WorldWideScience

Sample records for hippocampal theta rhythm

  1. Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning.

    Directory of Open Access Journals (Sweden)

    Raphael Kaplan

    Full Text Available The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods. These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating

  2. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  3. Computational study of hippocampal-septal theta rhythm changes due to β-amyloid-altered ionic channels.

    Directory of Open Access Journals (Sweden)

    Xin Zou

    Full Text Available Electroencephagraphy (EEG of many dementia patients has been characterized by an increase in low frequency field potential oscillations. One of the characteristics of early stage Alzheimer's disease (AD is an increase in theta band power (4-7 Hz. However, the mechanism(s underlying the changes in theta oscillations are still unclear. To address this issue, we investigate the theta band power changes associated with β-Amyloid (Aβ peptide (one of the main markers of AD using a computational model, and by mediating the toxicity of hippocampal pyramidal neurons. We use an established biophysical hippocampal CA1-medial septum network model to evaluate four ionic channels in pyramidal neurons, which were demonstrated to be affected by Aβ. They are the L-type Ca²⁺ channel, delayed rectifying K⁺ channel, A-type fast-inactivating K⁺ channel and large-conductance Ca²⁺-activated K⁺ channel. Our simulation results demonstrate that only the Aβ inhibited A-type fast-inactivating K⁺ channel can induce an increase in hippocampo-septal theta band power, while the other channels do not affect theta rhythm. We further deduce that this increased theta band power is due to enhanced synchrony of the pyramidal neurons. Our research may elucidate potential biomarkers and therapeutics for AD. Further investigation will be helpful for better understanding of AD-induced theta rhythm abnormalities and associated cognitive deficits.

  4. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Florian Mormann

    2008-05-01

    Full Text Available Theta oscillations in the medial temporal lobe (MTL of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i within the entorhinal cortex, (ii within the hippocampus, and (iii between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval.

  5. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    Science.gov (United States)

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  6. What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms?

    Directory of Open Access Journals (Sweden)

    James Michael Hyman

    2011-03-01

    Full Text Available There has been considerable interest in the importance of oscillations in the brain and in how these oscillations relate to the firing of single neurons. Recently a number of studies have shown that the spiking of individual neurons in the medial prefrontal cortex (mPFC become entrained to the hippocampal (HPC theta rhythm. We recently showed that theta-entrained mPFC cells lost theta-entrainment specifically on error trials even though the firing rates of these cells did not change (Hyman et al., 2010. This implied that the level of HPC theta-entrainment of mPFC units was more predictive of trial outcome than differences in firing rates and that there is more information encoded by the mPFC on working memory tasks than can be accounted for by a simple rate code. Nevertheless, the functional meaning of mPFC entrainment to HPC theta remains a mystery. It is also unclear as to whether there are any differences in the nature of the information encoded by theta-entrained and non-entrained mPFC cells. In this review we discuss mPFC entrainment to HPC theta within the context of previous results as well as provide a more detailed analysis of the Hyman et al. (2010 data set. This re-analysis revealed that theta-entrained mPFC cells selectively encoded a variety of task relevant behaviors and stimuli while never theta-entrained mPFC cells were most strongly attuned to errors or the lack of expected rewards. In fact, these error responsive neurons were responsible for the error representations exhibited by the entire ensemble of mPFC neurons. A theta reset was also detected in the post-error period. While it is becoming increasingly evident that mPFC neurons exhibit correlates to virtually all cues and behaviors, perhaps phase-locking directs attention to the task-relevant representations required to solve a spatially based working memory task while the loss of theta-entrainment at the start of error trials may represent a shift of attention away from

  7. Hippocampal theta activity in the acute cerveau isolé cat.

    Science.gov (United States)

    Gottesmann, C; Zernicki, B; Gandolfo, G

    1981-01-01

    In three cerveau isole cats, cortical and hippocampal EEG activity were recorded. In the cortical records, spindles alternated with low-voltage activity, whereas theta activity dominated in the hippocampus. The amount and frequency of theta were similar to those described previously for the pretrigeminal cat. In confirmation of previous results on rats, although cortical EEG activity differs in cerveau isole cat and pretrigeminal cat, both preparations show domination of theta activity in the hippocampus. It is concluded that the mesencephalic transection eliminates inhibitory effects from the lower brainstem on generators of the theta rhythm.

  8. Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm

    Science.gov (United States)

    Gangadharan, Gireesh; Shin, Jonghan; Kim, Seong-Wook; Kim, Angela; Paydar, Afshin; Kim, Duk-Soo; Miyazaki, Taisuke; Watanabe, Masahiko; Yanagawa, Yuchio; Kim, Jinhyun; Kim, Yeon-Soo; Kim, Daesoo; Shin, Hee-Sup

    2016-01-01

    Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca2+ channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca2+ channels in the medial septal GABAergic projection neurons in this behavior. PMID:27208094

  9. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    Science.gov (United States)

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  10. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning.

    Science.gov (United States)

    Hoffmann, Loren C; Cicchese, Joseph J; Berry, Stephen D

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3-12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3-7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.

  11. Changes in hippocampal theta rhythm and their correlations with speed during different phases of voluntary wheel running in rats.

    Science.gov (United States)

    Li, J-Y; Kuo, T B J; Hsieh, I-T; Yang, C C H

    2012-06-28

    Hippocampal theta rhythm (4-12 Hz) can be observed during locomotor behavior, but findings on the relationship between locomotion speed and theta frequency are inconsistent if not contradictory. The inconsistency may be because of the difficulties that previous analyses and protocols have had excluding the effects of behavior training. We recorded the first or second voluntary wheel running each day, and assumed that theta frequency and activity are correlated with speed in different running phases. By simultaneously recording electroencephalography, physical activity, and wheel running speed, this experiment explored the theta oscillations during spontaneous running of the 12-h dark period. The recording was completely wireless and allowed the animal to run freely while being recorded in the wheel. Theta frequency and theta power of middle frequency were elevated before running and theta frequency, theta power of middle frequency, physical activity, and running speed maintained persistently high levels during running. The slopes of the theta frequency and theta activity (4-9.5 Hz) during the initial running were different compared to the same values during subsequent running. During the initial running, the running speed was positively correlated with theta frequency and with theta power of middle frequency. Over the 12-h dark period, the running speed did not positively correlate with theta frequency but was significantly correlated with theta power of middle frequency. Thus, theta frequency was associated with running speed only at the initiation of running. Furthermore, theta power of middle frequency was associated with speed and with physical activity during running when chronological order was not taken into consideration. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    Science.gov (United States)

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  13. Activation of GABAergic pathway by hypocretin in the median raphe nucleus (MRN) mediates stress-induced theta rhythm in rats.

    Science.gov (United States)

    Hsiao, Yi-Tse; Jou, Shuo-Bin; Yi, Pei-Lu; Chang, Fang-Chia

    2012-07-15

    The frequency of electroencephalograms (EEGs) is predominant in theta rhythm during stress (e.g., footshock) in rats. Median raphe nucleus (MRN) desynchronizes hippocampal theta waves via activation of GABAergic neurons in the medial septum-diagonal band of Broca (MS-DBB), a theta rhythm pacemaker. Increased hypocretin mediates stress responses in addition to the maintenance of wakefulness. Hypocretin receptors are abundant in the MRN, suggesting a possible role of hypocretin in modulating stress-induced theta rhythm. Our results indicated that the intensity of theta waves was enhanced by footshock and that a hypocretin receptor antagonist (TCS1102) suppressed the footshock-induced theta waves. Administration of hypocretin-1 (1 and 10 μg) and hypocretin-2 (10 μg) directly into the MRN simulated the effect of footshock and significantly increased theta waves. Co-administration of GABA(A) receptor antagonist, bicuculline, into the MRN blocked the increase of theta waves induced by hypocretins or footshock. These results suggested that stress enhances the release of hypocretins, activates GABAergic neurons in the MRN, blocks the ability of MRN to desynchronize theta waves, and subsequently increases the intensity of theta rhythm. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Artificial theta stimulation impairs encoding of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Arto Lipponen

    Full Text Available Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.

  15. Hippocampal Theta-Gamma Coupling Reflects State-Dependent Information Processing in Decision Making.

    Science.gov (United States)

    Amemiya, Seiichiro; Redish, A David

    2018-03-20

    During decision making, hippocampal activity encodes information sometimes about present and sometimes about potential future plans. The mechanisms underlying this transition remain unknown. Building on the evidence that gamma oscillations at different frequencies (low gamma [LG], 30-55 Hz; high gamma [HG], 60-90 Hz; and epsilon, 100-140 Hz) reflect inputs from different circuits, we identified how changes in those frequencies reflect different information-processing states. Using a unique noradrenergic manipulation by clonidine, which shifted both neural representations and gamma states, we found that future representations depended on gamma components. These changes were identifiable on each cycle of theta as asymmetries in the theta cycle, which arose from changes within the ratio of LG and HG power and the underlying phases of those gamma rhythms within the theta cycle. These changes in asymmetry of the theta cycle reflected changes in representations of present and future on each theta cycle. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Is the hippocampal theta rhythm related to cognition in a non-locomotor place recognition task?

    Czech Academy of Sciences Publication Activity Database

    Kelemen, Edo; Morón, I.; Fenton, André Antonio

    2005-01-01

    Roč. 15, č. 4 (2005), s. 472-479 ISSN 1050-9631 Grant - others:5th Framework Development Program(XE) QLG3-CT-1999-00192; McDonnell Foundation(US) 98-38-CNS-QUA.05; Ministerio de Ciencia y Tecnologia (ES) BS02002-01215 Institutional research plan: CEZ:AV0Z5011922 Keywords : theta rhythm * cognition * place recognition Subject RIV: FH - Neurology Impact factor: 3.781, year: 2005

  17. Characteristics and classification of hippocampal θ rhythm induced by passive translational displacement.

    Science.gov (United States)

    Xie, Kangning; Yan, Yili; Fang, Xiaolei; Gao, Shangkai; Hong, Bo

    2012-04-25

    Theta rhythms in the hippocampus are believed to be the "metric" relating to various behavior patterns for free roaming rats. In this study, the theta rhythms were studied while rats either walked or were passively translated by a toy car on a linear track (referred to as WALK and TRANS respectively). For the similar running speeds in WALK and TRANS conditions, theta frequency and amplitude were both reduced during TRANS. Theta modulation of pyramidal cells during TRANS was reduced compared to that during WALK. Theta frequency was positively correlated with translation speed during TRANS. Theta rhythm remained apparent during TRANS and WALK after large dose of atropine sulfate (blocking the cholinergic pathway) was injected compared to still states. The present study demonstrated the patterns of theta rhythm induced by passive translation in rats and suggested that the Type I theta rhythm could occur during non-voluntary locomotion. We further argued that the perception of actual self-motion may be the underlying mechanism that initiates and modulates type I theta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Fluctuating inhibitory inputs promote reliable spiking at theta frequencies in hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Duluxan eSritharan

    2012-05-01

    Full Text Available Theta frequency (4-12 Hz rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at theta frequencies in vivo. To determine whether this could occur, we use biophysically-based LM/RAD model cells and apply different cholinergic and synaptic inputs to simulate in vivo-like network environments. We assess spike reliabilities and spiking frequencies, identifying biophysical properties and network conditions that best promote reliable theta spiking. We find that synaptic background activities that feature large inhibitory, but not excitatory, fluctuations are essential. This suggests that strong inhibitory input to these cells is vital for them to be able to contribute to population theta activities. Furthermore, we find that Type I-like oscillator models produced by augmented persistent sodium currents (INap or diminished A type potassium currents (IA enhance reliable spiking at lower theta frequencies. These Type I-like models are also the most responsive to large inhibitory fluctuations and can fire more reliably under such conditions. In previous work, we showed that INap and IA are largely responsible for establishing LM/RAD cells’ subthreshold activities. Taken together with this study, we see that while both these currents are important for subthreshold theta fluctuations and reliable theta spiking, they contribute in different ways – INap to reliable theta spiking and subthreshold activity generation, and IA to subthreshold activities at theta frequencies. This suggests that linking subthreshold and suprathreshold activities should be done with consideration of both in vivo contexts and biophysical specifics.

  19. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  20. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  1. Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    Science.gov (United States)

    Castro, Luísa; Aguiar, Paulo

    2012-08-01

    Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.

  2. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    Science.gov (United States)

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  3. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  4. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  5. Long-term plasticity is proportional to theta-activity.

    Directory of Open Access Journals (Sweden)

    Marian Tsanov

    Full Text Available BACKGROUND: Theta rhythm in the hippocampal formation is a main feature of exploratory behaviour and is believed to enable the encoding of new spatial information and the modification of synaptic weights. Cyclic changes of dentate gyrus excitability during theta rhythm are related to its function, but whether theta epochs per se are able to alter network properties of dentate gyrus for long time-periods is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We used low-frequency stimulation protocols that amplify the power of endogenous theta oscillations, in order to estimate the plasticity effect of endogenous theta oscillations on a population level. We found that stimulation-induced augmentation of the theta rhythm is linked to a subsequent increase of neuronal excitability and decrease of the synaptic response. This EPSP-to-Spike uncoupling is related to an increased postsynaptic spiking on the positive phases of theta frequency oscillations. Parallel increase of the field EPSP slope and the population spike occurs only after concurrent pre- and postsynaptic activation. Furthermore, we observed that long-term potentiation (>24 h occurs in the dentate gyrus of freely behaving adult rats after phasic activity of entorhinal afferents in the theta-frequency range. This plasticity is proportional to the field bursting activity of granule cells during the stimulation, and may comprise a key step in spatial information transfer. Long-term potentiation of the synaptic component occurs only when the afferent stimulus precedes the evoked population burst, and is input-specific. CONCLUSIONS/SIGNIFICANCE: Our data confirm the role of the dentate gyrus in filtering information to the subsequent network during the activated state of the hippocampus.

  6. Change in hippocampal theta oscillation associated with multiple lever presses in a bimanual two-lever choice task for robot control in rats.

    Directory of Open Access Journals (Sweden)

    Norifumi Tanaka

    Full Text Available Hippocampal theta oscillations have been implicated in working memory and attentional process, which might be useful for the brain-machine interface (BMI. To further elucidate the properties of the hippocampal theta oscillations that can be used in BMI, we investigated hippocampal theta oscillations during a two-lever choice task. During the task body-restrained rats were trained with a food reward to move an e-puck robot towards them by pressing the correct lever, ipsilateral to the robot several times, using the ipsilateral forelimb. The robot carried food and moved along a semicircle track set in front of the rat. We demonstrated that the power of hippocampal theta oscillations gradually increased during a 6-s preparatory period before the start of multiple lever pressing, irrespective of whether the correct lever choice or forelimb side were used. In addition, there was a significant difference in the theta power after the first choice, between correct and incorrect trials. During the correct trials the theta power was highest during the first lever-releasing period, whereas in the incorrect trials it occurred during the second correct lever-pressing period. We also analyzed the hippocampal theta oscillations at the termination of multiple lever pressing during the correct trials. Irrespective of whether the correct forelimb side was used, the power of hippocampal theta oscillations gradually decreased with the termination of multiple lever pressing. The frequency of theta oscillation also demonstrated an increase and decrease, before and after multiple lever pressing, respectively. There was a transient increase in frequency after the first lever press during the incorrect trials, while no such increase was observed during the correct trials. These results suggested that hippocampal theta oscillations reflect some aspects of preparatory and cognitive neural activities during the robot controlling task, which could be used for BMI.

  7. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia

    Directory of Open Access Journals (Sweden)

    Tao eZhang

    2013-04-01

    Full Text Available The theta-gamma cross-frequency coupling (CFC in hippocampus was reported to reflect memory process. In this study, we measured the CFC of hippocampal local field potentials (LFPs in a two-vessel occlusion (2VO rat model, combined with both amplitude and phase properties and associated with short and long-term plasticity indicating the memory function. Male Wistar rats were used and a 2VO model was established. STP and LTP were recorded in hippocampal CA3-CA1 pathway after LFPs were collected in both CA3 and CA1. Based on the data of relative power spectra and phase synchronization, it suggested that both the amplitude and phase coupling of either theta or gamma rhythm were involved in modulating the neural network in 2VO rats. In order to determine whether the CFC was also implicated in neural impairment in 2VO rats, the coupling of CA3 theta–CA1 gamma was measured by both phase-phase coupling (n:m phase synchronization and phase-amplitude coupling. The attenuated CFC strength in 2VO rats implied the impaired neural communication in the coordination of theta-gamma entraining process. Moreover, compared with modulation index (MI a novel algorithm named cross frequency conditional mutual information (CF-CMI, was developed to focus on the coupling between theta phase and the phase of gamma amplitude. The results suggest that the reduced CFC strength probably attributed to the disruption of the phase of CA1 gamma envelop. In conclusion, it implied that the phase coupling and CFC of hippocampal theta and gamma played an important role in supporting functions of neural network. Furthermore, synaptic plasticity on CA3-CA1 pathway was reduced in line with the decreased CFC strength from CA3 to CA1. It partly supported our hypothesis that directional CFC indicator might probably be used as a measure of synaptic plasticity.

  8. Multifractal Detrended Fluctuation Analysis of alpha and theta EEG rhythms with musical stimuli

    International Nuclear Information System (INIS)

    Maity, Akash Kumar; Pratihar, Ruchira; Mitra, Anubrato; Dey, Subham; Agrawal, Vishal; Sanyal, Shankha; Banerjee, Archi; Sengupta, Ranjan; Ghosh, Dipak

    2015-01-01

    Highlights: • EEG was done to record the brain electrical activity of 10 subjects in response to simple acoustical tanpura stimuli. • Empirical Mode Decomposition (EMD) technique used to make the EEG signal free from blink and other muscular artifacts. • Multifractal Detrended Fluctuation Analysis (MFDFA) performed to assess the complexity of extracted alpha and theta brain rhythms. • The findings show spectral width i.e. complexity of alpha and theta rhythms increase in all the seven frontal locations studied, under the effect of musical stimuli. - Abstract: Electroencephalography (EEG) was performed on 10 participants using a simple acoustical stimuli i.e. a tanpura drone. The tanpura drone is free from any semantic content and is used with a hypothesis that it provides a specific resting environment for the listeners. The EEG data was extracted for all the frontal electrodes viz. F3, F4, F7, F8, Fp1, Fp2 and Fz. Empirical Mode Decomposition (EMD) was applied on the acquired raw EEG signal to make it free from blink as well as other muscular artifacts. Wavelet Transform (WT) technique was used to segregate alpha and theta waves from the denoised EEG signal. Non-linear analysis in the form of Multifractal Detrended Fluctuation Analysis (MFDFA) was carried out on the extracted alpha and theta time series data to study the variation of their complexity. It was found that in all the frontal electrodes alpha as well as theta complexity increases as is evident from the increase of multifractal spectral width. This study is entirely new and gives interesting data regarding neural activation of the alpha and theta brain rhythms while listening to simple acoustical stimuli. The importance of this study lies in the context of emotion quantification using multifractal spectral width as a parameter as well as in the field of cognitive music therapy. The results are discussed in detail.

  9. Hippocampal theta activity is selectively associated with contingency detection but not discrimination in rabbit discrimination-reversal eyeblink conditioning.

    Science.gov (United States)

    Nokia, Miriam S; Wikgren, Jan

    2010-04-01

    The relative power of the hippocampal theta-band ( approximately 6 Hz) activity (theta ratio) is thought to reflect a distinct neural state and has been shown to affect learning rate in classical eyeblink conditioning in rabbits. We sought to determine if the theta ratio is mostly related to the detection of the contingency between the stimuli used in conditioning or also to the learning of more complex inhibitory associations when a highly demanding delay discrimination-reversal eyeblink conditioning paradigm is used. A high hippocampal theta ratio was not only associated with a fast increase in conditioned responding in general but also correlated with slow emergence of discriminative responding due to sustained responding to the conditioned stimulus not paired with an unconditioned stimulus. The results indicate that the neural state reflected by the hippocampal theta ratio is specifically linked to forming associations between stimuli rather than to the learning of inhibitory associations needed for successful discrimination. This is in line with the view that the hippocampus is responsible for contingency detection in the early phase of learning in eyeblink conditioning. (c) 2009 Wiley-Liss, Inc.

  10. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta.

    Science.gov (United States)

    Yeung, Michelle; Lu, Lily; Hughes, Adam M; Treit, Dallas; Dickson, Clayton T

    2013-12-01

    The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cortical theta wanes for language.

    Science.gov (United States)

    Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Edwards, Erik; Ferrier, Cyrille H; Bleichner, Martin G; van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2014-01-15

    The role of low frequency oscillations in language areas is not yet understood. Using ECoG in six human subjects, we studied whether different language regions show prominent power changes in a specific rhythm, in similar manner as the alpha rhythm shows the most prominent power changes in visual areas. Broca's area and temporal language areas were localized in individual subjects using fMRI. In these areas, the theta rhythm showed the most pronounced power changes and theta power decreased significantly during verb generation. To better understand the role of this language-related theta decrease, we then studied the interaction between low frequencies and local neuronal activity reflected in high frequencies. Amplitude-amplitude correlations showed that theta power correlated negatively with high frequency activity, specifically across verb generation trials. Phase-amplitude coupling showed that during control trials, high frequency power was coupled to theta phase, but this coupling decreased significantly during verb generation trials. These results suggest a dynamic interaction between the neuronal mechanisms underlying the theta rhythm and local neuronal activity in language areas. As visual areas show a pronounced alpha rhythm that may reflect pulsed inhibition, language regions show a pronounced theta rhythm with highly similar features. © 2013.

  12. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission

    Directory of Open Access Journals (Sweden)

    Praveen K. Pilly

    2013-10-01

    Full Text Available Oscillations in the coordinated firing of brain neurons have been proposed to play important roles in perception, cognition, attention, learning, navigation, and sensory-motor control. The network theta rhythm has been associated with properties of spatial navigation, as has the firing of entorhinal grid cells and hippocampal place cells. Two recent studies reduced the theta rhythm by inactivating the medial septum (MS and demonstrated a correlated reduction in the characteristic hexagonal spatial firing patterns of grid cells. These results, along with properties of intrinsic membrane potential oscillations (MPOs in slice preparations of entorhinal cells, have been interpreted to support oscillatory interference models of grid cell firing. The current article shows that an alternative self-organizing map model of grid cells can explain these data about intrinsic and network oscillations without invoking oscillatory interference. In particular, the adverse effects of MS inactivation on grid cells can be understood in terms of how the concomitant reduction in cholinergic inputs may increase the conductances of leak potassium (K+ and slow and medium after-hyperpolarization (sAHP and mAHP channels. This alternative model can also explain data that are problematic for oscillatory interference models, including how knockout of the HCN1 gene in mice, which flattens the dorsoventral gradient in MPO frequency and resonance frequency, does not affect the development of the grid cell dorsoventral gradient of spatial scales, and how hexagonal grid firing fields in bats can occur even in the absence of theta band modulation. These results demonstrate how models of grid cell self-organization can provide new insights into the relationship between brain learning, oscillatory dynamics, and navigational behaviors.

  13. Theta coordinated error-driven learning in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Nicholas Ketz

    Full Text Available The learning mechanism in the hippocampus has almost universally been assumed to be Hebbian in nature, where individual neurons in an engram join together with synaptic weight increases to support facilitated recall of memories later. However, it is also widely known that Hebbian learning mechanisms impose significant capacity constraints, and are generally less computationally powerful than learning mechanisms that take advantage of error signals. We show that the differential phase relationships of hippocampal subfields within the overall theta rhythm enable a powerful form of error-driven learning, which results in significantly greater capacity, as shown in computer simulations. In one phase of the theta cycle, the bidirectional connectivity between CA1 and entorhinal cortex can be trained in an error-driven fashion to learn to effectively encode the cortical inputs in a compact and sparse form over CA1. In a subsequent portion of the theta cycle, the system attempts to recall an existing memory, via the pathway from entorhinal cortex to CA3 and CA1. Finally the full theta cycle completes when a strong target encoding representation of the current input is imposed onto the CA1 via direct projections from entorhinal cortex. The difference between this target encoding and the attempted recall of the same representation on CA1 constitutes an error signal that can drive the learning of CA3 to CA1 synapses. This CA3 to CA1 pathway is critical for enabling full reinstatement of recalled hippocampal memories out in cortex. Taken together, these new learning dynamics enable a much more robust, high-capacity model of hippocampal learning than was available previously under the classical Hebbian model.

  14. Theta rhythm-like bidirectional cycling dynamics of living neuronal networks in vitro.

    Science.gov (United States)

    Gladkov, Arseniy; Grinchuk, Oleg; Pigareva, Yana; Mukhina, Irina; Kazantsev, Victor; Pimashkin, Alexey

    2018-01-01

    The phenomena of synchronization, rhythmogenesis and coherence observed in brain networks are believed to be a dynamic substrate for cognitive functions such as learning and memory. However, researchers are still debating whether the rhythmic activity emerges from the network morphology that developed during neurogenesis or as a result of neuronal dynamics achieved under certain conditions. In the present study, we observed self-organized spiking activity that converged to long, complex and rhythmically repeated superbursts in neural networks formed by mature hippocampal cultures with a high cellular density. The superburst lasted for tens of seconds and consisted of hundreds of short (50-100 ms) small bursts with a high spiking rate of 139.0 ± 78.6 Hz that is associated with high-frequency oscillations in the hippocampus. In turn, the bursting frequency represents a theta rhythm (11.2 ± 1.5 Hz). The distribution of spikes within the bursts was non-random, representing a set of well-defined spatio-temporal base patterns or motifs. The long superburst was classified into two types. Each type was associated with a unique direction of spike propagation and, hence, was encoded by a binary sequence with random switching between the two "functional" states. The precisely structured bidirectional rhythmic activity that developed in self-organizing cultured networks was quite similar to the activity observed in the in vivo experiments.

  15. Theta rhythm-like bidirectional cycling dynamics of living neuronal networks in vitro.

    Directory of Open Access Journals (Sweden)

    Arseniy Gladkov

    Full Text Available The phenomena of synchronization, rhythmogenesis and coherence observed in brain networks are believed to be a dynamic substrate for cognitive functions such as learning and memory. However, researchers are still debating whether the rhythmic activity emerges from the network morphology that developed during neurogenesis or as a result of neuronal dynamics achieved under certain conditions. In the present study, we observed self-organized spiking activity that converged to long, complex and rhythmically repeated superbursts in neural networks formed by mature hippocampal cultures with a high cellular density. The superburst lasted for tens of seconds and consisted of hundreds of short (50-100 ms small bursts with a high spiking rate of 139.0 ± 78.6 Hz that is associated with high-frequency oscillations in the hippocampus. In turn, the bursting frequency represents a theta rhythm (11.2 ± 1.5 Hz. The distribution of spikes within the bursts was non-random, representing a set of well-defined spatio-temporal base patterns or motifs. The long superburst was classified into two types. Each type was associated with a unique direction of spike propagation and, hence, was encoded by a binary sequence with random switching between the two "functional" states. The precisely structured bidirectional rhythmic activity that developed in self-organizing cultured networks was quite similar to the activity observed in the in vivo experiments.

  16. Traveling Theta Waves in the Human Hippocampus

    Science.gov (United States)

    Zhang, Honghui

    2015-01-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  17. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade

    Directory of Open Access Journals (Sweden)

    Tope eLanre-Amos

    2010-09-01

    Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.

  18. The relationship between hippocampal EEG theta activity and locomotor behaviour in freely moving rats: effects of vigabatrin.

    Science.gov (United States)

    Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M

    2005-01-30

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.

  19. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats.

    Directory of Open Access Journals (Sweden)

    Xiaxia Xu

    Full Text Available Changes of neural oscillations at a variety of physiological rhythms are effectively associated with cognitive performance. The present study investigated whether the directional indices of neural information flow (NIF could be used to symbolize the synaptic plasticity impairment in hippocampal CA3-CA1 network in a rat model of melamine. Male Wistar rats were employed while melamine was administered at a dose of 300 mg/kg/day for 4 weeks. Behavior was measured by the Morris water maze(MWMtest. Local field potentials (LFPs were recorded before long-term potentiation (LTP induction. Generalized partial directed coherence (gPDC and phase-amplitude coupling conditional mutual information (PAC_CMI were used to measure the unidirectional indices in both theta and low gamma oscillations (LG, ~ 30-50 Hz. Our results showed that melamine induced the cognition deficits consistent with the reduced LTP in CA1 area. Phase locking values (PLVs showed that the synchronization between CA3 and CA1 in both theta and LG rhythms was reduced by melamine. In both theta and LG rhythms, unidirectional indices were significantly decreased in melamine treated rats while a similar variation trend was observed in LTP reduction, implying that the effects of melamine on cognitive impairment were possibly mediated via profound alterations of NIF on CA3-CA1 pathway in hippocampus. The results suggested that LFPs activities at these rhythms were most likely involved in determining the alterations of information flow in the hippocampal CA3-CA1 network, which might be associated with the alteration of synaptic transmission to some extent.

  20. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

    Science.gov (United States)

    Cutsuridis, Vassilis; Hasselmo, Michael

    2012-07-01

    Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories

  1. Lexical tonal discrimination in Zapotec children. A study of the theta rhythm.

    Science.gov (United States)

    Poblano, Adrián; Castro-Sierra, Eduardo; Arteaga, Carmina; Pérez-Ruiz, Santiago J

    Zapotec is a language used mainly in the state of Oaxaca in Mexico of tonal characteristic; homophone words with difference in fundamental frequency with different meanings. Our objective was to analyze changes in the electroencephalographic (EEG) theta rhythm during word discrimination of lexical tonal bi-syllabic homophone word samples of Zapotec. We employed electroencephalography analysis during lexical tonal discrimination in 12 healthy subjects 9-16 years of age. We observed an increase in theta relative power between lexical discrimination and at rest eyes-open state in right temporal site. We also observed several significant intra- and inter-hemispheric correlations in several scalp sites, mainly in left fronto-temporal and right temporal areas when subjects were performing lexical discrimination. Our data suggest more engagement of neural networks of the right hemisphere are involved in Zapotec language discrimination. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  2. The relationship between hippocampal EEG theta activity and locomotr behaviour in freely moving rats: effects of vigabatrin

    NARCIS (Netherlands)

    Bouwman, B.M.; Lier, H. van; Nitert, H.E.J.; Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Rijn, C.M. van

    2005-01-01

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During

  3. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.

    Science.gov (United States)

    Vandecasteele, Marie; Varga, Viktor; Berényi, Antal; Papp, Edit; Barthó, Péter; Venance, Laurent; Freund, Tamás F; Buzsáki, György

    2014-09-16

    Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.

  4. Bi-Directional Theta Modulation between the Septo-Hippocampal System and the Mammillary Area in Free-Moving Rats

    Directory of Open Access Journals (Sweden)

    Ming Ruan

    2017-09-01

    Full Text Available Hippocampal (HPC theta oscillations have long been linked to various functions of the brain. Many cortical and subcortical areas that also exhibit theta oscillations have been linked to functional circuits with the hippocampus on the basis of coupled activities at theta frequencies. We examine, in freely moving rats, the characteristics of diencephalic theta local field potentials (LFPs recorded in the supramammillary/mammillary (SuM/MM areas that are bi-directionally connected to the HPC through the septal complex. Using partial directed coherence (PDC, we find support for previous suggestions that SuM modulates HPC theta at higher frequencies. We find weak separation of SuM and MM by dominant theta frequency recorded locally. Contrary to oscillatory cell activities under anesthesia where SuM is insensitive, but MM is sensitive to medial septal (MS inactivation, theta LFPs persisted and became indistinguishable after MS-inactivation. However, MS-inactivation attenuated SuM/MM theta power, while increasing the frequency of SuM/MM theta. MS-inactivation also reduced root mean squared power in both HPC and SuM/MM equally, but reduced theta power differentially in the time domain. We provide converging evidence that SuM is preferentially involved in coding HPC theta at higher frequencies, and that the MS-HPC circuit normally imposes a frequency-limiting modulation over the SuM/MM area as suggested by cell-based recordings in anesthetized animals. In addition, we provide evidence that the postulated SuM-MS-HPC-MM circuit is under complex bi-directional control, rather than SuM and MM having roles as unidirectional relays in the network.

  5. Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences

    Directory of Open Access Journals (Sweden)

    Dustin eFetterhoff

    2015-09-01

    Full Text Available Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC, a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs, quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological and pathological states.

  6. The effects of benzodiazepine (triazolam), cyclopyrrolone (zopiclone) and imidazopyridine (zolpidem) hypnotics on the frequency of hippocampal theta activity and sleep structure in rats.

    Science.gov (United States)

    Yoshimoto, M; Higuchi, H; Kamata, M; Yoshida, K; Shimizu, T; Hishikawa, Y

    1999-01-01

    In order to investigate the relative efficacy and safety of zopiclone and zolpidem, we compared the effects of higher doses of zopiclone and zolpidem on the frequency of hippocampal theta activity and sleep structure with that of triazolam. Rats were divided into triazolam treatment group (1 mg/kg, 5 mg/kg), zopiclone treatment group (20 mg/kg, 100 mg/kg) and zolpidem treatment group (20 mg/kg, 100 mg/kg). Rats were injected intraperitoneally with these drugs or their vehicle. Polygraphic sleep recording and visual frequency analysis of the hippocampal EEG activity in REM sleep were carried out for 6 h after each injection. Zolpidem, unlike triazolam and zopiclone, had a much milder reducing-effect on the frequency of hippocampal theta activity and suppressing-effect on REM sleep. These results suggest that zolpidem may prove to be a safer hypnotic drug which has fewer or milder side effects than are benzodiazepine and cyclopyrrolone hypnotics.

  7. Spectral characteristics of the hippocampal LFP during contextual fear conditioning

    Directory of Open Access Journals (Sweden)

    Birajara Soares Machado

    2012-06-01

    Full Text Available Objective: The hippocampus has an important role in the acquisitionand recall of aversive memories. The objective of this study was toinvestigate the relationship among hippocampal rhythms. Methods:Microeletrodes arrays were implanted in the hippocampus of Wistarrats. The animals were trained and tested in a contextual fearconditioning task. The training consisted in applying shocks in thelegs. The memory test was performed 1 day (recent memory or 18days (remote memory after training. We proposed a measure basedon the FFT power spectrum, denominated “delta-theta ratio”, tocharacterize the different behaviors (active exploration and freezingand the memories types. Results: The delta-theta ratio was able todistinguish recent and remote memories. In this study, the ratio forthe 18-day group was smaller than for the 1-day group. Moreover,this measure was useful to distinguish the different behavior states– active exploration and freezing. Conclusions: The results suggestdelta-theta oscillations could reflect the demands on informationprocessing during recent and remote memory recalls.

  8. Theta frequency background tunes transmission but not summation of spiking responses.

    Directory of Open Access Journals (Sweden)

    Dhanya Parameshwaran

    Full Text Available Hippocampal neurons are known to fire as a function of frequency and phase of spontaneous network rhythms, associated with the animal's behaviour. This dependence is believed to give rise to precise rate and temporal codes. However, it is not well understood how these periodic membrane potential fluctuations affect the integration of synaptic inputs. Here we used sinusoidal current injection to the soma of CA1 pyramidal neurons in the rat brain slice to simulate background oscillations in the physiologically relevant theta and gamma frequency range. We used a detailed compartmental model to show that somatic current injection gave comparable results to more physiological synaptically driven theta rhythms incorporating excitatory input in the dendrites, and inhibitory input near the soma. We systematically varied the phase of synaptic inputs with respect to this background, and recorded changes in response and summation properties of CA1 neurons using whole-cell patch recordings. The response of the cell was dependent on both the phase of synaptic inputs and frequency of the background input. The probability of the cell spiking for a given synaptic input was up to 40% greater during the depolarized phases between 30-135 degrees of theta frequency current injection. Summation gain on the other hand, was not affected either by the background frequency or the phasic afferent inputs. This flat summation gain, coupled with the enhanced spiking probability during depolarized phases of the theta cycle, resulted in enhanced transmission of summed inputs during the same phase window of 30-135 degrees. Overall, our study suggests that although oscillations provide windows of opportunity to selectively boost transmission and EPSP size, summation of synaptic inputs remains unaffected during membrane oscillations.

  9. Persistent hyperdopaminergia decreases the peak frequency of hippocampal theta oscillations during quiet waking and REM sleep.

    Directory of Open Access Journals (Sweden)

    Kafui Dzirasa

    Full Text Available Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes.

  10. Independent rate and temporal coding in hippocampal pyramidal cells.

    Science.gov (United States)

    Huxter, John; Burgess, Neil; O'Keefe, John

    2003-10-23

    In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory.

  11. The role of REM theta activity in emotional memory

    Directory of Open Access Journals (Sweden)

    Isabel Camilla Hutchison

    2015-10-01

    Full Text Available While NREM sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of REM sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity – which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex – is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale PGO waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and the gradual weakening of consolidated hippocampal memory traces observed in both wake and REM sleep. Hippocampal theta activity is also correlated with REM sleep acetylcholine levels – which are thought to reduce hippocampal afferent inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate recurrent activation within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  12. Transient reduction in theta power caused by interictal spikes in human temporal lobe epilepsy.

    Science.gov (United States)

    Manling Ge; Jundan Guo; Yangyang Xing; Zhiguo Feng; Weide Lu; Xinxin Ma; Yuehua Geng; Xin Zhang

    2017-07-01

    The inhibitory impacts of spikes on LFP theta rhythms(4-8Hz) are investigated around sporadic spikes(SSs) based on intracerebral EEG of 4 REM sleep patients with temporal lobe epilepsy(TLE) under the pre-surgical monitoring. Sequential interictal spikes in both genesis area and extended propagation pathway are collected, that, SSs genesis only in anterior hippocampus(aH)(possible propagation pathway in Entorhinal cortex(EC)), only in EC(possible propagation pathway in aH), and in both aH and EC synchronously. Instantaneous theta power was estimated by using Gabor wavelet transform, and theta power level was estimated by averaged over time and frequency before SSs(350ms pre-spike) and after SSs(350ms post-spike). The inhibitory effect around spikes was evaluated by the ratio of theta power level difference between pre-spike and post-spike to pre-spike theta power level. The findings were that theta power level was reduced across SSs, and the effects were more sever in the case of SSs in both aH and EC synchronously than either SSs only in EC or SSs only in aH. It is concluded that interictal spikes impair LFP theta rhythms transiently and directly. The work suggests that the reduction of theta power after the interictal spike might be an evaluation indicator of damage of epilepsy to human cognitive rhythms.

  13. Serotonin Modulation of Prefronto-Hippocampal Rhythms in Health and Disease.

    Science.gov (United States)

    Puig, M Victoria; Gener, Thomas

    2015-07-15

    There is mounting evidence that most cognitive functions depend upon the coordinated activity of neuronal networks often located far from each other in the brain. Ensembles of neurons synchronize their activity, generating oscillations at different frequencies that may encode behavior by allowing an efficient communication between brain areas. The serotonin system, by virtue of the widespread arborisation of serotonergic neurons, is in an excellent position to exert strong modulatory actions on brain rhythms. These include specific oscillatory activities in the prefrontal cortex and the hippocampus, two brain areas essential for many higher-order cognitive functions. Psychiatric patients show abnormal oscillatory activities in these areas, notably patients with schizophrenia who display psychotic symptoms as well as affective and cognitive impairments. Synchronization of neural activity between the prefrontal cortex and the hippocampus seems to be important for cognition and, in fact, reduced prefronto-hippocampal synchrony has been observed in a genetic mouse model of schizophrenia. Here, we review recent advances in the field of neuromodulation of brain rhythms by serotonin, focusing on the actions of serotonin in the prefrontal cortex and the hippocampus. Considering that the serotonergic system plays a crucial role in cognition and mood and is a target of many psychiatric treatments, it is surprising that this field of research is still in its infancy. In that regard, we point to future investigations that are much needed in this field.

  14. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    Science.gov (United States)

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Theta oscillations during holeboard training in rats: different learning strategies entail different context-dependent modulations in the hippocampus.

    Science.gov (United States)

    Woldeit, M L; Korz, V

    2010-02-03

    A functional connection between theta rhythms, information processing, learning and memory formation is well documented by studies focusing on the impact of theta waves on motor activity, global context or phase coding in spatial learning. In the present study we analyzed theta oscillations during a spatial learning task and assessed which specific behavioral contexts were connected to changes in theta power and to the formation of memory. Therefore, we measured hippocampal dentate gyrus theta modulations in male rats that were allowed to establish a long-term spatial reference memory in a holeboard (fixed pattern of baited holes) in comparison to rats that underwent similar training conditions but could not form a reference memory (randomly baited holes). The first group established a pattern specific learning strategy, while the second developed an arbitrary search strategy, visiting increasingly more holes during training. Theta power was equally influenced during the training course in both groups, but was significantly higher when compared to untrained controls. A detailed behavioral analysis, however, revealed behavior- and context-specific differences within the experimental groups. In spatially trained animals theta power correlated with the amounts of reference memory errors in the context of the inspection of unbaited holes and exploration in which, as suggested by time frequency analyses, also slow wave (delta) power was increased. In contrast, in randomly trained animals positive correlations with working memory errors were found in the context of rearing behavior. These findings indicate a contribution of theta/delta to long-lasting memory formation in spatially trained animals, whereas in pseudo trained animals theta seems to be related to attention in order to establish trial specific short-term working memory. Implications for differences in neuronal plasticity found in earlier studies are discussed. Copyright 2010 IBRO. Published by Elsevier Ltd

  16. Immediate effects of Alpha/theta and Sensory-Motor Rhythm feedback on music performance.

    Science.gov (United States)

    Gruzelier, J H; Hirst, L; Holmes, P; Leach, J

    2014-07-01

    This is one of a series of investigations comparing two EEG-neurofeedback protocols - Alpha/theta (A/T) and Sensory-Motor Rhythm (SMR) - for performance enhancement in the Arts, here with the focus on music. The original report (Egner and Gruzelier, 2003) established a beneficial outcome for elite conservatoire musicians following A/T training in two investigations. Subsequently this A/T advantage was replicated for both advanced instrumental and novice singing abilities, including improvisation, while SMR training benefited novice performance only (Gruzelier, Holmes et al., 2014). Here we report a replication of the latter study in university instrumentalists who as before were novice singers with one design change - post-training performances were conducted within the tenth final session instead of on a subsequent occasion. As before expert judges rated the domains of Creativity/Musicality, Communication/Presentation and Technique. The proximity to training of the music performances within the last session likely compromised gains from A/T learning, but perhaps reinforced the impact of SMR training efficacy. In support of validation there was evidence of strong within- and across-session A/T learning and positive linear trends for across-session SMR/theta and SMR/beta-2 ratio learning. In support of mediation learning correlated with music performance. The A/T outcome was markedly discrepant from previous studies and should dispel any impression that the hypnogogic state itself is transferred to the performance context. The effects of SMR ratio training are consistent with an impact on lower-order abilities required in novice performance such as sustained attention and memory, and benefiting all three domains of music assessment. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Local Optogenetic Induction of Fast (20-40 Hz Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2016-04-01

    Full Text Available The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2 expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz field potential oscillations in hippocampal area CA1 in vitro (at 25°C and in vivo (i.e., slightly anaesthetized NEX-Cre-ChR2 mice. As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  18. Local Optogenetic Induction of Fast (20-40 Hz) Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity.

    Science.gov (United States)

    Dine, Julien; Genewsky, Andreas; Hladky, Florian; Wotjak, Carsten T; Deussing, Jan M; Zieglgänsberger, Walter; Chen, Alon; Eder, Matthias

    2016-01-01

    The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz) network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2) expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz) field potential oscillations in hippocampal area CA1 in vitro (at 25°C) and in vivo (i.e., slightly anesthetized NEX-Cre-ChR2 mice). As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer) and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I) oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells) and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM) in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC) in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1→PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive) P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  19. Intrahemispheric theta rhythm desynchronization impairs working memory.

    Science.gov (United States)

    Alekseichuk, Ivan; Pabel, Stefanie Corinna; Antal, Andrea; Paulus, Walter

    2017-01-01

    There is a growing interest in large-scale connectivity as one of the crucial factors in working memory. Correlative evidence has revealed the anatomical and electrophysiological players in the working memory network, but understanding of the effective role of their connectivity remains elusive. In this double-blind, placebo-controlled study we aimed to identify the causal role of theta phase connectivity in visual-spatial working memory. The frontoparietal network was over- or de-synchronized in the anterior-posterior direction by multi-electrode, 6 Hz transcranial alternating current stimulation (tACS). A decrease in memory performance and increase in reaction time was caused by frontoparietal intrahemispheric desynchronization. According to the diffusion drift model, this originated in a lower signal-to-noise ratio, known as the drift rate index, in the memory system. The EEG analysis revealed a corresponding decrease in phase connectivity between prefrontal and parietal areas after tACS-driven desynchronization. The over-synchronization did not result in any changes in either the behavioral or electrophysiological levels in healthy participants. Taken together, we demonstrate the feasibility of manipulating multi-site large-scale networks in humans, and the disruptive effect of frontoparietal desynchronization on theta phase connectivity and visual-spatial working memory.

  20. GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3 mRNA

    Directory of Open Access Journals (Sweden)

    Hector Albert-Gascó

    2018-01-01

    Full Text Available The medial septum (MS complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3. Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3, is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3 mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT mRNA- and parvalbumin (PV mRNA-positive GABA neurons in MS, whereas ChAT mRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive, while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.

  1. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    Science.gov (United States)

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  2. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells

    Directory of Open Access Journals (Sweden)

    Caroline Fasano

    2017-05-01

    Full Text Available Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT and the atypical type III vesicular glutamate transporter (VGLUT3; therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer’s collaterals – CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

  3. Visual cortex plasticity evokes excitatory alterations in the hippocampus

    Directory of Open Access Journals (Sweden)

    Marian Tsanov

    2009-11-01

    Full Text Available The integration of episodic sequences in the hippocampus is believed to occur during theta rhythm episodes, when cortico-hippocampal dialog results in reconfiguration of neuronal assemblies. As the visual cortex (VC is a major source of sensory information to the hippocampus, information processing in the cortex may affect hippocampal network oscillations, facilitating the induction of synaptic modifications. We investigated to what degree the field activity in the primary VC, elicited by sensory or electrical stimulation, correlates with hippocampal oscillatory and synaptic responsiveness, in freely behaving adult rats. We found that the spectral power of theta rhythm (4-10Hz in the dentate gyrus (DG, increases in parallel with high-frequency oscillations in layer 2/3 of the VC and that this correlation depends on the degree of exploratory activity. When we mimic robust thalamocortical activity by theta-burst application to dorsal lateral geniculate nucleus, a hippocampal theta increase occurs, followed by a persistent potentiation of the DG granule field population spike. Furthermore, the potentiation of DG neuronal excitability tightly correlates with the concurrently occurring VC plasticity. The concurrent enhancement of VC and DG activity is also combined with a highly negative synchronization between hippocampal and cortical low frequency oscillations. Exploration of familiar environment decreases the degree of this synchrony. Our data propose that novel visual information can induce high-power fluctuations in intrinsic excitability for both VC and hippocampus, potent enough to induce experience-dependent modulation of cortico-hippocampal connections. This interaction may comprise one of the endogenous triggers for long-term synaptic plasticity in the hippocampus.

  4. Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    Directory of Open Access Journals (Sweden)

    Samuel A Neymotin

    Full Text Available Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz and gamma (25 Hz oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells, contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.

  5. Enhancing early consolidation of human episodic memory by theta EEG neurofeedback.

    Science.gov (United States)

    Rozengurt, Roman; Shtoots, Limor; Sheriff, Aviv; Sadka, Ofir; Levy, Daniel A

    2017-11-01

    Consolidation of newly formed memories is readily disrupted, but can it be enhanced? Given the prominent role of hippocampal theta oscillations in memory formation and retrieval, we hypothesized that upregulating theta power during early stages of consolidation might benefit memory stability and persistence. We used EEG neurofeedback to enable participants to selectively increase theta power in their EEG spectra following episodic memory encoding, while other participants engaged in low beta-focused neurofeedback or passively viewed a neutral nature movie. Free recall assessments immediately following the interventions, 24h later and 7d later all indicated benefit to memory of theta neurofeedback, relative to low beta neurofeedback or passive movie-viewing control conditions. The degree of benefit to memory was correlated with the extent of theta power modulation, but not with other spectral changes. Theta enhancement may provide optimal conditions for stabilization of new hippocampus-dependent memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Science.gov (United States)

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction.

    Directory of Open Access Journals (Sweden)

    Jörg Lesting

    Full Text Available Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction.

  8. Theta oscillation and neuronal activity in rat hippocampus areinvolved in temporal discrimination of time in seconds

    Directory of Open Access Journals (Sweden)

    Tomoaki eNakazono

    2015-06-01

    Full Text Available The discovery of time cells revealed that the rodent hippocampus has information of time.Previous studies have suggested that a role of hippocampal time cells is to integratetemporally segregated events into a sequence using working memory with time perception.However, it is unclear that hippocampal cells contribute to time perception itself becausemost previous studies employed delayed matching-to-sample tasks that did not evaluatetime perception separately from working memory processes. Here, we investigated thefunction of the rat hippocampus in time perception using a temporal discrimination task. Inthe task, rats had to discriminate between durations of 1 and 3 sec to get a reward, andmaintaining task-related information as working memory was not required. We found thatsome hippocampal neurons showed firing rate modulation similar to that of time cells.Moreover, theta oscillation of local field potentials (LFPs showed a transient enhancementof power during time discrimination periods. However, there were little relationshipsbetween the neuronal activities and theta oscillations. These results suggest that both theindividual neuronal activities and theta oscillations of LFPs in the hippocampus have a possibility to be engaged in seconds order time perception; however, they participate in different ways.

  9. [Diagnostic inquiries in patients with a theta ground rhythm variant in the EEG].

    Science.gov (United States)

    Wendland, K L; Fenzel, G

    1992-09-01

    Basing on the examination of 82.767 EEGs, 118 patients with theta rhythm variant (GRV) were found out. From their case-histories all particulars taken to be important were gathered by means of a questionnaire. In addition to this 70 of these patients were interviewed, mostly in the course of a visit at home, in order to supplement the data by catamnestic informations. Moreover, attending family doctors were asked for informations, and from 14 patients elsewhere recorded EEGs were evaluated. With regard to its cycles per second, the GRV proved to be stable even for long periods, but as to its coming to the fore a slight changeability revealed. Concerning physical complaints, the patients primarily suffered from headache, giddiness, and liability to fainting fits, secondary they frequently were affected with vegetative disorders and stomach complaints. In view of the psychic aspect striking often came to light unrest, lack of vitality, disturbed social contacts, sexual problems, anxiety fits, depressive reactions, and suicidal thoughts. High sensitiveness and insufficient self-sureness in many cases were conspicuous attributes. In particular men often failed in establishing or maintaining intimate human relations, so that many of them remained single, made at best only few friends, and easily became outsiders. Inability to enforce own desires against opposition, liability of mood, ill-humor, discontent, or even jealousy frequently made their appearance. As to gainful employment and professional status several of them were less successful than their siblings and their parents.

  10. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep.

    Science.gov (United States)

    Poe, G R; Nitz, D A; McNaughton, B L; Barnes, C A

    2000-02-07

    The idea that sleep could serve a cognitive function has remained popular since Freud stated that dreams were "not nonsense" but a time to sort out experiences [S. Freud, Letter to Wilhelm Fliess, May 1897, in The Origins of Psychoanalysis - Personal Letters of Sigmund Freud, M. Bonaparte, A. Freud, E. Kris (Eds.), Translated by E. Mosbacher, J. Strachey, Basic Books and Imago Publishing, 1954]. Rapid eye movement (REM) sleep, which is associated with dream reports, is now known to be is important for acquisition of some tasks [A. Karni, D. Tanne, B.S. Rubenstein, J.J.M. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill, Science 265 (1994) 679-682; C. Smith, Sleep states and learning: a review of the animal literature, Biobehav. Rev. 9 (1985) 157-168]; although why this is so remains obscure. It has been proposed that memories may be consolidated during REM sleep or that forgetting of unnecessary material occurs in this state [F. Crick, G. Mitchison, The function of dream sleep, Nature 304 (1983) 111-114; D. Marr, Simple memory: a theory for archicortex, Philos. Trans. R. Soc. B. 262 (1971) 23-81]. We studied the firing of multiple single neurons in the hippocampus, a structure that is important for episodic memory, during familiar and novel experiences and in subsequent REM sleep. Cells active in familiar places during waking exhibited a reversal of firing phase relative to local theta oscillations in REM sleep. Because firing-phase can influence whether synapses are strengthened or weakened [C. Holscher, R. Anwyl, M.J. Rowan, Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo, J. Neurosci. 15 (1977) 6470-6477; P.T. Huerta, J.E. Lisman, Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15 (1995) 1053-1063; C. Pavlides, Y

  11. A computational study on altered theta-gamma coupling during learning and phase coding.

    Directory of Open Access Journals (Sweden)

    Xuejuan Zhang

    Full Text Available There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABA(A receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABA(A,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus.

  12. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity.

    Science.gov (United States)

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  13. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity

    Directory of Open Access Journals (Sweden)

    Nantawachara Jirakittayakorn

    2017-06-01

    Full Text Available A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  14. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus

    Directory of Open Access Journals (Sweden)

    Lauren L Long

    2015-03-01

    Full Text Available Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal hippocampus processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval.

  15. Frontal midline theta rhythm and gamma power changes during focused attention on mental calculation: an MEG beamformer analysis

    Directory of Open Access Journals (Sweden)

    Ryouhei eIshii

    2014-06-01

    Full Text Available Frontal midline theta rhythm (Fmθ appears widely distributed over medial prefrontal areas in EEG recordings, indicating focused attention. Although mental calculation is often used as an attention-demanding task, little has been reported on calculation-related activation in Fmθ experiments. In this study we used spatially filtered MEG and permutation analysis to precisely localize cortical generators of the magnetic counterpart of Fmθ, as well as other sources of oscillatory activity associated with mental calculation processing (i.e., arithmetic subtraction. Our results confirmed and extended earlier EEG/MEG studies indicating that Fmθ during mental calculation is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Mental subtraction was also associated with gamma event-related synchronization, as an index of activation, in right parietal regions subserving basic numerical processing and number-based spatial attention. Gamma event-related desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task.

  16. The many tunes of perisomatic targeting interneurons in the hippocampal network

    Directory of Open Access Journals (Sweden)

    Tommas J Ellender

    2010-07-01

    Full Text Available The axonal targets of perisomatic targeting interneurons make them ideally suited to synchronise excitatory neurons. As such they have been implicated in rhythm generation of network activity in many brain regions including the hippocampus. However, several recent publications indicate that their roles extend beyond that of rhythm generation. Firstly, it has been shown that, in addition to rhythm generation, GABAergic perisomatic inhibition also serves as a current generator contributing significantly to hippocampal oscillatory EEG signals. Furthermore, GABAergic interneurons have a hitherto unexpected role in the initiation of hippocampal population bursts, both in the developing and adult hippocampus. In this review, we describe these new observations in detail and discuss the implications they have for our understanding of the mechanisms underlying physiological and pathological hippocampal network activities. This review is part of the Frontiers in Cellular Neuroscience's special topic entitled GABA signalling in health and disease based on the meeting at the CNCR Amsterdam.

  17. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.

    Directory of Open Access Journals (Sweden)

    Lisa Marshall

    Full Text Available Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz during non-rapid eye movement sleep (NonREM sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies.

  18. Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2010-05-01

    Working memory (WM) tasks require not only distinct functions such as a storage buffer and central executive functions, but also coordination among these functions. Neuroimaging studies have revealed the contributions of different brain regions to different functional roles in WM tasks; however, little is known about the neural mechanism governing their coordination. Electroencephalographic (EEG) rhythms, especially theta and alpha, are known to appear over distributed brain regions during WM tasks, but the rhythms associated with task-relevant regional coupling have not been obtained thus far. In this study, we conducted time-frequency analyses for EEG data in WM tasks that include manipulation periods and memory storage buffer periods. We used both auditory WM tasks and visual WM tasks. The results successfully demonstrated function-specific EEG activities. The frontal theta amplitudes increased during the manipulation periods of both tasks. The alpha amplitudes increased during not only the manipulation but also the maintenance periods in the temporal area for the auditory WM and the parietal area for the visual WM. The phase synchronization analyses indicated that, under the relevant task conditions, the temporal and parietal regions show enhanced phase synchronization in the theta bands with the frontal region, whereas phase synchronization between theta and alpha is significantly enhanced only within the individual areas. Our results suggest that WM task-relevant brain regions are coordinated by distant theta synchronization for central executive functions, by local alpha synchronization for the memory storage buffer, and by theta-alpha coupling for inter-functional integration.

  19. Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.

    Science.gov (United States)

    Tingley, David; Buzsáki, György

    2018-05-15

    The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Pre-stimulus thalamic theta power predicts human memory formation.

    Science.gov (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Theta vectors and quantum theta functions

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2005-01-01

    In this paper, we clarify the relation between Manin's quantum theta function and Schwarz's theta vector. We do this in comparison with the relation between the kq representation, which is equivalent to the classical theta function, and the corresponding coordinate space wavefunction. We first explain the equivalence relation between the classical theta function and the kq representation in which the translation operators of the phase space are commuting. When the translation operators of the phase space are not commuting, then the kq representation is no longer meaningful. We explain why Manin's quantum theta function, obtained via algebra (quantum torus) valued inner product of the theta vector, is a natural choice for the quantum version of the classical theta function. We then show that this approach holds for a more general theta vector containing an extra linear term in the exponent obtained from a holomorphic connection of constant curvature than the simple Gaussian one used in Manin's construction

  2. Functional substrate for memory function differences between patients with left and right mesial temporal lobe epilepsy associated with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2015-10-01

    Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between

  3. Cognitive Deficits Associated with Nav1.1 Alterations: Involvement of Neuronal Firing Dynamics and Oscillations.

    Directory of Open Access Journals (Sweden)

    Alex C Bender

    Full Text Available Brain oscillations play a critical role in information processing and may, therefore, be essential to uncovering the mechanisms of cognitive impairment in neurological disease. In Dravet syndrome (DS, a mutation in SCN1A, coding for the voltage-gated sodium channel Nav1.1, is associated with severe cognitive impairment and seizures. While seizure frequency and severity do not correlate with the extent of impairment, the slowing of brain rhythms may be involved. Here we investigate the role of Nav1.1 on brain rhythms and cognition using RNA interference. We demonstrate that knockdown of Nav1.1 impairs fast- and burst-firing properties of neurons in the medial septum in vivo. The proportion of neurons that fired phase-locked to hippocampal theta oscillations was reduced, and medial septal regulation of theta rhythm was disrupted. During a working memory task, this deficit was characterized by a decrease in theta frequency and was negatively correlated with performance. These findings suggest a fundamental role for Nav1.1 in facilitating fast-firing properties in neurons, highlight the importance of precise temporal control of theta frequency for working memory, and imply that Nav1.1 deficits may disrupt information processing in DS via a dysregulation of brain rhythms.

  4. Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    Science.gov (United States)

    Le Magueresse, Corentin; Monyer, Hannah

    2012-01-01

    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance. PMID:22675480

  5. Low-frequency stimulation in anterior nucleus of thalamus alleviates kainate-induced chronic epilepsy and modulates the hippocampal EEG rhythm.

    Science.gov (United States)

    Wang, Yi; Liang, Jiao; Xu, Cenglin; Wang, Ying; Kuang, Yifang; Xu, Zhenghao; Guo, Yi; Wang, Shuang; Gao, Feng; Chen, Zhong

    2016-02-01

    High-frequency stimulation (HFS) of the anterior nucleus of thalamus (ANT) is a new and alternative option for the treatment of intractable epilepsy. However, the responder rate is relatively low. The present study was designed to determine the effect of low-frequency stimulation (LFS) in ANT on chronic spontaneous recurrent seizures and related pathological pattern in intra-hippocampal kainate mouse model. We found that LFS (1 Hz, 100 μs, 300 μA), but not HFS (100 Hz, 100 μs, 30 μA), in bilateral ANT significantly decreased the frequency of spontaneous recurrent seizures, either non-convulsive focal seizures or tonic-clonic generalized seizures. The anti-epileptic effect persisted for one week after LFS cessation, which manifested as a long-term inhibition of the frequency of seizures with short (20-60 s) and intermediate duration (60-120 s). Meanwhile, LFS decreased the frequency of high-frequency oscillations (HFOs) and interictal spikes, two indicators of seizure severity, whereas HFS increased the HFO frequency. Furthermore, LFS decreased the power of the delta band and increased the power of the gamma band of hippocampal background EEG. In addition, LFS, but not HFS, improved the performance of chronic epileptic mice in objection-location task, novel objection recognition and freezing test. These results provide the first evidence that LFS in ANT alleviates kainate-induced chronic epilepsy and cognitive impairment, which may be related to the modulation of the hippocampal EEG rhythm. This may be of great therapeutic significance for clinical treatment of epilepsy with deep brain stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hippocampal frequency shifts in different behavioural situations

    NARCIS (Netherlands)

    Kamp, A.; Lopes da Silva, F.H.; Storm van Leeuwen, W.

    1971-01-01

    Electrical activity of the dog's hippocampus was recorded in (a) an operant behaviour situation, and (b) a field situation by a radio-telemetering system. The dominant frequency of the theta rhythm shifted consistently from 4–5 c/sec to 6–7 c/sec when a dog (a) withdrew from a pedal after being

  7. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    Science.gov (United States)

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  8. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.

    Science.gov (United States)

    Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  9. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form

    Directory of Open Access Journals (Sweden)

    Antonio Fernández-Caballero

    2017-04-01

    Full Text Available This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  10. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

    Science.gov (United States)

    Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György

    2017-03-08

    Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons.

    Science.gov (United States)

    Kang, Young-Jin; Lewis, Hannah Elisabeth Smashey; Young, Mason William; Govindaiah, Gubbi; Greenfield, Lazar John; Garcia-Rill, Edgar; Lee, Sang-Hun

    2018-04-15

    The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB 1 BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB 1 BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    Science.gov (United States)

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP. Copyright © 2015 the American Physiological Society.

  13. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    Science.gov (United States)

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy

    OpenAIRE

    Solana Sánchez, Ana Beatriz; Hernández Tamames, J.A.; Molina, E.; Martínez, K.; Pineda Pardo, José Ángel; Bruña Fernandez, Ricardo; Toledano, Rafael; San Antonio-Arce, Victoria; Garcia Morales, Irene; Gil Nagel, Antonio; Alfayate, E.; Álvarez Linera, Juan; Pozo Guerrero, Francisco del

    2012-01-01

    Fixation-off sensitivity (FOS) denotes the forms of epilepsy elicited by elimination of fixation. FOS-IGE patients are rare cases [1]. In a previous work [2] we showed that two FOS-IGE patients had different altered EEG rhythms when closing eyes; only beta band was altered in patient 1 while theta, alpha and beta were altered in patient 2. In the present work, we explain the relationship between the altered brain rhythms in these patients and the disruption in functional brain net...

  15. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme.

    Science.gov (United States)

    Lisman, John

    2005-01-01

    In the hippocampus, oscillations in the theta and gamma frequency range occur together and interact in several ways, indicating that they are part of a common functional system. It is argued that these oscillations form a coding scheme that is used in the hippocampus to organize the readout from long-term memory of the discrete sequence of upcoming places, as cued by current position. This readout of place cells has been analyzed in several ways. First, plots of the theta phase of spikes vs. position on a track show a systematic progression of phase as rats run through a place field. This is termed the phase precession. Second, two cells with nearby place fields have a systematic difference in phase, as indicated by a cross-correlation having a peak with a temporal offset that is a significant fraction of a theta cycle. Third, several different decoding algorithms demonstrate the information content of theta phase in predicting the animal's position. It appears that small phase differences corresponding to jitter within a gamma cycle do not carry information. This evidence, together with the finding that principle cells fire preferentially at a given gamma phase, supports the concept of theta/gamma coding: a given place is encoded by the spatial pattern of neurons that fire in a given gamma cycle (the exact timing within a gamma cycle being unimportant); sequential places are encoded in sequential gamma subcycles of the theta cycle (i.e., with different discrete theta phase). It appears that this general form of coding is not restricted to readout of information from long-term memory in the hippocampus because similar patterns of theta/gamma oscillations have been observed in multiple brain regions, including regions involved in working memory and sensory integration. It is suggested that dual oscillations serve a general function: the encoding of multiple units of information (items) in a way that preserves their serial order. The relationship of such coding to

  16. Hippocampal network activity is transiently altered by induction of long-term potentiation in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Arthur Bikbaev

    2007-12-01

    Full Text Available A role for oscillatory activity in hippocampal neuronal networks has been proposed in sensory encoding, cognitive functions and synaptic plasticity. In the hippocampus, theta (5–10 Hz and gamma (30–100 Hz oscillations may provide a mechanism for temporal encoding of information, and the basis for formation and retrieval of memory traces. Long-term potentiation (LTP of synaptic transmission, a candidate cellular model of synaptic information storage, is typically induced by high-frequency tetanisation (HFT of afferent pathways. Taking into account the role of oscillatory activity in the processing of information, dynamic changes may occur in hippocampal network activity in the period during HFT and/or soon after it. These changes in rhythmic activity may determine or, at least, contribute to successful potentiation and, in general, to formation of memory. We have found that short-term potentiation (STP and LTP as well LTPfailure are characterised with different profiles of changes in theta and gamma frequencies. Potentiation of synaptic transmission was associated with a significant increase in the relative theta power and mean amplitude of theta cycles in the period encompassing 300 seconds after HFT. Where LTP or STP, but not failure of potentiation, occurred, this facilitation of theta was accompanied by transient increases in gamma power and in the mean amplitude of gamma oscillations within a single theta cycle. Our data support that specific, correlated changes in these parameters are associated with successful synaptic potentiation. These findings suggest that changes in theta-gamma activity associated with induction of LTP may enable synaptic information storage in the hippocampus.

  17. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    Science.gov (United States)

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine.

    Czech Academy of Sciences Publication Activity Database

    Szczurowska, E.; Ahuja, Nikhil; Jiruška, Přemysl; Kelemen, E.; Stuchlík, Aleš

    2018-01-01

    Roč. 81, Feb 2 (2018), s. 275-283 ISSN 0278-5846 R&D Projects: GA ČR(CZ) GA17-04047S Institutional support: RVO:67985823 Keywords : psychosis * MK-801 * neuronal discoordination * hippocampus * Theta rhythm Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.187, year: 2016

  19. Rhythms of EEG and cognitive processes

    Directory of Open Access Journals (Sweden)

    Novikova S.I.

    2015-06-01

    Full Text Available The study of cognitive processes is regarded to be more effective if it combines a psychological approach with a neurophysiological one. This approach makes it possible to come closer to understanding of the basic mechanisms of different cognitive processes, to describe the patterns of forming these mechanisms in ontogenesis, to investigate the origin of cognitive impairments, and to develop intervention techniques. The promising way of investigating the mechanisms of cognitive functions is the electroencephalography (EEG. This is a non-invasive, safe, and relatively cheap method of research of the functional condition of the brain. The characteristics of EEG rhythms, recorded with different cognitive loads, reflect the processes of functional modulation of neural network activity of the cortex, which serves the neurophysiologic basis for attention, memory and other cognitive processes. The article provides an overview of works containing the analysis of the alpha and theta rhythms’ dynamics in various states of wakefulness. It also introduces the substantiation of methodology of functional regulatory approach to the interpretation of behaviors of EEG rhythms.

  20. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link?

    Science.gov (United States)

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel

    2015-08-01

    Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.

  1. The psychostimulant modafinil facilitates water maze performance and augments synaptic potentiation in dentate gyrus.

    Science.gov (United States)

    Tsanov, Marian; Lyons, Declan G; Barlow, Sally; González Reyes, Rodrigo E; O'Mara, Shane M

    2010-01-01

    Modafinil is a psychostimulant drug used widely for the treatment of narcolepsy, which also has additional positive effects on cognition. Here, we investigate the effects of modafinil on behavioural performance and synaptic plasticity in rats. Improved acquisition in the water maze task was observed in animals that underwent chronic treatment with modafinil. We found that the distance traveled and escape latency were reduced after the first day in chronically-treated rats, compared to controls. Importantly, swim velocity was similar for both groups, excluding pharmacological effects on motor skills. We also found that modafinil increases synaptic plasticity in the dentate gyrus of urethane-anaesthetized rats; modafinil induced a robust augmentation of the population spike, evident after application of 2 bursts of 200 Hz high-frequency stimulation. Furthermore, the modafinil-dependent enhancement of postsynaptic potentials correlated selectively with theta rhythm augmentation. We propose that modafinil may facilitate hippocampal-associated spatial representation via increased theta-related hippocampal plasticity. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Lateralized theta wave connectivity and language performance in 2- to 5-year-old children.

    Science.gov (United States)

    Kikuchi, Mitsuru; Shitamichi, Kiyomi; Yoshimura, Yuko; Ueno, Sanae; Remijn, Gerard B; Hirosawa, Tetsu; Munesue, Toshio; Tsubokawa, Tsunehisa; Haruta, Yasuhiro; Oi, Manabu; Higashida, Haruhiro; Minabe, Yoshio

    2011-10-19

    Recent neuroimaging studies support the view that a left-lateralized brain network is crucial for language development in children. However, no previous studies have demonstrated a clear link between lateralized brain functional network and language performance in preschool children. Magnetoencephalography (MEG) is a noninvasive brain imaging technique and is a practical neuroimaging method for use in young children. MEG produces a reference-free signal, and is therefore an ideal tool to compute coherence between two distant cortical rhythms. In the present study, using a custom child-sized MEG system, we investigated brain networks while 78 right-handed preschool human children (32-64 months; 96% were 3-4 years old) listened to stories with moving images. The results indicated that left dominance of parietotemporal coherence in theta band activity (6-8 Hz) was specifically correlated with higher performance of language-related tasks, whereas this laterality was not correlated with nonverbal cognitive performance, chronological age, or head circumference. Power analyses did not reveal any specific frequencies that contributed to higher language performance. Our results suggest that it is not the left dominance in theta oscillation per se, but the left-dominant phase-locked connectivity via theta oscillation that contributes to the development of language ability in young children.

  3. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    Science.gov (United States)

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  4. Fluoxetine normalizes disrupted light-induced entrainment, fragmented ultradian rhythms and altered hippocampal clock gene expression in an animal model of high trait anxiety- and depression-related behavior.

    Science.gov (United States)

    Schaufler, Jörg; Ronovsky, Marianne; Savalli, Giorgia; Cabatic, Maureen; Sartori, Simone B; Singewald, Nicolas; Pollak, Daniela D

    2016-01-01

    Disturbances of circadian rhythms are a key symptom of mood and anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) - commonly used antidepressant drugs - also modulate aspects of circadian rhythmicity. However, their potential to restore circadian disturbances in depression remains to be investigated. The effects of the SSRI fluoxetine on genetically based, depression-related circadian disruptions at the behavioral and molecular level were examined using mice selectively bred for high anxiety-related and co-segregating depression-like behavior (HAB) and normal anxiety/depression behavior mice (NAB). The length of the circadian period was increased in fluoxetine-treated HAB as compared to NAB mice while the number of activity bouts and light-induced entrainment were comparable. No difference in hippocampal Cry2 expression, previously reported to be dysbalanced in untreated HAB mice, was observed, while Per2 and Per3 mRNA levels were higher in HAB mice under fluoxetine treatment. The present findings provide evidence that fluoxetine treatment normalizes disrupted circadian locomotor activity and clock gene expression in a genetic mouse model of high trait anxiety and depression. An interaction between the molecular mechanisms mediating the antidepressant response to fluoxetine and the endogenous regulation of circadian rhythms in genetically based mood and anxiety disorders is proposed.

  5. Gender-Specific Hippocampal Dysrhythmia and Aberrant Hippocampal and Cortical Excitability in the APPswePS1dE9 Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Anna Papazoglou

    2016-01-01

    Full Text Available Alzheimer’s disease (AD is a multifactorial disorder leading to progressive memory loss and eventually death. In this study an APPswePS1dE9 AD mouse model has been analyzed using implantable video-EEG radiotelemetry to perform long-term EEG recordings from the primary motor cortex M1 and the hippocampal CA1 region in both genders. Besides motor activity, EEG recordings were analyzed for electroencephalographic seizure activity and frequency characteristics using a Fast Fourier Transformation (FFT based approach. Automatic seizure detection revealed severe electroencephalographic seizure activity in both M1 and CA1 deflection in APPswePS1dE9 mice with gender-specific characteristics. Frequency analysis of both surface and deep EEG recordings elicited complex age, gender, and activity dependent alterations in the theta and gamma range. Females displayed an antithetic decrease in theta (θ and increase in gamma (γ power at 18-19 weeks of age whereas related changes in males occurred earlier at 14 weeks of age. In females, theta (θ and gamma (γ power alterations predominated in the inactive state suggesting a reduction in atropine-sensitive type II theta in APPswePS1dE9 animals. Gender-specific central dysrhythmia and network alterations in APPswePS1dE9 point to a functional role in behavioral and cognitive deficits and might serve as early biomarkers for AD in the future.

  6. Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention

    Science.gov (United States)

    Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan

    2015-01-01

    Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single

  7. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo

    Science.gov (United States)

    Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313

  8. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    Science.gov (United States)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to

  9. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine.

    Science.gov (United States)

    Sampaio, Luis Rafael L; Borges, Lucas T N; Silva, Joyse M F; de Andrade, Francisca Roselin O; Barbosa, Talita M; Oliveira, Tatiana Q; Macedo, Danielle; Lima, Ricardo F; Dantas, Leonardo P; Patrocinio, Manoel Cláudio A; do Vale, Otoni C; Vasconcelos, Silvânia M M

    2018-02-01

    The use of ketamine (Ket) as a pharmacological model of schizophrenia is an important tool for understanding the main mechanisms of glutamatergic regulated neural oscillations. Thus, the aim of the current study was to evaluate Ket-induced changes in the average spectral power using the hippocampal quantitative electroencephalography (QEEG). To this end, male Wistar rats were submitted to a stereotactic surgery for the implantation of an electrode in the right hippocampus. After three days, the animals were divided into four groups that were treated for 10 consecutive days with Ket (10, 50, or 100 mg/kg). Brainwaves were captured on the 1st or 10th day, respectively, to acute or repeated treatments. The administration of Ket (10, 50, or 100 mg/kg), compared with controls, induced changes in the hippocampal average spectral power of delta, theta, alpha, gamma low or high waves, after acute or repeated treatments. Therefore, based on the alterations in the average spectral power of hippocampal waves induced by Ket, our findings might provide a basis for the use of hippocampal QEEG in animal models of schizophrenia. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  10. {theta}-Compactness in L-topological spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hanafy, I.M. [Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish (Egypt)], E-mail: ihanafy@hotmail.com

    2009-12-15

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and e{sup {infinity}} theory. In 2005, Caldas and Jafari have introduced {theta}-compact fuzzy topological spaces. In this paper, the concepts of{theta}-compactness, countable{theta}-compactness and the{theta}-Lindeloef property are introduced and studied in L-topological spaces, where L is a complete de Morgan algebra. They are defined by means of{theta}-openL-sets and their inequalities. They does not rely on the structure of basis lattice L and no distributivity in L is required. They can also be characterized by{theta}-closedL-sets and their inequalities. When L is a completely de Morgan algebra, their many characterizations are presented.

  11. Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity

    Directory of Open Access Journals (Sweden)

    Joseph D. Monaco

    2011-09-01

    Full Text Available Mammals navigate by integrating self-motion signals (‘path integration’ and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid cells demonstrate a phase relationship with the local theta (6–10 Hz rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of ‘partial remapping’ responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments.

  12. Inactivation of the Lateral Entorhinal Area Increases the Influence of Visual Cues on Hippocampal Place Cell Activity

    Directory of Open Access Journals (Sweden)

    Kristin M. Scaplen

    2017-05-01

    navigation. FCM inactivation also led to reductions in both frequency and power of hippocampal theta rhythms, indicative of the loss of functionally important LEA inputs to hippocampus. These data provide evidence that the LEA is involved in modulating how the dorsal hippocampus utilizes visual environmental cues.

  13. Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms

    Directory of Open Access Journals (Sweden)

    Claudio eBabiloni

    2016-02-01

    Full Text Available Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG rhythms in groups of Alzheimer’s disease (AD compared to healthy elderly (Nold subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2-4 Hz, theta (4-8 Hz, alpha 1 (8-10.5 Hz, alpha 2 (10.5-13 Hz, beta 1 (13-20 Hz, beta 2 (20-30 Hz, and gamma (30-40 Hz were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC higher than 0.7 as a threshold for a moderate classification rate (i.e. 70%. Results showed that the following EEG markers overcame this threshold: (i central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii frontal theta/alpha 1 current density; (iv occipital delta/alpha 1 inter-hemispherical connectivity; (v occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%. These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%.

  14. Three-dimensional ideal theta(1)/theta(2) angular transformer and its uses in fiber optics.

    Science.gov (United States)

    Ning, X

    1988-10-01

    A 3-D ideal theta(1)/theta(2) angular transformer in nonimaging optics is introduced. The axially symmetric transformer, combining a portion of a hyperbolic concentrator with two lenses, transforms an input limited Lambertian over an angle theta(1) to an output limited Lambertian over an angle theta(2) without losing throughput. This is the first known transformer with such ideal properties. Results of computer simulations of a transformer with planospherical lenses are presented. Because of its ideal angular transforming property, the transformer offers an excellent solution for power launching and fiber-fiber coupling in optical fiber systems. In principle, the theoretical maximum coupling efficiency based on radiance conservation can be achieved with this transformer. Several conceptual designs of source-fiber and fiber-fiber couplers using the transformer are given.

  15. Circadian rhythms and memory: not so simple as cogs and gears.

    Science.gov (United States)

    Eckel-Mahan, Kristin L; Storm, Daniel R

    2009-06-01

    The influence of circadian rhythms on memory has long been studied; however, the molecular prerequisites for their interaction remain elusive. The hippocampus, which is a region of the brain important for long-term memory formation and temporary maintenance, shows circadian rhythmicity in pathways central to the memory-consolidation process. As neuronal plasticity is the translation of numerous inputs, illuminating the direct molecular links between circadian rhythms and memory consolidation remains a daunting task. However, the elucidation of how clock genes contribute to synaptic plasticity could provide such a link. Furthermore, the idea that memory training could actually function as a zeitgeber for hippocampal neurons is worth consideration, based on our knowledge of the entrainment of the circadian clock system. The integration of many inputs in the hippocampus affects memory consolidation at both the cellular and the systems level, leaving the molecular connections between circadian rhythmicity and memory relatively obscure but ripe for investigation.

  16. Estimation of localization and dipole moment of alpha- and theta-rhythm sources by cluster analysis in healthy subjects and schizophrenics

    NARCIS (Netherlands)

    Verkhlyutov, VM; Shchuchkin, YV; Ushakov, VL; Strelets, VB; Pirogov, YA

    2006-01-01

    In 12 healthy subjects and 9 schizophrenic patients in the background conditions (with eyes closed) EEG was recorded from 16 standard derivations (10-20 system) during 3 min. The record underwent the spectral analysis detecting alpha- and theta-frequency bands. After the preliminary narrow band

  17. Cognitive-Neural Effects of Brush Writing of Chinese Characters: Cortical Excitation of Theta Rhythm

    Directory of Open Access Journals (Sweden)

    Min Xu

    2013-01-01

    Full Text Available Chinese calligraphy has been scientifically investigated within the contexts and principles of psychology, cognitive science, and the cognitive neuroscience. On the basis of vast amount of research in the last 30 years, we have developed a cybernetic theory of handwriting and calligraphy to account for the intricate interactions of several psychological dimensions involved in the dynamic act of graphic production. Central to this system of writing are the role of sensory, bio-, cognitive, and neurofeedback mechanisms for the initiation, guidance, and regulation of the writing motions vis-a-vis visual-geometric variations of Chinese characters. This experiment provided the first evidence of cortical excitation in EEG theta wave as a neural hub that integrates information coming from changes in the practitioner’s body, emotions, and cognition. In addition, it has also confirmed neurofeedback as an essential component of the cybernetic theory of handwriting and calligraphy.

  18. Theta-Generalized closed sets in fuzzy topological spaces

    International Nuclear Information System (INIS)

    El-Shafei, M.E.; Zakari, A.

    2006-01-01

    In this paper we introduce the concepts of theta-generalized closed fuzzy sets and generalized fuzzy sets in topological spaces. Furthermore, generalized fuzzy sets are extended to theta-generalized fuzzy sets. Also, we introduce the concepts of fuzzy theta-generalized continuous and fuzzy theta-generalized irresolute mappings. (author)

  19. Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition.

    Science.gov (United States)

    Pezzulo, Giovanni; Kemere, Caleb; van der Meer, Matthijs A A

    2017-05-01

    Information processing in the rodent hippocampus is fundamentally shaped by internally generated sequences (IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ∼8 Hz theta rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential process that samples a policy from the animal's generative model, supported by hippocampus-specific priors. The same inference affords different cognitive functions when the animal is in distinct dynamical modes, associated with specific functional networks. Theta sequences arise when inference is coupled to the animal's action-perception cycle, supporting online spatial decisions, predictive processing, and episode encoding. SWR sequences arise when the animal is decoupled from the action-perception cycle and may support offline cognitive processing, such as memory consolidation, the prospective simulation of spatial trajectories, and imagination. We discuss the empirical bases of this proposal in relation to rodent studies and highlight how the proposed computational principles can shed light on the mechanisms of future-oriented cognition in humans. © 2017 New York Academy of Sciences.

  20. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit.

    Science.gov (United States)

    Lamsa, Karri P; Heeroma, Joost H; Somogyi, Peter; Rusakov, Dmitri A; Kullmann, Dimitri M

    2007-03-02

    Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.

  1. Other characterizations of $\\beta$-$\\theta$-R0 topological spaces

    OpenAIRE

    Miguel Caldas Cueva

    2013-01-01

    In this paper we give other characterizations of $\\beta$-$\\theta$-$%R_0$ and also introduce a new separation axiom called$\\beta$-$\\theta$-$R_1$. It turns out that $\\beta$-$\\theta$-$R_1$ isstronger that $\\beta$-$\\theta$-$R_0$

  2. Better than sleep: theta neurofeedback training accelerates memory consolidation.

    Science.gov (United States)

    Reiner, Miriam; Rozengurt, Roman; Barnea, Anat

    2014-01-01

    Consistent empirical results showed that both night and day sleep enhanced memory consolidation. In this study we explore processes of consolidation of memory during awake hours. Since theta oscillations have been shown to play a central role in exchange of information, we hypothesized that elevated theta during awake hours will enhance memory consolidation. We used a neurofeedback protocol, to enhance the relative power of theta or beta oscillations. Participants trained on a tapping task, were divided into three groups: neurofeedback theta; neurofeedback beta; control. We found a significant improvement in performance in the theta group, relative to the beta and control groups, immediately after neurofeedback. Performance was further improved after night sleep in all groups, with a significant advantage favoring the theta group. Theta power during training was correlated with the level of improvement, indicating a clear relationship between memory consolidation, and theta neurofeedback. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Lower trait frontal theta activity in mindfulness meditators

    Directory of Open Access Journals (Sweden)

    Guaraci Ken Tanaka

    2014-09-01

    Full Text Available Acute and long-term effects of mindfulness meditation on theta-band activity are not clear. The aim of this study was to investigate frontal theta differences between long- and short-term mindfulness practitioners before, during, and after mindfulness meditation. Twenty participants were recruited, of which 10 were experienced Buddhist meditators. Despite an acute increase in the theta activity during meditation in both the groups, the meditators showed lower trait frontal theta activity. Therefore, we suggested that this finding is a neural correlate of the expert practitioners’ ability to limit the processing of unnecessary information (e.g., discursive thought and increase the awareness of the essential content of the present experience. In conclusion, acute changes in the theta band throughout meditation did not appear to be a specific correlate of mindfulness but were rather related to the concentration properties of the meditation. Notwithstanding, lower frontal theta activity appeared to be a trait of mindfulness practices.

  4. Quantum thetas on noncommutative T4 from embeddings into lattice

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2007-01-01

    In this paper, we investigate the theta vector and quantum theta function over noncommutative T 4 from the embedding of RxZ 2 . Manin has constructed the quantum theta functions from the lattice embedding into vector space (x finite group). We extend Manin's construction of the quantum theta function to the embedding of vector space x lattice case. We find that the holomorphic theta vector exists only over the vector space part of the embedding, and over the lattice part we can only impose the condition for the Schwartz function. The quantum theta function built on this partial theta vector satisfies the requirement of the quantum theta function. However, two subsequent quantum translations from the embedding into the lattice part are nonadditive, contrary to the additivity of those from the vector space part

  5. Daily rhythms of catalase and glutathione peroxidase expression and activity are endogenously driven in the hippocampus and are modified by a vitamin A-free diet.

    Science.gov (United States)

    Navigatore-Fonzo, Lorena S; Delgado, Silvia M; Gimenez, Maria Sofia; Anzulovich, Ana C

    2014-01-01

    Alterations in enzymatic antioxidant defense systems lead to a deficit of cognitive functions and altered hippocampal synaptic plasticity. The objectives of this study were to investigate endogenous rhythms of catalase (CAT) and glutathione peroxidase (GPx) expression and activity, as well as CREB1 mRNA, in the rat hippocampus, and to evaluate to which extent the vitamin A deficiency could affect those temporal patterns. Rats from control and vitamin A-deficient (VAD) groups received a diet containing 4000 IU of vitamin A/kg diet, or the same diet devoid of vitamin A, respectively, during 3 months. Rats were maintained under 12-hour-dark conditions, during 10 days before the sacrifice. Circadian rhythms of CAT, GPx, RXRγ, and CREB1 mRNA levels were determined by reverse transcriptrase polymerase chain reaction in hippocampus samples isolated every 4 hours during a 24-hour period. CAT and GPx enzymatic activities were also determined by kinetic assays. Regulatory regions of clock and antioxidant enzymes genes were scanned for E-box, RXRE, and CRE sites. E-box, RXRE, and CRE sites were found on regulatory regions of GPx and CAT genes, which display a circadian expression in the rat hippocampus. VAD phase shifted CAT, GPx, and RXRγ endogenous rhythms without affecting circadian expression of CREB1. CAT and GPx expression and enzymatic activity are circadian in the rat hippocampus. The VAD affected the temporal patterns antioxidant genes expression, probably by altering circadian rhythms of its RXR receptors and clock factors; thus, it would impair the temporal orchestration of hippocampal daily cognitive performance.

  6. Search for the exotic $\\Theta^+$ resonance in the NOMAD experiment

    CERN Document Server

    Samoylov, O; Autiero, D; Baldisseri, Alberto; Baldo-Ceolin, M; Banner, M; Bassompierre, G; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A; Bunyatov, S; Camilleri, L L; Cardini, A; Cattaneo, P W; Cavasinni, V; Cervera-Villanueva, A; Challis, R; Chukanov, A; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; De Santo, A; Degaudenzi, H M; Del Prete, T; Di Lella, L; Dignan, T; Do Couto e Silva, E; Dumarchez, J; Ellis, M; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, V; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S; Godley, A; Gosset, J; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Gómez-Cadenas, J J; Gössling, C; Hagner, C; Hernando, J; Hubbard, D; Hurst, P; Hyett, N; Iacopini, E; Joseph, C; Juget, F; Kent, N; Kirsanov, M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; La Rotonda, L; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; Laveder, M; Letessier-Selvon, A A; Linssen, L; Ljubicic, A; Long, J; Lupi, A; Lyubushkin, V; Lévy, J M; Marchionni, A; Martelli, F; Mendiburu, J P; Meyer, J P; Mezzetto, M; Mishra, S R; Moorhead, G F; Méchain, X; Naumov, D; Nefedov, Yu; Nguyen-Mau, C; Nédélec, P; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Popov, B; Poulsen, C; Rebuffi, L; Rico, J; Riemann, P; Roda, C; Rubbia, André; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G N; Tereshchenko, V V; Toropin, A; Touchard, A M; Tovey, S N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V; Vannucci, F; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zuber, K; Zuccon, P

    2007-01-01

    A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the NOMAD muon neutrino DIS data is reported. The special background generation procedure was developed. The proton identification criteria are tuned to maximize the sensitivity to the Theta signal as a function of xF which allows to study the Theta production mechanism. We do not observe any evidence for the Theta state in the NOMAD data. We provide an upper limit on Theta production rate at 90% CL as 2.13 per 1000 of neutrino interactions.

  7. Arc Length Coding by Interference of Theta Frequency Oscillations May Underlie Context-Dependent Hippocampal Unit Data and Episodic Memory Function

    Science.gov (United States)

    Hasselmo, Michael E.

    2007-01-01

    Many memory models focus on encoding of sequences by excitatory recurrent synapses in region CA3 of the hippocampus. However, data and modeling suggest an alternate mechanism for encoding of sequences in which interference between theta frequency oscillations encodes the position within a sequence based on spatial arc length or time. Arc length…

  8. Kinetic description of linear theta-pinch equilibria

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Davidson, R.C.

    1975-01-01

    Equilibrium properties of linear theta-pinch plasmas are studied within the framework of the steady-state (o/x=0) Vlasov-Maxwell equations. The analysis is carried out for an infinitely long plasma column aligned parallel to an externally applied axial magnetic field Bsub(z)sup(ext)esub(z). Equilibrium properties are calculated for the class of rigid-rotor Vlasov equilibria, in which the th component distribution function (Hsub(perpendicular), Psub(theta), upsilonsub(z) depends on perpendicular energy H and canonical angular momentum Psub(theta), exclusively through the linear combination Hsub(perpendicular)-ωsub(j)Psub(theta), where ω;=const.=angular velocity of mean rotation. General equilibrium relations that pertain to the entire class of rigid-rotor Vlasov equilibria are discussed; and specific examples of sharp- and diffuse-boundary equilibrium configurations are considered. Rigid-rotor density and magnetic field profiles are compared with experimentally observed profiles. A general prescription is given for determining the functional dependence of the equilibrium distribution function on Hsub(perpendicular)-ωsub(j)Psub(theta) in circumstances, where the density profile or magnetic field profile is specified. (author)

  9. LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise.

    Science.gov (United States)

    Hayashi, Hatsuo; Igarashi, Jun

    2009-06-01

    Spike-timing-dependent synaptic plasticity (STDP) is a simple and effective learning rule for sequence learning. However, synapses being subject to STDP rules are readily influenced in noisy circumstances because synaptic conductances are modified by pre- and postsynaptic spikes elicited within a few tens of milliseconds, regardless of whether those spikes convey information or not. Noisy firing existing everywhere in the brain may induce irrelevant enhancement of synaptic connections through STDP rules and would result in uncertain memory encoding and obscure memory patterns. We will here show that the LTD windows of the STDP rules enable robust sequence learning amid background noise in cooperation with a large signal transmission delay between neurons and a theta rhythm, using a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections. The important element of the present model for robust sequence learning amid background noise is the symmetric STDP rule having LTD windows on both sides of the LTP window, in addition to the loop connections having a large signal transmission delay and the theta rhythm pacing activities of stellate cells. Above all, the LTD window in the range of positive spike-timing is important to prevent influences of noise with the progress of sequence learning.

  10. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  11. Quantum thetas on noncommutative Td with general embeddings

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2008-01-01

    In this paper, we construct quantum theta functions over noncommutative T d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-called quantum translations from embedding into the lattice part become non-additive, while those from the vector space part are additive

  12. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice.

    Science.gov (United States)

    Zhu, G; Wang, Y; Li, J; Wang, J

    2015-04-30

    Ginseng serves as a potential candidate for the treatment of aging-related memory decline or memory loss. However, the related mechanism is not fully understood. In this study, we applied an intraperitoneal injection of ginsenoside Rg1, an active compound from ginseng in middle-aged mice and detected memory improvement and the underlying mechanisms. Our results showed that a period of 30-day administration of ginsenoside Rg1 enhanced long-term memory in the middle-aged animals. Consistent with the memory improvement, ginsenoside Rg1 administration facilitated weak theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in acute hippocampal slices from middle-aged animals. Ginsenoside Rg1 administration increased the dendritic apical spine numbers and area in the CA1 region. In addition, ginsenoside Rg1 administration up-regulated the expression of hippocampal p-AKT, brain-derived neurotrophic factor (BDNF), proBDNF and glutamate receptor 1 (GluR1), but not p-ERK. Interestingly, the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor (bpV) mimicked the ginsenoside Rg1 effects, including increasing p-AKT expression, promoting hippocampal basal synaptic transmission, LTP and memory. Taken together, our data suggest that ginsenoside Rg1 treatment improves memory in middle-aged mice possibly through regulating the PI3K/AKT pathway, altering apical spines and facilitating hippocampal LTP. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. The influence of cold temperature on cellular excitability of hippocampal networks.

    Science.gov (United States)

    de la Peña, Elvira; Mälkiä, Annika; Vara, Hugo; Caires, Rebeca; Ballesta, Juan J; Belmonte, Carlos; Viana, Felix

    2012-01-01

    The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP) family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K(2P)), TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K(2P) channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.

  14. Comparison of Sensorimotor Rhythm (SMR) and Beta Training on Selective Attention and Symptoms in Children with Attention Deficit/Hyperactivity Disorder (ADHD): A Trend Report.

    Science.gov (United States)

    Mohammadi, Mohammad Reza; Malmir, Nastaran; Khaleghi, Ali; Aminiorani, Majd

    2015-06-01

    The aim of this study was to assess and compare the effect of two neurofeedback protocols (SMR/theta and beta/theta) on ADHD symptoms, selective attention and EEG (electroencephalogram) parameters in children with ADHD. The sample consisted of 16 children (9-15 year old: 13 boys; 3 girls) with ADHD-combined type (ADHD-C). All of children used methylphenidate (MPH) during the study. The neurofeedback training consisted of two phases of 15 sessions, each lasting 45 minutes. In the first phase, participants were trained to enhance sensorimotor rhythm (12-15 Hz) and reduce theta activity (4-8 Hz) at C4 and in the second phase; they had to increase beta (15-18 Hz) and reduce theta activity at C3. Assessments consisted of d2 attention endurance test, ADHD rating scale (parent form) at three time periods: before, middle and the end of the training. EEG signals were recorded just before and after the training. Based on parents' reports, inattention after beta/theta training, and hyperactivity/impulsivity were improved after the end of the training. All subscales of d2 test were improved except for the difference between maximum and minimum responses. However, EEG analysis showed no significant differences. Neurofeedback in conjunction with Methylphenidate may cause further improvement in ADHD symptoms reported by parents and selective attention without long-term impact on EEG patterns. However, determining the exact relationship between EEG parameters, neurofeedback protocols and ADHD symptoms remain unclear.

  15. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  16. Ramanujan's theta functions

    CERN Document Server

    Cooper, Shaun

    2017-01-01

    Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12. Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter.

  17. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Mads Jochumsen

    2017-01-01

    Full Text Available Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48±0.05 (grasp types, 0.41±0.07 (kinetic profiles, motor execution, and 0.39±0.08 (kinetic profiles, motor imagination. Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.

  18. Quantum Thetas on Noncommutative T^d with General Embeddings

    OpenAIRE

    Chang-Young, Ee; Kim, Hoil

    2007-01-01

    In this paper we construct quantum theta functions over noncommutative T^d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-c...

  19. Distinct slow and fast cortical theta dynamics in episodic memory retrieval.

    Science.gov (United States)

    Pastötter, Bernhard; Bäuml, Karl-Heinz T

    2014-07-01

    Brain oscillations in the theta frequency band (3-8 Hz) have been shown to be critically involved in human episodic memory retrieval. In prior work, both positive and negative relationships between cortical theta power and retrieval success have been reported. This study examined the hypothesis that slow and fast cortical theta oscillations at the edges of the traditional theta frequency band are differentially related to retrieval success. Scalp EEG was recorded in healthy human participants as they performed a cued-recall episodic memory task. Slow (~3 Hz) and fast (~7 Hz) theta oscillations at retrieval were examined as a function of whether an item was recalled or not and as a function of the items' output position at test. Recall success typically declines with output position, due to increases in interference level. The results showed that slow theta power was positively related but fast theta power was negatively related to retrieval success. Concurrent positive and negative episodic memory effects for slow and fast theta oscillations were dissociable in time and space, showing different time courses and different spatial locations on the scalp. Moreover, fast theta power increased from early to late output positions, whereas slow theta power was unaffected by items' output position. Together with prior work, the results suggest that slow and fast theta oscillations have distinct functional roles in episodic memory retrieval, with slow theta oscillations being related to processes of recollection and conscious awareness, and fast theta oscillations being linked to processes of interference and interference resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. What the cerveau isolé preparation tells us nowadays about sleep-wake mechanisms?

    Science.gov (United States)

    Gottesmann, C

    1988-01-01

    The intercollicular transected preparation opened a rich field for investigations of sleep-wake mechanisms. Initial results showed that brain stem ascending influences are essential for maintaining an activated cortex. It was subsequently shown that the forebrain also develops activating influences, since EEG desynchronization of the cortex reappears in the chronic cerveau isolé preparation, and continuous or almost continuous theta rhythm is able to occur in the acute cerveau isolé preparation. A brief "intermediate stage" of sleep occurs during natural sleep just prior to and after paradoxical sleep. It is characterized by cortical spindle bursts, hippocampal low frequency theta activity (two patterns of the acute cerveau isolé preparation) and is accompanied by a very low thalamic transmission level, suggesting a cerveau isolé-like state. The chronic cerveau isolé preparation also demonstrates that the executive processes of paradoxical sleep are located in the lower brain stem, while the occurrence of this sleep stage seems to be modulated by forebrain structures.

  1. Staged theta pinch experiments

    International Nuclear Information System (INIS)

    Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.

    1976-01-01

    Two implosion heating circuits are being experimentally tested. The principal experiment in the program is the 4.5-m-long Staged Theta Pinch (STP). It uses two relatively low energy (50kJ and 100 kJ), high voltage (125 kV) capacitor banks to produce the theta pinch plasma inside the 20 cm i.d. quartz discharge tube. A lower voltage (50 kV), higher energy (750 kJ) capacitor bank is used to contain the plasma and provide a variable amount of adiabatic compression. Because the experiment produces a higher ratio of implosion heating to compressional heating than conventional theta pinches, it should be capable of producing high temperature plasmas with a much larger ratio of plasma radius to discharge tube radius than has been possible in the past. The Resonant Heating Experiment (RHX) in its initial configuration is the same as a 0.9-m-long section of the high voltage part of the STP experiment and all the plasma results here were obtained with the experiment in that configuration. Part of the implosion bank will be removed and a low inductance crowbar added to convert it to the resonant heating configuration. (U.K.)

  2. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region.

    Science.gov (United States)

    Yu, Ying; Feng, Zhouyan; Cao, Jiayue; Guo, Zheshan; Wang, Zhaoxiang; Hu, Na; Wei, Xuefeng

    2016-03-01

    Modulation of the rhythmic activity of local field potentials (LFP) in neuronal networks could be a mechanism of deep brain stimulation (DBS). However, exact changes of LFP during the periods of high-frequency stimulation (HFS) of DBS are unclear because of the interference of dense stimulation artifacts with high amplitudes. In the present study, we investigated LFP changes induced by HFS of afferent axons in the hippocampal CA1 region of urethane-anesthetized rats by using a proper algorithm of artifact removal. Afterward, the LFP changes in the frequency bands of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] rhythms were studied by power spectrum analysis and coherence analysis for the recorded signals collected in the pyramidal layer and in the stratum radiatum of CA1 region before, during and after 1-min long 100 and 200[Formula: see text]Hz HFS. Results showed that the power of LFP rhythms in higher-frequency band ([Formula: see text] rhythm) increased in the pyramidal layer and the power of LFP rhythms in lower-frequency bands ([Formula: see text], [Formula: see text] and [Formula: see text] rhythms) decreased in the stratum radiatum during HFS. The synchronization of [Formula: see text] rhythm decreased and the synchronization of [Formula: see text] rhythm increased during HFS in the stratum radiatum. These results suggest that axonal HFS could modulate LFP rhythms in the downstream brain areas with a plausible underlying mechanism of partial axonal blockage induced by HFS. The study provides new evidence to support the mechanism of DBS modulating rhythmic activity of neuronal populations.

  3. Theta power is reduced in healthy cognitive aging.

    Science.gov (United States)

    Cummins, Tarrant D R; Finnigan, Simon

    2007-10-01

    The effects of healthy cognitive aging on electroencephalographic (EEG) theta (4.9-6.8 Hz) power were examined during performance of a modified Sternberg, S., 1966. High-speed scanning in human memory. Science 153, 652-654.) word recognition task. In a sample of fourteen young (mean age 21.9 years, range=18-27) and fourteen older (mean age 68.4 years, range=60-80) participants, theta power was found to be significantly lower in older adults during both the retention and recognition intervals. This theta power difference was greatest at the fronto-central midline electrode and occurred in parallel with a small, non-significant decrease in recognition accuracy in the older sample. A significant decrease in older adults' mean theta power was also observed in resting EEG, however, it was of substantially smaller magnitude than the task-related theta difference. It is proposed that a neurophysiological measure(s), such as task-specific frontal midline theta (fmtheta) power, may be a more sensitive marker of cognitive aging than task performance measures. Furthermore, as recent research indicates that fmtheta is generated primarily in the anterior cingulate cortex, the current findings support evidence that the function of brain networks incorporating this structure may be affected in cognitive aging.

  4. Impaired theta-gamma coupling during working memory performance in schizophrenia.

    Science.gov (United States)

    Barr, Mera S; Rajji, Tarek K; Zomorrodi, Reza; Radhu, Natasha; George, Tony P; Blumberger, Daniel M; Daskalakis, Zafiris J

    2017-11-01

    Working memory deficits represent a core feature of schizophrenia. These deficits have been associated with dysfunctional dorsolateral prefrontal cortex (DLPFC) cortical oscillations. Theta-gamma coupling describes the modulation of gamma oscillations by theta phasic activity that has been directly associated with the ordering of information during working memory performance. Evaluating theta-gamma coupling may provide greater insight into the neural mechanisms mediating working memory deficits in this disorder. Thirty-eight patients diagnosed with schizophrenia or schizoaffective disorder and 38 healthy controls performed the verbal N-Back task administered at 4 levels, while EEG was recorded. Theta (4-7Hz)-gamma (30-50Hz) coupling was calculated for target and non-target correct trials for each working memory load. The relationship between theta-gamma coupling and accuracy was determined. Theta-gamma coupling was significantly and selectively impaired during correct responses to target letters among schizophrenia patients compared to healthy controls. A significant and positive relationship was found between theta-gamma coupling and 3-Back accuracy in controls, while this relationship was not observed in patients. These findings suggest that impaired theta-gamma coupling contribute to working memory dysfunction in schizophrenia. Future work is needed to evaluate the predictive utility of theta-gamma coupling as a neurophysiological marker for functional outcomes in this disorder. Copyright © 2017. Published by Elsevier B.V.

  5. Association of single nucleotide polymorphisms in a glutamate receptor gene (GRM8) with theta power of event-related oscillations and alcohol dependence.

    Science.gov (United States)

    Chen, Andrew C H; Tang, Yongqiang; Rangaswamy, Madhavi; Wang, Jen C; Almasy, Laura; Foroud, Tatiana; Edenberg, Howard J; Hesselbrock, Victor; Nurnberger, John; Kuperman, Samuel; O'Connor, Sean J; Schuckit, Marc A; Bauer, Lance O; Tischfield, Jay; Rice, John P; Bierut, Laura; Goate, Alison; Porjesz, Bernice

    2009-04-05

    Evidence suggests the P3 amplitude of the event-related potential and its underlying superimposed event-related oscillations (EROs), primarily in the theta (4-5 Hz) and delta (1-3 Hz) frequencies, as endophenotypes for the risk of alcoholism and other disinhibitory disorders. Major neurochemical substrates contributing to theta and delta rhythms and P3 involve strong GABAergic, cholinergic and glutamatergic system interactions. The aim of this study was to test the potential associations between single nucleotide polymorphisms (SNPs) in glutamate receptor genes and ERO quantitative traits. GRM8 was selected because it maps at chromosome 7q31.3-q32.1 under the peak region where we previously identified significant linkage (peak LOD = 3.5) using a genome-wide linkage scan of the same phenotype (event-related theta band for the target visual stimuli). Neural activities recorded from scalp electrodes during a visual oddball task in which rare target elicited P3s were analyzed in a subset of the Collaborative Study on the Genetics of Alcoholism (COGA) sample comprising 1,049 Caucasian subjects from 209 families (with 472 DSM-IV alcohol dependent individuals). The family-based association test (FBAT) detected significant association (P power to target visual stimuli, and also with alcohol dependence, even after correction for multiple comparisons by false discovery rate (FDR). Our results suggest that variation in GRM8 may be involved in modulating event-related theta oscillations during information processing and also in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders. (c) 2008 Wiley-Liss, Inc.

  6. Neural activity in the hippocampus during conflict resolution.

    Science.gov (United States)

    Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo

    2013-01-15

    This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Markets, Bodies, Rhythms

    DEFF Research Database (Denmark)

    Borch, Christian; Bondo Hansen, Kristian; Lange, Ann-Christina

    2015-01-01

    to respond to a widely perceived problem, namely that market rhythms might be contagious and that some form of separation of bodily and market rhythms might therefore be needed. Finally, we show how current high-frequency trading, despite being purely algorithmic, does not render the traders' bodies......This article explores the relationship between bodily rhythms and market rhythms in two distinctly different financial market configurations, namely the open-outcry pit (prevalent especially in the early 20th century) and present-day high-frequency trading. Drawing on Henri Lefebvre......'s rhythmanalysis, we show how traders seek to calibrate their bodily rhythms to those of the market. We argue that, in the case of early-20th-century open-outcry trading pits, traders tried to enact a total merger of bodily and market rhythms. We also demonstrate how, in the 1920s and '30s, market observers began...

  8. Analysis of a phase synchronized functional network based on the rhythm of brain activities

    International Nuclear Information System (INIS)

    Li Ling; Jin Zhen-Lan; Li Bin

    2011-01-01

    Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4–7 Hz), alpha (8–13 Hz) and beta (14–30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coefficient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm. (interdisciplinary physics and related areas of science and technology)

  9. Leptogenesis, $\\mu - \\tau$ Symmetry and $\\theta_{13}$

    CERN Document Server

    Mohapatra, Rabindra N; Yu, H; Yu, Haibo

    2005-01-01

    We show that in theories where neutrino masses arise from type I seesaw formula with three right handed neutrinos and where large atmospheric mixing angle owes its origin to an approximate leptonic $\\mu-\\tau$ interchange symmetry, the primordial lepton asymmetry of the Universe, $\\epsilon_l$ can be expressed in a simple form in terms of low energy neutrino oscillation parameters as $\\epsilon_l = (a \\Delta m^2_\\odot+ b \\Delta m^2_A \\theta^2_{13})$, where $a$ and $b$ are parameters characterizing high scale physics and are each of order $\\leq 10^{-2} $ eV$^{-2}$. We also find that for the case of two right handed neutrinos, $\\epsilon_l \\propto \\theta^2_{13}$ as a result of which, the observed value of baryon to photon ratio implies a lower limit on $\\theta_{13}$. For specific choices of the CP phase $\\delta$ we find $\\theta_{13}$ is predicted to be between $0.10-0.15$.

  10. Robust hippocampal responsivity during retrieval of consolidated associative memory.

    Science.gov (United States)

    Hattori, Shoai; Chen, Lillian; Weiss, Craig; Disterhoft, John F

    2015-05-01

    A contentious point in memory research is whether or not the hippocampus plays a time-limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long-term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single-neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo-conditioned control rabbits. Results reveal continued learning-specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  11. Expected reward modulates encoding-related theta activity before an event.

    Science.gov (United States)

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min [Center for Biosignals, Korea Research Institute of Standards and Science(KRISS), Daejeon (Korea, Republic of)

    2015-12-15

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively.

  13. Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

    International Nuclear Information System (INIS)

    Kim, J. E.; Gohel, Bakul; Kim, K.; Kwon, H.; An, Kyung Min

    2015-01-01

    Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8–13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively

  14. Theta function identities associated with Ramanujan's modular ...

    Indian Academy of Sciences (India)

    In Chapter 20 of his second notebook [6], Ramanujan recorded several theta function identities associated with modular equations of composite degree 15. These identities have previously been proved by Berndt in [3]. But he proved most of these theta function identities using modular equations. These identities can also ...

  15. Comparison of Sensorimotor Rhythm (SMR and Beta Training on Selective Attention and Symptoms in Children with Attention Deficit/Hyperactivity Disorder (ADHD: A Trend Report

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mohammadi

    2015-11-01

    Full Text Available  Objective: The aim of this study was to assess and compare the effect of two neurofeedback protocols (SMR/theta and beta/theta on ADHD symptoms, selective attention and EEG (electroencephalogram parameters in children with ADHD.  Method:The sample consisted of 16 children (9-15 year old: 13 boys; 3 girls with ADHD-combined type (ADHD-C. All of children used methylphenidate (MPH during the study. The neurofeedback training consisted of two phases of 15 sessions, each lasting 45 minutes. In the first phase, participants were trained to enhance sensorimotor rhythm (12-15 Hz and reduce theta activity (4-8 Hz at C4 and in the second phase; they had to increase beta (15-18 Hz and reduce theta activity at C3. Assessments consisted of d2 attention endurance test, ADHD rating scale (parent form at three time periods: before, middle and the end of the training. EEG signals were recorded just before and after the training . Result:Based on parents’ reports, inattention after beta/theta training, and hyperactivity/impulsivity were improved after the end of the training. All subscales of d2 test were improved except for the difference between maximum and minimum responses. However, EEG analysis showed no significant differences . Conclusion:Neurofeedback in conjunction with Methylphenidate may cause further improvement in ADHD symptoms reported by parents and selective attention without long-term impact on EEG patterns. However, determining the exact relationship between EEG parameters, neurofeedback protocols and ADHD symptoms remain unclear.

  16. Lee weight enumerators of self-dual codes and theta functions

    NARCIS (Netherlands)

    Asch, van A.G.; Martens, F.J.L.

    2008-01-01

    The theory of modular forms, in particular theta functions, and coding theory are in a remarkable way connected. The connection is established by defining a suitable lattice corresponding to the given code, and considering its theta function. First we define some special theta functions, and

  17. Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome

    NARCIS (Netherlands)

    Arbab, Tara; Battaglia, Francesco P.; Pennartz, Cyriel M. A.; Bosman, Conrado A.

    2018-01-01

    Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark

  18. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    Science.gov (United States)

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  19. Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy

    Science.gov (United States)

    Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.

    2015-11-01

    The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.

  20. RHYTHM STRUCTURE IN NEWS READING

    Directory of Open Access Journals (Sweden)

    Lluís Mas Manchón

    2013-06-01

    Full Text Available Rhythm is central to news reading in radio and television programs. This paper proposes a three level structure for rhythm in news discourse. It gives a comprehensive definition of rhythm and types of rhythm. Firstly, the Base Rhythm Structure consists of semantic and pragmatic rhythmic accents, coincident with very specific words. Secondly, these accents are grouped together according to type, frequency and order, thereby configuring three types of “rhythmic units” (the Internal Rhythm Structure: starting, main and end units. A last structure level presents four discursive factors that are very important in integrating the overall time structure of news announcing (the Melodic Rhythm Structure. This integral structure for news announcing rhythm should be further tested in acoustic-experimental studies under the criterion of information transmission efficacy.

  1. Theta dynamics in rat: speed and acceleration across the Septotemporal axis.

    Directory of Open Access Journals (Sweden)

    Lauren L Long

    Full Text Available Theta (6-12 Hz rhythmicity in the local field potential (LFP reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long axis of the hippocampus (HPC. The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions.

  2. Amelioration of psychiatric symptoms through exposure to music individually adapted to brain rhythm disorders - a randomised clinical trial on the basis of fundamental research.

    Science.gov (United States)

    Müller, Wolf; Haffelder, Günter; Schlotmann, Angelika; Schaefers, Andrea T U; Teuchert-Noodt, Gertraud

    2014-01-01

    This pilot study examined, whether long-term exposure of psychiatric patients to music that was individually adapted to brain rhythm disorders associated with psychoticism could act to ameliorate psychiatric symptoms. A total of 50 patients with various psychiatric diagnoses were randomised in a 1:1 ratio to listen to CDs containing either music adapted to brain rhythm anomalies associated with psychoticism - measured via a specific spectral analysis - or standard classical music. Participants were instructed to listen to the CDs over the next 18 months. Psychiatric symptoms in both groups were assessed at baseline and at 4, 8 and 18 months, using the Brief Symptom Inventory (BSI). At 18 months, patients in the experimental group showed significantly decreased BSI scores compared to control patients. Intriguingly, this effect was not only seen for symptoms of psychoticism and paranoia but also for anxiety, phobic anxiety and somatisation. Exposure to the adapted music was effective in ameliorating psychotic, anxiety and phobic anxiety symptoms. Based on the theories of neuroplasticity and brain rhythms, it can be hypothesised that this intervention may be enhancing brain-rhythm synchronisation and plasticity in prefrontal-hippocampal circuits that are implicated in both psychosis/paranoia and anxiety/phobic anxiety.

  3. Rhythm in language acquisition.

    Science.gov (United States)

    Langus, Alan; Mehler, Jacques; Nespor, Marina

    2017-10-01

    Spoken language is governed by rhythm. Linguistic rhythm is hierarchical and the rhythmic hierarchy partially mimics the prosodic as well as the morpho-syntactic hierarchy of spoken language. It can thus provide learners with cues about the structure of the language they are acquiring. We identify three universal levels of linguistic rhythm - the segmental level, the level of the metrical feet and the phonological phrase level - and discuss why primary lexical stress is not rhythmic. We survey experimental evidence on rhythm perception in young infants and native speakers of various languages to determine the properties of linguistic rhythm that are present at birth, those that mature during the first year of life and those that are shaped by the linguistic environment of language learners. We conclude with a discussion of the major gaps in current knowledge on linguistic rhythm and highlight areas of interest for future research that are most likely to yield significant insights into the nature, the perception, and the usefulness of linguistic rhythm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A pedagogical introduction to theta functions

    International Nuclear Information System (INIS)

    Koh, I.G.; Shin, H.J.

    1988-01-01

    This paper reports on revolutions in physics that have been frequently accompanied by new developments in mathematics. In seventeenth century, Newton has initiated a program of describing celestial motion by classical mechanics. Integral and differential calculus was essential tool. Orbits of the moon and the earth are given by solving the differential equation of Newton's equation. Imagine a situation where one tries to solve such orbits without integral and differential calculus. Similar revolutions in understanding quantum gravity and in making deep connections between statistical and string physics are under progresses. One of indispensible tools are the theory of theta functions on Riemann surfaces. Since the literature of theta functions is mainly written by professional mathematician, physicists feel somewhat uneasy to begin to read a long chapters of lemmas and theorems, but it is now generally accepted that theta function is essential in understanding two-dimensional conformal field theory as the integral and differential calculus was indispensible in Newtonian mechanics

  5. Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3.

    Directory of Open Access Journals (Sweden)

    Roman A Sandler

    2017-07-01

    Full Text Available Much of the research on cannabinoids (CBs has focused on their effects at the molecular and synaptic level. However, the effects of CBs on the dynamics of neural circuits remains poorly understood. This study aims to disentangle the effects of CBs on the functional dynamics of the hippocampal Schaffer collateral synapse by using data-driven nonparametric modeling. Multi-unit activity was recorded from rats doing an working memory task in control sessions and under the influence of exogenously administered tetrahydrocannabinol (THC, the primary CB found in marijuana. It was found that THC left firing rate unaltered and only slightly reduced theta oscillations. Multivariate autoregressive models, estimated from spontaneous spiking activity, were then used to describe the dynamical transformation from CA3 to CA1. They revealed that THC served to functionally isolate CA1 from CA3 by reducing feedforward excitation and theta information flow. The functional isolation was compensated by increased feedback excitation within CA1, thus leading to unaltered firing rates. Finally, both of these effects were shown to be correlated with memory impairments in the working memory task. By elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge between the cellular and behavioral effects of CBs.

  6. Atmospheric, long baseline, and reactor neutrino data constraints on theta_{13}.

    Science.gov (United States)

    Roa, J E; Latimer, D C; Ernst, D J

    2009-08-07

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on theta_{13}. The recent, more finely binned, Super-K atmospheric data are employed. For L/E_{nu} greater, similar 10;{4} km/GeV, we previously found significant linear in theta_{13} terms. This analysis finds theta_{13} bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in theta_{13} to produce asymmetric bounds on theta_{13}. Assuming CP conservation, we find theta_{13} = -0.07_{-0.11};{+0.18} (90% C.L.).

  7. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    thus appear to be simple responses of living beings to cyclic presence/absence of ... For example, during leaf movement rhythms, leaves alternate between open and closed states .... gist of his time, in an elegant experiment (Box 2) to study the navigational .... diurnal rhythms as true biological timekeepers, a question which.

  8. Circadian Rhythm Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Erhan Akinci

    2016-06-01

    Full Text Available The circadian rhythm sleep disorders define the clinical conditions where sleep and ndash;wake rhythm is disrupted despite optimum environmental and social conditions. They occur as a result of the changes in endogenous circadian hours or non-compatibility of environmental factors or social life with endogenous circadian rhythm. The sleep and ndash;wake rhythm is disrupted continuously or in repeating phases depending on lack of balance between internal and external cycles. This condition leads to functional impairments which cause insomnia, excessive sleepiness or both in people. Application of detailed sleep anamnesis and sleep diary with actigraphy record, if possible, will be sufficient for diagnosis. The treatment aims to align endogenous circadian rhythm with environmental conditions. The purpose of this article is to review pathology, clinical characteristics, diagnosis and treatment of circadian rhythm disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 178-189

  9. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    Science.gov (United States)

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (pfrequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Stimulus Intensity-dependent Modulations of Hippocampal Long-term Potentiation by Basolateral Amygdala Priming

    Directory of Open Access Journals (Sweden)

    Zexuan eLi

    2012-05-01

    Full Text Available There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdalar modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP. We recently reported that while in CA1 basolateral amygdala (BLA priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG. However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, rasing the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1V, 50 µs pulse duration. In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1V or 2V, 100 µs pulse duration on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus.

  11. Engineering prototypes for theta-pinch devices

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hammer, C.F.; Hanks, K.W.; McDonald, T.E.; Nunnally, W.C.

    1975-01-01

    Past, present, and future engineering prototypes for theta-pinch plasma-physics devices at Los Alamos Scientific Laboratory are discussed. Engineering prototypes are designed to test and evaluate all components under system conditions expected on actual plasma-physics experimental devices. The importance of engineering prototype development increases as the size and complexity of the plasma-physics device increases. Past experiences with the Scyllac prototype and the Staged Theta-Pinch prototype are discussed and evaluated. The design of the proposed Staged Scyllac prototype and the Large Staged Scyllac implosion prototype assembly are discussed

  12. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    and clocks driving such rhythms have been studied for a long time now, our ... passage of time using near 24 h oscillation as a reference process, and (iii) Output .... Bünning's work on circadian rhythms across model systems ranging from ..... E Bünning, The Physiological Clock, Revised 3rd Edition, The English. Universities ...

  13. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice

    Science.gov (United States)

    Radwan, Basma; Dvorak, Dino; Fenton, André

    2016-01-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). Absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. PMID:26792400

  14. Visible Battle Rhythm

    National Research Council Canada - National Science Library

    Cort, Brian; Bouchard, Alain; Gouin, Denis; Proulx, Pascale; Wright, William

    2006-01-01

    .... Visual Battle Rhythm (VBR) is a software prototype which updates the battle rhythm process with modern technology and careful information design to improve the synchronization, situational awareness and decision making ability of commanders...

  15. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction.

    Science.gov (United States)

    Mantor, Duangkamol; Pratchayasakul, Wasana; Minta, Wanitchaya; Sutham, Wissuta; Palee, Siripong; Sripetchwandee, Jirapas; Kerdphoo, Sasiwan; Jaiwongkum, Thidarat; Sriwichaiin, Sirawit; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-04-17

    Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity. Copyright © 2017. Published by Elsevier Inc.

  16. How Two Players Negotiate Rhythm in a Shared Rhythm Game

    DEFF Research Database (Denmark)

    Hansen, Anne-Marie; Andersen, Hans Jørgen; Raudaskoski, Pirkko Liisa

    2012-01-01

    from each other. Video analysis of user interaction shines light upon how users engaged in a rhythmical relationship, and interviews give information about the user experience in terms of the game play and user collaboration. Based on the findings in this paper we propose design guidelines......In a design and working prototype of a shared music interface eleven teams of two people were to collaborate about filling in holes with tones and beats in an evolving ground rhythm. The hypothesis was that users would tune into each other and have sections of characteristic rhythmical...... relationships that related to the ground rhythm. Results from interaction data show that teams did find a mutual rhythm, and that they were able to keep this rhythm for a while and/or over several small periods. Results also showed that two players engaged in very specific rhythmical relationships that differed...

  17. 12-lipoxygenase regulates hippocampal long-term potentiation by modulating L-type Ca2+ channels

    Science.gov (United States)

    DeCostanzo, Anthony J.; Voloshyna, Iryna; Rosen, Zev B.; Feinmark, Steven J.; Siegelbaum, Steven A.

    2010-01-01

    Although long-term potentiation (LTP) has been intensely studied, there is disagreement as to which molecules mediate and modulate LTP. This is partly due to the presence of mechanistically distinct forms of LTP that are induced by different patterns of stimulation and that depend on distinct Ca2+ sources. Here we report a novel role for the arachidonic acid-metabolizing enzyme 12-lipoxygenase (12-LO) in LTP at CA3-CA1 hippocampal synapses that is dependent on the pattern of tetanic stimulation. We find that 12-LO activity is required for the induction of LTP in response to a theta-burst stimulation (TBS) protocol, which depends on Ca2+ influx through both NMDA receptors and L-type voltage-gated Ca2+ channels. In contrast, LTP induced by 100 Hz tetanic stimulation, which requires Ca2+ influx through NMDA receptors but not L-type channels, does not require 12-LO. We find that 12-LO regulates LTP by enhancing postsynaptic somatodendritic Ca2+ influx through L-type channels during theta burst stimulation, an action exerted via 12(S)-HPETE, a downstream metabolite of 12-LO. These results help define the role of a long-disputed signaling enzyme in LTP. PMID:20130191

  18. Completely X-symmetric S-matrices corresponding to theta functions

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1981-01-01

    We consider the realization of the classical Weyl commutation relations using THETA-functions. The representations of the Heisenberg group enable us to realize completely symmetric factorized S-matrices in terms of THETA-functions corresponding to the torsion subgroup of an abelian variety. (orig.)

  19. Theta oscillations locked to intended actions rhythmically modulate perception.

    Science.gov (United States)

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  20. Cubic metaplectic forms and theta functions

    CERN Document Server

    Proskurin, Nikolai

    1998-01-01

    The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.

  1. Chasing theta-13 with the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Thierry [CEA/DSM/IRFU/SPP, Gif-sur-Yvette (France)

    2009-07-01

    Neutrino oscillation physics is entering a precision measurement area. The smallness of the theta-13 neutrino mixing angle is still enigmatic and should be resolved. Double Chooz will use two identical detectors near the Chooz nuclear power station to search for a non vanishing theta-13, and hopefully open the way to experiments aspiring to discover CP violation in the leptonic sector.

  2. Some theorems on the explicit evaluation of Ramanujan's theta-functions

    Directory of Open Access Journals (Sweden)

    Nayandeep Deka Baruah

    2004-01-01

    Full Text Available Bruce C. Berndt et al. and Soon-Yi Kang have proved many of Ramanujan's formulas for the explicit evaluation of the Rogers-Ramanujan continued fraction and theta-functions in terms of Weber-Ramanujan class invariants. In this note, we give alternative proofs of some of these identities of theta-functions recorded by Ramanujan in his notebooks and deduce some formulas for the explicit evaluation of his theta-functions in terms of Weber-Ramanujan class invariants.

  3. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    Science.gov (United States)

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  4. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Science.gov (United States)

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  5. Adaptive [theta]-methods for pricing American options

    Science.gov (United States)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  6. Eisenstein Series Identities Involving the Borweins' Cubic Theta Functions

    Directory of Open Access Journals (Sweden)

    Ernest X. W. Xia

    2012-01-01

    Full Text Available Based on the theories of Ramanujan's elliptic functions and the (p, k-parametrization of theta functions due to Alaca et al. (2006, 2007, 2006 we derive certain Eisenstein series identities involving the Borweins' cubic theta functions with the help of the computer. Some of these identities were proved by Liu based on the fundamental theory of elliptic functions and some of them may be new. One side of each identity involves Eisenstein series, the other products of the Borweins' cubic theta functions. As applications, we evaluate some convolution sums. These evaluations are different from the formulas given by Alaca et al.

  7. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  8. Human biological rhythm in traditional Chinese medicine

    Directory of Open Access Journals (Sweden)

    Tianxing Zhang

    2016-10-01

    Full Text Available Traditional Chinese medicine (TCM has a comprehensive and thorough understanding of biological rhythm. Biological rhythm is an inherent connotation of “harmony between human and nature”, one of the thoughts in TCM. TCM discusses emphatically circadian rhythm, syzygial rhythm and seasonal rhythm, and particularly circadian and seasonal rhythms. Theories of Yin Yang and Five Elements are the principles and methods, with which TCM understands biological rhythms. Based on theories in TCM, biological rhythm in essence is a continuous variation of the human body state synchronized with natural rhythms, and theories of Yin Yang and Five Elements are both language tools to describe this continuous variation and theoretical tools for its investigation and application. The understandings of biological rhythm in TCM can be applied to etiology, health care, disease control and treatment. Many understandings in TCM have been confirmed by modern research and clinical reports, but there are still some pending issues. TCM is distinguished for its holistic viewpoint on biological rhythms.

  9. Sympathetic rhythms and nervous integration.

    Science.gov (United States)

    Gilbey, Michael P

    2007-04-01

    1. The present review focuses on some of the processes producing rhythms in sympathetic nerves influencing cardiovascular functions and considers their potential relevance to nervous integration. 2. Two mechanisms are considered that may account for rhythmic sympathetic discharges. First, neuronal elements of peripheral or central origin produce rhythmic activity by phasically exciting and/or inhibiting neurons within central sympathetic networks. Second, rhythms arise within central sympathetic networks. Evidence is considered that indicates the operation of both mechanisms; the first in muscle and the second in skin sympathetic vasoconstrictor networks. 3. Sympathetic activity to the rat tail, a model for the nervous control of skin circulation, is regulated by central networks involved in thermoregulation and those associated with fear and arousal. In an anaesthetized preparation, activity displays an apparently autonomous rhythm (T-rhythm; 0.4-1.2 Hz) and the level of activity can be manipulated by regulating core body temperature. This model has been used to study rhythm generation in central sympathetic networks and possible functional relevance. 4. A unique insight provided by the T rhythm, into possible physiological function(s) underlying rhythmic sympathetic discharges is that the activity of single sympathetic post-ganglionic neurons within a population innervating the same target can have different rhythm frequencies. Therefore, the graded and dynamic entrainment of the rhythms by inputs, such as central respiratory drive and/or lung inflation-related afferent activity, can produce graded and dynamic synchronization of sympathetic discharges. The degree of synchronization may influence the efficacy of transmission in a target chain of excitable cells. 5. The T-rhythm may be generated within the spinal cord because the intrathecal application of 5-hydroxytryptamine at the L1 level of the spinal cord of a rat spinalized at T10-T11 produces a T-like rhythm

  10. Torus C-I field reversed theta-pinch at UNICAMP

    International Nuclear Information System (INIS)

    Machida, M.; Collares, M.P.; Honda, R.Y.; Sakanaka, P.H.; Scheid, V.H.B.

    1984-01-01

    The influence of multipole fields (octopole and quadrupole) on supressing the n=2 rotational instability, field reconnection, particle loss effects is studied, and the viability of transforming the theta-pinch from Campinas, Brazil (100Kv, 55Kj) to the field reversed theta-pinch with plasma translation program is analyzed. (E.G.) [pt

  11. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    Science.gov (United States)

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Stage theta pinch experiments

    International Nuclear Information System (INIS)

    Linford, R.K.; Downing, J.N.; Gribble, R.F.; Jacobson, A.R.; Platts, D.A.; Thomas, K.S.

    1975-01-01

    The Staged Theta Pinch program is designed to study the technological and physics problems associated with producing fat plasmas and separating the implosion heating from the adiabatic compression. Several methods of implosion heating are discussed. Circuit diagrams and theoretical magnetic field behavior are described for the STP and resonant heating experiments. (MOW)

  13. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  14. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  15. Relationship between the mechanisms of gamma rhythm generation and the magnitude of the macroscopic phase response function in a population of excitatory and inhibitory modified quadratic integrate-and-fire neurons

    Science.gov (United States)

    Akao, Akihiko; Ogawa, Yutaro; Jimbo, Yasuhiko; Ermentrout, G. Bard; Kotani, Kiyoshi

    2018-01-01

    Gamma oscillations are thought to play an important role in brain function. Interneuron gamma (ING) and pyramidal interneuron gamma (PING) mechanisms have been proposed as generation mechanisms for these oscillations. However, the relation between the generation mechanisms and the dynamical properties of the gamma oscillation are still unclear. Among the dynamical properties of the gamma oscillation, the phase response function (PRF) is important because it encodes the response of the oscillation to inputs. Recently, the PRF for an inhibitory population of modified theta neurons that generate an ING rhythm was computed by the adjoint method applied to the associated Fokker-Planck equation (FPE) for the model. The modified theta model incorporates conductance-based synapses as well as the voltage and current dynamics. Here, we extended this previous work by creating an excitatory-inhibitory (E-I) network using the modified theta model and described the population dynamics with the corresponding FPE. We conducted a bifurcation analysis of the FPE to find parameter regions which generate gamma oscillations. In order to label the oscillatory parameter regions by their generation mechanisms, we defined ING- and PING-type gamma oscillation in a mathematically plausible way based on the driver of the inhibitory population. We labeled the oscillatory parameter regions by these generation mechanisms and derived PRFs via the adjoint method on the FPE in order to investigate the differences in the responses of each type of oscillation to inputs. PRFs for PING and ING mechanisms are derived and compared. We found the amplitude of the PRF for the excitatory population is larger in the PING case than in the ING case. Finally, the E-I population of the modified theta neuron enabled us to analyze the PRFs of PING-type gamma oscillation and the entrainment ability of E and I populations. We found a parameter region in which PRFs of E and I are both purely positive in the case of

  16. Age- dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults

    Directory of Open Access Journals (Sweden)

    Natalya ePonomareva

    2013-12-01

    Full Text Available Polymorphism in the genomic region harboring the CLU gene (rs11136000 has been associated with the risk for Alzheimer’s disease (AD. CLU C allele is assumed to confer risk for AD and the allele T may have a protective effect.We investigated the influence of the AD-associated CLU genotype on a common neurophysiological trait of brain activity (resting-state alpha-rhythm activity in non-demented adults and elucidated whether this influence is modified over the course of aging. We examined quantitative EEG (qEEG in cohort of non-demented individuals (age range 20-80 divided into young (age range 20-50 and old (age range 51-80 cohorts and stratified by CLU polymorphism. To rule out the effect of the ApoE genotype on EEG characteristics, only subjects without the ApoE epsilon4 allele were included in the study.The homozygous presence of the AD risk variant CLU CC in non-demented subjects was associated with an increase of alpha3 absolute power. Moreover, the influence of CLU genotype on alpha3 was found to be higher in the subjects older than 50 years of age. The study also showed age-dependent alterations of alpha topographic distribution that occur independently of the CLU genotype.The increase of upper alpha power has been associated with hippocampal atrophy in patients with mild cognitive impairment (Moretti et al., 2012a. In our study, the CLU CC- dependent increase in upper alpha rhythm, particularly enhanced in elderly non-demented individuals, may imply that the genotype is related to preclinical dysregulation of hippocampal neurophysiology in aging and that this factor may contribute to pathogenesis of AD.

  17. Dissipative structures and biological rhythms

    Science.gov (United States)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  18. Riemann-Theta Boltzmann Machine arXiv

    CERN Document Server

    Krefl, Daniel; Haghighat, Babak; Kahlen, Jens

    A general Boltzmann machine with continuous visible and discrete integer valued hidden states is introduced. Under mild assumptions about the connection matrices, the probability density function of the visible units can be solved for analytically, yielding a novel parametric density function involving a ratio of Riemann-Theta functions. The conditional expectation of a hidden state for given visible states can also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta function. The conditional expectation can be used as activation function in a feedforward neural network, thereby increasing the modelling capacity of the network. Both the Boltzmann machine and the derived feedforward neural network can be successfully trained via standard gradient- and non-gradient-based optimization techniques.

  19. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    Science.gov (United States)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    Directory of Open Access Journals (Sweden)

    Elena eCid

    2014-04-01

    Full Text Available Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e. the multiple-hit hypothesis. However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1; including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  1. The central responsiveness of the acute cerveau isolé rat.

    Science.gov (United States)

    User, P; Gottesmann, C

    1982-01-01

    The electrophysiological patterns of the frontal cortex and dorsal hippocampus were studied in the acute cerveau isolé rat. Central and peripheral stimulations were performed in order to modulate these patterns. The results showed that the permanent alternation of high amplitude spindle bursts and low voltage activity in the anterior neocortex of the acute cerveau isolé was influenced neither by olfactory nor by posterior hypothalamic stimulation. In contrast, these two kinds of stimulation easily modulated the continuous low frequency theta rhythm, recorded in the dorsal hippocampus, in terms of amplitude and in overall frequency. This modulation of the theta rhythm in the acute cerveau isolé rat mimics the changes observed when the normal rat comes from the intermediate stage of sleep (as characterized in the the acute intercollicular transected rat by high amplitude spindle bursts at frontal cortex level and low frequency theta activity in the dorsal hippocampus) to rapid sleep. These results further suggest that, during the intermediate stage (as in the cerveau isolé preparation), the hippocampus montonous theta activity appears through a brainstem disinhibitory process releasing the forebrain limbic pacemaker(s). During the following rapid sleep phase, the theta rhythm would be modulated by pontine activity influences acting on the theta generators.

  2. Recent developments in linear theta-pinch research: experiment and theory

    International Nuclear Information System (INIS)

    McKenna, K.F.; Bartsch, R.R.; Commisso, R.J.

    1978-01-01

    High energy plasmas offusion interest can be generated in linear theta pinches. However, end losses present a fundamental limitation on the plasma containment time. This paper discusses recent progress in end-loss and end-stoppering experiments and in the theoretical understanding of linear theta-pinch physics

  3. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats.

    Science.gov (United States)

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, Andries

    2018-02-15

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.

  4. Double-Chooz: a search for {theta}{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [DSM/DAPNIA/SPP, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2005-12-15

    The Double-Chooz experiment goal is to search for a non-vanishing value of the {theta}{sub 13} neutrino mixing angle. This is the last step to accomplish prior moving towards a new era of precision measurements in the lepton sector. The current best constraint on the third mixing angle comes from the CHOOZ reactor neutrino experiment sin{sup 2}(2{theta}{sub 13})<0.2 (90% C.L., {delta}m{sub atm}{sup 2}=2.0eV{sup 2}). Double-Chooz will explore the range of sin{sup 2}(2{theta}{sub 13}) from 0.2 to 0.03-0.02, within three years of data taking. The improvement of the CHOOZ result requires an increase in the statistics, a reduction of the systematic error below one percent, and a careful control of the backgrounds. Therefore, Double-Chooz will use two identical detectors, one at 150 m and another at 1.05 km distance from the Chooz nuclear cores. In addition, we will use the near detector as a ''state of the art'' prototype to investigate the potential of neutrinos for monitoring the civil nuclear power plants. The plan is to start operation with two detectors in 2008, and to reach a sensitivity sin{sup 2}(2{theta}{sub 13}) of 0.05 in 2009, and 0.03-0.02 in 2011.

  5. Energy transfer efficiency measurements in a theta-pinch

    International Nuclear Information System (INIS)

    Cavalcanti, G.H.; Luna, F.R.T.; Trigueiros, A.G.

    1993-01-01

    An increase in energy transfer efficiency of the capacitor bank to the plasma was obtained when the electrical system of a theta-pinch was changed so that the ratio of total inductance to coil inductance was switched of 1/6 to 1/2. A further increase about 20% was obtained for 16/1 ratio. The measurements were made through the current discharge decay, and the spectral analysis of the emitted light from theta-pinch shows a correspondent efficiency increase. (author)

  6. Theta series, wall-crossing and quantum dilogarithm identities

    CERN Document Server

    Alexandrov, Sergei

    2016-01-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with N=2 supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from $k$ Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge $k$. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm $\\Phi_b$ at $b=1$, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary $b$ and $k$, which may be relevant for the physics of five-branes at finite chemical po...

  7. Production of $\\Theta^{+}$ (1540) and $\\Xi$ pentaquark states in proton- proton interactions

    CERN Document Server

    Bleicher, M; Liu, F M; Pierog, T; Werner, K; 10.1016/j.physletb.2004.05.010

    2004-01-01

    The production of strange pentaquark states (e.g., Theta baryons and Xi /sup --/states) in hadronic interactions within a Gribov-Regge approach is explored. In this approach the Theta /sup +/(1540) and the Xi are produced by disintegration of remnants formed by the exchange of pomerons between the two protons. We predict the rapidity and transverse momentum distributions as well as the 4 pi multiplicity of the Theta /sup +/, Xi /sup --/ , Xi /sup -/, Xi /sup 0/ and Xi /sup +/ for square root s=17 GeV (SPS) and 200 GeV (RHIC). For both energies more than 10/sup -3/ Theta /sup +/ and more than 10 /sup -5/ Xi per pp event should be observed by the present experiments.

  8. Theta Neurofeedback Effects on Motor Memory Consolidation and Performance Accuracy: An Apparent Paradox?

    Science.gov (United States)

    Reiner, Miriam; Lev, Dror D; Rosen, Amit

    2018-05-15

    Previous studies have shown that theta neurofeedback enhances motor memory consolidation on an easy-to-learn finger-tapping task. However, the simplicity of the finger-tapping task precludes evaluating the putative effects of elevated theta on performance accuracy. Mastering a motor sequence is classically assumed to entail faster performance with fewer errors. The speed-accuracy tradeoff (SAT) principle states that as action speed increases, motor performance accuracy decreases. The current study investigated whether theta neurofeedback could improve both performance speed and performance accuracy, or would only enhance performance speed at the cost of reduced accuracy. A more complex task was used to study the effects of parietal elevated theta on 45 healthy volunteers The findings confirmed previous results on the effects of theta neurofeedback on memory consolidation. In contrast to the two control groups, in the theta-neurofeedback group the speed-accuracy tradeoff was reversed. The speed-accuracy tradeoff patterns only stabilized after a night's sleep implying enhancement in terms of both speed and accuracy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Simplified scaling model for the THETA-pinch

    Science.gov (United States)

    Ewing, K. J.; Thomson, D. B.

    1982-02-01

    A simple ID scaing model for the fast Theta pinch was developed and written as a code that would be flexible, inexpensive in computer time, and readily available for use with the Los Alamos explosive-driven high magnetic field program. The simplified model uses three successive separate stages: (1) a snowplow-like radial implosion, (2) an idealized resistive annihilation of reverse bias field, and (3) an adiabatic compression stage of a Beta = 1 plasma for which ideal pressure balance is assumed to hold. The code uses one adjustable fitting constant whose value was first determined by comparison with results from the Los Alamos Scylla III, Scyllacita, and Scylla IA Theta pinches.

  10. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo.

    Science.gov (United States)

    Lau, Petrina Yau-Pok; Katona, Linda; Saghy, Peter; Newton, Kathryn; Somogyi, Peter; Lamsa, Karri P

    2017-05-01

    Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

  11. The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology

    Directory of Open Access Journals (Sweden)

    Anja Pahor

    2018-01-01

    Full Text Available A single blind sham-controlled study was conducted to explore the effects of theta and gamma transcranial alternating current stimulation (tACS on offline performance on working memory tasks. In order to systematically investigate how specific parameters of tACS affect working memory, we manipulated the frequency of stimulation (theta frequency vs. gamma frequency, the type of task (n-back vs. change detection task and the content of the tasks (verbal vs. figural stimuli. A repeated measures design was used that consisted of three sessions: theta tACS, gamma tACS and sham tACS. In total, four experiments were conducted which differed only with respect to placement of tACS electrodes (bilateral frontal, bilateral parietal, left fronto-parietal and right-fronto parietal. Healthy female students (N = 72 were randomly assigned to one of these groups, hence we were able to assess the efficacy of theta and gamma tACS applied over different brain areas, contrasted against sham stimulation. The pre-post/sham resting electroencephalogram (EEG analysis showed that theta tACS significantly affected theta amplitude, whereas gamma tACS had no significant effect on EEG amplitude in any of the frequency bands of interest. Gamma tACS did not significantly affect working memory performance compared to sham, and theta tACS led to inconsistent changes in performance on the n-back tasks. Active theta tACS significantly affected P3 amplitude and latency during performance on the n-back tasks in the bilateral parietal and right-fronto parietal protocols.

  12. Search for {theta}(1540){sup +} in the exclusive proton-induced reaction p+C(N){yields}{theta}{sup +} anti K{sup 0}+C(N) at the energy of 70 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Yu.M.; Artamonov, A.V.; Batarin, V.A.; Eroshin, O.V. [Inst. for High Energy Physics, Protvino (Russian Federation); Kolgamov, V.Z. [Inst. of Theoretical and Experimental Physics, Moscow (RU)] [and others

    2004-09-01

    A search for narrow {theta}(1540){sup +}, a candidate for pentaquark baryon with positive strangeness, has been performed in an exclusive proton-induced reaction p+C(N){yields}{theta}{sup +} anti K{sup 0}+C(N) on carbon nuclei or quasifree nucleons at E{sub beam}=70 GeV ({radical}(s)=11.5 GeV) studying nK{sup +}, pK{sub S}{sup 0} and pK{sub L}{sup 0} decay channels of {theta}(1540){sup +} in four different final states of the {theta}{sup +} anti K{sup 0} system. In order to assess the quality of the identification of the final states with neutron or K {sup 0} {sub L}, we reconstructed {lambda}(1520){yields}nK{sup 0}{sub S} and {phi}{yields}K{sup 0}{sub L}K{sup 0}{sub S} decays in the calibration reactions p+C(N){yields}{lambda}(1520)K{sup +}+C(N) and p+C(N){yields}p{phi}+C(N). We found no evidence for narrow pentaquark peak in any of the studied final states and decay channels. Assuming that the production characteristics of the {theta}{sup +} anti K{sup 0} system are not drastically different from those of the {lambda}(1520)K{sup +} and p{phi} systems, we established upper limits on the cross-section ratios {sigma}({theta}{sup +} anti K{sup 0})/{sigma}({lambda}(1520)K{sup +})< 0.02 and {sigma}({theta}{sup +} anti K{sup 0})/{sigma}(p{phi})< 0.15 at 90% CL and a preliminary upper limit for the forward hemisphere cross-section {sigma}({theta}{sup +} anti K{sup 0})< 30 nb/nucleon. (orig.)

  13. Scylla IV-P theta pinch

    International Nuclear Information System (INIS)

    Bailey, A.G.; Chandler, G.I.; Ekdahl, C.A. Jr.; Lillberg, J.W.; Machalek, M.D.; Seibel, F.T.

    1976-01-01

    Scylla IV-P is a flexible, linear theta pinch designed to investigate high-density linear concepts, end-stoppering, alternate heating methods, and plasma injection techniques relevant to a pure fusion reactor and/or a fusion-fission hybrid system. The construction and experimental arrangement of the device are briefly described

  14. Double-Chooz: a search for {theta}{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Mention, G. [APC/PCC, College de France, 75005 Paris (France)

    2005-08-15

    The Double-Chooz experiment goal is to search for a non-vanishing value of the {theta}{sub 13} neutrino mixing angle. This is the last step to accomplish prior moving towards a new era of precision measurements in the lepton sector. The current best constraint on the third mixing angle comes from the CHOOZ reactor neutrino experiment sin{sup 2}(2{theta}{sub 13}) < 0.2-0.14 (90% C.L., {delta}m{sub atm}{sup 2}=2.0-2.410{sup -3} eV{sup 2}). Double-Chooz will explore the range of sin{sup 2}(2{theta}{sub 13}) from 0.2 to 0.03-0.02, within three years of data taking. The improvement of the CHOOZ result requires an increase in the statistics, a reduction of the systematic error below one percent, and a careful control of the backgrounds. Therefore, Double-Chooz will use two identical detectors, one at 150 m and another at 1.05 km distance from the Chooz nuclear cores. In addition, we will use the near detector as a 'state of the art' prototype to investigate the potential of neutrinos for monitoring the civil nuclear power plants. The plan is to start operation with two detectors in 2008, and to reach a sin{sup 2}(2{theta}{sub 13}) sensitivity of 0.05 in 2009, and 0.03-0.02 in 2011.

  15. Steady state theta pinch concept for slow formation of FRC

    International Nuclear Information System (INIS)

    Hirano, K.

    1987-05-01

    A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)

  16. Chasing {theta}{sub 13} with new reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [DSM/DAPNIA/SPP, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2005-12-15

    It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the {theta}{sub 13} mixing angle, free from any parameter degeneracies and correlations induced by matter effect and the unknown leptonic Dirac CP phase. The current best constraint on the third mixing angle comes from the Chooz reactor neutrino experiment sin{sup 2}(2{theta}{sub 13})<0.2 (90 % C.L., {delta}m{sub atm}{sup 2}=2.010{sup -3} eV{sup 2}). Several projects of experiment, with different timescales, have been proposed over the last two years all around the world. Their sensitivities range from sin{sup 2}(2{theta}{sub 13})<0.01 to 0.03, having thus an excellent discovery potential of the {nu}{sub e} fraction of {nu}{sub 3}.

  17. Magnetoencephalography in Twins Reveals a Strong Genetic Determination of the Peak Frequency of Visually Induced Gamma-Band Synchronization

    NARCIS (Netherlands)

    van Pelt, S.; Boomsma, D.I.; Fries, P.

    2012-01-01

    Many aspects of brain processing are intimately linked to brain rhythms. Essentially all classical brain rhythms, i.e., delta, theta, alpha, beta, and sleep waves, are highly heritable. This renders brain rhythms an interesting intermediate phenotype for cognitive and behavioral traits. One brain

  18. Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced gamma-band synchronization

    NARCIS (Netherlands)

    Van Pelt, S.; Boomsma, D.I.; Fries, P.

    2012-01-01

    Many aspects of brain processing are intimately linked to brain rhythms. Essentially all classical brain rhythms, i.e., delta, theta, alpha, beta, and sleep waves, are highly heritable. This renders brain rhythms an interesting intermediate phenotype for cognitive and behavioral traits. One brain

  19. Characterizing the roles of alpha and theta oscillations in multisensory attention.

    Science.gov (United States)

    Keller, Arielle S; Payne, Lisa; Sekuler, Robert

    2017-05-01

    Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Establishing the Thematic Structure and Investigating the most Prominent Theta Roles Used in Sindhi Language

    Directory of Open Access Journals (Sweden)

    Zahid Ali Veesar

    2015-07-01

    Full Text Available This study focuses on the thematic structure of the Sindhi verbs to find theta roles in the Sindhi language. The study tries to answer the research questions; “What are the thematic structures of Sindhi verbs?” and “What are the prominent theta roles in the Sindhi language?” It examines the argument/thematic structure of Sindhi verbs and also finds the theta roles assigned by the Sindhi verbs to their arguments along with the most prominent theta roles used in the Sindhi language. The data come from the two interviews taken from two young native Sindhi speakers, which consist of 2 hours conversation having 1,669 sentences in natural spoken version of the Sindhi language. Towards the end, it has been found that the Sindhi language has certain theta roles which are assigned by the verbs to their arguments in sentences. Each verb phrase in our data is thus examined and studied in detail in terms of Argument/Thematic structure in order to find theta roles in Sindhi language. Thus, in this regard, each verb phrase (in a sentence has been examined with the help of Carnie’s theoretical framework (Thematic Relation and Theta Roles: 2006 in order to find the prominent theta roles in the Sindhi language. The data have been examined and analysed on the basis of the Carnie’s theoretical framework. The study finds that the Sindhi language has all (09 theta roles which have been proposed by Carnie (2006. It has been found that six prominent theta roles out of nine are used prominently in Sindhi. The six prominent theta roles in Sindhi language are: agent, theme, beneficiary, recipient, locative and goal.

  1. Mixing angle theta and magnetic monopole in Weinberg's unified gauge theory

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1975-01-01

    Gauge symmetry admits a local unit isovector and leads to the magnetic monopoles in Weinberg's unified theory. One predicts sin 2 theta = 1 / 2 for the mixing angle theta on the basis of Dirac's condition for charge quantization. This interesting result should be tested experimentally

  2. The Coupling between Gamma and Theta Oscillation and Visuotactile Integration Process

    Directory of Open Access Journals (Sweden)

    Noriaki Kanayama

    2011-10-01

    Full Text Available Some researches revealed the relationship between multisensory integration and EEG oscillations. Previous studies revealed that the visuotactile integration process could be explained by gamma and theta band oscillation. In addition, recent studies have showed the possibility that a coupling between oscillations at the different frequency bands plays an important role on the multisensory integration system. This study aimed to investigate whether the gamma and theta oscillations show the coupling during the visuotactile integration. Using congruency effect paradigm only for left hand, we measured scalp EEG during simultaneous presentation of “spatially congruent” or “spatially incongruent” visuotactile stimuli. In Experiment 1, the proportion of the spatially congruent trials (80% vs 20% was changed across the experimental blocks. The results showed that the relationship between gamma power and theta phase at the parietal area was modulated by the proportion. In Experiment 2, the saliency of the vibration stimulus (0dB vs −20dB was changed across trials. The results showed that the relationship between gamma power and theta phase was immune to the saliency. These results suggest that multisensory integration process has a plasticity, which is modulated by the proportion of congruent trial, and the process could be explained by the coupling between gamma/theta oscillations.

  3. Factors influencing circadian rhythms in acetaminophen lethality.

    Science.gov (United States)

    Schnell, R C; Bozigian, H P; Davies, M H; Merrick, B A; Park, K S; McMillan, D A

    1984-01-01

    Experiments were conducted to examine the effects of changes in lighting schedules and food consumption on circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice. Under a normal lighting schedule (light: 06.00-18.00 h), male mice exhibited a circadian rhythm in acetaminophen lethality (peak: 18.00 h; nadir: 06.00, 10.00 h) and an inverse rhythm in hepatic glutathione concentrations (peak: 06.00, 10.00 h; nadir: 18.00 h). Under a reversed lighting schedule (light: 18.00-06.00 h) the glutathione rhythm was reversed and the rhythm in acetaminophen lethality was altered showing greater sensitivity to the drug. Under continuous light, there was a shift in the acetaminophen lethality and the hepatic glutathione rhythms. Under continuous dark, both rhythms were abolished. Under a normal lighting regimen, hepatic glutathione levels were closely correlated with food consumption; i.e., both were increased during the dark phase and decreased during the light phase. Fasting the mice for 12 h abolished the rhythms in acetaminophen lethality and hepatic glutathione levels; moreover, the lethality was increased and the hepatic glutathione levels were decreased. These experiments show that both lighting schedules and feeding can alter the circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice.

  4. Indefinite theta series and generalized error functions

    CERN Document Server

    Alexandrov, Sergei; Manschot, Jan; Pioline, Boris

    2016-01-01

    Theta series for lattices with indefinite signature $(n_+,n_-)$ arise in many areas of mathematics including representation theory and enumerative algebraic geometry. Their modular properties are well understood in the Lorentzian case ($n_+=1$), but have remained obscure when $n_+\\geq 2$. Using a higher-dimensional generalization of the usual (complementary) error function, discovered in an independent physics project, we construct the modular completion of a class of `conformal' holomorphic theta series ($n_+=2$). As an application, we determine the modular properties of a generalized Appell-Lerch sum attached to the lattice ${\\operatorname A}_2$, which arose in the study of rank 3 vector bundles on $\\mathbb{P}^2$. The extension of our method to $n_+>2$ is outlined.

  5. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting

    NARCIS (Netherlands)

    Gispen, W.H.; Proper, E.A.; Jansen, G.H.; Veelen, C.W. van; Rijen, P.C. van; Graan, P.N.E. de

    2001-01-01

    Abstract. In patients suffering from temporal lobe epilepsy (TLE) a highly variable degree of hippocampal sclerosis (HS) can be observed. For standard neuropathological evaluation after hippocampal resection, neuronal cell loss in the hippocampal subareas is assessed (Wyler score 0-4) [Wyler et al.

  6. A Precision Measurement of sin$^{2}\\theta$$_{w}$ from Semileptonic Neutrino Scattering

    CERN Document Server

    Wotschack, Jorg

    1987-01-01

    There is considerable interest in measuring the electroweak mixing parameter sin$^{2}\\Theta$$_{w}$, of the Glashow-Salam-Weinberg theory $^{1}$ as precisely as possible: first, its value may be predicted by models of Grand Unification;$^{2}$ second, precise measurements of sin$^{2}\\Theta$$_{w}$ from different processes would test the validity of electroweak radiative corrections. $^{3,$}$. Different methods have been used to determine sin$^{2}\\Theta$$_{w}$, over a large range of $Q^{2}$ values. FIGURE 1 gives a compilation of sin$^{2}\\Theta$$_{w}$ with remarkable agreement between the results. At present, it is most precisely determined in semileptonic neutrino-nucleon scattering from the ratio of neutral current (NC) to charged current (CC) cross and in proton-antiproton collisions from the W boson mass. $^{10,11}$.

  7. Testing the effects of adolescent alcohol use on adult conflict-related theta dynamics.

    Science.gov (United States)

    Harper, Jeremy; Malone, Stephen M; Iacono, William G

    2017-11-01

    Adolescent alcohol use (AAU) is associated with brain anomalies, but less is known about long-term neurocognitive effects. Despite theoretical models linking AAU to diminished cognitive control, empirical work testing this relationship with specific cognitive control neural correlates (e.g., prefrontal theta-band EEG dynamics) remains scarce. A longitudinal twin design was used to test the hypothesis that greater AAU is associated with reduced conflict-related EEG theta-band dynamics in adulthood, and to examine the genetic/environmental etiology of this association. In a large (N=718) population-based prospective twin sample, AAU was assessed at ages 11/14/17. Twins completed a flanker task at age 29 to elicit EEG theta-band medial frontal cortex (MFC) power and medial-dorsal prefrontal cortex (MFC-dPFC) connectivity. Two complementary analytic methods (cotwin control analysis; biometric modeling) were used to disentangle the genetic/shared environmental risk towards AAU from possible alcohol exposure effects on theta dynamics. AAU was negatively associated with adult cognitive control-related theta-band MFC power and MFC-dPFC functional connectivity. Genetic influences primarily underlie these associations. Findings provide strong evidence that genetic factors underlie the comorbidity between AAU and diminished cognitive control-related theta dynamics in adulthood. Conflict-related theta-band dynamics appear to be candidate brain-based endophenotypes/mechanisms for AAU. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Age-related changes of frontal-midline theta is predictive of efficient memory maintenance.

    Science.gov (United States)

    Kardos, Z; Tóth, B; Boha, R; File, B; Molnár, M

    2014-07-25

    Frontal areas are thought to be the coordinators of working memory processes by controlling other brain areas reflected by oscillatory activities like frontal-midline theta (4-7 Hz). With aging substantial changes can be observed in the frontal brain areas, presumably leading to age-associated changes in cortical correlates of cognitive functioning. The present study aimed to test whether altered frontal-midline theta dynamics during working memory maintenance may underlie the capacity deficits observed in older adults. 33-channel EEG was recorded in young (18-26 years, N=20) and old (60-71 years, N=16) adults during the retention period of a visual delayed match-to-sample task, in which they had to maintain arrays of 3 or 5 colored squares. An additional visual odd-ball task was used to be able to measure the electrophysiological indices of sustained attentional processes. Old participants showed reduced frontal theta activity during both tasks compared to the young group. In the young memory maintenance-related frontal-midline theta activity was shown to be sensitive both to the increased memory demands and to efficient subsequent memory performance, whereas the old adults showed no such task-related difference in the frontal theta activity. The decrease of frontal-midline theta activity in the old group indicates that cerebral aging may alter the cortical circuitries of theta dynamics, thereby leading to age-associated decline of working memory maintenance function. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.

    2018-02-26

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  10. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F

    2017-12-07

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host\\'s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host\\'s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  11. The fermion boundary condition and the THETA-angle in QED2

    International Nuclear Information System (INIS)

    Hrasko, P.

    1983-09-01

    The order parameter of the Schwinger model is calculated in the Euclidean functional integral approach. It is shown that the symmetry breaking angle THETA is intimately connected to the boundary condition imposed on the fermions. The transition to the Euclidean description involves both imaginary time and imaginary THETA. (author)

  12. Frontal Theta Activity Supports Detecting Mismatched Information in Visual Working Memory.

    Science.gov (United States)

    Liang, Tengfei; Hu, Zhonghua; Liu, Qiang

    2017-01-01

    During the comparison stage of visual working memory (VWM) processing, detecting the mismatch between the external sensory input and internal representations is a crucial cognitive ability for human, but the neural mechanism behind it remains largely unclear. The present study investigated the role of frontal theta power in detecting the mismatched information in VWM in a delayed matching task. A control task required to compare two simultaneously presented visual figures was also designed as a contrast to exclude the possibility that frontal theta activity just reflecting the non-memory-related behavioral conflicts. To better characterize the control mechanisms shaped by the frontal theta oscillation in human VWM, colored shapes were adopted as materials while both the task-relevant shape feature and task-irrelevant color feature could be mismatched. We found that the response times of participants were significantly delayed under the relevant- and irrelevant-mismatch conditions in both tasks and the conjunction-mismatch condition in delayed matching task. While our EEG data showed that increased frontal theta power was only observed under the relevant- and conjunction-mismatch conditions in the delayed matching task, but not the control task. These findings suggest that the frontal distributed theta activity observed here reflects the detection of mismatched information during the comparison stage of VWM, rather than the response-related conflicts. Furthermore, it is consistent with the proposal that theta-band oscillation can act as a control mechanism in working memory function so that the target-mismatched information in VWM could be successfully tracked. We also propose a possible processing structure to explain the neural dynamics underlying the mismatch detection process in VWM.

  13. Frontal Theta Activity Supports Detecting Mismatched Information in Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Tengfei Liang

    2017-10-01

    Full Text Available During the comparison stage of visual working memory (VWM processing, detecting the mismatch between the external sensory input and internal representations is a crucial cognitive ability for human, but the neural mechanism behind it remains largely unclear. The present study investigated the role of frontal theta power in detecting the mismatched information in VWM in a delayed matching task. A control task required to compare two simultaneously presented visual figures was also designed as a contrast to exclude the possibility that frontal theta activity just reflecting the non-memory-related behavioral conflicts. To better characterize the control mechanisms shaped by the frontal theta oscillation in human VWM, colored shapes were adopted as materials while both the task-relevant shape feature and task-irrelevant color feature could be mismatched. We found that the response times of participants were significantly delayed under the relevant- and irrelevant-mismatch conditions in both tasks and the conjunction-mismatch condition in delayed matching task. While our EEG data showed that increased frontal theta power was only observed under the relevant- and conjunction-mismatch conditions in the delayed matching task, but not the control task. These findings suggest that the frontal distributed theta activity observed here reflects the detection of mismatched information during the comparison stage of VWM, rather than the response-related conflicts. Furthermore, it is consistent with the proposal that theta-band oscillation can act as a control mechanism in working memory function so that the target-mismatched information in VWM could be successfully tracked. We also propose a possible processing structure to explain the neural dynamics underlying the mismatch detection process in VWM.

  14. Are the iota(1440) and theta(1640) glueballs or quarkonia

    International Nuclear Information System (INIS)

    Ono, S.; Pene, O.

    1982-01-01

    We study the possibility that the iota (1440) and theta (1640) are radially excited quarkonium states (2S and 2P). Their masses, total decay rates and psi → iotaγ, thetaγ branching ratios are roughly in agreement with this hypothesis but deltaπ dominance in iota decay is difficult to explain. We propose clear tests to check if they are quarkonium states. (orig.)

  15. Theta Phase Synchronization Is the Glue that Binds Human Associative Memory.

    Science.gov (United States)

    Clouter, Andrew; Shapiro, Kimron L; Hanslmayr, Simon

    2017-10-23

    Episodic memories are information-rich, often multisensory events that rely on binding different elements [1]. The elements that will constitute a memory episode are processed in specialized but distinct brain modules. The binding of these elements is most likely mediated by fast-acting long-term potentiation (LTP), which relies on the precise timing of neural activity [2]. Theta oscillations in the hippocampus orchestrate such timing as demonstrated by animal studies in vitro [3, 4] and in vivo [5, 6], suggesting a causal role of theta activity for the formation of complex memory episodes, but direct evidence from humans is missing. Here, we show that human episodic memory formation depends on phase synchrony between different sensory cortices at the theta frequency. By modulating the luminance of visual stimuli and the amplitude of auditory stimuli, we directly manipulated the degree of phase synchrony between visual and auditory cortices. Memory for sound-movie associations was significantly better when the stimuli were presented in phase compared to out of phase. This effect was specific to theta (4 Hz) and did not occur in slower (1.7 Hz) or faster (10.5 Hz) frequencies. These findings provide the first direct evidence that episodic memory formation in humans relies on a theta-specific synchronization mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding

    Directory of Open Access Journals (Sweden)

    Naoyuki eSato

    2013-05-01

    Full Text Available Theta band power (4-8Hz in the scalp electroencephalogram (EEG is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.

  17. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding.

    Science.gov (United States)

    Sato, Naoyuki

    2013-01-01

    Theta band power (4-8 Hz) in the scalp electroencephalogram (EEG) is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI) measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response) of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.

  18. Replication of elite music performance enhancement following alpha/theta neurofeedback and application to novice performance and improvisation with SMR benefits.

    Science.gov (United States)

    Gruzelier, J H; Holmes, P; Hirst, L; Bulpin, K; Rahman, S; van Run, C; Leach, J

    2014-01-01

    Alpha/theta (A/T) and sensory-motor rhythm (SMR) neurofeedback were compared in university instrumentalists who were novice singers with regard to prepared and improvised instrumental and vocal performance in three music domains: creativity/musicality, technique and communication/presentation. Only A/T training enhanced advanced playing seen in all three domains by expert assessors and validated by correlations with learning indices, strongest with Creativity/Musicality as shown by Egner and Gruzelier (2003). Here A/T gains extended to novice performance - prepared vocal, improvised vocal and instrumental - and were recognised by a lay audience who judged the prepared folk songs. SMR learning correlated positively with Technical Competence and Communication in novice performance, in keeping with SMR neurofeedback's known impact on lower-order processes such as attention, working memory and psychomotor skills. The importance of validation through learning indices was emphasised in the interpretation of neurofeedback outcome. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dendritic brushes under theta and poor solvent conditions

    Science.gov (United States)

    Gergidis, Leonidas N.; Kalogirou, Andreas; Charalambopoulos, Antonios; Vlahos, Costas

    2013-07-01

    The effects of solvent quality on the internal stratification of polymer brushes formed by dendron polymers up to third generation were studied by means of molecular dynamics simulations with Langevin thermostat. The distributions of polymer units, of the free ends, the radii of gyration, and the back folding probabilities of the dendritic spacers were studied at the macroscopic states of theta and poor solvent. For high grafting densities we observed a small decrease in the height of the brush as the solvent quality decreases. The internal stratification in theta solvent was similar to the one we found in good solvent, with two and in some cases three kinds of populations containing short dendrons with weakly extended spacers, intermediate-height dendrons, and tall dendrons with highly stretched spacers. The differences increase as the grafting density decreases and single dendron populations were evident in theta and poor solvent. In poor solvent at low grafting densities, solvent micelles, polymeric pinned lamellae, spherical and single chain collapsed micelles were observed. The scaling dependence of the height of the dendritic brush at high density brushes for both solvents was found to be in agreement with existing analytical results.

  20. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI.

    Science.gov (United States)

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2009-09-01

    The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.

  1. The electric dipole moment of the deuteron from the QCD {theta}-term

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Liebig, S. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Hanhart, C.; Nogga, A.; Wirzba, A. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Meissner, U.G. [Forschungszentrum Juelich, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich (Germany); Forschungszentrum Juelich, JARA - Forces And Matter Experiments, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Universitaet Bonn, Bethe Center for Theoretical Physics, Bonn (Germany)

    2013-03-15

    The two-nucleon contributions to the electric dipole moment (EDM) of the deuteron, induced by the QCD {theta}-term, are calculated in the framework of effective field theory up-to-and-including next-to-next-to-leading order. In particular we find for the difference of the deuteron EDM and the sum of proton and neutron EDM induced by the QCD {theta}-term a value of (- 5.4 {+-}3.9) anti {theta} x 10{sup -} {sup 4} e fm. The by far dominant uncertainty comes from the CP- and isospin-violating {pi}NN coupling constant. (orig.)

  2. Behavioral preference in sequential decision-making and its association with anxiety.

    Science.gov (United States)

    Zhang, Dandan; Gu, Ruolei

    2018-06-01

    In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making. © 2018 Wiley Periodicals, Inc.

  3. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    Science.gov (United States)

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Search for $\\Theta^{++}$ Pentaquarks in the Exclusive Reaction $\\gamma p\\to K^+K^-p$

    Energy Technology Data Exchange (ETDEWEB)

    V. Kubarovsky; Marco Battaglieri; Raffaella De Vita; John Goett; Lei Guo; Gordon Mutchler; Paul Stoler; Dennis Weygand; Pawel Ambrozewicz; Marco Anghinolfi; Gegham Asryan; Harutyun AVAKIAN; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; V. Batourine; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Eric Clinton; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; Volker Crede; John Cummings; Rita De Masi; Daniel Dale; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Kahanawita Dharmawardane; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Herbert Funsten; Marianna Gabrielyan; Liping Gan; Michel Garcon; Ashot Gasparian; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; Oleksandr Glamazdin; John Goetz; Evgueni Golovatch; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Rafael Hakobyan; John Hardie; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Franz Klein; Friedrich Klein; Alexei Klimenko; Mikhail Kossov; Laird Kramer; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ji Li; Kenneth Livingston; Hai-jiang Lu; Marion MacCormick; Nikolai Markov; Bryan McKinnon; Bernhard Mecking; Joseph Melone; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Vasiliy Mochalov; Viktor Mokeev; Ludyvine Morand; Steven Morrow; Maryam Moteabbed; Pawel Nadel-Turonski; Itaru Nakagawa; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Igor Strakovski; Steffen Strauch; Mauro Taiuti; David Tedeschi; Aram Teymurazyan; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Lawrence Weinstein; Michael Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao

    2006-04-28

    The reaction {gamma}p {yields} K{sup +}K{sup -}p was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam. The goal was to search for a {Theta}{sup ++} pentaquark, a narrow doubly charged baryon state having strangeness S = +1 and isospin I = 1, in the pK{sup +} invariant mass spectrum. No statistically significant evidence of a {Theta}{sup ++} was found. Upper limits on the total and differential production cross section for the reaction {gamma}p {yields} K{sup -}{Theta}{sup ++} were obtained in the mass range from 1.5 to 2.0 GeV/c{sup 2}, with an upper limit of about 0.15 nb, 95% C.L. for a narrow resonance with a mass M{sub {Theta}{sup ++}} = 1.54 GeV/c{sup 2}. This result places a very stringent upper limit on the {Theta}{sup ++} width.

  5. Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation

    Directory of Open Access Journals (Sweden)

    Park Hae-Jeong

    2010-06-01

    Full Text Available Abstract Background Prestimulus EEG alpha activity in humans has been considered to reflect ongoing top-down preparation for the performance of subsequent tasks. Since theta oscillations may be related to poststimulus top-down processing, we investigated whether prestimulus EEG theta activity also reflects top-down cognitive preparation for a stimulus. Results We recorded EEG data from 15 healthy controls performing a color and shape discrimination task, and used the wavelet transformation to investigate the time course and power of oscillatory activity in the signals. We observed a relationship between both anterior theta and posterior alpha power in the prestimulus period and the type of subsequent task. Conclusions Since task-differences were reflected in both theta and alpha activities prior to stimulus onset, both prestimulus theta (particularly around the anterior region and prestimulus alpha (particularly around the posterior region activities may reflect prestimulus top-down preparation for the performance of subsequent tasks.

  6. The Rhetorical Nature of Rhythm

    NARCIS (Netherlands)

    Balint, Mihaela; Dascalu, Mihai; Trausan-Matu, Stefan

    2017-01-01

    Up to date, linguistic rhythm has been studied for speech, but the rhythm of written texts has been merely recognized, and not analyzed or interpreted in connection to natural language tasks. We provide an extension of the textual rhythmic features we proposed in previous work, and

  7. Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Pilar eGarcés

    2013-12-01

    Full Text Available The neurophysiological changes associated with Alzheimer’s Disease (AD and Mild Cognitive Impairment (MCI include an increase in low frequency activity, as measured with electroencephalography or magnetoencephalography (MEG. A relevant property of spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm. Here we studied the spatial distribution of MEG resting state alpha peak frequency and amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls. Power spectra were reconstructed in source space with linearly constrained minimum variance beamformer. Then, 88 Regions of Interest (ROIs were defined and an alpha peak per ROI and subject was identified. Statistical analyses were performed at every ROI, accounting for age, sex and educational level. Peak frequency was significantly decreased (p< 0.05 in MCIs in many posterior ROIs. The average peak frequency over all ROIs was 9.68±0.71 Hz for controls and 9.05±0.90 Hz for MCIs and the average normalized amplitude was (2.57±0.59•10-2 for controls and (2.70±0.49•10-2 for MCIs. Age and gender were also found to play a role in the alpha peak, since its frequency was higher in females than in males in posterior ROIs and correlated negatively with age in frontal ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal volume, which is a commonly used marker of early structural AD-related damage. Peak frequency was positively correlated with hippocampal volume in many posterior ROIs. Overall, these findings indicate a pathological alpha slowing in MCI.

  8. Learning by joining the rhythm

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2012-01-01

    This article aims to explore how a joint rhythm is learned. The exploration is based on a combination of a case study of training in elite rowing and theoretical considerations concerning mutual incorporation of skills in learning. In 2009 Juliane and Anne start to row the double sculler together....... The two rowers’ aim is to be among the exclusive group of teams that qualify for the Olympic Games three years later. However Anne is not a rower, and has to be apprenticed by Juliane, who is an experienced elite rower. One important learning goal in the apprenticeship is to find a good joint rhythm......, to be able to put optimal effort into the rowing. Thus the apprenticeship is about developing a sense for a good rhythm in Anne which corresponds to Juliane’s fine-grained sense of what a good rhythm should feel like. Our study suggests that apprenticeship learning has to be understood as an embodied...

  9. EEG Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate Frontocentral Alpha Rhythm in the Mental Arithmetic Task

    Directory of Open Access Journals (Sweden)

    Kenji Katahira

    2018-03-01

    Full Text Available Flow experience is a subjective state experienced during holistic involvement in a certain activity, which has been reported to function as a factor promoting motivation, skill development, and better performance in the activity. To verify the positive effects of flow and develop a method to utilize it, the establishment of a reliable measurement of the flow state is essential. The present study utilized an electroencephalogram (EEG during an experimentally evoked flow state and examined the possibility of objective measurement of immediate flow. A total of 16 participants (10 males, 6 females participated in the experiment that employed a mental arithmetic task developed in a previous study. Post-trial self-report of the flow state and EEG during task execution were measured and compared among three conditions (Boredom, Flow, and Overload that had different levels of task difficulty. Furthermore, the correlations between subjective flow items and EEG activity were examined. As expected, the ratings on the subjective evaluation items representing the flow state were the highest in the Flow condition. Regarding the EEG data, theta activities in the frontal areas were higher in the Flow and the Overload conditions than in the Boredom condition, and alpha activity in the frontal areas and the right central area gradually increased depending on the task difficulty. These EEG activities correlated with self-reported flow experience, especially items related to the concentration on the task and task difficulty. From the results, the flow state was characterized by increased theta activities in the frontal areas and moderate alpha activities in the frontal and central areas. The former may be related to a high level of cognitive control and immersion in task, and the latter suggests that the load on the working memory was not excessive. The findings of this study suggest the possibility of distinguishing the flow state from other states using multiple

  10. EEG Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate Frontocentral Alpha Rhythm in the Mental Arithmetic Task.

    Science.gov (United States)

    Katahira, Kenji; Yamazaki, Yoichi; Yamaoka, Chiaki; Ozaki, Hiroaki; Nakagawa, Sayaka; Nagata, Noriko

    2018-01-01

    Flow experience is a subjective state experienced during holistic involvement in a certain activity, which has been reported to function as a factor promoting motivation, skill development, and better performance in the activity. To verify the positive effects of flow and develop a method to utilize it, the establishment of a reliable measurement of the flow state is essential. The present study utilized an electroencephalogram (EEG) during an experimentally evoked flow state and examined the possibility of objective measurement of immediate flow. A total of 16 participants (10 males, 6 females) participated in the experiment that employed a mental arithmetic task developed in a previous study. Post-trial self-report of the flow state and EEG during task execution were measured and compared among three conditions (Boredom, Flow, and Overload) that had different levels of task difficulty. Furthermore, the correlations between subjective flow items and EEG activity were examined. As expected, the ratings on the subjective evaluation items representing the flow state were the highest in the Flow condition. Regarding the EEG data, theta activities in the frontal areas were higher in the Flow and the Overload conditions than in the Boredom condition, and alpha activity in the frontal areas and the right central area gradually increased depending on the task difficulty. These EEG activities correlated with self-reported flow experience, especially items related to the concentration on the task and task difficulty. From the results, the flow state was characterized by increased theta activities in the frontal areas and moderate alpha activities in the frontal and central areas. The former may be related to a high level of cognitive control and immersion in task, and the latter suggests that the load on the working memory was not excessive. The findings of this study suggest the possibility of distinguishing the flow state from other states using multiple EEG activities

  11. Delta-gamma-theta Hedging of Crude Oil Asian Options

    Directory of Open Access Journals (Sweden)

    Juraj Hruška

    2015-01-01

    Full Text Available Since Black-Scholes formula was derived, many methods have been suggested for vanilla as well as exotic options pricing. More of investing and hedging strategies have been developed based on these pricing models. Goal of this paper is to derive delta-gamma-theta hedging strategy for Asian options and compere its efficiency with gamma-delta-theta hedging combined with predictive model. Fixed strike Asian options are type of exotic options, whose special feature is that payoff is calculated from the difference of average market price and strike price for call options and vice versa for the put options. Methods of stochastic analysis are used to determine deltas, gammas and thetas of Asian options. Asian options are cheaper than vanilla options and therefore they are more suitable for precise portfolio creation. On the other hand their deltas are also smaller as well as profits. That means that they are also less risky and more suitable for hedging. Results, conducted on chosen commodity, confirm better feasibility of Asian options compering with vanilla options in sense of gamma hedging.

  12. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.; van der Veen, Daan R.; O’ Donnell, Aidan J.; Cumnock, Katherine; Schneider, David; Pain, Arnab; Subudhi, Amit; Ramaprasad, Abhinay; Rund, Samuel S. C.; Savill, Nicholas J.; Reece, Sarah E.

    2018-01-01

    by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms

  13. Comparison of Hippocampal Volume in Dementia Subtypes

    International Nuclear Information System (INIS)

    Vijayakumar, Avinash; Vijayakumar, Abhishek

    2012-01-01

    Aims. To examine the relationship between different types of dementia and hippocampal volume. Methods. Hippocampal volume was measured using FL3D sequence magnetic resonance imaging in 26 Alzheimer's, vascular dementia, mixed dementia, and normal pressure hydrocephalus patients and 15 healthy controls and also hippocampal ratio, analyzed. Minimental scale was used to stratify patients on cognitive function impairments. Results. Hippocampal volume and ratio was reduced by 25% in Alzheimer's disease, 21% in mixed dementia, 11% in vascular dementia and 5% in normal pressure hydrocephalus in comparison to control. Also an asymmetrical decrease in volume of left hippocampus was noted. The severity of dementia increased in accordance to decreasing hippocampal volume. Conclusion. Measurement in hippocampal volume may facilitate in differentiating different types of dementia and in disease progression. There was a correlation between hippocampal volume and severity of cognitive impairment

  14. Hippocampal closed-loop modeling and implications for seizure stimulation design

    Science.gov (United States)

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2015-10-01

    Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  15. swot: Super W Of Theta

    Science.gov (United States)

    Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor

    2017-07-01

    SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

  16. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    Science.gov (United States)

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  17. Experimental study of CF4 conical theta pinch plasma expanding into vacuum

    International Nuclear Information System (INIS)

    Pedrow, P.D.; Nasiruddin, A.M.

    1989-01-01

    Langmuir probe, photodiode, and optical multichannel analyzer (OMA) measurements have been made on a pulsed CF 4 conical theta pinch plasma. A cloud of CF 4 gas was puffed into a conical theta pinch coil, converted to plasma, and propelled into the vacuum region ahead of the expanding gas cloud. At a position 67 cm away from the conical theta pinch coil, the plasma arrived in separate packets that were about 20 μs in duration. The average drift velocity of these packets corresponded to an energy of about 3 eV. The OMA measurements showed that the second packet contained neutral atomic fluorine as well as charged particles

  18. Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus.

    Science.gov (United States)

    Davis, Cyndy D; Jones, Floretta L; Derrick, Brian E

    2004-07-21

    The induction of long-term potentiation (LTP) in the hippocampal formation can be modulated by different behavioral states. However, few studies have addressed modulation of LTP during behavioral states in which the animal is likely acquiring new information. Here, we demonstrate that both the induction and the longevity of LTP in the dentate gyrus are enhanced when LTP is induced during the initial exploration of a novel environment. These effects are independent from locomotor activity, changes in brain temperature, and theta rhythm. Previous exposure to the novel environment attenuated this enhancement, suggesting that the effects of novelty habituate with familiarity. LTP longevity also was enhanced when induced in familiar environments containing novel objects. Together, these data indicate that both LTP induction and maintenance are enhanced when LTP is induced while rats investigate novel stimuli. We suggest that novelty initiates a transition of the hippocampal formation to a mode that is particularly conducive to synaptic plasticity, a process that could allow for new learning while preserving the stability of previously stored information. In addition, LTP induced in novel environments elicited a sustained late LTP. This suggests that a single synaptic population can display distinct profiles of LTP maintenance and that this depends on the animal's behavioral state during its induction. Furthermore, the duration of LTP enhanced by novelty parallels the time period during which the hippocampal formation is thought necessary for memory, consistent with the view that dentate LTP is of a duration sufficient to sustain memory in the hippocampal formation.

  19. RNAi of the circadian clock gene period disrupts the circadian rhythm but not the circatidal rhythm in the mangrove cricket

    OpenAIRE

    Takekata, Hiroki; Matsuura, Yu; Goto, Shin G.; Satoh, Aya; Numata, Hideharu

    2012-01-01

    The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in t...

  20. Cross-Cultural Influences on Rhythm Processing: Reproduction, Discrimination, and Beat Tapping

    Directory of Open Access Journals (Sweden)

    Daniel J Cameron

    2015-04-01

    Full Text Available The structures of musical rhythm differ between cultures, despite the fact that the ability to synchronize one’s movements to musical rhythms appears to be universal. To measure the influence of culture on rhythm processing, we tested East African and North American adults on the perception, production, and beat tapping of rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced both by the culture of the participant and by the culture of the rhythm. Specifically, we predicted that a participant’s ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than unfamiliar rhythms. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  1. Cross-cultural influences on rhythm processing: reproduction, discrimination, and beat tapping.

    Science.gov (United States)

    Cameron, Daniel J; Bentley, Jocelyn; Grahn, Jessica A

    2015-01-01

    The structures of musical rhythm differ between cultures, despite the fact that the ability to entrain movement to musical rhythm occurs in virtually all individuals across cultures. To measure the influence of culture on rhythm processing, we tested East African and North American adults on perception, production, and beat tapping for rhythms derived from East African and Western music. To assess rhythm perception, participants identified whether pairs of rhythms were the same or different. To assess rhythm production, participants reproduced rhythms after hearing them. To assess beat tapping, participants tapped the beat along with repeated rhythms. We expected that performance in all three tasks would be influenced by the culture of the participant and the culture of the rhythm. Specifically, we predicted that a participant's ability to discriminate, reproduce, and accurately tap the beat would be better for rhythms from their own culture than for rhythms from another culture. In the rhythm discrimination task, there were no differences in discriminating culturally familiar and unfamiliar rhythms. In the rhythm reproduction task, both groups reproduced East African rhythms more accurately than Western rhythms, but East African participants also showed an effect of cultural familiarity, leading to a significant interaction. In the beat tapping task, participants in both groups tapped the beat more accurately for culturally familiar than for unfamiliar rhythms. Moreover, there were differences between the two participant groups, and between the two types of rhythms, in the metrical level selected for beat tapping. The results demonstrate that culture does influence the processing of musical rhythm. In terms of the function of musical rhythm, our results are consistent with theories that musical rhythm enables synchronization. Musical rhythm may foster musical cultural identity by enabling within-group synchronization to music, perhaps supporting social cohesion.

  2. Power of theta waves in the EEG of human subjects increases during recall of haptic information.

    Science.gov (United States)

    Grunwald, M; Weiss, T; Krause, W; Beyer, L; Rost, R; Gutberlet, I; Gertz, H J

    1999-02-05

    Several studies have reported a functional relationship between spectral power within the theta-band of the EEG (theta-power) and memory load while processing visual or semantic information. We investigated theta power during the processing of different complex haptic stimuli using a delayed recall design. The haptic explorations consisted of palpating the structure of twelve sunken reliefs with closed eyes. Subjects had to reproduce each relief by drawing it 10 s after the end of the exploration. The relationship between mean theta power and mean exploration time was analysed using a regression model. A linear relationship was found between the exploration time and theta power over fronto-central regions (Fp1, Fp2, F3, F7, F8, Fz, C3) directly before the recall of the relief. This result is interpreted in favour of the hypothesis that fronto-central theta power of the EEG correlates with the load of working memory independent of stimulus modality.

  3. Ramanujan's mock theta functions.

    Science.gov (United States)

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-04-09

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268-277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan's original definition. Here, we prove that Ramanujan's examples do indeed satisfy his original definition.

  4. Why don't you like me? Midfrontal theta power in response to unexpected peer rejection feedback.

    Science.gov (United States)

    van der Molen, M J W; Dekkers, L M S; Westenberg, P M; van der Veen, F M; van der Molen, M W

    2017-02-01

    Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4-8Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta dynamics (power and inter-trial phase synchrony) during the processing of social evaluative feedback. We employed the Social Judgment paradigm in which 56 undergraduate women (mean age=19.67 years) were asked to communicate their expectancies about being liked vs. disliked by unknown peers. Expectancies were followed by feedback indicating social acceptance vs. rejection. Results revealed a significant increase in EEG theta power to unexpected social rejection feedback. This EEG theta response could be source-localized to brain regions typically reported during activation of the saliency network (i.e., dorsal anterior cingulate cortex, insula, inferior frontal gyrus, frontal pole, and the supplementary motor area). Theta phase dynamics mimicked the behavior of the time-domain averaged feedback-related negativity (FRN) by showing stronger phase synchrony for feedback that was unexpected vs. expected. Theta phase, however, differed from the FRN by also displaying stronger phase synchrony in response to rejection vs. acceptance feedback. Together, this study highlights distinct roles for midfrontal theta power and phase synchrony in response to social evaluative feedback. Our findings contribute to the literature by showing that midfrontal theta oscillatory power is sensitive to social rejection but only when peer rejection is unexpected, and this theta response is governed by a widely distributed neural network implicated in saliency detection and conflict monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Transmitter release in the neuromuscular synapse of the protein kinase C theta-deficient adult mouse.

    Science.gov (United States)

    Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A

    2011-04-01

    We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.

  6. Enhanced Constraints on theta13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O' Donnell, T.; Steiner, H. M.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Decowski, M. P.

    2010-09-24

    We present new constraints on the neutrino oscillation parameters {Delta}m{sub 21}{sup 2}, {theta}{sub 12}, and {theta}{sub 13} from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10{sup 32} target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis ({theta}{sub 13} = 0) of the KamLAND and solar data yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.444{sub -0.030}{sup +0.036} and {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5} eV{sup 2}; a three-flavor analysis with {theta}{sub 13} as a free parameter yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.452{sub -0.033}{sup +0.035}, {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5}eV{sup 2}, and sin{sup 2} {theta}{sub 13} = 0.020{sub -0.016}{sup +0.016}. This {theta}{sub 13} interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global {theta}{sub 13} analysis, incorporating the CHOOZ, atmospheric and accelerator data, which indicates sin{sup 2} {theta}{sub 13} = 0.017{sub -0.009}{sup +0.010}, a nonzero value at the 93% C.L. This finding will be further tested by upcoming accelerator and reactor experiments.

  7. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  8. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory.

    Science.gov (United States)

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-03-07

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain.

  9. Theta oscillations orchestrate medial temporal lobe and neocortex in remembering autobiographical memories.

    Science.gov (United States)

    Fuentemilla, L; Barnes, G R; Düzel, E; Levine, B

    2014-01-15

    Remembering autobiographical events can be associated with detailed visual imagery. The medial temporal lobe (MTL), precuneus and prefrontal cortex are held to jointly enable such vivid retrieval, but how these regions are orchestrated remains unclear. An influential prediction from animal physiology is that neural oscillations in theta frequency may be important. In this experiment, participants prospectively collected audio recordings describing personal autobiographical episodes or semantic knowledge over 2 to 7 months. These were replayed as memory retrieval cues while recording brain activity with magnetoencephalography (MEG). We identified a peak of theta power within a left MTL region of interest during both autobiographical and General Semantic retrieval. This MTL region was selectively phase-synchronized with theta oscillations in precuneus and medial prefrontal cortex, and this synchrony was higher during autobiographical as compared to General Semantic knowledge retrieval. Higher synchrony also predicted more detailed visual imagery during retrieval. Thus, theta phase-synchrony orchestrates in humans the MTL with a distributed neocortical memory network when vividly remembering autobiographical experiences. © 2013.

  10. Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting

    Directory of Open Access Journals (Sweden)

    Stefanie eEnriquez-Geppert

    2014-12-01

    Full Text Available Frontal-midline (fm theta oscillations as measured via the electroencephalogram (EEG have been suggested as neural working language of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally impact the behavioral performance in tasks probing executive functions (EFs. Here, the effects of neurofeedback, a learning method to self-up-regulate fm-theta over frontal-midline electrodes, on the four most representative EFs, memory updating, set shifting, conflict monitoring, and motor inhibition are presented. Before beginning and after completing an individualized, eight-session gap-spaced neurofeedback intervention, the three-back, letter/number task-switching, Stroop, and stop-signal tasks were tested while measuring the EEG. Self-determined up-regulation of fm-theta and its putative role for executive functioning were compared to an active control group, the so-called pseudo-neurofeedback group. Task-related fm-theta activity after training differed significantly between groups. More importantly, though, after neurofeedback significantly enhanced behavioral performance was observed. The training group showed higher accuracy scores in the three-back task and reduced mixing and shifting costs in letter/number task-switching. However, this specific protocol type did not affect performance in tasks probing conflict monitoring and motor inhibition. Thus, our results suggest a modulation of proactive but not reactive mechanisms of cognitive control. In sum, the modulation of fm-theta via neurofeedback may serve as potent treatment approach for executive dysfunctions.

  11. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  12. Theta-Gamma Coupling and Working Memory in Alzheimer’s Dementia and Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Michelle S. Goodman

    2018-04-01

    Full Text Available Working memory deficits are common among individuals with Alzheimer’s dementia (AD or mild cognitive impairment (MCI. Yet, little is known about the mechanisms underlying these deficits. Theta-gamma coupling—the modulation of high-frequency gamma oscillations by low-frequency theta oscillations—is a neurophysiologic process underlying working memory. We assessed the relationship between theta-gamma coupling and working memory deficits in AD and MCI. We hypothesized that: (1 individuals with AD would display the most significant working memory impairments followed by MCI and finally healthy control (HC participants; and (2 there would be a significant association between working memory performance and theta-gamma coupling across all participants. Ninety-eight participants completed the N-back working memory task during an electroencephalography (EEG recording: 33 with AD (mean ± SD age: 76.5 ± 6.2, 34 with MCI (mean ± SD age: 74.8 ± 5.9 and 31 HCs (mean ± SD age: 73.5 ± 5.2. AD participants performed significantly worse than control and MCI participants on the 1- and 2-back conditions. Regarding theta-gamma coupling, AD participants demonstrated the lowest level of coupling followed by the MCI and finally control participants on the 2-back condition. Finally, a linear regression analysis demonstrated that theta-gamma coupling (β = 0.69, p < 0.001 was the most significant predictor of 2-back performance. Our results provide evidence for a relationship between altered theta-gamma coupling and working memory deficits in individuals with AD and MCI. They also provide insight into a potential mechanism underlying working memory impairments in these individuals.

  13. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory.

    Science.gov (United States)

    Staudigl, Tobias; Hanslmayr, Simon

    2013-06-17

    Human episodic memory is highly context dependent. Therefore, retrieval benefits when a memory is recalled in the same context compared to a different context. This implies that items and contexts are bound together during encoding, such that the reinstatement of the initial context at test improves retrieval. Animal studies suggest that theta oscillations and theta-to-gamma cross-frequency coupling modulate such item-context binding, but direct evidence from humans is scarce. We investigated this issue by manipulating the overlap of contextual features between encoding and retrieval. Participants studied words superimposed on movie clips and were later tested by presenting the word with either the same or a different movie. The results show that memory performance and the oscillatory correlates of memory formation crucially depend on the overlap of the context between encoding and test. When the context matched, high theta power during encoding was related to successful recognition, whereas the opposite pattern emerged in the context-mismatch condition. In addition, cross-frequency coupling analysis revealed a context-dependent theta-to-gamma memory effect specifically in the left hippocampus. These results reveal for the first time that context-dependent episodic memory effects are mediated by theta oscillatory activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    nature of the system underlying such rhythms and inspired one of the ... behaviours and physiological processes were discovered in a wide range of animals. ... is thought to coordinate internal physiology, and thereby confer benefits to living ...

  15. Donaldson-Witten theory and indefinite theta functions

    Science.gov (United States)

    Korpas, Georgios; Manschot, Jan

    2017-11-01

    We consider partition functions with insertions of surface operators of topologically twisted N=2 , SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature, Moore and Witten have shown that the partition function is completely determined by the integral over the Coulomb branch parameter a, while more generally the Coulomb branch integral captures the wall-crossing behavior of both Donaldson polynomials and Seiberg-Witten invariants. We show that after addition of a \\overlineQ -exact surface operator to the Moore-Witten integrand, the integrand can be written as a total derivative to the anti-holomorphic coordinate ā using Zwegers' indefinite theta functions. In this way, we reproduce Göttsche's expressions for Donaldson invariants of rational surfaces in terms of indefinite theta functions for any choice of metric.

  16. Dysrhythmia: a specific congenital rhythm perception deficit

    Directory of Open Access Journals (Sweden)

    Jacques eLaunay

    2014-02-01

    Full Text Available Why do some people have problems ‘feeling the beat’? Here we investigate participants with congenital impairments in musical rhythm perception and production. A web-based version of the Montreal Battery of Evaluation of Amusia (MBEA was used to screen for difficulties with rhythmic processing in a large sample and we identified three ‘dysrhythmic’ individuals who scored below cut-off for the rhythm subtest, but not the pitch-based subtests. Follow-up testing in the laboratory was conducted to characterize the nature of both rhythm perception and production deficits in these dysrhythmic individuals. We found that they differed from control participants when required to synchronize their tapping to an external stimulus with a metrical pulse, but not when required to tap spontaneously (with no external stimulus or to tap in time to an isochronous stimulus. Dysrhythmics exhibited a general tendency to tap at half the expected tempo when asked to synchronize to the beat of strongly metrical rhythms. These results suggest that the individuals studied here did not have motor production problems, but suffer from a selective rhythm perception deficit that influences the ability to entrain to metrical rhythms.

  17. [Spatial organization of bioelectrical brain activity in epilepsy and amenorrhea of central genesis].

    Science.gov (United States)

    Avakian, G N; Oleĭnikova, O M; Nerobkova, L N; Dovletkhanova, E R; Mitrofanov, A A; Gusev, E I

    2002-01-01

    The study aimed at modification of co-herent analysis (CA), as a mathematical method for EEG data processing for objective evaluation of bioelectric brain activity spatial organization in women with epilepsy and secondary amenorrhea of central genesis. One hundred sixty one women (30 with epilepsy, 116 with amenorrhea and 115 controls aged 15 to 41 years) have been examined. Characteristic changes of cortico-cortical inter- and intra-hemisphere relations for patients with catamenial (CTM) and noncatamenial (NCTM) epilepsy in different menstrual cycle terms were found. The most distinct changes were detected in theta-activity analysis. In the beginning of menstrual cycle, the patients with CTM epilepsy exhibited higher CA indices in theta-rhythm range in all right hemisphere pairs studied. On the contrary, patients with NCTM epilepsy exhibited lower CA indices mainly in the right brain hemisphere. alpha-rhythm spatial organization analysis in the same patients showed similar correlations, but they were better expressed in alpha-rhythm generation zone: in the beginning of menstrual cycle CA indices were high in patients with CTM epilepsy and low in those with NCTM epilepsy. Comparing to controls, patients with secondary amenorrhea of central genesis showed most distinct changes in theta-activity towards the CA indices increase in the majority of the leads. In patients with epilepsy and amenorrhea, CA indices of right brain hemisphere and intra-central temporal lead pairs were lower than in patients with amenorrhea without epilepsy by both alpha- and theta-rhythms.

  18. Distributed attention Is implemented through theta-rhythmic gamma modulation

    NARCIS (Netherlands)

    Landau, A.N.; Schreyer, H.M.; Pelt, S. van; Fries, P.

    2015-01-01

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm [1 and 2]. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations [3], indicating that different

  19. Acquisition of speech rhythm in first language.

    Science.gov (United States)

    Polyanskaya, Leona; Ordin, Mikhail

    2015-09-01

    Analysis of English rhythm in speech produced by children and adults revealed that speech rhythm becomes increasingly more stress-timed as language acquisition progresses. Children reach the adult-like target by 11 to 12 years. The employed speech elicitation paradigm ensured that the sentences produced by adults and children at different ages were comparable in terms of lexical content, segmental composition, and phonotactic complexity. Detected differences between child and adult rhythm and between rhythm in child speech at various ages cannot be attributed to acquisition of phonotactic language features or vocabulary, and indicate the development of language-specific phonetic timing in the course of acquisition.

  20. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats

    NARCIS (Netherlands)

    Su, Yan; Foppen, Ewout; Mansur Machado, Frederico Sander; Fliers, Eric; Kalsbeek, A.

    2018-01-01

    Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily

  1. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    Science.gov (United States)

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  2. Spontaneous internal desynchronization of locomotor activity and body temperature rhythms from plasma melatonin rhythm in rats exposed to constant dim light

    Directory of Open Access Journals (Sweden)

    Bullock Nicole M

    2006-04-01

    Full Text Available Abstract Background We have recently reported that spontaneous internal desynchronization between the locomotor activity rhythm and the melatonin rhythm may occur in rats (30% of tested animals when they are maintained in constant dim red light (LLdim for 60 days. Previous work has also shown that melatonin plays an important role in the modulation of the circadian rhythms of running wheel activity (Rw and body temperature (Tb. The aim of the present study was to investigate the effect that desynchronization of the melatonin rhythm may have on the coupling and expression of circadian rhythms in Rw and Tb. Methods Rats were maintained in a temperature controlled (23–24°C ventilated lightproof room under LLdim (red dim light 1 μW/cm2 [5 Lux], lower wavelength cutoff at 640 nm. Animals were individually housed in cages equipped with a running wheel and a magnetic sensor system to detect wheel rotation; Tb was monitored by telemetry. Tb and Rw data were recorded in 5-min bins and saved on disk. For each animal, we determined the mesor and the amplitude of the Rw and Tb rhythm using waveform analysis on 7-day segments of the data. After sixty days of LLdim exposure, blood samples (80–100 μM were collected every 4 hours over a 24-hrs period from the tail artery, and serum melatonin levels were measured by radioimmunoassay. Results Twenty-one animals showed clear circadian rhythms Rw and Tb, whereas one animal was arrhythmic. Rw and Tb rhythms were always strictly associated and we did not observe desynchronization between these two rhythms. Plasma melatonin levels showed marked variations among individuals in the peak levels and in the night-to-day ratio. In six rats, the night-to-day ratio was less than 2, whereas in the rat that showed arrhythmicity in Rw and Tb melatonin levels were high and rhythmic with a large night-to-day ratio. In seven animals, serum melatonin levels peaked during the subjective day (from CT0 to CT8, thus suggesting

  3. Double Chooz and non Asian efforts towards {theta}{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Thierry [CEA/Saclay and Laboratoire Astroparticle and Cosmologie Institut de Recherche des Lois Fondamentales de l' Univers Service de Physique des Particules 91191 Gif-s-Yvette (France)], E-mail: thierry.lasserre@cea.fr

    2008-11-01

    Neutrino oscillation physics is entering a precision measurement area. The smallness of the {theta}{sub 13} neutrino mixing angle is still enigmatic and should be resolved. Double Chooz will use two identical detectors near the Chooz nuclear power station to search for a non vanishing {theta}{sub 13}, and hopefully open the way to experiments aspiring to discover CP violation in the leptonic sector. The Angra project aims to prevail over the Double Chooz experiment if the third neutrino oscillation channel is not discovered in the forthcoming years.

  4. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    Early studies on circadian rhythms focussed on unravelling the fundamental .... careful analysis revealed that deaths of most arrhythmic indi- viduals were due to .... is no more a sci-fi movie script and is achievable through a technique called ...

  5. Stress, depression and hippocampal damage

    Indian Academy of Sciences (India)

    Amongst the prime targets of stress in the brain is the hippocampus, which has high receptor ... effects on different hippocampal subfields (McEwen 1999). ... disorders, and decreases in hippocampal volume have been observed in patients of ...

  6. Rhythm information represented in the fronto-parieto-cerebellar motor system.

    Science.gov (United States)

    Konoike, Naho; Kotozaki, Yuka; Miyachi, Shigehiro; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Akimoto, Yoritaka; Kuraoka, Koji; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2012-10-15

    Rhythm is an essential element of human culture, particularly in language and music. To acquire language or music, we have to perceive the sensory inputs, organize them into structured sequences as rhythms, actively hold the rhythm information in mind, and use the information when we reproduce or mimic the same rhythm. Previous brain imaging studies have elucidated brain regions related to the perception and production of rhythms. However, the neural substrates involved in the working memory of rhythm remain unclear. In addition, little is known about the processing of rhythm information from non-auditory inputs (visual or tactile). Therefore, we measured brain activity by functional magnetic resonance imaging while healthy subjects memorized and reproduced auditory and visual rhythmic information. The inferior parietal lobule, inferior frontal gyrus, supplementary motor area, and cerebellum exhibited significant activations during both encoding and retrieving rhythm information. In addition, most of these areas exhibited significant activation also during the maintenance of rhythm information. All of these regions functioned in the processing of auditory and visual rhythms. The bilateral inferior parietal lobule, inferior frontal gyrus, supplementary motor area, and cerebellum are thought to be essential for motor control. When we listen to a certain rhythm, we are often stimulated to move our body, which suggests the existence of a strong interaction between rhythm processing and the motor system. Here, we propose that rhythm information may be represented and retained as information about bodily movements in the supra-modal motor brain system. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Study on creep behavior of Grade 91 heat-resistant steel using theta projection method

    Science.gov (United States)

    Ren, Facai; Tang, Xiaoying

    2017-10-01

    Creep behavior of Grade 91 heat-resistant steel used for steam cooler was characterized using the theta projection method. Creep tests were conducted at the temperature of 923K under the stress ranging from 100-150MPa. Based on the creep curve results, four theta parameters were established using a nonlinear least square fitting method. Four theta parameters showed a good linearity as a function of stress. The predicted curves coincided well with the experimental data and creep curves were also modeled to the low stress level of 60MPa.

  8. Episodic sequence memory is supported by a theta-gamma phase code.

    Science.gov (United States)

    Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef; Davachi, Lila

    2016-10-01

    The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation (theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.

  9. Basic Principles of Interpersonal Social Rhythm Therapy in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Gokben Hizli Sayar

    2014-08-01

    Full Text Available Interpersonal Social Rhythm Therapy is a psychotherapy modality that helps the patient recognize the relationship between disruptions in social rhythms and the onset of previous episodes of psychiatric disorders. It uses psychoeducation and behavioral techniques to maintain social rhythm and sleep/wake regularity. It is closely related to and ldquo;social zeitgeber theory and rdquo; that emphasizes the importance that social rhythm regularity may play in synchronization of circadian rhythms in individuals with or at risk for bipolar spectrum disorders. Interpersonal and social rhythm therapy have been shown to stabilize social rhythms and enhance course and outcome in bipolar disorder. This review focuses on the theoretical principles and the basic steps of interpersonal and social rhythm therapy as a psychotherapy approach in bipolar disorder. PubMed, Scopus, Google Scholar databases were searched without temporal restriction. Search terms included interpersonal social rhythm therapy, bipolar, mood disorders. Abstracts were reviewed for relevance, and randomized controlled trials of interpersonal and social rhythm therapy in bipolar disorder selected. These researches also summarized on the final part of this review. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(4.000: 438-446

  10. Statistical properties of multi-theta polymer chains

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2018-04-01

    We study statistical properties of polymer chains with complex structures whose chemical connectivities are expressed by graphs. The multi-theta curve of m subchains with two branch points connected by them is one of the simplest graphs among those graphs having closed paths, i.e. loops. We denoted it by θm , and for m  =  2 it is given by a ring. We derive analytically the pair distribution function and the scattering function for the θm -shaped polymer chains consisting of m Gaussian random walks of n steps. Surprisingly, it is shown rigorously that the mean-square radius of gyration for the Gaussian θm -shaped polymer chain does not depend on the number m of subchains if each subchain has the same fixed number of steps. For m  =  3 we show the Kratky plot for the theta-shaped polymer chain consisting of hard cylindrical segments by the Monte-Carlo method including reflection at trivalent vertices.

  11. EEG hippocampique de l'homme, du chien et du chat (Communication préliminaire)

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Aitink, J.W.; Boeyinga, P.; Lopes Da Silva, F.H.

    1979-01-01

    A comparative neurophysiological study of the reactivity of hippocampal EEG in dog, cat and human (an epileptic patient with chronically indwelling electrodes) was carried out. In all 3 species the same type of qualitative changes in hippocampal spectral parameters in the theta frequency band (peak

  12. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    Science.gov (United States)

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  13. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Circadian Rhythms ... M Vaze1 Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  14. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Circadian Rhythms: Why do ... Nikhil Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  15. Daily Rhythms in Mobile Telephone Communication.

    Science.gov (United States)

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G B; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I M; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals' social networks. Further, women's calls were longer than men's calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day.

  16. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Moderate traumatic brain injury (TBI in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1

  17. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Science.gov (United States)

    Ouyang, Wei; Yan, Qichao; Zhang, Yu; Fan, Zhiheng

    2017-01-01

    Moderate traumatic brain injury (TBI) in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP) method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI) 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR) ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1 subregion.

  18. Ischemic stroke destabilizes circadian rhythms

    Directory of Open Access Journals (Sweden)

    Borjigin Jimo

    2008-10-01

    Full Text Available Abstract Background The central circadian pacemaker is a remarkably robust regulator of daily rhythmic variations of cardiovascular, endocrine, and neural physiology. Environmental lighting conditions are powerful modulators of circadian rhythms, but regulation of circadian rhythms by disease states is less clear. Here, we examine the effect of ischemic stroke on circadian rhythms in rats using high-resolution pineal microdialysis. Methods Rats were housed in LD 12:12 h conditions and monitored by pineal microdialysis to determine baseline melatonin timing profiles. After demonstration that the circadian expression of melatonin was at steady state, rats were subjected to experimental stroke using two-hour intralumenal filament occlusion of the middle cerebral artery. The animals were returned to their cages, and melatonin monitoring was resumed. The timing of onset, offset, and duration of melatonin secretion were calculated before and after stroke to determine changes in circadian rhythms of melatonin secretion. At the end of the monitoring period, brains were analyzed to determine infarct volume. Results Rats demonstrated immediate shifts in melatonin timing after stroke. We observed a broad range of perturbations in melatonin timing in subsequent days, with rats exhibiting onset/offset patterns which included: advance/advance, advance/delay, delay/advance, and delay/delay. Melatonin rhythms displayed prolonged instability several days after stroke, with a majority of rats showing a day-to-day alternation between advance and delay in melatonin onset and duration. Duration of melatonin secretion changed in response to stroke, and this change was strongly determined by the shift in melatonin onset time. There was no correlation between infarct size and the direction or amplitude of melatonin phase shifting. Conclusion This is the first demonstration that stroke induces immediate changes in the timing of pineal melatonin secretion, indicating

  19. Monkey Lipsmacking Develops Like the Human Speech Rhythm

    Science.gov (United States)

    Morrill, Ryan J.; Paukner, Annika; Ferrari, Pier F.; Ghazanfar, Asif A.

    2012-01-01

    Across all languages studied to date, audiovisual speech exhibits a consistent rhythmic structure. This rhythm is critical to speech perception. Some have suggested that the speech rhythm evolved "de novo" in humans. An alternative account--the one we explored here--is that the rhythm of speech evolved through the modification of rhythmic facial…

  20. [Cortical functional connectivity during retention of affective pictures in working memory: EEG-source theta coherence analysis].

    Science.gov (United States)

    Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V

    2016-01-01

    of the cortical areas for the theta rhythm. This finding might be related to the additional load exerted by emotionally colored pictures onto the mechanisms of short-time retention of visual information.

  1. CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses

    Science.gov (United States)

    Younts, Thomas J.; Chevaleyre, Vivien

    2013-01-01

    Endocannabinoids (eCBs) are retrograde lipid messengers that, by targeting presynaptic type 1 cannabinoid receptors (CB1Rs), mediate short- and long-term synaptic depression of neurotransmitter release throughout the brain. Short-term depression is typically triggered by postsynaptic, depolarization-induced calcium rises, whereas long-term depression is induced by synaptic activation of Gq/11 protein-coupled receptors. Here we report that a physiologically relevant pattern of postsynaptic activity, in the form of theta-burst firing (TBF) of hippocampal CA1 pyramidal neurons, can trigger long-term depression of inhibitory transmission (iLTD) in rat hippocampal slices. Paired recordings between CA1 interneurons and pyramidal cells, followed by post hoc morphological reconstructions of the interneurons' axon, revealed that somatic and dendritic inhibitory synaptic inputs equally expressed TBF-induced iLTD. Simultaneous recordings from neighboring pyramidal cells demonstrated that eCB signaling triggered by TBF was highly restricted to only a single, active cell. Furthermore, pairing submaximal endogenous activation of metabotropic glutamate or muscarinic acetylcholine receptors with submaximal TBF unmasked associative iLTD. Although CB1Rs are also expressed at Schaffer-collateral excitatory terminals, long-term plasticity under various recording conditions was spared at these synapses. Consistent with this observation, TBF also shifted the balance of excitation and inhibition in favor of excitatory throughput, thereby altering information flow through the CA1 circuit. Given the near ubiquity of burst-firing activity patterns and CB1R expression in the brain, the properties described here may be a general means by which neurons fine tune the strength of their inputs in a cell-wide and cell-specific manner. PMID:23966696

  2. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  3. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  4. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  5. The small mixing angle $\\theta_{13}$ and the lepton asymmetry

    CERN Document Server

    Lee, S H; Lee, Song-Haeng; Siyeon, Kim

    2005-01-01

    We present the correlation of low energy CP phases, both Dirac and Majorana, and the lepton asymmetry for the baryon asymmetry in the universe, with a certain class of Yukawa matrices that consist of two right-handed neutrinos and include one texture zero in themselves. For cases in which the amount of the lepton asymmetry $Y_L$ turns out to be proportional to $\\theta_{13}^2$, we consider the relation between two types of CP phases and the relation of $Y_L$ versus the Jarlskog invariant or the amplitude of neutrinoless double beta decay as $\\theta_{13}$ varies.

  6. Theta signal as the neural signature of social exclusion.

    Science.gov (United States)

    Cristofori, Irene; Moretti, Laura; Harquel, Sylvain; Posada, Andres; Deiana, Gianluca; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2013-10-01

    The feeling of being excluded from a social interaction triggers social pain, a sensation as intense as actual physical pain. Little is known about the neurophysiological underpinnings of social pain. We addressed this issue using intracranial electroencephalography in 15 patients performing a ball game where inclusion and exclusion blocks were alternated. Time-frequency analyses showed an increase in power of theta-band oscillations during exclusion in the anterior insula (AI) and posterior insula, the subgenual anterior cingulate cortex (sACC), and the fusiform "face area" (FFA). Interestingly, the AI showed an initial fast response to exclusion but the signal rapidly faded out. Activity in the sACC gradually increased and remained significant thereafter. This suggests that the AI may signal social pain by detecting emotional distress caused by the exclusion, whereas the sACC may be linked to the learning aspects of social pain. Theta activity in the FFA was time-locked to the observation of a player poised to exclude the participant, suggesting that the FFA encodes the social value of faces. Taken together, our findings suggest that theta activity represents the neural signature of social pain. The time course of this signal varies across regions important for processing emotional features linked to social information.

  7. Hippocampal Sclerosis in Older Patients

    Science.gov (United States)

    Cykowski, Matthew D.; Powell, Suzanne Z.; Schulz, Paul E.; Takei, Hidehiro; Rivera, Andreana L.; Jackson, Robert E.; Roman, Gustavo; Jicha, Gregory A.; Nelson, Peter T.

    2018-01-01

    Context Autopsy studies of the older population (≥65 years of age), and particularly of the “oldest-old” (≥85 years of age), have identified a significant proportion (~20%) of cognitively impaired patients in which hippocampal sclerosis is the major substrate of an amnestic syndrome. Hippocampal sclerosis may also be comorbid with frontotemporal lobar degeneration, Alzheimer disease, and Lewy body disease. Until recently, the terms hippocampal sclerosis of aging or hippocampal sclerosis dementia were applied in this context. Recent discoveries have prompted a conceptual expansion of hippocampal sclerosis of aging because (1) cellular inclusions of TAR DNA-binding protein 43 kDa (TDP-43) are frequent; (2) TDP-43 pathology may be found outside hippocampus; and (3) brain arteriolosclerosis is a common, possibly pathogenic, component. Objective To aid pathologists with recent recommendations for diagnoses of common neuropathologies in older persons, particularly hippocampal sclerosis, and highlight the recent shift in diagnostic terminology from HS-aging to cerebral age-related TDP-43 with sclerosis (CARTS). Data Sources Peer-reviewed literature and 5 autopsy examples that illustrate common age-related neuropathologies, including CARTS, and emphasize the importance of distinguishing CARTS from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology. Conclusions In advanced old age, the substrates of cognitive impairment are often multifactorial. This article demonstrates common and frequently comorbid neuropathologic substrates of cognitive impairment in the older population, including CARTS, to aid those practicing in this area of pathology. PMID:28467211

  8. Mu rhythm desynchronization by tongue thrust observation

    Directory of Open Access Journals (Sweden)

    Kotoe eSakihara

    2015-09-01

    Full Text Available We aimed to investigate the mu rhythm in the sensorimotor area during tongue thrust observation and to obtain an answer to the question as to how subtle non-verbal orofacial movement observation activates the sensorimotor area. Ten healthy volunteers performed finger tap execution, tongue thrust execution, and tongue thrust observation. The electroencephalogram was recorded from 128 electrodes placed on the scalp, and regions of interest were set at sensorimotor areas. The event-related desynchronization (ERD and event-related synchronization (ERS for the mu rhythm (8–13 Hz and beta (13−25 Hz bands were measured. Tongue thrust observation induced mu rhythm ERD, and the ERD was detected at the left hemisphere regardless whether the observed tongue thrust was toward the left or right. Mu rhythm ERD was also recorded during tongue thrust execution. However, temporal analysis revealed that the ERD associated with tongue thrust observation preceded that associated with execution by approximately 2 s. Tongue thrust observation induces mu rhythm ERD in sensorimotor cortex with left hemispheric dominance.

  9. [Dynamic Attending Binds Time and Rhythm Perception].

    Science.gov (United States)

    Kuroda, Tsuyoshi; Ono, Fuminori; Kadota, Hiroshi

    2017-11-01

    Relations between time and rhythm perception are discussed in this review of psychophysical research relevant to the multiple-look effect and dynamic-attending theory. Discrimination of two neighboring intervals that are marked by three successive sounds is improved when the presentation of the first (standard, S) interval is repeated before that of the second (comparison, C), as SSSSC. This improvement in sensitivity, called the multiple-look effect, occurs because listeners (1) perceive regular rhythm during the repetition of the standard interval, (2) predict the timing of subsequent sounds, and (3) detect sounds that are deviated from the predicted timing. The dynamic-attending theory attributes such predictions to the entrainment of attentional rhythms. An endogenous attentional rhythm is synchronized with the periodic succession of sounds marking the repeated standard. The standard and the comparison are discriminated on the basis of whether the ending marker of the comparison appears at the peak of the entrained attentional rhythm. This theory is compatible with the findings of recent neurophysiological studies that relate temporal prediction to neural oscillations.

  10. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks.

    Science.gov (United States)

    Gu, Ning; Jackson, Jesse; Goutagny, Romain; Lowe, Germaine; Manseau, Frédéric; Williams, Sylvain

    2013-05-08

    Increasing evidence suggests that synchronization between brain regions is essential for information exchange and memory processes. However, it remains incompletely known which synaptic mechanisms contribute to the process of synchronization. Here, we investigated whether NMDA receptor-mediated synaptic plasticity was an important player in synchronization between septal and temporal CA3 areas of the rat hippocampus. We found that both the septal and temporal CA3 regions intrinsically generate weakly synchronized δ frequency oscillations in the complete hippocampus in vitro. Septal and temporal oscillators differed in frequency, power, and rhythmicity, but both required GABAA and AMPA receptors. NMDA receptor activation, and most particularly the NR2B subunit, contributed considerably more to rhythm generation at the temporal than the septal region. Brief activation of NMDA receptors by application of extracellular calcium dramatically potentiated the septal-temporal coherence for long durations (>40 min), an effect blocked by the NMDA antagonist AP-5. This long-lasting NMDA-receptor-dependent increase in coherence was also associated with an elevated phase locking of spikes locally and across regions. Changes in coherence between oscillators were associated with increases in phase locking between oscillators independent of oscillator amplitude. Finally, although the septal CA3 rhythm preceded the oscillations in temporal regions in control conditions, this was reversed during the NMDA-dependent enhancement in coherence, suggesting that NMDA receptor activation can change the direction of information flow along the septotemporal CA3 axis. These data demonstrate that plastic changes in communication between septal and temporal hippocampal regions can arise from the NMDA-dependent phase locking of neural oscillators.

  11. Cueing vocabulary during sleep increases theta activity during later recognition testing.

    Science.gov (United States)

    Schreiner, Thomas; Göldi, Maurice; Rasch, Björn

    2015-11-01

    Neural oscillations in the theta band have repeatedly been implicated in successful memory encoding and retrieval. Several recent studies have shown that memory retrieval can be facilitated by reactivating memories during their consolidation during sleep. However, it is still unknown whether reactivation during sleep also enhances subsequent retrieval-related neural oscillations. We have recently demonstrated that foreign vocabulary cues presented during sleep improve later recall of the associated translations. Here, we examined the effect of cueing foreign vocabulary during sleep on oscillatory activity during subsequent recognition testing after sleep. We show that those words that were replayed during sleep after learning (cued words) elicited stronger centroparietal theta activity during recognition as compared to noncued words. The reactivation-induced increase in theta oscillations during later recognition testing might reflect a strengthening of individual memory traces and the integration of the newly learned words into the mental lexicon by cueing during sleep. © 2015 Society for Psychophysiological Research.

  12. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    Science.gov (United States)

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  13. ‘Ragged Time’ in Intra-panel Comics Rhythms

    Directory of Open Access Journals (Sweden)

    Corry Shores

    2016-07-01

    Full Text Available A phenomenological method of comics analysis can be useful when we need to uncover the structural features of the comics experience itself. One fruitful application would be in the study of irregular intra-panel rhythms, where the temporalized divisions are not visibly indicated but rather are only experienced. By means of Gilles Deleuze’s notion of rhythmic repetition and his elaboration of it through Olivier Messiaen’s theory of ‘kinetic’ rhythm, we will formulate a conception of visual rhythm as being based on metrical irregularity. We further explicate this concept of irregular rhythm by drawing upon the notion of ‘ragged time’ in the early jazz musical form, ragtime. We finally test its usefulness by examining how the ‘jazzy’ rhythms of Cubist-styled panels by Art Spiegelman and Mary Fleener generate an experience of ragged time.

  14. A Randomized Trial of Comparing the Efficacy of Two Neurofeedback Protocols for Treatment of Clinical and Cognitive Symptoms of ADHD: Theta Suppression/Beta Enhancement and Theta Suppression/Alpha Enhancement

    Directory of Open Access Journals (Sweden)

    Arash Mohagheghi

    2017-01-01

    Full Text Available Introduction. Neurofeedback (NF is an adjuvant or alternative therapy for children with Attention Deficit Hyperactivity Disorder (ADHD. This study intended to compare the efficacy of two different NF protocols on clinical and cognitive symptoms of ADHD. Materials and Methods. In this clinical trial, sixty children with ADHD aged 7 to 10 years old were randomly grouped to receive two different NF treatments (theta suppression/beta enhancement protocol and theta suppression/alpha enhancement protocol. Clinical and cognitive assessments were conducted prior to and following the treatment and also after an eight-week follow-up. Results. Both protocols alleviated the symptoms of ADHD in general (p<0.001, hyperactivity (p<0.001, inattention (p<0.001, and omission errors (p<0.001; however, they did not affect the oppositional and impulsive scales nor commission errors. These effects were maintained after an eight-week intervention-free period. The only significant difference between the two NF protocols was that high-frequency alpha enhancement protocol performed better in suppressing omission errors (p<0.001. Conclusion. The two NF protocols with theta suppression/beta enhancement and theta suppression/alpha enhancement have considerable and comparable effect on clinical symptoms of ADHD. Alpha enhancement protocol was more effective in suppressing omission errors.

  15. Hippocampal sclerosis in advanced age: clinical and pathological features

    Science.gov (United States)

    Schmitt, Frederick A.; Lin, Yushun; Abner, Erin L.; Jicha, Gregory A.; Patel, Ela; Thomason, Paula C.; Neltner, Janna H.; Smith, Charles D.; Santacruz, Karen S.; Sonnen, Joshua A.; Poon, Leonard W.; Gearing, Marla; Green, Robert C.; Woodard, John L.; Van Eldik, Linda J.; Kryscio, Richard J.

    2011-01-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer’s disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer’s Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n = 106). For individuals aged ≥95 years at death (n = 179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of ‘definite’ Alzheimer’s disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n = 10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar

  16. Hippocampal sclerosis in advanced age: clinical and pathological features.

    Science.gov (United States)

    Nelson, Peter T; Schmitt, Frederick A; Lin, Yushun; Abner, Erin L; Jicha, Gregory A; Patel, Ela; Thomason, Paula C; Neltner, Janna H; Smith, Charles D; Santacruz, Karen S; Sonnen, Joshua A; Poon, Leonard W; Gearing, Marla; Green, Robert C; Woodard, John L; Van Eldik, Linda J; Kryscio, Richard J

    2011-05-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer's disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer's Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n=106). For individuals aged≥95 years at death (n=179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of 'definite' Alzheimer's disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n=10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar degeneration TAR

  17. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    Directory of Open Access Journals (Sweden)

    Johannes eVosskuhl

    2015-05-01

    Full Text Available Working memory (WM and short-term memory (STM supposedly rely on the phase-amplitude coupling of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual’s memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS. To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N=33 were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG was measured before stimulation and analyzed with regard to the properties of phase-amplitude coupling between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  18. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  19. On the irrationality of Ramanujan's mock theta functions and other q-series at an infinite number of points

    OpenAIRE

    Mingarelli, Angelo B.

    2007-01-01

    We show that all of Ramanujan's mock theta functions of order 3, Watson's three additional mock theta functions of order 3, the Rogers-Ramanujan q-series, and 6 mock theta functions of order 5 take on irrational values at the points q=\\pm 1/2,\\pm 1/3,\\pm 1/4,...

  20. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.

    Science.gov (United States)

    Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.

  1. A Reliable Method for Rhythm Analysis during Cardiopulmonary Resuscitation

    Directory of Open Access Journals (Sweden)

    U. Ayala

    2014-01-01

    Full Text Available Interruptions in cardiopulmonary resuscitation (CPR compromise defibrillation success. However, CPR must be interrupted to analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms, the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA designed to optimally classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach shows an important increase in specificity without compromising the sensitivity when compared to previous studies.

  2. Material testing in a linear theta pinch

    International Nuclear Information System (INIS)

    Alani, R.; Azodi, H.; Naraghi, M.; Safaii, B.; Torabi-Fard, A.

    1983-01-01

    The interaction of stainless steel 316 and Inconel 625 alloys has been investigated with a thermonuclear-like plasma, n = 10 16 cm -3 and Tsub(i) = 1 keV, generated in the Alvand I linear theta pinch. The average power flux is 10 7 W/cm 2 and the interaction time nearly one μs. A theoretical analysis based on the formation of an observed impurity layer near the material, has been used to determine the properties of the impurity layer and the extent of the damage on the material. Although arcing has been observed, the dominant damage mechanism has been assessed to be due to evaporation. Exposure to single shots has produced very heavily defective areas and even surface cracks on the SS 316 sample, but no cracks were observed on Inconel 625 after exposure to even 18 shots. On the basis of temperature rise and evaporation a comparison is made among materials exposed to plasmas of a theta pinch, shock tube, present generation tokamak and an anticipated tokamak reactor. (orig.)

  3. Electroencephalography reveals lower regional blood perfusion and atrophy of the temporoparietal network associated with memory deficits and hippocampal volume reduction in mild cognitive impairment due to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Moretti DV

    2015-02-01

    Full Text Available Davide Vito MorettiNational Institute for the research and cure of Alzheimer’s disease, S. John of God, Fatebenefratelli, Brescia, Italy Background: An increased electroencephalographic (EEG upper/lower alpha power ratio has been associated with less regional blood perfusion, atrophy of the temporoparietal region of the brain, and reduction of hippocampal volume in subjects affected by mild cognitive impairment due to Alzheimer’s disease as compared with subjects who do not develop the disease. Moreover, EEG theta frequency activity is quite different in these groups. This study investigated the correlation between biomarkers and memory performance.Methods: EEG α3/α2 power ratio and cortical thickness were computed in 74 adult subjects with prodromal Alzheimer’s disease. Twenty of these subjects also underwent assessment of blood perfusion by single-photon emission computed tomography (SPECT. Pearson’s r was used to assess the correlation between cortical thinning, brain perfusion, and memory impairment.Results: In the higher α3/α2 frequency power ratio group, greater cortical atrophy and lower regional perfusion in the temporoparietal cortex was correlated with an increase in EEG theta frequency. Memory impairment was more pronounced in the magnetic resonance imaging group and SPECT groups.Conclusion: A high EEG upper/low alpha power ratio was associated with cortical thinning and less perfusion in the temporoparietal area. Moreover, atrophy and less regional perfusion were significantly correlated with memory impairment in subjects with prodromal Alzheimer’s disease. The EEG upper/lower alpha frequency power ratio could be useful for identifying individuals at risk for progression to Alzheimer’s dementia and may be of value in the clinical context.Keywords: electroencephalography, perfusion, atrophy, temporoparietal network, memory deficits, hippocampal volume, mild cognitive impairment, Alzheimer’s disease

  4. Fluctuation of biological rhythm in finger tapping

    Science.gov (United States)

    Yoshinaga, H.; Miyazima, S.; Mitake, S.

    2000-06-01

    By analyzing biological rhythms obtained from finger tapping, we have investigated the differences of two biological rhythms between healthy and handicapped persons caused by Parkinson, brain infraction, car accident and so on. In this study, we have observed the motion of handedness of all subjects and obtained a slope a which characterizes a power-law relation between frequency and amplitude of finger-tapping rhythm. From our results, we have estimated that the slope a=0.06 is a rough criterion in order to distinguish healthy and handicapped persons.

  5. Expression of the Circadian Clock Gene Period2 in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour

    Directory of Open Access Journals (Sweden)

    Louisa M-C Wang

    2009-05-01

    Full Text Available Genes responsible for generating circadian oscillations are expressed in a variety of brain regions not typically associated with circadian timing. The functions of this clock gene expression are largely unknown, and in the present study we sought to explore the role of the Per2 (Period 2 gene in hippocampal physiology and learned behaviour. We found that PER2 protein is highly expressed in hippocampal pyramidal cell layers and that the expression of both protein and mRNA varies with a circadian rhythm. The peaks of these rhythms occur in the late night or early morning and are almost 180° out-of-phase with the expression rhythms measured from the suprachiasmatic nucleus of the same animals. The rhythms in Per2 expression are autonomous as they are present in isolated hippocampal slices maintained in culture. Physiologically, Per2-mutant mice exhibit abnormal long-term potentiation. The underlying mechanism is suggested by the finding that levels of phosphorylated cAMP-response-element-binding protein, but not phosphorylated extracellular-signal-regulated kinase, are reduced in hippocampal tissue from mutant mice. Finally, Per2-mutant mice exhibit deficits in the recall of trace, but not cued, fear conditioning. Taken together, these results provide evidence that hippocampal cells contain an autonomous circadian clock. Furthermore, the clock gene Per2 may play a role in the regulation of long-term potentiation and in the recall of some forms of learned behaviour.

  6. Methodic of perfection of higher pedagogical educational establishments girl students’ rhythm

    Directory of Open Access Journals (Sweden)

    A.N. Kolumbet

    2016-06-01

    Full Text Available Purpose: to study influence of methodic of rhythm perfection on girl students’ coordination abilities. Material: in the research 264 girl students participated. We assessed individual and collective rhythm, internal and external motor rhythm; rhythm in exercises with musical accompaniment. Results: we have determined that creative motor tasks require variable conditions for their realization. We have proved demand in appropriate criteria for their assessment. It is noted that there is a demand in development of rhythm, considering its main kinds and manifestations, which are formed with some peculiarities. Individual rhythm is determined by activation of attention and its level. It is perfected more successfully rather with stimulated development than with natural. It was found that with age the character of natural progressing of rhythm preserves. Conclusions: it is recommended to develop rhythm in compliance with its kinds and manifestations. Progressing and perfection of rhythm is a long lasted process and shall be realized during all period of girl students’ studying. Such approach forms girl students’ demand in finding of purposeful motor rhythm in all their new motor actions. It ensures optimality of their fulfillment.

  7. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    Science.gov (United States)

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  8. Combinatorial identities for tenth order mock theta functions

    Indian Academy of Sciences (India)

    44

    which lead us to one 4-way and one 3-way combinatorial identity. ... mock theta functions, partition identities and different combinatorial parameters, see for ... 3. Example 1.1. There are twelve (n + 1)–color partitions of 2: 21, 21 + 01, 11 + 11, ...

  9. Interactive Rhythm Learning System by Combining Tablet Computers and Robots

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chou

    2017-03-01

    Full Text Available This study proposes a percussion learning device that combines tablet computers and robots. This device comprises two systems: a rhythm teaching system, in which users can compose and practice rhythms by using a tablet computer, and a robot performance system. First, teachers compose the rhythm training contents on the tablet computer. Then, the learners practice these percussion exercises by using the tablet computer and a small drum set. The teaching system provides a new and user-friendly score editing interface for composing a rhythm exercise. It also provides a rhythm rating function to facilitate percussion training for children and improve the stability of rhythmic beating. To encourage children to practice percussion exercises, a robotic performance system is used to interact with the children; this system can perform percussion exercises for students to listen to and then help them practice the exercise. This interaction enhances children’s interest and motivation to learn and practice rhythm exercises. The results of experimental course and field trials reveal that the proposed system not only increases students’ interest and efficiency in learning but also helps them in understanding musical rhythms through interaction and composing simple rhythms.

  10. Circadian rhythm in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Eleftheriou, Andreas; Ulander, Martin; Lundin, Fredrik

    2018-01-01

    The pathogenesis of idiopathic normal pressure hydrocephalus (iNPH) takes place in structures close to the cerebral ventricular system. Suprachiasmatic nucleus (SCN), situated close to the third ventricle, is involved in circadian rhythm. Diurnal disturbances are well-known in demented patients. The cognitive decline in iNPH is potentially reversible after a shunt operation. Diurnal rhythm has never been studied in iNPH. We hypothesize that there is a disturbance of circadian rhythm in iNPH-patients and the aim was to study any changes of the diurnal rhythm (mesor and circadian period) as well as any changes of the diurnal amplitude and acrophase of the activity in iNPH-patients before and after a shunt operation. Twenty consecutive iNPH-patients fulfilling the criteria of the American iNPH-guidelines, 9 males and 11 females, mean age 73 (49-81) years were included. The patients underwent a pre-operative clinical work-up including 10m walk time (w10mt) steps (w10ms), TUG-time (TUGt) and steps (TUGs) and for cognitive function an MMSE score was measured. In order to receive circadian rhythm data actigraphic recordings were performed using the SenseWear 2 (BodyMedia Inc Pittsburgh, PA, USA) actigraph. Cosinor analyses of accelerometry data were performed in "R" using non-linear regression with Levenburg- Marquardt estimation. Pre- and post-operative data regarding mesor, amplitude and circadian period were compared using Wilcoxon-Mann-Whitney test for paired data. Twenty patients were evaluated before and three month post-operatively. Motor function (w10mt, w10ms, TUGt, TUGs) was significantly improved while MMSE was not significantly changed. Actigraphic measurements (mesor, amplitude and circadian period) showed no significant changes after shunt operation. This is the first systematic study of circadian rhythm in iNPH-patients. We found no significant changes in circadian rhythm after shunt surgery. The conceptual idea of diurnal rhythm changes in hydrocephalus is

  11. A circadian rhythm regulating hyphal melanization in Cercospora kikuchii.

    Science.gov (United States)

    Bluhm, Burton H; Burnham, A Michele; Dunkle, Larry D

    2010-01-01

    Many metabolic and developmental processes in fungi are controlled by biological rhythms. Circadian rhythms approximate a daily (24 h) cycle and have been thoroughly studied in the model fungus, Neurospora crassa. However relatively few examples of true circadian rhythms have been documented among other filamentous fungi. In this study we describe a circadian rhythm underlying hyphal melanization in Cercospora kikuchii, an important pathogen of soybean. After growth in light or light : dark cycles, colonies transferred to darkness produced zonate bands of melanized hyphae interspersed with bands of hyaline hyphae. Rhythmic production of bands was remarkably persistent in the absence of external cues, lasting at least 7 d after transfer to darkness, and was compensated over a range of temperatures. As in N. crassa, blue light but not red light was sufficient to entrain the circadian rhythm in C. kikuchii, and a putative ortholog of white collar-1, one of the genes required for light responses in N. crassa, was identified in C. kikuchii. Circadian regulation of melanization is conserved in other members of the genus: Similar rhythms were identified in another field isolate of C. kikuchii as well as field isolates of C. beticola and C. sorghi, but not in wild-type strains of C. zeae-maydis or C. zeina. This report represents the first documented circadian rhythm among Dothideomycete fungi and provides a new opportunity to dissect the molecular basis of circadian rhythms among filamentous fungi.

  12. Ramanujan’s mock theta functions

    Science.gov (United States)

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-01-01

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268–277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan’s original definition. Here, we prove that Ramanujan’s examples do indeed satisfy his original definition. PMID:23536292

  13. High precision measurement of sin2theta/sub W/ in semi-leptonic neutrino interactions

    International Nuclear Information System (INIS)

    Guyot, C.

    1985-01-01

    The experiment has provided what is presently the most accurate measurement of sin 2 theta/sub W/. The errors are still too large for a significant test of the standard model and the measured value is in agreement with the measured values of M/sub W/ and M/sub Z/. On the other hand, this result can constrain the Grand Unified models. The standard SU(5) model predicts sin 2 theta/sub W//sup MS/ = 0.214 +/- 0.004 (the error comes from the uncertainty on Lambda/sub MS/), in very good agreement with the measured value. While this model has big problems with the proton lifetime, it could be saved by its supersymmetric extension. In the minimal SU(5) SUSY model (with 2 Higgs supermultiplets) sin 2 theta/sub W//sup MS/ = 0.233 +/- 0.004, [12] in bad agreement with the measured value. The addition of other Higgs supermultiplets increases the value of sin 2 theta/sub W/. Unless some unexpected large contribution from higher-twist terms occurs, the present measurement can already bring a significant constraint on Grand Unified models

  14. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study

    International Nuclear Information System (INIS)

    Tsai, Ping-Fang; Yang, Chi-Cheng; Chuang, Chi-Cheng; Huang, Ting-Yi; Wu, Yi-Ming; Pai, Ping-Ching; Tseng, Chen-Kan; Wu, Tung-Ho; Shen, Yi-Liang; Lin, Shinn-Yn

    2015-01-01

    Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD 2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that

  15. Resolution improvement by nonconfocal theta microscopy.

    Science.gov (United States)

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  16. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    Science.gov (United States)

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  17. Semantic congruence enhances memory of episodic associations: role of theta oscillations.

    Science.gov (United States)

    Atienza, Mercedes; Crespo-Garcia, Maite; Cantero, Jose L

    2011-01-01

    Growing evidence suggests that theta oscillations play a crucial role in episodic encoding. The present study evaluates whether changes in electroencephalographic theta source dynamics mediate the positive influence of semantic congruence on incidental associative learning. Here we show that memory for episodic associations (face-location) is more accurate when studied under semantically congruent contexts. However, only participants showing RT priming effect in a conceptual priming test (priming group) also gave faster responses when recollecting source information of semantically congruent faces as compared with semantically incongruent faces. This improved episodic retrieval was positively correlated with increases in theta power during the study phase mainly in the bilateral parahippocampal gyrus, left superior temporal gyrus, and left lateral posterior parietal lobe. Reconstructed signals from the estimated sources showed higher theta power for congruent than incongruent faces and also for the priming than the nonpriming group. These results are in agreement with the attention to memory model. Besides directing top-down attention to goal-relevant semantic information during encoding, the dorsal parietal lobe may also be involved in redirecting attention to bottom-up-driven memories thanks to connections between the medial-temporal and the left ventral parietal lobe. The latter function can either facilitate or interfere with encoding of face-location associations depending on whether they are preceded by semantically congruent or incongruent contexts, respectively, because only in the former condition retrieved representations related to the cue and the face are both coherent with the person identity and are both associated with the same location.

  18. Alcohol Hits You When It Is Hard: Intoxication, Task Difficulty, and Theta Brain Oscillations.

    Science.gov (United States)

    Rosen, Burke Q; Padovan, Nevena; Marinkovic, Ksenija

    2016-04-01

    Alcohol intoxication is known to impair decision making in a variety of situations. Previous neuroimaging evidence suggests that the neurofunctional system subserving controlled processing is especially vulnerable to alcohol in conflict-evoking tasks. The present study investigated the effects of moderate alcohol intoxication on the spatiotemporal neural dynamics of event-related total theta (4 to 7 Hz) power as a function of task difficulty. Two variants of the Simon task manipulated incongruity via simple spatial stimulus-response mismatch and, in a more difficult version, by combining spatial and semantic interference. Healthy social drinkers participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Whole-head magnetoencephalography (MEG) signals were acquired and event-related total theta power was calculated on each trial with Morlet wavelets. MEG sources were estimated using anatomically constrained, noise-normalized, spectral dynamic statistical parametric mapping. Longer reaction times and lower accuracy confirmed the difficulty manipulation. Response conflict (incongruity) increased and alcohol intoxication decreased event-related theta power overall during both tasks bilaterally in the medial and ventrolateral prefrontal cortices. However, alcohol-induced theta suppression was selective for conflict only in the more difficult task which engaged the dorsal anterior cingulate (dAC) and anterior inferolateral prefrontal cortices. Theta power correlated negatively with drinking levels and disinhibition, suggesting that cognitive control is susceptible in more impulsive individuals with higher alcohol intake. The spatiotemporal theta profile across the 2 tasks supports the concept of a rostrocaudal activity gradient in the medial prefrontal cortex that is modulated by task difficulty, with the dAC as the key node in the network subserving cognitive control. Conflict-related theta power was

  19. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Jardim, Anaclara Prada; Corso, Jeana Torres; Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Comper, Sandra Mara; Lancellotti, Carmen Lúcia Penteado; Centeno, Ricardo Silva; Carrete, Henrique; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2016-12-01

    To correlate hippocampal volumes obtained from brain structural imaging with histopathological patterns of hippocampal sclerosis (HS), in order to predict surgical outcome. Patients with mesial temporal lobe epilepsy (MTLE) with HS were selected. Clinical data were assessed pre-operatively and surgical outcome in the first year post surgery. One block of mid hippocampal body was selected for HS classification according to ILAE criteria. NeuN-immunoreactive cell bodies were counted within hippocampal subfields, in four randomly visual fields, and cell densities were transformed into z-score values. FreeSurfer processing of 1.5T brain structural images was used for subcortical and cortical volumetric estimation of the ipsilateral hippocampus. Univariate analysis of variance and Pearson's correlation test were applied for statistical analyses. Sixty-two cases (31 female, 32 right HS) were included. ILAE type 1 HS was identified in 48 patients, type 2 in eight, type 3 in two, and four had no-HS. Better results regarding seizure control, i.e. ILAE 1, were achieved by patients with type 1 HS (58.3%). Patients with types 1 and 2 had smaller hippocampal volumes compared to those with no-HS (p<0.001 and p=0.004, respectively). Positive correlation was encountered between hippocampal volumes and CA1, CA3, CA4, and total estimated neuronal densities. CA2 was the only sector which did not correlate its neuronal density with hippocampal volume (p=0.390). This is the first study correlating hippocampal volume on MRI submitted to FreeSurfer processing with ILAE patterns of HS and neuronal loss within each hippocampal subfield, a fundamental finding to anticipate surgical prognosis for patients with drug-resistant MTLE and HS. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Imploding to equilibrium of helically symmetric theta pinches

    International Nuclear Information System (INIS)

    Sharky, N.N.

    1978-01-01

    The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed

  1. Opacity test using a neon-seeded theta pinch

    International Nuclear Information System (INIS)

    Thomson, D.B.

    1980-02-01

    Vacuum ultraviolet (VUV) emission from a neon-seeded high-density theta-pinch has been observed for comparison with theoretical radiation emission calculations. The plasma was created in a 25-cm-long theta-coil with 90-kG field having a 3.0-μs quarter period. A gas fill of 1 torr of helium + 2% neon was used. Observation of the HeII 4686 line/continuum ratio gave an electron temperature of 25 +- 4 eV. Shadowgraphs of the plasma radius, taken with a ruby laser, gave an electron density of 0.9 +- 0.09 x 10 18 cm -3 . The VUV emission was observed in radial view and with time resolution with a 2.2-m grazing-incidence monochromator equipped with a photomultiplier and p-terphenyl scintillator. Thin foils of carbon and aluminum were used as filters to absorb stray light and pass emission in the 44- to 100-A region

  2. Alzheimer's Disease Diagnostic Performance of a Multi-Atlas Hippocampal Segmentation Method using the Harmonized Hippocampal Protocol

    DEFF Research Database (Denmark)

    Anker, Cecilie Benedicte; Sørensen, Lauge; Pai, Akshay

    PURPOSE Hippocampal volumetry is the most widely used structural MRI biomarker of Alzheimer’s disease (AD), and state-of-the-art, automatic hippocampal segmentation can be obtained using longitudinal FreeSurfer. In this study, we compare the diagnostic AD performance of a single time point, multi...

  3. Circadian rhythm and sleep influences on digestive physiology and disorders

    OpenAIRE

    Vaughn, Bradley; Rotolo,Sean; Roth,Heidi

    2014-01-01

    Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their...

  4. Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance.

    Science.gov (United States)

    Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J

    2017-04-05

    The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Statistical Analysis of Rhythm Patterns in Ghaleb Dehlavi’s Sonnets

    Directory of Open Access Journals (Sweden)

    M. Ghazanfari

    Full Text Available Ghaleb Dehlavi is considered as the best-known 13th century Indian poet. Also a writer and researcher, he was a Muslim originally from Touran with Eibak Turk ancestors. He was a pioneer of new styles in Urdu poetry. His poems are written in Urdu as well as Persian. His elaborate prose apart, Dehlavi’s odes and lyrics denote the poet’s noble thoughts and lofty nature. In spite of such traits and amazing proficiency in writing Persian poems, though a non-Persian speaker, the man has remained unknown or ignored in Iran. The present paper seeks to make orientations to Ghaleb Dehlavi by examining the rhythm patterns of his sonnets.Making references to the Indian style, the paper offers a typology and a computational account of rhythms as used in Ghaleb’s poems. It is found that 20 different rhythms are employed to versify a totality of 334 sonnets of which 85 percent are in only six rhythms. These six happen to be so frequently used in Persian too.The most frequent rhythm used by Ghaleb is ‘mafoolon faelaton mafaelon faelon’. Highly employed in Persian sonnets too, this rhythm is so capable of expressing the intended concepts. ‘Mafaelon faalaton mafaelna falon’ is another rhythm of his interest used more frequently in his anthology than in Persian poetry. The rhythm ‘mafoolon mafaelon mafaelon faolon’, vastly used by Saadi and Hafiz, also appeals to Ghaleb.Ghaleb’s application of the octave rhythms ‘raml’ and ‘hazj’, which sound so grave in Persian, suggests his tendency for the Indian style in poetry. However, the rise and fall in the frequency of certain rhythms in his anthology may be viewed as an indication of a retreat from his previously practiced literary style. The only rare rhythm in Ghaleb’s poems is ‘faelaton mafoolon faelaton mafoolon’ first tried in Attar’s sonnets. This rhythm has also been tried by Hafiz, Khajou Kermani, Saeb, Kalim, Feyz Kashani, and Bidel Dehlavi. The rhythm has given a stylistic

  6. Hippocampal MR volumetry

    Science.gov (United States)

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  7. Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon.

    Science.gov (United States)

    Baño Otalora, Beatriz; Popovic, Natalija; Gambini, Juan; Popovic, Miroljub; Viña, José; Bonet-Costa, Vicent; Reiter, Russel J; Camello, Pedro Javier; Rol, Maria Ángeles; Madrid, Juan Antonio

    2012-08-01

    Alzheimer disease (AD) is a neurodegenerative disorder that primarily causes β-amyloid accumulation in the brain, resulting in cognitive and behavioral deficits. AD patients, however, also suffer from severe circadian rhythm disruptions, and the underlying causes are still not fully known. Patients with AD show reduced systemic melatonin levels. This may contribute to their symptoms, since melatonin is an effective chronobiotic and antioxidant with neuroprotective properties. Here, the authors critically assessed the effects of long-term melatonin treatment on circadian system function, hippocampal oxidative stress, and spatial memory performance in the APPswe/PS1 double transgenic (Tg) mouse model of AD. To test if melatonin MT1/MT2 receptor activation, alone, was involved, the authors chronically treated some mice with the selective MT1/MT2 receptor agonist ramelteon. The results indicate that many of the circadian and behavioral parameters measured, including oxidative stress markers, were not significantly affected in these AD mice. During the day, though, Tg controls (Tg-CON) showed significantly higher mean activity and body temperature (BT) than wild-type (WT) mice. Overall, BT rhythm amplitude was significantly lower in Tg than in WT mice. Although melatonin treatment had no effect, ramelteon significantly reduced the amplitude of the BT rhythm in Tg mice. Towards the end of the experiment, Tg mice treated with ramelteon (Tg-RAM) showed significantly higher circadian rhythm fragmentation than Tg-CON and reduced circadian BT rhythm strength. The free-running period (τ) for the BT and locomotor activity (LA) rhythms of Tg-CON was RAM compared with Tg-CON animals. These results suggest that not all aspects of the circadian system are affected in the APPswe/PS1 mice. Therefore, care should be taken when extending the results obtained in Tg mice to develop new therapies in humans. This study also revealed the complexity in the therapeutic actions of melatonin

  8. Frontal theta and beta synchronizations for monetary reward increase visual working memory capacity.

    Science.gov (United States)

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2013-06-01

    Visual working memory (VWM) capacity is affected by motivational influences; however, little is known about how reward-related brain activities facilitate the VWM systems. To investigate the dynamic relationship between VWM- and reward-related brain activities, we conducted time-frequency analyses using electroencephalograph (EEG) data obtained during a monetary-incentive delayed-response task that required participants to memorize the position of colored disks. In case of a correct answer, participants received a monetary reward (0, 10 or 50 Japanese yen) announced at the beginning of each trial. Behavioral results showed that VWM capacity under high-reward condition significantly increased compared with that under low- or no-reward condition. EEG results showed that frontal theta (6 Hz) amplitudes enhanced during delay periods and positively correlated with VWM capacity, indicating involvement of theta local synchronizations in VWM. Moreover, frontal beta activities (24 Hz) were identified as reward-related activities, because delay-period amplitudes correlated with increases in VWM capacity between high-reward and no-reward conditions. Interestingly, cross-frequency couplings between frontal theta and beta phases were observed only under high-reward conditions. These findings suggest that the functional dynamic linking between VWM-related theta and reward-related beta activities on the frontal regions plays an integral role in facilitating increases in VWM capacity.

  9. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    Science.gov (United States)

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  10. Development of cortisol circadian rhythm in infancy.

    NARCIS (Netherlands)

    Weerth, C. de; Zijl, R.H.

    2003-01-01

    BACKGROUND AND AIMS: Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not

  11. The analyzing power Asub(y)(theta) for the elastic scattering of 12 MeV neutrons from deuterons

    International Nuclear Information System (INIS)

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1978-01-01

    The analyzing power Asub(y)(theta) was obtained at 10 0 intervals between 30 0 (lab) to 120 0 (lab) for 2 H(n, n) 2 H at 12.0 MeV. The polarized neutron beam employed in the measurement was obtained by using neutrons emitted at 0 0 from the polarization transfer reaction 2 H(d(pol), n(pol)) 3 He. The accuracy in the Asub(y)(theta) values that was achieved ranged from +- 0.006 to +- 0.013. Comparison of the data to Asub(y)(theta) results obtained at 12 MeV for the charge symmetric reaction 2 H(p, p) 2 H shows that the two Asub(y)(theta) distributions are equal to within the above accuracy. (Auth.)

  12. Cortisol, Cytokines, and Hippocampal Volume in the Elderly

    Directory of Open Access Journals (Sweden)

    Keith Daniel Sudheimer

    2014-07-01

    Full Text Available Separate bodies of literature report that elevated pro-inflammatory cytokines and cortisol negatively affect hippocampal structure and cognitive functioning, particularly in older adults. Although interactions between cytokines and cortisol occur through a variety of known mechanisms, few studies consider how their interactions affect brain structure. In this preliminary study, we assess the impact of interactions between circulating levels of IL-1Beta, IL-6, IL-8, IL-10, IL-12, TNF-alpha, and waking cortisol on hippocampal volume. Twenty-eight community-dwelling older adults underwent blood draws for quantification of circulating cytokines and saliva collections to quantify the cortisol awakening response. Hippocampal volume measurements were made using structural magnetic resonance imaging. Elevated levels of waking cortisol in conjunction with higher concentrations of IL-6 and TNF-alpha were associated with smaller hippocampal volumes. In addition, independent of cortisol, higher levels of IL-1beta and TNF-alpha were also associated with smaller hippocampal volumes. These data provide preliminary evidence that higher cortisol, in conjunction with higher IL-6 and TNF-alpha, are associated with smaller hippocampal volume in older adults. We suggest that the dynamic balance between the hypothalamic-pituitary adrenal axis and inflammation processes may explain hippocampal volume reductions in older adults better than either set of measures do in isolation.

  13. Hippocampal sclerosis in children younger than 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Kadom, Nadja [Children' s National Medical Center, Department of Diagnostic Imaging and Radiology, Washington, DC (United States); Tsuchida, Tammy; Gaillard, William D. [Children' s National Medical Center, Department of Neurology, Washington, DC (United States)

    2011-10-15

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  14. Hippocampal sclerosis in children younger than 2 years

    International Nuclear Information System (INIS)

    Kadom, Nadja; Tsuchida, Tammy; Gaillard, William D.

    2011-01-01

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  15. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  16. Circadian Rhythms in Cyanobacteria

    Science.gov (United States)

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  17. Behavioural Inhibition System (BIS) sensitivity differentiates EEG theta responses during goal conflict in a continuous monitoring task.

    Science.gov (United States)

    Moore, Roger A; Mills, Matthew; Marshman, Paul; Corr, Philip J

    2012-08-01

    Previous research has revealed that EEG theta oscillations are affected during goal conflict processing. This is consistent with the behavioural inhibition system (BIS) theory of anxiety (Gray & McNaughton, 2000). However, studies have not attempted to relate these BIS-related theta effects to BIS personality measures. Confirmation of such an association would provide further support for BIS theory, especially as it relates to trait differences. EEG was measured (32 electrodes) from extreme groups (low/high trait BIS) engaged in a target detection task. Goal conflicts were introduced throughout the task. Results show that the two groups did not differ in behavioural performance. The major EEG result was that a stepwise discriminant analysis indicated discrimination by 6 variables derived from coherence and power, with 5 of the 6 in the theta range as predicted by BIS theory and one in the beta range. Also, across the whole sample, EEG theta coherence increased at a variety of regions during primary goal conflict and showed a general increase during response execution; EEG theta power, in contrast, was primarily reactive to response execution. This is the first study to reveal a three-way relationship between the induction of goal conflict, the induction of theta power and coherence, and differentiation by psychometrically-defined low/high BIS status. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  19. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony.

    Science.gov (United States)

    Thomas, Karen A; Burr, Robert L; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-12-01

    Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. The aim of this to examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Forty-three healthy mother-infant pairs. Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10h of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (pcircadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (pcircadian rhythm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Circadian rhythms in cognitive performance: implications for neuropsychological assessment

    Directory of Open Access Journals (Sweden)

    Valdez P

    2012-12-01

    Full Text Available Pablo Valdez, Candelaria Ramírez, Aída GarcíaLaboratory of Psychophysiology, School of Psychology, University of Nuevo León, Monterrey, Nuevo León, MéxicoAbstract: Circadian variations have been found in human performance, including the efficiency to execute many tasks, such as sensory, motor, reaction time, time estimation, memory, verbal, arithmetic calculations, and simulated driving tasks. Performance increases during the day and decreases during the night. Circadian rhythms have been found in three basic neuropsychological processes (attention, working memory, and executive functions, which may explain oscillations in the performance of many tasks. The time course of circadian rhythms in cognitive performance may be modified significantly in patients with brain disorders, due to chronotype, age, alterations of the circadian rhythm, sleep deprivation, type of disorder, and medication. This review analyzes the recent results on circadian rhythms in cognitive performance, as well as the implications of these rhythms for the neuropsychological assessment of patients with brain disorders such as traumatic head injury, stroke, dementia, developmental disorders, and psychiatric disorders.Keywords: human circadian rhythms, cognitive performance, neuropsychological assessment, attention, working memory, executive functions

  1. The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success

    Directory of Open Access Journals (Sweden)

    Stefanie eEnriquez-Geppert

    2013-08-01

    Full Text Available Humans differ in their ability to learn how to control their own brain activity by neurofeedback. However, neural mechanisms underlying these inter-individual differences, which may determine training success and associated cognitive enhancement, are not well understood. Here, it is asked whether neurofeedback success of frontal-midline (fm theta, an oscillation related to higher cognitive functions, could be predicted by the morphology of brain structures known to be critically involved in fm-theta generation. Nineteen young, right-handed participants underwent magnetic resonance imaging of T1-weighted brain images, and took part in an individualized, eight-session neurofeedback training in order to learn how to enhance activity in their fm-theta frequency band. Initial training success, measured at the second training session, was correlated with the final outcome measure. We found that the inferior, superior and middle frontal cortices were not associated with training success. However, volume of the midcingulate cortex as well as volume and concentration of the underlying white matter structures act as predictor variables for the general responsiveness to training. These findings suggest a neuroanatomical foundation for the ability to learn to control one’s own brain activity.

  2. Combinatorics of tenth-order mock theta functions

    Indian Academy of Sciences (India)

    θ(q) there is some root of unity ζ for which f (q) − θ(q) is unbounded as q → ζ rapidly. In the long list of 17 mock theta functions given by Ramanujan, few have been interpreted combinatorially. For example, (q) defined by (1.1) below, has been interpreted by Fine. [8] as a generating function for partitions into odd parts without ...

  3. Instantons, theta-vacua, confinement..... a pedagogical introduction

    International Nuclear Information System (INIS)

    Teper, M.J.

    1980-01-01

    In this series of lectures the concept of the instanton and its various ramifications, such as the dilute gas and theta-vacua, are introduced through the relatively simple dynamical system of 1 + 1 dimensional quantum mechanics and the 1 + 1 abelian Higgs model. Although QCD is not dealt with explicitly those aspects of the argument which are relevant to that much more complicated theory are noted. (UK)

  4. Upsilon NU: Our chapter in Sigma Theta Tau Internacional Upsilon NU: nuestro capítulo en Sigma Theta Tau International

    Directory of Open Access Journals (Sweden)

    GARZÓN ALARCÓN NELLY

    2008-07-01

    Full Text Available ALa Sociedad de Honor de Enfermería, Sigma Theta Tau Internacional, es una organización que nace y vive para desarrollar el conocimiento y la ciencia de enfermería como fundamentos del liderazgo y la búsqueda de la excelencia en el cuidado de la persona, la familia y la comunidad.

  5. Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area.

    Directory of Open Access Journals (Sweden)

    Alvaro eGarcía-Aviles

    2015-03-01

    Full Text Available Methylphenidate (MPD is a commonly administered drug to treat children suffering from attention deficit hyperactivity disorder (ADHD. Alterations in septal driven hippocampal theta rhythm may underlie attention deficits observed in these patients. Amongst others, the septo-hippocampal connections have long been acknowledged to be important in preserving hippocampal function. Thus, we wanted to ascertain if methylphenidate administration, which improves attention in patients, could affect septal areas connecting with hippocampus. We used low and orally administered methylphenidate doses (1.3; 2.7 and 5mg/Kg to rats what mimics the dosage range in humans. In our model, we observed no effect when using 1.3mg/Kg methylphenidate; whereas 2.7 and 5 mg/Kg induced a significant increase in c-fos expression specifically in the medial septum, an area intimately connected to the hippocampus. We analyzed dopaminergic areas such as nucleus accumbens and striatum, and found that only 5mg/Kg induced c-fos levels increase. In these areas tyrosine hydroxylase correlated well with c-fos staining, whereas in the medial septum the sparse tyrosine hydroxylase fibres did not overlap with c-fos positive neurons. Double immunofluorescence of c-fos with neuronal markers in the septal area revealed that co-localization with choline acethyl transferase, parvalbumin, and calbindin with c-fos did not change with MPD treatment; whereas, calretinin and c-fos double labeled neurons increased after MPD administration. Altogether, these results suggest that low and acute doses of methylphenidate primary target specific populations of caltretinin medial septal neurons.

  6. Circadian rhythm and sleep influences on digestive physiology and disorders

    Directory of Open Access Journals (Sweden)

    Vaughn BV

    2014-09-01

    Full Text Available Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their role in normal physiology and the link of their disruption to pathological conditions. Recent work has demonstrated that sleep and circadian factors influence appetite, nutrient absorption, and metabolism. Disruption of sleep and circadian rhythms may increase vulnerability to digestive disorders, including reflux, ulcers, inflammatory bowel issues, irritable bowel disease, and gastrointestinal cancer. As our knowledge of the link between circadian timing and gastrointestinal physiology grows, so do our opportunities to provide promising diagnostic and therapeutic approaches for gastrointestinal disorders. Keywords: digestion, digestive diseases, gastrointestinal reflux, sleep, circadian rhythm 

  7. Alpha-band rhythm suppression during memory recall reflecting memory performance.

    Science.gov (United States)

    Yokosawa, Koichi; Kimura, Keisuke; Chitose, Ryota; Momiki, Takuya; Kuriki, Shinya

    2016-08-01

    Alpha-band rhythm is thought to be involved in memory processes, similarly to other spontaneous brain rhythms. Ten right-handed healthy volunteers participated in our proposed sequential short-term memory task that provides a serial position effect in accuracy rate. We recorded alpha-band rhythms by magnetoencephalography during performance of the task and observed that the amplitude of the rhythm was suppressed dramatically in the memory recall period. The suppressed region was estimated to be in the occipital lobe, suggesting that alpha-band rhythm is suppressed by activation of the occipital attentional network. Additionally, the alpha-band suppression reflected accuracy rate, that is, the amplitude was suppressed more when recalling items with higher accuracy rate. The sensors with a significant correlation between alpha-band amplitude and accuracy rate were located widely from the frontal to occipital regions mainly in the right hemisphere. The results suggests that alpha-band rhythm is involved in memory recall and can be index of memory performance.

  8. Biological and psychological rhythms: an integrative approach to rhythm disturbances in autistic disorder.

    Science.gov (United States)

    Botbol, Michel; Cabon, Philippe; Kermarrec, Solenn; Tordjman, Sylvie

    2013-09-01

    Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep-wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep-wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Creep curve modeling of hastelloy-X alloy by using the theta projection method

    International Nuclear Information System (INIS)

    Woo Gon, Kim; Woo-Seog, Ryu; Jong-Hwa, Chang; Song-Nan, Yin

    2007-01-01

    To model the creep curves of the Hastelloy-X alloy which is being considered as a candidate material for the VHTR (Very High Temperature gas-cooled Reactor) components, full creep curves were obtained by constant-load creep tests for different stress levels at 950 C degrees. Using the experimental creep data, the creep curves were modeled by applying the Theta projection method. A number of computing processes of a nonlinear least square fitting (NLSF) analysis was carried out to establish the suitably of the four Theta parameters. The results showed that the Θ 1 and Θ 2 parameters could not be optimized well with a large error during the fitting of the full creep curves. On the other hand, the Θ 3 and Θ 4 parameters were optimized well without an error. For this result, to find a suitable cutoff strain criterion, the NLSF analysis was performed with various cutoff strains for all the creep curves. An optimum cutoff strain range for defining the four Theta parameters accurately was found to be a 3% cutoff strain. At the 3% cutoff strain, the predicted curves coincided well with the experimental ones. The variation of the four Theta parameters as the function of a stress showed a good linearity, and the creep curves were modeled well for the low stress levels. Predicted minimum creep rate showed a good agreement with the experimental data. Also, for a design usage of the Hastelloy-X alloy, the plot of the log stress versus log the time to a 1% strain was predicted, and the creep rate curves with time and a cutoff strain at 950 C degrees were constructed numerically for a wide rang of stresses by using the Theta projection method. (authors)

  10. Why don't you like me? : Midfrontal theta power in response to unexpected peer rejection feedback

    NARCIS (Netherlands)

    van der Molen, M.J.W.; Dekkers, L.M.S.; Westenberg, P.M.; van der Veen, F.M.; van der Molen, M.W.

    2017-01-01

    Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4–8 Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta

  11. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  12. Analysis of Handwriting based on Rhythm Perception

    Science.gov (United States)

    Saito, Kazuya; Uchida, Masafumi; Nozawa, Akio

    Humanity fluctuation was reported in some fields. In handwriting process, fluctuation appears on handwriting-velocity. In this report, we focused attention on human rhythm perception and analyzed fluctuation in handwriting process. As a result, 1/f noise related to rhythm perception and features may caused by Kahneman's capacity model were measured on handwriting process.

  13. Study of CP(N-1) theta-vacua by cluster simulation of SU(N) quantum spin ladders.

    Science.gov (United States)

    Beard, B B; Pepe, M; Riederer, S; Wiese, U-J

    2005-01-14

    D-theory provides an alternative lattice regularization of the 2D CP(N-1) quantum field theory in which continuous classical fields emerge from the dimensional reduction of discrete SU(N) quantum spins. Spin ladders consisting of n transversely coupled spin chains lead to a CP(N-1) model with a vacuum angle theta=npi. In D-theory no sign problem arises and an efficient cluster algorithm is used to investigate theta-vacuum effects. At theta=pi there is a first order phase transition with spontaneous breaking of charge conjugation symmetry for CP(N-1) models with N>2.

  14. The effects of hormones and physical exercise on hippocampal structural plasticity.

    Science.gov (United States)

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Index of alpha/theta ratio of the electroencephalogram: a new marker for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Magali eSchmidt

    2013-10-01

    Full Text Available Objective: We evaluated quantitative EEG measures to determine a screening index to discriminate AD patients from normal individuals. Methods: Two groups of individuals older than 50 years, comprising a control group of 57 normal volunteers and a study group of 50 patients with probable AD, were compared. EEG recordings were obtained from subjects in a wake state with eyes closed at rest for 30 min. Logistic regression analysis was conducted. Results: Spectral potentials of the alpha and theta bands were computed for all electrodes and the alpha/theta ratio calculated. Logistic regression of alpha/theta of the mean potential of the C3 and O1 electrodes was carried out. A formula was calculated to aid the diagnosis of AD yielding 76.4 % sensitivity and 84.6 specificity for AD with an area under the ROC curve of 0.92. Conclusions: Logistic regression of alpha/theta of the spectrum of the mean potential of EEG represents a good marker discriminating AD patients from normal controls.

  16. Frontal theta EEG dynamics in a real-world air traffic control task.

    Science.gov (United States)

    Shou, Guofa; Ding, Lei

    2013-01-01

    Mental workload and time-on-task effect are two major factors expediting fatigue progress, which leads to performance decline and/or failure in real-world tasks. In the present study, electroencephalography (EEG) is applied to study mental fatigue development during an air traffic control (ATC) task. Specifically, the frontal theta EEG dynamics are firstly dissolved into a unique frontal independent component (IC) through a novel time-frequency independent component analysis (tfICA) method. Then the temporal fluctuations of the identified frontal ICs every minute are compared to workload (reflected by number of clicks per minute) and time-on-task effect by correlational analysis and linear regression analysis. It is observed that the frontal theta activity significantly increase with workload augment and time-on-task. The present study demonstrates that the frontal theta EEG activity identified by tfICA method is a sensitive and reliable metric to assess mental workload and time-on-task effect in a real-world task, i.e., ATC task, at the resolution of minute(s).

  17. Unexpected diversity in socially synchronized rhythms of shorebirds

    NARCIS (Netherlands)

    Bulla, Martin; Valcu, Mihai; Dokter, Adriaan M; Dondua, Alexei G; Kosztolányi, András; Helm, Barbara; Sandercock, Brett K; Casler, Bruce; Ens, Bruno J.; Spiegel, Caleb S; Hassell, Chris J; Küpper, Clemens; Minton, Clive; Burgas, Daniel; Lank, David B; Payer, David C; Loktionov, Egor Y; Nol, Erica; Kwon, Eunbi; Smith, Fletcher; Gates, H River; Vitnerová, Hana; Prüter, Hanna; Johnson, James A; St Clair, James J H; Lamarre, Jean-François; Rausch, Jennie; Reneerkens, Jeroen; Conklin, Jesse R; Burger, Joanna; Liebezeit, Joe; Bêty, Joël; Coleman, Jonathan T; Figuerola, Jordi; Hooijmeijer, Joslyn; Alves, José A; Smith, Joseph A M; Weidinger, Karel; Koivula, Kari; Gosbell, Ken; Exo, Klaus-Michael; Niles, Larry; Koloski, Laura; McKinnon, Laura; Praus, Libor; Klaassen, Marcel; Giroux, Marie-Andrée; Sládeček, Martin; Boldenow, Megan L; Goldstein, Michael I; Šálek, Miroslav; Senner, Nathan; Rönkä, Nelli; Lecomte, Nicolas; Gilg, Olivier; Vincze, Orsolya; Johnson, Oscar W; Smith, Paul A; Woodard, Paul F; Tomkovich, Pavel S; Battley, Phil F; Bentzen, Rebecca; Lanctot, Richard B; Porter, Ron; Saalfeld, Sarah T; Freeman, Scott; Brown, Stephen C; Yezerinac, Stephen; Székely, Tamás; Montalvo, Tomás; Piersma, Theunis; Loverti, Vanessa; Pakanen, Veli-Matti; Tijsen, Wim; Kempenaers, Bart

    2016-01-01

    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities

  18. Circadian Rhythm Sleep-Wake Disorders.

    Science.gov (United States)

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Exponential mean-square stability of two classes of theta Milstein methods for stochastic delay differential equations

    Science.gov (United States)

    Rouz, Omid Farkhondeh; Ahmadian, Davood; Milev, Mariyan

    2017-12-01

    This paper establishes exponential mean square stability of two classes of theta Milstein methods, namely split-step theta Milstein (SSTM) method and stochastic theta Milstein (STM) method, for stochastic differential delay equations (SDDEs). We consider the SDDEs problem under a coupled monotone condition on drift and diffusion coefficients, as well as a necessary linear growth condition on the last term of theta Milstein method. It is proved that the SSTM method with θ ∈ [0, ½] can recover the exponential mean square stability of the exact solution with some restrictive conditions on stepsize, but for θ ∈ (½, 1], we proved that the stability results hold for any stepsize. Then, based on the stability results of SSTM method, we examine the exponential mean square stability of the STM method and obtain the similar stability results to that of the SSTM method. In the numerical section the figures show thevalidity of our claims.

  20. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  1. Reviewing the musical component of rhythm of "poetry" and the factors influencing it

    Directory of Open Access Journals (Sweden)

    Ma’sumeh Ma’dankan

    2017-04-01

    Full Text Available ‘Rhythm’ is the most important component in the music of poetry. In this paper, in addition to defining rhythm, we have studied relative components which have most influence on the music of poetry. ‘Rhythm’ is the first common factor in different arts especially music and poetry. Poetry has always been along with rhythm. A short and complete definition of ‘rhythm’ is: “Rhythm is the balance resulting from sequence of letters or rhythms at certain limited times”.The most important factors affecting rhythm are: Proportion of syllables at prosodic rhythms: Every syllable has its special musical load at prosodic rhythms. It is clear that if each of them is mostly used at one rhythm, it will mostly and clearly show its own special state. Sequence of syllables at prosodic rhythms: Succession of long or short syllables because of their special vocal effect on rhythm is very effective on the musical quality of rhythm. Application of long syllable: The most the number of long syllables in a verse, the heavier will be the rhythm of the verse. Because in this way the number of syllables of every verse will be decreased and their temporal duration will be increased. Conformity of the end of words with the end of elements (space between words with space between elements: conformity of the end of words and elements because of the repeated sequence of an element highly strengthens the effect of that prosodic element at the mind of the listener. These constant and repeated scansions make the poem rhythmic and enrich its music. Making accidental or the second rhythm: one way for innovation and overcoming the natural music of a rhythm is making a special rhythm other than the main prosodic rhythm of poem by arranging the words in a special order in a way that it conforms to the other scansion of the same prosodic rhythm. Using regular space between words other than space of elements: sometimes the poet without using a different scansion of the

  2. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice

    Directory of Open Access Journals (Sweden)

    Tim S Heistek

    2010-06-01

    Full Text Available Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2 and β3 (Gabrb2 subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.

  3. Chronotype and circadian rhythm in bipolar disorder: A systematic review.

    Science.gov (United States)

    Melo, Matias C A; Abreu, Rafael L C; Linhares Neto, Vicente B; de Bruin, Pedro F C; de Bruin, Veralice M S

    2017-08-01

    Despite a complex relationship between mood, sleep and rhythm, the impact of circadian disruptions on bipolar disorder (BD) has not been clarified. The purpose of this systematic review was to define current evidence regarding chronotype and circadian rhythm patterns in BD patients. 42 studies were included, involving 3432 BD patients. Disruption of the biological rhythm was identified, even in drug-naïve BD patients and independently of mood status. Daily profiles of melatonin levels and cortisol indicated a delayed phase. Depression was more frequently associated with circadian alterations than euthymia. Few studies evaluated mania, demonstrating irregular rhythms. Evening type was more common in BD adults. Studies about the influence of chronotype on depressive symptoms showed conflicting results. Only one investigation observed the influences of chronotype in mania, revealing no significant association. Effects of psychoeducation and lithium on rhythm in BD patients were poorly studied, demonstrating no improvement of rhythm parameters. Studies about genetics are incipient. In conclusion, disruption in circadian rhythm and eveningness are common in BD. Prospective research evaluating the impact of circadian disruption on mood symptoms, metabolism, seasonality, the influence of age and the effects of mood stabilizers are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A reversed-field theta-pinch plasma machine

    International Nuclear Information System (INIS)

    Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide

    1984-01-01

    Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)

  5. Sustained frontal midline theta enhancements during effortful listening track working memory demands.

    Science.gov (United States)

    Wisniewski, Matthew G; Iyer, Nandini; Thompson, Eric R; Simpson, Brian D

    2017-11-27

    Recent studies demonstrate that frontal midline theta power (4-8 Hz) enhancements in the electroencephalogram (EEG) relate to effortful listening. It has been proposed that these enhancements reflect working memory demands. Here, the need to retain auditory information in working memory was manipulated in a 2-interval 2-alternative forced-choice delayed pitch discrimination task ("Which interval contained the higher pitch?"). On each trial, two square wave stimuli differing in pitch at an individual's ∼70.7% correct threshold were separated by a 3-second ISI. In a 'Roving' condition, the lowest pitch stimulus was randomly selected on each trial (uniform distribution from 840 to 1160 Hz). In a 'Fixed' condition, the lowest pitch was always 979 Hz. Critically, the 'Fixed' condition allowed one to know the correct response immediately following the first stimulus (e.g., if the first stimulus is 979 Hz, the second must be higher). In contrast, the 'Roving' condition required retention of the first tone for comparison to the second. Frontal midline theta enhancements during the ISI were only observed for the 'Roving' condition. Alpha (8-13 Hz) enhancements were apparent during the ISI, but did not differ significantly between conditions. Since conditions were matched for accuracy at threshold, results suggest that frontal midline theta enhancements will not always accompany difficult listening. Mixed results in the literature regarding frontal midline theta enhancements may be related to differences between tasks in regards to working memory demands. Alpha enhancements may reflect task general effortful listening processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Alpha and theta brain oscillations index dissociable processes in spoken word recognition.

    Science.gov (United States)

    Strauß, Antje; Kotz, Sonja A; Scharinger, Mathias; Obleser, Jonas

    2014-08-15

    Slow neural oscillations (~1-15 Hz) are thought to orchestrate the neural processes of spoken language comprehension. However, functional subdivisions within this broad range of frequencies are disputed, with most studies hypothesizing only about single frequency bands. The present study utilizes an established paradigm of spoken word recognition (lexical decision) to test the hypothesis that within the slow neural oscillatory frequency range, distinct functional signatures and cortical networks can be identified at least for theta- (~3-7 Hz) and alpha-frequencies (~8-12 Hz). Listeners performed an auditory lexical decision task on a set of items that formed a word-pseudoword continuum: ranging from (1) real words over (2) ambiguous pseudowords (deviating from real words only in one vowel; comparable to natural mispronunciations in speech) to (3) pseudowords (clearly deviating from real words by randomized syllables). By means of time-frequency analysis and spatial filtering, we observed a dissociation into distinct but simultaneous patterns of alpha power suppression and theta power enhancement. Alpha exhibited a parametric suppression as items increasingly matched real words, in line with lowered functional inhibition in a left-dominant lexical processing network for more word-like input. Simultaneously, theta power in a bilateral fronto-temporal network was selectively enhanced for ambiguous pseudowords only. Thus, enhanced alpha power can neurally 'gate' lexical integration, while enhanced theta power might index functionally more specific ambiguity-resolution processes. To this end, a joint analysis of both frequency bands provides neural evidence for parallel processes in achieving spoken word recognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry.

    Science.gov (United States)

    Mattson, M P; Lee, R E; Adams, M E; Guthrie, P B; Kater, S B

    1988-11-01

    A coculture system consisting of input axons from entorhinal cortex explants and target hippocampal pyramidal neurons was used to demonstrate that glutamate, released spontaneously from afferent axons, can influence both dendritic geometry of target neurons and formation of presumptive synaptic sites. Dendritic outgrowth was reduced in hippocampal neurons growing on entorhinal axons when compared with neurons growing off the axons. Presumptive presynaptic sites were observed in association with hippocampal neuron dendrites and somas. HPLC analysis showed that glutamate was released from the explants in an activity- and Ca2(+)-dependent manner. The general glutamate receptor antagonist D-glutamylglycine significantly increased dendritic outgrowth in pyramidal neurons associated with entorhinal axons and reduced presumptive presynaptic sites. Tetrodotoxin and reduction of extracellular Ca2+ also promoted dendritic outgrowth and reduced the formation of presumptive synaptic sites. The results suggest that the neurotransmitter glutamate may play important roles in the development of hippocampal circuitry.

  8. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); L.T. Strike (Lachlan); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  9. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  10. Frontal theta accounts for individual differences in the cost of conflict on decision making.

    Science.gov (United States)

    Pinner, John F L; Cavanagh, James F

    2017-10-01

    Cognitive conflict is often experienced as a difficult, frustrating, and aversive state. Recent studies have indicated that conflict acts as an implicit cost during learning, valuation, and the instantiation of cognitive control. Here we investigated if an implicit manipulation of conflict also influences explicit decision making to risk. Participants were required to perform a Balloon Analogue Risk Task wherein the virtual balloon was inflated by performing a flankers task. By varying the percent of incongruent flanker trials between balloons, we hypothesized that participants would pump the balloon fewer times in conditions of higher conflict and that frontal midline theta would account for significant variance in this relationship. Across two studies, we demonstrate that conflict did not elicit reliable behavioral changes in this task across participants. However, individual differences in frontal theta power accounted for significant variance by predicting diminished balloon pumps. Thus, while conflict costs may act as investments to some individuals (invigorating behavior), it is aversive to others (diminishing behavior), and frontal midline theta power accounts for these varying behavioral tendencies between individuals. These findings demonstrate how frontal midline theta is not only a candidate mechanism for implementing cognitive control, but it is sensitive to the inherent costs therein. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Visual performance of pigeons following hippocampal lesions.

    Science.gov (United States)

    Bingman, V P; Hodos, W

    1992-11-15

    The effect of hippocampal lesions on performance in two psychophysical measures of spatial vision (acuity and size-difference threshold) was examined in 7 pigeons. No difference between the preoperative and postoperative thresholds of the experimental birds was found. The visual performance of pigeons in the psychophysical tasks failed to reveal a role of the hippocampal formation in vision. The results argue strongly that the behavioral deficits found in pigeons with hippocampal lesions when tested in a variety of memory-related spatial tasks is not based on a defect in spatial vision but impaired spatial cognition.

  12. Hippocampal “Time Cells”: Time versus Path Integration

    Science.gov (United States)

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  13. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  14. Circadian Sleep-Wake Rhythm of Older Adults with Intellectual Disabilities

    Science.gov (United States)

    Maaskant, Marijke; van de Wouw, Ellen; van Wijck, Ruud; Evenhuis, Heleen M.; Echteld, Michael A.

    2013-01-01

    The circadian sleep-wake rhythm changes with aging, resulting in a more fragmented sleep-wake pattern. In individuals with intellectual disabilities (ID), brain structures regulating the sleep-wake rhythm might be affected. The aims of this study were to compare the sleep-wake rhythm of older adults with ID to that of older adults in the general…

  15. The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Tsukuba Univ. (Japan). Graduate School of Pure and Applied Sciences; Horsley, R.; Zanotti, J. [Edinburgh Univ. (United Kingdom). School of Physics; Izubuchi, T. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Kanazawa Univ. (Japan). Inst. for Theoretical Physics; Nakamura, Y.; Pleiter, D.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division. Dept. of Mathematical Sciences

    2008-07-15

    We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N{sub f}=2 flavors of dynamical quarks at imaginary vacuum angle {theta}. The calculation proceeds via the CP odd form factor F{sub 3}. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F{sub 3} at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing {theta}. (orig.)

  16. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson's disease.

    Science.gov (United States)

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Vanwersch, Raymond A P; Estevao, Dave L; Tass, Peter A

    2017-08-01

    Neurofeedback may enhance compensatory brain mechanisms. EEG-based sensorimotor rhythm neurofeedback training was suggested to be beneficial in Parkinson's disease. In a placebo-controlled study in parkinsonian nonhuman primates we here show that sensorimotor rhythm neurofeedback training reduces MPTP-induced parkinsonian symptoms and both ON and OFF scores during classical L-DOPA treatment. Our findings encourage further development of sensorimotor rhythm neurofeedback training as adjunct therapy for Parkinson's disease which might help reduce L-DOPA-induced side effects.

  17. Rhythms in the endocrine system of fish: a review.

    Science.gov (United States)

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  18. Hippocampal lesions, contextual retrieval, and autoshaping in pigeons.

    Science.gov (United States)

    Richmond, Jenny; Colombo, Michael

    2002-02-22

    Both pigeons and rats with damage to the hippocampus are slow to acquire an autoshaped response and emit fewer overall responses than control animals. Experiment 1 explored the possibility that the autoshaping deficit was due to an impairment in contextual retrieval. Pigeons were trained for 14 days on an autoshaping task in which a red stimulus was followed by reinforcement in context A, and a green stimulus was followed by reinforcement in context B. On day 15, the subjects were given a context test in which the red and green stimuli were presented simultaneously in context A and then later in context B. Both control and hippocampal animals showed context specificity, that is, they responded more to the red stimulus in context A and to the green stimulus in context B. In Experiment 2 we video-recorded the control and hippocampal animals performing the autoshaping task. Hippocampal animals tended to miss-peck the key more often than control animals. In addition, the number of missed pecks increased across days for hippocampal animals but not for control animals, suggesting that while the control animals increased their pecking accuracy, the hippocampal animals actually decreased their pecking accuracy. Our findings suggest that impairments in moving through space may underlie the hippocampal autoshaping deficit.

  19. Neural responses to complex auditory rhythms: the role of attending

    Directory of Open Access Journals (Sweden)

    Heather L Chapin

    2010-12-01

    Full Text Available The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus.

  20. The Rest-Activity Rhythm and Physical Activity in Early-Onset Dementia

    NARCIS (Netherlands)

    Hooghiemstra, A.M.; Eggermont, L.H.P.; Scheltens, P.; van der Flier, W.M.; Scherder, E.J.A.

    2015-01-01

    Background: A substantial part of elderly persons with dementia show rest-activity rhythm disturbances. The rest-activity rhythm is important to study in people with early-onset dementia (EOD) for rest-activity rhythm disturbances are predictive of institutionalization, and caregivers of young

  1. Educating the sense of rhythm in primary education students

    Directory of Open Access Journals (Sweden)

    Silvia GRĂDINARU

    2017-03-01

    Full Text Available Background: Rhythm as a core element of complex coordination is the key to efficient moulding of motor skills specific to sports activities in curricula. Practicing physical exercise in a varied rhythm and tempo in primary school students moulds the skill of achieving correct movement basics (direction, span, coordination, and expressivity. The use of music in sports classes improves kinetics and vestibular sensitivity. The sense of rhythm and tempo are imperative criteria in vocational schools. Purpose: This paper aims to describe a pattern of means selected to develop the sense of rhythm and to allow movements in different sports branches with increased efficiency. Methods: The test battery was applied on a sample of 15 students from the 4th grade of the “Ion Vidu” National Arts College in Timisoara, Romania, aged 9-10 years, over an entire school year, using different rhythms and tempos during sports classes, which were later used in gymnastics, athletic events, and basketball. Results: Data recorded after the application tests, processed and interpreted confirms the proposed assumption and validates the motor contents used. Conclusions: Sense of rhythm is a component of coordinative capacity that is required to be educated from an early age. Rhythmic movements are easier to automate saving energy and motivating students to an active and conscious participation.

  2. Implications of Circadian Rhythm in Dopamine and Mood Regulation.

    Science.gov (United States)

    Kim, Jeongah; Jang, Sangwon; Choe, Han Kyoung; Chung, Sooyoung; Son, Gi Hoon; Kim, Kyungjin

    2017-07-31

    Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

  3. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  4. Eta Products and Theta Series Identities

    CERN Document Server

    Kohler, Gunter

    2011-01-01

    This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with "Eisenstein series." The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere. This book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding

  5. Functional optical probing of the hippocampal trisynaptic circuit in vitro: network dynamics, filter properties, and polysynaptic induction of CA1 LTP.

    Science.gov (United States)

    Stepan, Jens; Dine, Julien; Eder, Matthias

    2015-01-01

    Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These "trisynaptic circuit waves" involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.

  6. Role of adult hippocampal neurogenesis in stress resilience

    Directory of Open Access Journals (Sweden)

    Brunno R. Levone

    2015-01-01

    Full Text Available There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders.

  7. Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.

    Science.gov (United States)

    Watts, Barbara L.

    Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…

  8. Theta and Alpha Oscillations in Attentional Interaction during Distracted Driving

    Directory of Open Access Journals (Sweden)

    Yu-Kai Wang

    2018-02-01

    Full Text Available Performing multiple tasks simultaneously usually affects the behavioral performance as compared with executing the single task. Moreover, processing multiple tasks simultaneously often involve more cognitive demands. Two visual tasks, lane-keeping task and mental calculation, were utilized to assess the brain dynamics through 32-channel electroencephalogram (EEG recorded from 14 participants. A 400-ms stimulus onset asynchrony (SOA factor was used to induce distinct levels of attentional requirements. In the dual-task conditions, the deteriorated behavior reflected the divided attention and the overlapping brain resources used. The frontal, parietal and occipital components were decomposed by independent component analysis (ICA algorithm. The event- and response-related theta and alpha oscillations in selected brain regions were investigated first. The increased theta oscillation in frontal component and decreased alpha oscillations in parietal and occipital components reflect the cognitive demands and attentional requirements as executing the designed tasks. Furthermore, time-varying interactive over-additive (O-Add, additive (Add and under-additive (U-Add activations were explored and summarized through the comparison between the summation of the elicited spectral perturbations in two single-task conditions and the spectral perturbations in the dual task. Add and U-Add activations were observed while executing the dual tasks. U-Add theta and alpha activations dominated the posterior region in dual-task situations. Our results show that both deteriorated behaviors and interactive brain activations should be comprehensively considered for evaluating workload or attentional interaction precisely.

  9. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    Science.gov (United States)

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  10. Theta oscillations are sensitive to both early and late conflict processing stages: effects of alcohol intoxication.

    Science.gov (United States)

    Kovacevic, Sanja; Azma, Sheeva; Irimia, Andrei; Sherfey, Jason; Halgren, Eric; Marinkovic, Ksenija

    2012-01-01

    Prior neuroimaging evidence indicates that decision conflict activates medial and lateral prefrontal and parietal cortices. Theoretical accounts of cognitive control highlight anterior cingulate cortex (ACC) as a central node in this network. However, a better understanding of the relative primacy and functional contributions of these areas to decision conflict requires insight into the neural dynamics of successive processing stages including conflict detection, response selection and execution. Moderate alcohol intoxication impairs cognitive control as it interferes with the ability to inhibit dominant, prepotent responses when they are no longer correct. To examine the effects of moderate intoxication on successive processing stages during cognitive control, spatio-temporal changes in total event-related theta power were measured during Stroop-induced conflict. Healthy social drinkers served as their own controls by participating in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg women) and placebo conditions in a counterbalanced design. Anatomically-constrained magnetoencephalography (aMEG) approach was applied to complex power spectra for theta (4-7 Hz) frequencies. The principal generator of event-related theta power to conflict was estimated to ACC, with contributions from fronto-parietal areas. The ACC was uniquely sensitive to conflict during both early conflict detection, and later response selection and execution stages. Alcohol attenuated theta power to conflict across successive processing stages, suggesting that alcohol-induced deficits in cognitive control may result from theta suppression in the executive network. Slower RTs were associated with attenuated theta power estimated to ACC, indicating that alcohol impairs motor preparation and execution subserved by the ACC. In addition to their relevance for the currently prevailing accounts of cognitive control, our results suggest that alcohol-induced impairment of top-down strategic processing

  11. A Comparison of Frontal Theta Activity During Shooting among Biathletes and Cross-Country Skiers before and after Vigorous Exercise.

    Directory of Open Access Journals (Sweden)

    Harri Luchsinger

    Full Text Available Previous studies using electroencephalography (EEG to monitor brain activity have linked higher frontal theta activity to more focused attention and superior performance in goal-directed precision tasks. In biathlon, shooting performance requires focused attention after high-intensity cross-country skiing.To compare biathletes (serving as experts and cross-country skiers (novices and examine the effect of vigorous exercise on frontal theta activity during shooting.EEG frontal theta (4-7 Hz activity was compared between nine biathletes and eight cross-country skiers at comparable skiing performance levels who fired 100 shots on a 5-m indoor shooting range in quiescent condition followed by 20 shots after each of five 6-min high-intensity roller skiing sessions in the skating technique on a treadmill.Biathletes hit 80±14% and 81±10% before and after the roller skiing sessions, respectively. For the cross-country skiers these values were significantly lower than for the biathletes and amounted to 39±13% and 44±11% (p<0.01. Biathletes had on average 6% higher frontal theta activity during shooting as compared to cross-country skiers (F1,15 = 4.82, p = 0.044, but no significant effect of vigorous exercise on frontal theta activity in either of the two groups were found (F1,15 = 0.14, p = 0.72.Biathletes had significantly higher frontal theta activity than cross-country skiers during shooting, indicating higher focused attention in biathletes. Vigorous exercise did not decrease shooting performance or frontal theta activity during shooting in biathletes and cross-country skiers.

  12. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    Science.gov (United States)

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Simple UHV offset manipulator with independent theta and phi rotations

    International Nuclear Information System (INIS)

    Jamison, K.D.; Dunning, F.B.

    1984-01-01

    A simple UHV offset manipulator is described that not only allows a target crystal to be moved to any point on a circle centered on the manipulator axis but also provides indepedent theta and phi rotations at each position

  14. Seasonal and daily plasma corticosterone rhythms in American toads, Bufo americanus

    International Nuclear Information System (INIS)

    Pancak, M.K.; Taylor, D.H.

    1983-01-01

    Concentrations of corticosterone were measured in the plasma of American toads, Bufo americanus, on a seasonal basis using a radioimmunoassay technique. Two populations of toads, maintained under different light conditions, were monitored to observe the effects of photoperiod on the seasonal rhythm of plasma corticosterone. Under a natural photoperiod toads demonstrated a rhythm consisting of a spring peak and a fall peak in corticosterone concentration. Toads maintained under a 12L:12D photoperiod all year round demonstrated a similar rhythm with peaks in the spring and fall. This suggests that an endogenous (circannual) rhythm of corticosterone may be playing an important role in the seasonal change of overt behavior and physiology of Bufo americanus. A daily rhythm of corticosterone was also detected in toads when blood samples were taken every 4 hr. When compared to a previously published circadian rhythm study of locomotor activity, the surge in corticosterone concentration for the day occurred at 1730 just prior to the peak in locomotor activity

  15. [Interpersonal and social rhythm therapy (IPSRT)].

    Science.gov (United States)

    Bottai, T; Biloa-Tang, M; Christophe, S; Dupuy, C; Jacquesy, L; Kochman, F; Meynard, J-A; Papeta, D; Rahioui, H; Adida, M; Fakra, E; Kaladjian, A; Pringuey, D; Azorin, J-M

    2010-12-01

    Bipolar disorder is common, recurrent, often severe and debiliting disorder. All types of bipolar disorder have a common determinant: depressive episode. It is justify to propose a psychotherapy which shown efficacy in depression. Howewer, perturbations in circadian rhythms have been implicated in the genesis of each episode of the illness. Biological circadian dysregulation can be encouraged by alteration of time-givers (Zeitgebers) or occurrence of time-disturbers (Zeitstörers). Addition of social rhythm therapy to interpersonal psychotherapy leads to create a new psychotherapy adaptated to bipolar disorders: InterPersonal and Social Rhythm Therapy (IPSRT). IPSRT, in combinaison with medication, has demonstrated efficacy as a treatment for bipolar disorders. IPSRT combines psychoeducation, behavioral strategy to regularize daily routines and interpersonal psychotherapy which help patients cope better with the multiple psychosocial and relationship problems associated with this chronic disorder. The main issues of this psychotherapy are: to take the history of the patient's illness and review of medication, to help patient for "grief for the lost healthy self" translated in the french version in "acceptance of a long-term medical condition", to give the sick role, to examinate the current relationships and changes proximal to the emergence of mood symptoms in the four problem areas (unresolved grief, interpersonal disputes, role transitions, role déficits), to examinate and increase daily routines and social rhythms. French version of IPSRT called TIPARS (with few differences), a time-limited psychotherapy, in 24 sessions during approximatively 6 months, is conducted in three phases. In the initial phase, the therapist takes a thorough history of previous episodes and their interpersonal context and a review of previous medication, provides psychoeducation, evaluates social rhythms, introduces the Social Rhythm Metric, identifies the patient's main interpersonal

  16. RHYTHM DISTURBANCES DURING COLONOSCOPY

    Directory of Open Access Journals (Sweden)

    D. Jordanov

    2012-08-01

    Full Text Available Purpose: The purpose of this study is to assess the risk of inducing rhythm disturbances of the heart during colonoscopy.Patients and methods used: 80 patients had undergone colonoscopyper formed by two experienced specialists of endoscopy for the period from March to December 2011. The endoscopies were performed without premedication and sedation. Holter was placed on each patient one hour before the endoscopic examination, and the record continued one hour after the manipulation. The blood pressure was measured before, during and after the procedure.Results: During colonoscopy 25 patients (31,25% manifested rhythm disorders. In 15 patients (18,75% sinus tachycardia occurred. In 7 patients (8,75% suptraventricular extra systoles were observed and in 3 patients (3,75% - ventricular extra systoles. No ST-T changes were found. Highest values of the blood pressure were measured before and during the endoscopy, but the values did not exceed 160/105 mmHg. In 10 patients (12,5% a hypotensive reaction was observed, bur the values were not lower than 80/ 50. In 2 patients there was a short bradycardia with a heart frequency 50-55 /min.Conclusions: Our results showed that the rhythm disorders during lower colonoscopy occur in approximately 1/3 of the examined patients, there is an increase or decrease of the blood pressure in some patients, but that doesn’t require physician’s aid and the examination can be carried out safely without monitoring.

  17. Speech-like rhythm in a voiced and voiceless orangutan call.

    Directory of Open Access Journals (Sweden)

    Adriano R Lameira

    Full Text Available The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined "clicks" and "faux-speech." Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech

  18. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    Science.gov (United States)

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  19. Hippocampal and Amygdalar Volumes in Dissociative Identity Disorder

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J.; Bremner, J. Douglas

    2011-01-01

    Objective Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. Method The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Results Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. Conclusions The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects. PMID:16585437

  20. Hippocampal and amygdalar volumes in dissociative identity disorder.

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J; Bremner, J Douglas

    2006-04-01

    Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects.

  1. Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

    OpenAIRE

    Davidson, Terry L.; Hargrave, Sara L.; Swithers, Susan E.; Sample, Camille H.; Fu, Xue; Kinzig, Kimberly P.; Zheng, Wei

    2013-01-01

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD...

  2. Maternal and infant activity: Analytic approaches for the study of circadian rhythm.

    Science.gov (United States)

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2015-11-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and

  3. Social Rhythm and Mental Health: A Cross-Cultural Comparison.

    Directory of Open Access Journals (Sweden)

    Jürgen Margraf

    Full Text Available Social rhythm refers to the regularity with which one engages in social activities throughout the week, and has established links with bipolar disorder, as well as some links with depression and anxiety. The aim of the present study is to examine social rhythm and its relationship to various aspects of health, including physical health, negative mental health, and positive mental health.Questionnaire data were obtained from a large-scale multi-national sample of 8095 representative participants from the U.S., Russia, and Germany.Results indicated that social rhythm irregularity is related to increased reporting of health problems, depression, anxiety, and stress. In contrast, greater regularity is related to better overall health state, life satisfaction, and positive mental health. The effects are generally small in size, but hold even when controlling for gender, marital status, education, income, country, and social support. Further, social rhythm means differ across Russia, the U.S., and Germany. Relationships with mental health are present in all three countries, but differ in magnitude.Social rhythm irregularity is related to mental health in Russia, the U.S., and Germany.

  4. Are circadian rhythms new pathways to understand Autism Spectrum Disorder?

    Science.gov (United States)

    Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N

    2016-11-01

    Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Speech rhythm in Kannada speaking adults who stutter.

    Science.gov (United States)

    Maruthy, Santosh; Venugopal, Sahana; Parakh, Priyanka

    2017-10-01

    A longstanding hypothesis about the underlying mechanisms of stuttering suggests that speech disfluencies may be associated with problems in timing and temporal patterning of speech events. Fifteen adults who do and do not stutter read five sentences, and from these, the vocalic and consonantal durations were measured. Using these, pairwise variability index (raw PVI for consonantal intervals and normalised PVI for vocalic intervals) and interval based rhythm metrics (PercV, DeltaC, DeltaV, VarcoC and VarcoV) were calculated for all the participants. Findings suggested higher mean values in adults who stutter when compared to adults who do not stutter for all the rhythm metrics except for VarcoV. Further, statistically significant difference between the two groups was found for all the rhythm metrics except for VarcoV. Combining the present results with consistent prior findings based on rhythm deficits in children and adults who stutter, there appears to be strong empirical support for the hypothesis that individuals who stutter may have deficits in generation of rhythmic speech patterns.

  6. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    Science.gov (United States)

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  7. White paper report on using nuclear reactors to search for a value of theta13

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.; Anjos, J.C.; Ayres, D.; Beacom, J.; Bediaga, I.; de Bellefon, A.; Berger, B.E.; Bilenky, S.; Blucher, E.; Bolton, T.; Buck, C.; Bugg, W.; Busenitz, J.; Choubey, S.; Conrad, J.; Cribier, M.; Dadoun, O.; Dalnoki-Veress, F.; Decowski, M.; de Gouvea, Andre; Demutrh, D.; Dessages-Ardellier, F.; Efremenko, Y.; von Feilitzsch, F.; Finley, D.; Formaggio, J.A.; Freedman, S.J.; Fujikawa, B.K.; Garbini, M.; Giusti, P.; Goger-Neff, M.; Goodman, M.; Gray, F.; Grieb, C.; Grudzinski, J.J.; Guarino, V.J.; Hartmann, F.; Hagner, C.; Heeger, K.M.; Hofmann, W.; Horton-Smith, G.; Huber, P.; Inzhechik, L.; Jochum, J.; Jostlein, H.; Kadel, R.; Kamyshkov, Y.; Kaplan, D.; Kasper, P.; de Kerret, H.; Kersten, J.; Klein, J.; Knopfle, K.T.; Kopeikin, V.; Kozlov, Yu.; Kryn, D.; Kuchler, V.; Kuze, M.; Lachenmaier, T.; Lasserre, T.; Laughton, C.; Lendvai, C.; Li, J.; Lindner, M.; Link, J.; Longo, M.; Lu, Y.S.; Luk, K.B.; Ma, Y.Q.; Martemyanov, V.P.; Mauger, C.; Manghetti, H.; McKeown, R.; Mention, G.; Meyer, J.P.; Mikaelyan, L.; Minakata, H.; Naples, D.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Parke, S.; Petcov, S.T.; Peres, O.L.G.; Potzel, W.; Pilcher, J.; Plunkett, R.; Raffelt, G.; Rapidis, P.; Reyna, D.; Roe, B.; Rolinec, M.; Sakamoto, Y.; Sartorelli, G.; Schonert, S.; Schwertz, T.; Selvi, M.; Shaevitz, M.; Shellard, R.; Shrock, R.; Sidwell, R.; Sims, J.; Sinev, V.; Stanton, N.; Stancu, I.; Stefanski, R.; Seukane, F.; Sugiyama, H.; Sukhotin, S.; Sumiyoshi, T.; Svoboda, R.; Talaga, R.; Tamura, N.; Tanimoto, M.; Thron, J.; von Toerne, E.; Vignaud, D.; Wagner, C.; Wang, Y.F.; Wang, Z.; Winter, W.; Wong, H.; Yakushev, E.; Yang, C.G.; Yasuda, O.

    2004-02-26

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the order of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.

  8. Relation between hippocampal damage and cerebral cortical function in Alzheimer's disease

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Sakurai, Hirofumi; Iwamoto, Toshihiko; Takasaki, Masaru

    2000-01-01

    We investigated the relation between hippocampal damage and cerebral cortical dysfunction in Alzheimer's disease (AD) using MRI and SPECT. Nineteen patients with AD and 10 control subjects were studied. Hippocampal damage (including hippocampal formation, entorhinal cortex, and parahippocampal white matter) was assessed to evaluate the severity of atrophy and the magnetization transfer ratio (MTR) and cerebral cortical dysfunction was evaluated by quantitative cerebral blood flow (CBF) measurements using SPECT with 99mTc-ECD. Compared with controls, patients with AD had significantly more atrophy of the medial temporal lobe and a decrease in MTRs of the hippocampus and parahippocampus. There were significant correlations between the severity of hippocampal damage and regional CBF in temporoparietal lobes. Mini-Mental State Examination scores significantly correlated with the severity of hippocampal damage and regional CBFs in temporoparietal lobes. These results suggest that the functional effect of hippocampal damage occurs in temporoparietal lobes in AD, probably due to neuronal disconnections between hippocampal areas (including the entorhinal cortex) and temporoparietal lobes. (author)

  9. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech.

    Science.gov (United States)

    Borrie, Stephanie A; Lansford, Kaitlin L; Barrett, Tyson S

    2017-03-01

    The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception (initial intelligibility) and learning (intelligibility improvement) of naturally dysrhythmic speech, dysarthria. Fifty young adults with typical hearing participated in 3 key tests, including a rhythm perception test, a receptive vocabulary test, and a speech perception and learning test, with standard pretest, familiarization, and posttest phases. Initial intelligibility scores were calculated as the proportion of correct pretest words, while intelligibility improvement scores were calculated by subtracting this proportion from the proportion of correct posttest words. Rhythm perception scores predicted intelligibility improvement scores but not initial intelligibility. On the other hand, receptive vocabulary scores predicted initial intelligibility scores but not intelligibility improvement. Expertise in rhythm perception appears to provide an advantage for processing dysrhythmic speech, but a familiarization experience is required for the advantage to be realized. Findings are discussed in relation to the role of rhythm in speech processing and shed light on processing models that consider the consequence of rhythm abnormalities in dysarthria.

  10. Circadian rhythm disturbance after radiotherapy for brain tumor in infantile period

    International Nuclear Information System (INIS)

    Kubota, Masaya; Shinozaki, Masako; Sasaki, Hideo.

    1993-01-01

    We report a 19-year-old man suffering from circadian sleep-wake (S-W) rhythm disturbance after total tumor resection and whole brain irradiation. The patient was diagnosed as having astrocytoma in the right temporal lobe by CT scan and angiography at the age of 6 months. After total tumor resection and whole brain irradiation ( 60 Co 60 Gy), he showed profound psychomotor retardation, endoclinologic dysfunction including hypothyroidism and growth hormone deficiency, and S-W rhythm disturbance. At the age of 19, brain MRI revealed asymmetrical low intensity in the hypothalamic region. On endoclinological examination panhypopituitarism due to primary hypothalamic lesion was evident. His S-W rhythm was disturbed; i.e., sleep periods were dispersedly distributed throughout 24 hours. So he showed a lethargic tendency in the daytime. All-day polysomnography revealed abnormal sleep structure such as the absence of sleep spindle and hump, peripheral apnea, snoring and low oxygen saturation. After L-thyroxine supplementation his daily activity improved gradually. The decrease in short time sleep and tendency of a free-running rhythm were observed and oxygen saturation improved remarkably. Peripheral apnea and snoring disappeared. This wakening effect of L-thyroxine administration may be due to improvement of hypothyroidism symptom such as myxoedematous pharynx. It also seems related to the alteration of the central S-W rhythm regulation, because free-running rhythm appeared after L-thyroxine administration. Vitamin B 12 (VB 12 ), which has been reported to be effective for S-W rhythm disorders, was not effective for our patient's free-running rhythm. Compared with the patients responding to VB 12 , our patient's organic brain damage was more evident radiologically and endoclinologically. Following the hypothesis that VB 12 has a potential to reinforce the entrainment of circadian rhythm, our patient's organic brain damage may include entrainment system. (author)

  11. Transient Global Amnesia Deteriorates the Network Efficiency of the Theta Band.

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    Full Text Available Acute perturbation of the hippocampus, one of the connector hubs in the brain, is a key step in the pathophysiological cascade of transient global amnesia (TGA. We tested the hypothesis that network efficiency, meaning the efficiency of information exchange over a network, is impaired during the acute stage of TGA. Graph theoretical analysis was applied to resting-state EEG data collected from 21 patients with TGA. The EEG data were obtained twice, once during the acute stage ( 2 months after symptom onset of TGA. Characteristic path lengths and clustering coefficients of functional networks constructed using phase-locking values were computed and normalized as a function of the degree in the delta, theta, alpha, beta 1, beta 2 and gamma frequency bands of the EEG. We investigated whether the normalized characteristic path length (nCPL and normalized clustering coefficients (nCC differed significantly between the acute and resolved stages of TGA at each frequency band using the Wilcoxon signed-rank test. For networks where the nCPL or nCC differed significantly between the two stages, we also evaluated changes in the connections of the brain networks. During the acute stage of TGA, the nCPL of the theta band networks with mean degrees of 8, 8.5, 9 and 9.5 significantly increased (P < 0.05. During the acute stage, the lost edges for these networks were mostly found between the anterior (frontal and anterior temporal and posterior (parieto-occipital and posterior temporal brain regions, whereas newly developed edges were primarily found between the left and right frontotemporal regions. The nCC of the theta band with a mean degree of 5.5 significantly decreased during the acute stage (P < 0.05. Our results indicate that TGA deteriorates the network efficiency of the theta frequency band. This effect might be related to the desynchronization between the anterior and posterior brain areas.

  12. Musical rhythm spectra from Bach to Joplin obey a 1/f power law.

    Science.gov (United States)

    Levitin, Daniel J; Chordia, Parag; Menon, Vinod

    2012-03-06

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  13. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1992-present, Sigma-Theta

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Sigma-Theta (Potential Density Anomaly) data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  14. [Psychoeducation and interpersonal and social rhythm therapy for bipolar disorder].

    Science.gov (United States)

    Mizushima, Hiroko

    2011-01-01

    In treating bipolar disorder, specific psychotherapies in adjunct to pharmacotherapy have been shown to be effective in preventing new episodes and treating depressive episodes. Among those, interpersonal and social rhythm therapy (IPSRT) developed by Frank, amalgamation of interpersonal psychotherapy (IPT) with behavioral therapy focused on social rhythm has been shown to be an efficacious adjunct to mediation in preventing new episodes in bipolar I patients and in treating depression in bipolar I arid II disorder. IPSRT has also been shown to enhance total functioning, relationship functioning and life satisfaction among patients with bipolar disorder, even after pretreatment functioning and concurrent depression were covaried. IPSRT was designed to directly address the major pathways to recurrence in bipolar disorder, namely medication nonadherence, stressful life events, and disruptions in social rhythms. IPT, originated by Klerman et al., is a strategic time-limited psychotherapy focused on one or two of four current interpersonal problem areas (ie, grief, interpersonal role disputes, role transitions, and interpersonal dificits). In IPSRT, the fifth problem area "grief for the lost healthy self" has been added in order to promote acceptance of the diagnosis and the need for life-long treatment. Social rhythm therapy is a behavioral approach aiming at increasing regularity of social rhythms using the Social Rhythm Metric (SRM), a chart to record daily social activities including how stimulating they were, developed from observation that disruptions in social rhythms often trigger affective episodes in patients with bipolar disorder. IPSRT also appears to be a promising intervention for a subset of individuals with bipolar II depression as monotherapy for the acute treatment.

  15. Rhythms of mammalian body temperature can sustain peripheral circadian clocks.

    Science.gov (United States)

    Brown, Steven A; Zumbrunn, Gottlieb; Fleury-Olela, Fabienne; Preitner, Nicolas; Schibler, Ueli

    2002-09-17

    Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1 degrees C-4 degrees C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types. In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a (Delta)T of 4 degrees C (12 hr 37 degrees C/12 hr 33 degrees C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these "in vivo" temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals.

  16. Light Rhythms in Architecture

    DEFF Research Database (Denmark)

    Bülow, Katja

    2013-01-01

    formation and rhythm. When integrated into an architectural concept, electrical lighting non-intended for poetic composition has the ability to contribute to place, time, and function-telling aspects of places in urban contexts. Urban environments are information wise challenging to pre-historic human...

  17. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    OpenAIRE

    Masahiro eKawasaki; Masahiro eKawasaki; Masahiro eKawasaki; Keiichi eKitajo; Keiichi eKitajo; Yoko eYamaguchi

    2014-01-01

    In humans, theta phase (4–8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from...

  18. A Circadian Rhythm Regulating Hyphal Melanization in Cercospora Kikuchii

    Science.gov (United States)

    Circadian rhythms, biochemical or developmental processes with a period length of approximately 24 hours, are thoroughly documented in plants and animals. However, virtually all of what is currently known about circadian rhythms in fungi is derived from the model fungus, Neurospora crassa, including...

  19. Investigation of plasma turbulence in a theta-pinch-discharge

    International Nuclear Information System (INIS)

    Lins, G.

    1980-01-01

    This thesis is concerned with investigations of plasma turbulence in a 3 KJ Theta-Pinch during implosion by high-frequency Stark-effect and Thomson scattering. The next points are modifications of electron-distribution function by ionization in low preionizized turbulent plasma and energy losses by particle flow and heat flow at the ends. (HT)

  20. Radiation Dose–Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Kaifi, Samar [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Dalia, Yoseph; Burkeen, Jeffrey; Murzin, Vyacheslav; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Kuperman, Joshua; White, Nathan S. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Farid, Nikdokht [Department of Radiology, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-02-01

    Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for brain

  1. Spectroscopic evidence of hippocampal abnormalities in neocortical epilepsy

    Science.gov (United States)

    Mueller, S. G.; Laxer, K. D.; Cashdollar, N.; Lopez, R. C.; Weiner, M. W.

    2009-01-01

    Lesional neocortical epilepsy (NE) can be associated with hippocampal sclerosis or hippocampal spectroscopic abnormalities without atrophy (dual pathology). In this study, magnetic resonance spectroscopic imaging (MRSI) was used to determine the frequency of hippocampal damage/dysfunction in NE with and without structural lesion. Sixteen patients with NE [seven temporal NE (NE-T), nine extratemporal (NE-ET)] and 16 controls were studied with a 2D MRSI sequence (Repetition time/echo time (TR/TE) = 1800/135 ms) covering both hippocampi. Seven NE patients had MR visible lesions (NE-Les), nine had normal MRI (NE-no). In each hippocampus, 12 voxels were uniformly selected. In controls, mean (± SD) NAA/(Cr + Cho) values for each voxel were calculated and voxels with NAA/(Cr + Cho) ≤ (mean in controls – 2SD in controls) were defined as ‘pathological’ in patients. Eight of 16 NE patients had at least two ‘pathological’ voxel (mean 2.5, range 2–5) in one hippocampus. Four were NE-Les and four NE-no. Three (43%) NE-T patients, had evidence for hippocampal damage/dysfunction and five (56%) had NE-ET. The ipsilateral hippocampus was affected in six of eight NE patients. Evidence for unilateral hippocampal damage/dysfunction was demonstrated in 50% of the NE patients. The type of NE, i.e. NE-Les or NE-no, NE-T or NE-ET, had no influence on the occurrence of hippocampal damage/dysfunction. PMID:16618342

  2. Daily rhythm of phosphoenolpyruvate carboxylase in Crassulacean acid metabolism plants : Immunological evidence for the absence of a rhythm in protein synthesis.

    Science.gov (United States)

    Brulfert, J; Vidal, J; Gadal, P; Queiroz, O

    1982-11-01

    Immunotitration of phosphoenolpyruvate carboxylase (EC 4.1.1.31) extracted from leaves of Kalanchoe blossfeldiana v. Poelln. cv. Tom Thumb. It was established that at different times of the day-night cycle the daily rhythm of enzyme capacity does not result from a rhythm in protein synthesis, but rather from changes in the specific activity of the enzyme.

  3. Autism as a disorder of biological and behavioral rhythms: Towards new therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Sylvie eTordjman

    2015-02-01

    Full Text Available There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional and relational rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators suggests that this hormone might be also involved in the synchrony of motor, emotional and relational rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors or interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional and relational rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony such as the Early Start Denver Model (ESDM.

  4. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    Science.gov (United States)

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  5. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans.

    Science.gov (United States)

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement.

  6. Comparison with hippocampal atrophy and hypoperfusion in Alzheimer's disease

    International Nuclear Information System (INIS)

    Chung, YA; Kim, SH; Chung, SK; Juh, RH; Sohn, HS; Suh, TS; Choe, BY

    2004-01-01

    Objective: Hypoperfusion and hippocampal atropy of the medial temporal lobe are peculiarity of Alzheimer's disease (AD). The manual ROI (region of interest) technique for hippocampal volume estimation is specific and sensitive for the detection of hippocampal atrophy. In patients with AD reported a significant correlation between hippocampal volume and hypoperfusion. This study investigated correlations between atrophy distinct medial temporal lobe structure and hypoperfusion in hippocampal volumetry. Methods: The hippocampi were individually outlined on Tl-weighted volumetry MRI and calculated with MATLAB in 12 patients with AD. All volume measurements were performed by a segmentation technique with a combination of tracing and thresholding. The volume of a given structure in each slice was obtained by automatically counting the number of pixels within the segmented regions and multiplying the number by a voxel size. In order to permit direct regional comparisons, both of each patient's Tc- 99m ECD SPECT was then registered to the patient's MRI. Delineation continued anteriorly in each contiguous slice reaching the head of the hippocampus, which was distinguished from the overlying amygdala by the presence of the alveus or uncal recess. The right hippocampus (RH) was measured first, followed by the left hippocampus (LH). The accuracy of registration was investigated in a validation study with developed brain phantom. Results:The mean total intracranial volume of the AD was significantly smaller volume (1492.9 cm 3 ) and hypo perfused than those in normal subjects. The mean hippocampal volumes were 2.01 cm 3 and l.99 cm 3 for the RH and LH. The correlations between volume and hypoperfusion in the affected hippocampi were found to be significant; especially the medial temporal lobe is markedly hypo perfused. Conclusion: Volumetry is the most sensitive tool for the detection of hippocampal abnormality in AD, and significant correlation between asymmetry in

  7. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Ruth B. [Univ. of Cambridge (United Kingdom). Pembroke College

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  8. Internal Medicine Physicians’ Perceptions Regarding Rate versus Rhythm Control for Atrial Fibrillation

    Science.gov (United States)

    McCabe, James M.; Johnson, Colleen J; Marcus, Gregory M

    2011-01-01

    Atrial fibrillation (AF) is often managed by general internal medicine physicians. Available data suggest that guidelines regarding AF management are often not followed, but the reasons for this remain unknown. We sought to assess the knowledge and beliefs of internists regarding strategies to treat AF. We conducted a national electronic survey of internal medicine physicians regarding their perceptions of optimal AF management, with an emphasis on the rationale for choosing a rhythm or rate control strategy. One hundred and forty-eight physicians from 36 different states responded (representing at least 19% of unique e-mails opened). Half of the respondents reported managing their AF patients independently without referral to a cardiologist. Seventy-three percent of participants believe a rhythm control strategy conveys a decreased stroke risk, 64% believe there is a mortality benefit to rhythm control, and 55% think that it would help avoid long term anticoagulation. Comparing those who prefer a rhythm control strategy to everyone else, those who favor rhythm control statistically significantly more often believe that rhythm control reduces the risk for stroke (96% versus 67%, p=0.009) and that rhythm control allows for the discontinuation of anticoagulation therapy (76% versus 49%, p=0.045). In conclusion, contrary to available data in clinical trials and recent guidelines regarding the rationale for choosing a rhythm control strategy in treating AF, the majority of study participants believe that rhythm control decreases stroke risk, decreases mortality, and allows for discontinuation of anticoagulation therapy. These prevalent misconceptions may substantially contribute to guideline non-adherence. PMID:19195516

  9. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    Science.gov (United States)

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    Science.gov (United States)

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  11. Operating point considerations for the Reference Theta-Pinch Reactor (RTPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1976-01-01

    Aspects of the continuing engineering design-point reassessment and optimization of the Reference Theta-Pinch Reactor (RTPR) are discussed. An updated interim design point which achieves a favorable energy balance and involves relaxed technological requirements, which nonetheless satisfy more rigorous physics and engineering constraints, is presented

  12. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  13. Relation between functional connectivity and rhythm discrimination in children who do and do not stutter

    Directory of Open Access Journals (Sweden)

    Soo-Eun Chang

    2016-01-01

    Full Text Available Our ability to perceive and produce rhythmic patterns in the environment supports fundamental human capacities ranging from music and language processing to the coordination of action. This article considers whether spontaneous correlated brain activity within a basal ganglia-thalamocortical (rhythm network is associated with individual differences in auditory rhythm discrimination. Moreover, do children who stutter with demonstrated deficits in rhythm perception have weaker links between rhythm network functional connectivity and rhythm discrimination? All children in the study underwent a resting-state fMRI session, from which functional connectivity measures within the rhythm network were extracted from spontaneous brain activity. In a separate session, the same children completed an auditory rhythm-discrimination task, where behavioral performance was assessed using signal detection analysis. We hypothesized that in typically developing children, rhythm network functional connectivity would be associated with behavioral performance on the rhythm discrimination task, but that this relationship would be attenuated in children who stutter. Results supported our hypotheses, lending strong support for the view that (1 children who stutter have weaker rhythm network connectivity and (2 the lack of a relation between rhythm network connectivity and rhythm discrimination in children who stutter may be an important contributing factor to the etiology of stuttering.

  14. Right- and left-brain hemisphere. Rhythm in reaction time to light signals is task-load-dependent: age, gender, and handgrip strength rhythm comparisons.

    Science.gov (United States)

    Reinberg, Alain; Bicakova-Rocher, Alena; Mechkouri, Mohamed; Ashkenazi, Israel

    2002-11-01

    In healthy mature subjects simple reaction time (SRT) to a single light signal (an easy task) is associated with a prominent rhythm with tau = 24 h of dominant (DH) as well as nondominant (NDH) hand performance, while three-choice reaction time (CRT), a complex task, is associated with tau = 24 h of the DH but tau gender on the difference in tau of the NDH and DH, as it relates to the corresponding cortical hemisphere of the brain, in comparison to the rhythm in handgrip strength. Healthy subjects, 9 (5 M and 4 F) adolescents 10-16 yr of age and 15 (8 M and 7 F) adults 18-67 yr of age, active between 08:00 +/- 1 h and 23:00 +/- 1:30 h and free of alcohol, tobacco, and drug consumption volunteered. Data were gathered longitudinally at home and work 4-7 times daily for 11-20 d. At each test time the following variables were assessed: grip strength of both hands (Dynamometer: Colin-Gentile, Paris, France); single reaction time to a yellow signal (SRT); and CRT to randomized yellow, red, or green signal series with varying instruction from test to test (Psycholog-24: Biophyderm, France). Rhythms in the performance in SRT, CRT, and handgrip strength of both DH and NDH were explored. The sleep-wake rhythm was assessed by sleep-logs, and in a subset of 14 subjects it was also assessed by wrist actigraphy (Mini-Motionlogger: AMI, Ardsley NY). Exploration of the prominent period tau of time series was achieved by a special power spectra analysis for unequally spaced data. Cosinor analysis was used to quantify the rhythm amplitude A and rhythm-adjusted mean M of the power spectral analysis determined trial tau. A 24h sleep-wake rhythm was detected in almost all cases. In adults, a prominent tau of 24 h characterized the performance of the easy task by both the DH and NDH. In adults a prominent tau of 24 h was also detected in the complex CRT task performed by the DH, but for the NDH the tau was gender-related but was age-related since it was seldom observed in adolescent

  15. Longitudinal study of hippocampal volumes in heavy cannabis users.

    Science.gov (United States)

    Koenders, L; Lorenzetti, V; de Haan, L; Suo, C; Vingerhoets, Wam; van den Brink, W; Wiers, R W; Meijer, C J; Machielsen, Mwj; Goudriaan, A E; Veltman, D J; Yücel, M; Cousijn, J

    2017-08-01

    Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes. Twenty heavy cannabis users (mean age 21 years, range 18-24 years) and 23 matched non-cannabis using healthy controls were submitted to a comprehensive psychological assessment and magnetic resonance imaging scan at baseline and at follow-up (average of 39 months post-baseline; standard deviation=2.4). Cannabis users started smoking around 16 years and smoked on average five days per week. A novel aspect of the current study is that hippocampal volume estimates were obtained from manual tracing the hippocampus on T1-weighted anatomical magnetic resonance imaging scans, using a previously validated protocol. Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes. Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy.

  16. Mood Disorders, Circadian Rhythms, Melatonin and Melatonin Agonists

    Directory of Open Access Journals (Sweden)

    M.A. Quera Salva

    2012-04-01

    Full Text Available Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC. Melatonin (N-acetyl-5-hydroxytryptamine is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.

  17. Circadian rhythms on skin function of hairless rats: light and thermic influences.

    Science.gov (United States)

    Flo, Ana; Díez-Noguera, Antoni; Calpena, Ana C; Cambras, Trinitat

    2014-03-01

    Circadian rhythms are present in most functions of living beings. We have demonstrated the presence of circadian rhythms in skin variables (transepidermal water loss, TEWL; stratum corneum hydration, SCH; and skin temperature) in hairless rats under different environmental conditions of light and temperature. Circadian rhythms in TEWL and SCH showed mean amplitudes of about 20% and 14% around the mean, respectively, and appeared under light-dark cycles as well as under constant darkness. Environmental temperature was able to override TEWL, but not SCH rhythm, evidencing the dependency of TEWL on the temperature. Mean daily values of TEWL and SCH, and also the amplitude of TEWL rhythm, increased with the age of the animal. Under constant light, situation that induces arrhythmicity in rats, SCH and TEWL were inversely correlated. The results suggest the importance to take into account the functional skin rhythms in research in dermatological sciences. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Circadian rhythm of urinary potassium excretion during treatment with an angiotensin receptor blocker.

    Science.gov (United States)

    Ogiyama, Yoshiaki; Miura, Toshiyuki; Watanabe, Shuichi; Fuwa, Daisuke; Tomonari, Tatsuya; Ota, Keisuke; Kato, Yoko; Ichikawa, Tadashi; Shirasawa, Yuichi; Ito, Akinori; Yoshida, Atsuhiro; Fukuda, Michio; Kimura, Genjiro

    2014-12-01

    We have reported that the circadian rhythm of urinary potassium excretion (U(K)V) is determined by the rhythm of urinary sodium excretion (U(Na)V) in patients with chronic kidney disease (CKD). We also reported that treatment with an angiotensin receptor blocker (ARB) increased the U(Na)V during the daytime, and restored the non-dipper blood pressure (BP) rhythm into a dipper pattern. However, the circadian rhythm of U(K)V during ARB treatment has not been reported. Circadian rhythms of U(Na)V and U(K)V were examined in 44 patients with CKD undergoing treatment with ARB. Whole-day U(Na)V was not altered by ARB whereas whole-day U(K)V decreased. Even during the ARB treatment, the significant relationship persisted between the night/day ratios of U(Na)V and U(K)V (r=0.56, pcircadian rhythm of U(K)V was determined by the rhythm of UNaV even during ARB treatment. Changes in the circadian U(K)V rhythm were not determined by aldosterone but by U(Na)V. © The Author(s) 2013.

  19. Ultradian activity rhythms in large groups of newly hatched chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Nielsen, B L; Erhard, H W; Friggens, N C; McLeod, J E

    2008-07-01

    A clutch of young chicks housed with a mother hen exhibit ultradian (within day) rhythms of activity corresponding to the brooding cycle of the hen. In the present study clear evidence was found of ultradian activity rhythms in newly hatched domestic chicks housed in groups larger than natural clutch size without a mother hen or any other obvious external time-keeper. No consistent synchrony was found between groups housed in different pens within the same room. The ultradian rhythms disappeared with time and little evidence of group rhythmicity remained by the third night. This disappearance over time suggests that the presence of a mother hen may be pivotal for the long-term maintenance of these rhythms. The ultradian rhythm of the chicks may also play an important role in the initiation of brooding cycles during the behavioural transition of the mother hen from incubation to brooding. Computer simulations of individual activity rhythms were found to reproduce the observations made on a group basis. This was achievable even when individual chick rhythms were modelled as independent of each other, thus no assumptions of social facilitation are necessary to obtain ultradian activity rhythms on a group level.

  20. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans

    Science.gov (United States)

    Hattori, Yuko; Tomonaga, Masaki; Matsuzawa, Tetsuro

    2015-01-01

    Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum) and auditory rhythms (e.g., hearing music while walking). Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse), suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement. PMID:26132703

  1. Distractor Effect of Auditory Rhythms on Self-Paced Tapping in Chimpanzees and Humans.

    Directory of Open Access Journals (Sweden)

    Yuko Hattori

    Full Text Available Humans tend to spontaneously align their movements in response to visual (e.g., swinging pendulum and auditory rhythms (e.g., hearing music while walking. Particularly in the case of the response to auditory rhythms, neuroscientific research has indicated that motor resources are also recruited while perceiving an auditory rhythm (or regular pulse, suggesting a tight link between the auditory and motor systems in the human brain. However, the evolutionary origin of spontaneous responses to auditory rhythms is unclear. Here, we report that chimpanzees and humans show a similar distractor effect in perceiving isochronous rhythms during rhythmic movement. We used isochronous auditory rhythms as distractor stimuli during self-paced alternate tapping of two keys of an electronic keyboard by humans and chimpanzees. When the tempo was similar to their spontaneous motor tempo, tapping onset was influenced by intermittent entrainment to auditory rhythms. Although this effect itself is not an advanced rhythmic ability such as dancing or singing, our results suggest that, to some extent, the biological foundation for spontaneous responses to auditory rhythms was already deeply rooted in the common ancestor of chimpanzees and humans, 6 million years ago. This also suggests the possibility of a common attentional mechanism, as proposed by the dynamic attending theory, underlying the effect of perceiving external rhythms on motor movement.

  2. Effects of Some Aspects of Rhythm on Tempo Perception.

    Science.gov (United States)

    Wang, Cecilia Chu

    1984-01-01

    Results indicated that significantly more time is needed to perceive tempo increase than tempo decrease, uneven rhythm then even rhythm, and melody alone than melody with accompaniment. Furthermore, significant interaction effects involving beat locations of tempo change suggest that differential groupings may be a factor in tempo discrimination.…

  3. Effects of tempo and timing of simple musical rhythms

    NARCIS (Netherlands)

    Repp, B.H.; Windsor, W.L.; Desain, P.W.M.

    2002-01-01

    In this study we investigated whether and how the timing of musical rhythms changes with tempo. Twelve skilled pianists played a monophonic 8-bar melody in 21 different rhythmic versions at 4 different tempi. Within bars, the rhythms represented all possible ordered pairs and triplets of note values

  4. Optical design and performance of F-Theta lenses for high-power and high-precision applications

    Science.gov (United States)

    Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.

    2015-09-01

    F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.

  5. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  6. Sleep, 24-hour activity rhythms, and brain structure : A population-based study

    NARCIS (Netherlands)

    L.A. Zuurbier (Lisette)

    2016-01-01

    markdownabstractIn this thesis, Chapter 2 focuses on sleep, 24-hour activity rhythms and health. Chapter 2.1 describes the influence of demographics, lifestyle and sleep on 24-hour activity rhythms. In Chapter 2.2 sleep and 24-hour activity rhythms are used to predict mortality. This chapter is

  7. Rhythm Perception and Its Role in Perception and Learning of Dysrhythmic Speech

    Science.gov (United States)

    Borrie, Stephanie A.; Lansford, Kaitlin L.; Barrett, Tyson S.

    2017-01-01

    Purpose: The perception of rhythm cues plays an important role in recognizing spoken language, especially in adverse listening conditions. Indeed, this has been shown to hold true even when the rhythm cues themselves are dysrhythmic. This study investigates whether expertise in rhythm perception provides a processing advantage for perception…

  8. Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms.

    Directory of Open Access Journals (Sweden)

    María Serón-Ferré

    Full Text Available Disruption of the maternal environment during pregnancy is a key contributor to offspring diseases that develop in adult life. To explore the impact of chronodisruption during pregnancy in primates, we exposed pregnant capuchin monkeys to constant light (eliminating the maternal melatonin rhythm from the last third of gestation to term. Maternal temperature and activity circadian rhythms were assessed as well as the newborn temperature rhythm. Additionally we studied the effect of daily maternal melatonin replacement during pregnancy on these rhythms. Ten pregnant capuchin monkeys were exposed to constant light from 60% of gestation to term. Five received a daily oral dose of melatonin (250 µg kg/body weight at 1800 h (LL+Mel and the other five a placebo (LL. Six additional pregnant females were maintained in a 14∶10 light:dark cycles and their newborns were used as controls (LD. Rhythms were recorded 96 h before delivery in the mother and at 4-6 days of age in the newborn. Exposure to constant light had no effect on the maternal body temperature rhythm however it delayed the acrophase of the activity rhythm. Neither rhythm was affected by melatonin replacement. In contrast, maternal exposure to constant light affected the newborn body temperature rhythm. This rhythm was entrained in control newborns whereas LL newborns showed a random distribution of the acrophases over 24-h. In addition, mean temperature was decreased (34.0±0.6 vs 36.1±0.2°C, in LL and control, respectively P<0.05. Maternal melatonin replacement during pregnancy re-synchronized the acrophases and restored mean temperature to the values in control newborns. Our findings demonstrate that prenatal melatonin is a Zeitgeber for the newborn temperature rhythm and supports normal body temperature maintenance. Altogether these prenatal melatonin effects highlight the physiological importance of the maternal melatonin rhythm during pregnancy for the newborn primate.

  9. Using Rhythms of Relationships to Understand Email Archives

    National Research Council Canada - National Science Library

    Perer, Adam; Shneiderman, Ben; Oard, Douglas W

    2005-01-01

    ...: analyzing the temporal rhythms of social relationships. We provide methods for constructing meaningful rhythms from the email headers by identifying relationships and interpreting their attributes. With these visualization techniques, email archive explorers can uncover insights that may have been otherwise hidden in the archive. We apply our methods to an individual's fifteen-year email archive, which consists of about 45,000 messages and over 4,000 relationships.

  10. High-Field Nb3Sn Cos-theta Dipole with Stress Management

    Energy Technology Data Exchange (ETDEWEB)

    Novitski, Igor [Fermilab; Carmichael, Justin [Fermilab; Kashikhin, Vadim V. [Fermilab; Zlobin, Alexander V. [Fermilab

    2017-01-01

    Cost-effective superconducting dipole magnets with operating fields up to 16 T are being considered for the LHC en-ergy upgrade (HE-LHC) and a Future Circular Collider (FCC). To demonstrate feasibility of 15 T accelerator quality dipole mag-nets, FNAL as a part of the US-MDP is developing a single-aper-ture Nb3Sn dipole demonstrator based on a 4-layer graded cos-theta coil with 60 mm aperture and cold iron yoke. In parallel, to explore the limit of the Nb3Sn accelerator magnet technology, op-timize magnet design and performance parameters, and reduce magnet cost, magnet design studies are also being performed to push the nominal bore field to 16 T in a 60-mm aperture cos-theta dipole. Results of these studies are reported and discussed in this paper.

  11. Disrupted hippocampal sharp‐wave ripple‐associated spike dynamics in a transgenic mouse model of dementia

    Science.gov (United States)

    Witton, Jonathan; Staniaszek, Lydia E.; Bartsch, Ullrich; Randall, Andrew D.; Jones, Matthew W.

    2015-01-01

    Key points High frequency (100–250 Hz) neuronal oscillations in the hippocampus, known as sharp‐wave ripples (SWRs), synchronise the firing behaviour of groups of neurons and play a key role in memory consolidation.Learning and memory are severely compromised in dementias such as Alzheimer's disease; however, the effects of dementia‐related pathology on SWRs are unknown.The frequency and temporal structure of SWRs was disrupted in a transgenic mouse model of tauopathy (one of the major hallmarks of several dementias).Excitatory pyramidal neurons were more likely to fire action potentials in a phase‐locked manner during SWRs in the mouse model of tauopathy; conversely, inhibitory interneurons were less likely to fire phase‐locked spikes during SWRs.These findings indicate there is reduced inhibitory control of hippocampal network events and point to a novel mechanism which may underlie the cognitive impairments in this model of dementia. Abstract Neurons within the CA1 region of the hippocampus are co‐activated during high frequency (100–250 Hz) sharp‐wave ripple (SWR) activity in a manner that probably drives synaptic plasticity and promotes memory consolidation. In this study we have used a transgenic mouse model of dementia (rTg4510 mice), which overexpresses a mutant form of tau protein, to examine the effects of tauopathy on hippocampal SWRs and associated neuronal firing. Tetrodes were used to record simultaneous extracellular action potentials and local field potentials from the dorsal CA1 pyramidal cell layer of 7‐ to 8‐month‐old wild‐type and rTg4510 mice at rest in their home cage. At this age point these mice exhibit neurofibrillary tangles, neurodegeneration and cognitive deficits. Epochs of sleep or quiet restfulness were characterised by minimal locomotor activity and a low theta/delta ratio in the local field potential power spectrum. SWRs detected off‐line were significantly lower in amplitude and had an altered temporal

  12. [The influence of interfered circadian rhythm on pregnancy and neonatal rats].

    Science.gov (United States)

    Chen, Wen-Jun; Sheng, Wen-Jie; Guo, Yin-Hua; Tan, Yong

    2015-10-25

    The aim of this study was to observe the influence of interfered circadian rhythm on pregnancy of rats and growth of neonatal rats, and to explore the relationship between the interfered circadian rhythm and the changes of melatonin and progesterone. Continuous light was used to inhibit melatonin secretion and therefore the interfered circadian rhythm animal model was obtained. The influence of interfered circadian rhythm on delivery of pregnant rats was observed. Serum was collected from rats during different stages of pregnancy to measure the concentrations of melatonin and progesterone. In order to observe the embryo resorption rate, half of pregnant rats were randomly selected to undergo a laparotomy, and the remainder was used to observe delivery and assess the growth of neonatal rats after delivery. The results showed that the interfered circadian rhythm induced adverse effects on pregnancy outcomes, including an increase of embryo resorption rate and a decrease in the number of live births; inhibited the secretion of melatonin along with decreased serum progesterone level; prolonged the stage of labor, but not the duration of pregnancy; and disturbed the fetal intrauterine growth and the growth of neonatal rats. The results suggest that interfered circadian rhythm condition made by continuous light could make adverse effects on both pregnant rats and neonatal rats. The results of our study may provide a way to modulate pregnant women's circadian rhythm and a possibility of application of melatonin on pregnant women.

  13. The aesthetic value of the golden ratio and rhythm of the photographs

    Directory of Open Access Journals (Sweden)

    Ivan Budimir

    2015-05-01

    Full Text Available The study analyzes the aesthetic value of rhythm of the photos as opposed to the form in which the rhythm is subjected. With the method of experimental aesthetics, the visual aesthetics experiment is conducted in which the tested quality of the different forms of proportional rhythm due to the shape and length of the interval as a part of the rhythmic matrix. The experimental part consisted of an assessment of visual quality of the 5 photos containing different variations of proportional rate. On all the photographs the rhythm is constituted of cigarettes situated on the surface of the old concrete. Spacing between cigarettes and interval length is successively reduced to accurately defined proportions. In one photograph, the relations between the neighboring intervals are in line with the ratio of the golden section. The experiment involved 32 subjects who had the task of assessing the level of the aesthetic qualities of rhythm on the Likert scale from 1 to 5 where the grades cannot be repeated. Measurement of the quality of a particular form of rhythm is defined as the arithmetic mean score of all respondents. The highest mean is given to the test image with uniform rhythm when the second place is reserved for a photograph whose rhythm is aligned with the golden section. Conducted analysis of repeated measures ANOVA showed that the obtained arithmetic means differ significantly (F = 3.430, p = 0.011 with a significance level of p 0.05.

  14. Recent Advances in Circadian Rhythms in Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Lihong eChen

    2015-04-01

    Full Text Available Growing evidence shows that intrinsic circadian clocks are tightly related to cardiovascular functions. The diurnal changes in blood pressure and heart rate are well known circadian rhythms. Endothelial function, platelet aggregation and thrombus formation exhibit circadian changes as well. The onset of many cardiovascular diseases (CVDs or events, such as myocardial infarction, stroke, arrhythmia, and sudden cardiac death, also exhibits temporal trends. Furthermore, there is strong evidence from animal models and epidemiological studies showing that disruption of circadian rhythms is a significant risk factor for many CVDs, and the intervention of CVDs may have a time dependent effect. In this mini review, we summarized recent advances in our understanding of the relationship between circadian rhythm and cardiovascular physiology and diseases including blood pressure regulation and myocardial infarction.

  15. Instability study during implosion in the Tupa Theta-Pinch

    International Nuclear Information System (INIS)

    Kayama, M.E.; Boeckelmann, H.K.

    1986-01-01

    The importance of instabilities which occur during plasma heating in a Theta Pinch, in the implosion phase, is analysed. The plasma diagnostic was done by ultrafast photography and diamagnetic probe. The implosion time and the current layer thickness were calculated using a hybrid code for plasma simulation. The theoretical data were compared with the experimental ones. (M.C.K.) [pt

  16. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration.

    Science.gov (United States)

    Gruzelier, John

    2009-02-01

    Professionally significant enhancement of music and dance performance and mood has followed training with an EEG-neurofeedback protocol which increases the ratio of theta to alpha waves using auditory feedback with eyes closed. While originally the protocol was designed to induce hypnogogia, a state historically associated with creativity, the outcome was psychological integration, while subsequent applications focusing on raising the theta-alpha ratio, reduced depression and anxiety in alcoholism and resolved post traumatic stress syndrome (PTSD). In optimal performance studies we confirmed associations with creativity in musical performance, but effects also included technique and communication. We extended efficacy to dance and social anxiety. Diversity of outcome has a counterpart in wide ranging associations between theta oscillations and behaviour in cognitive and affective neuroscience: in animals with sensory-motor activity in exploration, effort, working memory, learning, retention and REM sleep; in man with meditative concentration, reduced anxiety and sympathetic autonomic activation, as well as task demands in virtual spatial navigation, focussed and sustained attention, working and recognition memory, and having implications for synaptic plasticity and long term potentiation. Neuroanatomical circuitry involves the ascending mescencephalic-cortical arousal system, and limbic circuits subserving cognitive as well as affective/motivational functions. Working memory and meditative bliss, representing cognitive and affective domains, respectively, involve coupling between frontal and posterior cortices, exemplify a role for theta and alpha waves in mediating the interaction between distal and widely distributed connections. It is posited that this mediation in part underpins the integrational attributes of alpha-theta training in optimal performance and psychotherapy, creative associations in hypnogogia, and enhancement of technical, communication and

  17. Prior Learning of Relevant Nonaversive Information Is a Boundary Condition for Avoidance Memory Reconsolidation in the Rat Hippocampus.

    Science.gov (United States)

    Radiske, Andressa; Gonzalez, Maria Carolina; Conde-Ocazionez, Sergio A; Feitosa, Anatildes; Köhler, Cristiano A; Bevilaqua, Lia R; Cammarota, Martín

    2017-10-04

    Reactivated memories can be modified during reconsolidation, making this process a potential therapeutic target for posttraumatic stress disorder (PTSD), a mental illness characterized by the recurring avoidance of situations that evoke trauma-related fears. However, avoidance memory reconsolidation depends on a set of still loosely defined boundary conditions, limiting the translational value of basic research. In particular, the involvement of the hippocampus in fear-motivated avoidance memory reconsolidation remains controversial. Combining behavioral and electrophysiological analyses in male Wistar rats, we found that previous learning of relevant nonaversive information is essential to elicit the participation of the hippocampus in avoidance memory reconsolidation, which is associated with an increase in theta- and gamma-oscillation power and cross-frequency coupling in dorsal CA1 during reactivation of the avoidance response. Our results indicate that the hippocampus is involved in memory reconsolidation only when reactivation results in contradictory representations regarding the consequences of avoidance and suggest that robust nesting of hippocampal theta-gamma rhythms at the time of retrieval is a specific reconsolidation marker. SIGNIFICANCE STATEMENT Posttraumatic stress disorder (PTSD) is characterized by maladaptive avoidance responses to stimuli or behaviors that represent or bear resemblance to some aspect of a traumatic experience. Disruption of reconsolidation, the process by which reactivated memories become susceptible to modifications, is a promising approach for treating PTSD patients. However, much of what is known about fear-motivated avoidance memory reconsolidation derives from studies based on fear conditioning instead of avoidance-learning paradigms. Using a step-down inhibitory avoidance task in rats, we found that the hippocampus is involved in memory reconsolidation only when the animals acquired the avoidance response in an

  18. Crosslinguistic Application of English-Centric Rhythm Descriptors in Motor Speech Disorders

    Science.gov (United States)

    Liss, Julie M.; Utianski, Rene; Lansford, Kaitlin

    2014-01-01

    Background Rhythmic disturbances are a hallmark of motor speech disorders, in which the motor control deficits interfere with the outward flow of speech and by extension speech understanding. As the functions of rhythm are language-specific, breakdowns in rhythm should have language-specific consequences for communication. Objective The goals of this paper are to (i) provide a review of the cognitive- linguistic role of rhythm in speech perception in a general sense and crosslinguistically; (ii) present new results of lexical segmentation challenges posed by different types of dysarthria in American English, and (iii) offer a framework for crosslinguistic considerations for speech rhythm disturbances in the diagnosis and treatment of communication disorders associated with motor speech disorders. Summary This review presents theoretical and empirical reasons for considering speech rhythm as a critical component of communication deficits in motor speech disorders, and addresses the need for crosslinguistic research to explore language-universal versus language-specific aspects of motor speech disorders. PMID:24157596

  19. Cortico-pontine theta carrier frequency phase shift across sleep/wake states following monoaminergic lesion in rat.

    Science.gov (United States)

    Kalauzi, Aleksandar; Spasic, Sladjana; Petrovic, Jelena; Ciric, Jelena; Saponjic, Jelena

    2012-06-01

    This study was aimed to explore the sleep/wake states related cortico-pontine theta carrier frequency phase shift following a systemically induced chemical axotomy of the monoaminergic afferents within a brain of the freely moving rats. Our experiments were performed in 14 adult, male Sprague Dawley rats, chronically implanted for sleep recording. We recorded sleep during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. After sleep/wake states identification, FFT analysis was performed on 5 s epochs. Theta carrier frequency phase shift (∆Φ) was calculated for each epoch by averaging theta Fourier component phase shifts, and the ∆Φ values were plotted for each rat in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Calculated group averages have shown that ∆Φ increased between pons and cortex significantly in all sleep/wake states (Wake, NREM and REM) following the monoaminergic lesions, with respect to controls. Monoaminergic lesions established the pontine leading role in the brain theta oscillations during all sleep/wake states.

  20. Sustained Accelerated Idioventricular Rhythm in a Centrifuge-Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M

    2017-08-01

    Hypergravitational exposures during human centrifugation are known to provoke dysrhythmias, including sinus dysrhythmias/tachycardias, premature atrial/ventricular contractions, and even atrial fibrillations or flutter patterns. However, events are generally short-lived and resolve rapidly after cessation of acceleration. This case report describes a prolonged ectopic ventricular rhythm in response to high G exposure. A previously healthy 30-yr-old man voluntarily participated in centrifuge trials as a part of a larger study, experiencing a total of 7 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak +3.5 Gz, run 2) and two +Gx runs (peak +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Hemodynamic data collected included blood pressure, heart rate, and continuous three-lead electrocardiogram. Following the final acceleration exposure of the last Day 2 run (peak +4.5 Gx and +4.0 Gz combined, resultant +6.0 G), during a period of idle resting centrifuge activity (resultant vector +1.4 G), the subject demonstrated a marked change in his three-lead electrocardiogram from normal sinus rhythm to a wide-complex ectopic ventricular rhythm at a rate of 91-95 bpm, consistent with an accelerated idioventricular rhythm (AIVR). This rhythm was sustained for 2 m, 24 s before reversion to normal sinus. The subject reported no adverse symptoms during this time. While prolonged, the dysrhythmia was asymptomatic and self-limited. AIVR is likely a physiological response to acceleration and can be managed conservatively. Vigilance is needed to ensure that AIVR is correctly distinguished from other, malignant rhythms to avoid inappropriate treatment and negative operational impacts.Suresh R, Blue RS, Mathers C, Castleberry TL, Vanderploeg JM. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(8):789-793.

  1. The maturation of cortical sleep rhythms and networks over early development

    OpenAIRE

    Chu, Catherine Jean; Leahy, J.; Pathmanathan, Jay Sriram; Kramer, M.A.; Cash, Sydney S.

    2014-01-01

    Objective: Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods: We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. ...

  2. The Impact of Instrument-Specific Musical Training on Rhythm Perception and Production.

    Science.gov (United States)

    Matthews, Tomas E; Thibodeau, Joseph N L; Gunther, Brian P; Penhune, Virginia B

    2016-01-01

    Studies comparing musicians and non-musicians have shown that musical training can improve rhythmic perception and production. These findings tell us that training can result in rhythm processing advantages, but they do not tell us whether practicing a particular instrument could lead to specific effects on rhythm perception or production. The current study used a battery of four rhythm perception and production tasks that were designed to test both higher- and lower-level aspects of rhythm processing. Four groups of musicians (drummers, singers, pianists, string players) and a control group of non-musicians were tested. Within-task differences in performance showed that factors such as meter, metrical complexity, tempo, and beat phase significantly affected the ability to perceive and synchronize taps to a rhythm or beat. Musicians showed better performance on all rhythm tasks compared to non-musicians. Interestingly, our results revealed no significant differences between musician groups for the vast majority of task measures. This was despite the fact that all musicians were selected to have the majority of their training on the target instrument, had on average more than 10 years of experience on their instrument, and were currently practicing. These results suggest that general musical experience is more important than specialized musical experience with regards to perception and production of rhythms.

  3. The impact of instrument-specific musical training on rhythm perception and production

    Directory of Open Access Journals (Sweden)

    Tomas Edward Matthews

    2016-02-01

    Full Text Available Various studies have shown that musical training can improve rhythmic perception and production. These findings tell us that music training can result in rhythm processing advantages but they do not tell us whether practicing a particular instrument could lead to specific effects on rhythm perception or production. The current study used a battery of four rhythm perception and production tasks that were designed to test both higher- and lower-level aspects of rhythm processing. Four groups of musicians (drummers, singers, pianists, string players and a control group of non-musicians were tested. Within-task differences in performance showed that factors such as meter, metrical complexity, tempo and beat phase significantly affected the ability to perceive and synchronize taps to a rhythm or beat. Musicians showed better performance on all rhythm tasks compared to non-musicians. Interestingly, our results revealed no significant differences between musician groups for the vast majority of task measures. This is despite the fact that all musicians were selected to have the majority of their training on the target instrument, had on average more than ten years of experience on their instrument, and were currently practicing. These results suggest that general musical experience is more important than specialized musical experience with regards to perception and production of rhythms.

  4. Find a Heart Rhythm Specialist

    Science.gov (United States)

    ... Taiwan Thailand Turkey United Arab Emirates United Kingdom Venezuela Vietnam Within 5 miles 10 miles 15 miles ... info@HRSonline.org © Heart Rhythm Society 2017 Privacy Policy | Linking Policy | Patient Education Disclaimer You are about ...

  5. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    Science.gov (United States)

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  6. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  7. Increased coherence among striatal regions in the theta range during attentive wakefulness

    Directory of Open Access Journals (Sweden)

    G. Lepski

    2012-08-01

    Full Text Available The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P 0.7 between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001. Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.

  8. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    Science.gov (United States)

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. An analysis of heart rhythm dynamics using a three-coupled oscillator model

    International Nuclear Information System (INIS)

    Gois, Sandra R.F.S.M.; Savi, Marcelo A.

    2009-01-01

    Rhythmic phenomena represent one of the most striking manifestations of the dynamic behavior in biological systems. Understanding the mechanisms responsible for biological rhythms is crucial for the comprehension of the dynamics of life. Natural rhythms could be either regular or irregular over time and space. Each kind of dynamical behavior may be related to both normal and pathological physiological functioning. The cardiac conducting system can be treated as a network of self-excitatory elements and, since these elements exhibit oscillatory behavior, they can be modeled as nonlinear oscillators. This paper proposes a mathematical model to describe heart rhythms considering three modified Van der Pol oscillators connected with time delay couplings. Therefore, the heart dynamics is represented by a system of differential difference equations. Numerical simulations are carried out presenting qualitative agreement with the general heart rhythm behavior. Normal and pathological rhythms represented by the ECG signals are reproduced. Pathological rhythms are generated by either the coupling alterations that represents communications aspects in the heart electric system or forcing excitation representing external pacemaker excitation.

  10. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    International Nuclear Information System (INIS)

    Heidrich, J.E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10 16 cm -3 and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10 16 cm -3 and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil

  11. Validation Study of CODES Dragonfly Network Model with Theta Cray XC System

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, Misbah [Argonne National Lab. (ANL), Argonne, IL (United States); Ross, Robert B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-31

    This technical report describes the experiments performed to validate the MPI performance measurements reported by the CODES dragonfly network simulation with the Theta Cray XC system at the Argonne Leadership Computing Facility (ALCF).

  12. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise. METHODOLOGY/PRINCIPAL FINDINGS: In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten and noise (induced by high versus low distraction as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.

  14. Hippocampal sclerosis: correlation of MR imaging findings with surgical outcome

    International Nuclear Information System (INIS)

    Kim, Yoon Hee; Chang, Kee Hyun; Kim, Kyung Won; Han, Moon Hee; Park, Sung Ho; Nam, Hyun Woo; Choi, Kyu Ho; Cho, Woo Ho

    2001-01-01

    Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p 0.05). Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator

  15. Theta-Cream trademark versus Bepanthol trademark lotion in breast cancer patients under radiotherapy. A new prophylactic agent in skin care?

    International Nuclear Information System (INIS)

    Roeper, B.; Kaisig, D.; Auer, F.; Mergen, E.; Molls, M.

    2004-01-01

    Background and purpose: in radiotherapy of the breast following breast-conserving surgery, the adverse reaction predominatly found is confined to the skin. After phase II studies, Theta-Cream trademark , containing CM glucan, hydroxyprolisilan C und matrixyl as active substances, was said to have prophylactic properties of preventing acute radiation side effects in skin tissue. In a prospective randomized study, Theta-Cream trademark was compared with standard skin care using Bepanthol trademark lotion. Patients and methods: 20 breast cancer patients were randomly assigned to use Theta-Cream trademark or Bepanthol trademark lotion during radiotherapy. At 0, 30, and 50 Gy, acute skin toxicity was scored with a modified RTOG scoring system. The patients' content with the skin care and the technical assistants' content with the skin marks were recorded. Results: for single aspects of toxicity and their sums in defined skin areas, no differences in median and range between study groups were found. The maximal toxicity anywhere in the breast averaged in a moderate erythema, mild elevation of skin temperature, no desquamation in both groups. Mild itchiness and sporadic efflorescences more frequently seen with Theta-Cream trademark . According to a ranking of anonymized breast photos at 50 Gy by independent investigators, side effects were equal. Patients' content was high with both skin care regimens (1.25 on a scale from 0 to 10). With Theta-Cream trademark a trend toward worse skin marks was noted. Adverse events exclusively occurred in Theta-Cream trademark users: suspected allergic reaction once, and the necessity for resimulation twice. Conclusion: in direct comparison with dexpanthenol-containing lotion, no advantage for Theta-Cream trademark was found. Higher costs and problems with skin marks prevent a general recommendation. (orig.)

  16. Morphological Variations of Hippocampal Formation in Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Hospital Sao Paulo and other centers in Brazil compared the hippocampal formation (HF morphology of healthy asymptomatic individuals (n=30 with that of patients with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS(n=68, of patients with malformations of cortical development (MCD(n=34, and of patients with morphological HF variations without other structural signs (pure MVHF(n=12.

  17. [Circadian rhythm : Influence on Epworth Sleepiness Scale score].

    Science.gov (United States)

    Herzog, M; Bedorf, A; Rohrmeier, C; Kühnel, T; Herzog, B; Bremert, T; Plontke, S; Plößl, S

    2017-02-01

    The Epworth Sleepiness Scale (ESS) is frequently used to determine daytime sleepiness in patients with sleep-disordered breathing. It is still unclear whether different levels of alertness induced by the circadian rhythm influence ESS score. The aim of this study is to investigate the influence of circadian rhythm-dependent alertness on ESS performance. In a monocentric prospective noninterventional observation study, 97 patients with suspected sleep-disordered breathing were investigated with respect to daytime sleepiness in temporal relationship to polysomnographic examination and treatment. The Karolinska Sleepiness Scale (KSS) and the Stanford Sleepiness Scale (SSS) served as references for the detection of present sleepiness at three different measurement times (morning, noon, evening), prior to and following a diagnostic polysomnography night as well as after a continuous positive airway pressure (CPAP) titration night (9 measurements in total). The KSS, SSS, and ESS were performed at these times in a randomized order. The KSS and SSS scores revealed a circadian rhythm-dependent curve with increased sleepiness at noon and in the evening. Following a diagnostic polysomnography night, the scores were increased compared to the measurements prior to the night. After the CPAP titration night, sleepiness in the morning was reduced. KSS and SSS reflect the changes in alertness induced by the circadian rhythm. The ESS score war neither altered by the intra-daily nor by the inter-daily changes in the level of alertness. According to the present data, the ESS serves as a reliable instrument to detect the level of daytime sleepiness independently of the circadian rhythm-dependent level of alertness.

  18. Abnormalities of hippocampal signal intensity in patients with familial mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Coan A.C.

    2004-01-01

    Full Text Available Mesial temporal lobe epilepsy (MTLE is associated with hippocampal atrophy and hippocampal signal abnormalities. In our series of familial MTLE (FMTLE, we found a high proportion of hippocampal abnormalities. To quantify signal abnormalities in patients with FMTLE we studied 152 individuals (46 of them asymptomatic with FMTLE. We used NIH-Image® for volumetry and signal quantification in coronal T1 inversion recovery and T2 for all cross-sections of the hippocampus. Values diverging by 2 or more SD from the control mean were considered abnormal. T2 hippocampal signal abnormalities were found in 52% of all individuals: 54% of affected subjects and 48% of asymptomatic subjects. T1 hippocampal signal changes were found in 34% of all individuals: 42.5% of affected subjects and 15% of asymptomatic subjects. Analysis of the hippocampal head (first three slices revealed T2 abnormalities in 73% of all individuals (74% of affected subjects and 72% of asymptomatic subjects and T1 abnormalities in 59% (67% of affected subjects and 41% of asymptomatic subjects. Affected individuals had smaller volumes than controls (P < 0.0001. There was no difference in hippocampal volumes between asymptomatic subjects and controls, although 39% of asymptomatic patients had hippocampal atrophy. Patients with an abnormal hippocampal signal (133 individuals had smaller ipsilateral volume, but no linear correlation could be determined. Hippocampal signal abnormalities in FMTLE were more frequently found in the hippocampal head in both affected and asymptomatic family members, including those with normal volumes. These results indicate that subtle abnormalities leading to an abnormal hippocampal signal in FMTLE are not necessarily related to seizures and may be determined by genetic factors.

  19. Hippocampal multimodal structural changes and subclinical depression in healthy individuals.

    Science.gov (United States)

    Spalletta, Gianfranco; Piras, Fabrizio; Caltagirone, Carlo; Fagioli, Sabrina

    2014-01-01

    Several neuroimaging studies report reduced hippocampal volume in depressed patients. However, it is still unclear if hippocampal changes in healthy individuals can be considered a risk factor for progression to clinical depression. Here, we investigated subclinical depression and its hippocampal correlates in a non-clinical sample of healthy individuals, with particular regard to gender differences. One-hundred-two participants underwent a comprehensive clinical assessment, a high-resolution T1-weighted magnetic resonance imaging and diffusion tensor imaging protocol using a 3T MRI scanner. Data of macro-(volume) and micro-(mean diffusivity, MD) structural changes of the hippocampus were analyzed with reference to the Beck Depression Inventory score. Results of multivariate regression analyses revealed reduced bilateral volume, along with increased bilateral MD in hippocampal formation predicting subclinical depressive phenomenology only in healthy males. Conversely, subclinical depressive phenomenology in healthy female was accounted for by only lower educational level, in the absence of any hippocampal structure variations. To date, this is the only evidence reporting a relationship between subclinical depressive phenomenology and changes in hippocampal formation in healthy individuals. Our findings demonstrated that reduced volume, along with increased MD in hippocampal formation, is significantly associated with subclinical depressive phenomenology in healthy males. This encourages to study the hypothesis that early macro- and microstructural changes in hippocampi associated with subclinical depression may constitute a risk factor of developing depressive disorders in males. © 2013 Elsevier B.V. All rights reserved.

  20. A spectroscopic study of radiation produced in a theta-pinch

    International Nuclear Information System (INIS)

    Trigueiros, A.; Machida, M.; Pagan, C.J.B.

    1988-01-01

    Preliminary results of the analysis of the spectra of four times ionized Krypton, Kr-V, are presented. 28 transitions were classified and for five of then the classification is new. We also present the UNICAMP theta-pinch for the study of highly ionized atoms. This device is now in testing. (author) [pt