this algorithm to provide bounds on the values of temperatures.

  10. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, I.; Anthony, R.V.


    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  11. Using Geographical Information Systems (GIS) to Identify the Geographic Regions Where People That Use Ground Water are Most Vulnerable to Impacts from Underground Storage (United States)

    Using Geographic Information Systems (GIS), the vulnerability of ground water supplies to contamination from underground storage tanks (USTs) was assessed. The analysis was conducted for the 48 contiguous states, and then again for groups of states corresponding to the EPA Regio...

  12. Field scale geomechanical modeling for prediction of fault stability during underground gas storage operations in a depleted gas field in the Netherlands

    NARCIS (Netherlands)

    Orlic, B.; Wassing, B.B.T.; Geel, C.R.


    A geomechanical modeling study was conducted to investigate stability of major faults during past gas production and future underground gas storage operations in a depleted gas field in the Netherlands. The field experienced induced seismicity during gas production, which was most likely caused by

  13. Modelling of seismic reflection data for underground gas storage in the Pečarovci and Dankovci structures - Mura Depression

    Directory of Open Access Journals (Sweden)

    Andrej Gosar


    Full Text Available Two antiform structures in the Mura Depression were selected as the most promising in Slovenia for the construction of an underground gas storage facility in an aquifer. Seventeen reflection lines with a total length of 157km were recorded, and three boreholes were drilled. Structural models corresponding to two different horizons (the pre-Tertiary basement and the Badenian-Sarmatianboundary were constructed using the Sierra Mimic program. Evaluation of different velocity data (velocity analysis, sonic log, the down-hole method, and laboratory measurements on cores was carried out in order to perform correct timeto-depth conversion and to estabUsh lateral velocity variations. The porous rock in Pečarovci structure is 70m thick layer of dolomite, occurring at a depth of 1900m, whereas layers of marl, several hundred meter thick, represent the impermeable cap-rock. Due to faults, the Dankovci structure, at a depth of 1200m,where the reservoir rocks consist of thin layers of conglomerate and sandstone,was proved to be less reliable. ID synthetic seismograms were used to correlatethe geological and seismic data at the borehole locations, especially at intervals with thin layers. The raytracing method on 2D models (the Sierra Quik packagewas applied to confirm lateral continuity of some horizons and to improve the interpretation of faults which are the critical factor for gas storage.

  14. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions. (United States)


    ... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... contained diesel fuel, these practices shall be followed: (1) Cutting or welding shall not be performed on...

  15. Environmental and Economic Impact of Underground Storage Tanks in the United States and Territories (United States)


    Pemex ), the Mexico City based state oil company, has accepted responsibility for the gasoline leak into the sewer system and offered to provide $32.7...owned and operated by Pemex , which crossed the southeast part of the city and supplied one of the main storage and distribution plants with gasoline

  16. Assessment of the potential of the Mainfranken region, northern Bavaria, for underground storage of geothermal energy; Erkundung des regionalen Potentials fuer die Untergrundspeicherung thermischer Energie in Mainfranken (UTEM)

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, R.; Heinrichs, G.; Udluft, P. [Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Inst. fuer Geologie, Univ. Wuerzburg (Germany); Ebert, H.P.; Fricke, J. [Abt. Waermedaemmung/Waermetransport, Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Wuerzburg (Germany)


    The following paper presents a research project that is planned as a cooperation of the Geological Institute, University of Wuerzburg and the Bavarian Center of Applied Energy Research. In this project the potentials for underground thermal energy storage will be investigated in the region of Mainfranken, Northern Bavaria (Main = the river `Main`, Franken = Franconia). All aspects of underground storage will be studied with respect to the specific geographical and geological situation of the area. The study will provide a detailed map of possible storage sites, from which several case studies and at least one demonstration projects will result. (orig.) [Deutsch] Im vorliegenden Beitrag wird ein Forschungsprojekt vorgestellt, das gemeinsam vom Institut fuer Geologie der Universitaet Wuerzburg und dem Zentrum fuer Angewandte Energieforschung in Bayern geplant wird. Ziel des Projekts ist die Erkundung des Potentials fuer die Untergrundspeicherung thermischer Energie in Mainfranken (Nordbayern). Alle Aspekte der Untergrundspeicherung werden regionalspezifisch betrachtet. Neben der Erstellung differenzierter Karten geeigneter Standorte sind Fallstudien und Demonstrationsprojekte in Planung. (orig.)

  17. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS) (United States)

    Ilse, Jürgen


    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  18. Numerical thermal back-calculation of the Kerava Solar Village underground thermal energy storage


    Oosterbaan, Harm; Janiszewski, Mateusz; Uotinen, Lauri; Siren, Topias; Rinne, Mikael


    With increasing pressure to reduce the fraction of energy coming from fossil fuels, there is an increased need for research into feasible, and sustainable energy sources, such as solar energy. The problem with solar energy is the mismatch between supply and demand, and so the energy needs to be stored. This research paper is a part of the project titled “Tackling the Challenges of a Solar-Community Concept in High Latitudes”, and aims in helping to design a thermal energy storage system for s...

  19. Underground gas storage Uelsen: Findings from planning, building and commissioning. Part 1: Deposit; Untertagegasspeicher Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme. Teil 1: Lagerstaette

    Energy Technology Data Exchange (ETDEWEB)

    Wallbrecht, J.; Beckmann, H.; Reiser, H.; Wilhelm, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)


    The underground gas storage at Uelsen which was built as a H-gas storage in a former variegated sandstone gasfield in Western Lower Saxony close to the town of Nordhorn has added to the gas supply system of the BEB Erdgas and Erdoel GmbH. The underground storage is connected to the Bunde-Rheine transport pipeline BEB-grid gas system by a 27 km pipeline and is a consequent expansion of BEB`s underground storage/transport system. Planning, building and commissioning were handled by BEB. Findings to date are described. [Deutsch] Der Untertagegasspeicher (UGS) Uelsen, der in einem ehemaligen Buntsandstein Gasfeld im westlichen Niedersachsen in der Naehe der Stadt Nordhorn als H-Gasspeicher eingerichtet wurde, hat die BEB Erdgas und Erdoel GmbH eine weitere Staerkung ihres Gasversorgungssystems erreicht. Der UGS Uelsen ist ueber eine 27 km lange Anbindungsleitung mit der zum BEB - Ferngasleitungssystems gehoerenden Bunde-Rheine Transportleitung verbunden und stellt eine konsequente Erweiterung des BEB Untertagegasspeicher-/Transportsystems dar. Planung, Bau und Inbetriebnahme erfolgten durch BEB im Rahmen einer integrierten bereichsuebergreifenden Projektbearbeitung. Die hierbei gewonnenen Erkenntnisse werden im Folgenden fuer den Untertagebereich dargestellt. (orig.)

  20. From clay bricks to deep underground storage; vom lehmziegel bis zum tiefenlager -- anwendung von ton

    Energy Technology Data Exchange (ETDEWEB)



    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted.

  1. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Kim, Hyung-Mok; Ryu, Dong-Woo; Synn, Joong-Ho; Song, Won-Kyong


    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  2. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van


    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite{trademark} that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE`s waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  3. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    Energy Technology Data Exchange (ETDEWEB)

    Nakaten, Natalie Christine


    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  4. Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office


    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 135, Area 25 Underground Storage Tanks (USTs), which is located on the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada.

  5. Future development of peak-shaving rock salt underground gas storage in Russia; Russie - developpement futur de stockages souterrains du gaz naturel pour satisfaire les demandes de pointe

    Energy Technology Data Exchange (ETDEWEB)

    Remizov, V.V.; Parfenov, V.I. [OAO Gazprom (Russian Federation)


    In addition to other critical factors, sustained operation of the Russian fuel and energy sector largely depends on secure and uniform gas shipments across the country's transmission grid. Underground storage facilities built in rock salt have been increasingly prioritized world-wide, and this is a sustainable trend now. Operated in alternating mode, these facilities offer significant gas off-take capacity and are believed to be most suitable to ensure gas pipeline emergency needs and peak-shaving capability to meet consumption variations. Given the dynamics of natural gas seasonal and peak demand, a concept for rock-salt underground storage expansion through 2015 and beyond has been developed in Russia. (author)

  6. Design issues for compressed air energy storage in sealed underground cavities

    Directory of Open Access Journals (Sweden)

    P. Perazzelli


    Full Text Available Compressed air energy storage (CAES systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p = 10–30 MPa. A lined rock cavern (LRC in the form of a tunnel or shaft can be used within this pressure range. The rock mass surrounding the opening resists the internal pressure and the lining ensures gas tightness. The present paper investigates the key aspects of technical feasibility of shallow LRC tunnels or shafts under a wide range of geotechnical conditions. Results show that the safety with respect to uplift failure of the rock mass is a necessary but not a sufficient condition for assessing feasibility. The deformation of the rock mass should also be kept sufficiently small to preserve the integrity of the lining and, especially, its tightness. If the rock is not sufficiently stiff, buckling or fatigue failure of the steel lining becomes more decisive when evaluating the feasible operating air pressure. The design of the concrete plug that seals the compressed air stored in the container is another demanding task. Numerical analyses indicate that in most cases, the stability of the rock mass under the plug loading is not a decisive factor for plug design.

  7. Influence of bio-methane and hydrogen on the microbiology of underground gas storage. Literature study; Einfluss von Biogas und Wasserstoff auf die Mikrobiologie in Untertagegasspeichern. Literaturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M.; Ballerstedt, H. [MicroPro GmbH, Gommern (Germany)


    The given literature review addresses possible impacts and risks of microbiological processes in underground storage facilities, with regard to the planned partial feed-in of hydrogen and bio-methane. The multiple, possible microbial metabolic pathways are presented, practical aspects of ecological parameters of reservoir microbiology, interactions with the rock matrix and formation waters, contamination risks and possible technical consequences for storage management are discussed. Although an application transfer of experiences gained from pure hydrogen or town gas storage has certain limitations, microbiological risks associated with the intended partial feed-in of hydrogen and bio-methane into gas system can be estimated to a certain extent. Since hydrogen is an energy source for many anaerobic metabolic processes, a substantial risk potential for underground gas storages, especially porous reservoirs exists. Many underground storages in Germany provide all necessary conditions for a rapid and complete microbial degradation process of the injected hydrogen con-tent. Therefore, an uncritical concentration limit for hydrogen proportion cannot be specified. Rapid hydrogen consumption by methanogenic and sulfate-reducing prokaryotes can cause consider-able technical and economic consequences, such as formation of sulfide (H{sub 2}S), microbial induced corrosion (MIC) or reduction of formation permeability. The extent of possible negative effects and whether specific low-risk reservoirs exist, are currently subject to speculation. A feed-in of bio-methane is considered less problematic, if there is a way to eliminate the risk of emission of microorganisms. In view of the numerous identified risks, it seems worthwhile to consider alternatives to the direct feed-in of hydrogen into the natural gas network, such as the possibility of pure hydrogen storage in selected caverns or a prior.

  8. Fiscal 2000 report on result of R and D of underground storage technology for carbon dioxide; 2000 nendo nisanka tanso chichu choryu gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    This paper presents the fiscal 2000 results of R and D of underground storage technology for carbon dioxide. As basic experiments, a measurement apparatus was manufactured for simulating the pressure and temperature conditions in aquifers to measure the rate at which CO{sub 2} is dissolved in water and the reactivity between CO{sub 2} and rocks, with the basic performance verified. Methods were investigated and classified that monitor environmental impact and safety. For the purpose of anticipating the long-term behaviors of CO{sub 2} sequestered underground, a simulator was developed, extracting, from investigation of the literature, natural phenomena required for the anticipation. As the system studies, examination was conducted for analysis of the energy balance of the underground storage technology, rational design (safety and economy) of an entire system ranging from source to storage point, investigation from social and economic perspectives, and estimation of the effect of suppressing global warming. In the injection experiment, Minami-Nagaoka natural gas field was selected as a prospective experiment site from the characteristics of the cap rock and aquifer. One injection well was drilled to a depth of 1,230 m, with investigations performed such as physical well-logging and core sampling. Existing data were utilized in the simulation study of CO{sub 2} behavior underground during the injection period. The information of the basic geophysical survey/exploratory well by the Japan National Oil Corporation was collected and compiled, with the preliminary geological study undertaken in the areas described. (NEDO)

  9. Historic moment as SESAME begins storage ring installation

    CERN Multimedia



    The first of the 16 cells of SESAME (link is external)’s storage ring was installed recently in the shielding tunnel in the Centre’s experimental hall in Allan, Jordan. SESAME will be the Middle East’s first synchrotron light source. The installation was led by SESAME’s Technical Director, Erhard Huttel, with help from members of CERN forming part of the CESSAMag (CERN-EC Support for SESAME Magnets) team as well as scientists and technicians from the SESAME region. Each cell consists of magnets (dipole, quadrupoles and sextupoles) and the vacuum chamber, supported by a girder. After many years in the making, commissioning of SESAME is scheduled to begin in 2016, serving a growing community of some 300 scientists from the region. The initial research programme will cover topics as diverse as the search for new cancer drugs to the exploration of the regions shared cultural heritage. SESAME is also a pioneer in promoting international cooperation in the region. The laboratory is expected

  10. Underground gas storage Uelsen: Findings from planning, building and commissioning the surface buildings and structures; Untertagegasspeicher (UGS) Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme der obertaegigen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Focke, H.; Brueggmann, R.; Mende, F.; Steinkraus, D.; Wauer, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)


    The article describes the concepts of the plants and equipment and the specific features of the underground storage at Uelsen. The underground storage will be purpose-built as an H-gas storage in a nearly depleted sandstone deposit. At a nominal deliverability of 250.000 cubic m/h (Vn) the storage at Uelsen has more potential for expansion. This potential was taken into account by designing appropriate pressure stages, capacities, performance characteristics and space. (orig.). [Deutsch] Die nachfolgende Veroeffentlichung stellt das anlagentechnische Grundkonzept und die spezifischen Besonderheiten des UGS Uelsen dar. Der im suedwestlichen Niedersachsen als H-Gasspeicher in einer nahezu ausgefoerderten Buntsandsteinlagerstaette eingerichtete UGS Uelsen wird in mehreren Ausbaustufen bedarfsgerecht fertiggestellt. Bei einer Nennentnahmekapazitaet von 450.000 m{sup 3}/h (Vn) und einer Nenninjektionsleistung von 250.000 m{sup 3}/h (Vn) weist der UGS Uelsen noch weiteres Potential fuer Erweiterungen auf. Dieses Ausbaupotential wurde bei der Planung und dem Bau der bestehenden Anlagen durch Festlegung entsprechender Druckstufen, Kapazitaeten, Leistungsgroessen und Platzanordnungen beruecksichtigt. (orig.)

  11. Underground thermal energy storage

    CERN Document Server

    Lee, Kun Sang


    Summarizing several decades of development in UTES-strategically vital in combating global warming-this book, which includes current statistics and real-world applications, forms an excellent introduction to this widely used method of energy conservation.

  12. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon (United States)

    Snyder, Daniel T.


    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and


    Energy Technology Data Exchange (ETDEWEB)



    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as


    Energy Technology Data Exchange (ETDEWEB)



    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  15. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.


    As part of the Underground Storage Tank Program at the Department of Energy`s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  16. Work plan and health and safety plan for Building 3019B underground storage tank at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Brown, K.S.; Landguth, D.C.


    As part of the Underground Storage Tank Program at the Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, this Health and Safety Plan has been developed for removal of the 110-gal leaded fuel underground storage tank (UST) located in the Building 3019B area at ORNL This Health and Safety Plan was developed by the Measurement Applications and Development Group of the Health and Safety Research Division at ORNL The major components of the plan follow: (1) A project description that gives the scope and objectives of the 110-gal tank removal project and assigns responsibilities, in addition to providing emergency information for situations occurring during field operations; (2) a health and safety plan in Sect. 15 for the Building 3019B UST activities, which describes general site hazards and particular hazards associated with specific tasks, personnel protection requirements and mandatory safety procedures; and (3) discussion of the proper form completion and reporting requirements during removal of the UST. This document addresses Occupational Safety and Health Administration (OSHA) requirements in 29 CFR 1910.120 with respect to all aspects of health and safety involved in a UST removal. In addition, the plan follows the Environmental Protection Agency (EPA) QAMS 005/80 (1980) format with the inclusion of the health and safety section (Sect. 15).

  17. Impact of an historic underground gas well blowout on the current methane chemistry in a shallow groundwater system. (United States)

    Schout, Gilian; Hartog, Niels; Hassanizadeh, S Majid; Griffioen, Jasper


    Blowouts present a small but genuine risk when drilling into the deep subsurface and can have an immediate and significant impact on the surrounding environment. Nevertheless, studies that document their long-term impact are scarce. In 1965, a catastrophic underground blowout occurred during the drilling of a gas well in The Netherlands, which led to the uncontrolled release of large amounts of natural gas from the reservoir to the surface. In this study, the remaining impact on methane chemistry in the overlying aquifers was investigated. Methane concentrations higher than 10 mg/L ( n = 12) were all found to have δ 13 C-CH 4 values larger than -30‰, typical of a thermogenic origin. Both δ 13 C-CH 4 and δD-CH 4 correspond to the isotopic composition of the gas reservoir. Based on analysis of local groundwater flow conditions, this methane is not a remnant but most likely the result of ongoing leakage from the reservoir as a result of the blowout. Progressive enrichment of both δ 13 C-CH 4 and δD-CH 4 is observed with increasing distance and decreasing methane concentrations. The calculated isotopic fractionation factors of ε C = 3 and ε D = 54 suggest anaerobic methane oxidation is partly responsible for the observed decrease in concentrations. Elevated dissolved iron and manganese concentrations at the fringe of the methane plume show that oxidation is primarily mediated by the reduction of iron and manganese oxides. Combined, the data reveal the long-term impact that underground gas well blowouts may have on groundwater chemistry, as well as the important role of anaerobic oxidation in controlling the fate of dissolved methane. Copyright © 2018 the Author(s). Published by PNAS.

  18. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas


    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  19. Natural resources and geothermal energy in the Netherlands. Annual report 2012. A review of exploration and production activities and underground storage; Delfstoffen en Aardwarmte in Nederland. Jaarverslag 2012. Een overzicht van opsporings- en winningsactiviteiten en van ondergrondse opslag

    Energy Technology Data Exchange (ETDEWEB)



    The annual review reports on the activities and results of exploration and production of hydrocarbons, rock salt and geothermal energy in the Netherlands. Moreover the underground storage of various substances (e.g. natural gas, nitrogen, CO2 and brackish water) is included as well. In this way all the exploration, production and storage activities in the Netherlands and the Netherlands' part of the Continental shelf, related to the realm of the Mining Act, are combined in this report. The first section of the report deals with developments during the year 2012. The section shows the developments in the exploration, production and underground storage of hydrocarbons. It concerns changes in natural gas and oil resource estimates during 2012 and the way these changes affected the situation at 1 January 2013. This section also presents a prognosis for the gas production for the next 25 years. This year the remaining resources of natural gas and oil are reported in accordance with the Petroleum Resource Management System. This system should lead to a uniform classification of all reported resources. Subsequently, a number of tables summarise developments during 2012, with respect to licences and exploration efforts (seismic surveys and wells drilled). This section ends with a summary of the volumes of natural gas, condensate and oil that were produced in 2012. The subsequent chapters report on the exploration for and production of coal, rock salt and geothermal energy and on the underground storage of substances. The second section comprises a large number of annexes that report on the current situation as well as on historical developments during the past decades. Subsequently an overview of the situation as at 1 January 2013 is presented in the final part of the review [Dutch] Het Jaarverslag rapporteert over de activiteiten en resultaten van de opsporing en winning van koolwaterstoffen, steenzout en aardwarmte in Nederland. Daarnaast komt de ondergrondse opslag

  20. Recycling of underground storage tanks: a way-out to the risks; Reciclagem de tanques de combustiveis: solucoes para os riscos envolvidos

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Cristiano J.P.; Santos, Joao David [Companhia Brasileira de Petroleo Ipiranga, Porto Alegre, RS (Brazil)


    In petrol stations, the removal of an underground storage tank happens when it becomes unnecessary or inappropriate. Among the several reasons which motivate this removal, we can mention the environmental license process. According to the Resolution CONAMA 273/00, all the petrol stations are subjected to the previous, installation and operation licenses (including the ones in operation). This will cause the substitution of a large number of tanks all over Brazil along the following years. However, so that the license process can be successful, it is necessary that the environmental impacts caused by its implementation are properly managed, avoiding safety problems and providing that there won't be any damage to the environment. This work shows alternatives for the recycling of the tank, the destination of residue and the maintenance of safety all over the process. (author)

  1. The underground heat storage for solar-assisted district heating in Neckarsulm. First measuring results; Der Erdsonden-Waermespeicher fuer die solarunterstuetzte Nahwaermeversorgung in Neckarsulm. Erste Messergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Seiwald, H.; Hahne, E. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik


    A solar-assisted district heating system with seasonal underground heat storage is currently under construction in Neckarsulm (Baden-Wurttemberg). In the new residential area approximately 1,300 flats are going to be built during the next years. The overall energy demand (hot water and space heating) is supposed to be covered by 50% with solar energy. During the first phase the project will be subsidised in the frame of the BMBF programme `Solarthermie 2000, Teilprogramm III`. A solar plant consisting of 2,700 square metres of collectors, a buffer tank (100 cubic metre) and an underground heat storage with a volume of approx. 20,000 cubic metres will be constructed by the end of 1998. It will be the first plant in Germany where thermal energy generated of solar energy is stored at high temperatures (up to 80 C) directly in the earth and utilised without a heat pump. (orig.) [Deutsch] In Neckarsulm (Baden-Wuerttemberg) befindet sich derzeit eine solar unterstuetzte Nahwaermeversorgung mit saisonalem Endsonden-Waermespeicher im Aufbau. Im Neubaugebiet Amorbach werden in den naechsten Jahren rund 1300 Wohneinheiten entstehen, deren Gesamtwaermebedarf (Warmwasser und Raumheizung) zu rund 50% mit Sonnenenergie gedeckt werden soll. In der ersten Phase wird das Projekt im Rahmen des BMBF-Programms `Solarthermie 2000, Teilprogramm III` gefoerdert. Bis Ende 1998 wird eine Solaranlage bestehend aus 2.700 m{sup 2} Kollektoren, einem Pufferspeicher (100 m{sup 3}) und einem Endsonden-Waermespeicher mit einem Volumen von ca. 20.000 m{sup 3} erstellt. Damit wird in Deutschland erstmalig eine Anlage realisiert, bei der solar erzeugte Waerme auf hohem Temperaturniveau (bis zu 80 C) direkt im Erdreich gespeichert und ohne Waermepumpe genutzt werden soll. (orig.)

  2. Evaluation of the Coupling of a Full-Dimensional Multiphase Model with a Vertical Equilibrium Model for the Simulation of Underground Gas Storage (United States)

    Becker, B.; Helmig, R.; Flemisch, B.; Guo, B.; Celia, M. A.


    Modeling underground gas storage requires simulations on a large domain over the whole time of plant operation and beyond, including local features such as fault zones and a representation of the transient saline front. The boundary conditions and resulting pressure reversal are affected by external fluctuations in energy demand and supply (e.g. power to gas) over a wide range of time scales. In addition, often a large number of simulation runs need to be conducted to quantify parameter uncertainty (e.g. Monte Carlo simulation). Within acceptable computational time this cannot be achieved by full three-dimensional multiphase multicomponent models due to limited computational resources. In contrast to that, less computational resources are required by numerous simplified mathematical models. One class of these models is based on the assumption of vertical equilibrium. However, this assumption may be invalid in the area around the well during injection and extraction of gas and at the tip of the plume and in general only holds after a certain timescale in the rest of the domain. In addition, simplified models do not provide the accuracy desired for some parts of interest in the domain, like fault zones, the displacement front or geological heterogeneity especially around the injection zone. The individual benefits of simplified models such as a vertically integrated model and more complex and thus more accurate models such as a full-dimensional multiphase model are combined by coupling both model types in one domain. The boundary between the models is adapted during the simulation to capture transient processes. Stability, applicability and efficiency of the coupled model for different injection scenarios and domain features will be analyzed and discussed. Physically/mathematically motivated coupling criteria to govern the movement of the boundaries between the models will be presented and compared. It will be shown how the coupled model maintains a high degree of

  3. Evaluating Fuel Leak and Aging Infrastructure at Red Hill, Hawaii, the Largest Underground Fuel Storage Facility in the United States (United States)

    Learn about how EPA Region 9, Hawaii’s Department of Health, U.S. Navy, and Defense Logistics Agency are working tprotect human health and the environment at the Red Hill Bulk Fuel Storage Facility in Hawaii.

  4. GIS Analysis of Available Data to Identify regions in the U.S. Where Shallow Ground Water Supplies are Particularly Vulnerable to Contamination by Releases to Biofuels from Underground Storage Tanks (United States)

    GIS analysis of available data to identify regions in the U.S. where shallow ground water supplies are particularly vulnerable to contamination by releases of biofuels from underground storage tanks. In this slide presentation, GIS was used to perform a simple numerical and ...

  5. Groundwater and surface-water interaction and potential for underground water storage in the Buena Vista-Salida Basin, Chaffee County, Colorado, 2011 (United States)

    Watts, Kenneth R.; Ivahnenko, Tamara; Stogner, Sr., Robert W.; Bruce, James F.


    By 2030, the population of the Arkansas Headwaters Region, which includes all of Chaffee and Lake Counties and parts of Custer, Fremont, and Park Counties, Colorado, is forecast to increase about 73 percent. As the region’s population increases, it is anticipated that groundwater will be used to meet much of the increased demand. In September 2009, the U.S. Geological Survey, in cooperation with the Upper Arkansas Water Conservancy District and with support from the Colorado Water Conservation Board; Chaffee, Custer, and Fremont Counties; Buena Vista, Cañon City, Poncha Springs, and Salida; and Round Mountain Water and Sanitation District, began a 3-year study of groundwater and surface-water conditions in the Buena Vista-Salida Basin. This report presents results from the study of the Buena Vista-Salida Basin including synoptic gain-loss measurements and water budgets of Cottonwood, Chalk, and Browns Creeks, changes in groundwater storage, estimates of specific yield, transmissivity and hydraulic conductivity from aquifer tests and slug tests, an evaluation of areas with potential for underground water storage, and estimates of stream-accretion response-time factors for hypothetical recharge and selected streams in the basin. The four synoptic measurements of flow of Cottonwood, Chalk, and Browns Creeks, suggest quantifiable groundwater gains and losses in selected segments in all three perennial streams. The synoptic measurements of flow of Cottonwood and Browns Creeks suggest a seasonal variability, where positive later-irrigation season values in these creeks suggest groundwater discharge, possibly as infiltrated irrigation water. The overall sum of gains and losses on Chalk Creek does not indicate a seasonal variability but indicates a gaining stream in April and August/September. Gains and losses in the measured upper segments of Chalk Creek likely are affected by the Chalk Cliffs Rearing Unit (fish hatchery). Monthly water budgets were estimated for

  6. Report of working committee 1 ''exploration, production, treatment and underground storage of natural gas''; Rapport du comite de travail 1 ''exploration, production, traitement et stockage souterrain du gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Rekdal, Ottar


    This report describes the activities of Working Committee 1 during the triennium 1997 - 2000. The first part of the report gives an overview of the current situation world-wide within the basic activities of the committee, i.e. exploration, production, treatment and underground storage of natural gas. In the second part of the report analyses of three prioritized topics important to the industry are described: - Improving the performance of existing gas storages; - Use of 3-D seismic data in exploration, production and underground storage. - Development of small-scale offshore gas fields. The report will be presented during the WOC 1 sessions at the World Gas Conference 2000, together with papers selected by the committee. Other relevant papers will be presented during the poster session. Furthermore, the committee will organize a round table session addressing reductions of greenhouse gas emissions along the gas chain. Representatives from industry, environmental organisations and politicians will take part in this round table discussion. (author)

  7. Numerical study on criteria for design and operation of water curtain system in underground oil storage cavern using site descriptive fracture networks (United States)

    Moon, Jiwon; Yeo, In Wook


    Underground unlined caverns have been constructed in fractured rocks to stockpile oil and petroleum products, where they are hydraulically contained by natural groundwater pressure. However, for the case that natural groundwater pressure is not maintained at the required level, water curtain boreholes, through which water is injected, are often constructed above the cavern as engineering barrier to secure water pressure enough to overwhelm the operational pressure of the cavern. For secure containment of oil and petroleum products inside the cavern, it is essential to keep water pressure around the cavern higher than operational pressure of the cavern using either natural groundwater pressure or engineering barrier. In the Republic of Korea, a number of underground stockpile bases are being operated by Korea National Oil Corporation (KNOC) and private companies, most of which have water curtain system. The criterion that KNOC adopts for water curtain system design and operation such as the vertical distance from the cavern and operational injection rate is based on the Åberg hypothesis that the vertical hydraulic gradient should be larger than one. The criterion has been used for maintaining oil storage cavern without its thorough review. In this study, systematic numerical works have been done for reviewing the Åberg criterion. As groundwater predominantly takes places through fractures in underground caverns, discrete fracture modeling approach is essential for this study. Fracture data, obtained from boreholes drilled at the stage of site investigation at the Yeosu stockpile base in Korea, were statistically analyzed in terms of orientation and intensity, which were used to generate the site descriptive three dimensional fracture networks. Then, groundwater flow modeling has been carried out for the fracture networks. Constant head boundaries were applied along the circumference of the cavern and water curtain boreholes. Main flow channel and hydraulic

  8. The swelling of clays and its effects on underground storage works; Le Gonflement des argiles et ses effets sur les ouvrages souterrains de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Gaombalet, J


    The aim of this work is to study the swelling of clays and more generally the clayey media in relation to storage. Different types of clays, natural or reworked, have been studied in a rheological point of view, with the aim to result in behavior laws allowing to reproduce some identified phenomena. The first part of this work is a presentation of the concept of geological underground storage. The second part deals with clays. They are studied at a microscopic level and their macroscopic behavior are presented too. In the third part, the equations of the couplings: mechanics/transport in the porous media in general and applied to clays are formulated. Three types of clays have particularly been studied: a stiff clay, a plastic clay and a reworked clay. The following part deals with the swelling of clays. The analysis carried out through a bibliographical study has led us to propose a behavior law for the swelling-retirement. This part concerns essentially the mechanics. The behavior model, which integrates the swelling, involves the concentration of the ions present in solution in the interstitial water. Concerning the transport, of water or ions, the research of coherent models have led us to revise some models described in the second part and concerning the transport of solutions in porous media. The last part concerns the computerized simulation. It begins by a brief description of the computer code. We show how the equations described in the work are dealt with in the computer code. At last, some storage applications (computerized simulation) are given. (O.M.)

  9. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Directory of Open Access Journals (Sweden)

    Sergio E Morales

    Full Text Available Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2 emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA and activity (mRNA of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface CO2 using FACE (Free-Air CO2 Enrichment systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  10. SOC storage in Swiss forest soils - driven by climate or historical land-use? (United States)

    Gosheva, Sia; Walthert, Lorenz; Niklaus, Pascal; Zimmermann, Stephan; Hagedorn, Frank


    Soils store the most carbon of all terrestrial ecosystems, with forest soils being particularly carbon-rich (Schmidt et al. 2011; Hagedorn et al. 2010; Jobaggy & Jackson 2000). The C balance of soils might be altered by land-use changes such as in Switzerland, where the forest cover has increased by approximately 22% in the last century (Ginzler et al. 2011). The objectives of this study were 1) to determine whether historical forest cover change has an impact on soil organic carbon (SOC) storage in Swiss forests, and 2) to estimate the influence of climate on C-stocks in the organic layer and the mineral soil. In our study, we reconstructed forest cover changes for the last 150 years for the coordinates of 1000 soil profiles from the soil database of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). We evaluated historical and modern topographic maps using ArcGIS, classifying current forest sites into permanently (≥150y) forested and newly forested sites (influence of the estimated forest ages of the sites and of potentially additional drivers such as topography, climate, and soil properties on SOC stocks. Contrary to our expectations, our results indicate slightly higher SOC stocks in younger forest sites compared to permanently forested ones. This result could be observed in both organic layer (28,65 vs. 22,23 t C ha-1) and mineral soil (131,38 vs. 113,68 t C ha-1). We attribute the slightly smaller SOC stocks in the younger forests to their inherently higher SOC-stocks, as associated with favorable land previously used for grassland. Moreover, we observed higher SOC stocks under coniferous than under deciduous forest - however, this was only evident in the organic layer, but not in the mineral soil. Soil carbon increased significantly with decreasing mean annual temperature (MAT) and increasing precipitation (MAP), in particular in the organic layer. In addition to climate, we tested a number of other controlling factors such as

  11. An Investigation of Final Gas Tightness after Supplementation of MCT Water during the Yeosu Underground Oil Storage Caverns-I

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Geon Young; Koh, Young Kwon; Bae, Dae Seok; Park, Kyung Woo; Ji, Sung Hoon; Ryu, Ji Hun


    This report has following contents: {center_dot}Estimation of vertical hydrological gradient and the leakage in the case of EL. 10 m of injection water pressure and EL. 0 m of MCT supplement water pressure {center_dot}Undertaking the groundwater flow modeling of Case 1 and Case 2, which are based on the results of MCT supplement test The results of this project have following contents: {center_dot}Case 1 : EL. 10 m of injection water head and , EL. -5 m of MCT supplement water head {center_dot}Case 2 : the same condition as case 1 except EL. 0 m of MCT supplement water head {center_dot}Calculation of water head distribution, vertical hydro-gradient and amount of leakage - (Case 1-1 and Case 2-1) atmospheric pressure of storage cavern - (Case 1-2 and Case 2-2) 2.0 kg/cm2.Abs of storage cavern - (Case 1-3 and Case 2-3) 0.5 kg/cm2.Abs of storage cavern {center_dot}Groundwater head change is not sensitive - Distribution of vertical hydro-gradient - Case 1-1 and Case 2-1: 1.5 {approx} 2.8 - Case 1-2 and Case 2-2: 1.4 {approx} 2.6 - Case 1-3 and Case 2-3: 1.7 {approx} 3.0 {center_dot}Estimated water leakage during the operation - Case 1-1 and Case 2-1: 932 {approx} 943 m3/d - Case 1-2 and Case 2-2: 812 {approx} 819 m3/d - Case 1-3 and Case 2-3: 1,022 {approx}1,030 m3/d {center_dot}It is estimated that the gas tightness can be secured as 1.4 {approx} 2.6 range of vertical hydro-gradient and the expected amount of leakage may be 850 {approx} 950 m3/d (average)

  12. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study. (United States)

    Juez-Larre, Joaquim; Remmelts, Gijs; Breunese, Jaap; Van Gessel, Serge; Leeuwenburgh, Olwijn


    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all available onshore natural gas reservoirs. The Netherlands is one of the largest natural gas producers in Western Europe. The current decline of its national production and looming production restrictions on its largest field of Groningen -owing to its induced seismicity- have recently made necessary to upgrade the two largest UGS of Norg and Grijpskerk. The joined working volume of these two UGS is expected to replace the swing capacity of the Groningen field to continue guaranteeing the security of supply of low calorific natural gas. The question is whether the current UGS configuration will provide the expected working storage capacity unrestricted by issues on reservoir performances and/or induced seismicity. This matter will be of paramount importance in the near future when production restrictions and/or the advance state of depletion of the Groningen field will turn the Netherlands into a net importer of high calorific natural gas. By then, the question will be whether the current UGS will still be economically attractive to continue operating, or if additional/alternative types of UGS will be needed?. Hence the characterization and ranking of the best potential reservoirs available today is of paramount importance for future UGS developments. We built an in-house automated module based on the application of the traditional inflow performance relationship analysis to screen the performances of 156 natural gas reservoirs in onshore Netherlands. Results enable identifying the 72 best candidates with an ultimate total working volume capacity of 122±30 billion Sm3. A detailed sensitivity analysis shows the impact of variations in the reservoir properties or wellbore/tubing configurations on withdrawal performances and storage capacity. We validate our predictions by comparing them to

  13. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    Energy Technology Data Exchange (ETDEWEB)



    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  14. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Pistner, C.


    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  15. Batch test equilibration studies examining the removal of Cs, Sr, and Tc from supernatants from ORNL underground storage tanks by selected ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.; Egan, B.Z.; Anderson, K.K.; Chase, C.W.; Bell, J.T.


    Bench-scale batch equilibration tests have been conducted with supernatants from two underground tanks at the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to determine the effectiveness of selected ion exchangers in removing cesium, strontium, and technetium. Seven sorbents were evaluated for cesium removal, nine for strontium removal, and four for technetium removal. The results indicate that granular potassium cobalt hexacyanoferrate was the most effective of the exchangers evaluated for removing cesium from the supernatants. The powdered forms of sodium titanate (NaTiO) and cystalline silicotitanate (CST) were superior in removing the strontium; however, for the sorbents of suitable particle size for column use, titanium monohydrogen phosphate (TiHP {phi}), sodium titanate/polyacrylonitrile (NaTiO-PAN), and titanium monohydrogen phosphate/polyacrylonitrile (TiP-PAN) gave the best results and were about equally effective. Reillex{trademark} 402 was the most effective exchanger in removing the technetium; however, it was only slightly more satisfactory than Reillex{trademark} HPQ.


    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.


    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  17. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu


    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up–down–down–up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.


    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.


    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  19. FY 2000 report on the results of the advanced R and D for the UTES (underground thermal energy storage) system; 2000 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    In this study, study was made of the commercialization of the UTES (underground thermal energy storage) system using the underground heat source heat pump system technology as the base, considering that this is a technology suitable for the urban area where the heat demand intensively increases and a lot of exhaust heat and usable heat exist. By the realization of the UTES system technology, it is expected that the system promotes Japan's utilization of the unused energy and contributes to the construction of the CO2 emission control type society for Japan's energy policy and global warming prevention and secondarily to leveling of power loads and elimination of the heat island phenomenon in large cities. As to the UTES system which is aimed at being used for space heating and cooling and hot water supply in buildings, the following two were studied: the indirect system, BTES (borehole thermal energy storage) system, in which heat is collected/radiated from the ground by the heat exchanger installed underground; the direct system, ATES (aquifer thermal energy storage) system, in which the groundwater stored in aquifer is directly pumped up and used. The study was made in the items written below: 1) establishment of an system image of the UTES system; 2) evaluation study of effects of the introduction, practical applicability, etc. 3) extraction of the subjects for development. As a result, system images of the indirect/direct systems were obtained. (NEDO)

  20. Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.


    The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

  1. Constraints on temporal velocity variations associated with an underground gas storage in the Gulf of Valencia using earthquake and seismic ambient noise data (United States)

    Ugalde, Arantza; Gaite, Beatriz; Villaseñor, Antonio


    During September 2013, the injection of the base gas in a depleted oil reservoir used as an underground natural gas storage (CASTOR) caused a sudden seismic activity increase in the eastern coast of Spain. As a result, a compact cluster of more than 550 earthquakes with magnitudes mbLg > 0.7 were located in the shallow offshore area of the Gulf of Valencia during two months. The strongest event, having a magnitude of Mw=4.2, was followed by two Mw=4.1 events the day after and took place once the gas injection activities had finished. Using the seismic data recorded by permanent stations at more than 25 km from the injection well, we applied coda wave interferometry to monitor changes in seismic velocity structure between similar earthquakes. Then we solved for a continuous function of velocity changes with time by combining observations from all the closely located earthquake sources. The rate of repeating events allowed measurements of relative velocity variations for about 30 days on a daily scale. To extend the analysis in time, we also processed the continuous data using the autocorrelation of band-pass filtered ambient seismic noise. A 10-day average was required to achieve a sufficient signal-to-noise ratio in the 0.2-0.5 Hz and 0.5-1 Hz frequency bands. We quantified the time lags between two traces in the frequency and time domains by means of the Moving Window Cross Spectral Analysis and a Dynamic Time Warping technique, respectively. Injection of fluids in geologic formations causes variations in seismic velocities associated to changes in fluid saturation, increase in pore pressure or opening or enlargement of cracks due to the injection process. Time delays associated with stress changes caused by moderate to large earthquakes have also been established. In this work, we found no velocity changes during the gas injection period nor on the occasion of the Mw 4.2 earthquake. The sensitivity of the method is dependent on the seismic network geometry and

  2. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae


    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  3. Désulfuration sélective du gaz soutiré d'un stockage souterrain Selective Desulfurization of Gas Withdrawn from an Underground Storage Facility

    Directory of Open Access Journals (Sweden)

    Jaubertou G.


    Full Text Available La présence d'H2S constatée dès les premiers soutirages de gaz au stockage souterrain en nappe aquifère de Chémery avait nécessité la mise en place d'unités de désulfuration. Le gaz injecté étant exempt de gaz carbonique, le procédé par voie liquide utilisant la monoéthanolamine avait été retenu. Depuis 1977, le gaz injecté contenant des quantités appréciables de gaz carbonique a rendu inutilisable ce procédé. Parallèlement à l'injection de ce composé acide, la production d'H2S a fortement augmenté. La mise en oeuvre d'une amine sélective (MDEA a permis d'éliminer les composés soufrés en laissant pratiquement inchangée la composition du gaz chargé en C02. Les installations existantes ont pu être conservées, la banalisation des circuits facilitant l'utilisation de cette nouvelle amine. La communication présente les études et essais réalisés ainsi que les résultats d'exploitation qui se sont révélés particulièrement intéressants tant au point de vue technique qu'économique The presence of H2S in the first gas withdrawn from the underground storage aquifer at Chémery, France, required the installation of desulfurization units. Since there was no carton dioxide in the injected gas, a liquid process using monoethanolamine was selected. This process has become unusable since 1977 because the injected gas contains appreciable amounts of carton dioxide. At the same time as the injection of this acid compound, the production of H2S has considerably increased. A selective amine (MDEA was used tg eliminate the sulfur-containing compounds while leaving the composition of the C02-containing gas almost unchanged. The existing installations have been maintained as the result of the standardizing of the circuits for this new amine. This article describes the research and tests performed as well as the operational results which have turned out to be particularly intersting from both the technical and economic stand

  4. Site-specific standard request for Underground Storage Tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility Buildings 9754-1 and 9720-15

    Energy Technology Data Exchange (ETDEWEB)


    This document is a site-specific standard request for underground storage tanks located at the Rust Garage Facility. These standards are justified based on conclusion derived from the exposure assessment that indicates there is no current or forseeable future human health risk associated with petroleum contaminants on the site, that current and future ecological risks would be generally limited to subsurface species and plant life with roots extending into the area, and that most of the impacted area at the site is covered by asphalt or concrete. The vertical and horizontal extent of soil and ground water contamination are limited to immediate area of the Rust Garage Facility.

  5. Radioactive waste storage: historical outlook and socio technical analysis; Le stockage des dechets radioactifs: perspective historique et analyse sociotechnique

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.C.


    The radioactive waste storage remains, in most of the industrialized concerned countries, one extremely debated question. This problem may, if an acceptable socially answer is not found, to create obstacles to the whole nuclear path. This study aim was to analyze the controversy in an historical outlook. The large technological plans have always economical, political, sociological, psychological and so on aspects, that the experts may be inclined to neglect. ``Escape of radioactivity is unlikely, as long as surveillance of the waste is maintained, that is, as long as someone is present to check for leaks or corrosion or malfunctioning of and to take action, if any of these occur. 444 refs., 32 figs.

  6. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... of various kinds, as well as for identifying and displacing undesired individuals/groups/bodies. A case in point is a recently-established police project (REVA) in Sweden for strengthening the so-called internal border control. Specifically, several underground stations in Stockholm now have checkpoints...... where policemen are entitled to ask citizens to identify themselves. However, authorities imposing and defining borders do not only create boundaries to fence the insecurity of a homogeneous community. Borders are also made to be crossed. The crossing of borders often involves a complicated set...

  7. Adaptation des techniques de forage à la recherche et à l'équipement des stockages souterrains de gaz naturel Adapting Drilling Techniques to the Search for and Equipment of Underground Natural-Gas Storage Facilities

    Directory of Open Access Journals (Sweden)

    Grandin J.


    search for geological structures suitable for holding this gas, the drilling and equipment of exploration or production wells, their maintenance and the controlling of such storage facilities were entrusted to the Underground Reservoirs Department of the Service for Research and New Technologies. The exploration and development phases of an underground storage facility require the drilling of petroleum-type wells. Such boreholes are used to recover the maximum amount of information concerning the different geological layers crossed and to assess their suitability for storing gas. At the same time, they must be capable of ensuring the optimal and reliable exploitation of the storage facilities under the best possible safety conditions. The practical drilling experience acquired by Gaz de France enabled it to adapt many petroleum drilling techniques to underground storage facilities. At the same time, original procedures were developed to cope with various specific requirements inherent to drilling wells into underground reservoirs, particularly requirements concerning the proper sizing of boreholes and casing cementation quality. This article describes all these adaptations and original developments. Primarily a contribution to the field of Specific Problems in Boreholes for Underground Storage Facilitiesamong petroleum technologies, some of these developments should in turn result in interesting applications in medium-depth oil and gas wells.

  8. Façade mapping and data storage of historical structure ashlars (United States)

    Holzer, R.; Bednarik, M.; Kovarova, K.; Laho, M.; Duncko, M.


    The aim of the introduced research is to generate the methodology for the research and maintenance of facing ashlars of historical structures. As a rule, the natural building stone of historic monuments is subject to various types of deterioration and damages mostly due to weathering processes. Preferably, the damaged stone ashlars should be replaced by the natural material of the same lithological composition, of an appropriate durability and the same or similar appearance. If the quarrying of the original stone is not prospective, the quality of alternative rock is moreover not only a crucial condition, but also the fact that its use will not change the façade appearance. The methodology comprehensively summarizes technical, technological and monumental demands. It is oriented on the definition and verification of selection criteria of the most appropriate alternative stone recommended for building or restoration purposes. Before the restoration it is methodologically necessary to generate the ashlars façade plan based on digital photographic procedure (real scale) and data processing in GIS, to assess the lithology of the façade stones and to perform complex laboratory tests (when samples taking is possible) to determine physical-mechanical properties, as UCS, absorption capacity, coefficients of weakening and freezing, etc. aiming at the stone durability. The detailed survey of the replacement building stone has to be methodically identical with the research of facades stone properties. The comparative analysis of the appearance, properties and durability of stone is necessary, as well. Using such methodology it will be possible to design the adequate engineering-historical research and propose the optimal procedure for the restoration of concrete historical structure. Such a comprehensive assessment of original and alternative natural building stone contributes to the protection against undesirable interventions in the restoration of historical monuments.

  9. Water underground (United States)

    de Graaf, Inge


    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  10. Underground CO{sub 2} Storage: Approach for Favourable Formations in Ebro Basin; AGP de CO{sub 2}: Seleccion de Formaciones Favorables en la Cuenca del Ebro

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.; Perucha, A.; Recreo, F.


    The study of the possibilities of conducting Deep Geological CO{sub 2} Storage inside Spanish territory is being performed through the Strategic Singular Project PS-120000-2005-2 of the National Program of Energy from the Education and Science Ministry, and called CO{sub 2} generation, sequestration and storage advanced technologies, sub project N3 CO{sub 2} Geological Storage This report studies the possibilities the Ebro basin offers for definitive CO{sub 2} storage as one of the Spanish selected areas from previous studies. The study and reinterpretation of the information obtained from the hydrocarbon exploration accomplished in the area has lead to the selection of a series of geological formations. These formations have been chosen attending certain characteristics such as their disposition, extension, depth and porosity. The study has also been conducted considering the characteristics of the geological formations above the CO{sub 2} storage formations so as to guarantee the sealing of the storage. The study includes the approximate estimation of the storage capacity for each of the formations in Megatons of CO{sub 2}, which can be useful in future decision making. Deep geological storage is one of the more relevant international initiatives in order to eliminate or reduce the anthropogenic CO{sub 2} emissions to the atmosphere. (Author) 68 refs.

  11. Historical and Hypothetical Future Sedimentation and Water Storage in Kajakai Reservoir, Central Afghanistan (United States)

    Vining, Kevin C.; Vecchia, Aldo V.


    SUMMARY Sedimentation has reduced water storage in Kajakai Reservoir. If current sedimentation rates continue, hypothetical future reservoir water volumes at the spillway elevation of 1,033.5 meters could be reduced about 22 percent from 2006 to 2057. Even if the spillway elevation is raised to 1,045 meters, a severe drought could result in large multiyear irrigation-supply deficits in which reservoir water levels remain below 1,022 meters for more than 4 years. Hypothetical climate change and sedimentation could result in greater water-supply deficits. The chance of having sufficient water supplies in Kajakai Reservoir during the worst month is about 47 percent.

  12. Experimental investigations and geochemical modelling of site-specific fluid-fluid and fluid-rock interactions in underground storage of CO2/H2/CH4 mixtures: the H2STORE project (United States)

    De Lucia, Marco; Pilz, Peter


    Underground gas storage is increasingly regarded as a technically viable option for meeting the energy demand and environmental targets of many industrialized countries. Besides the long-term CO2 sequestration, energy can be chemically stored in form of CO2/CH4/H2 mixtures, for example resulting from excess wind energy. A precise estimation of the impact of such gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is crucial for site selection and optimization of storage depth. Underground gas storage is increasingly regarded as a technically viable option for meeting environmental targets and the energy demand through storage in form of H2 or CH4, i.e. resulting from excess wind energy. Gas storage in salt caverns is nowadays a mature technology; in regions where favorable geologic structures such as salt diapires are not available, however, gas storage can only be implemented in porous media such as depleted gas and oil reservoirs or suitable saline aquifers. In such settings, a significant amount of in-situ gas components such as CO2, CH4 (and N2) will always be present, making the CO2/CH4/H2 system of particular interest. A precise estimation of the impact of their gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is therefore crucial for site selection and optimization of storage depth. In the framework of the collaborative research project H2STORE, the feasibility of industrial-scale gas storage in porous media in several potential siliciclastic depleted gas and oil reservoirs or suitable saline aquifers is being investigated by means of experiments and modelling on actual core materials from the evaluated sites. Among them are the Altmark depleted gas reservoir in Saxony-Anhalt and the Ketzin pilot site for CO2 storage in Brandenburg (Germany). Further sites are located in the Molasse basin in South Germany and Austria. In particular, two

  13. An analysis of the benefits of using underground tanks for the storage of stormwater runoff generated at Virginia Department of Transportation maintenance facilities. (United States)


    The Virginia Department of Transportation (VDOT) collects millions of gallons of runoff at its nearly 300 salt storage : facilities each year, with some portion of this water being reused for the generation of salt brine. Storing this collected storm...

  14. Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas (United States)

    Carley, T.L.; Miller, C.F.; Wooden, J.L.; Bindeman, I.N.; Barth, A.P.


    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), ??r??faj??kull (1362 AD) and Torfaj??kull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions. ?? 2011 Springer-Verlag.

  15. Characteristics on the heat storage and recovery by the underground spiral heat exchange pipe; Chichu maisetsu spiral kan ni yoru chikunetsu shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, I. [Kure National College of Technology, Hiroshima (Japan); Taga, M. [Kinki University, Osaka (Japan)


    The consistency between the experimental value of a soil temperature and the calculation value of a soil temperature given by a non-steady heat conduction equation was confirmed. The experimental value is obtained by laying a spiral heat exchange pipe in the heat-insulated soil box and circulating hot water forcibly in the pipe. The temperature conductivity in soil significantly influences the heat transfer in soil. The storage performance is improved when the temperature conductivity increases because of the contained moisture. As the difference between the initial soil temperature and circulating water temperature becomes greater, the heat storage and recovery values increase. A thermal core heat transfer is done in the spiral pipe. Therefore, the diameter of the pipe little influences the heat storage performance, and the pitch influences largely. About 50 hours after heat is stored, the storage performance is almost the same as for a straight pipe that uses the spiral diameter as a pipe diameter. To obtain the same heat storage value, the spiral pipe is made of fewer materials than the straight pipe and low in price. The spiral pipe is more advantageous than the straight pipe in the necessary motive power and supply heat of a pump. 1 ref., 11 figs., 1 tab.

  16. The feasibility of underground pumped storage plants in the active coal mines in the Ruhr district; Zur Machbarkeit untertaegiger Pumpspeicherwerke in den aktiven Steinkohlebergwerken des Ruhrreviers

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Andre; Wortberg, Timo [Duisburg-Essen Univ., Essen (Germany). Inst. fuer Wasserbau und Wasserwirtschaft; Eilert, Walter [RAG AG, Herne (Germany). Servicebereich Standort- und Geodienste


    With the expiration of the coal mining in 2018, the mining is leaving an extensive infrastructure. Shaft depths of up to 1200 m, numerous linings at depth and a large area drainage open perspectives for subsequent use as a subsurface pump storage plant. This could be at the current mining locations a contribution to the energy storage problem. [German] Mit dem Auslaufen des Steinkohlenbaus im Jahre 2018 hinterlaesst der Bergbau eine umfangreiche Infrastruktur. Schachttiefen von bis zu 1200 m, zahlreiche Ausbauten in der Tiefe und eine grossraeumige Wasserhaltung eroeffnen gegebenfalls Perspektiven fuer eine Folgenutzung als untertaegiges Pumpspeicherwerk. Damit koennte an den heutigen Bergbauorten ein Beitrag zur Energiespeicherproblematik verfolgt werden.

  17. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark


    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  18. Characterization of the rock salt for the design of underground storage in saline domes; Caracterizacion de la roca sal-gema para el diseno de almacenamientos en domos salinos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Meyenberg, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    The saline domes are natural geological formations, that have been formed in the underground, through the passage of millions of years. In Europe, they are used for hydrocarbon storage; for instance France is planning to increase, in a short term, its crude storing capacity in domes of 5 to 10 millions cubic meters (60 million of barrel), holding capacity. Additionally, studies are being conducted on the stability of this type of domes, for the storage of nuclear wastes during 100 thousand or 1 million years. [Espanol] Los domos salinos son formaciones geologicas estructurales naturales, que se han constituido en el subsuelo, en el transcurso de millones de anos. En Europa, se aprovechan para almacenar hidrocarburo; por ejemplo, Francia planea aumentar, a corto plazo, su capacidad de almacenamiento de crudo en domos de 5 a 10 millones de metros cubicos (60 millones de barriles). Ademas, se realizan estudios de estabilidad en este tipo de domos, para almacenar desechos nucleares durante 100 mil o 1 millon de anos.

  19. ULTimateCO2 project: Field experiment in an underground rock laboratory to study the well integrity in the context of CO2 geological storage

    NARCIS (Netherlands)

    Manceau, J.C.; Audigane, P.; Claret, F.; Parmentier, M.; Tambach, T.J.; Wasch, L.; Gherardi, F.; Dimier, A.; Ukelis, O.; Jeandel, E.; Cladt, F.; Zorn, R.; Yalamas, T.; Nussbaum, C.; Laurent, A.; Fierz, T.; Pieedevache, M.


    Wells drilled through low-permeable caprock are potential connections between the CO2 storage reservoir and overlying sensitive targets like aquifers and targets located at the surface. The wellbore integrity can be compromised due to in situ operations, including drilling, completion, operations

  20. Case histories in scientific and pseudo-scientific mass-media communication in energy/heat production from underground (geogas storage, geothermics, hydrocarbons), in the frame of Nimby Sindrome enhancement in Europe: the proposal of a new European Direct (United States)

    Quattrocchi, Fedora; Boschi, Enzo


    In the frame of energy/heat production from underground, the paper considers some European case histories and the needs of a complex and motley stakeholders community, made by scientific-industry-institutions, involved in the difficult task to study and accept (or refuse) projects strongly impacting the lived territory & underground, in densely populate countries, as Italy, in terms of appropriate public communication and sound deontological behaviour. Successively, the paper recalls years of "scientific" communication within the mass-media, highlighting the positive and negative messages, in comparison to the true and objective experimental data gathered by the real scientific work, as perceived by citizens of medium scholastic culture, which not delve the geologic disciplines, but receive simply the journalistic front-end, very often as sensationalist scoop. The authors retrace case histories of heuristic-participatory communication with the citizenship about the scientific results on challenges raised by certain technologies. The objective and rational communication is often impeded by local interests and by local journalism, which prefers to create sensationalist news more than scientific truths. This path progressively tangles as a consequence of the complex and with conflicting use of underground to produce energy (heat as gas storage, geothermical, unconventional gas exploitation, mining, etc…). Even the chain of renewables meets by now serious issues, exacerbated also by the need to start mining and drilling for the smart grids materials too (metals, rare Earths, etc..). A new text for a smart and innovative European Directivity is discussed, starting from the Italian regulatory issue. The review efforts for a "paper" on both a newspaper or a blog could be more difficult than the review a scientific paper, as a consequence of the peculiar situations behind the scenes and the conflicts of interests staying in the nest in a newspaper article or in a blog

  1. Strategic use of the underground for an energy mix plan, synergies among CO2 and CH4 Geological Storage and Geothermal Energy: Italian Energy review and Latium case study (United States)

    Procesi, M.; Cantucci, B.; Buttinelli, M.; Armezzani, G.; Quattrocchi, F.


    Since the world-wide energy demand has been growing so much in the last years, it is necessary to develop a strategic mix-energy plan to supply low GHG (GreenHouseGas) emissions energy and solve the problem of CO2 emission increasing. A recent study published by European Commission shows that, if existing trends continue, by 2050 CO2 emissions will be unsustainably high: 900-1000 parts per million by volume. The European Commission in 2007 underline the necessity to elaborate, at European level, a Strategic Energy Technology Plan focused on non-carbon or reduced-carbon sources of energy, as renewable energies, CO2 capture and storage technologies, smart energy networks and energy efficiency and savings. Future scenarios for 2030 elaborated by the International Energy Agency (IEA) shows as a mix energy plan could reduce the global CO2 emissions from 27Gt to 23 Gt (about 15%). A strategic use of the underground in terms of: - development of CCS (Carbon dioxide Capture and Storage) associated to fossil fuel combustion; - increase of CH4 geological storage sites; - use of renewable energies as geothermic for power generation; could open a new energy scenario, according to the climate models published by IPCC. Nowadays CCS market is mainly developed in USA and Canada, but still not much accounted in Europe. In Italy there aren't active CCS projects, even if potential areas have been already identified. Many CH4 storage sites are located in Northern America, while other are present in Europe and Italy, but the number of sites is limited despite the huge underground potentiality. In Italy the power generation from geothermal energy comes exclusively from Tuscany (Larderello-Travale and Mt. Amiata geothermal fields) despite the huge potentiality of other regions as Latium, Campania and Sicily (Central and South Italy). The energy deficit and the relevant CO2 emissions represent a common status for many Italian regions, especially for the Latium Region. This suggests that a

  2. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure (United States)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.


    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  3. The utilization of the storage of thermal energy in buildings. Underground heat storages - thermic simulation and profitability; Termisen energian varastoinnin hyvaeksikaeyttoemahdollisuudet rakennusten laemmityksessae ja jaeaehdytyksessae. Maanalaiset varastot - laempoetekninen simulointi ja taloudellinen kannattavuus

    Energy Technology Data Exchange (ETDEWEB)

    Suokas, M.; Heinonen, J.; Karola, A.; Laine, T.; Siren, K.


    Interest in different sources of free energy has significantly increased due to the possibility to decrease the consumption of fossil fuels and nuclear power. This can be reached, for example, with waste heat recovery and by utilising natural heat and cool energy sources. The main problem is that the supply and use of energy do not encounter and this causes a need for thermal energy storage. The earlier heat storage systems have utilised compressor heat pumps because the temperature levels of heat storages are not high enough for the ordinary heating and cooling systems. The disadvantage is the complexity of these systems which leads to increasing building costs. Therefore, this study deals with systems of low temperature levels used mainly for cooling purposes. The aim was to find out their usability, savings and profitability. The function and energy consumption of systems were simulated with models of buildings, soil heat storage and climate. The soil model simulates heat dynamic behaviour of the masses of soil. With the climate model it was possible to simulate transient heat losses of the storage and building. It was also possible to simulate various climatic conditions by changing input data of the climate model. In the simulated systems the emphasis is on the production of cooling energy by utilising the low temperature of the ground. The systems consist of heat storage and building. The cooling energy will be charged in winter to the storage when the heat energy charged in summer will be transferred to the supply air of ventilating unit. After the energy simulations the investment and usage costs of this kind of systems were compared with costs of ordinary compressor cooling systems. The buildings studied were an imaginary LVIS 2000 office building and the Messukeskus in Helsinki which is a large hall built for exhibitions. The types of soil were wet clay and granite. The LVIS 2000 office building needs a rock heat storage with capacity of 8 000-30 000 m

  4. Approche économique de l'exploration des stockages souterrains de gaz en nappe aquifère Economic Approach to Exploration for Underground Gas Storage Facilities in Aquifers

    Directory of Open Access Journals (Sweden)

    Colonna J.


    Full Text Available Dans le cadre de la recherche des stockages souterrains de gaz, le Département Réservoirs Souterrains de Gaz de France est amené à établir un programme d'exploration destiné à sélectionner définitivement, et au moindre coût, les structures capables de satisfaire la demande. Cette sélection passe par une estimation des probabilités de rejet ou d'abandon affectant les différentes structures susceptibles de donner lieu à une exploration. Il faut ensuite constituer le programme d'exploration de chacun des sites retenus après cet examen; ce programme consiste en une liste d'opérations (forage, sismique, essai hydraulique, forage à faible profondeur etc. qui mettront le plus vite possible en évidence : - d'une part les défauts; - d'autre part les principales caractéristiques techniques de la structure étudiée. La règle est d'atteindre la décision sur la faisabilité du site au stockage avec le moindre coût d'exploration. Pour ce faire, une analyse détaillée des causes potentielles d'abandon (recensement des défauts permet de choisir les opérations à effectuer, et d'associer à chacun des défauts recensés, l'opération ou l'ensemble d'opérations permettant de le détecter de façon certaine. Alors les estimateurs économiques tels que l'espérance de dépense, le risque financier, l'espérance de gain, sont calculés pour chacun des programmes, en vue de déterminer l'ordre d'exécution optimal des opérations. L'intérêt d'une telle approche, en ce qui concerne la réduction des dépenses d'exploration, est illustré par un exemple. As part of its work concerning the search for underground gas storage sites, the Underground Storage Department of Gaz de France has established an exploration program for the definitive and lowcost selection of suitable geological structures. This selection involves estimating probabilities of rejecting or abandoning different structures liable to be targets for exploration. The

  5. Resources and geothermal heat in the Netherlands. Annual report 2011. An overview of exploration and exploitation activities and of underground gas storage; Delfstoffen en Aardwarmte in Nederland. Jaarverslag 2011. Een overzicht van opsporings- en winningsactiviteiten en van ondergrondse gasopslag

    Energy Technology Data Exchange (ETDEWEB)



    Traditionally, this annual report publishes the activities and results of the exploration and extraction of hydrocarbons in the Netherlands. Starting this year the report will be expanded with the exploration and extraction activities of rock salt and geothermal heat and the underground storage of resources (natural gas, nitrogen, CO2 and water). The first part of the annual report addresses the developments in the year 2011. This part also includes a prognosis for the extraction of natural gas for the next 25 years. Next, a number of tables illustrate developments in the field of licenses and exploration activities (seismic research and drilling) in 2011. The chapter on hydrocarbons is concluded with an overview of the extracted volumes of natural gas, condensate and petroleum and the gas flows in storage facilities. There are new chapters on exploration and extraction of rock salt and geothermal heat. Another new chapter addresses storage of resources. The second part of the annual report illustrates the situation per 1 January 2012 and the developments over the last decades in a number of overviews. The annexes, finally, include general maps of the situation as of 1 January 2012 [Dutch] Het Jaarverslag rapporteert over de activiteiten en resultaten van de opsporing en winning van koolwaterstoffen, steenzout en aardwarmte in Nederland. Daarnaast komt de ondergrondse opslag van stoffen (aardgas, stikstof, CO2 en water) aan de orde. Daarmee worden alle opsporings-, winnings- en opslagactiviteiten in Nederland en het Nederlandse deel van het Continentaal plat, vallend onder het regime van de Mijnbouwwet, gezamenlijk gerapporteerd. Het eerste deel van het jaarverslag gaat in op de ontwikkelingen in het jaar 2011. Zoals in voorgaande jaren richt dit deel zich op de opsporing, winning en de ondergrondse opslag van koolwaterstoffen. Dit betreft een overzicht van de veranderingen in de aardgas- en aardolievoorraden gedurende 2011 en de daaruit volgende situatie per 1

  6. Mapping Prehistoric, Historic, and Channel Sediment Distribution, South Fork Noyo River: A Tool For Understanding Sources, Storage, and Transport (United States)

    Rich D. Koehler; Keith I. Kelson; Graham Matthews; K.H. Kang; Andrew D. Barron


    The South Fork Noyo River (SFNR) watershed in coastal northern California contains large volumes of historic sediment that were delivered to channels in response to past logging operations. This sediment presently is stored beneath historic terraces and in present-day channels. We conducted geomorphic mapping on the SFNR valley floor to assess the volume and location...


    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Robert J. [Fermilab


    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  8. India's Underground Water Temples

    National Research Council Canada - National Science Library

    Samir S. Patel


    Patel features India's underground water temples--specifically in Gujarat. Accordingly, the stepwells of Gujarat are spiritual monuments to water and stark reminders of the increasing scarcity of this critical resource...

  9. The underground macroeconomics

    Directory of Open Access Journals (Sweden)

    Marin Dinu


    Full Text Available Like Physics, which cannot yet explain 96% of the substance in the Universe, so is Economics, unprepared to understand and to offer a rational explicative model to the underground economy.

  10. Orpheus in the Underground

    Directory of Open Access Journals (Sweden)

    Puskás Dániel


    Full Text Available In my study I deal with descents to the underworld and hell in literature in the 20th century and in contemporary literature. I will focus on modem literary reinterpretations of the myth of Orpheus, starting with Rilke’s Orpheus. Eurydice. Hermes. In Seamus Heaney’s The Underground. in the Hungarian Istvan Baka’s Descending to the Underground of Moscow and in Czesław Miłosz’s Orpheus and Eurydice underworld appears as underground, similarly to the contemporary Hungarian János Térey’s play entitled Jeramiah. where underground will also be a metaphorical underworld which is populated with the ghosts of the famous deceased people of Debrecen, and finally, in Péter Kárpáti’s Everywoman the grave of the final scene of the medieval Everyman will be replaced with a contemporary underground station. I analyse how an underground station could be parallel with the underworld and I deal with the role of musicality and sounds in the literary works based on the myth of Orpheus.

  11. Interactions between fluids and natural clay rich sediments: experimental study in conditions simulating radioactive wastes underground storage; Interactions entre fluides et sediments argileux naturels: etude experimentale dans des conditions simulant un stockage souterrain de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Roubeuf, V


    The behaviour of clay rich sediments, especially an argilite from Oxfordian of Haute-Marne, a siltite from Albian series of Marcoule (Gard) and a bentonite from Wyoming, were experimentally studied under physical-chemical conditions close of those of an underground radioactive waste storage. The several steps of the creation of the storage in deep formation were simulated experimentally, in particular: - the effect due to oxidation at ambient temperature and moisture degree related to the arrival of air in the gallery, was tested, especially the interaction between acid fluids generated at the micron-scale of the altered pyrite micro-site and the surrounding minerals of the sediment, - the alteration due to weathering (damping/drying cycles) to simulate the effect of a surface storage of the sediments, - and finally, water-rock interactions at 80 and 200 deg C, which reproduce the thermic stress induced by the deposit of type C radioactive containers (stage of re-hydration under thermic stress). The various simulations lead to rather similar behaviour of minerals in the sediment and solutions. Mineralogical, geochemical and crystallographic analyses show that most minerals in sediments are preserved with no evidence of mineral neo-formation. Nevertheless, the study by X-ray diffraction shows variations in the interlayer spacing in relation with modifications of the hydration states. Changes in the interlayer occupancy of the clays are due to cationic exchange of the sodium of the interlayer by the calcium issued from the dissolution of carbonate and gypsum dissolution. I/S like minerals crystal-chemistry generally display little changes in the tetrahedral and octahedral occupancy and a rather good stability of crystal structure. The cationic exchange capacity (CEC) of the clay sediment display un-significant variations: after the damping/drying cycles, the argilite of Haute-Marne has lost about 15 % of their bulk CEC and the effect of acid micro-environment at

  12. Heavy context dependence --- decisions of underground soldiers

    CERN Document Server

    Kułakowski, K; Krawczyk, M J


    An attempt is made to simulate the disclosure of underground soldiers in terms of theory of networks. The coupling mechanism between the network nodes is the possibility that a disclosed soldier is going to disclose also his acquaintances. We calculate the fraction of disclosed soldiers as dependent on the fraction of those who, once disclosed, reveal also their colleagues. The simulation is immersed in the historical context of the Polish Home Army under the communist rule in 1946-49.

  13. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate (United States)

    McGuire, A.D.; Clein, Joy S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, M.C.


    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that

  14. Underground neutrino astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.


    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

  15. Waterproofing Underground Concrete Structures (United States)


    their explosive potential, were required to be hardened earth covered concrete structures . Because the water table was located only one foot below the... concrete structures such as utility tunnels, communication vaults, I basements, elevator pits, missile silos, and control rooms. *|2 1.2 Reasons for...underground concrete structures which are usually surrounded by moisture the need to keep the water out is critical. Probably the most common example of

  16. Monitoring underground movements

    CERN Multimedia

    Antonella Del Rosso


    On 16 September 2015 at 22:54:33 (UTC), an 8.3-magnitude earthquake struck off the coast of Chile. 11,650 km away, at CERN, a new-generation instrument – the Precision Laser Inclinometer (PLI) – recorded the extreme event. The PLI is being tested by a JINR/CERN/ATLAS team to measure the movements of underground structures and detectors.   The Precision Laser Inclinometer during assembly. The instrument has proven very accurate when taking measurements of the movements of underground structures at CERN.    The Precision Laser Inclinometer is an extremely sensitive device capable of monitoring ground angular oscillations in a frequency range of 0.001-1 Hz with a precision of 10-10 rad/Hz1/2. The instrument is currently installed in one of the old ISR transfer tunnels (TT1) built in 1970. However, its final destination could be the ATLAS cavern, where it would measure and monitor the fine movements of the underground structures, which can affect the precise posi...

  17. Annex 1: Simulation of the Serso underground heat storage - Calibration using data from two-years measurements; Annexe 1: simulation du stockage de chaleur dans le terrain de l'installation Serso et calibrage sur deux ans de mesure

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D.


    This is the Annex 1 of the annual report 2006 of the Serso project. The basic idea of the Serso project is to defrost a road bridge in winter with heat produced by the bridge in summer by solar radiation absorption and stored in a diffusive underground store. Pipes are imbedded in the bridge surface material and connected to a set of underground borehole heat exchangers ('geothermal probes'). A heat transfer fluid is circulated by a pump. The store is loaded in summer and discharged in winter. In the present Annex the computer code developed to simulate the underground heat store is validated and tuned on the basis of a two-years series of field measurements. The agreement between predicted and measured values is good. A limitation of the computer model is that it cannot simulate only a part of the borehole heat exchangers, a feature that were implemented in the pilot store, to enable discharging the peripheral heat exchangers and leave the central ones untouched. The authors investigated the relevance of such a feature and found out that it does not significantly improve the store efficiency. As it is an additional hardware complication they recommend to ignore such a feature in future projects.

  18. Digital Underground (Shh. It's really Applied Geophysics!) (United States)

    McAdoo, B. G.


    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  19. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Inst., Nevada University, Reno, NV (United States); Holz, Barbara A. [Desert Research Inst., Nevada University, Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst., Nevada University, Reno, NV (United States); Goldenberg, Nancy G. [Desert Research Inst., Nevada University, Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst., Nevada University, Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst., Nevada University, Reno, NV (United States)


    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the

  20. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Inst., Nevada University, Reno, NV (United States); Holz, Barbara A. [Desert Research Inst., Nevada University, Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst., Nevada University, Reno, NV (United States); Goldenberg, Nancy G. [Desert Research Inst., Nevada University, Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst., Nevada University, Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst., Nevada University, Reno, NV (United States)


    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the

  1. EPA Awards Oklahoma over $1.2 million to Reduce Water Contamination Risk in Underground Tanks (United States)

    DALLAS - (June 30, 2015) The U.S. Environmental Protection Agency (EPA) has recently awarded the Oklahoma Corporation Conservation Commission $459,000 to respond to petroleum leaks from underground storage tanks (UST). The agency will also receive $

  2. CASPAR - Nuclear Astrophysics Underground (United States)

    Senarath, Chamaka; Caspar Collaboration


    The CASPAR mainly focuses on Stellar Nucleosynthesis, its impact on the production of heavy elements and study the strength of stellar neutron sources that propels the s-process, 13C(α,n)16O and 22Ne(α,n)25Mg. Currently, implementation of a 1MV fully refurbished Van de Graaff accelerator that can provide a high intensity Î+/- beam, is being done at the Sanford Underground Research Facility (SURF). The accelerator is built among a collaboration of South Dakota School of Mines and Technology, University of Notre Dame and Colorado School of Mines. It is understood that cosmic ray neutron background radiation hampers experimental Nucleosynthesis studies, hence the need to go underground in search for a neutron free environment, to study these reactions at low energies is evident. The first beam was produced in the middle of summer 2017. The entire accelerator will be run before the end of this year. A detailed overview of goals of CASPAR will be presented. NFS Grant-1615197.

  3. Going Underground in Singapore

    CERN Multimedia

    John Osborne (GS/SEM)


    Singapore has plans to build a massive Underground Science City (USC) housing R&D laboratories and IT data centres. A delegation involved in the planning to build the subterranean complex visited CERN on 18 October 2010 to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities.   The delegation from Singapore. The various bodies and corporations working on the USC project are currently studying the feasibility of constructing up to 40 caverns (60 m below ground) similar in size to an LHC experiment hall, in a similar type of rock. Civil engineering and geotechnical experts are calculating the maximum size of the cavern complex that can be safely built. The complex could one day accommodate between 3000 and 5000 workers on a daily basis, so typical issues of size and number of access shafts need to be carefully studied. At first glance, you might not think the LHC has much in common with the USC project; as Rolf Heuer pointed out: &ldq...

  4. RP delves underground

    CERN Multimedia

    Anaïs Schaeffer


    The LHC’s winter technical stop is rapidly approaching. As in past years, technical staff in their thousands will be flocking to the underground areas of the LHC and the Linac2, Booster, PS and SPS injectors. To make sure they are protected from ionising radiation, members of the Radiation Protection Group will perform an assessment of the levels of radioactivity in the tunnels as soon as the beams have stopped.   Members of the Radiation Protection Group with their precision instruments that measure radioactivity. At 7-00 a.m. on 8 December the LHC and all of the upstream accelerators will begin their technical stop. At 7-30 a.m., members of the Radiation Protection Group will enter the tunnel to perform a radiation mapping, necessary so that the numerous teams can do their work in complete safety. “Before we proceed underground, we always check first to make sure that the readings from the induced radioactivity monitors installed in the tunnels are all normal,&rdqu...

  5. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (Draft), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline


    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 124, Areas 8, 15, and 16 Storage Tanks, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 124 consists of five Corrective Action Sites (CASs) located in Areas 8, 15, and 16 of the Nevada Test Site as follows: • 08-02-01, Underground Storage Tank • 15-02-01, Irrigation Piping • 16-02-03, Underground Storage Tank • 16-02-04, Fuel Oil Piping • 16-99-04, Fuel Line (Buried) and UST This plan provides the methodology of field activities necessary to gather information to close each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 124 using the SAFER process.

  6. Sustainable energy supply for mushroom cultivation. Application of underground energy storage. Application of a heat pump for heat production. Feasibility study; Duurzame energievoorziening paddestoelen kwekerij. toepassing van energieopslag in de bodem. Toepassing van warmtepomp voor warmteopwekking. Een haalbaarheidsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Koel, J.J. [EBS-Adviseurs, Veenendaal (Netherlands)


    The results of a feasibility study on the use of heat and cold storage and the use of an electric heat pump for the energy supply of a mushroom cultivation business (Verbruggen paddestoelen in Erp, Netherlands) are presented.

  7. Underground risk management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, S.; Inoue, M.; Sakai, T.


    JCOAL has conducted Joint Research on an Underground Communication and Risk Management Information System with CSIRO of Australia under a commissioned study project for the promotion of coal use starting in fiscal 2002. The goal of this research project is the establishment of a new Safety System focusing on the comprehensive risk management information system by the name of Nexsys. The main components of the system are the Ethernet type underground communication system that represents the data communication base, and the risk management information system that permits risk analysis in real-time and provides decision support based on the collected data. The Nexsys is an open system and is a core element of the underground monitoring system. Using a vast amount of underground data, it is capable of accommodating a wide range of functions that were not available in the past. Because of it, it is possible to construct an advanced underground safety system. 14 figs., 4 tabs.

  8. Report on the possibilities of long-term storage of irradiated nuclear fuels; Rapport sur les possibilites d'entreposage a long terme de combustibles nucleaires irradies

    Energy Technology Data Exchange (ETDEWEB)



    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  9. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho


    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  10. Numerical modeling of the thermomechanical behavior of networks of underground galleries for the storage of the radioactive waste: approach by homogenization; Modelisation numerique du comportement thermomecanique de reseaux de galeries souterraines pour le stockage des dechets radioactifs: Approche par homogeneisation

    Energy Technology Data Exchange (ETDEWEB)

    Zokimila, P


    Deep geological disposal is one of the privileged options for the storage of High Level radioactive waste. A good knowledge of the behavior and properties of the potential geological formations as well as theirs evolution in time under the effect of the stress change induced by a possible installation of storage is required. The geological formation host will be subjected to mechanical and thermal solicitations due respectively to the excavation of the disposal tunnels and the release of heat of the canisters of radioactive waste. These thermomechanical solicitations will generate a stress relief in the host layer and disposal tunnels deformations as well as the extension of the damaged zones (EDZ) could cause local and global instabilities. This work aims to develop calculation methods to optimize numerical modeling of the thermoelastic behavior of the disposal at a large scale and to evaluate thermomechanical disturbance induced by storage on the geological formation host. Accordingly, after a presentation of the state of knowledge on the thermomechanical aspects of the rocks related to deep storage, of numerical modeling 2D and 3D of the thermoelastic behavior of individual disposal tunnel and a network of tunnels were carried out by a discrete approach. However, this classical approach is penalizing to study the global behavior of disposal storage. To mitigate that, an approach of numerical modeling, based on homogenization of periodic structures, was proposed. Formulations as numerical procedures were worked out to calculate the effective thermoelastic behavior of an equivalent heterogeneous structure. The model, obtained by this method, was validated with existing methods of homogenization such as the self-consistent model, as well as the Hashin-Shtrikman bounds. The comparison between the effective thermoelastic behavior and current thermoelastic behavior of reference showed a good coherence of the results. For an application to deep geological storage, the

  11. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N


    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  12. Underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vydra, J.; Pragr, P.; Skalicka, J.


    Discusses principles of underground coal gasification, which comprises 2 stages: drilling boreholes into the seams to be gasified and connecting them together and actual gasification process. Describes method used in USA and USSR involving multiple narrow extraction fronts and gas removal through a network of parallel channels in the seam. Refers to possibility of using inclined-horizontal drilling method (adapted from oil industry practice) to perform gasification in deep seams and discusses gasification media (air or oxygen, either alone or mixed with water vapor or carbon dioxide). Lists 3 basic gasification schemes in use today: production of low-energy gas for power plants by gasification using an air/water vapor mixture; production of medium-energy gas for use as chemical synthesis gas by gasification using oxygen/water vapor mixture; production of substitute natural gas, rich in methane, by gasification using high gas pressure and high hydrogen content. Describes 3 main stages of gasification: 0-300 degrees C - drying stage, when hygroscopically bound water and crystalline water are removed; 300- 700 degrees C - pyrolysis stage, when bituminous substances are converted to gaseous products; 700-1200 degrees C - gasification stage, when coke is formed and coke gasification occurs. 5 refs.

  13. ATLAS solenoid operates underground

    CERN Document Server


    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  14. An embedded underground navigation system

    CSIR Research Space (South Africa)

    Hlophe, K


    Full Text Available Platform pose (localization and orientation) information is a key requirement for autonomous mobile systems. The severe natural conditions and complex terrain of underground mines diminish the capability of most pose estimation systems, especially...

  15. Sanford Underground Research Facility - The United State's Deep Underground Research Facility (United States)

    Vardiman, D.


    /LIDAR), surveying instruments, and surveying benchmarks and optical survey points. Currently an array of single and multipoint extensometers monitors the Davis Campus. A facility-wide micro seismic monitoring system is anticipated to be deployed during the latter half of 2012. This system is designed to monitor minor events initiated within the historical mined out portions of the facility. The major science programs for the coming five years consist of the MAJORANA DEMONSTRATOR (MJD) neutrinoless double beta decay experiment; the Large Underground Xenon (LUX) dark matter search, the Center for Ultralow Background Experiments at DUSEL (CUBED), numerous geoscience installations, Long-Baseline Neutrino Experiment (LBNE), a nuclear astrophysics program involving a low energy underground particle accelerator, second and third generation dark matter experiments, and additional low background counting facilities. The Sanford Lab facility is an active, U.S. based, deep underground research facility dedicated to science, affording the science community the opportunity to conduct unprecedented scientific research in a broad range of physics, biology and geoscience fields at depth. SURF is actively interested in hosting additional research collaborations and provides resources for full facility design, cost estimation, excavation, construction and support management services.

  16. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    Energy Technology Data Exchange (ETDEWEB)



    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility.

  17. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.


    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  18. Research of the multibarrier system for an underground deposition of radioactive wastes

    Directory of Open Access Journals (Sweden)

    Marian Šofranko


    Full Text Available The paper deals in brief with research problems of multiple protection barrier systems for an underground storage of highly radioactive waste in connection with the problem of resolving a definite liquidation of this waste. This problem has a worlwide importance and is comprehensively investigated, evaluated and resolved in many well accepted research centers. Present the experts agree, that the most suitable way of the long-lived radioactive wastes liquidation is their storage into suitable underground geological formations. The core insulation of radioactive wastes from the biosphere for an extremly long time can be achieved by using a technical isolation barrier in combination with an appropriate rock mass.

  19. Risk management in large scale underground infrastructures

    NARCIS (Netherlands)

    Helmholt, K.A.; Courage, W.M.G.


    Underground infrastructures can fail due to ground movements. Due to the underground nature this is difficult to detect above ground. In a collaboration of multiple research institutes a new approach has been developed to estimate the probability of failure using underground position sensors. A

  20. Construction experiences from underground works at Oskarshamn. Compilation report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Anders (Vattenfall Power Consultant AB, Stockholm (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))


    The main objective with this report is to compile experiences from the underground works carried out at Oskarshamn, primarily construction experiences from the tunnelling of the cooling water tunnels of the Oskarshamn nuclear power units 1,2 and 3, from the underground excavations of Clab 1 and 2 (Central Interim Storage Facility for Spent Nuclear Fuel), and Aespoe Hard Rock Laboratory. In addition, an account is given of the operational experience of Clab 1 and 2 and of the Aespoe HRL on primarily scaling and rock support solutions. This report, as being a compilation report, is in its substance based on earlier published material as presented in the list of references. Approximately 8,000 m of tunnels including three major rock caverns with a total volume of about 550,000 m3 have been excavated. The excavation works of the various tunnels and rock caverns were carried out during the period of 1966-2000. In addition, minor excavation works were carried out at the Aespoe HRL in 2003. The depth location of the underground structures varies from near surface down to 450 m. As an overall conclusion it may be said that the rock mass conditions in the area are well suited for underground construction. This conclusion is supported by the experiences from the rock excavation works in the Simpevarp and Aespoe area. These works have shown that no major problems occurred during the excavation works; nor have any stability or other rock engineering problems of significance been identified after the commissioning of the Oskarshamn nuclear power units O1, O2 and O3, BFA, Clab 1 and 2, and Aespoe Hard Rock Laboratory. The underground structures of these facilities were built according to plan, and since than been operated as planned. Thus, the quality of the rock mass within the construction area is such that it lends itself to excavation of large rock caverns with a minimum of rock support

  1. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan


    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  2. The Deep Underground Neutrino Experiment

    Directory of Open Access Journals (Sweden)

    Maury Goodman


    Full Text Available The Deep Underground Neutrino Experiment (DUNE is a worldwide effort to construct a next-generation long-baseline neutrino experiment based at the Fermi National Accelerator Laboratory. It is a merger of previous efforts and other interested parties to build, operate, and exploit a staged 40 kt liquid argon detector at the Sanford Underground Research Facility 1300 km from Fermilab, and a high precision near detector, exposed to a 1.2 MW, tunable ν beam produced by the PIP-II upgrade by 2024, evolving to a power of 2.3 MW by 2030. The neutrino oscillation physics goals and the status of the collaboration and project are summarized in this paper.

  3. Family Ties and Underground Economy


    Mare, Mauro; Motroni, Antonello; Porcelli, Francesco


    This paper reports empirical evidence supporting the hypothesis that family ties should be listed among the causes of tax evasion. In societies where the power of the family is very high, the quality of public institutions tends to be low. This connection shapes the behavior of taxpayers and generates underground economy. The econometric analysis is based on linear panel data models, and a new dataset that combines data on personal values, social capital, and tax morale, in combination with a...

  4. The Underground Economy in Romania

    Directory of Open Access Journals (Sweden)

    Cleopatra Sendroiu


    Full Text Available Underground economic activities exist in most countries around the world, and they usually have the same causes: inadequate tax systems, excessive state interference in the economy and the lack of coordination in establishing economic policies. Through this paper, we aim to offer certain recommendations, which, in our opinion, would lead to solving the issue of inadequate allocation of resources and would also contribute to restoration of the worldwide economy.

  5. Problems with underground refuse disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, W.G.


    The author is not in favor of the return of colliery spoil to the mine. He considers three methods: haulage underground, pneumatic transport and stowing, and hydraulic transport and stowing, and concludes that none of them is suited to American mining conditions, not least on economic grounds. He suggests rather that landscaping and planting of pit heaps, together with a public relations exercise, is a better solution.

  6. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  7. Going Deep - Nuclear Science Underground (United States)

    Wilkerson, John F.


    The creation of a Deep Underground Science and Engineering Laboratory (DUSEL) at the Homestake Mine in South Dakota as well as the construction of SNOLAB in Sudbury, Ontario provide exciting new opportunities for the nuclear science community. The proposed next generation of underground experiments to be sited at these facilities aim to investigate a broad set of fundamental questions: What is the nature of neutrinos? Can we directly detect dark matter? How did the elements originate? What nuclear reactions are important to stellar evolution and dynamics? How did the matter - antimatter asymmetry we observe in the universe arise? Answers to these questions impact not only nuclear physics, but particle physics, astrophysics, and cosmology. There are numerous technical challenges that need to be met, including attaining unprecedented levels of material purity, developing ultra-sensitive assay techniques, and improving our understanding of nuclear properties. Likewise there are a number of interesting theoretical issues that need to be addressed including improving our knowledge of nuclear matrix elements and understanding the limits of nuclear stability. This talk with give an overview of the physics, the experiments, and the technologies that will help us reach a better view of our universe by going deep underground.

  8. Yam Storability and Economic Benefits of Storage Under the Modern ...

    African Journals Online (AJOL)

    This paper examines yam storability and the economic benefits of storage under the modern (underground) and the traditional (yam barn) storage technologies in Southeastern Nigeria. Data were collected mainly from 55 respondents who were interviewed, as well as from measurement of storage parameters on yam ...

  9. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division


    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  10. Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region (United States)

    Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.


    The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.

  11. James Henry Greathead and the London Underground

    Directory of Open Access Journals (Sweden)

    Laurence Wright


    Full Text Available This article investigates the origins and early history of the device known as the ‘Greathead Shield’, an important innovation in Victorian engineering crucial to constructing the London Underground. The aim is to explore the basis on which, many years later, a South African engineer, James Henry Greathead, was accorded prominent public acknowledgment, in the form of a statue, for ‘inventing’ the Shield. From a cultural studies perspective, how is the meaning of ‘invention’ to be understood, given that several other brilliant engineers were involved? The question is adjudicated using the notion of cultural ‘extelligence’, seen in relation to several contemporary and historical accounts, including Greathead’s own record of his achievements in the proceedings of the Institution of Civil Engineers and presented in The City and South London Railway (1896, edited by James Forrest. The paper was first delivered at the conference on ‘Novelty and Innovation in the Nineteenth Century’ held at the North-West University in May 2016.

  12. NGLW RCRA Storage Study

    Energy Technology Data Exchange (ETDEWEB)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig


    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  13. A Psychosocial Approach to Understanding Underground Spaces

    Directory of Open Access Journals (Sweden)

    Eun H. Lee


    Full Text Available With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  14. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC


    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  15. Purification treatment for underground water

    Energy Technology Data Exchange (ETDEWEB)

    Fonbershteyn, V.


    In order for underground water to be clean and to taste good, iron can be removed from it right underground, in the water-bearing stratum, before it is brought to the surface. G.M. Kommunar, V.S. Alekseyev, and V.T. Grebennikov, candidates of technical sciences and associates of the Moscow All-Union Hydrogeology Scientific Research Institute, developed the practical application of this beneficial technology, which makes it possible to do away with purification installations. With the new technology (Patent No. 985 214, 1 018 918) water saturated with oxygen is sent through an ejector and then pumped into a well. It passes through rocks that serve as a natural filter, and the filter is loaded with oxygen. The filter now becomes a barrier for mineral impurities contained in the artesian water. The amount of time needed to pump the oxidized water into the well is calculated beforehand, knowing the capacity of the water-bearing stratum, the porosity of the rocks, the expenditure of pumped oxidized water, and the radius of the zone of the filtering rocks. While the water is pumped out of the well, its properties are monitored periodically. If the concentration of iron exceeds the allowable norm-0.3 mg per liter-the extraction is halted, and oxidized water is once again pumped into the well. It is convenient and economical to combine several wells into one system, where each well will pump and accept water according to its own schedule. This new technology can also be used to remove manganese, heavy metals, and hydrogen sulfide from underground water.

  16. Third symposium on underground mining

    Energy Technology Data Exchange (ETDEWEB)



    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  17. Report on Underground Solutions for Urban Problems


    Thewes, M.; Godard, J.P.; Kocsonya, F.P.; Nisji, J.; Arends, G.; Broere, W.; Elioff, A.; Parker, H; Sterling, R


    World wide, we see developing nations building new infrastructure as well as developed cities rehabilitating and expanding their infrastructure to meet the demands of increased population, energy efficiency, and environmental awareness of the public. Ten years ago ITA issued its special edition of the Tribune entitled “Why Go Underground, Contribution of the use of Underground space to Sustainable Development.” Working Group N° 20 of the ITA, focused on Urban Problems and Underground Solution...

  18. State of the art review of the environmental assessment and risks of underground geo-energy resources exploitation


    Liu, Wen; Ramirez, Andrea


    Abstract Geo-resources play an increasing significant role in achieving a sustainable energy future. However, their exploitation is not free of environmental impacts. This paper aims to identify the lessons and knowledge gaps on understanding of the sources, mechanisms and scope of environmental consequences of underground geo-energy resources exploitation. The paper examines four underground exploitation activities: CO2 geological storage, exploitation of shale gas, geothermal power and comp...

  19. 18 CFR 157.215 - Underground storage testing and development. (United States)


    ... the average working pressure on such maximum days taken at a central measuring point where the total volume injected or withdrawn is measured; (iii) Results of any tracer program by which leakage of gas may... the gas bubble. This map need not be filed if there is no material change from the map previously...

  20. Underground storage tank 253-D1U1 Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.


    This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

  1. Patagonia Wind - Hydrogen Project: Underground Storage and Methanation


    Perez, Ariel; Pérez, E.; Dupraz, Sebastien; Bolcich, J.


    International audience; The estimated 2,000 GW wind power potential of Argentine Patagonia, its natural resources and infrastructure are the best combination for a Large Scale Wind-Hydrogen production in Hychico´s vision. A Hydrogen Plant producing 120 Nm3/h (99,998 % purity), and a Wind Park (6.3 MW), with an average annual capacity factor of 50% constitute the first stage of Hychico’s program. This “Green” or zero emission hydrogen will supply developing markets such as fuel cell, and or in...

  2. Underground storage tank 291-D1U1: Closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.


    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  3. Underground design Laxemar, Layout D2

    Energy Technology Data Exchange (ETDEWEB)


    Laxemar candidate area is located in the province of Smaaland, some 320 km south of Stockholm. The area is located close to the shoreline of the Baltic Sea and is within the municipality of Oskarshamn, and immediately west of the Oskarshamn nuclear power plant and the Central interim storage facility for spent fuel (Clab). The easternmost part (Simpevarp subarea) includes the Simpevarp peninsula, which hosts the power plants and the Clab facility. The island of Aespoe, containing the Aespoe Hard Rock Laboratory is located some three kilometres northeast of the central parts of Laxemar. The Laxemar subarea covers some 12.5 km2, compared with the Simepvarp subarea, which is approximately 6.6 km2. The Laxemar candidate area has been investigated in stages, referred to as the initial site investigations (ISI) and the complete site investigations (CSI). These investigations commenced in 2002 and were completed in 2008. During the site investigations, several studies and design steps (D0, D1 and D2) were carried out to ensure that sufficient space was available for the 6,000-canister layout within the target volume at a depth of approximately 500 m. The findings from design Step D2 for the underground facilities including the access ramp, shafts, rock caverns in a Central Area, transport tunnels, and deposition tunnels and deposition holes are contained in this report. The layout for these underground excavations at the deposition horizon requires an area of 5.7 km2, and the total rock volume to be excavated is 3,008 x 103 m3 using a total tunnel length of approximately 115 km. The behaviour of the underground openings associated with this layout is expected to be similar to the behaviour of other underground openings in the Scandinavian shield at similar depths. The dominant mode of instability is expected to be structurally controlled wedge failure. Stability of the openings will be achieved with traditional underground rock support and by orienting the openings

  4. 30 CFR 75.804 - Underground high-voltage cables. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance...


    Directory of Open Access Journals (Sweden)



    Full Text Available The purpose of research is to improve the understanding of nature underground economy by rational justification of the right to be enshrined a reality that, at least statistically, can no longer be neglected. So, we propose to find the answer to the question: has underground economy to stand-alone?

  6. Energy Storage. (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  7. Overview of the European Underground Facilities

    CERN Document Server

    Pandola, L


    Deep underground laboratories are the only places where the extremely low background radiation level required for most experiments looking for rare events in physics and astroparticle physics can be achieved. Underground sites are also the most suitable location for very low background gamma-ray spectrometers, able to assay trace radioactive contaminants. Many operational infrastructures are already available worldwide for science, differing for depth, dimension and rock characteristics. Other underground sites are emerging as potential new laboratories. In this paper the European underground sites are reviewed, giving a particular emphasis on their relative strength and complementarity. A coordination and integration effort among the European Union underground infrastructures was initiated by the EU-funded ILIAS project and proved to be very effective.

  8. Capital Subsidies and the Underground Economy

    DEFF Research Database (Denmark)

    Busato, Francesco; Chiarini, Bruno; Angelis, Pasquale de

    In this paper we investigate the effects of different fiscal policies on the firm choice to produce underground. We consider a tax evading firm operating simultaneously both in the regular and in the underground economy. We suggest that such a kind of firm, referred to as moonlighting firm, is able...... to offset the specific costs usually stressed by literature on underground production, such as those suggested by Loayza (1994) andAnderberg et al. (2003). Investigating the effects of different fiscal policy interventions,we find that taxation is a critical parameter to define the size of capital...... allocation in the underground production. In fact, a strong and inverse relationship is found, and tax reduction is the best policy to reduce the convenience to produce underground. Wealso confirm the depressing effect on investment of taxation (see, for instance, Summers,1981), so that tax reduction has...

  9. Toxic hazards of underground excavation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.


    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  10. Locomotive track detection for underground (United States)

    Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing


    In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.

  11. Radionuclide behavior at underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Chun, Kwan Sik; Park, Hyun Soo


    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal.

  12. Law no 2002-3 from January 3, 2002 relative to the safety of transportation systems, to the technical inquiries after sea event, accident or incident during terrestrial or aerial transport, and to the underground storage of natural gas, hydrocarbons and chemical products; Loi no 2002-3 du 3 janvier 2002 relative a la securite des infrastructures et systemes de transport, aux enquetes techniques apres evenement de mer, accident ou incident de transport terrestre ou aerien et au stockage souterrain de gaz naturel, d'hydrocarbures et produits chimiques

    Energy Technology Data Exchange (ETDEWEB)



    This legislative text comprises 3 parts. The first part concerns the general safety of roadway, railway, airport, harbour and of any other infrastructure involved in the terrestrial, aerial, maritime or fluvial transport of goods or people in the French territory. The second part treats of the security of underground storage facilities for natural gas, hydrocarbons and other chemical products (obligations, rights-of-way). The last part deals with the carrying out of technical inquiries after any accident relative to a terrestrial, aerial or maritime transport. (J.S.)

  13. Radiometric surveys in underground environment (United States)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo


    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  14. Review of technical features in underground laboratories (United States)

    Ianni, Aldo


    Deep underground laboratories are multidisciplinary research infrastructures. The main feature of these laboratories is the reduced cosmic ray muons flux. This characteristic allows searching for rare events such as proton decay, dark matter particles or neutrino interactions. However, biology in extreme environments and geophysics are also studied underground. A number of ancillary facilities are critical to properly operate low background experiments in these laboratories. In this work we review the main characteristics of deep underground laboratories and discuss a few of the low background facilities.

  15. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab


    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  16. Research of lignite underground gasification

    Directory of Open Access Journals (Sweden)

    Tibor Sasvári


    Full Text Available Underground Coal Gasification (UCG is an in situ technique to recover the fuel or feedstock value of coal that is noteconomically available through conventional recovery technologies. First tentative works directed toward the utilization of the in situmethod of gasification under conditions of Northern Bohemian brown-coal basin date back to 1956 in formerly Czechoslovakia.6 experiments of UCG were realized later. The obtained results did not confirm the technological assumptions of gasification especiallyregarding the quality of the gas recovered. The average heating capacity reached the value from 1.59 – 3.44 MJ.m-3. Today, similarly allother countries in the world, in Slovakia there is an interest in the revival and perfection of the UCG technology. In this paperit is described a laboratory plant including monitoring and controlling system and some reached results.During these experiments were find out that the gasification process depends on many factors/parameters. Most the important aretopologies/methods, humidity of coal, heat losses, temperatures in relevant zones, composition of oxidation agents and permeability.The calorific value of syngas is 2 - 5 MJ.m-3 if the oxidation agent was used air only. In case of using the air + oxygen mix the calorificvalue to 10 MJ.m-3 has been obtained.

  17. Interaction between groundwater and underground constructions


    Pujades Garnes, Estanislao


    Eliminats de l'annex el text complet dels articles citats per respectar els dret dels editors. Underground constructions below the water table may be problematic if the role of groundwater is not properly acknowledged. Difficulties worsen in urban environments. Two aspects should be taken into account in the interaction between underground constructions and groundwater, 1) the impacts caused by the construction in the aquifers and 2) the difficulties that groundwater causes during the cons...

  18. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal. (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  19. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 130: Storage Tanks, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline


    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 130, Storage Tanks, identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008). Corrective Action Unit 130 consists of the seven following corrective action sites (CASs) located in Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 130 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) finalized on April 3, 2008, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 130. The DQO process developed for this CAU

  20. 76 FR 60491 - Mona South Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing... (United States)


    ... underground powerhouse and the lower reservoir; (3) transmission line connecting the underground powerhouse to... substation would require roughly 5 mile-long transmission line connecting powerhouse to the substation, which... connection will be determined later to ensure efficiency; (7) optimization of generation and energy storage...

  1. Underground dams for irrigation supplies in coastal limestone aquifer, Okinawa, Japan (United States)

    Yasumoto, J.; Nakano, T.; Nawa, N.


    The use of underground dams to store water in regions with arid or tropical climates is a method that has received considerable attention in the last few decades. And now, for the tropical and subtropical islands that are highly vulnerable to climate change underground dams have been attracting attention again as a method of groundwater management. Okinawa Prefecture is Japan's southernmost prefecture, which consists of hundreds of islands in a chain over 1,000 km long, called the Ryukyu Islands which extend southwest from Kyushu to Taiwan. The national irrigation project of the Ryukyu Islands has been carried out, and several underground dams have been constructed. The Komesu and Giiza underground dams are first full scale underground dam facilities constructed for irrigation in Japan. The Komesu underground dam is a salt-water proof type. It prevents salt-water intrusion and provides storage fresh-water for irrigation in coastal limestone aquifer. Giiza underground dam is a dam up type for storage of fresh-water. These groundwater reservoirs are located in the coastal region of southern part of Okinawa (main island), where Ryukyu limestone is extensively distributed. We studied the behaviour of groundwater flow, saltwater intrusion and nitrate nitrogen (NO3-N) in groundwater in this region by using observation data of groundwater and springs through long term (from 1993 to 2010) monitoring. And, a groundwater flow and salt-water intrusion analysis have been conducted with three dimensional numerical model applied to these dam reservoir areas. The MODFLOW-NWT with SWI code and PEST was used to simulate the complex groundwater flow patterns. Through the comparison with simulation and observed data, it was concluded that the cut off wall of underground dams effectively stores the groundwater and prevents the salt-water intrusion in the reservoir areas. The observed groundwater levels at the reservoir areas were almost reproduced by the numerical model, but there

  2. 40 CFR 144.22 - Existing Class II enhanced recovery and hydrocarbon storage wells. (United States)


    ... and hydrocarbon storage wells. 144.22 Section 144.22 Protection of Environment ENVIRONMENTAL... of Underground Injection by Rule § 144.22 Existing Class II enhanced recovery and hydrocarbon storage wells. (a) An existing Class II enhanced recovery or hydrocarbon storage injection well is authorized by...

  3. Underground pipe inspection device and method

    Energy Technology Data Exchange (ETDEWEB)

    Germata, Daniel Thomas [Wadsworth, IL


    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  4. The Mimetic Principle in the Underground Economy

    Directory of Open Access Journals (Sweden)

    Cristina Voicu


    Full Text Available There has been in the recent years an increased preoccupation at international level for the research of the mechanism of development of the underground economy. The numerous vain attempts to measure the dimension of the underground economy persuaded us to embark on a qualitative research of this economic phenomenon. In our investigation on the roots of the underground economy we drew very close to the psychological and sociological aspects of the phenomenon itself. The process of humanizing that has at its origin components of the mimetic principle, like acquisitive mimesis, prompt us to ponder over J.M. Keynes’ words: „The avoidance of taxes is the only intellectual ambition that one feels rewarded for.”

  5. Underground power line fault locating system

    Energy Technology Data Exchange (ETDEWEB)

    Fox, L.D.; Flath, R.K.


    A method is described of locating a fault in a polyphase power distribution system power distributing power from a bulk power source to power consumers, the power distribution system having a substation feeding a fused switch gear unit, a first vault, and at least one subsequent vault receiving power from the first vault, the first vault distributing power from the fused switch gear unit among plural outgoing underground power lines, each underground outgoing power line supplying power to at least one power consumer, the method comprising the steps of: checking fusing within the fused switch gear unit to determine in which phase the fault has occurred; checking the continuity of a power line interconnecting the fused switch gear unit and the first vault; identifying the fused switch gear unit and the first vault which normally supply power to a line having the fault; installing a fault indicator on each underground outgoing power line of the faulted phase in the first vault and in each subsequent vault; inserting a current limiting fuse in series with and between the fused switch gear unit and the first vault; reenergizing the first vault plural outgoing underground power lines through the current limiting fuse and causing the current limiting fuse to blow; and reading each fault indicator after the reenergizing step to determine the location of the fault. A method according to claim 7 for an underground power distribution system wherein at least one underground outgoing power line delivers power to at least one distribution transformer, wherein the step of installing the fault indicators further comprises installing a fault indicator on each distribution transformer.

  6. Radioactive wastes. Management by geological storage; Dechets radioactifs. Gestion par stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    Guillaumont, R.


    Dealing with the geological storage of radioactive wastes, the author describes and comments its objectives, the storage characteristics, the architecture and the development phases of a storage site, the long term radio-toxicity of radionuclides, the packaging and radionuclide confinement. An ANDRA's project is presented. He comments the different issues of a geological storage: to respect some principles, knowledge and sizing of the stored products, underground or deep storage, warehousing until storage, storage behaviour, site selection, reversibility, safety, site creation process, acceptance process. He comments current storage projects in the world, and all the different preliminary studies which are performed or can be performed before a site creation

  7. Morpho-anatomy and ontogeny of the underground system of Chrysolaena simplex (Less. Dematt. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Vanessa S. Santos


    Full Text Available The occurrence of thickened underground systems in Asteraceae is widely reported in the literature. Given the great complexity of underground systems, which may originate from roots, stems, or both, morpho-anatomical analyses are essential to ensure the use of correct terminology. The goals of this study were to describe the morpho-anatomy and ontogeny, investigate the occurrence of secondary metabolites and evaluate the effects of seasonality on the underground system of Chrysolaena simplex (Less. Dematt. Samples were studied using standard protocols of plant anatomy, scanning electron microscopy, histochemical and phytochemical. The underground system of C. simplex was categorised as a rhizophore which started from cotyledonary node. In adult individuals, with rhizophores completely developed, the primary roots degenerated and adventitious radicular systems are formed. The buds in the subterranean portions promote the rhizophore growing, and form aerial stems when exposed to light. Lipophilic droplets were evident in the parenchymatous cells of the cortex and pith, endodermis and buds. Inulin-type fructans were observed in the stem axis and buds of the rhizophore. The presence of buds, secondary metabolites and the storage of fructans and lipids in the rhizophore can be seen as adaptive traits.

  8. Historically Black


    Pennington, Whitney


    Historically Black is a short documentary that looks at recruitment of non-black students at Texas Southern University, one of the nation’s largest Historically Black Colleges and Universities (HBCUs). By chronicling Texas Southern’s efforts to diversify and its impact on the campus community, the film explores the changing role of HBCUs in post-segregated America and addresses what this might mean for the future of these deep-rooted institutions. 


    Directory of Open Access Journals (Sweden)

    Belyaev Valeriy L’vovich


    Full Text Available The article shows that the negative trends in the cities development, especially their territorial "sprawling" contributes to the onset of the global environmental crisis. This call requires setting the city planners mind on noosphere thinking and establishing an adequate system of spatial development of the cities. The formation of compact city models "new urbanism", "smart development" can be considered a progressive response and a world trend. It fully meets the course of integrated urban development of the underground space.In order to overcome the significant gap on this issue between Russia and many foreign countries the urban policy needs to be updated (disclosure of the fundamental principle of sustainable development, methodologies and tools of developing underground urbanity should be developed. The authors propose such a change of the underground space as an integrated spatial and geoenergy resource with the commitment to the strategic evaluation of its development during the entire life cycle of underground construction projects.The co-authors take into account the environmental effects of the proposed development under the direction of modern paradigms of the biosphere compatible, viable and growing cities, as well as the capacity to organize their own groups. As a base model, we take a city as a complex system of natural and man-caused, containing a fiber space where underground space and underground structures is one of the layers. The instrument for this approach implementation may be a biotechnospherical humanitarian balance of the city, including the parameters of underground layers. In addition, the calculations of the information flow (Entropy between the layers is of great importance. The sustainable development of the city is dominated by a stream of negative entropy.On this basis, for the conditions of Moscow the device tools "physical planning" should be used in respect of the characteristics of underground space

  10. Animals Underground. Young Discovery Library Series. (United States)

    Ruffault, Charlotte

    This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume explores the natural history of animals that live underground. Animals included are porcupine, insects, earthworm, mole, badger, rabbit, prairie dog, and beach animals. (YP)

  11. Underground mining robot: a CSIR project

    CSIR Research Space (South Africa)

    Green, JJ


    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging-wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  12. Nõukogudemaa underground bootleg'id / Margus Paju

    Index Scriptorium Estoniae

    Paju, Margus


    DVDst "Päratrusti pärand" - ENSV Riikliku Kultuurijäätmete Töötlemise Artelli "Päratrust" kultusfilmide kogumikust. Mustvalged underground-lühimängufilmid "Tsarli läheb Tallinna", "Tsaar Muhha", "Neurootiline pärastlõuna", "Kalkar", "Päratee" jt. aastatest 1980 -1983, filmid on taashelindatud 2007. aastal

  13. Design, construction and testing of underground seals

    CSIR Research Space (South Africa)

    Cook, AP


    Full Text Available There has not been any formal research carried out in South Africa into suitable construction methods and materials for underground seals. This literature survey was done to find out how this is handled in other countries, mainly the USA...

  14. Ground Water Discharges (EPA's Underground Injection ... (United States)


    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  15. Harriet Tubman and the Underground Railroad. (United States)

    Crawford, Mary; Ruthsdotter, Mary

    Suitable for elementary level students, this study unit helps increase students' comprehension of the risks involved in a black person's flight from slavery and of Harriet Tubman's success in leading more than 300 slaves to freedom via the Underground Railroad. Five activity suggestions are followed by a reading on the life of Harriet Tubman.…

  16. EAS selection in the EMMA underground array

    DEFF Research Database (Denmark)

    Sarkamo, J.; Bezrukov, L.; Enqvist, T.


    The first measurements of the Experiment with MultiMuon Array (EMMA) have been analyzed for the selection of the Extensive Air Showers (EAS). Test data were recorded with an underground muon tracking station and a satellite station separated laterally by 10 metres. Events with tracks distributed...

  17. Underground physics and the barometric pumping effect observed for thermal neutron flux underground (United States)

    Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.


    It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.

  18. Historical Paper

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 1. Historical Paper: On Simple Gas Reactions by H Eyring and M Polanyi. Classics Volume 23 Issue 1 January 2018 pp 103-128. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  19. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)


    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues.

  20. Underground gasification and combustion brown with the use of groundwater

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.


    Full Text Available The problems of coal excavation and environement protection are priority for Ukraine. Underground coal gasification (UCG and underground coal incineration (UCI are combining excavation with simultaneous underground processing in entire technological process, capable to solve this problem. Using an intermediate heat carrier - ground water may optimisating of these processes.

  1. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines (United States)


    ... Safety and Health Administration 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal... training for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of... in underground coal mines. On January 13, 2009, the United Mine Workers of America (UMWA) petitioned...

  2. 30 CFR 57.4461 - Gasoline use restrictions underground. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall be...

  3. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines (United States)


    ... Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal Register / Vol. 78 , No. 153... 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and... alternatives in underground coal mines. The U.S. Court of Appeals for the District of Columbia Circuit remanded...

  4. 30 CFR 57.4263 - Underground belt conveyors. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground belt conveyors. 57.4263 Section 57... and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall be provided at the head, tail, drive, and take-up pulleys of underground belt conveyors. Provisions shall be...

  5. More with thermal energy storage. Report 3-4. Effects on the underground. Effects of thermal energy storage systems on geochemistry and biology in practice. Result of measurements at pilot locations and laboratory tests. Final report; Meer met bodemenergie. Rapport 3-4. Effecten op de ondergrond. Effecten van bodemenergiesystemen op de geochemie en biologie in de praktijk. Resultaat metingen op pilotlocaties en labtesten. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dinkla, I.; Lieten, S. [Bioclear, Groningen (Netherlands); Hartog, N. [Deltares, Delft (Netherlands); Drijver, B. [IF Technology, Arnhem (Netherlands)


    The project More With Thermal Energy Storage (MMB, abbreviated in Dutch) focuses on knowledge gaps and potential opportunities regarding open systems. The main questions to be answered are: (1) What effects (hydrological, thermal, microbiological and chemical) occur in the soil system by application of thermal energy storage; (2) Which technical options are available for a sustainable integration of thermal energy storage in the water and energy chain?; (3) Is it possible to achieve multiple objectives by using smart combinations? The project is organized in different work packages. In work package 2, the effects of individual and collective thermal energy storage storage systems on subsoils and the environment are determined. In work package 3 the opportunities for thermal energy storage and soil remediation are examined, while in work package 4 the focus is on new sustainable combinations of heat and cold storage. Work package 1 is the umbrella part where communication and policy of and participation in MMB are the main subjects. The aim of this literature survey is to search for knowledge that is available worldwide on the effects of heat and cold storage and the possibilities to combine this technology with controlling contaminants in soil and groundwater [Dutch] Het project Meer Met Bodemenergie (MMB) richt zich op het invullen van kennisleemtes en mogelijke kansen ten aanzien van open systemen. De belangrijkste vragen waarop het onderzoeksprogramma MMB antwoord geeft zijn: (1) Welke effecten (hydrologisch, thermisch, microbiologisch en chemisch) treden op in het bodemsysteem bij toepassing van bodemenergie?; (2) Welke technische mogelijkheden zijn er voor het duurzaam inpassen van bodem-energie in de water- en energieketen?; (3) Is het mogelijk om meerdere doelstellingen tegelijk te verwezenlijken door slimme combinaties te maken? Het project is ingericht met verschillende werkpakketten. In werkpakket 2 worden de effecten van individuele en collectieve

  6. Search for underground openings for in situ test facilities in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O' Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.


    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

  7. Survey of existing underground openings for in-situ experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Graf, A.; Strisower, B.; Korbin, G.


    In an earlier project, a literature search identified 60 underground openings in crystalline rock capable of providing access for an in-situ experimental facility to develop geochemical and hydrological techniques for evaluating sites for radioactive waste isolation. As part of the current project, discussions with state geologists, owners, and operators narrowed the original group to 14. Three additional sites in volcanic rock and one site in granite were also identified. Site visits and application of technical criteria, including the geologic and hydrologic settings and depth, extent of the rock unit, condition, and accessibility of underground workings, determined four primary candidate sites: the Helms Pumped Storage Project in grandiodorite of the Sierra Nevada, California; the Tungsten Queen Mine in Precambrian granodiorite of the North Carolina Piedmont; the Mount Hope Mine in Precambrian granite and gneiss of northern New Jersey; and the Minnamax Project in the Duluth gabbro complex of northern Minnesota.


    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B


    Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks via underground transfer piping. An assessment of the structural integrity of the transfer piping was performed to ensure that the present condition of the piping was sound and to provide life expectancy estimates for the piping based on anticipated service. The assessment reviewed the original design of the piping, the potential and observed degradation mechanisms, the results from past inspections of the piping, and a Fitness-For-Service evaluation for a section of piping that experienced pitting in a locally thinned area. The assessment concluded that the piping was structurally sound. Assuming that service conditions remain the same, the piping will remain functional for its intended service life.


    Directory of Open Access Journals (Sweden)

    Biljana Kovačević-Zelić


    Full Text Available Underground exploitation of dimension stone is spreading lately for three main reasons; economy, organisation and environment. Moreover, underground openings can be used for many purposes. Underground exploitation is different from surface quarrying only in the first stage, the removal of top slice, descending slices are worked as in conventional quarries. In underground stone quarries, stability problems require adequate studies in order to avoid expensive artificial support measures, The article presents numerical analyses of an underground stone quarry made using of the finite difference code FLAC (the paper is published in Croatian.

  10. Thermodynamic Efficiency of Pumped Heat Electricity Storage (United States)

    Thess, André


    Pumped heat electricity storage (PHES) has been recently suggested as a potential solution to the large-scale energy storage problem. PHES requires neither underground caverns as compressed air energy storage (CAES) nor kilometer-sized water reservoirs like pumped hydrostorage and can therefore be constructed anywhere in the world. However, since no large PHES system exists yet, and theoretical predictions are scarce, the efficiency of such systems is unknown. Here we formulate a simple thermodynamic model that predicts the efficiency of PHES as a function of the temperature of the thermal energy storage at maximum output power. The resulting equation is free of adjustable parameters and nearly as simple as the well-known Carnot formula. Our theory predicts that for storage temperatures above 400°C PHES has a higher efficiency than existing CAES and that PHES can even compete with the efficiencies predicted for advanced-adiabatic CAES.

  11. Clean energy systems in the subsurface. Production, storage and conversion. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhengmeng Michael; Were, Patrick (eds.) [Clausthal Univ. of Technology, Goslar (Germany). Energie-Forschungszentrum Niedersachsen (EFZN); Xie, Heping [Sichuan Univ., Chengdu (China)


    Recent research on Integrated Energy and Environmental Utilization of Deep Underground Space. Results of the 3{sup rd} Sino-German Conference ''Underground Storage of CO{sub 2} and Energy'', held at Goslar, Germany, 21-23 May 2013. Researchers and professionals from academia and industry discuss the future of deep underground space technologies for an integrated energy and environmental utilization. Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group ''Underground Storage of CO{sub 2} and Energy'', is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3{sup rd} Sino-German conference on the theme ''Clean Energy Systems in the Subsurface: Production, Storage and Conversion''.

  12. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report

    Energy Technology Data Exchange (ETDEWEB)


    This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

  13. Underground nuclear astrophysics: why and how

    CERN Document Server

    Best, A; Fülöp, Zs; Gyürky, Gy; Laubenstein, M; Napolitani, E; Rigato, V; Roca, V; Szücs, T


    The goal of nuclear astrophysics is to measure cross sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross sections are very low due to the suppression of the Coulomb barrier. Cosmic ray induced background can seriously limit the determination of reaction cross sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  14. Mainstream, underground, avantgarde : Rockmusik und Publikumsverhalten


    Arbeitskreis Studium Populärer Musik


    Sicherlich wäre es übertrieben zu behaupten, daß in diesem Heft die gesamte Bandbreite rockmusikalischer Stile zur Sprache kommt, Wohl aber geben die Artikel punktuell und durchaus exemplarisch Einblick in Mainstream-, Underground- und Avantgarde- Richtungen, die sich im Spannungsfeld von Technik, Kommerz und Massenmedien als traditionsbewußte oder aber bewußt Traditionen durchbrechende, in jedem Fall jedoch als authentische Außerungen musikalischer Produktionskraft in de...

  15. Astroparticle Physics and the SNOLAB Underground Laboratory (United States)

    Hallin, Aksel


    Astroparticle physics explores the intersections between particle physics and astrophysics. Major questions include the direct detection of dark matter and the determination of the mass, character, and influence of neutrinos. SNOLAB, a deep underground clean laboratory in Sudbury, Ontario has been built to enable such measurements. The SNOLAB laboratory will be described, as well as two experimental projects that will be sited there: The SNO+ double beta decay neutrino experiment and the DEAP/Clean Liquid Argon dark matter detector.

  16. Adiabatic Liquid Piston Compressed Air Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder

    This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting...... the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, an underground cavern is used as a pressure vessel for the storage of the compressed air. Both systems...... are in the range of 100 MW electrical power output with several hours of production stored as compressed air. In this range, enormous volumes are required, which make underground caverns the only economical way to design the pressure vessel. Both systems use axial turbine compressors to compress air when charging...

  17. Intelligent Scheduling for Underground Mobile Mining Equipment.

    Directory of Open Access Journals (Sweden)

    Zhen Song

    Full Text Available Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is hard for miners to rapidly find solutions to reschedule and to adapt the changes. This investigation first introduces the motivation, the technical background, and then the objective of the study. A decision support instrument (i.e. schedule optimizer for mobile mining equipment is proposed and described to address this issue. The method and related algorithms which are used in this instrument are presented and discussed. The proposed method was tested by using a real case of Kittilä mine located in Finland. The result suggests that the proposed method can considerably improve the working efficiency and reduce the working time of the underground mine.

  18. The Sanford Underground Research Facility at Homestake (United States)

    Heise, J.


    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  19. In situ vitrification of radioactive underground tanks

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, S.S.; Gibby, R.D.; Thompson, L.E.


    In situ vitrification (ISV) is a treatment process with great potential for remediating underground tanks previously used for storing radioactive and hazardous chemical wastes at US Department of Energy (DOE) sites. Tests at several scales have demonstrated the utility of ISV for these tanks. An engineering-scale test vitrified a 30-cm-diameter buried steel and concrete tank that contained simulated tank sludge. Hazardous components of the tank sludge were immobilized, or removed and captured in the off-gas treatment system, and the tank walls were melted or incorporated into the ISV block. A pilot-scale ISV test vitrified a 1-m simulated underground tank than contained a simulated refractory sludge. The ISV process completely vitrified the tank, its contents, and the soil below the tank to a depth of 2.4 m, producing a uniform glass and crystalline monolith with an estimated mass of 30 tons. A large-scale underground tank test is scheduled for early 1991. 5 refs., 4 figs.

  20. Urban underground infrastructure mapping and assessment (United States)

    Huston, Dryver; Xia, Tian; Zhang, Yu; Fan, Taian; Orfeo, Dan; Razinger, Jonathan


    This paper outlines and discusses a few associated details of a smart cities approach to the mapping and condition assessment of urban underground infrastructure. Underground utilities are critical infrastructure for all modern cities. They carry drinking water, storm water, sewage, natural gas, electric power, telecommunications, steam, etc. In most cities, the underground infrastructure reflects the growth and history of the city. Many components are aging, in unknown locations with congested configurations, and in unknown condition. The technique uses sensing and information technology to determine the state of infrastructure and provide it in an appropriate, timely and secure format for managers, planners and users. The sensors include ground penetrating radar and buried sensors for persistent sensing of localized conditions. Signal processing and pattern recognition techniques convert the data in information-laden databases for use in analytics, graphical presentations, metering and planning. The presented data are from construction of the St. Paul St. CCTA Bus Station Project in Burlington, VT; utility replacement sites in Winooski, VT; and laboratory tests of smart phone position registration and magnetic signaling. The soil conditions encountered are favorable for GPR sensing and make it possible to locate buried pipes and soil layers. The present state of the art is that the data collection and processing procedures are manual and somewhat tedious, but that solutions for automating these procedures appear to be viable. Magnetic signaling with moving permanent magnets has the potential for sending lowfrequency telemetry signals through soils that are largely impenetrable by other electromagnetic waves.

  1. Characterization and modelling of a naturally fractured reservoir-caprock unit targeted for CO2 storage in arctic Norway

    NARCIS (Netherlands)

    Senger, K.; Mulrooney, M.; Schaaf, N.; Tveranger, J.; Braathen, A.; Ogata, K.; Olaussen, S.


    Successfully storing CO2 underground requires a good understanding of the subsurface at the storage site, and its robust representation in geological models. Geological models, and related simulations, provide important quantitative information on critical parameters for the optimal utilisation of

  2. Study of the Vibration Transmission and Path Recognition of an Underground Powerhouse Using Energy Finite Element Method


    Wei Xu; Zhen-yue Ma


    Taking the underground powerhouse of a pumped storage power station as the engineering background, this study established a 3D finite element model of the main and auxiliary powerhouse and performed the dynamic harmonica calculation for its fluctuating pressure. Based on the power flow theory, the ANSYS Parametric Design Language (APDL) procedure was completed to calculate the power transmission in the powerhouse. The law of dominant path recognition was first proposed to assess the structure...

  3. Energy storage

    CERN Document Server

    Brunet, Yves


    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  4. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)


    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  5. A Comprehensive Review of Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu


    Full Text Available Thermal energy storage (TES is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.

  6. 30 CFR 57.4601 - Oxygen cylinder storage. (United States)


    ....4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...

  7. 29 CFR 1917.156 - Fuel handling and storage. (United States)


    ... underground entrances, elevator shafts or other places where gas or fumes might accumulate. (2) Fuel... is exhausted. (ii) Pressure-relief valve openings shall be in continuous contact with the vapor space... transport shall be closed. Relief valves shall connect with vapor spaces. (5) Vehicle storage and servicing...

  8. Risk Assessment Methodology for CO2 Storage: The Scenario Approach

    NARCIS (Netherlands)

    Wildenborg, A.F.B.; Leijnse, A.L.; Kreft, E.; Nepveu, M.N.; Obdam, A.N.M.; Orlic, B.; Wipfler, E.L.; Grift, B. van der; Kesteren, W. van; Gaus, I.; Czernichowski-Lauriol, I.; Torfs, P.; Wójcik, R.


    This chapter introduces a "scenario approach," which is used as a methodology for the long-term safety assessment of underground CO2 storage and to demonstrate its applicability in an example of safety assessment. This developed methodology consists of three main parts-scenario analysis, model

  9. 30 CFR 57.6131 - Location of explosive material storage facilities. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of explosive material storage facilities. 57.6131 Section 57.6131 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface Only §...

  10. Thermal analysis of underground power cable system (United States)

    Rerak, Monika; Ocłoń, Paweł


    The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.

  11. Storage, transmission and distribution of hydrogen (United States)

    Kelley, J. H.; Hagler, R., Jr.


    Current practices and future requirements for the storage, transmission and distribution of hydrogen are reviewed in order to identify inadequacies to be corrected before hydrogen can achieve its full potential as a substitute for fossil fuels. Consideration is given to the storage of hydrogen in underground solution-mined salt caverns, portable high-pressure containers and dewars, pressure vessels and aquifers and as metal hydrides, hydrogen transmission in evacuated double-walled insulated containers and by pipeline, and distribution by truck and internal distribution networks. Areas for the improvement of these techniques are indicated, and these technological deficiencies, including materials development, low-cost storage and transmission methods, low-cost, long-life metal hydrides and novel methods for hydrogen storage, are presented as challenges for research and development.

  12. Proposition d'explication de la formation d'hydrogène sulfuré dans les stockages souterrains de gaz naturel par réduction des sulfures minéraux de la roche magasin Proposed Explanation of Hydrogen-Sulfide Formation in Underground Natural-Gas Storage Structures by Reduction of Mineral Sulfides in the Reservoir Rock.

    Directory of Open Access Journals (Sweden)

    Bourgeois J. P.


    Full Text Available La formation d'hydrogène sulfuré dans les structures de stockage peu expliquer autrement que par l'action de bactéries sulfato-réductrices. La contenue dans la roche magasin constitue une source de sulfures capable d'alimenter en H2S le gaz naturel. La réduction de la pyrite en sulfures du type Fe 1-x S et l'équilibre de dissolution précipitation, lié principalement à la pression de CO2, dans les structures stockages, constituent un processus de formation d'H2S capable d'expliquer tativement et quantitativement les phénomènes observés sur le terrain. Un modèle simplifié de stockage reprend ce schéma et teste la sensibililté de la teneur en H2S à la valeur des paramètres physiques et chimiques définissant le stockage. Cette étude permet de proposer un certain nombre d'actions susceptibles de limiter la formation d'H2S et d'orienter les choix futurs du couple gaz naturel - structures de stockage. The formation of hydrogen sulfide in storage structures can be explained otherwise thon by the action of sulfate-reducing bacteria. The pyrite contained in the reservoir rock makes up a source of sulfides capable of supplying the natural gas with H2S.Reduction of pyrite ta sulfides of the Fe,-,S type and the dissolution precipitation equilibrium, linked mainly ta C02 pressure in storage structures, make up an H2S for-mation process capable of qualitatively and quantitatively explained phenomena observed in the field.A simplified storage model reflects this scheme and can be used ta test the sensi-tivity of the H2S content ta the value of the physical and chemical parameters defining the storage structure.This investigation can be used to propose various means of action (sable ta "mit H2S formation and ta guide future choices of natural gas/storage-structure pairs.

  13. Modelling an in-situ ventilation test in the Andra Underground Research Facilities

    Directory of Open Access Journals (Sweden)

    Collin Frédéric


    Full Text Available Wastes resulting from the nuclear electricity production have to be isolated from the biosphere for a very long period of time. For this purpose, deep underground repository in weak permeable geological layers is considered as a reliable solution for the nuclear waste storage. It is however well established that during excavation, the underground drilling process engenders cracks and eventually fractures [1] that deteriorate the hydro-mechanical properties of the surrounding host material in the so-called Excavation Damaged Zone (EDZ. The EDZ behaviour is a major issue because it may constitute a preferential flow path for radionuclide migration. Consequently, the characterisation of the material transport properties and of the transfer kinetics that occur around galleries still need to be investigated. The EDZ properties may be also affected by host rock-gallery air interactions. Ventilation induced drying may also provoke additional cracking, which potentially alters the transport properties of the damaged zone. Large-scale air ventilation experiments are performed in Underground Research Laboratories (URL that have been constructed to check the feasibility of the repository. A numerical modelling of the SDZ air ventilation test (Andra URL performed in a low permeability rock is proposed in order to both predict the development of the EDZ during excavation and study the air interaction with the host formation during maintenance phases.

  14. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)


    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  15. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)


    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  16. Atomic storage

    CERN Multimedia

    Ricadela, A


    IBM is supplying CERN, the European Organization for Nuclear Research, with its Storage Tank file system virtualization software, 20 terabytes of storage capacity, and services under a three-year deal to build computer systems that will support the Large Hadron Collider accelerator (1 paragraph).

  17. Source analysis of underground chemical explosions (United States)

    Chiang, A.; Ford, S. R.; Pitarka, A.


    Several physical mechanisms have been proposed to explain the generation of S-waves from underground explosions, such as asymmetries in the source, release of tectonic pre-stress, interactions with the free-surface, and heterogeneities in the Earth. An accurate description of the explosion source processes is an important step towards understanding which of these plausible mechanisms are actively contributing to the generation of S-waves and under what conditions. In this study we investigate the sensitivity of far-field waveforms to seismic source mechanisms by comparing simulated and recorded data from underground chemical explosions performed during the Source Physics Experiment. We use both forward and inverse waveform modeling approaches to estimate the source properties of the explosions, and compare solutions using different velocity models and at different frequency bands and distances. 1D and 3D velocity models are used to characterize wave propagation between the source and receiver. The 3D velocity models are constructed using available geological and geophysical data, and ambient noise seismic tomography. The 3D Green's functions are computed using a numerical finite-difference approach. We will investigate the sensitivity of far-field ground motion to different levels of source complexities, such as a single isotropic source or complex sources with non-isotropic radiation in the frequency range of 0.5 to 6 Hz.

  18. Floor design in underground coal mines (United States)

    Faria Santos, C.; Bieniawski, Z. T.


    Floor failure and excessive heave in underground coal mines can jeopardize the stability of the whole structure, including the roof and pillars, due to differential settlements and redistribution of stress concentrations. Besides, floor failure is detrimental to haulageway operation and can lead to unacceptable conditions of high deformation. Thus, the design of any underground opening must consider roof/pillar and floor as one structural system. This paper presents guidelines for the design of mine floors, including the necessary field and laboratory investigations and the determination of the bearing capacity of floor strata. The design methodology is based essentially on a modified Hoek-Brown rock mass strength criterion. The main modifications are the introduction of the concept of the point of critical energy release to account for the long term strength, the inclusion of tensile strength and the adoption of a lithostatic state of stress in the rock mass. The determination of the dimensionless parameters m and s result from correlations with the RMR (“rock mass rating”) of the Geomechanics Clasification. Nine case histories, both in longwall and room and pillar coal mining, were analyzed with the proposed methodology.

  19. Inter-disciplinary Interactions in Underground Laboratories (United States)

    Wang, J. S.; Bettini, A.


    Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new

  20. Historical somersaults. (United States)

    Ryan, R


    The author and his youngest sister attended a mass at the Mission San Diego in California where the Monsignor discussed the life of Father Serra who founded the Mission in 1769. A letter to Father Serra from another priest showed the priest's distress over an abortion done to an Indian woman living at the Mission. Recollecting this historical letter was used to express the Monsignor's views on abortion today. He then reminded the congregation of the upcoming presidential election. He claimed that either Indians or people claiming to be Indians are trying to prevent the canonization of Father Serra without explaining why these people objected. He argued that the secular world cannot judge this man by contemporary standards. Yet, he had earlier implored the congregants to make secular political choices based on the absolute standards of the church. The objections to Father Serra by various secular people where he had been a member of the Spanish Inquisition and the missions he established served as forced confinement for the Indians. Supposedly, Father Serra and other priests kept Indian women in the missions to protect them from the brutality of Spanish soldiers. In fact, the pregnant Indian mentioned in the Monsignor's sermon was most likely raped by a Spaniard. Women in the missions were forced to stay in the missions while men could at least go to the fields. Unsanitary conditions were very unhealthy for the women, leading to considerable mortality. The child mortality rate was higher than 20%. Women who tried to control their fertility were harshly punished. The Catholic Church would do better if it canonized Father de las Casas who defended the autonomy and intellectual credibility of Indian culture. The author concludes that it is indeed unfair to judge Father Serra by contemporary standards, just as it is unfair and unreasonable to force Catholic standards on others.

  1. Gis-Based Site Selection for Underground Natural Resources Using Fuzzy Ahp-Owa (United States)

    Sabzevari, A. R.; Delavar, M. R.


    Fuel consumption has significantly increased due to the growth of the population. A solution to address this problem is the underground storage of natural gas. The first step to reach this goal is to select suitable places for the storage. In this study, site selection for the underground natural gas reservoirs has been performed using a multi-criteria decision-making in a GIS environment. The "Ordered Weighted Average" (OWA) operator is one of the multi-criteria decision-making methods for ranking the criteria and consideration of uncertainty in the interaction among the criteria. In this paper, Fuzzy AHP_OWA (FAHP_OWA) is used to determine optimal sites for the underground natural gas reservoirs. Fuzzy AHP_OWA considers the decision maker's risk taking and risk aversion during the decision-making process. Gas consumption rate, temperature, distance from main transportation network, distance from gas production centers, population density and distance from gas distribution networks are the criteria used in this research. Results show that the northeast and west of Iran and the areas around Tehran (Tehran and Alborz Provinces) have a higher attraction for constructing a natural gas reservoir. The performance of the used method was also evaluated. This evaluation was performed using the location of the existing natural gas reservoirs in the country and the site selection maps for each of the quantifiers. It is verified that the method used in this study is capable of modeling different decision-making strategies used by the decision maker with about 88 percent of agreement between the modeling and test data.

  2. 30 CFR 75.340 - Underground electrical installations. (United States)


    ... electrical installations. (a) Underground transformer stations, battery charging stations, substations... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground electrical installations. 75.340 Section 75.340 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...

  3. Magneto-Inductive Underground Communications in a District Heating System

    DEFF Research Database (Denmark)

    Meybodi, Soroush Afkhami; Nielsen, Jens Frederik Dalsgaard; Bendtsen, Jan Dimon


    Feasibility of underground data communications is investigated by employing magnetic induction as the key technology at physical layer. Realizing an underground wireless sensor network for a district heating plant motivates this research problem. The main contribution of the paper is to find the ...

  4. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines (United States)


    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... Alternatives for Underground Coal Mines. The RFI comment period was originally scheduled to close on October 7...

  5. The Stranger Within: Dostoevsky's Underground (United States)

    Roberts, Peter


    In Fyodor Dostoevsky's influential novel "Notes from underground", we find one of the most memorable characters in nineteenth century literature. The Underground Man, around whom everything else in this book revolves, is in some respects utterly repugnant: he is self-centred, obsessive and cruel. Yet he is also highly intelligent,…

  6. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines (United States)


    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013. In...

  7. Regulatory mechanisms for underground waste disposal in Nigeria ...

    African Journals Online (AJOL)

    The Federal Ministry of Environment and the Department of Petroleum Resources control underground disposal of wastes in Nigeria with three principal regulations: Guidelines and Standards for Environmental Pollution Control in Nigeria, National Guidelines on Waste Disposal through Underground Injection and the ...

  8. Ground penetrating radar for fracture mapping in underground hazardous waste disposal sites: A case study from an underground research tunnel, South Korea (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee


    Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.

  9. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research (United States)

    Murphy, M. M.


    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  10. Spent fuel storage requirements 1993--2040

    Energy Technology Data Exchange (ETDEWEB)


    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  11. Economic and technical feasibility study of compressed air storage

    Energy Technology Data Exchange (ETDEWEB)


    The results of a study of the economic and technical feasibility of compressed air energy storage (CAES) are presented. The study, which concentrated primarily on the application of underground air storage with combustion turbines, consisted of two phases. In the first phase a general assessment of the technical alternatives, economic characteristics and the institutional constraints associated with underground storage of compressed air for utility peaking application was carried out. The goal of this assessment was to identify potential barrier problems and to define the incentive for the implementation of compressed air storage. In the second phase, the general conclusions of the assessment were tested by carrying out the conceptual design of a CAES plant at two specific sites, and a program of further work indicated by the assessment study was formulated. The conceptual design of a CAES plant employing storage in an aquifer and that of a plant employing storage in a conventionally excavated cavern employing a water leg to maintain constant pressure are shown. Recommendations for further work, as well as directions of future turbo-machinery development, are made. It is concluded that compressed air storage is technically feasible for off-peak energy storage, and, depending on site conditions, CAES plants may be favored over simple cycle turbine plants to meet peak demands. (LCL)

  12. An empirical study of the underground economy in the Kingdom of Belgium

    DEFF Research Database (Denmark)

    Rezaei, Shahamak; Goli, Marco; Dana, Léo-Paul


    This article investigates the underground economy in Belgium. Although several government initiatives are attempting to combat underground economic activities, we found illegal foreign workers identifying opportunities and fulfilling market needs. Underground employment thus thrives in a variety ...


    Inoue, Tomomi; Kawanaka, Ryuji; Ishigaki, Taisuke; Ozaki, Taira; Toda, Keiichi

    Torrential rainfalls have been observed frequently in recent years and these rainfalls caused inundations in urban and rural areas. Intensity of such rainfalls were sometimes excess over the design rainfall of drainage systems and rain was running over the road. In these floods, some portion of rainwater intruded into underground spaces and the users faced the danger of underground flooding. In this paper, underground flooding in a mega-underground mall were investigated by using 2D shallow flow model with structural mesh and evacuation from there was also studied with the criteria of safety evacuation obtained by evacuation tests. The results show that flooding processes and safety of evacuation are quite different in the two cases with and without the consideration of drainage system. It means that the inflow conditions into underground space are depend on calculation results of rainwater flooding.

  14. An investigation into underground navigation using electromagnetic waves

    CERN Document Server

    Tillema, N J


    findings. The lateral wave starts at the source underground, travels to the boundary, follows the air-ground boundary and then propagates back into the ground to the receiver antenna. As the wave travels a significant part of its path in air, it was less susceptible to irregularities underground. Measurement of the phase has shown it to be sensitive to errors caused by reflections. This was the reason why reliable information of the phase was not always available during the measurements. The field trials have shown the possibility of using electromagnetic waves to track a moving transmitter underground. Any system that estimates the underground displacement of the transmitter should have two or more receiver antennas. The experiments have shown a possible accuracy of such a system of approximately 2 m or less. This thesis explores the possibility of measuring the movement of an underground transmitter using electromagnetic waves. The displacement of the transmitter was estimated based on the magnitude and pha...

  15. Adapting Surface Ground Motion Relations to Underground conditions: A case study for the Sudbury Neutrino Observatory in Sudbury, Ontario, Canada (United States)

    Babaie Mahani, A.; Eaton, D. W.


    Ground Motion Prediction Equations (GMPEs) are widely used in Probabilistic Seismic Hazard Assessment (PSHA) to estimate ground-motion amplitudes at Earth's surface as a function of magnitude and distance. Certain applications, such as hazard assessment for caprock integrity in the case of underground storage of CO2, waste disposal sites, and underground pipelines, require subsurface estimates of ground motion; at present, such estimates depend upon theoretical modeling and simulations. The objective of this study is to derive correction factors for GMPEs to enable estimation of amplitudes in the subsurface. We use a semi-analytic approach along with finite-difference simulations of ground-motion amplitudes for surface and underground motions. Spectral ratios of underground to surface motions are used to calculate the correction factors. Two predictive methods are used. The first is a semi-analytic approach based on a quarter-wavelength method that is widely used for earthquake site-response investigations; the second is a numerical approach based on elastic finite-difference simulations of wave propagation. Both methods are evaluated using recordings of regional earthquakes by broadband seismometers installed at the surface and at depths of 1400 m and 2100 m in the Sudbury Neutrino Observatory, Canada. Overall, both methods provide a reasonable fit to the peaks and troughs observed in the ratios of real data. The finite-difference method, however, has the capability to simulate ground motion ratios more accurately than the semi-analytic approach.

  16. Fructan storage and regeneration of perennial weeds: Cirsium arvense (L.) Scop and Tussilago farfara (L.)


    Nkurunziza, Libère; Streibig, Jens Carl


    Carbohydrate storage in underground organs of perennial weeds will increase because of the increasing temperatures and CO2 concentrations that increase photosynthesis. The objective of this study was to understand the effects of temperature and shoot age on the storage of fructan, the main carbohydrate storage, and the depletion associated with regeneration during the early growth. We subjected juvenile and mature plants of Canada thistle and Coltsfoot to different temperatures, in growth cha...


    Directory of Open Access Journals (Sweden)

    Želimir Vejnović


    Full Text Available Nuclear power plant (NPP Krško has a license to operate until 2023, and under the current agreement between the Republic of Slovenia and the Republic of Croatia, countries are bound to dispose one half of radioactive waste produced during the operation time and after decommissioning of NPP each. Safe long-term management of high level radioactive waste and spent fuel represents one of the most important issues of the modern world. The best way to provide practical demonstration of repository’s safety, which will be one of convincing arguments in the process of licensing future repository, is developed underground research laboratory (URL. Existence of URL open to international co-operation would certainly improve the international recognition and credibility of Croatian programme, as well as allow dissemination of scientific research results to a broader scientific community (the paper is published in Croatian.

  18. An Assessment of Underground Economy and Turkey

    Directory of Open Access Journals (Sweden)

    Cuma BOZKURT


    Full Text Available In developed countries and in developing countries, we called as concept of underground economy which an unofficial state economic structure, greatly extended over time and become a sector and perhaps a separate economy. In that case, determination of dimension and domain or measurment of this economics which began important. Tax losses which caused by this economics and effects to economic and social growth as an important problem. Particularly this situationin the subjective of our country where located on transition roads by location is showing a separate importance. With regard to this subject economists have proposed various econometric estimates. In this paper, identification of these effects and losses, size, measurment process and its techniques are examined and for Turkish Economy is some suggestions are put forward

  19. Thermal calculations of underground oil pipelines

    Directory of Open Access Journals (Sweden)

    Moiseev Boris


    Full Text Available Operation of oil pipelines in the frozen soil causes heat exchange between the pipeline and the soil and formation of a melt zone which leads to deformation of pipelines. Terms of construction and operation of oil pipelines are greatly related to their temperature conditions. In this regard it is necessary to know the laws of formation of thawing halos around oil pipelines. Thus, elucidation of laws of formation of thawing halos around oil pipelines and determination of optimal conditions for their installation during construction in areas of permafrost in the north of Tyumen region is a very urgent task. The authors developed an algorithm and a computer program for construction of the temperature field of the frozen soil. Some problems have been solved basing on the obtained dependences and graphs of the dependence were constructed. Research and calculations made on the underground oil pipeline construction allowed the authors to give recommendations aimed at increasing the reliability of oil pipelines.

  20. Underground coal miners' foot and boot problems. (United States)

    Wood, G; Marr, S; Berry, G; Nubé, V; Cole, J


    The New South Wales (NSW) Joint Coal Board Health and Safety Trust funded an investigation into foot problems reported by 400 randomly selected underground coal miners from 15 mines in NSW. Miners were interviewed and their responses were entered directly into laptop computers. Digital cameras were also used to take pictures of skin conditions and miners' posture. Observations of the skin results indicate that miners find gumboots to be hot, sweaty and uncomfortable. Skin breakdown and tinea, is frequent and disabling and responsible for absences from the workforce that are costly for both miner and employer. A more comfortable and better designed boot is needed, fabricated in waterproof leather together with socks that 'wick' the moisture away from the foot. Socks worn were of varying components and washed at irregular intervals, indicating a need for regular changes of socks and improved hygiene.

  1. Geothermal energy recovery from underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Andrew; Shang, Helen [School of Engineering, Laurentian University, Sudbury, Ontario (Canada); Scott, John Ashley [School of Engineering, Laurentian University, Sudbury, Ontario (Canada); Northern Ontario School of Medicine, Sudbury, Ontario (Canada)


    Underground mines are extremely capital intensive, but despite this investment the traditional view has been that they have little useful value after closure. There are, however, potential positive uses of closed mines, in particular the generation of renewable geothermal energy. After closure, many mines flood and the relatively stable temperature of this water can be exploited by the use of geothermal recovery loops coupled to heat pumps. A review of the current situation, despite increasing pressures to identify sources of renewable energy, reveals that there are still only a limited number of existing and proposed installations. Nevertheless, a survey of those that do exist demonstrates the potential value of this approach. In particular, during the winter heat can be extracted from mine water and supplied for space heating, and in the summer the process can be reversed and the heat transferred back to the water to provide cooling. (author)

  2. System for fracturing an underground geologic formation (United States)

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.; Bronisz, Lawrence E.


    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacent to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.

  3. Hazard index for underground toxic material

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.


    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.


    Directory of Open Access Journals (Sweden)

    Oana Simona HUDEA


    Full Text Available The underground economy issue has raised in time miscellaneous discussions, it representing a large interest problem that affects the nations all over the world, without exception and, thereby, the well—being of stand—alone individuals. Although also treated in some previous works of the author, this topic in herein approached from a different perspective, namely the one related to distinct methods to be used in order to capture, by quantification, this undesirable economic form. Such methods, empirically tested or just imposed, based on arguments, by the researchers having launched the same, are rendered while considering their pluses and minuses in revealing, with a reasonable accuracy, the level of the above—mentioned informal economy.

  5. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.


    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  6. National Register Historic Districts (United States)

    Iowa State University GIS Support and Research Facility — The National Register Historic District layer is a shape file showing the boundaries of Historic Districts that are listed on the National Register of Historic Places.

  7. Silo Storage Preconceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby


    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  8. The mathematical model of radon-222 accumulation in underground mines (United States)

    Klimshin, A.


    Necessity to control underground mine air radon level arises during building and operating mines as well as auto and railway tunnels including those for metros. Calculation of underground mine air radon level can be fulfilled for estimation of potential radon danger of area for underground structure building. In this work the new mathematical model of radon accumulation in underground mines has been suggested. It takes into consideration underground mine dimensions, air exchange factor and soils ability to emanate radon. The following assumptions have been taken for model development. It is assumed that underground mine is a cylinder of length L and of base area S. Due to ventilation atmosphere air of volume activity Catm, is coming in through one cylinder base and is going out of volume activity Cind from underground mine. Diffusion radon flux is coming in through side surfaces of underground mine. The sources of this flux are radium-226 atoms distributed evenly in rock. For simplification of the task it considered possible to disregard radon emanation by loosened rock and underground waters. As a result of solution of the radon diffusion equation the following expression for calculation of radon volume activity in underground space air has been got: 2·r0 ·λv ·Catm-·l·K0(r0/l)-+D-·K1(r0/l)·C0- Cind = 2·(λ+ λv)·r0 ·l·K0 (r0/l)+ D ·K1(r0/l) . The following designations are used in this expression: Kν(r) - the second genus modified Bessel's function, C0 - equilibrium radon volume activity in soil air, l - diffusion radon length in soil, D - radon diffusion factor, r0 - radius of underground tunnel, λv - factor of air exchange. Expression found may be used for calculation of the minimum factor of necessary air exchange for ensuring safe radon levels in underground spaces. With this worked out model expected levels of radon volume activity were calculated for air in the second metro line underground spaces in the city of Yekaterinburg, Russia.

  9. 1988 Underground Storage Tanks; Technical Requirements; Final Rule and Underground Storage Tanks Containing Petroleum-Financial Responsibility Requirements and State Program Approval Objective; Final Rule (United States)

    EPA's 1988 regulations concerning USTs are contained in 40 CFR Part 280, 40 CFR Part 281 and 40 CFR Parts 282.50-282.105 and divided into three sections: technical requirements, financial responsibility requirements, and state program approval objectives.

  10. Rapid Response Initiative Underground Storage Tank Investigations. Site Assessment for Underground Storage Tank Closure Report for Hardwood Range Site, Wisconsin Air National Guard, Volk Field, Camp Douglas, Wisconsin (United States)


    Reactive SW7.3 SW7.3 Density SM271OF SM271OF Flashpoint, Closed Cup SW1010 SW1010 Flashpoint. Open Cup ASTMD4206 ASTMD4206 Fluoride 340.2 Hardness, Total...Cup ASTMD4206 ASTMD4206 Fluoride 340.23Hardness, Total 130.1_ _ Nitrogen, Ammonia 350.2 350.2 Nitrogen, Nitrate 353.2 - Nitrogen, Nitrite 353.2...Measu- Derformed on nitric preserved bottle. 7181-0013 pH (upon receipt) G14 - 1easuI _rforml on nitric Preserved bottle. I I RL = Reporting Limit Ckd : WI

  11. Anthropogenic sinkholes susceptibility and underground caves density of Naples (Southern Italy) (United States)

    Ciotoli, Giancarlo; Guarino, Paolo Maria; Nisio, Stefania


    A study of historical anthropogenic sinkholes, the underground caves and related susceptibility in the municipality of Naples is presented. The goals of the research is to construct an inventory of historical sinkholes (events from 1960 to 2015), to identify and analyze their predisposing and triggering factors, and to evaluate the related susceptibility. A fairly complete assessment of historical events occurred up to December 2015 has been carried out. The analysis related to the last sinkholes phenomena is presented, especially regarding those caused by the collapse of subterranean lapillus quarries. The genetic mechanisms of the surveyed sinkholes appear sufficiently clear; the knowledge of how the predisposing factors vary within the study area is adequate as far as the sewage system is considered, whereas it is still defective as concerns the role of the cavity network. The obtained susceptibility map could be a useful contribution to further detailed zoning maps in a densely urbanized area, such as the city of Naples. In addition to the need of further increasing the knowledge on the subsoil of the Neapolitan area, a key issue remains the use of temporal information on historical events for the purposes of hazard evaluation; further studies in this regard are still in progress.

  12. Energy storage cells

    Energy Technology Data Exchange (ETDEWEB)

    Gulia, N.V.


    The book deals with the characteristics and potentialities of energy storage cells of various types. Attention is given to electrical energy storage cells (electrochemical, electrostatic, and electrodynamic cells), mechanical energy storage cells (mechanical flywheel storage cells), and hybrid storage systems.

  13. Historical tank content estimate for the southeast quadrant of the Hanford 200 Areas

    Energy Technology Data Exchange (ETDEWEB)



    This document provides historical evaluations of the radioactive and mixed waste stored in the Hanford site underground double-shell tanks. A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy and Department of Defense contractors. The historical data will supplement information that is currently being gathered from core sampling. Historical waste transfer and level data, tank physical information, temperature data, and sampling data have been compiled for this report and supporting documents.

  14. Underground reactor containments: An option for the future?

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Kress, T.


    Changing world conditions and changing technologies suggest that serious consideration should be given to siting of nuclear power plants underground. Underground siting is not a new concept. Multiple research reactors, several weapons production reactors, and one power reactor have been built underground. What is new are the technologies and incentives that may now make underground siting a preferred option. The conditions and technologies, along with their implications, are discussed herein. Underground containments can be constructed in mined cavities or pits that are then backfilled with thick layers of rock and soil. Conventional above-ground containments resist assaults and accidents because of the strength of their construction materials and the effectiveness of their safety features that are engineered to reduce loads. However, underground containments can provide even more resistance to assaults and accidents because of the inertia of the mass of materials over the reactor. High-technology weapons or some internal accidents can cause existing strong-material containments to fail, but only very-high energy releases can move large inertial masses associated with underground containments. New methods of isolation may provide a higher confidence in isolation that is independent of operator action.

  15. Occurrence of radon in the Polish underground tourist routes

    Directory of Open Access Journals (Sweden)

    Jerzy Olszewski


    Full Text Available Background: There are about 200 underground tourist routes in Poland. There are caves, mines or underground structures. This paper presents the results of the research intended to identify the extent of the occurrence of radon concentrations in underground areas of tourist routes. Material and Methods: We conducted the measurement of periodic concentrations of radon (1–2 months in the summer using type Tastrak trace detectors. We determined the average concentrations of radon in air in 66 underground tourist routes in Poland. Results: The research results comprise 259 determinations of average radon concentrations in 66 routes. The arithmetic average of the results was 1610 Bqm–3, and the maximum measured concentration was over 20 000 Bqm–3. The minimum concentration was 100 Bqm–3 (threshold method considering the arithmetic average of the measurements. It was found that in 67% of the routes, the average concentration of radon has exceeded 300 Bqm–3 and in 22 underground routes it exceeded 1000 Bqm–3. Conclusions: Radon which occurs in many Polish underground tourist routes may be an organizational, legal and health problem. It is necessary to develop a program of measures to reduce radon concentrations in underground routes, especially routes located in the former mines. Med Pr 2015;66(4:557–563

  16. Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  17. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte


    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks


    Directory of Open Access Journals (Sweden)

    Iva Kolenković


    Full Text Available Carbon dioxide geological storage represents a key segment of the carbon capture and storage system (CCS expected to significantly contribute to the reduction of its emissions, primarily in the developed countries and in those that are currently being industrialised. This approach to make use of the subsurface is entirely new meaning that several aspects are still in research phase. The paper gives a summary of the most important recent results with a short overview the possibilities in the Republic of Croatia. One option is to construct underground carbon dioxide storage facilities in deep coal seams or salt caverns. Another would be to use the CO2 in enhanced oil and gas recovery projects relying on the retention of the carbon dioxide in the deep reservoir because a portion of the injected gas is not going be produced together with hydrocarbons. Finally, the greatest potential estimated lies in depleted hydrocarbon reservoirs with significantly reduced reservoir pressure, as well as in the large regional units - layers of deep saline aquifers that extend through almost all sedimentary basins (the paper is published in Croatian.

  19. Modelling Underground Coal Gasification—A Review

    Directory of Open Access Journals (Sweden)

    Md M. Khan


    Full Text Available The technical feasibility of underground coal gasification (UCG has been established through many field trials and laboratory-scale experiments over the past decades. However, the UCG is site specific and the commercialization of UCG is being hindered due to the lack of complete information for a specific site of operation. Since conducting UCG trials and data extraction are costly and difficult, modeling has been an important part of UCG study to predict the effect of various physical and operating parameters on the performance of the process. Over the years, various models have been developed in order to improve the understanding of the UCG process. This article reviews the approaches, key concepts, assumptions, and limitations of various forward gasification UCG models for cavity growth and product gas recovery. However, emphasis is given to the most important models, such as packed bed models, the channel model, and the coal slab model. In addition, because of the integral part of the main models, various sub-models such as drying and pyrolysis are also included in this review. The aim of this study is to provide an overview of the various simulation methodologies and sub-models in order to enhance the understanding of the critical aspects of the UCG process.

  20. Advanced geophysical underground coal gasification monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert; Yang, X.; White, J. A.; Ramirez, A.; Wagoner, J.; Camp, D. W.


    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Active and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.

  1. Engineered barrier experiment Mont Terri underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J.C. [Empresa Nacional de Residuos Radiactivos, SA (ENRESA), Madrid (Spain); Alonso, E. [Universitat Polytechnica de Catalunya (UPC-CIMNE), Madrid (Spain); Garcia-Sineriz, J.L. [AITEMIN, Madrid (Spain)


    The Engineered Barrier (EB) experiment is being carried out at the Mont Terri underground laboratory (Switzerland). The aim of the EB experiment is the demonstration of a new concept for the buffer construction of HLW repositories in horizontal drifts, in competent clay formations. The principle of this new buffer construction method is based on the combined use of a lower bed made of compacted bentonite blocks, and an upper backfill made with a bentonite pellets based material. The emplacement layout proposed in this project represents an important innovation for repositories in horizontal drifts. The fact of filling the upper part of the gap between the canister and the rock with a pellets-based type of material makes the emplacement operation much simpler, eliminating some of the most critical aspects of such operation. The experiment is carried out in a gallery excavated in the shaly facies of the Opalinus clay of Mont Terri. The geometry of the test site is a horseshoe section, 2,55 m high, 3 m wide and 15 m long. A dummy canister of the same dimensions and weight than the reference one was installed on the top of a compacted bentonite blocks bed, and the gap canister-rock was backfilled with compacted bentonite pellets. The experimental area was isolated by a concrete plug. An artificial hydration system was installed to accelerate the hydration process. In order to monitor the evolution of the system and record the values of different parameters, a data acquisition system was installed. (authors)

  2. Shape and Reinforcement Optimization of Underground Tunnels (United States)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  3. Ring stability of underground toroidal tanks (United States)

    Lubis, Asnawi; Su'udi, Ahmad


    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  4. The underground electromagnetic pulse: Four representative models

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, L.F.


    I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.

  5. Global Development of Commercial Underground Coal Gasification (United States)

    Blinderman, M. S.


    Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.

  6. Life cycle guideline of petrochemical plant underground piping system

    Directory of Open Access Journals (Sweden)

    Shih Jeng-Ywan


    Full Text Available According to statistics of petrochemical plant disaster, the type of underground pipeline leakage is the highest proportion, for example, Kaohsiung gas explosion in 2014 is a typical case. Therefore, improvement strategy of petrochemical plant underground piping system from both engineering and management becomes an important issue. Through reviewing regulations as well as surveying questionnaire, including kinds of piping materials, 3D drawing files, operation procedures, information sharing, etc., the findings show lack contact of integrated management with engineering executive and insufficient technical requirements are major defects. Overviewing current problems of domestic petrochemical plant underground piping system management, and comparing to international criteria and specifications, this research focuses on the of piping design, construction, operations, maintenance, and inspection. Then management procedures and engineering technical feasibility strategies are suggested. In addition, the proposed life cycle guideline in order to reduce the disaster incidence of petrochemical plant underground pipelines.

  7. The London Underground: Dust and Hazards to Health

    National Research Council Canada - National Science Library

    A. Seaton; J. Cherrie; M. Dennekamp; K. Donaldson; J. F. Hurley; C. L. Tran


    Aims: To assess hazards associated with exposure to dust in the London Underground railway and to provide an informed opinion on the risks to workers and the travelling public of exposure to tunnel dust. Methods...

  8. An ultrasonic-based localization system for underground mines

    CSIR Research Space (South Africa)

    Jordaan, JP


    Full Text Available based localization. This paper presents the design and implementation of a wireless sensor network which can be deployed in underground mines to perform time-difference-ofarrival based localization. It is shown that the implemented ultrasound receivers...

  9. Underground Management: An Examination of World War II Resistance Movements (United States)


    in underground organizacions is almost invariably a crime punishable by de-ch, recruitment poses an extreme hazard to both the established members of...usually the result of a person’s particular history and psychological -material needs. If one’s particular history included incidents in which the... psychological attractions of prestige and excitement which the underground offered, also encouraged some to volunteer their services. The prestige

  10. Radon exposure in selected underground touring routes in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, J.; Chruscielewski, W.; Jankowski, J. [Nofer Institute of Occupational Medicine, Dept. of Radiation Protection, Lodz (Poland)


    The radioactive elements abounding in the natural environment cause that the whole human population is exposed to radiation. In Poland, mean gamma radiation dose power is 45.4 n Gy h{sup -1}, while atmospheric radon concentration is 4.4 Bq m{sup -3} [1]. In closed rooms, where radon tends to accumulate, the concentrations may be many times higher.Underground touring routes located in caves, mines, ancient cellars, vaults may accumulate radon at concentrations several thousand times exceeding its atmospheric levels. Studies on natural radioactivity in underground touring routes, with particular reference to caves, have continued worldwide since the 80's. Current register of underground touring routes in Poland comprises over 30 items, which include caves (e.g. Niedzwiedzia), mines (Wieliczka), cellars and underground stores (Opatow City vaults) and military objects (underground factories of Walim). The Nofer Institute of Occupational Medicine has for several years already continued determinations of periodical mean radon concentrations in four underground touring routes (starting date in parentheses): Niedzwiedzia Cave (1995); Kowary Drifts closed uranium mine (2001); closed uranium mine in Kletno (2004); Zloty Stok closed gold mine (2004); Osowka underground city in Gluszyca (2004).The results of our determinations of radon concentrations at five selected touring routes lead to the following conclusions. 1. The exposure in the Kowary Drifts touring route is at the level of 5% of the recommended maximum annual admissible limit of 20 mSv. 2. It is assessed that workers of the touring routes where exposures are estimated from the measured concentrations and the time spent underground may receive doses ranging from 0.01 to 5 mSv. (N.C.)

  11. Monitoring and Simulation of Mechanically Ventilated Underground Car Parks


    Eshack, Adil; D.G., Leo Samuel; S.M., Shiva Nagendra; Maiya, M. Prakash


    Rapid motorization in developed and developing countries demands more parking spaces in urban areas. Underground car parking space in multi story buildings offers viable solution. However, lack of natural ventilation accumulates the harmful emissions from cars, operating in underground car parks. Exposure to these hazardous pollutants causes health risk to the users. Therefore, proper mechanical ventilation system should be adopted for the removal of harmful pollutants. This paper discusses t...

  12. The fire prevention measures of the underground transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Bang Myung; Tack, Eui Gyun; Kim, Jae Seung [Korea Electric Power Corp. (Korea)


    Electric power consumption is highly increasing as the social trend requiring comfortable life, the population in a big city and the industrial development. Therefore is has become to be very important to supply the stable high-quality power. As these trend, the underground power transmission facility is highly increasing in the center of a city. As the proportion to increase facility in tunnel, the fire prevention measures of the underground transmission line become very important. (author). 4 refs., 8 tabs.

  13. 30 CFR 75.811 - High-voltage underground equipment; grounding. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures and...

  14. Design, construction and initial state of the underground openings

    Energy Technology Data Exchange (ETDEWEB)


    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the underground openings for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the underground openings at final disposal, backfilling or closure. In addition, the report provides input to the operational safety report, SR-Operation, on how the underground openings shall be constructed and inspected. The report presents the design premises and the methodology applied to design the underground openings and adapt them the to the site conditions so that they conform to the design premises. It presents the reference design at Forsmark and its conformity to the design premises. It also describes the reference methods to be applied to construct and inspect the different kinds of underground openings. Finally, the initial state of the underground openings and its conformity to the design premises is presented

  15. Stability analysis of underground openings for extraction of natural stone

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak


    Full Text Available Extraction of natural stone is usually carried out in surface quarries. Underground excavation is not a frequently used method. Due to the restrictive environmental legislature and limited stores of natural stone, underground extraction has become quite an interestingalternative. Dimensions of underground openings are determined with stability analyses.Prior to starting a numerical analysis of a large underground opening it is very important to determine the mechanism of failure and set up a proper numerical model. The continuum method is usually used in rock mechanics. A disadvantage of this calculation is that it cannotbe applied to a large number of joints. Other methods are preferred, such as the numerical discrete method, which allows joint systems to be involved into calculations. The most probable failure of rock with several joint systems is block sliding. In the example of themarble of Hotavlje both methods were used. It was established that the continuum method is convenient for the global stability prediction of the underground opening. Further discretemethod enable the block stability calculation. The analytical block analysis is still accurate for the a stability calculation of single block. The prerequisite for a good numerical analysis is sufficient quality data on geomechanical properties of rock. In-situ tests, laboratory tests and geotechnical measurements on the site are therefore necessary. Optimum dimensions of underground chambers in the Quarry of Hotavlje were calculated by using several numericalmodels, and the maximum chamber width of 12 m was obtained.

  16. An energy storage and regeneration system

    DEFF Research Database (Denmark)


    caverns. When the energy demand exceeds the power production capacity of the plant, the stored gases are burned and the thermal energy is converted into electricity in gas turbine generators. The regenerated electrical power is then used to supplement the output of the electric power plant to meet......  The present invention relates to a method and a system for storing excess energy produced by an electric power plant during periods of lower energy demand than the power plant production capacity. The excess energy is stored by hydrolysis of water and storage of hydrogen and oxygen in underground...

  17. A Brief Technical Critique of Economides and Ehlig-Economides 2010 "Sequestering Carbon Dioxide in a Closed Underground Volume"

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Davidson, Casie L.


    In their 2010 paper, “Sequestering Carbon Dioxide in a Close Underground Volume,” authors Ehlig-Economides and Economides assert that “underground carbon dioxide sequestration via bulk CO2 injection is not feasible at any cost.” The authors base this conclusion on a number of assumptions that the peer reviewed technical literature and decades of carbon dioxide (CO2) injection experience have proven invalid. In particular, the paper is built upon two flawed premises: first, that effective CO2 storage requires the presence of complete structural closure bounded on all sides by impermeable media, and second, that any other storage system is guaranteed to leak. These two assumptions inform every aspect of the authors’ analyses, and without them, the paper fails to prove its conclusions. The assertion put forward by Ehlig-Economides and Economides that anthropogenic CO2 cannot be stored in deep geologic formations is refuted by even the most cursory examination of the more than 25 years of accumulated commercial carbon dioxide capture and storage experience.

  18. Underground Coal Gasification - Experience of ONGC (United States)

    Jain, P. K.


    Underground Coal Gasification (UCG) is expected to be game changer for nation like ours that requires large amounts of energy but have few natural resources other than coal. ONGC, being an integrated energy company and due to synergy between E & P operations and UCG, envisaged opportunities in UCG business. Its first campaign on UCG started in 1980s. With its initiative, a National Committee for UCG was constituted with representatives from Ministry of Petroleum, Dept. of Coal, CSIR, CMPDIL, State of Gujarat and ONGC for experimenting a pilot. It was decided in mid-1986 to carry out a UCG pilot in Sobhasan area of Mehsana district which was to be funded by OIDB. Two information wells were drilled to generate geological, geophysical, geo-hydrological data and core/coal samples. 3-D seismic survey data of Mehsana area was processed and interpreted and geological model was prepared. Basic designing of pilot project, drilling and completion, strategy of process wells and designing of surface facilities were carried out. The project could not be pursued further due to escalation in cost and contractual difficulty with design consultant. ONGC second UCG campaign commenced with signing of an agreement of collaboration (AOC) with Skochinsky Institute of Mining (SIM), Russia on 25th November 2004 for Underground Coal Gasification (UCG). In parallel, MOUs were signed with major coal and power companies, namely, Gujarat Industries Power Company Ltd (GIPCL), Gujarat Mineral Development Corporation Ltd (GMDC), Coal India Ltd (CIL), Singareni Colliery Company Ltd (SCCL) and NLC India Ltd. Under the AOC, suitability study was carried out for different sites belonging to MOU companies. Only Vastan mine block, Nani Naroli, Surat, Gujarat was found to be suitable for UCG. Therefore, subsequent stages of detailed characterization & pilot layout, detailed engineering design were taken up for Vastan site. After enormous efforts for quite long since 2006, in the absence of UCG policy

  19. Steam jacket dynamics in underground coal gasification (United States)

    Otto, Christopher; Kempka, Thomas


    Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.

  20. Traces of the future. Learning from the nature for the underground disposal of radioactive wastes; Spuren der Zukunft. Lernen von der Natur fuer die Tiefenlagerung von radioaktiven Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Rieser, A


    In view of the long term safety of an underground storage facility for radioactive waste, some observations from the nature can be helpful by judging laboratory experiments and theoretical calculations. Some examples which are described in this report (so-called natural analogues) show that in the nature geological systems, materials and processes are found the stability of which can be studied over long time intervals of the past. A natural analogue presents an example that is valid for the actual geological conditions and so can give highly useful remarks. However, such an example should not be over estimated. The examples shown in this report are limited to natural analogues which concern the total storage system, the technical barriers or the host rock of a geological underground repository for highly radioactive wastes as they are produced in a nuclear reactor. (author)

  1. Task 4 - natural gas storage - end user interaction

    Energy Technology Data Exchange (ETDEWEB)



    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. Pipelines have been required to {open_quotes}unbundle{close_quotes} their various services so that pipeline users can select only what they need from among the transportation, storage, balancing and the other traditional pipeline services. At the same time, the shift from Modified Fixed Variable (MFV) rate design to Straight Fixed Variable (SFV) rate design has increased the costs of pipeline capacity relative to underground storage and other supply options. Finally, the ability of parties that have contracted for pipeline and storage services to resell their surplus capacities created by Order 636 gives potential gas users more flexibility in assembling combinations of gas delivery services to create reliable gas deliverability. In response to Order 636, the last two years have seen an explosion in proposals for gas storage projects.

  2. Solution of underground mine gas emissions on surface of abandoned mining sites where steep deposited coal seams have been exploited

    Energy Technology Data Exchange (ETDEWEB)

    Takla, G.; Froml, K. [OKD, DPB, Paskov (Czech Republic)


    The solution of uncontrolled gas emissions from abandoned underground coal mine sites in Ostrava-Karvina coal-field to surface ground in connection with old mine shafts and drifts and with old mining workings in horizontal and inclined coal seams has many forms. It varies according to geological and mining conditions and the disposition of the site surface. Since four years the gas emission risk has appeared in the area of former exploited vertical coal seams within the historical centre of Orlova town, which is protected by State Monument Protection office. A project based on such special nature of mining-geological and urban conditions was elaborated and already implemented. (authors)

  3. International Conference on Energy Storage, Brighton, Sussex, England, April 29-May 1, 1981, Proceedings (United States)

    Current developmental, experimental, and production prototype energy storage systems are surveyed, with an emphasis on European programs and products. Attention is given to chemical, thermochemical/heat pump combinations, and reversible reaction heat storage methods. Applications of zeolite, hydrogenated cyclohexane, and fluidized media are examined, as are thermal storage options for industry and utilities. Phase change materials in bulk, encapsulated, and sodium acetate forms are reviewed, particularly for solar energy thermal storage. The compatibility of construction materials with latent heat storage is discussed. Battery systems for transport vehicles, load leveling, and storage of solar and wind-derived electricity are described. Aquifer storage is explored, together with underground pumped hydro and compressed air energy storage, a two-basin tidal power scheme, and kinetic energy rings such as flywheels.

  4. In situ bioremediation of an underground diesel fuel spill: A case history (United States)

    Frankenberger, W. T.; Emerson, K. D.; Turner, D. W.


    In the winter months of 1983, approximately 1000 gallons of diesel fuel had flowed along an asphalt parking lot of a commercial establishment towards a surface drain near an open creek. Investigations led to the discovery of an underground storage tank leaking diesel fuel. Exploratory borings showed that contamination was near the surface horizon and the capillary zone of the water table. Hydrocarbon quantities ranged up to 1500 mg/kg of soil. The plume continued to move in an eastward direction toward the surface water of the creek. A laboratory study indicated relatively high numbers of hydrocarbon-oxidizing organisms relative to glucose-utilizing microorganisms in the unsaturated vadose zone. Bioreclamation was initiated in April 1984 by injecting nutrients (nitrogen and phosphorus) and hydrogen peroxide and terminated in October 1984 upon no detection (hydrocarbons. A verification boring within the vicinity of the contaminated plume confirmed that residual contamination had attained background levels. The monitoring program was terminated in January 1987.


    Directory of Open Access Journals (Sweden)

    Grzegorz Nawalany


    Full Text Available The paper presents the analysis of hygrothermal conditions of external partitions in an underground fruit store. The results of measurements of temperature and humidity of the indoor and outdoor air as well as the surface surrounding temperature and the temperature of the air surrounding the store constituted the boundary conditions for the hygrothermal calculations. The paper presents the calculation of the distribution of the temperature and humidity on the ground floor, the wall contacting the ground, the wall contacting the outside air, and the ceiling above the storage chamber. The heat and moisture calculations have shown high risk of condensation submerged in non-insulated external walls. The condition of the adaptation of a traditional cold store to a simple and atmosphere controlled cold one is to increase the thermal resistance of the partitions. Such a solution will let cut the energy demand in those types of agricultural buildings.

  6. Historical Arctic Rawinsonde Archive (United States)

    National Aeronautics and Space Administration — Note: This data set is now on FTP so references to CD-ROM are historic and no longer applicable. The Historical Arctic Rawinsonde Archive is on FTP, and it contains...

  7. Exploring Historical Illiteracy. (United States)

    Furr, L. Allen


    Finds that powerlessness, social isolation, dogmatic nationalism, age, and gender significantly predict historical illiteracy (unfamiliarity with historical facts) and that a completed college history course reduced the effects of the predicting factors. (SR)

  8. VT Historic Preservation Grant (United States)

    Vermont Center for Geographic Information — The State-funded Historic Preservation Grant Program helps municipalities and non-profit organizations rehabilitate the historic buildings that are a vital part of...

  9. Development of an underground radon detector using an optical fiber (United States)

    Yamamoto, S.; Yoshida, Y.; Iida, T.


    We developed and tested a new underground radon detector using an optical fiber. Previous underground radon detectors used a small-diameter photo-multiplier tube (PMT) behind the chamber, thus, the diameter of the underground radon detector was determined by the size of the PMT. The larger diameter of the detector resulted in considerable labor for drilling holes into soil. The new underground radon detector consists of a small chamber, an optical fiber, and a PMT. The small chamber is a scintillation detector using a ZnS(Ag) film. The optical fiber transfers the scintillated light produced in the chamber to the PMT that is positioned above the soil. In this configuration, the size of the detector was not determined by the size of the PMT. The diameter of the optical fiber used was 5 mm and the outside diameter of the detector was reduced to be 12 mm. Although the light lost from the optical fiber was about 90%, the level of the scintillation signal was much higher than the noise level produced by the PMT and electronics. Measuring the performance of the underground radon detector, we found that the energy response had a clear distribution due to alpha particles emitted by radon and its decay products. The temporal response of the detector was approximately 2 h. Sensitivity was approximately 0.01 counts/h/Bq/m/sup 3/, one third of the previous underground radon detector. These results indicate the developed radon detector can be used for continuous measurements of radon concentration in underground soil with easy handling.

  10. Optimal design of compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, F. W.; Sharma, A.; Ragsdell, K. M.


    Compressed air energy storage (CAES) power systems are currently being considered by various electric utilities for load-leveling applications. Models of CAES systems which employ natural underground aquifer formations, and present an optimal design methodology which demonstrates their economic viability are developed. This approach is based upon a decomposition of the CAES plant and utility grid system into three partially-decoupled subsystems. Numerical results are given for a plant employing the Media, Illinois Galesville aquifer formation.

  11. Current experiences in applied underground coal gasification (United States)

    Peters, Justyn


    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  12. Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, S


    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  13. Democracy and Historical Writing

    NARCIS (Netherlands)

    de Baets, Antoon


    In this essay, we try to clarify the relationship between democracy and historical writing. The strategy is first exploring the general relationship between democracy and historical awareness, and then, studying the relationship between democracy and historical writing itself to find out whether


    Energy Technology Data Exchange (ETDEWEB)

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer; P.A. Zyglowicz; P.M. Halleck; J.P. Spivey


    The underground gas storage (UGS) industry uses over 400 reservoirs and 17,000 wells to store and withdrawal gas. As such, it is a significant contributor to gas supply in the United States. It has been demonstrated that many UGS wells show a loss of deliverability each year due to numerous damage mechanisms. Previous studies estimate that up to one hundred million dollars are spent each year to recover or replace a deliverability loss of approximately 3.2 Bscf/D per year in the storage industry. Clearly, there is a great potential for developing technology to prevent, mitigate, or eliminate the damage causing deliverability losses in UGS wells. Prior studies have also identified the presence of several potential damage mechanisms in storage wells, developed damage diagnostic procedures, and discussed, in general terms, the possible reactions that need to occur to create the damage. However, few studies address how to prevent or mitigate specific damage types, and/or how to eliminate the damage from occurring in the future. This study seeks to increase our understanding of two specific damage mechanisms, inorganic precipitates (specifically siderite), and non-darcy damage, and thus serves to expand prior efforts as well as complement ongoing gas storage projects. Specifically, this study has resulted in: (1) An effective lab protocol designed to assess the extent of damage due to inorganic precipitates; (2) An increased understanding of how inorganic precipitates (specifically siderite) develop; (3) Identification of potential sources of chemical components necessary for siderite formation; (4) A remediation technique that has successfully restored deliverability to storage wells damaged by the inorganic precipitate siderite (one well had nearly a tenfold increase in deliverability); (5) Identification of the types of treatments that have historically been successful at reducing the amount of non-darcy pressure drop in a well, and (6) Development of a tool that can

  15. Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen.

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Anna Snider


    In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.


    Directory of Open Access Journals (Sweden)

    Rafael Barrionuevo GIMÉNEZ


    Full Text Available TSM is escape pipe in case of collapse of terrain. The TSM is a passive security tool placed underground to connect the work area with secure area (mining gallery mainly. TSM is light and hand able pipe made with aramid (Kevlar, carbon fibre, or other kind of new material. The TSM will be placed as a pipe line network with many in/out entrances/exits to rich and connect problem work areas with another parts in a safe mode. Different levels of instrumentation could be added inside such as micro-led escape way suggested, temperature, humidity, level of oxygen, etc.. The open hardware and software like Arduino will be the heart of control and automation system.

  17. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, E.; Sobolik, S.R.


    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  18. Feeder Type Optimisation for the Plain Flow Discharge Process of an Underground Hopper by Discrete Element Modelling

    Directory of Open Access Journals (Sweden)

    Jan Nečas


    Full Text Available This paper describes optimisation of a conveyor from an underground hopper intended for a coal transfer station. The original solution was designed with a chain conveyor encountered operational problems that have limited its continuous operation. The Discrete Element Modeling (DEM was chosen to optimise the transport. DEM simulations allow device design modifications directly in the 3D CAD model, and then the simulation makes it possible to evaluate whether the adjustment was successful. By simulating the initial state of coal extraction using a chain conveyor, trouble spots were identified that caused operational failures. The main problem has been the increased resistance during removal of material from the underground hopper. Revealed resistances against material movement were not considered in the original design at all. In the next step, structural modifications of problematic nodes were made. For example, the following changes have been made: reduction of storage space or installation of passive elements into the interior of the underground hopper. These modifications made were not effective enough, so the type of the conveyor was changed from a drag chain conveyor to a belt conveyor. The simulation of the material extraction using a belt conveyor showed a significant reduction in resistance parameters while maintaining the required transport performance.

  19. Parametric analysis of turbomachinery options for compressed air energy storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Kartsounes, G.T.


    A parametric study of possible turbomachinery options for compressed air energy storage plants is presented. The plant is divided into the four subsystems: a turbine system, compressor system, motor/generator, and an underground air storage reservoir. The turbine system comprises a high-pressure turbine, a low-pressure turbine, two combustors, and a recuperator. The compressor system comprises a low-pressure compressor, high-pressure compressor, booster compressor, intercoolers, and an aftercooler. A water-compensated mined cavern constitutes the underground air-storage reservoir. Plant performance is presented in terms of five parameters: specific air flow rate, specific heat rate, specific storage volume, specific compression rate, and overall plant efficiency. The capital and operating costs of the plant as a function of the turbomachinery options are presented. Design variables of the turbomachinery are the reservoir pressure and inlet gas temperatures to the turbines.


    Directory of Open Access Journals (Sweden)

    Corneliu Sorin BAICU


    Full Text Available For a comprehensive understanding of the informal sector, an analysis addressing the relationships and links between the morphology and etiology of the underground economy, on the one hand, and its effects on the economic, social or legal, on the other hand is required. The double identity, that of cause phenomenon and effect phenomenon, that the underground economy has, gives it a special status in explaining certain phenomena which vitiates the economic and social life. The generating and complementary effects of the underground area covered in this study are analyzed in terms of the following vectors of analysis: tax evasion, illegal work and money laundering. Tax evasion represents the central core of the underground economy and faithfully expresses the fiscal monetary policies ,the fiscal mortality and the degree of compliance of the taxpayer. Undeclared work is an indicator of the labor market in the informal economy and is a good barometer for analyzing the demand and supply of labor in the visible economy. Money laundering defines the level of economic and financial crime and reflects the level of illegal use of capital on the black market. Tax evasion, money laundering and illegal work can only develop on a framework provided by illicit markets for goods, services and labor. Beyond the, unidirectional or bidirectional relationships between phenomena, the paper consists in a plea for an interdependent, multi-causal analysis of the phenomena and operating mechanisms of the relationships within and outside the underground economy.

  1. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu


    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  2. Prediction of Underground Argon Content for Dark Matter Experiments

    CERN Document Server

    Mei, D -M; Spaans, J; Koppang, M; Hime, A; Keller, C; Gehman, C M


    In this paper, we demonstrate the use of physical models to evaluate the production of $^{39}$Ar and $^{40}$Ar underground. Considering both cosmogenic $^{39}$Ar production and radiogenic $^{40}$Ar production in situ and from external sources, we can derive the ratio of $^{39}$Ar to $^{40}$Ar in underground sources. We show for the first time that the $^{39}$Ar production underground is dominated by stopping negative muon capture on $^{39}$K and ($\\alpha,n)$ induced subsequent $^{39}$K(n,p)$^{39}$Ar reactions. The production of $^{39}$Ar is shown as a function of depth. We demonstrate that argon depleted in $^{39}$Ar can be obtained only if the depth of the underground resources is greater than 500 m.w.e. below the surface. The depletion factor depends strongly on both radioactivity level and potassium content in the rock. We measure the radioactivity concentration and potassium concentration in the rock for a potential site of an underground argon source in South Dakota. Depending on the probability of $^{39...

  3. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Russell, Glenn P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perry, Frank V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kelley, Richard E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Champenois, Sean T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  4. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig


    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  5. Historical tank content estimate for the southeast quadrant of the Hanford 200 area

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford


    The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by-tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 Areas. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tank- by-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Laboratory are also given in this report.

  6. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon


    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  7. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)


    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  8. Underground pumped hydro storage and compressed air energy storage: an analysis of regional markets and development potential

    Energy Technology Data Exchange (ETDEWEB)



    The analysis had the following objectives: (1) a survey of the regional markets within the continental United States to identify three regions most suitable for UPHS and CAES; (2) a national survey with emphasis on the three selected regions to determine developmental potential and costs of UPHS and CAES; (3) determine cost effectiveness of UPHS and CAES and their market share in future electric systems; and (4) recommend research, development and demonstration work to realize the timely commercialization of UPHS and CAES system. (TFD)

  9. Information field for historical research

    Directory of Open Access Journals (Sweden)

    Sviatets, Yu. A.


    Full Text Available The article analyzes the main information collision of historical knowledge, which consists in physical inaccessibility of events and phenomena of the past as an object of historical science for a historian as an investigator. The aim of the research is to formulate and discuss a working hypothesis about the information field of historical science. The article provides an analytical background on the main ideas and approaches in the field of modern information field theory. The author carries out the projection of the main provisions of the information field theory on historical research. It is shown that the information field is a really existing information carrier that provides its acquisition, transportation, storage and visualization, as well as provides information and knowledge recorded in various forms, realizes cultural communications. One of the manifestations of such a culture is the sign systems, which determine certain contexts. Signs are characterized by polysemy. Despite artificial origin, semiotic reality is objective. Simultaneously, signs provide intellectual activity of people. Mental signs in the historical process of use by society acquire additional meanings, generating new symbols. Polysemy shapes the problem of epistemological uncertainty of two stages – identifying the problem and solving it. Historians as researchers resort to cognitive models, which, thanks to the translational function, ensure the transfer of information from the known to the unknown. One of the explanations of polysemy is the theory of conceptual integration, according to which the structures of the original mental spaces are projected onto a new, constructed, mental space – blend. This is the result of a personʼs intellectual ability to create new meanings on the basis of the available ones. Since signs and symbols are multi-valued, they form a multiplicity of retrospective scenarios of historical research at the stage of problem formulation

  10. Air ejector augmented compressed air energy storage system (United States)

    Ahrens, Frederick W.; Kartsounes, George T.


    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  11. Air ejector augmented compressed air energy storage system (United States)

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  12. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.


    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  13. An overview of world history of underground coal gasification (United States)

    Konovšek, Damjan; Nadvežnik, Jakob; Medved, Milan


    We will give an overview of the activities in the field of underground coal gasification in the world through history. Also we will have a detailed presentation of the most successful and the most recent research and development projects. The currency and scope of the study of coal gasification processes are linked through recent history to the price of crude oil. We will show how by changing oil prices always changes the interest for investment in research in the field of coal gasification. Most coal-producing countries have developed comprehensive programs that include a variety of studies of suitable coal fields, to assess the feasibility and design pilot and commercial projects of underground coal gasification. The latest technologies of drilling in oil and gas industry now enable easier, simpler and more economically viable process underground coal gasification. The trend of increasing research in this area will continue forward until the implementation of commercial projects.

  14. The hazardous nature of small scale underground mining in Ghana

    Directory of Open Access Journals (Sweden)

    K.J. Bansah


    Full Text Available Small scale mining continues to contribute significantly to the growth of Ghana's economy. However, the sector poses serious dangers to human health and the environment. Ground failures resulting from poorly supported stopes have led to injuries and fatalities in recent times. Dust and fumes from drilling and blasting of ore present health threats due to poor ventilation. Four prominent small scale underground mines were studied to identify the safety issues associated with small scale underground mining in Ghana. It is recognized that small scale underground mining in Ghana is inundated with unsafe acts and conditions including stope collapse, improper choice of working tools, absence of personal protective equipment and land degradation. Inadequate monitoring of the operations and lack of regulatory enforcement by the Minerals Commission of Ghana are major contributing factors to the environmental, safety and national security issues of the operations.

  15. Glimos Instructions for CMS Underground Guiding - in french

    CERN Multimedia

    CERN. Geneva; Dupont, Niels; Brodski, Michael


    In this presentation in french, the basic safety rules for CMS underground visits are explained. The trainees are taught how to plan/organize a CMS underground visit along important safety aspects of the CMS underground (Point 5). Content owners and presenters (CMS safety team) : Niels Dupont (in french), Michael Brodski (in german), William Esposito (in english) A pdf document on the subject is available as material from the indico event page. (TO BE DONE from!)   Tell us what you think via at More tutorials in the e-learning collection of the CERN Document Server (CDS) All info about the CERN rapid e-learning project is linked from  

  16. Glimos Instructions for CMS Underground Guiding - in english

    CERN Multimedia

    CERN. Geneva; Dupont, Niels; Esposito, William


    In this presentation in english, the basic safety rules for CMS underground visits are explained. The trainees are taught how to plan/organize a CMS underground visit along important safety aspects of the CMS underground (Point 5). Content owners and presenters (CMS safety team) : Niels Dupont (in french), Michael Brodski (in german), William Esposito (in english) A pdf document on the subject is available as material from the indico event page. (TO BE DONE from!)   Tell us what you think via at More tutorials in the e-learning collection of the CERN Document Server (CDS) All info about the CERN rapid e-learning project is linked from  

  17. Detection of underground pipeline based on Golay waveform design (United States)

    Dai, Jingjing; Xu, Dazhuan


    The detection of underground pipeline is an important problem in the development of the city, but the research about it is not mature at present. In this paper, based on the principle of waveform design in wireless communication, we design an acoustic signal detection system to detect the location of underground pipelines. According to the principle of acoustic localization, we chose DSP-F28335 as the development board, and use DA and AD module as the master control chip. The DA module uses complementary Golay sequence as emission signal. The AD module acquisiting data synchronously, so that the echo signals which containing position information of the target is recovered through the signal processing. The test result shows that the method in this paper can not only calculate the sound velocity of the soil, but also can locate the location of underground pipelines accurately.

  18. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James


    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  19. The new draft law to Carbon Capture and Storage; Der neue Gesetzentwurf zu Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hellriegel, Mathias [Sozietaet Eggers Malmendier Rechtsanwaelte, Berlin (Germany)


    Emissions of greenhouse gas into the atmosphere are considered as a central reason for the global climate change. Regarding the reduction of CO{sub 2} emissions, recently the capture of CO{sub 2} and its permanent underground storage is discussed. With the government's draft of the law to regulate the capture, transport and permanent storage of CO{sub 2}, the Grand Coalition took a first attempt to implement the CCS Directive. The author of the contribution under consideration describes the main contents of the current draft law and considered this draft critically.

  20. Flat-Land Large-Scale Electricity Storage (FLES

    Directory of Open Access Journals (Sweden)

    Schalij R.


    Full Text Available Growth of renewable sources requires a smarter electricity grid, integrating multiple solutions for large scale storage. Pumped storage still is the most valid option. The capacity of existing facilities is not sufficient to accommodate future renewable resources. New locations for additional pumped storage capacity are scarce. Mountainous areas mostly are remote and do not allow construction of large facilities for ecological reasons. In the Netherlands underground solutions were studied for many years. The use of (former coal mines was rejected after scientific research. Further research showed that solid rock formations below the (unstable coal layers can be harnessed to excavate the lower water reservoir for pumped storage, making an innovative underground solution possible. A complete plan was developed, with a capacity of 1400 MW (8 GWh daily output and a head of 1400 m. It is technically and economically feasible. Compared to conventional pumped storage it has significantly less impact on the environment. Less vulnerable locations are eligible. The reservoir on the surface (only one instead of two is relatively small. It offers also a solution for other European countries. The Dutch studies provide a valuable basis for new locations.

  1. Annual Collection and Storage of Solar Energy for the Heating of Buildings, Report No. 3. Semi-Annual Progress Report, August 1977 - January 1978. (United States)

    Beard, J. Taylor; And Others

    This report is part of a series from the Department of Energy on the use of solar energy in heating buildings. Described here is a new system for year around collection and storage of solar energy. This system has been operated at the University of Virginia for over a year. Composed of an underground hot water storage system and solar collection,…

  2. A Natural Analogue Approach for Discriminating Leaks of CO2 Stored Underground Using Groundwater Geochemistry Statistical Methods, South Korea

    Directory of Open Access Journals (Sweden)

    Kwang-Koo Kim


    Full Text Available Carbon capture and storage (CCS is one of several useful strategies for capturing greenhouse gases to counter global climate change. In CCS, greenhouse gases such as CO2 that are emitted from stacks are isolated in underground geological storage. Natural analogue studies that can provide insights into possible geological CO2 storage sites, can deliver crucial information about the safety and security of geological sequestration, the long-term impact of CO2 storage on the environment, and the field operation and monitoring requirements for geological sequestration. This study adopted a probability density function (PDF approach for CO2 leakage monitoring by characterizing naturally occurring CO2-rich groundwater as an analogue that can occur around a CO2 storage site due to CO2 dissolving into fresh groundwater. Two quantitative indices, (QItail and QIshift, were estimated from the PDF test and were used to compare CO2-rich and ordinary groundwaters. Key geochemical parameters (pH, electrical conductance, total dissolved solids, HCO3−, Ca2+, Mg2+, and SiO2 in different geological regions of South Korea were determined through a comparison of quantitative indices and the respective distribution patterns of the CO2-rich and ordinary groundwaters.

  3. Storage of wind power by post-utilization of shut-down mines. Final report; Windenergiespeicherung durch Nachnutzung stillgelegter Bergwerke. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Beck, H.P.; Schmidt, M. (eds.)


    The contribution under consideration examines the potential of energy storages in the electrical power grid in Germany for the grid integration of wind energy by the pre-utilization of shut-down mines by means of underground hydrodynamic pumped storage power plant. This requires retrofitting measures of shut-down mines. For this purpose, six mining regions in Germany have been identified for the construction of underground pumped storage power plants. Examplary, two mines (the former mines Grund in the Harz Mountain and Poehla in the Erz Mountains) were investigated in terms of post-utilization for an underground pumped storage power plant. In both cases, a realization appears technically possible. The major challenges are at the site Poehla due to the supply of raw materials, access to these mines and environmental as well as acceptance issues.

  4. Rock massif observation from underground coal gasification point of view

    Directory of Open Access Journals (Sweden)

    T. Sasvári


    Full Text Available The Underground coal gasification (UCG of the coal seams is determined by suitable geological structure of the area. The assumption of the qualitative changes of the rock massif can be also enabled by application of geophysical methods (electric resisting methods and geoelectric tomography. This article shows the example of evaluating possibilities of realization of the underground coal gasification in the area of the Upper Nitra Coal Basin in Cíge¾ and Nováky deposits, and recommend the needs of cooperation among geological, geotechnical and geophysical researchers.


    Directory of Open Access Journals (Sweden)

    Ciprian Tudurachi


    Full Text Available The fight against shadow economy must be addressed not only as a permanent concern of economic analysts and decision-makers, but rather as a problematic ethical-moral nature affecting economic and interpersonal relations, as strategic and operational object. The authors attempt outline an institutional management strategy geared towards underground economy combating has as objective the strands establishment without having exhaustiveness claim. We make a case for extending the implementation of a coherent program, strategic and operational, and its adoption as a way of institutional management in the context it really wants to launch a concerted offensive to combat the underground economy.

  6. Komunitas Metal Underground di Pekanbaru Studi Gaya Hidup Perkotaan


    Asriwandari, Hesti; Antika, Sari Rezki


    This research study titled Underground Metal Community about The Urban Lifestyle in Pekanbaru. Music is a means to express of happiness, resentment and so on. On development in todays times, music is divided into several streams called genre. One stream of music that is played with a high enough skill and unusual sounds in the ears of the general. Underground metal music was born in 1960s in England and France by the events that accompanied the French Revolution and 1980s music is growing.See...

  7. Sudden stratospheric warmings seen in MINOS deep underground muon data

    Energy Technology Data Exchange (ETDEWEB)

    Osprey, S.; /Oxford U.; Barnett, J.; /Oxford U.; Smith, J.; /Oxford U.; Adamson, P.; /Fermilab; Andreopoulos, C.; /Rutherford; Arms, K.E.; /Minnesota U.; Armstrong, R.; /Indiana U.; Auty, D.J.; /Sussex U.; Ayres, D.S.; /Argonne; Baller, B.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.


    The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

  8. Optimization Design and Application of Underground Reinforced Concrete Bifurcation Pipe

    Directory of Open Access Journals (Sweden)

    Chao Su


    Full Text Available Underground reinforced concrete bifurcation pipe is an important part of conveyance structure. During construction, the workload of excavation and concrete pouring can be significantly decreased according to optimized pipe structure, and the engineering quality can be improved. This paper presents an optimization mathematical model of underground reinforced concrete bifurcation pipe structure according to real working status of several common pipe structures from real cases. Then, an optimization design system was developed based on Particle Swarm Optimization algorithm. Furthermore, take the bifurcation pipe of one hydropower station as an example: optimization analysis was conducted, and accuracy and stability of the optimization design system were verified successfully.

  9. Insulation coordination for HV AC underground cable systems

    Energy Technology Data Exchange (ETDEWEB)



    Increasing environmental and aesthetic concerns regarding the utilisation of overhead electrical power transmission lines are resulting in a growing need to progress the use of underground alternatives. This increases the importance of looking for opportunities to further reduce the cost ratio between overhead and underground distribution and transmission. One approach is to address the inherent costs associated with the cable system by reducing the required withstand capability in line with the actual service requirements rather than traditional levels in particular the transient overvoltage performance. (author)

  10. Compressed air energy storage technology program. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, W.V.


    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)


    This report reviews the current state of knowledge on the transport and fate of MTBE in ground water, with emphasis on the natural processes that can be used to manage the risk associated with MTBE in ground water or that contributes to natural attenuation of MTBE as a remedy. I...

  12. Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage (EW-201135) (United States)


    Okotoks, combination solar collectors and BTES. In operation. 26.383/60317/BG 6 April 2012 Denmark  Copenhagen towers. ATES system, 2009...chemistry analysis Required Water temperature Required NL Water level Required NL Water pH Required NL Interpretation pumping test Opt. 1 NL Specific...yield Opt. 1 NL Sand and silt content well Opt. 1 NL Interpretation water direction and velocity Opt. 1 NL Final test drilling report Required NL

  13. Operational Plan for Underground Storage Tank 322 R2U2

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    This Operational Plan provides the operator of the tank system with guidelines relating to the safe and compliant operation and maintenance of the tank system. The tank system schematic and list of emergency contacts shall be posted near the tank so they are visible to tank personnel. This Operational Plan shall be kept on file by the Facility Supervisor. It should be understood when managing this tank system that it is used to store hazardous waste temporarily for 90 calendar days or less. The rinsewater handled in the tank system is considered hazardous and may exhibit the characteristic of toxicity.

  14. Coupling Geothermal Heat Pumps (GHP) With Underground Seasonal Thermal Energy Storage (USTES) (United States)


    SUPPLEMENTARY NOTES 14. ABSTRACT The objective of this demonstration was to fully maximize the inherent advantages of the geology and hydrogeology...Economic Advantages , Environmental Impacts and Regulations Forum. Crystal City, Virginia. June 12, 2012. Evans, D., Stephenson, M. and Shaw,$ext.TacPage?sl=R& app =9&p_dir=&p_rloc=&p _tloc=&p_ploc=&pg=1&p_tac=&ti=30&pt=1&ch=331&rl=132

  15. Simulation Techniques for the Prediction of Blast from Underground Munitions Storage Facilities (United States)


    will be needed to determine baffle location dependence to maximize baffle efficiency. Figures 4-7 show portions of the pressure-time records from the...DES&USMA TWI M= 4w, - 6 vr TV 0u to 2 TDC MIT FIGUR Ah.3hot , C’hafb!- Lodl~n Desl -tY 394,"Kg/ or ,’- - - - - - - - 4- Ise I In I 0.. 2 4 8 . le STATMN

  16. 76 FR 11404 - Oregon: Tentative Approval of State Underground Storage Tank Program (United States)


    ... proposed rule on small entities and welcomes comments on issues related to such impacts. 4. Unfunded... addressing, as appropriate, disproportionately high and adverse human health or environmental effects of... adverse human health or environmental effects on minority or low-income populations. This proposed rule...

  17. 75 FR 70241 - Compatibility of Underground Storage Tank Systems With Biofuel Blends (United States)


    ... blends: Tank or internal tank lining; Piping; Pipe adhesives and glues; Line leak detectors; Flexible... tank lining; Piping; Pipe adhesives and glues; Line leak detectors; Flexible connectors; Fill pipe... alternative fuel used in flexible fuel vehicles. EPA understands that in order to avoid compatibility issues...

  18. 76 FR 39095 - Compatibility of Underground Storage Tank Systems With Biofuel Blends (United States)


    ... ethanol (E85), which is an alternative fuel used in flexible fuel vehicles. EPA understands that in order... commenters' input, EPA is removing from the list pipe adhesives and glues, because these components are..., an UST contractor installing a new UST system does not have discretion over which pipe adhesives to...

  19. Underground storage system of solar energy for the year round heating

    Energy Technology Data Exchange (ETDEWEB)

    Schurchkov, A.; Belyaeva, T.; Gorokhov, M. [Institute of Engineering Thermophysics, National Academy of Sciences, Kiev (Ukraine)


    This presentation describes a pilot solar heat supply installation in an apartment building in Yalta, Ukraine. Energy conservation problems and introduction of non-traditional and resumed power sources into manufacture practice are the most actual problems for scientists and engineers of Ukraine, which experiences, at present, a terrible shortage of energy carriers. Scientific-research developments of Ukrainian experts, as well as foreigners` experiences indicate an absolute expediency of introduction of energy conservation technologies. At the same time the scientific-technical potential and the industrial basis in Ukraine make favourable conditions to realize successfully energy conservation measures. One of perspective ways of power resource saving is to smooth in time schedules of heat manufacture and consumption by using various kinds of systems - a seasonal, as well as a short-term accumulation system

  20. 76 FR 76684 - Idaho: Tentative Approval of State Underground Storage Tank Program (United States)


    ... of power and responsibilities among various levels of government, as specified in Executive Order..., Executive Order 13132 does not apply to this proposed rule. In the spirit of Executive Order 13132, and... environmental effects on minority or low-income populations. This proposed rule does not affect the level of...

  1. TOPS : Technology Options for Coupled Underground Coal Gasification and CO2 Capture and Storage

    NARCIS (Netherlands)

    Durucan, S.; Korre, A.; Shi, J.Q.; Idiens, M.; Stanczyk, K.; Kapusta, K.; Rogut-Dabrowska, A.; Kempka, T.; Wolf, K.H.A.A.; Younger, P.; Zavsek, S.; Poulsen, N.E.; Bojda, D.; Franzsen, S.; Muresan, M.; Gao, J.; Beath, A.; Mastalerz, M.


    The TOPS project takes a radical and holistic approach to coupled UCG-CCS, and thus the site selection criteria for the coupled processes, considering both geological, reservoir and process engineering aspects and different end-uses of the produced synthetic gas in order to optimise the whole value

  2. 76 FR 71707 - Revising Underground Storage Tank Regulations-Revisions to Existing Requirements and New... (United States)


    ... characters, any form of encryption, and be free of any defects or viruses. For additional information about..., accommodation, and food services). Institutional (hospitals only).. 622. Manufacturing 31-33. Transportation... or examiner, company name, address, and phone number. Records from computer-based training, at a...

  3. Natural gas storage - end user interaction. Final report, September 1992--May 1996

    Energy Technology Data Exchange (ETDEWEB)



    The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

  4. Le stockage de gaz naturel Natural Gas Storage

    Directory of Open Access Journals (Sweden)

    Choquel A.


    Full Text Available Le stockage souterrain du gaz naturel est une des principales techniques qui ont contribué à donner un rôle majeur à cette source d'énergie dans le bilan énergétique mondial. Le rôle des stockages souterrains est prépondérant pour assurer la modulation saisonnière et quotidienne des consommations. Ils contribuent également, avec la clientèle effaçable, à la sécurité d'approvisionnement par une qualité spécifique grâce à la rapidité et à la souplesse de leur mise en oeuvre. Cet article présente les différentes fonctionnalités du stockage souterrain de gaz naturel en s'appuyant sur l'exemple de la France, puis, les différentes techniques mises en oeuvre à l'heure actuelle. Une présentation d'ensemble de la situation des stockages souterrains dans le monde rappelle les ordres de grandeur importants et cite quelques tendances d'évolution. La conclusion de l'article fait le point sur les progrès techniques récents réalisés dans le domaine du stockage massif de gaz naturel en souterrain. Underground storage of natural gas is one of the main techniques that have helped make gas one of the leading energy sources in the world's energy balance. Underground storage facilities are instrumental in ensuring seasonal and daily adjustments in consumption. With interruptible consumers, they also contribute to supply security with a quality asset because they can be mobilized rapidly and flexibly. This article presents the varied functional framework for underground natural gas storage based of the example of France and then deals with the different techniques utilized at this point in time. The situation of the world's underground storage facilities is given an overall presentation, with a reminder of the important orders of magnitude and mention of a number of evolutionary trends. The recent technical achievements in massive natural gas storage underground are reviewed in the conclusion of the article.

  5. Pipes to the earth subsurface: The role of atmospheric conditions in driving air movement along a borehole connecting land surface and an underground cavity (United States)

    Weisbrod, Noam; Levintal, Elad; Lensky, Nadav G.; Mushkin, Amit; Dragila, Maria I.


    Understanding air dynamics in underground cavities (e.g., caves, underground storage structures, quarries, tunnels, etc.) and different types of boreholes is of great significance for the exploration of gas transport at the earth-atmosphere interface. Here, we investigated the role of atmospheric conditions on air transport inside a borehole. Two different geometries were explored in the field: a 27-m deep shaft connected to an underground large cavity and the same shaft after being disconnected from the underground cavity. The observation setup included a standard meteorological station located above the borehole and temperature and relative humidity sensors along the borehole. Absolute humidity, calculated from the measured temperature and relative humidity, was validated as a robust marker for assessing air transport inside the two shaft geometries examined. In both cases, air inflow and outflow at depths of 12 and 27 m was found to be related to changes in barometric pressure regardless of temperature instability (thermal-induced convection) or wind velocity (wind-induced convection). In contrast, these convective fluxes were found to be significant parameters driving air flow in the upper few meters. A newly developed conceptual model is presented to examine the induced airflow in both shaft geometries with the goal of improving our understanding of gas transport and its dependence on barometric pressure changes.


    Directory of Open Access Journals (Sweden)

    L. H. Politikova


    Full Text Available The research work on creation of effective rubber sealants for hermetic sealing of joints of underground structures from modular ferro-concrete and pig-iron including the underground tunnel casings is carried out.

  7. 75 FR 22763 - Office of Postsecondary Education; Overview Information: Underground Railroad Educational and... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Office of Postsecondary Education; Overview Information: Underground Railroad Educational and Cultural... the Underground Railroad throughout the United States, including lessons to be drawn from the history...

  8. Results from massive underground detectors on solar and atmospheric neutrino studies and proton decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki, E-mail: [ICRR and IPMU, University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)


    Massive underground detectors have been playing important roles in particle and astro-particle physics. Results from massive underground detectors on solar and atmospheric neutrino studies and proton decay searches are reviewed.

  9. 30 CFR 57.4561 - Stationary diesel equipment underground. (United States)


    ....4561 Section 57.4561 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...) Provided with a thermal sensor that automatically stops the engine if overheating occurs. Welding/Cutting...

  10. respirable dust exposure in underground gold miners at obuasi in ...

    African Journals Online (AJOL)

    Prince Acheampong

    1University Health Services, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana. 2Institute of Occupational and ... 3School of Health and Policy Studies, University of Central England in Birmingham, UK. 4Department of .... welding, shaft tending, pumps attendance and grouting. The underground ...

  11. The Deep Underground Science and Engineering Laboratory at Homestake (United States)

    Lesko, Kevin T.


    The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.

  12. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga


    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gasification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  13. 30 CFR 816.79 - Protection of underground mining. (United States)



  14. Analysis of Underground Mining Accidents at AngloGold Ashanti ...

    African Journals Online (AJOL)

    Analysis of incidents at AngloGold Ashanti's (AGA's) largest mine in Ghana was carried out to study accidents and injuries from underground mining activities, and to assess the effects of accidents on AGA's production. Ground fall, machinery, electrocution and slip fall were the main causes of mine accidents. Results agree ...

  15. Plate Tectonics and the Discrimination of Underground Explosions from Earthquake (United States)


    76-0172 4- J PLATE TECTONICS AND THE DISCRIMINA- TION OF UNDERGROUND EXPtOSIONS FROMi REPQRXPOCUMENTATION PAGE 2. GOVT ACCESSION NO «. TITLE...a simple model of plate tectonics . That is, along exten- sive sections of some island arcs large shocks occurred infrequently or not at all during

  16. A simple statistical signal loss model for deep underground garage

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Gimenez, Lucas Chavarria; Kovacs, Istvan


    In this paper we address the channel modeling aspects for a deep-indoor scenario with extreme coverage conditions in terms of signal losses, namely underground garage areas. We provide an in-depth analysis in terms of path loss (gain) and large scale signal shadowing, and a propose simple...

  17. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    The effect of the municipal solid waste landfill a Ring Road Ibadan on the quality of the underground water in the surrounding area and adjacent surface water was investigated. Samples of water from these sources were analyzed for the following physico-chemical parameters: Ph , conductivity, total solid, dissolved solid, ...

  18. Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage

    NARCIS (Netherlands)

    Noomen, M.F.


    Anomalous concentrations of natural gas in the soil may be sourced from leaking underground gas pipelines or from natural microseepages. Due to the explosive nature of hydrocarbon gases, early detection of these gases is essential to avoid dangerous situations. It is known that natural gas in the

  19. Underground test area subproject waste management plan. Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)



    The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

  20. Compressed air and hydraulics in underground mining. Comparing opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Kroetz, R.


    While the question of the optimum technology for underground working, tunnel construction and mining seems to have been answered in favor of hydraulic working. Further developments are still uncertain although some relevant criteria are: humanization of work, a trend towards energy conservation, and high efficiency in the power industry.

  1. A Corrosion Risk Assessment Model for Underground Piping (United States)

    Datta, Koushik; Fraser, Douglas R.


    The Pressure Systems Manager at NASA Ames Research Center (ARC) has embarked on a project to collect data and develop risk assessment models to support risk-informed decision making regarding future inspections of underground pipes at ARC. This paper shows progress in one area of this project - a corrosion risk assessment model for the underground high-pressure air distribution piping system at ARC. It consists of a Corrosion Model of pipe-segments, a Pipe Wrap Protection Model; and a Pipe Stress Model for a pipe segment. A Monte Carlo simulation of the combined models provides a distribution of the failure probabilities. Sensitivity study results show that the model uncertainty, or lack of knowledge, is the dominant contributor to the calculated unreliability of the underground piping system. As a result, the Pressure Systems Manager may consider investing resources specifically focused on reducing these uncertainties. Future work includes completing the data collection effort for the existing ground based pressure systems and applying the risk models to risk-based inspection strategies of the underground pipes at ARC.

  2. The Underground Economy and GDP Estimation in Developing ...

    African Journals Online (AJOL)

    The estimation of gross domestic product (GDP) in most developing countries portrays a lot of meaning; most often it is very low. This could be true or false. The existence of underground economy in this economies tend to undermine the estimation of GDP in developing economies, because the size of such economy is ...

  3. Effect of population and level of industrialization on underground ...

    African Journals Online (AJOL)

    The physico-chemical properties of underground waters in Abia State, Nigeria were determined with a view to ascertaining the effect of population density and level of industrialization on the water quality parameters using Aba (a relatively industrialized city) and Umuahia (a city with very few industries) as a case study.

  4. An improved formulation of the underground mine scheduling ...

    African Journals Online (AJOL)

    The use of mixed integer programming is a modelling approach well suited to formulate the mine scheduling optimisation problem for both open pit and underground mining. The resolution applied for discretising the problem, however, has a direct eect on both the level of selectivity that can be applied to improve protability, ...

  5. Entrepreneurial Opportunity in Denmark’s Underground Economy

    DEFF Research Database (Denmark)

    Rezaei, Shahamak; Dana, L-P; Vang, Jan

    Based on interviews with immigrants to Denmark, meetings with stakeholders and with experts in the field, this article addresses issues regarding the underground economy in Denmark. What circumstances and factors characterise specific sectors or breaches to the ones in which undocumented immigrants...

  6. What lies beneath : Bounded manageability in complex underground infrastructure projects

    NARCIS (Netherlands)

    Leijten, M.


    Complex underground infrastructure construction projects tend to develop in a state of “bounded manageability”. Various types of uncertainties are inherent to these projects and put the project manager in front of serious challenges, risking budget overruns, delays and sometimes even technical

  7. A Numerical Study of Underground Cavern Stability by Geostress Characteristics

    Directory of Open Access Journals (Sweden)

    Xiao-Jing Li


    Full Text Available The stability of underground cavities is of increasing importance considering the predominant cavity locations built up in high mountain and canyon environments. Such cavity locations are characterized by a high initial in situ stress, which results in brittle fracture and deformation of the surrounding rock during cavity construction. This paper presents a numerical study of underground cavern stability considering four factors, namely, mechanical property of surrounding rock, cavern burial depth, lateral pressure coefficient in horizontal direction, and the angle included between plant longitudinal axis and horizontal principal stress. Analytical methods including the key point displacement in side wall, plastic zone volume, and splitting fracture volume are used to characterize the stability of underground cavern. A modified formula to predict side wall displacement is proposed based on prior work, which is applicable to 3D computation model by taking horizontal geostress in two directions into account. Eventually, the optimal layout of underground cavern is put forward under different conditions of geostress field.

  8. 3D Approach for Representing Uncertainties of Underground Utility Data

    NARCIS (Netherlands)

    olde Scholtenhuis, Léon Luc; Zlatanova, S.; den Duijn, Xander; Lin, Ken-Yu; El-Gohary, Nora; Tang, Pingbo

    Availability of 3D underground information models is key to designing and managing urban infrastructure construction projects. Buried utilities information is often registered by using different types of location data with different uncertainties. These data variances are, however, not considered in

  9. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da


    This paper is a first of two presenting a review of research results in underground cable transmission obtained by the Department of Energy Technology, Aalborg University ET/AAU and Danish TSO within the last 6 years. The main core of the results are obtained by PhD students research...

  10. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da


    This paper is a second of two presenting a review of research results in underground cable transmission obtained by the Department of Energy Technology, Aalborg University ET/AAU and Danish TSO within the last six years. The main core of the results are obtained by PhD students resea...

  11. Effect of geological medium on seismic signals from underground ...

    Indian Academy of Sciences (India)

    Effect of geological medium on seismic signals from underground nuclear explosion events – A case study for Baneberry site ... After the successful validation of the 3D numerical model for Baneberry site rock media, parametric studies are carried out for 1 and 8 kT yields at 100 m depth (Scaled Depths of Burst SDOB ...

  12. Habitat features and distribution of Salamandra salamandra in underground springs

    Directory of Open Access Journals (Sweden)

    Raoul Manenti


    Full Text Available Subterranean habitats are among the less known terrestrial habitats, but can reveal an unexpected biodiversity, and can play an underestimated role for amphibians. The fire salamander Salamandra salamandra is sometimes found in underground environments, but the factors affecting its distribution in subterranean spaces remain substantially unexplored. We repeatedly surveyed some hypogeous springs, such as draining galleries and “bottini” in NW Italy, in order to evaluate the relationship between environmental features and distribution of S. salamandra in these underground springs. We performed visual encounter surveys to assess the occurrence of larvae, juveniles or adults in springs. We also recorded four habitat variables: easy of access, isolation, macrobenthos richness and forest cover of the surrounding landscape. We used generalized linear models to evaluate the relationships between habitat features and occurrence of larvae. We observed larvae of S. salamandra in 13 out of 22 springs; their presence was associated to springs with high easy of access and with relatively rich macrobenthos communities. In underground springs, larval development apparently required longer time than in nearby epigeous streams. Nevertheless, S. salamandra can attain metamorphosis in this environment. The occurrence of S. salamandra in underground environments was not accidental, but repeated in the time and interesting from an ecological point of view, confirming the high plasticity of the species.

  13. Investigation of underground resistivity measurement at King Sejong ...

    African Journals Online (AJOL)

    Investigation of underground resistivity measurement at King Sejong Station, Antarctic. K.N. Juhari, F.A.M. Kasran, M.H. Jusoh. Abstract. No Abstract. Keywords: resistivity method; Wenner; Antarctic; soil; solar variation. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  14. Effect of population and level of industrialization on underground ...

    African Journals Online (AJOL)



    Feb 19, 2008 ... For example, influent seepage of urine and leachate from polluted surroundings, a pit latrine or soak- away, sited upstream and near a borehole, could enrich the underground water with phosphate and nitrate. (Okoye and Adeleke, 1991). Improper disposal of by- products of beer brewing, soap making and ...

  15. An improved formulation of the underground mine scheduling ...

    African Journals Online (AJOL)


    Jun 12, 2014 ... physical infrastructure of the mine, like hoisting capacity or other resource constraints such as the available labour force at any given time. The most ...... Underground mining methods: Engineering fundamentals and international case studies, Society for Mining Metallurgy and Exploration, Littleton (CO).

  16. Construction experiences from underground works at Forsmark. Compilation Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Anders [Vattenfall Power Consultant AB, Stockholm (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)


    The main objective with this report, the Construction Experience Compilation Report (CECR), is to compile experiences from the underground works carried out at Forsmark, primarily construction experiences from the tunnelling of the two cooling water tunnels of the Forsmark nuclear power units 1, 2 and 3, and from the underground excavations of the undersea repository for low and intermediate reactor waste, SFR. In addition, a brief account is given of the operational experience of the SFR on primarily rock support solutions. The authors of this report have separately participated throughout the entire construction periods of the Forsmark units and the SFR in the capacity of engineering geologists performing geotechnical mapping of the underground excavations and acted as advisors on tunnel support; Anders Carlsson participated in the construction works of the cooling water tunnels and the open cut excavations for Forsmark 1, 2 and 3 (geotechnical mapping) and the Forsmark 3 tunnel (advise on tunnel support). Rolf Christiansson participated in the underground works for the SFR (geotechnical mapping, principal investigator for various measurements and advise on tunnel support and grouting). The report is to a great extent based on earlier published material as presented in the list of references. But it stands to reason that, during the course of the work with this report, unpublished notes, diaries, drawings, photos and personal recollections of the two authors have been utilised in order to obtain such a complete compilation of the construction experiences as possible.

  17. Estimation of Reminant Gold Resources of Old Underground ...

    African Journals Online (AJOL)

    The lack of geological control and old underground development at AngloGold Ashanti (Bibiani mine) in Ghana was a major setback for the conventional methods of resource estimation to produce accurate estimates of the deposit. Consequently, inverse distance weighting of indicator variables were used. This estimation ...

  18. respiratory symptoms and lung function impair- ment in underground ...

    African Journals Online (AJOL)



    Jun 1, 2007 ... sents a group of miners who perform similar work under similar working ... administered questionnaire and lung function test by spirometry. ... analysed through chi-square tests and then by bi- nary logistic regression (SPSS). The logistic re- gression models used included age, total duration of underground ...

  19. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.


    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  20. Biomarker for Glycogen Storage Diseases (United States)


    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  1. The economics of aquifer storage recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    David, R.; Pyne, G.


    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  2. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments]. (United States)

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui


    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  3. Historical Dictionaries and Historical Dictionary Research: Papers ...

    African Journals Online (AJOL)


    The papers collected in this volume were originally presented at an Interna- tional Conference on Historical Lexicography and Lexicology organized by. Julie Coleman, and meant to fill the gap created by the two International. Round Table Conferences in Florence and Leyden in 1971 and 1977 respec- tively. The purpose ...

  4. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.


    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  5. 30 CFR 75.1904 - Underground diesel fuel tanks and safety cans. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel tanks and safety cans... § 75.1904 Underground diesel fuel tanks and safety cans. (a) Diesel fuel tanks used underground shall... valves located as close as practicable to the tank shell on each connection through which liquid can...

  6. 40 CFR 144.12 - Prohibition of movement of fluid into underground sources of drinking water. (United States)


    ... underground sources of drinking water. 144.12 Section 144.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Program Requirements § 144.12 Prohibition of movement of fluid into underground sources of drinking water...

  7. 40 CFR 194.53 - Consideration of underground sources of drinking water. (United States)


    ... underground sources of drinking water. In compliance assessments that analyze compliance with part 191, subpart C of this chapter, all underground sources of drinking water in the accessible environment that.... In determining whether underground sources of drinking water are expected to be affected by the...

  8. 40 CFR 144.7 - Identification of underground sources of drinking water and exempted aquifers. (United States)


    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Provisions § 144.7 Identification of underground sources of drinking water and exempted aquifers. (a) The..., except where exempted under paragraph (b) of this section, as an underground source of drinking water...

  9. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines (United States)


    ... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION... addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines. This... Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on October 18, October 20...

  10. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal... (United States)


    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration. ACTION: Notice of... Alternatives for Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments... Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business or other for-profit...

  11. 77 FR 17099 - Proposed Extension of Existing Information Collection; Diesel-Powered Equipment for Underground... (United States)


    ... Administration (MSHA) requires mine operators to provide important safety protections to underground coal miners... requirements; Sec. 75.1904(b)(4)(i)--Underground diesel fuel tanks and safety cans; Sec. 75.1906(d)--Transport... underground coal miners who work in mines that use diesel-powered equipment. Diesel equipment can pose a fire...

  12. Lagos Historical Review

    African Journals Online (AJOL)

    The Lagos Historical Review is an international and interdisciplinary journal publishing papers with a historical focus. The journal generates and participates in debates to advance the discipline of history and promote its relevance to development. The journal aims to serve the academic community with a bias towards ...

  13. Historizing epistemology in psychology. (United States)

    Jovanović, Gordana


    The conflict between the psychometric methodological framework and the particularities of human experiences reported in psychotherapeutic context led Michael Schwarz to raise the question whether psychology is based on a methodological error. I take this conflict as a heuristic tool for the reconstruction of the early history of psychology, which bears witness to similar epistemological conflicts, though the dominant historiography of psychology has largely forgotten alternative conceptions and their valuable insights into complexities of psychic phenomena. In order to work against the historical amnesia in psychology I suggest to look at cultural-historical contexts which decisively shaped epistemological choices in psychology. Instead of keeping epistemology and history of psychology separate, which nurtures individualism and naturalism in psychology, I argue for historizing epistemology and for historical psychology. From such a historically reflected perspective psychology in contemporary world can be approached more critically.

  14. Estimation and Comparison of Underground Economy in Croatia and European Union Countries: Fuzzy Logic Approach

    Directory of Open Access Journals (Sweden)

    Kristina Marsic


    The purpose of this paper is to address this issue in three ways. First, we review existing estimates of the size of the underground economy. Second, we apply a novel calculation method for estimation: fuzzy logic. Third, we calculated and compared underground economy index for 25 European Union countries and compared it, with special focus on Croatian underground economy index. Results indicated that Croatia has the thirteenth largest underground economy among measured members of the European Union. This study is the first of its kind with recent data to measure the size of underground economy in European Union countries by employing fuzzy logic approach.

  15. History of Historical Archaeology

    Directory of Open Access Journals (Sweden)

    Robert L. Schuyler


    Full Text Available On Sunday April 19, 1998 Jean Carl Harrington (known to the profession as J.C. or "Pinky" Harrington passed away at his home in Richmond, Virginia. At 96 Harrington's life almost spanned the 20th century and did encompass the rise and establishment of professional Historical Archaeology in North America. Many consider Harrington to be the founder or "father" of Americanist Historical Archaeology. In 1936 he took over the newly created NPS-CCC project at Jamestown, Virginia and that event is arguably the inception of Historical Archaeology as an organized, scholarly discipline.

  16. The historical supernovae

    CERN Document Server

    Clark, David H


    The Historical Supernovae is an interdisciplinary study of the historical records of supernova. This book is composed of 12 chapters that particularly highlight the history of the Far East. The opening chapter briefly describes the features of nova and supernova, stars which spontaneously explode with a spectacular and rapid increase in brightness. The succeeding chapter deals with the search for the historical records of supernova from Medieval European monastic chronicles, Arabic chronicles, astrological works etc., post renaissance European scientific writings, and Far Eastern histories and

  17. From the Cosmos to the Geosphere: the quest of four European Deep Underground Laboratories originally built for Astroparticle Physics to understand Global Environmental Change (United States)

    Agrafioti, I.


    A number of deep underground laboratories exist around the world, all originally developed to advance our understanding of the Universe. They were built to host 'low-background' Astroparticle Physics experiments, needing to be shielded from interference produced by cosmic radiation. These unique infrastructures show great diversity in terms of depth, size, and geological and environmental characteristics. Over the last decade, the four European deep underground laboratories - LSM in France, LSC in Spain, LNGS in Italy and Boulby in the UK - supported by their funding agencies, have been making great efforts to get integrated into a single distributed research infrastructure. At the same time, they have been asking "how can our facilities, primarily built for Astroparticle Physics, be used to tackle global challenges?". Astroparticle Physicists have wide experience in forming long-term large international collaborations, developing innovative technologies, building unique facilities and organising data handling, reduction, storage and analysis: all of these were put to the disposal of scientists from other disciplines. As a result, a number of very interesting multidisciplinary projects have been hosted in the labs with excellent scientific results: geologists, climatologists, environmental scientists and biologists from academia and public authorities have all used these deep underground environments. Even more recently, the four European labs have decided to go one step further: in order to treat global challenges, global cooperation is necessary, so they are trying to unite the global deep underground science community around these multidisciplinary synergies. The objective of this talk is to present the bottom-up policy adopted by these world-leading European research infrastructures related to global environmental change, including some of the most interesting scientific results received so far (e.g. muon tide detector for continuous, passive monitoring of

  18. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.


    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

  19. Evaluation of underground water contamination of tubular wells, by fuels oil in Santo Andre City, Sao Paulo state: a contribution to the environmental management; Avaliacao da contaminacao da agua subterranea de pocos tubulares, por combustiveis fosseis, no municipio de Santo Andre, Sao Paulo: uma contribuicao a gestao ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Mindrisz, Ana Copat


    The contamination of underground waters by hydrocarbons originated from gas stations has been object of increasing preoccupation in environmental organization all over the world. The organic compounds Benzene, Toluene, Ethylbenzene and Xylene (BTEX), present in these fuels, are extremely toxic to human health and could make impracticable the exploration of these contaminated waters by these kinds of pollutants and consequently the gasoline wells used for this purpose. In this work, it was carried out a diagnosis of the water quality with information and analyses, with the goals to snap shot the situation of the wells destined to domestic and commercial supply of water in the urban area of Santo Andre city, Sao Paulo state. There have been evaluated the presence of micron pollutants BTEX, after contamination due to leaks in fuel storage tanks close to the wells, in different places of the city. The physical chemistry parameters like color, turbidity and residual chlorine were also evaluated as well as trace elements, metals, anions like fluorine, sulphates, chlorine, nitrates and phosphates and bacteriological (total coliforms, thermo stable coliforms, heterotrophic bacteria). On definition of the sampling area, it was sought, at first, the evaluation of environmental contaminations historical series by gas stations, evaluating the set of information available at government environmental organizations and spatial representatively of the problem. For administration of the underground water quality it was adopted the methodology used by Companhia de Tecnologia de Saneamento Ambiental (CETESB), being accomplished a previous identification of contaminated potential areas and organizing a data base on landfills disposal and neglected places; registration of gas station services and, wells used by the population, industrial inventory with active and neglected maps taking into consideration the size and residues generation (such as SEMASA), prioritizing in this way the

  20. Development of a Testbed for Wireless Underground Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mehmet C. Vuran


    Full Text Available Wireless Underground Sensor Networks (WUSNs constitute one of the promising application areas of the recently developed wireless sensor networking techniques. WUSN is a specialized kind of Wireless Sensor Network (WSN that mainly focuses on the use of sensors that communicate through soil. Recent models for the wireless underground communication channel are proposed but few field experiments were realized to verify the accuracy of the models. The realization of field WUSN experiments proved to be extremely complex and time-consuming in comparison with the traditional wireless environment. To the best of our knowledge, this is the first work that proposes guidelines for the development of an outdoor WUSN testbed with the goals of improving the accuracy and reducing of time for WUSN experiments. Although the work mainly aims WUSNs, many of the presented practices can also be applied to generic WSN testbeds.