WorldWideScience

Sample records for hippocampal slice induced

  1. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert

    2003-01-01

    The microtubule-disrupting agent colchicine is known to be particular toxic for certain types of neurons, including the granule cells of the dentate gyrus. In this study we investigated whether colchicine could induce such neuron-specific degeneration in developing (1 week in vitro) and mature (3...... weeks in vitro) organotypic hippocampal slice cultures and whether the induced cell death was apoptotic and/or necrotic. When applied to 1-week-old cultures for 48 h, colchicine induced primarily apoptotic, but also a minor degree of necrotic cell death in the dentate granule cells, as investigated...... by cellular uptake of the fluorescent dye propidium iodide (PI), immunostaining for active caspase 3 and c-Jun/AP-1 (N) and fragmentation of nuclei as seen in Hoechst 33342 staining. All four markers appeared after 12 h of colchicine exposure. Two of them, active caspase 3 and c-Jun/AP-1 (N) displayed...

  2. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...... loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity....

  3. Role of caspase-12 in amyloid beta-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods.

    NARCIS (Netherlands)

    Ishige, K.; Takagi, N.; Imai, T.; Rausch, W.D.; Kosuge, Y.; Kihara, T.; Kusama-Eguchi, K.; Ikeda, H.; Cools, A.R.; Waddington, J.L.; Koshikawa, N.; Ito, Y.

    2007-01-01

    Amyloid beta (Abeta) toxicity has been implicated in cell death in the hippocampus, but its specific mechanisms are poorly understood. In this study, Abeta-induced cell death was investigated in organotypic hippocampal slice cultures (OHCs) that were cultured for various periods in vitro. There were

  4. Chondroitin Sulfate Induces Depression of Synaptic Transmission and Modulation of Neuronal Plasticity in Rat Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Elisa Albiñana

    2015-01-01

    Full Text Available It is currently known that in CNS the extracellular matrix is involved in synaptic stabilization and limitation of synaptic plasticity. However, it has been reported that the treatment with chondroitinase following injury allows the formation of new synapses and increased plasticity and functional recovery. So, we hypothesize that some components of extracellular matrix may modulate synaptic transmission. To test this hypothesis we evaluated the effects of chondroitin sulphate (CS on excitatory synaptic transmission, cellular excitability, and neuronal plasticity using extracellular recordings in the CA1 area of rat hippocampal slices. CS caused a reversible depression of evoked field excitatory postsynaptic potentials in a concentration-dependent manner. CS also reduced the population spike amplitude evoked after orthodromic stimulation but not when the population spikes were antidromically evoked; in this last case a potentiation was observed. CS also enhanced paired-pulse facilitation and long-term potentiation. Our study provides evidence that CS, a major component of the brain perineuronal net and extracellular matrix, has a function beyond the structural one, namely, the modulation of synaptic transmission and neuronal plasticity in the hippocampus.

  5. Folic Acid Protects Against Glutamate-Induced Excitotoxicity in Hippocampal Slices Through a Mechanism that Implicates Inhibition of GSK-3β and iNOS.

    Science.gov (United States)

    Budni, Josiane; Molz, Simone; Dal-Cim, Tharine; Martín-de-Saavedra, Maria Dolores; Egea, Javier; Lopéz, Manuela G; Tasca, Carla Ines; Rodrigues, Ana Lúcia Severo

    2017-02-10

    Folic acid (folate) is a vitamin of the B-complex group crucial for neurological function. Considering that excitotoxicity and cell death induced by glutamate are involved in many disorders, the potential protective effect of folic acid on glutamate-induced cell damage in rat hippocampal slices and the possible intracellular signaling pathway involved in such effect were investigated. The treatment of hippocampal slices with folic acid (100 μM) significantly abrogated glutamate (1 mM)-induced reduction of cell viability measured by MTT reduction assay and inhibited glutamate-induced D-[(3)H]-aspartate release. To investigate the putative intracellular signaling pathways implicated in the protective effect of folic acid, we used a PI3K inhibitor, LY294002, which abolished the protective effects of folic acid against glutamate-induced cell damage and D-[(3)H] aspartate release. Moreover, hippocampal slices incubated with folic acid alone for 30 min presented increased phosphorylation of GSK-3β at Ser9, indicating an inhibition of the activity of this enzyme. Furthermore, folic acid in the presence of glutamate insult in hippocampal slices maintained for an additional period of 6 h in fresh culture medium without glutamate and/or folic acid induced phosphorylation of GSK-3β and β-catenin expression. In addition, glutamate-treated hippocampal slices showed increased iNOS expression that was reversed by folic acid. In conclusion, the results of this study show that the protective effect of folic acid against glutamate-induced excitotoxicity may involve the modulation of PI3K/GSK-3β/β-catenin pathway and iNOS inhibition.

  6. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H

    1993-01-01

    that directs expression of E. coli beta-galactosidase (beta-gal), were microapplied into stratum pyramidale or stratum granulosum of slice cultures. Twenty-four hours later, a cluster of transduced cells expressing beta-gal was observed at the microapplication site. Gene transfer by microapplication was both...... effective and rapid. The titer of the HSVlac stocks was determined on NIH3T3 cells. Eighty-three percent of the beta-gal forming units successfully transduced beta-gal after microapplication to slice cultures. beta-Gal expression was detected as rapidly as 4 h after transduction into cultures of fibroblasts...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  7. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    to in vivo cell stain observations of rats acutely exposed to TMT. The mean PI uptake of the cultures and the LDH efflux into the medium were highly correlated. The combined results obtained by the different markers indicate that the hippocampal slice culture method is a feasible model for further studies......The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model...... for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5-100 microM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a...

  8. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  9. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy fib...

  10. Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Casaccia-Bonnefil, P; Stelzer, A

    1993-01-01

    Loss of hippocampal interneurons has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainate. We investigated the relationship between KA induced epileptiform discharge and loss of interneurons in hippocampal slice cultures. Application of KA (1 micro...

  11. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2003-01-01

    Some anticonvulsants show neuroprotective effects, and may be of use in reducing neuronal death resulting from stroke or traumatic brain injury. Here I report that a broad range of anticonvulsants protect cells in hippocampal slice cultures from death induced by oxygen/glucose deprivation (OGD......). Hippocampal slice cultures were submitted to 1 h OGD and the resulting cell death was quantified 24 h later using a novel automated fluorescent scanning method. The classical anticonvulsants phenobarbital, phenytoin, ethosuximide, chlordiazepoxide and midazolam all significantly and dose-dependently reduced...

  12. β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices

    Directory of Open Access Journals (Sweden)

    Cilio Corrado

    2010-12-01

    Full Text Available Abstract Background Inflammation acting in synergy with brain ischemia aggravates perinatal ischemic brain damage. The sensitizing effect of pro-inflammatory exposure prior to hypoxia is dependent on signaling by TNF-α through TNF receptor (TNFR 1. Adrenoceptor (AR activation is known to modulate the immune response and synaptic transmission. The possible protective effect of α˜ and β˜AR activation against neuronal damage caused by tissue ischemia and inflammation, acting in concert, was evaluated in murine hippocampal organotypic slices treated with lipopolysaccharide (LPS and subsequently subjected to oxygen-glucose deprivation (OGD. Method Hippocampal slices from mice were obtained at P6, and were grown in vitro for 9 days on nitrocellulose membranes. Slices were treated with β1(dobutamine-, β2(terbutaline-, α1(phenylephrine- and α2(clonidine-AR agonists (5 and 50 μM, respectively during LPS (1 μg/mL, 24 h -exposure followed by exposure to OGD (15 min in a hypoxic chamber. Cell death in the slice CA1 region was assessed by propidium iodide staining of dead cells. Results Exposure to LPS + OGD caused extensive cell death from 4 up to 48 h after reoxygenation. Co-incubation with β1-agonist (50 μM during LPS exposure before OGD conferred complete protection from cell death (P -/- and TNFR2-/- slices exposed to LPS followed by OGD. Conclusions Our data demonstrate that activation of both β1- and β2-receptors is neuroprotective and may offer mechanistic insights valuable for development of neuro-protective strategies in neonates.

  13. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke

    2010-08-01

    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  14. Pilocarpine-induced seizure-like activity with increased BNDF and neuropeptide Y expression in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Poulsen, Frantz Rom; Jahnsen, Henrik; Blaabjerg, Morten

    2002-01-01

    with the muscarinic receptor antagonist atropine (100 microM). Regardless of dose and exposure time, the pilocarpine treatment induced very limited neuronal cell death, recorded as cellular propidium iodide uptake. Cultures exposed to 5 mM pilocarpine for up to 7 days displayed increased BDNF expression when analyzed...

  15. BID Mediates Oxygen-Glucose Deprivation-Induced Neuronal Injury in Organotypic Hippocampal Slice Cultures and Modulates Tissue Inflammation in a Transient Focal Cerebral Ischemia Model without Changing Lesion Volume

    DEFF Research Database (Denmark)

    Martin, Nellie Anne; Bonner, Helena; Elkjær, Maria Louise

    2016-01-01

    deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by oxygen-glucose deprivation. In vivo, BID-knockout (KO) mice and wild type (WT) mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO) to induce focal cerebral ischemia......, and allowed to recover for 24 h. Infarct volumes and functional outcome were assessed and the inflammatory response was evaluated using immunofluorescence, Western blotting, quantitative PCR (qPCR) and Mesoscale multiplex analysis. We observed no difference in the infarct volume or neurological outcome...

  16. Holographic photolysis for multiple cell stimulation in mouse hippocampal slices.

    Directory of Open Access Journals (Sweden)

    Morad Zahid

    Full Text Available BACKGROUND: Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. METHODS/PRINCIPAL FINDINGS: The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca(2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. CONCLUSIONS/SIGNIFICANCE: We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically

  17. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Kayode Komolafe

    2014-01-01

    Full Text Available Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL or catechin (1, 5, or 10 µg/mL for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity.

  18. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  19. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Directory of Open Access Journals (Sweden)

    Tanara Vieira Peres

    2013-01-01

    Full Text Available The molecular mechanisms mediating manganese (Mn-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs and tyrosine hydroxylase (TH could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old. The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK 1/2, as well as c-Jun N-terminal kinase (JNK 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3 in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.

  20. Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices

    Science.gov (United States)

    Sasaki, Takuya; Ishikawa, Tomoe; Abe, Reimi; Nakayama, Ryota; Asada, Akiko; Matsuki, Norio; Ikegaya, Yuji

    2014-01-01

    Astrocytes are thought to detect neuronal activity in the form of intracellular calcium elevations; thereby, astrocytes can regulate neuronal excitability and synaptic transmission. Little is known, however, about how the astrocyte calcium signal regulates the activity of neuronal populations. In this study, we addressed this issue using functional multineuron calcium imaging in hippocampal slice cultures. Under normal conditions, CA3 neuronal networks exhibited temporally correlated activity patterns, occasionally generating large synchronization among a subset of cells. The synchronized neuronal activity was correlated with astrocyte calcium events. Calcium buffering by an intracellular injection of a calcium chelator into multiple astrocytes reduced the synaptic strength of unitary transmission between pairs of surrounding pyramidal cells and caused desynchronization of the neuronal networks. Uncaging the calcium in the astrocytes increased the frequency of neuronal synchronization. These data suggest an essential role of the astrocyte calcium signal in the maintenance of basal neuronal function at the circuit level. PMID:24710057

  1. Persistent gliosis interferes with neurogenesis in organotypic hippocampal slice cultures

    Directory of Open Access Journals (Sweden)

    Johannes eGerlach

    2016-05-01

    Full Text Available Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC, which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within seven days of cultivation. Accordingly, RT-qPCR analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor (CNTF accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling

  2. The Role of Furosemide on Intrinsic Optical Signals in Hippocampal slices

    OpenAIRE

    Kuta, Igor

    2009-01-01

    Title of work: The Role of Furosemide on Intrinsic Optical Signals in hippocampal slices Objective: Learn how furosemide affects the internal optical signals in the rat hippocampus. Method: Measurement of IOS on slices of hippocampus in electro DG. detection IOS changes in the application of furosemide. Results: Internal optical signals are dependent on the activation of tissues and exhibit regional differences in hippocampal different layers. The concentration furosemide increases optical re...

  3. BID Mediates Oxygen-Glucose Deprivation-Induced Neuronal Injury in Organotypic Hippocampal Slice Cultures and Modulates Tissue Inflammation in a Transient Focal Cerebral Ischemia Model without Changing Lesion Volume.

    Science.gov (United States)

    Martin, Nellie Anne; Bonner, Helena; Elkjær, Maria Louise; D'Orsi, Beatrice; Chen, Gang; König, Hans Georg; Svensson, Martina; Deierborg, Tomas; Pfeiffer, Shona; Prehn, Jochen H; Lambertsen, Kate Lykke

    2016-01-01

    The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by oxygen-glucose deprivation. In vivo, BID-knockout (KO) mice and wild type (WT) mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO) to induce focal cerebral ischemia, and allowed to recover for 24 h. Infarct volumes and functional outcome were assessed and the inflammatory response was evaluated using immunofluorescence, Western blotting, quantitative PCR (qPCR) and Mesoscale multiplex analysis. We observed no difference in the infarct volume or neurological outcome between BID-KO and WT mice. The inflammatory response was reduced by BID deficiency as indicated by a change in microglial/leukocyte response. In conclusion, our data suggest that BID deficiency is neuroprotective in an in vitro model and modulates the inflammatory response to focal cerebral ischemia in vivo. However, this is not translated into a robust neuroprotection in vivo.

  4. Long-term potentiation in the hippocampal slice: evidence for stimulated secretion of newly synthesized proteins.

    Science.gov (United States)

    Duffy, C; Teyler, T J; Shashoua, V E

    1981-06-05

    Long-term potentiation of the hippocampal slice preparation results in an increase in the incorporation of labeled valine into the proteins destined for secretion into the extracellular medium. Double-labeling methods established that the increased secretion of the labeled proteins was limited to the potentiated region of a slice; incorporation of labeled valine was increased in the hippocampus if potentiation was through the Schaffer collaterals and in the dentate if potentiation was through the perforant path. Controls for nonspecific stimulation showed no changes. There appears to be a link between long-term potentiation and the metabolic processes that lead to protein synthesis in the hippocampal slice system.

  5. Long-term potentiation in the hippocampal slice: evidence for stimulated secretion of newly synthesized proteins

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, C.; Teyler, T.J.; Shashoua, V.E.

    1981-06-01

    Long-term potentiation of the hippocampal slice preparation results in an increase in the incorporation of labeled valine into the proteins destined for secretion into the extracellular medium. Double-labeling methods established that the increased secretion of the labeled proteins was limited to the potentiated region of a slice; incorporation of labeled valine was increased in the hippocampus if potentiation was through the Schaffer collaterals and in the dentate if potentiation was through the perforant path. Controls for nonspecific stimulation showed no changes. There appears to be a link between long-term potentiation and the metabolic processes that lead to protein synthesis in the hippocampal slice system.

  6. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    Science.gov (United States)

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  8. Cannabidiol inhibits synaptic transmission in rat hippocampal cultures and slices via multiple receptor pathways

    Science.gov (United States)

    Ledgerwood, CJ; Greenwood, SM; Brett, RR; Pratt, JA; Bushell, TJ

    2011-01-01

    BACKGROUND AND PURPOSE Cannabidiol (CBD) has emerged as an interesting compound with therapeutic potential in several CNS disorders. However, whether it can modulate synaptic activity in the CNS remains unclear. Here, we have investigated whether CBD modulates synaptic transmission in rat hippocampal cultures and acute slices. EXPERIMENTAL APPROACH The effect of CBD on synaptic transmission was examined in rat hippocampal cultures and acute slices using whole cell patch clamp and standard extracellular recordings respectively. KEY RESULTS Cannabidiol decreased synaptic activity in hippocampal cultures in a concentration-dependent and Pertussis toxin-sensitive manner. The effects of CBD in culture were significantly reduced in the presence of the cannabinoid receptor (CB1) inverse agonist, LY320135 but were unaffected by the 5-HT1A receptor antagonist, WAY100135. In hippocampal slices, CBD inhibited basal synaptic transmission, an effect that was abolished by the proposed CB1 receptor antagonist, AM251, in addition to LY320135 and WAY100135. CONCLUSIONS AND IMPLICATIONS Cannabidiol reduces synaptic transmission in hippocampal in vitro preparations and we propose a role for both 5-HT1A and CB1 receptors in these CBD-mediated effects. These data offer some mechanistic insights into the effects of CBD and emphasize that further investigations into the actions of CBD in the CNS are required in order to elucidate the full therapeutic potential of CBD. PMID:20825410

  9. Dexmedetomidine promotes the recovery of the field excitatory postsynaptic potentials (fEPSPs) in rat hippocampal slices exposed to oxygen-glucose deprivation.

    Science.gov (United States)

    Kim, Sung-Eun; Ko, Il-Gyu; Kim, Chang-Ju; Chung, Jun-Young; Yi, Jae-Woo; Choi, Jeong-Hyun; Jang, Myung-Soo; Han, Jin-Hee

    2016-09-19

    Dexmedetomidine (DEX), a selective α2 adrenergic agonist, is an anesthetic and sedative agent, and is reported to exert neuroprotective effects after hypoxic ischemia. However, there are few studies on the electrophysiological effect of DEX in hippocampal slices under ischemic conditions. The effects of DEX on field potential in hippocampal slices exposed to oxygen-glucose deprivation (OGD) were evaluated. Hippocampal slices were prepared from rats, and the evoked field excitatory postsynaptic potentials (fEPSPs) were recorded using the MED 64 system. Hypoxic-ischemia was induced by perfusion with glucose-free artificial cerebrospinal fluid (aCSF) bubbled with 95% N2 and 5% CO2, and hippocampal slices were perfused with DEX-added aCSF before, during, and after OGD induction. In the normal hippocampal slices, perfusion with 1 and 10μM DEX did not significantly decrease the normalized fEPSP amplitude, but 100μM DEX significantly reduced the fEPSP amplitude compared with its baseline control. The induction of OGD remarkably decreased the fEPSP amplitude, whereas the pre-, co-, and post-treatment of 10μM DEX gradually promoted recovery after washing out, and consequently the amplitude of fEPSP in DEX pre-, co-, and post-treated OGD slices were significantly higher than that in the untreated OGD slices at 10min and 60min after washing out. In particular, co-treatment with DEX conspicuously promoted the recovery of the fEPSP amplitude at the beginning of washing out. These results suggest the possibility of DEX as a therapeutic agent to prevent hypoxic-ischemic brain damage and promote functional recovery after ischemia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Effgen, Gwen B; Vogel, Edward W; Lynch, Kimberly A; Lobel, Ayelet; Hue, Christopher D; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2014-07-01

    An increasing number of U.S. soldiers are diagnosed with traumatic brain injury (TBI) subsequent to exposure to blast. In the field, blast injury biomechanics are highly complex and multi-phasic. The pathobiology caused by exposure to some of these phases in isolation, such as penetrating or inertially driven injuries, has been investigated extensively. However, it is unclear whether the primary component of blast, a shock wave, is capable of causing pathology on its own. Previous in vivo studies in the rodent and pig have demonstrated that it is difficult to deliver a primary blast (i.e., shock wave only) without rapid head accelerations and potentially confounding effects of inertially driven TBI. We have previously developed a well-characterized shock tube and custom in vitro receiver for exposing organotypic hippocampal slice cultures to pure primary blast. In this study, isolated primary blast induced minimal hippocampal cell death (on average, below 14% in any region of interest), even for the most severe blasts tested (424 kPa peak pressure, 2.3 ms overpressure duration, and 248 kPa*ms impulse). In contrast, measures of neuronal function were significantly altered at much lower exposures (336 kPa, 0.84 ms, and 86.5 kPa*ms), indicating that functional changes occur at exposures below the threshold for cell death. This is the first study to investigate a tolerance for primary blast-induced brain cell death in response to a range of blast parameters and demonstrate functional deficits at subthreshold exposures for cell death.

  11. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures.

    Science.gov (United States)

    Smith, Marquitta; Piehler, Thuvan; Benjamin, Richard; Farizatto, Karen L; Pait, Morgan C; Almeida, Michael F; Ghukasyan, Vladimir V; Bahr, Ben A

    2016-12-01

    Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without

  12. Use of hippocampal slices to study mRNA changes in relation to synaptic plasticity.

    Science.gov (United States)

    Chinestra, P; Leinekugel, X; Ben Ari, Y; Pollard, H

    1994-07-21

    We have developed a method allowing suitable morphological conservation combined with in situ hybridization, on hippocampal slices used in conventional electrophysiological studies. After a bath application of kainate (KA, 750 nM, 2 min 15 s), electrical stimulation of the mossy fibre zone evoked epileptiform activity for up to 2 h. In situ hybridization performed on these slices showed a marked increased in expression of the transcription factor Zif/268 over the pyramidal and the granule cells and the surrounding neuropils. Bath application of tetraethylammonium (TEA, 25 mM, 10 min) elicited long-term potentiation in CA1 lasting up to 4 h. This was associated with enhanced expression of Zif/268 which returned to control values after 2 h 30 min. These observations suggest that slice preparations are suitable for the study of the role of neuronal activity in the regulation of gene expression.

  13. Neuroprotective effects of Rhodiola rosea extracts against excitotoxicity and oxygen-glucose deprivation in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Gramsbergen, Jan Bert; Sindberg, Jeanne; Lundberg, Louise

    . rosea roots (Clone 5, Pharmaplant, Germany, grown for four years) as well as chemical fractions and/or purified compounds (e.g. salidrosid, rosavin) against excitotoxicity and ischemia-like brain damage using organotypic hippocampal slice cultures. Hippocampal slice cultures derived from 8 days old rat...... pups were grown for 2-3 weeks before exposure to N-methyl-D-aspartate (NMDA, 10 µM, 24 h) or oxygen-glucose deprivation (OGD, 30 or 35 min), with and without presence of R. rosea extracts or compounds during and 24 h after the insult. NMDA- or OGD-induced neuronal cell death was monitored...... and quantified by propidium iodide uptake and immunohistochemical staining for MAP2 as a neuronal marker. Significant and dose-dependent protection against NMDA and OGD-induced CA1 pyramidal cell death was obtained by crude extracts using 250 µg/ml (33-50% protection) or 500 µg/ml (45-65% protection). A number...

  14. Functional network integration of embryonic stem cell-derived astrocytes in hippocampal slice cultures.

    Science.gov (United States)

    Scheffler, Björn; Schmandt, Tanja; Schröder, Wolfgang; Steinfarz, Barbara; Husseini, Leila; Wellmer, Jörg; Seifert, Gerald; Karram, Khalad; Beck, Heinz; Blümcke, Ingmar; Wiestler, Otmar D; Steinhäuser, Christian; Brüstle, Oliver

    2003-11-01

    Embryonic stem (ES) cells provide attractive prospects for neural transplantation. So far, grafting strategies in the CNS have focused mainly on neuronal replacement. Employing a slice culture model, we found that ES cell-derived glial precursors (ESGPs) possess a remarkable capacity to integrate into the host glial network. Following deposition on the surface of hippocampal slices, ESGPs actively migrate into the recipient tissue and establish extensive cell-cell contacts with recipient glia. Gap junction-mediated coupling between donor and host astrocytes permits widespread delivery of dye from single donor cells. During maturation, engrafted donor cells display morphological, immunochemical and electrophysiological properties that are characteristic of differentiating native glia. Our findings provide the first evidence of functional integration of grafted astrocytes, and depict glial network integration as a potential route for widespread transcellular delivery of small molecules to the CNS.

  15. Metabolic therapy for temporal lobe epilepsy in a dish: investigating mechanisms of ketogenic diet using electrophysiological recordings in hippocampal slices

    Directory of Open Access Journals (Sweden)

    Masahito Kawamura

    2016-11-01

    Full Text Available The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1 direct application of ketone bodies, (2 mimicking the ketogenic diet condition during a whole-cell patch-clamp technique, and (3 reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including ATP-sensitive potassium channels, vesicular glutamate transporter, pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.

  16. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices

    Science.gov (United States)

    Kawamura, Masahito Jr.; Ruskin, David N.; Masino, Susan A.

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy. PMID:27847463

  17. Effects of Administration of Perinatal Bupropion on the Population Spike Amplitude in Neonatal Rat Hippocampal Slice

    Directory of Open Access Journals (Sweden)

    Soomaayeh Heysieat-talab

    2010-09-01

    Full Text Available Objective(sBupropion is an atypical antidepressant that is widely used in smoke cessation under FDA approval. The study of synaptic effects of bupropion can help to finding out its mechanism(s for stopping nicotine dependence. In this study the effects of perinatal bupropion on the population spike (PS amplitude of neonates were investigated. Materials and Methods Hippocampal slices were prepared from 18-25 days old rat pups. The experimental groups included control and bupropion-treated. Bupropion (40 mg/Kg, i.p. was applied daily in perinatal period as pre-treatment. Due to the studying acute effects, bupropion was also added to the perfusion medium (10, 50, 200 μM for 30 min. The evoked PS was recorded from pyramidal layer of CA1 area, following stimulation of Schaffer collaterals. ResultsA concentration of 10 μM bupropion had no significant effects on the PS amplitude. The 50 μM concentration of bupropion reduced the amplitude of responses in 50% of the studied cases. At a concentration of 200 μM, the recorded PS amplitudes were reduced in all slices (n= 22. Amplitude was completely abolished in 8 out of the 22 slices. The decrease of the PS amplitude was found to be more in the non-pre-treated slices than in the pre-treated slices when both were perfused with 200 μM bupropion.Conclusion The results showed the perinatal exposure to bupropion and its acute effects while indicating that at concentrations of 50 and 200 μM bupropion reduced the PS amplitude. It was also found that there was evidence of synaptic adaptation in comparison of bupropion-treated and non-treated slices whereas they were both perfused with 200 µM.

  18. Conversion of Synthetic Aβ to In Vivo Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model.

    Science.gov (United States)

    Novotny, Renata; Langer, Franziska; Mahler, Jasmin; Skodras, Angelos; Vlachos, Andreas; Wegenast-Braun, Bettina M; Kaeser, Stephan A; Neher, Jonas J; Eisele, Yvonne S; Pietrowski, Marie J; Nilsson, K Peter R; Deller, Thomas; Staufenbiel, Matthias; Heimrich, Bernd; Jucker, Mathias

    2016-05-04

    The aggregation of amyloid-β peptide (Aβ) in brain is an early event and hallmark of Alzheimer's disease (AD). We combined the advantages of in vitro and in vivo approaches to study cerebral β-amyloidosis by establishing a long-term hippocampal slice culture (HSC) model. While no Aβ deposition was noted in untreated HSCs of postnatal Aβ precursor protein transgenic (APP tg) mice, Aβ deposition emerged in HSCs when cultures were treated once with brain extract from aged APP tg mice and the culture medium was continuously supplemented with synthetic Aβ. Seeded Aβ deposition was also observed under the same conditions in HSCs derived from wild-type or App-null mice but in no comparable way when HSCs were fixed before cultivation. Both the nature of the brain extract and the synthetic Aβ species determined the conformational characteristics of HSC Aβ deposition. HSC Aβ deposits induced a microglia response, spine loss, and neuritic dystrophy but no obvious neuron loss. Remarkably, in contrast to in vitro aggregated synthetic Aβ, homogenates of Aβ deposits containing HSCs induced cerebral β-amyloidosis upon intracerebral inoculation into young APP tg mice. Our results demonstrate that a living cellular environment promotes the seeded conversion of synthetic Aβ into a potent in vivo seeding-active form. In this study, we report the seeded induction of Aβ aggregation and deposition in long-term hippocampal slice cultures. Remarkably, we find that the biological activities of the largely synthetic Aβ aggregates in the culture are very similar to those observed in vivo This observation is the first to show that potent in vivo seeding-active Aβ aggregates can be obtained by seeded conversion of synthetic Aβ in a living (wild-type) cellular environment. Copyright © 2016 the authors 0270-6474/16/365084-10$15.00/0.

  19. Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures

    Directory of Open Access Journals (Sweden)

    Anna P Miller

    2015-02-01

    Full Text Available Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs exposed to blast overpressures of 150 kPa (low and 280 kPa (high as an in vitro bTBI model. Using this model we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3 and the dentate gyrus (DG regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high blast group exhibited a rapid increase in cell death already at 2 h, peaking at approximately 24 h post-injury. Measurements of lactate dehydrogenase (LDH release into the culture medium also revealed a significant increase in cell lysis in both low and high blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglia cells in low and high blasted OHCs, which reached a statistically significant difference in the high blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure.

  20. Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Poulsen, Frantz Rom; Blaabjerg, Morten; Montero, Maria

    2005-01-01

    Generation of dentate granule cells and its modulation by glutamate receptor antagonists, growth factors and pilocarpine-induced seizure-like activity was investigated in rat hippocampal slice cultures derived from 1-week-old rats and grown for 2 weeks. Focussing on the dentate granule cell layer...... facing CA1 and the immediate subgranular zone, exposure for 3 days to the NMDA receptor blocking agents MK-801 (10 microM) or APV (25 microM) in the culture medium, increased the number of TOAD-64/Ulip/CRMP-4 (TUC-4)-positive cells as counted in the slice cultures at the end of the 3-day treatment period....... Exposure to IGF-I (200 ng/ml) and EGF (20 ng/ml) also increased the number of TUC-4-positive cells. Combining APV with IGF-I/EGF had an additive effect. Similar results were obtained by 3 days treatment with the AMPA receptor antagonist CNQX (25 microM). Surprisingly, addition of 5 mM pilocarpine reduced...

  1. Inhibitory effect of cholesteryl gamma-aminobutyrate on evoked activity in rat hippocampal slices.

    Science.gov (United States)

    Hesse, G W; Shashoua, V E; Jacob, J N

    1985-02-01

    Cholesteryl gamma-aminobutyrate (C-G) readily crosses the blood-brain barrier and has properties that suggest that it may be a potential gamma-aminobutyric acid (GABA)-mimetic compound. The effect of this compound on the orthodromically-evoked discharge of hippocampal pyramidal cells was investigated using slices of rat hippocampus maintained in vitro. The compound produced dose-dependent inhibition of the discharge of pyramidal cells. The magnitude of the inhibitory effect was somewhat less than that produced by a similar dose of GABA, but the duration of the inhibition was prolonged by about 10-fold over that produced by GABA. The inhibition produced by cholesteryl gamma-aminobutyrate was blocked by the addition of picrotoxin to the incubation medium, and by replacement of chloride with isethionate. In addition, pretreatment of slices with the irreversible esterase inhibitor, phenylmethylsulfonylfluoride, attenuated the effects of cholesteryl gamma-aminobutyrate, but not that of GABA. These results suggest that cholesteryl gamma-aminobutyrate has GABA-like actions in the CNS, and that its activity is largely dependent upon enzymatic release of GABA from the compound by esterases present in the tissue.

  2. Accumulating microglia phagocytose injured neurons in hippocampal slice cultures: involvement of p38 MAP kinase.

    Directory of Open Access Journals (Sweden)

    Takahiro Katayama

    Full Text Available In this study, microglial migration and phagocytosis were examined in mouse organotypic hippocampal slice cultures, which were treated with N-methyl-D-aspartate (NMDA to selectively injure neuronal cells. Microglial cells were visualized by the expression of enhanced green fluorescent protein. Daily observation revealed microglial accumulation in the pyramidal cell layer, which peaked 5 to 6 days after NMDA treatment. Time-lapse imaging showed that microglia migrated to the pyramidal cell layer from adjacent and/or remote areas. There was no difference in the number of proliferating microglia between control and NMDA-treated slices in both the pyramidal cell layer and stratum radiatum, suggesting that microglial accumulation in the injured areas is mainly due to microglial migration, not to proliferation. Time-lapse imaging also showed that the injured neurons, which were visualized by propidium iodide (PI, disappeared just after being surrounded by microglia. Daily observation revealed that the intensity of PI fluorescence gradually attenuated, and this attenuation was suppressed by pretreatment with clodronate, a microglia toxin. These findings suggest that accumulating microglia phagocytosed injured neurons, and that PI fluorescence could be a useful indicator for microglial phagocytosis. Using this advantage to examine microglial phagocytosis in living slice cultures, we investigated the involvements of mitogen-activated protein (MAP kinases in microglial accumulation and phagocytosis. p38 MAP kinase inhibitor SB203580, but not MAP kinase/extracellular signal-regulated kinase inhibitor PD98059 or c-Jun N-terminal kinase inhibitor SP600125, suppressed the attenuation of PI fluorescence. On the other hand, microglial accumulation in the injured areas was not inhibited by any of these inhibitors. These data suggest that p38 MAP kinase plays an important role in microglial phagocytosis of injured neurons.

  3. Sex and regional differences in effects of chronic intermittent ethanol exposure on subsequent excitotoxic challenges in hippocampal slice cultures.

    Science.gov (United States)

    Walls, Shawn A; Rosenwasser, Alan M; Devaud, Leslie L

    2013-08-29

    The organotypic hippocampal slice culture technique was used to study how the effects of repeated ethanol withdrawal might differ between males and females at the cellular level, including potential modulation of subsequent insults. A chronic intermittent ethanol (CIE) exposure paradigm was employed, with 3 days of exposure followed by 24 h withdrawal for 3 cycles. Slices were next exposed to corticosterone (CORT) or pentylenetetrazol (PTZ) for 24 h then imaged for propidium iodide (PI) signal intensities. There were sex-selective responses in the CA1 region and dentate gyrus of the hippocampal slice cultures to treatment with CIE and/or CORT or PTZ. The 50 mM CIE alone generally did not increase the PI signal, but enhanced sensitivity to the toxic effects of CORT (particularly for females) and PTZ (particularly for males). In contrast, 100 mM CIE elicited a toxic response that was greater in females than males, and was exacerbated by exposure to PTZ. These data showed that hippocampal sexual dimorphism influences sensitivity to ethanol and other toxic chemicals even in an immature state. Low-dose CIE may attenuate harm from additional challenges in a hippocampal sex- and region-selective manner. These findings add to the growing evidence of important neurobiological sex differences in responses to chronic ethanol exposure and withdrawal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Post-ictal depression transiently inhibits induction of LTP in area CA1 of the rat hippocampal slice.

    Science.gov (United States)

    Barr, D S; Hoyt, K L; Moore, S D; Wilson, W A

    1997-05-01

    We tested the effects of electrographic seizures (EGSs) elicited in a remote site (area CA3) on the induction of long-term potentiation (LTP) in area CA1 of the rat hippocampal slice. Induction of LTP was inhibited only when the LTP-inducing stimulus was delivered during the period of post-ictal depression (5-10 min period of field response depression) following an evoked EGS. It was not inhibited during the tonic firing phase of the EGS. The time course for the recovery of the ability to induce LTP after an EGS matched the recovery of field responses from post-ictal depression. Moreover, the magnitude of LTP was inversely proportional to the duration of post-ictal depression. Delaying the onset of depression with the adenosine A1 receptor antagonist 8-cyclopentyltheophylline (CPT) permitted LTP induction at a time point when it would normally be suppressed. Finally, the inhibitory effects of post-ictal depression on LTP induction were not restricted to electrically evoked EGSs, as LTP could not be induced during the depressed phase following a spontaneous EGS elicited in 10 mM K+ medium. These results demonstrate that the inhibition of LTP induction following epileptiform activity in vitro is in part a consequence of post-ictal depression of responses.

  5. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of P-glycoprotein and Multidrug resistance associated proteins.

    Directory of Open Access Journals (Sweden)

    Nora eSandow

    2015-02-01

    Full Text Available Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp and multidrug resistance associated proteins (MRPs expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs (carbamazepine, sodium valproate, phenytoin and two unspecific inhibitors of Pgp and MRPs (verapamil and probenecid on seizure-like events induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices were studied. Although in slice preparations the blood brain barrier is not functional, we found that seizure-like events predominantly persisted in the presence of anticonvulsant drugs (90% and also in the presence of verapamil and probenecid (86%. Following subsequent co-administration of antiepileptic drugs and drug transport inhibitors, seizure-like events continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30% or as suppression (7%, particularly by perfusion with carbamazepine in probenecid containing solutions (43%, 9%. Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7 % of patients. Patients whose tissue was completely or partially sensitive (65 % presented with higher seizure frequencies than those with resistant tissue (35 %. However, corresponding subgroups of patients don’t differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.

  6. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures.

    Directory of Open Access Journals (Sweden)

    Anna P Miller

    Full Text Available Blast traumatic brain injury (bTBI affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low or 273 ± 23 kPa (high overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1, demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1 expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in

  7. Effects of fructose-1,6-bisphosphate on morphological and functional neuronal integrity in rat hippocampal slices during energy deprivation.

    Science.gov (United States)

    Izumi, Y; Benz, A M; Katsuki, H; Matsukawa, M; Clifford, D B; Zorumski, C F

    2003-01-01

    D-fructose-1,6-bisphosphate, a high energy glycolytic intermediate, attenuates ischemic damage in a variety of tissues, including brain. To determine whether D-fructose-1,6-bisphosphate serves as an alternate energy substrate in the CNS, rat hippocampal slices were treated with D-fructose-1,6-bisphosphate during glucose deprivation. Unlike pyruvate, an endproduct of glycolysis, 10 mM D-fructose-1,6-bisphosphate did not preserve synaptic transmission or morphological integrity of CA1 pyramidal neurons during glucose deprivation. Moreover, during glucose deprivation, 10-mM D-fructose-1,6-bisphosphate failed to maintain adenosine triphosphate levels in slices. D-fructose-1,6-bisphosphate, however, attenuated acute neuronal degeneration produced by 200 microM iodoacetate, an inhibitor of glycolysis downstream of D-fructose-1,6-bisphosphate. Because (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine, an antagonist of N-methyl-D-aspartate receptors, exhibited similar protection against iodoacetate damage, we examined whether (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine and D-fructose-1,6-bisphosphate share a common neuroprotective mechanism. Indeed, D-fructose-1,6-bisphosphate diminished N-methyl-D-aspartate receptor-mediated synaptic responses and partially attenuated neuronal degeneration induced by 100-microM N-methyl-D-aspartate. Taken together, these results indicate that D-fructose-1,6-bisphosphate is unlikely to serve as an energy substrate in the hippocampus, and that neuroprotective effects of D-fructose-1,6-bisphosphate are mediated by mechanisms other than anaerobic energy supply. Copyright 2003 IBRO

  8. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices

    OpenAIRE

    Kawamura, Masahito Jr.; Ruskin, David N.; Masino, Susan A.

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractor...

  9. The Role of Protein Synthesis and Monoamines in the Production of Long-Term Potentiation in the Rat Hippocampal Slice

    Science.gov (United States)

    1985-04-01

    1974], and that enhanced cA~IP levels can produce long-lasting neuronal plasticity in invertebrate systems [ Castellucci , et al., 1980; Camarda, et...Nt which should be examined during NELLP. There is a precedent in the invertebrate literature for cAMP-mediated neuronal plasticity [ Castellucci ...changes after repeti- tive stimulation of the hippocampal slice. Science 203:60-62. Brunelli, M., Castellucci , v. and Kandel, E.R. (1976) Synaptic

  10. Electroosmotic sampling. Application to determination of ectopeptidase activity in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Xu, Hongjuan; Guy, Yifat; Hamsher, Amy; Shi, Guoyue; Sandberg, Mats; Weber, Stephen G

    2010-08-01

    We hypothesize that peptide-containing solutions pulled through tissue should reveal the presence and activity of peptidases in the tissue. Using the natural zeta-potential in the organotypic hippocampal slice culture (OHSC), physiological fluids can be pulled through the tissue with an electric field. The hydrolysis of the peptides present in the fluid drawn through the tissue can be determined using capillary HPLC with electrochemical detection of the biuret complexes of the peptides following a postcolumn reaction. We have characterized this new sampling method by measuring the flow rate, examining the use of internal standards, and examining cell death caused by sampling. The sampling flow rate ranges from 60 to 150 nL/min with a 150 microm (ID) sampling capillary with an electric field (at the tip of the capillary) from 30 to 60 V/cm. Cell death can be negligible with controlled sampling conditions. Using this sampling approach, we have electroosmotically pulled Leu-enkephalin through OHSCs to identify ectopeptidase activity in the CA3 region. These studies show that a bestatin-sensitive aminopeptidase may be critical for the hydrolysis of exogenous Leu-enkephalin, a neuropeptide present in the CA3 region of OHSCs.

  11. Spatio-temporal Distribution of Epileptiform Potentials in the Hippocampal Slice: Recordings with Voltage-sensitive Dyes.

    Science.gov (United States)

    Albowitz, Birgit; Kuhnt, Ulrich

    1991-06-01

    Voltage-sensitive dyes and fast optical recording techniques were used to monitor the spatio-temporal activity pattern of epileptiform potentials in hippocampal slices from guinea pigs. Epileptiform potentials were induced by adding 4-aminopyridine to the bath solution and applying single pulse stimulation either to the stratum pyramidale of area CA3 or to the stratum radiatum of area CA1. Optical activity as well as intra- or extracellular electrical activity were recorded from area CA1. There was a good correlation between optical and intracellular records from the same site. The spatio-temporal activity pattern of control and epileptiform potentials elicited by stimulation of CA1 was similar for the initial part of the potential. Then, epileptiform changes became apparent throughout the vertical extent of pyramidal neurons. Qualitative changes occurred in the stratum moleculare, reflecting activity of apical dendrites, such changes occurred even more strongly in the stratum oriens, reflecting activity of basal dendrites. The activity in the stratum oriens occurred relatively late, so that it cannot account for the initiation of epileptic discharges. It might, however, play an important role in the synchronization and spread of epileptiform potentials. The investigation of the horizontal distribution of potentials throughout the entire area CA1 indicates that different mechanisms are involved in the spread of epileptiform activity elicited by stimulation of CA1 and stimulation of CA3.

  12. Slices

    KAUST Repository

    McCrae, James

    2011-01-01

    Minimalist object representations or shape-proxies that spark and inspire human perception of shape remain an incompletely understood, yet powerful aspect of visual communication. We explore the use of planar sections, i.e., the contours of intersection of planes with a 3D object, for creating shape abstractions, motivated by their popularity in art and engineering. We first perform a user study to show that humans do define consistent and similar planar section proxies for common objects. Interestingly, we observe a strong correlation between user-defined planes and geometric features of objects. Further we show that the problem of finding the minimum set of planes that capture a set of 3D geometric shape features is both NP-hard and not always the proxy a user would pick. Guided by the principles inferred from our user study, we present an algorithm that progressively selects planes to maximize feature coverage, which in turn influence the selection of subsequent planes. The algorithmic framework easily incorporates various shape features, while their relative importance values are computed and validated from the user study data. We use our algorithm to compute planar slices for various objects, validate their utility towards object abstraction using a second user study, and conclude showing the potential applications of the extracted planar slice shape proxies. © 2011 ACM.

  13. Multiple single-unit long-term tracking on organotypic hippocampal slices using high-density microelectrode arrays

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2016-11-01

    Full Text Available A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied during several consecutive weeks at daily intervals. An unsupervised iterative spike-sorting algorithm, based on PCA and k-means clustering, was developed to assign the activities to the single units. Spike-triggered average extracellular waveforms of an action potential recorded across neighboring electrodes, termed ‘footprints’ of single-units were generated and tracked over weeks. The developed system offers the potential to study chronic impacts of drugs or genetic modifications on individual neurons in slice preparations over extended times.

  14. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    OpenAIRE

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike Timing-Dependent Plasticity (STDP) is a cellular model of hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15-20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased l...

  15. Neuroprotective effects of cactus polysaccharide on oxygen and glucose deprivation induced damage in rat brain slices.

    Science.gov (United States)

    Huang, Xianju; Li, Qin; Zhang, Yingpei; Lü, Qing; Guo, Lianjun; Huang, Lin; He, Zhi

    2008-06-01

    1. The neuroprotective effect of cactus polysaccharide (CP) on oxygen and glucose deprivation (OGD) and reoxygenation (REO)-induced damage in the cortical and hippocampal slices of rat brain was investigated. 2. Cell viability was evaluated by using the 2, 3, 5-triphenyl tetrazolium chloride (TTC) method. The fluorescence of propidium iodide (PI) staining was used for quantification of cellular survival, and lactate dehydrogenase (LDH) activity in incubation medium was assessed by LDH assay to evaluate the degree of injury. 3. The OGD ischemic condition significantly decreased cellular viability and increased LDH release in the incubation medium. CP (0.2 mg/l approximately 2 mg/l) protected brain slices from OGD injury in a dosage dependent manner as demonstrated by increased A 490 value of TTC, decreased PI intensity and LDH release. At the above concentration, CP also prevented the increase of nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity induced by OGD. 4. CP can protect the brain slices (cortical and hippocampus) against injury induced by OGD. Its neuroprotective effect may be partly mediated by the NO/iNOS system induced by OGD insult.

  16. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  17. Regenerative, all-or-none electrographic seizures in the rat hippocampal slice in Mg-free and physiological medium.

    Science.gov (United States)

    Anderson, W W; Stasheff, S F; Swartzwelder, H S; Wilson, W A

    1990-11-05

    All-or-none electrographic seizures (EGSs) were studied in hippocampal slices from young (21- to 38-day-old) rats in medium containing low (0 mM) or physiological (0.9 mM) levels of magnesium, with and without the GABAB agonist baclofen. Extracellular recording and stimulation were performed in stratum pyramidale and stratum radiatum of CA3, respectively. EGS activity was induced by exposure to low-Mg medium or by delivering repetitive stimulus trains in physiological Mg medium. After EGS activity had stabilized, the EGSs were tested for all-or-none behavior by varying the number of pulses in a train. An EGS was considered all-or-none if subthreshold stimulation produced no afterdischarge bursts, and if the EGS duration was largely independent of the number of suprathreshold stimulus pulses. According to this measure, EGSs in Mg-free + baclofen medium were all-or-none. EGSs evoked in physiological Mg medium were also all-or-none, although the threshold was higher, and the EGS duration lower, than in Mg-free medium. This all-or-none characteristic was observed whether the EGSs were induced by prior exposure to Mg-free medium or by repetitive stimulation, and in the presence and absence of baclofen. The all-or-none characteristic suggests that while the triggering mechanism for EGSs is strongly dependent on stimulus intensity, regenerative mechanisms--independent of stimulus intensity--are responsible for the maintenance of EGSs. EGSs are also terminated by mechanisms not dependent on stimulus intensity.

  18. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  19. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    DEFF Research Database (Denmark)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices...... prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U-(13)C]glucose or [1,2-(13)C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent...... to incubation, slices were extracted and extracts analyzed for (13)C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation...

  20. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens

    2007-01-01

    Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3)...... to close to control values. It is concluded that continuous incubation of hippocampal slice cultures with PI is technically feasible for use in studies of inducible neuronal degeneration over time.......), which is known to be toxic in vivo after subchronic, but not acute, administration. Degenerative effects were monitored by measuring the cellular uptake of propidium iodide (PI; continuously present in the medium) and lactate dehydrogenase (LDH) leakage, and by using a panel of histological stains....... Hippocampal slices, derived from 2-3 day old rats and grown for 3 weeks, were subsequently exposed for the next 3 weeks to 0, 10 or 100microM L-AP3, with PI (2microM) in the culture medium. Exposure to 100microM L-AP3 induced severe toxicity after 4-6 days, shown by massive PI uptake, LDH leakage, changes...

  1. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure......) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  2. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    Science.gov (United States)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U-13C]glucose or [1,2-13C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13C-labeling observed with [U-13C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2-13C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13C-labeling (%) data obtained from mass

  3. Cell surface area regulation in neurons in hippocampal slice cultures is resistant to oxygen-glucose deprivation

    Directory of Open Access Journals (Sweden)

    Natalya Shulyakova

    2010-09-01

    Full Text Available Natalya Shulyakova1,2, Jamie Fong2, Diana Diec2, Adrian Nahirny1,2, Linda R Mills1,21Department of Physiology, University of Toronto, Toronto, ON, Canada, M5T 2S8; 2Toronto Western Hospital Research Institute, University Health Network, 11-430, 399 Bathurst St, Toronto, ON, Canada, M5T 2S8Background: Neurons swell in response to a variety of insults. The capacity to recover, ie, to shrink, is critical for neuronal function and survival. Studies on dissociated neurons have shown that during swelling and shrinking, neurons reorganize their plasma membrane; as neurons swell, in response to hypo-osmotic media, the bilayer area increases. Upon restoration of normo-osmotic media, neurons shrink, forming transient invaginations of the plasma membrane known as vacuole-like dilations (VLDs, to accommodate the decrease in the bilayer.Methods: Here we used confocal microscopy to monitor neuronal swelling and shrinking in the three-dimensional (3D environment of post-natal rat hippocampal slice cultures. To label neurons, we used biolistic transfection, to introduce enhanced green fluorescent protein (eGFP targeted to the cytoplasm; and a membrane targeted GFP (lckGFP, targeted to the plasma membrane.Results: Neurons in slice cultures swelled and shrank in response to hypo-osmotic to normo-osmotic media changes. Oxygen-glucose deprivation (OGD caused sustained neuronal swelling; after reperfusion, some neurons recovered but in others, VLD recovery was stalled. OGD did not impair neuronal capacity to recover from a subsequent osmotic challenge.Conclusion: These results suggest cell surface area regulation (SAR is an intrinsic property of neurons, and that neuronal capacity for SAR may play an important role in the brain’s response to ischemic insults.Keywords: neurons, swelling, ischemia, cell surface area, hippocampal slice culture

  4. Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades.

    Science.gov (United States)

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2017-11-08

    The objective of this study was to investigate the effect of resveratrol (a natural polyphenolic phytostilbene) on tau hyperphosphorylation and oxidative damage induced by sodium orthovanadate (Na3VO4), the prevalent species of vanadium (vanadate), in rat hippocampal slices. Our results showed that resveratrol significantly inhibited Na3VO4-induced hyperphosphorylation of tau at the Ser396 (p-S396-tau) site, which is upregulated in the hippocampus of Alzheimer's disease (AD) brains and principally linked to AD-associated cognitive dysfunction. Subsequent mechanistic studies revealed that reduction of ERK1/2 activation was involved in the inhibitory effect of resveratrol by inhibiting the ERK1/2 pathway with SL327 mimicking the aforementioned effect of resveratrol. Moreover, resveratrol potently induced GSK-3β Ser9 phosphorylation and reduced Na3VO4-induced p-S396-tau levels, which were markedly replicated by pharmacologic inhibition of GSK-3β with LiCl. These results indicate that resveratrol could suppress Na3VO4-induced p-S396-tau levels via downregulating ERK1/2 and GSK-3β signaling cascades in rat hippocampal slices. In addition, resveratrol diminished the increased extracellular reactive oxygen species generation and hippocampal toxicity upon long-term exposure to Na3VO4 or FeCl2. Our findings strongly support the notion that resveratrol may serve as a potential nutraceutical agent for AD.

  5. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Anesthetics inhibit extracellular signal-regulated Kinase1/2 phosphorylation via NMDA receptor, phospholipase C and protein kinase C in mouse hippocampal slices.

    Science.gov (United States)

    Haiying, Gao; Mingjie, Han; Lingyu, Zhang; Qingxiang, Wang; Haisong, Wang; Bingxi, Zhang

    2017-02-01

    Extracellular signal-regulated kinase 1/2 (ERK1/2) has been implicated in learning and memory; however, whether intravenous anesthetics modulate ERK1/2 remains unknown. The aim of this study was to examine the effect of several intravenous anesthetics on the phosphorylation of ERK1/2 in the hippocampus of adult mice. Western blotting was used to examine cellular levels of phosphorylated and unphosphorylated ERK1/2 in mouse hippocampus slices, which were incubated with or without anesthetics including propofol, etomidate, ketamine and midazolam, a protein kinase C (PKC) activator or inhibitor, or phospholipase C (PLC) activator or inhibitor. Propofol, etomidate, ketamine and midazolam reduced phosphorylation of ERK1/2 in a time-dependent manner. Washing out propofol after 5 min increased ERK1/2 phosphorylation. The anesthetic-induced depression of ERK1/2 phosphorylation was blocked by 0.1 μM phorbol-12-myristate 13-acetate (an activator of PKC), 50 μM U73122 (an inhibitor of PLC). The anesthetic-induced depression of ERK1 phosphorylation was blocked by 1 mMN-methyl-d-aspartate (NMDA). Whereas 100 μM chelerythrine (an inhibitor of PKC) and 100 μM carbachol (an activator of PLC) and 20 μM PD-98059 (an inhibitor of MEK) had additive effects on propofol-induced inhibition of ERK1/2 phosphorylation. In contrast, 10 μM MK801 (a NMDA receptor antagonist) did not block anesthetic-induced inhibition of ERK1/2 phosphorylation. Intravenous anesthetics markedly decreased phosphorylation of ERK1/2 in mouse hippocampal slices, most likely via the NMDA receptor, and PLC- and PKC-dependent pathways. Thus, ERK1/2 represents a target for anesthetics in the brain. Copyright © 2016. Published by Elsevier Ltd.

  7. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Thomas F Rau

    Full Text Available Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD decreased the levels of free carnitines (FC and increased the acylcarnitine (AC: FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.

  8. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in tr......PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD......) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD....... For comparison, other cultures were exposed to the NMDA antagonist MK-801 using the same protocol. Both PNQX and MK-801 displayed significant neuroprotective effects in all hippocampal subfields when present during and after OGD. When added just after OGD, only PNQX retained some neuroprotective effect. When...

  9. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    Science.gov (United States)

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  10. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair

    DEFF Research Database (Denmark)

    Noraberg, Jens; Poulsen, Frantz Rom; Blaabjerg, Morten

    2005-01-01

    ), Alzheimer's disease (AD) and epilepsia. Studies of non-excitotoxic neurotoxic compounds and the experimental use of slice cultures in studies of HIV neurotoxicity, traumatic brain injury (TBI) and neurogenesis are included. For cerebral ischemia, experimental models with oxygen-glucose deprivation (OGD......) and exposure to glutamate receptor agonists (excitotoxins) are reviewed. For epilepsia, focus is on induction of seizures with effects on neuronal loss, axonal sprouting and neurogenesis. For Alzheimer's disease, the review centers on the use of beta-amyloid (Abeta) in different models, while the section...

  11. Multiple synaptic and membrane sites of anesthetic action in the CA1 region of rat hippocampal slices

    Directory of Open Access Journals (Sweden)

    MacIver M Bruce

    2004-12-01

    Full Text Available Abstract Background Anesthesia is produced by a depression of central nervous system function, however, the sites and mechanisms of action underlying this depression remain poorly defined. The present study compared and contrasted effects produced by five general anesthetics on synaptic circuitry in the CA1 region of hippocampal slices. Results At clinically relevant and equi-effective concentrations, presynaptic and postsynaptic anesthetic actions were evident at glutamate-mediated excitatory synapses and at GABA-mediated inhibitory synapses. In addition, depressant effects on membrane excitability were observed for CA1 neuron discharge in response to direct current depolarization. Combined actions at several of these sites contributed to CA1 circuit depression, but the relative degree of effect at each site was different for each anesthetic studied. For example, most of propofol's depressant effect (> 70 % was reversed with a GABA antagonist, but only a minor portion of isoflurane's depression was reversed ( 50 %, but thiopental by only Conclusions These results, in as much as they may be relevant to anesthesia, indicate that general anesthetics act at several discrete sites, supporting a multi-site, agent specific theory for anesthetic actions. No single effect site (e.g. GABA synapses or mechanism of action (e.g. depressed membrane excitability could account for all of the effects produced for any anesthetic studied.

  12. How to record a million synaptic weights in a hippocampal slice.

    Directory of Open Access Journals (Sweden)

    Upinder S Bhalla

    2008-06-01

    Full Text Available A key step toward understanding the function of a brain circuit is to find its wiring diagram. New methods for optical stimulation and optical recording of neurons make it possible to map circuit connectivity on a very large scale. However, single synapses produce small responses that are difficult to measure on a large scale. Here I analyze how single synaptic responses may be detectable using relatively coarse readouts such as optical recording of somatic calcium. I model a network consisting of 10,000 input axons and 100 CA1 pyramidal neurons, each represented using 19 compartments with voltage-gated channels and calcium dynamics. As single synaptic inputs cannot produce a measurable somatic calcium response, I stimulate many inputs as a baseline to elicit somatic action potentials leading to a strong calcium signal. I compare statistics of responses with or without a single axonal input riding on this baseline. Through simulations I show that a single additional input shifts the distribution of the number of output action potentials. Stochastic resonance due to probabilistic synaptic release makes this shift easier to detect. With approximately 80 stimulus repetitions this approach can resolve up to 35% of individual activated synapses even in the presence of 20% recording noise. While the technique is applicable using conventional electrical stimulation and extracellular recording, optical methods promise much greater scaling, since the number of synapses scales as the product of the number of inputs and outputs. I extrapolate from current high-speed optical stimulation and recording methods, and show that this approach may scale up to the order of a million synapses in a single two-hour slice-recording experiment.

  13. Effects of ethylenediamine--a putative GABA-releasing agent--on rat hippocampal slices and neocortical activity in vivo.

    Science.gov (United States)

    Stone, Trevor W; Lui, Caleb; Addae, Jonas I

    2011-01-15

    The simple diamine diaminoethane (ethylenediamine, EDA) has been shown to activate GABA receptors in the central and peripheral nervous systems, partly by a direct action and partly by releasing endogenous GABA. These effects have been shown to be produced by the complexation of EDA with bicarbonate to form a carbamate. The present work has compared EDA, GABA and β-alanine responses in rat CA1 neurons using extracellular and intracellular recordings, as well as neocortical evoked potentials in vivo. Superfusion of GABA onto hippocampal slices produced depolarisation and a decrease of field epsps, both effects fading rapidly, but showing sensitivity to blockade by bicuculline. EDA produced an initial hyperpolarisation and increase of extracellular field epsp size with no fade and only partial sensitivity to bicuculline, with subsequent depolarisation, while β-alanine produces a much larger underlying hyperpolarisation and increase in fepsps, followed by depolarisation and inhibition of fepsps. The responses to β-alanine, but not GABA or EDA, were blocked by strychnine. In vivo experiments, recording somatosensory evoked potentials, confirmed that EDA produced an initial increase followed by depression, and that this effect was not fully blocked by bicuculline. Overall the results indicate that EDA has actions in addition to the activation of GABA receptors. These actions are not attributable to activation of β-alanine-sensitive glycine receptors, but may involve the activation of sites sensitive to adipic acid, which is structurally equivalent to the dicarbamate of EDA. The results emphasise the complex pharmacology of simple amines in bicarbonate-containing solutions. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. ATP induces NO production in hippocampal neurons by P2X(7 receptor activation independent of glutamate signaling.

    Directory of Open Access Journals (Sweden)

    Juan Francisco Codocedo

    Full Text Available To assess the putative role of adenosine triphosphate (ATP upon nitric oxide (NO production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2'(3'-O-(4-Benzoylbenzoyl ATP (Bz-ATP elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG or by N(ω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV, but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity.

  15. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Blaabjerg, M; Kristensen, Bjarne Winther; Bonde, C

    2001-01-01

    The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular...... the PI uptake in both CA1 and CA3, compared to cultures exposed to 10 microM NMDA only. Adding the 300 microM ACPD as pretreatment for 30 min followed by a 30 min wash in normal medium before the ACPD/NMDA co-exposure, eliminated the potentiation of NMDA toxicity. The potentiation was also blocked...

  16. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Nikitidou, Litsa; Ledri, Marco

    2009-01-01

    gene therapy. Here we report how rAAV vector-mediated overexpression of NPY in the hippocampus affects rapid kindling, and subsequently explore how synaptic plasticity and transmission is affected by kindling and NPY overexpression by field recordings in CA1 stratum radiatum of brain slices. In animals...... injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP...... is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected...

  17. D-Serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate.

    Science.gov (United States)

    Han, Huili; Peng, Yan; Dong, Zhifang

    2015-06-01

    It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  19. The involvement of sigma1 receptors in donepezil-induced rescue of hippocampal LTP impaired by beta-amyloid peptide.

    Science.gov (United States)

    Solntseva, E I; Kapai, N A; Popova, O V; Rogozin, P D; Skrebitsky, V G

    2014-07-01

    Donepezil is a potent acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease (AD). Additional therapeutically relevant target for donepezil is sigma1 receptor (Sig1-R). Beta-amyloid peptide (Aβ) is believed to contribute to the pathogenesis of AD. In our previous work (Kapai et al., 2012), we have shown that donepezil antagonizes the suppressive action of Aβ(1-42) on long-term potentiation (LTP) in rat hippocampal slices. The purpose of the present study was to determine whether Sig1-R is involved into the mechanisms of donepezil action. For this purpose, we have tested whether agonist of Sig1-R PRE-084 mimics, and antagonist of Sig1-R haloperidol abolishes the effect of donepezil. Population spikes (PSs) were recorded from the pyramidal layer of the CA1 region of rat hippocampal slices. Drugs were applied by addition to the perfusate starting 15 min before and ending 5 min after the tetanus. In the control group, the amplitude of PS 30 min post-tetanus reached 153±10%. Aβ (200 nM) markedly suppressed the LTP magnitude or even caused the suppression of baseline PS (82±8%, Pdonepezil was co-administered with Aβ (136±11%, Pdonepezil and 0.5 μM haloperidol and have found that haloperidol antagonized the stimulating effect of donepezil on LTP (92±6%, Pdonepezil-induced rescue of hippocampal LTP impaired by Aβ. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Leptin Induces Hippocampal Synaptogenesis via CREB-Regulated MicroRNA-132 Suppression of p250GAP

    Science.gov (United States)

    Dhar, Matasha; Zhu, Mingyan; Impey, Soren; Lambert, Talley J.; Bland, Tyler; Karatsoreos, Ilia N.; Nakazawa, Takanobu

    2014-01-01

    Leptin acts in the hippocampus to enhance cognition and reduce depression and anxiety. Cognitive and emotional disorders are associated with abnormal hippocampal dendritic spine formation and synaptogenesis. Although leptin has been shown to induce synaptogenesis in the hypothalamus, its effects on hippocampal synaptogenesis and the mechanism(s) involved are not well understood. Here we show that leptin receptors (LepRs) are critical for hippocampal dendritic spine formation in vivo because db/db mice lacking the long form of the leptin receptor (LepRb) have reduced spine density on CA1 and CA3 neurons. Leptin promotes the formation of mature spines and functional glutamate synapses on hippocampal pyramidal neurons in both dissociated and slice cultures. These effects are blocked by short hairpin RNAs specifically targeting the LepRb and are absent in cultures from db/db mice. Activation of the LepR leads to cAMP response element–binding protein (CREB) phosphorylation and initiation of CREB-dependent transcription via the MAPK kinase/Erk pathway. Furthermore, both Mek/Erk and CREB activation are required for leptin-induced synaptogenesis. Leptin also increases expression of microRNA-132 (miR132), a well-known CREB target, which is also required for leptin-induced synaptogenesis. Last, leptin suppresses the expression of p250GAP, a miR132 target, and this suppression is obligatory for leptin's effects as is the downstream target of p250GAP, Rac1. LepRs appear to be critical in vivo as db/db mice have lowered hippocampal miR132 levels and elevated p250GAP expression. In conclusion, we identify a novel signaling pathway by which leptin increases synaptogenesis through inducing CREB transcription and increasing microRNA-mediated suppression of p250GAP activity, thus removing a known inhibitor of Rac1-stimulated synaptogenesis. PMID:24877561

  1. Assessment of seizure liability of Org 306039, a 5-HT2c agonist, using hippocampal brain slice and rodent EEG telemetry.

    Science.gov (United States)

    Markgraf, Carrie G; DeBoer, Erik; Zhai, Jin; Cornelius, Lara; Zhou, Ying Ying; MacSweeney, Cliona

    2014-01-01

    Evaluation of the seizure potential for a CNS-targeted pharmaceutical compound before it is administered to humans is an important part of development. The current in vitro and in vivo studies were undertaken to characterize the seizure potential of the potent and selective 5-HT2c agonist Org 306039. Rat hippocampal slices (n=5) were prepared and Org 306039 was applied over a concentration range of 0-1000μM. Male Sprague-Dawley rats, implanted with telemetry EEG recording electrodes received either vehicle (n=4) or 100mg/kg Org 306039 (n=4) by oral gavage daily for 10days. EEG was recorded continuously for 22±1h post-dose each day. Post-dose behavior observations were conducted daily for 2h. Body temperature was measured at 1 and 2h post-dose. On Day 7, blood samples were drawn for pharmacokinetic analysis of Org 306039. In hippocampal slice, Org 306039 elicited a concentration-dependent increase in population spike area and number recorded from CA1 area, indicating seizure-genic potential. In telemetered rats, Org 306039 was associated with a decrease in body weight, a decrease in body temperature and the appearance of seizure-related behaviors and pre-seizure waveforms on EEG. One rat exhibited an overt seizure. Plasma concentrations of Org 306039 were similar among the 4 rats in the Org-treated group. Small group size made it difficult to determine a PK-PD relationship. These results indicate that the in vitro and in vivo models complement each other in the characterization of the seizure potential of CNS-targeted compounds such as the 5-HT2c agonist Org 306039. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Time-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures.

    Science.gov (United States)

    Radic, Tijana; Jungenitz, Tassilo; Singer, Mathias; Beining, Marcel; Cuntz, Hermann; Vlachos, Andreas; Deller, Thomas; Schwarzacher, Stephan W

    2017-03-03

    Neurogenesis of hippocampal granule cells (GCs) persists throughout mammalian life and is important for learning and memory. How newborn GCs differentiate and mature into an existing circuit during this time period is not yet fully understood. We established a method to visualize postnatally generated GCs in organotypic entorhino-hippocampal slice cultures (OTCs) using retroviral (RV) GFP-labeling and performed time-lapse imaging to study their morphological development in vitro. Using anterograde tracing we could, furthermore, demonstrate that the postnatally generated GCs in OTCs, similar to adult born GCs, grow into an existing entorhino-dentate circuitry. RV-labeled GCs were identified and individual cells were followed for up to four weeks post injection. Postnatally born GCs exhibited highly dynamic structural changes, including dendritic growth spurts but also retraction of dendrites and phases of dendritic stabilization. In contrast, older, presumably prenatally born GCs labeled with an adeno-associated virus (AAV), were far less dynamic. We propose that the high degree of structural flexibility seen in our preparations is necessary for the integration of newborn granule cells into an already existing neuronal circuit of the dentate gyrus in which they have to compete for entorhinal input with cells generated and integrated earlier.

  3. Metabolism of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Atropisomers in Tissue Slices from Phenobarbital or Dexamethasone-Induced Rats is Sex-Dependent

    Science.gov (United States)

    Wu, Xianai; Kania-Korwel, Izabela; Chen, Hao; Stamou, Marianna; Dammanahalli, Karigowda J.; Duffel, Michael; Lein, Pamela J.; Lehmler, Hans-Joachim

    2013-01-01

    Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized.The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups.In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected.Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs. PMID:23581876

  4. Acute rosmarinic acid treatment enhances long-term potentiation, BDNF and GluR-2 protein expression, and cell survival rate against scopolamine challenge in rat organotypic hippocampal slice cultures.

    Science.gov (United States)

    Hwang, Eun-Sang; Kim, Hyun-Bum; Choi, Ga-Young; Lee, Seok; Lee, Sung-Ok; Kim, SangSeong; Park, Ji-Ho

    2016-06-17

    Rosmarinic acid (RA) is a polyphenolic ester of caffeic acid and is commonly found in the Nepetoideae subfamily of flowering mint plants. Because RA has previously exhibited antioxidant, neuroprotective, and antidepressant-like effects, we evaluated its influences on cellular functions in neuronal cultures. To elucidate possible mechanisms of RA, we investigated the influences of acute RA administration on long-term potentiation (LTP), plasticity-related protein expression, and scopolamine-induced cell death in organotypic hippocampal slice cultures. LTP analysis in organotypic hippocampal slice cultures (OHSCs) was carried out with various ion channel blockers, such as AP5 (10 μM), CNQX (10 μM), niflumic acid (100 μM), and scopolamine (300 μM) in response to RA (1, 10 or 100 μg/mL) treatment. Protein expression and cell death assays in the presence of scopolamine were examined to observe the effects of RA. For LTP analysis, baseline field excitatory postsynaptic potentials (fEPSPs) were recorded in CA1 by a 60-channel multielectrode array (MEA) every min for 40 min before 15 min of high-frequency stimulation (HFS) to the Schaffer collaterals and commissural pathways, followed by a successive 50 min of recording. For protein expression measurements, anti-BDNF and anti-GluR2 antibodies were used for Western blotting assays in whole-hippocampal tissue homogenate. Finally, for cell death assays, OHSCs were exposed to a culture medium containing propidium iodide (PI) for 24 or 48 h, followed by the assessment of cell death by fluorescent image analysis of PI uptake. and discussion: Our results indicate that RA treatment enhances fEPSPs following HFS in CA1 synapses at 1 and 10 μg/ml RA, an effect that was inhibited by CNQX and NFA but not by AP5. RA treatment also increases the expression of BDNF and GluR-2 proteins and prevents cell death of scopolamine-exposed OHSCs. Our results suggest the possibility that rosmarinic acid can enhance neural

  5. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices.

    Science.gov (United States)

    Zhou, Min; Xu, Guangjin; Xie, Minjie; Zhang, Xuexin; Schools, Gary P; Ma, Liqun; Kimelberg, Harold K; Chen, Haijun

    2009-07-01

    Expression of a linear current-voltage (I-V) relationship (passive) K(+) membrane conductance is a hallmark of mature hippocampal astrocytes. However, the molecular identifications of the K(+) channels underlying this passive conductance remain unknown. We provide the following evidence supporting significant contribution of the two-pore domain K(+) channel (K(2P)) isoforms, TWIK-1 and TREK-1, to this conductance. First, both passive astrocytes and the cloned rat TWIK-1 and TREK-1 channels expressed in CHO cells conduct significant amounts of Cs(+) currents, but vary in their relative P(Cs)/P(K) permeability, 0.43, 0.10, and 0.05, respectively. Second, quinine, which potently inhibited TWIK-1 (IC(50) = 85 microm) and TREK-1 (IC(50) = 41 microm) currents, also inhibited astrocytic passive conductance by 58% at a concentration of 200 microm. Third, a moderate sensitivity of passive conductance to low extracellular pH (6.0) supports a combined expression of acid-insensitive TREK-1, and to a lesser extent, acid-sensitive TWIK-1. Fourth, the astrocyte passive conductance showed low sensitivity to extracellular Ba(2+), and extracellular Ba(2+) blocked TWIK-1 channels at an IC(50) of 960 microm and had no effect on TREK-1 channels. Finally, an immunocytochemical study showed colocalization of TWIK-1 and TREK-1 proteins with the astrocytic markers GLAST and GFAP in rat hippocampal stratum radiatum. In contrast, another K(2P) isoform TASK-1 was mainly colocalized with the neuronal marker NeuN in hippocampal pyramidal neurons and was expressed at a much lower level in astrocytes. These results support TWIK-1 and TREK-1 as being the major components of the long-sought K(+) channels underlying the passive conductance of mature hippocampal astrocytes.

  6. Linking binge alcohol-induced neurodamage to brain edema and potential aquaporin-4 upregulation: evidence in rat organotypic brain slice cultures and in vivo.

    Science.gov (United States)

    Sripathirathan, Kumar; Brown, James; Neafsey, Edward J; Collins, Michael A

    2009-02-11

    Brain edema and derived oxidative stress potentially are critical events in the hippocampal-entorhinal cortical (HEC) neurodegeneration caused by binge alcohol (ethanol) intoxication and withdrawal in adult rats. Edema's role is based on findings that furosemide diuretic antagonizes binge alcohol-dependent brain overhydration and neurodamage in vivo and in rat organotypic HEC slice cultures. However, evidence that furosemide has significant antioxidant potential and knowledge that alcohol can cause oxidative stress through non-edemic pathways has placed edema's role in question. We therefore studied three other diuretics and a related non-diuretic that, according to our oxygen radical antioxidant capacity (ORAC) assays or the literature, possess minimal antioxidant potential. Acetazolamide (ATZ), a carbonic anhydrase inhibitor/diuretic with negligible ORAC effectiveness and, interestingly, an aquaporin-4 (AQP4) water channel inhibitor, prevented alcohol-dependent tissue edema and neurodegeneration in HEC slice cultures. Likewise, in binge alcohol-intoxicated rats, ATZ suppressed brain edema while inhibiting neurodegeneration. Torasemide, a loop diuretic lacking furosemide's ORAC capability, also prevented alcohol-induced neurodamage in HEC slice cultures. However, bumetanide (BUM), a diuretic blocker of Na(+)-K(+)-2Cl(-) channels, and L-644, 711, a nondiuretic anion channel inhibitor--both lacking antioxidant capabilities as well as reportedly ineffective against alcohol-dependent brain damage in vivo--reduced neither alcohol-induced neurotoxicity nor (with BUM) edema in HEC slices. Because an AQP4 blocker (ATZ) was neuroprotective, AQP4 expression in the HEC slices was examined and found to be elevated by binge alcohol. The results further indicate that binge ethanol-induced brain edema/swelling, potentially associated with AQP4 upregulation, may be important in consequent neurodegeneration that could derive from neuroinflammatory processes, for example, membrane

  7. Different characteristics of cell volume and intracellular calcium ion concentration dynamics between the hippocampal CA1 and lateral cerebral cortex of male mouse brain slices during exposure to hypotonic stress.

    Science.gov (United States)

    Takahashi, Nanae; Omi, Akibumi; Uchino, Hiroyuki; Kudo, Yoshihisa

    2018-01-01

    The mechanism of brain edema is complex and still remains unclear. Our aim was to investigate the regional differences of cell volume and intracellular Ca 2+ concentration ([Ca 2+ ] i ) dynamics during hypotonic stress in male mouse hemi-brain slices. Brain slices were loaded with the fluorescence Ca 2+ indicator fura-2, and cell volume and [Ca 2+ ] i in the lateral cerebral cortex (LCC) and hippocampal CA1 (CA1) region were measured simultaneously during exposure to hypotonic stress using Ca 2+ insensitive (F360) and Ca 2+ sensitive fluorescence (F380), respectively. Brain cell swelling induced by hypotonic stress was followed by a regulatory volume change that coincided with an increase in [Ca 2+ ] i . The degrees of change in cell volume and [Ca 2+ ] i were significantly different between the LCC and CA1. The increase in cell volume and [Ca 2+ ] i in the LCC, but not in the CA1, was decreased by the transient receptor potential channel blockers LaCl 3 and GdCl 3 . The increase in [Ca 2+ ] i in both the LCC and CA1, was significantly decreased by the intracellular Ca 2+ modulators thapsigargin and xestospongin C. The K + channel activator isoflurane and Cl - channel blocker NPPB significantly decreased [Ca 2+ ] i in the LCC. This study demonstrated that, between cells located in the LCC and in the CA1, the characteristics of brain edema induced by hypotonic stress are different. This can be ascribed to the different contribution of volume sensitive G-protein coupled receptor and stretch sensitive Ca 2+ channels. © 2017 Wiley Periodicals, Inc.

  8. Hippocampal Dendritic Spines Modifications Induced by Perinatal Asphyxia

    Directory of Open Access Journals (Sweden)

    G. E. Saraceno

    2012-01-01

    Full Text Available Perinatal asphyxia (PA affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS. In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.

  9. Activation of extrasynaptic GABA(A) receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons.

    Science.gov (United States)

    Wan, Li; Liu, Xu; Wu, Zheng; Ren, Wanting; Kong, Shuzhen; Dargham, Raya Abou; Cheng, Longzhen; Wang, Yun

    2014-10-01

    Extrasynaptic GABA(A) receptors (GABA(A)Rs)-mediated tonic inhibition is reported to involve in the pathogenesis of epilepsy. In this study, we used cyclothiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABA(A)Rs by 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs) in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the δ-subunit of the GABA(A)R, an extrasynaptic specific GABA(A)R subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABA(A)Rs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABA(A)Rs plays a prominent role in seizure generation.

  10. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Science.gov (United States)

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  11. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  12. Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development.

    Directory of Open Access Journals (Sweden)

    Yukio Akaneya

    2010-08-01

    Full Text Available Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases.Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents.These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR

  13. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping.

    Science.gov (United States)

    Wang, Melissa E; Yuan, Robin K; Keinath, Alexander T; Ramos Álvarez, Manuel M; Muzzio, Isabel A

    2015-06-17

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. Copyright © 2015 the authors 0270-6474/15/359122-15$15.00/0.

  14. From 2D slices to 3D volumes: image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning.

    Science.gov (United States)

    Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf

    2011-03-01

    3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Neuroprotective Potential and Paracrine Activity of Stromal Vs. Culture-Expanded hMSC Derived from Wharton Jelly under Co-Cultured with Hippocampal Organotypic Slices.

    Science.gov (United States)

    Dabrowska, Sylwia; Sypecka, Joanna; Jablonska, Anna; Strojek, Lukasz; Wielgos, Miroslaw; Domanska-Janik, Krystyna; Sarnowska, Anna

    2017-11-13

    Regardless of enormous translational progress in stem cell clinical application, our knowledge about biological determinants of transplantation-related protection is still limited. In addition to adequate selection of the cell source well dedicated to a specific disease and optimal standardization of all other pre-transplant procedures, we have decided to focus more attention to the impact of culture time and environment itself on molecular properties and regenerative capacity of cell cultured in vitro. The aim of this investigation was to determine neuroprotection-linked cell phenotypic and functional changes that could spontaneously take place when freshly isolated Wharton's jelly mesenchymal stem cell (WJ-MSC) undergo standard selection, growth, and spontaneous differentiation throughout passaging in vitro. For determining their neuroprotective potential, we used experimental model of human WJ-MSC co-culture with intact or oxygen-glucose-deprived (OGD) rat organotypic hippocampal culture (OHC). It has been shown that putative molecular mechanisms mediating regenerative interactions between WJ-MSC and OHC slices relies mainly on mesenchymal cell paracrine activity. Interestingly, it has been also found that the strongest protective effect is exerted by the co-culture with freshly isolated umbilical cord tissue fragments and by the first cohort of human mesenchymal stem cells (hMSCs) migrating out of these fragments (passage 0). Culturing of WJ-derived hMSC in well-controlled standard conditions under air atmosphere up to fourth passage caused unexpected decline of neuroprotective cell effectiveness toward OGD-OHC in the co-culture model. This further correlated with substantial changes in the WJ-MSC phenotype, profile of their paracrine activities as well as with the recipient tissue reaction evaluated by changes in the rat-specific neuroprotection-linked gene expression.

  16. 5-HT4-receptors modulate induction of long-term depression but not potentiation at hippocampal output synapses in acute rat brain slices.

    Directory of Open Access Journals (Sweden)

    Matthias Wawra

    Full Text Available The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD. In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4 receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1, 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output.

  17. Binge Ethanol-induced Neurodegeneration in Rat Organotypic Brain Slice Cultures: Effects of PLA2 Inhibitor Mepacrine and Docosahexaenoic Acid (DHA)

    Science.gov (United States)

    Brown, James; Achille, Nicholas; Neafsey, Edward J.

    2010-01-01

    Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures, we examined whether phospholipase A2 (PLA2) activity is involved in binge alcohol (ethanol)-induced neurodegeneration, and whether docosahexaenoic acid (DHA; 22:6n-3), a fish oil-enriched fatty acid that is anti-inflammatory in brain damage models, is neuroprotective. Assessed with propidium iodide and lactate dehydrogenase (LDH) leakage, neurodamage from ethanol (6 days 100 mM ethanol with four withdrawal periods) was prevented by the PLA2 pan-inhibitor, mepacrine. Also, ethanol-dependent neurodegeneration— particularly in the entorhinal region—was significantly ameliorated by DHA supplementation (25 µM); however, adrenic acid, a 22:4n-6 analog, was ineffective. Consistent with PLA2 activation, [3H] liberation was approximately fivefold greater in [3H]arachidonic acid-preloaded HEC slice cultures during ethanol withdrawal compared to controls, and DHA supplementation suppressed [3H] release to control levels. DHA might antagonize PLA2 activity directly or suppress upstream activators (e.g., oxidative stress); however, other DHA mechanisms could be important in subdueing ethanol-induced PLA2-dependent and independent neuroinflammatory processes. PMID:18592376

  18. Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma.

    Science.gov (United States)

    Yong, Hae In; Kim, Hyun-Joo; Park, Sanghoo; Alahakoon, Amali U; Kim, Kijung; Choe, Wonho; Jo, Cheorun

    2015-04-01

    Pathogen inactivation induced by atmospheric pressure dielectric barrier discharge (DBD) (250 W, 15 kHz, air discharge) produced in a rectangular plastic container and the effect of post-treatment storage time on inactivation were evaluated using agar plates and cheese slices. When agar plates were treated with plasma, populations of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes showed 3.57, 6.69, and 6.53 decimal reductions at 60 s, 45 s, and 7 min, respectively. When the pathogens tested were inoculated on cheese slices, 2.67, 3.10, and 1.65 decimal reductions were achieved at the same respective treatment times. The post-treatment storage duration following plasma treatment potently affected further reduction in pathogen populations. Therefore, the newly developed encapsulated DBD-plasma system for use in a container can be applied to improve the safety of sliced cheese, and increasing post-treatment storage time can greatly enhance the system's pathogen-inactivation efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression.

    Science.gov (United States)

    Tang, Ming-Ming; Lin, Wen-Juan; Pan, Yu-Qin; Guan, Xi-Ting; Li, Ying-Cong

    2016-07-01

    Our previous work found that triple central lipopolysaccharide (LPS) administration could induce depressive-like behaviors and increased central pro-inflammatory cytokines mRNA, hippocampal cytokine mRNA in particular. Since several neuroinflammation-associated conditions have been reported to impair neurogenesis, in this study, we further investigated whether the neuroinflammation induced depression would be associated with hippocampal neurogenesis dysfunction. An animal model of depression induced by triple central lipopolysaccharide (LPS) administration was used. In the hippocampus, the neuroinflammatory state evoked by LPS was marked by an increased production of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. It was found that rats in the neuroinflammatory state exhibited depressive-like behaviors, including reduced saccharin preference and locomotor activity as well as increased immobility time in the tail suspension test and latency to feed in the novelty suppressed feeding test. Adult hippocampal neurogenesis was concomitantly inhibited, including decreased cell proliferation and newborn cell survival. We also demonstrated that the decreased hippocampal neurogenesis in cell proliferation was significantly correlated with the depressive-like phenotypes of decreased saccharine preference and distance travelled, the core and characteristic symptoms of depression, under neuro inflammation state. These findings provide the first evidence that hippocampal neurogenesis dysfunction is correlated with neuroinflammation-induced depression, which suggests that hippocampal neurogenesis might be one of biological mechanisms underlying depression induced by neruoinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Postnatal administration of memantine rescues TNF-α-induced decreased hippocampal precursor proliferation.

    Science.gov (United States)

    Wang, Zhongke; He, Xie; Fan, Xiaotang

    2018-01-01

    Pro-inflammatory cytokine exposure in early postnatal life triggers clear neurotoxic effects on the developing hippocampus. Tumor necrosis factor alpha (TNF-α) is one of the inflammatory mediators and is a potent inhibitor of neurogenesis. Memantine (MEM) is an uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist that has been demonstrated to increase the proliferation of hippocampal progenitor cells. However, the effects of MEM on TNF-α-mediated impairment of hippocampal precursor proliferation remain unclear. In this study, mice were exposed to TNF-α and later treated with MEM to evaluate its protective effects on TNF-α-mediated toxicity during hippocampal development. The results indicated that brief exposure to TNF-α on postnatal days 3 and 5 resulted in a significant impairment of hippocampal precursor proliferation and a depletion of hippocampal neural precursor cells (NPCs). This effect was attenuated by MEM treatment. We further confirmed that MEM treatment reversed the TNF-α-induced microglia activation and up-regulation of hippocampal NF-κB, MCP-1 and IL-6 mRNA levels, which may be related to the proliferation and maintenance of NPCs. Overall, our results suggest that MEM treatment protects against TNF-α-induced repression of hippocampal precursor proliferation in postnatal mice by partially attenuating neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy

    Science.gov (United States)

    Zhang, Xuebin; Huang, Huiling; Wang, Jin; Wang, Yajing; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing

    2015-01-01

    The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy. PMID:26325184

  2. Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis.

    Science.gov (United States)

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Chao, Jie; Yao, Honghong

    2016-03-01

    Neuronal nitric oxide synthase (nNOS), the major nitric oxide synthase isoform in the mammalian brain, is implicated in the pathophysiology of several neurological conditions, including epilepsy. Neurogenesis in hippocampal dentate gyrus (DG) persists throughout life in the adult brain. Alterations in this process occur in many neurological diseases, including epilepsy. Few studies, however, have addressed the role of nNOS in hippocampal DG neurogenesis in epileptic brain. The present study, therefore, investigated the role of nNOS in pentylenetetrazole (PTZ)-kindling-induced neurogenesis in hippocampal DG. Our results showed that nNOS expression and enzymatic activity were significantly increased in the hippocampus of PTZ-kindled mice. Meanwhile, these PTZ-kindled mice were characterized by significant enhancement of new born cells proliferation and survival in hippocampal DG, and these survived cells are co-labeled with NeuN and GFAP. Selective inhibition of nNOS by 7-NI, however, suppressed PTZ-kindling-induced hippocampal DG new born cells proliferation and survival, suggesting that nNOS contributes to PTZ-kindling-induced hippocampal neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Protective effect of naringenin on glutamate-induced neurotoxicity in cultured hippocampal cells

    Directory of Open Access Journals (Sweden)

    Xu Xiao-Hui

    2015-01-01

    Full Text Available Monosodium glutamate induces excitotoxicity in the central nervous system through hyperactivation of both ionotropic and metabotropic glutamate receptors, which leads to neuronal cell death. In this study, we investigated the neuroprotective effects of naringenin on excitotoxicity induced by glutamate in primary hippocampal neurons of neonatal mice. The expression levels of apoptosis-inducing proteins and as well as ischemic factors were observed by Western blot analysis. Immunocytochemistry and morphometric analysis of hippocampal cells with or without glutamate and naringenin treatment were performed. We observed that naringenin regulated Erk1/2 and Akt phosphorylation and reduced the demise of dendrites due to glutamate exposure in cultured hippocampal neurons. Furthermore, naringenin induced the brain-derived neurotrophic factor and other neuroprotective cytokines, and markedly improved the survival rates of the neurons 24 h following glutamate exposure. The observed results suggest that the naturally occurring bioflavonoid (naringenin exerts neuroprotective effects via highly specific molecular targets in neurons.

  4. Lactation-induced reduction in hippocampal neurogenesis is reversed by repeated stress exposure.

    Science.gov (United States)

    Hillerer, Katharina M; Neumann, Inga D; Couillard-Despres, Sebastien; Aigner, Ludwig; Slattery, David A

    2014-06-01

    The peripartum period is a time of high susceptibility for mood and anxiety disorders, some of which have recently been associated with alterations in hippocampal neurogenesis. Several factors including stress, aging, and, perhaps unexpectedly, lactation have been shown to decrease hippocampal neurogenesis. Intriguingly, lactation is also a time of reduced stress responsivity suggesting that the effect of stress on neurogenic processes may differ during this period. Therefore, the aim of the present study was to assess the effect of repeated stress during lactation [2 h restraint stress from lactation day (LD) 2 to LD13] on brain weight, hippocampal volume, cell proliferation and survival, and on neuronal and astroglial differentiation. In addition to confirming the known lactation-associated decrease in cell proliferation and survival, we could reveal that stress reversed the lactation-induced decrease in cell proliferation, while it did not affect survival of newly born cells, nor the number of mature neurons , nor did it alter immature neuron production or the number of astroglial cells in lactation. Stress exposure increased relative brain weight and hippocampal volume mirroring the observed changes in neurogenesis. Interestingly, hippocampal volume and relative brain weight were lower in lactation as compared to nulliparous females under nonstressed conditions. This study assessed the effect of stress during lactation on hippocampal neurogenesis and indicates that stress interferes with important peripartum adaptations at the level of the hippocampus. © 2014 Wiley Periodicals, Inc.

  5. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

    Science.gov (United States)

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-09-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β1-induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.

  6. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  7. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    2011-02-01

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  8. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yun Kyung; Kim, Gunha; Park, Serah; Sim, Ju Hee; Won, You Jin [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hwang, Chang Ho [Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Jeonha-dong, Dong-gu, Ulsan 682-714 (Korea, Republic of); Yoo, Jong Yoon, E-mail: jyyoo@amc.seoul.kr [Department of Rehabilitation Medicine, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hong, Hea Nam, E-mail: hnhong@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Lysolecithin-induced demyelination elevated EpoR expression in OPCs. Black-Right-Pointing-Pointer In association with elevated EpoR, EPO increased OPCs proliferation. Black-Right-Pointing-Pointer EPO enhanced the oligodendrogenesis via activation of JAK2 pathway. Black-Right-Pointing-Pointer EPO promoted myelin repair following lysolecithin-induced demyelination. -- Abstract: Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to a limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.

  9. Linking Binge Alcohol-Induced Neurodamage to Brain Edema and Potential Aquaporin-4 Upregulation: Evidence in Rat Organotypic Brain Slice Cultures and In Vivo

    OpenAIRE

    Sripathirathan, Kumar; Brown, James; Neafsey, Edward J.; Collins, Michael A.

    2009-01-01

    Brain edema and derived oxidative stress potentially are critical events in the hippocampal-entorhinal cortical (HEC) neurodegeneration caused by binge alcohol (ethanol) intoxication and withdrawal in adult rats. Edema's role is based on findings that furosemide diuretic antagonizes binge alcohol–dependent brain overhydration and neurodamage in vivo and in rat organotypic HEC slice cultures. However, evidence that furosemide has significant antioxidant potential and knowledge that alcohol can...

  10. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    Science.gov (United States)

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine.

    Science.gov (United States)

    Sampaio, Luis Rafael L; Borges, Lucas T N; Silva, Joyse M F; de Andrade, Francisca Roselin O; Barbosa, Talita M; Oliveira, Tatiana Q; Macedo, Danielle; Lima, Ricardo F; Dantas, Leonardo P; Patrocinio, Manoel Cláudio A; do Vale, Otoni C; Vasconcelos, Silvânia M M

    2017-08-29

    The use of ketamine (Ket) as a pharmacological model of schizophrenia is an important tool for understanding the main mechanisms of glutamatergic regulated neural oscillations. Thus, the aim of the current study was to evaluate Ket-induced changes in the average spectral power using the hippocampal quantitative electroencephalography (QEEG). To this end, male Wistar rats were submitted to a stereotactic surgery for the implantation of an electrode in the right hippocampus. After three days, the animals were divided into four groups that were treated for 10 consecutive days with Ket (10, 50, or 100 mg/kg). Brainwaves were captured on the 1st or 10th day, respectively, to acute or repeated treatments. The administration of Ket (10, 50, or 100 mg/kg), compared with controls, induced changes in the hippocampal average spectral power of delta, theta, alpha, gamma low or high waves, after acute or repeated treatments. Therefore, based on the alterations in the average spectral power of hippocampal waves induced by Ket, our findings might provide a basis for the use of hippocampal QEEG in animal models of schizophrenia. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  12. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  13. Prenatal choline deficiency does not enhance hippocampal vulnerability after kainic acid-induced seizures in adulthood.

    Science.gov (United States)

    Wong-Goodrich, Sarah J E; Tognoni, Christina M; Mellott, Tiffany J; Glenn, Melissa J; Blusztajn, Jan K; Williams, Christina L

    2011-09-21

    Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12-17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    OpenAIRE

    Chai, Xiqing; Kong, Weina; Liu, Lingyun; Yu, Wenguo; Zhang, Zhenqing; Sun, Yimin

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we constructed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1α gene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1α represses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results confirmed that rAAV-HIF-1α significantly reduces apoptosis induced by amyl...

  15. Altered hippocampal arteriole structure and function in a rat model of preeclampsia: Potential role in impaired seizure-induced hyperemia.

    Science.gov (United States)

    Johnson, Abbie C; Cipolla, Marilyn J

    2017-08-01

    We investigated the effect of experimental preeclampsia on hyperemia during seizure in the hippocampus and vascular function and structure of hippocampal arterioles using Sprague Dawley rats (n = 14/group) that were nonpregnant, pregnant (d20), or had experimental preeclampsia (induced by a high cholesterol diet d7-20). Hyperemia was measured via hydrogen clearance basally and during pentylenetetrazol-induced seizure (40-130 mg/kg i.v.). Reactivity of isolated and pressurized hippocampal arterioles to KCl, nitric oxide synthase inhibition with NG-nitro-L-arginine methyl ester and the nitric oxide donor sodium nitroprusside were investigated. Capillary density was quantified via immunohistochemistry. Cerebral blood flow increased during seizure vs. baseline in pregnant (118 ± 14 vs. 87 ± 9 mL/100 g/min; p  0.05), suggesting impaired seizure-induced hyperemia in preeclampsia. Hippocampal arterioles from preeclamptic rats had less basal tone, and dilated less to 15 mM KCl (9 ± 8%) vs. pregnant (61 ± 27%) and nonpregnant rats (20 ± 11%). L-NAME had no effect on hippocampal arterioles in any group, but dilation to sodium nitroprusside was similar. Structurally, hippocampal arterioles from preeclamptic rats underwent inward hypotrophic remodeling and capillary rarefaction. Impaired seizure-induced hyperemia, vascular dysfunction, and limited vasodilatory reserve of hippocampal arterioles could potentiate hippocampal injury in preeclampsia especially during eclampsia.

  16. Cyclothiazide induces robust epileptiform activity in rat hippocampal neurons both in vitro and in vivo.

    Science.gov (United States)

    Qi, Jinshun; Wang, Yun; Jiang, Min; Warren, Philippa; Chen, Gong

    2006-03-15

    Cyclothiazide (CTZ) is a potent blocker of AMPA receptor desensitization. We have recently demonstrated that CTZ also inhibits GABA(A) receptors. Here we report that CTZ induces robust epileptiform activity in hippocampal neurons both in vitro and in vivo. We first found that chronic treatment of hippocampal cultures with CTZ (5 microM, 48 h) results in epileptiform activity in the majority of neurons (80%). The epileptiform activity lasts more than 48 h after washing off CTZ, suggesting a permanent change of the neural network properties after CTZ treatment. We then demonstrated in in vivo recordings that injection of CTZ (5 micromol in 5 microl) into the lateral ventricles of anaesthetized rats also induces spontaneous epileptiform activity in the hippocampal CA1 region. The epileptogenic effect of CTZ is probably due to its enhancing glutamatergic neurotransmission as shown by increasing the frequency and decay time of mEPSCs, and simultaneously inhibiting GABAergic neurotransmission by reducing the frequency of mIPSCs. Comparing to a well-known epileptogenic agent kainic acid (KA), CTZ affects neuronal activity mainly through modulating synaptic transmission without significant change of the intrinsic membrane excitability. Unlike KA, which induces significant cell death in hippocampal cultures, CTZ treatment does not result in any apparent neuronal death. Therefore, the CTZ-induced epilepsy model may provide a novel research tool to elucidate the molecular and cellular mechanisms of epileptogenesis without any complication from drug-induced cell death. The long-lasting epileptiform activity after CTZ washout may also make it a very useful model in screening antiepileptic drugs.

  17. Conditioned Medium Reconditions Hippocampal Neurons against Kainic Acid Induced Excitotoxicity: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar K. Bevinahal

    2014-01-01

    Full Text Available Stem cell therapy is gaining attention as a promising treatment option for neurodegenerative diseases. The functional efficacy of grafted cells is a matter of debate and the recent consensus is that the cellular and functional recoveries might be due to “by-stander” effects of grafted cells. In the present study, we investigated the neuroprotective effect of conditioned medium (CM derived from human embryonic kidney (HEK cells in a kainic acid (KA induced hippocampal degeneration model system in in vitro condition. Hippocampal cell line was exposed to KA (200 µM for 24 hrs (lesion group whereas, in the treatment group, hippocampal cell line was exposed to KA in combination with HEK-CM (KA + HEK-CM. We observed that KA exposure to cells resulted in significant neuronal loss. Interestingly, HEK-CM cotreatment completely attenuated the excitotoxic effects of KA. In HEK-CM cotreatment group, the cell viability was ~85–95% as opposed to 47% in KA alone group. Further investigation demonstrated that treatment with HEK-CM stimulated the endogenous cell survival factors like brain derived neurotrophic factors (BDNF and antiapoptotic factor Bcl-2, revealing the possible mechanism of neuroprotection. Our results suggest that HEK-CM protects hippocampal neurons against excitotoxicity by stimulating the host’s endogenous cell survival mechanisms.

  18. Hippocampal adaptive response following extensive neuronal loss in an inducible transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Kristoffer Myczek

    Full Text Available Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimer's, Parkinson's, and Huntington's disease and brain traumas (stroke, epilepsy, and traumatic brain injury. One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DT(A mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery.

  19. Treadmill exercise induces selective changes in hippocampal histone acetylation during the aging process in rats.

    Science.gov (United States)

    de Meireles, Louisiana Carolina Ferreira; Bertoldi, Karine; Cechinel, Laura Reck; Schallenberger, Bruna Luisa; da Silva, Vanessa Kappel; Schröder, Nadja; Siqueira, Ionara Rodrigues

    2016-11-10

    Physical exercise and the aging process have been shown to induce opposite effects on epigenetic marks, such as histone acetylation. The impact of exercise on hippocampal histone acetylation on specific lysine residues, especially during the aging process, is rarely studied. The aim of this study was to investigate the effect of treadmill exercise (20min/day during 2 weeks) on H3K9, H4K5 and H4K12 acetylation levels in hippocampi of young adult and aged rats. Male Wistar rats aged 3 or 20-21 months were assigned to sedentary and exercise groups. Single-trial step-down inhibitory avoidance conditioning was employed as an aversive memory paradigm. Hippocampal H3K9, H4K5 and H4K12 acetylation was determined by Western blotting. The daily moderate exercise protocol improved the aversive memory performance and increased hipocampal H4K12 acetylation levels in both tested ages. Exercise was also able to increase H3K9 acetylation levels in aged rats. An age-related decline in memory performance was observed, without any effect of the aging process on histone acetylation state. Our data suggest that treadmill exercise can impact hippocampal the histone acetylation profile in an age- and lysine-dependent manner. In addition, higher hippocampal H4K12 acetylation levels at both ages may be related to improvement of aversive memory performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Architectural slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java....

  1. Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging.

    Science.gov (United States)

    Biswal, Suryanarayan; Sharma, Deepti; Kumar, Kushal; Nag, Tapas Chandra; Barhwal, Kalpana; Hota, Sunil Kumar; Kumar, Bhuvnesh

    2016-09-01

    Both chronological aging and chronic hypoxia stress have been reported to cause degeneration of hippocampal CA3 neurons and spatial memory impairment through independent pathways. However, the possible occurrence of precocious biological aging on exposure to single episode of global hypoxia resulting in impairment of learning and memory remains to be established. The present study thus aimed at bridging this gap in existing literature on hypoxia induced biological aging. Male Sprague Dawley rats were exposed to simulated hypobaric hypoxia (25,000ft) for different durations and were compared with aged rats. Behavioral studies in Morris Water Maze showed decline in learning abilities of both chronologically aged as well as hypoxic rats as evident from increased latency and pathlength to reach target platform. These behavioral changes in rats exposed to global hypoxia were associated with deposition of lipofuscin and ultrastructural changes in the mitochondria of hippocampal neurons that serve as hallmarks of aging. A single episode of chronic hypobaric hypoxia exposure also resulted in the up-regulation of pro-aging protein, S100A9 and down regulation of Tau, SNAP25, APOE and Sod2 in the hippocampus similar to that in aged rats indicating hypoxia induced accelerated aging. The present study therefore provides evidence for role of biological aging of hippocampal neurons in hypoxia induced impairment of learning and memory. Copyright © 2016. Published by Elsevier Inc.

  2. Trichilia catigua ethyl-acetate fraction protects against cognitive impairments and hippocampal cell death induced by bilateral common carotid occlusion in mice.

    Science.gov (United States)

    Truiti, Manuela Torrado; Soares, LígiaMendes; Longhini, Renata; Milani, Humberto; Nakamura, Celso Vataru; Mello, João Carlos P; de Oliveira, Rúbia Marsia Weffort

    2015-08-22

    Trichilia catigua preparations have antinociceptive, antiinflammatory, and neuroprotective activity. Recently, a neuroprotective role for T. catigua was proposed using an in vitro model of ischemia-reperfusion in rat hippocampal slices. The aim of the present study was to evaluate the effects of an ethyl-acetate fraction (EAF) of T. catigua, which has potent antioxidant activity, in mice subjected to an in vivo model of cerebral ischemia. Male Swiss mice were subject to the bilateral common carotid occlusion (BCCAO) model of cerebral ischemia. The animals were orally administered the T. catigua EAF (200, 400, or 800 mg/kg) 30 min before and once per day for 7 days after BCCAO. Histological and behavioral outcomes were assessed using Nissl staining and the Morris water maze test of cognition, respectively. Mice that were subjected to BCCAO exhibited cognitive impairments in the Morris water maze. The spatial cognitive deficits were counteracted by T. catigua EAF administration (200-800 mg/kg). The T. catigua EAF significantly increased the number of intact-appearing Nissl-stained cells in the hippocampus in BCCAO mice. These results show that the T. catigua EAF promoted functional recovery, decreased the delayed hippocampal cell loss, and mitigated the ongoing neurodegenerative processes induced by BCCAO in mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Unconjugated bilirubin exposure impairs hippocampal long-term synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Fang-Yu Chang

    Full Text Available BACKGROUND: Jaundice is one of the most common problems encountered in newborn infants, due to immaturity of hepatic conjugation and transport processes for bilirubin. Although the majority of neonatal jaundice is benign, some neonates with severe hyperbilirubinemia develop bilirubin encephalopathy or kernicterus. Accumulation of unconjugated bilirubin (UCB in selected brain regions may result in temporary or permanent impairments of auditory, motor, or cognitive function; however, the molecular mechanisms by which UCB elicits such neurotoxicity are still poorly understood. The present study is undertaken to investigate whether prolonged exposure of rat organotypic hippocampal slice cultures to UCB alters the induction of long-term synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS: Using electrophysiological recording techniques, we find that exposure of hippocampal slice cultures to clinically relevant concentrations of UCB for 24 or 48 h results in an impairment of CA1 long-term potentiation (LTP and long-term depression (LTD induction in a time- and concentration-dependent manner. Hippocampal slice cultures stimulated with UCB show no changes in the secretion profiles of the pro-inflammatory cytokines, interleukin-1beta and tumor necrosis factor-alpha, or the propidium ioide uptake. UCB treatment produced a significant decrease in the levels of NR1, NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA receptors through a calpain-mediated proteolytic cleavage mechanism. Pretreatment of the hippocampal slice cultures with NMDA receptor antagonist or calpain inhibitors effectively prevented the UCB-induced impairment of LTP and LTD. CONCLUSION/SIGNIFICANCE: Our results indicate that the proteolytic cleavage of NMDA receptor subunits by calpain may play a critical role in mediating the UCB-induced impairment of long-term synaptic plasticity in the hippocampus. These observations provide new insights into the molecular mechanisms underlying UCB-induced

  4. Analysis of bile acid-induced regulation of FXR target genes in human liver slices

    NARCIS (Netherlands)

    Jung, Diana; Elferink, Marieke G. L.; Stellaard, Frans; Groothuis, Geny M. M.

    Information about the role of nuclear receptors has rapidly increased over the last decade. However, details about their role in human are lacking. Owing to species differences, a powerful human in vitro system is needed. This study uses for the first time precision-cut human liver slices in the

  5. Centella asiatica Attenuates Diabetes Induced Hippocampal Changes in Experimental Diabetic Rats

    Science.gov (United States)

    Srinivasarao, Nelli; Swapna Rekha, Somesula; Muniandy, Sekaran

    2014-01-01

    Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na+/K+-, Ca2+- and Mg2+-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition. PMID:25161691

  6. Anti-inflammatory effects of Ginkgo biloba extract against trimethyltin-induced hippocampal neuronal injury.

    Science.gov (United States)

    Kaur, Sukhwinder; Sharma, Neha; Nehru, Bimla

    2018-02-01

    Despite the immense neuromodulatory potentials of Ginkgo biloba extract as a memory enhancer, its underlying mechanism seems inadequate particularly with regard to its anti-inflammatory properties. The objective of the present study is to investigate the protective potentials of Ginkgo biloba extract (GBE) against hippocampal neuronal injury induced by trimethyltin (TMT), a potent neurotoxicant. Male SD rats were administered trimethyltin (8.5 mg kg -1 b.wt) single intraperitoneal (i.p.) injection, followed by Ginkgo biloba extract (100 mg kg -1 b.wt i.p) for 21 days. The co-administration of GBE with TMT showed marked improvement in cognitive functions. Concomitantly, there was a significant decrease in oxidative stress as evident by reduction in MDA and total ROS levels. In addition, there was a marked suppression of astrocyte activation (GFAP), transcription factor NFκB and proinflammatory cytokines (TNF-α, IL-1α, 1L-6), which were found to be elevated by TMT administration. Histopathological observations showed remarkable improvement in hippocampal neuronal injury in the conjunctive group. Therefore, it is suggested that Ginkgo biloba extract is an effective agent against trimethyltin-induced hippocampal neuronal loss owing to its antioxidative as well as anti-inflammatory properties.

  7. The developmental expression of fluorescent proteins in organotypic hippocampal slice cultures from transgenic mice and its use in the determination of excitotoxic neurodegeneration

    DEFF Research Database (Denmark)

    Noraberg, Jens; Jensen, Carsten V; Bonde, Christian

    2007-01-01

    in organotypic brain slice cultures, such as cellular uptake of propidium iodide (PI), loss of microtubule-associated protein 2 (MAP2), Fluoro-Jade (FJ) cell staining, and the release of cytosolic lactate dehydrogenase (LDH). An important supplement to these markers would be data on corresponding morphological......, including both the number and localisation of cells, as well as the intensity of fluorescence. At that stage and later, the transgenic fluorescence clearly permitted the visualisation of cell bodies, larger and smaller dendritic branches, spines and axons. In separate experiments, with a 24-hour exposure......Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death...

  8. The use of organotypic hippocampal slice cultures to evaluate protection by non-competitive NMDA receptor antagonists against excitotoxicity

    DEFF Research Database (Denmark)

    Ring, Avi; Tanso, Rita; Noraberg, Jens

    2010-01-01

    There is a wide interest in testing neuroprotectants which inhibit the neurodegeneration that results from excessive activation of brain NMDA receptors.  As an alternative to in vivo testing in animal models we demonstrate here the use of a complex in vitro model to compare the efficacy...... with in vivo tests in rodents . We conclude that the slice culture model provides valuable pre-clinical data and applying the model to screen neuroprotectants may significantly limit the use of in vivo tests in animals....... blockers that inhibit excitotoxic injury and their neuroprotective capacity have been extensively investigated in vivo in animal models. They have also been evaluated as potential countermeasure agents against organophosphate poisoning. Quantitative densitometric image analysis of propidium iodide uptake...

  9. Effects of huperzine A on acute hypobaric hypoxic-induced apoptosis of hippocampal neurons in rats

    Directory of Open Access Journals (Sweden)

    Qing-hai SHI

    2013-02-01

    Full Text Available Objective  To investigate the effects of huperzine A on ameliorating acute hypobaric hypoxic-induced spatial learning and memory deficits, and on relieving the apoptosis of hippocampal neurons in rats. Methods  Forty-eight SD rats were randomly divided into four groups (12 each: the champaign (plain group (control group, champaign+huperzine A group, high altitude group (simulated 6000m plateau and high altitude+huperzine A group. One day before the decompression simulation experiment, rats in huperzine A-treated groups were given intragastrically with huperzine A suspension (10mg/ml in a dose of 0.1mg/kg. The spatial learning and memory performance of rats in each group were tested by Morris Water Maze. The apoptosis of hippocampal neurons was determined by TUNEL. The expression of pro-apoptotic proteins (Bax and anti-apoptotic protein (Bcl2 of hippocampus tissues were evaluated by Western blotting. Results  Compared with those in high altitude group, significantly shortened escape latency (P<0.05, more platform crossing within 60s (P<0.05, longer retention time in target (P<0.05, lower rate of hippocampal neurons apoptosis (P<0.05, down-regulated expression of Bax (P<0.05 and up-regulated expression of Bcl2(P<0.05 in the hippocampus tissues were found in the high altitude+huperzine A group. However, no significant difference in the above mentioned findings was found between high altitude+huperzine A group and champaign control group. Conclusion  Huperzine A treatment may have a protective effect against acute hypobaric hypoxic-induced apoptosis of hippocampal neurons in rats, and it ameliorates spatial learning and memory deficits in rats.

  10. Repeated exposure to methamphetamine, cocaine or morphine induces augmentation of dopamine release in rat mesocorticolimbic slice co-cultures.

    Directory of Open Access Journals (Sweden)

    Takayuki Nakagawa

    Full Text Available Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1-1000 µM, cocaine (0.1-300 µM or morphine (0.1-100 µM for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1-1000 µM had little effect. Following repeated exposure to methamphetamine (10 µM for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1-300 µM or morphine (10 and 100 µM. Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 µM, and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA

  11. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Novelty-induced correlation between visual neurons and the hippocampal theta rhythm in sleep and wakefulness.

    Science.gov (United States)

    Pedemonte, Marisa; Gambini, Juan P; Velluti, Ricardo A

    2005-11-16

    Various rhythms have been shown to affect sensory processing such as the waking-sleep cycle and the hippocampal theta waves. Changes in the firing of visual lateral geniculate nucleus neurons have been reported to be dependent on the animal's behavioral state. The lateral geniculate extracellular neuronal firing and hippocampal field activity were recorded in chronically implanted animals to analyze the relationship during quiet wakefulness and sleep associated with stimulation shifts that may introduce novelty. During wakefulness, a change in light flash stimulation pattern (stimuli frequency shift, stimuli on and off) caused an increment in the theta band power in 100% of the cases and a phase-locking of the spikes in 53% of the recorded neurons. During slow wave sleep, there were no consistent changes in the theta power notwithstanding 13% of the neurons exhibited phase-locking, i.e., novelty may induce changes in the temporal correlation of visual neuronal activity with the hippocampal theta rhythm in sleep. The present results suggest that visual processing in slow wave sleep exists, while auditory information and learning were reported during slow wave sleep in animals and newborn humans. The changes in the theta power as well as in the neuronal phase-locking amount indicate that in slow wave sleep, the ability of the hippocampus to detect/process novelty, although present, may be decreased. This is consistent with the noticeable decrease in awareness of the environment during sleep.

  13. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced

  14. Wnt/β-catenin signalling pathway mediated aberrant hippocampal neurogenesis in kainic acid-induced epilepsy.

    Science.gov (United States)

    Qu, Zhengyi; Su, Fang; Qi, Xueting; Sun, Jianbo; Wang, Hongcai; Qiao, Zhenkui; Zhao, Hong; Zhu, Yulan

    2017-10-01

    Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid-induced rat epilepsy model to investigate whether Wnt/β-catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of β-catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up-regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid-induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down β-catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/β-catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/β-catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Acupuncture inhibits kainic Acid-induced hippocampal cell death in mice.

    Science.gov (United States)

    Kim, Seung-Tae; Jeon, Songhee; Park, Hae Jeong; Hong, Mee-Sook; Jeong, Wu Byung; Kim, Jang-Hyun; Kim, Yeonjung; Lee, Hye-Jung; Park, Hi-Joon; Chung, Joo-Ho

    2008-02-01

    We examined whether acupuncture can reduce both the incidence of seizures and hippocampal cell death using a mouse model of kainic acid (KA)-induced epilepsy. ICR mice were given acupuncture once a day at acupoint HT8 (sobu) bilaterally during 2 days before KA injection. After an intracerebroventricular injection of 0.1 microg of KA, acupuncture treatment was subsequently administered once more (total 3 times), and the degree of seizure was observed for 20 min. Three hours after injection, the survival of neuronal cells and the expressions of c-Fos, c-Jun, and glutamate decarboxylase (GAD)-67 in the CA1 and CA3 were determined using immunohistochemistry and Western blotting techniques. Acupuncture reduced the severity of the KA-induced epileptic seizure and the rate of neural cell death, and it also decreased the expressions of c-Fos and c-Jun induced by KA in the hippocampus. Furthermore, acupuncture increased GAD-67 expressions in the same areas. These results demonstrated that it could inhibit the KA-induced epileptic seizure and hippocampal cell death by increasing GAD-67 expressions.

  16. The Neuroprotective Effects of Carvacrol on Ethanol-Induced Hippocampal Neurons Impairment via the Antioxidative and Antiapoptotic Pathways

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2017-01-01

    Full Text Available Chronic alcohol consumption causes hippocampal neuronal impairment, which is associated with oxidative stress and apoptosis. Carvacrol is a major monoterpenic phenol found in essential oils from the family Labiatae and has antioxidative stress and antiapoptosis actions. However, the protective effects of carvacrol in ethanol-induced hippocampal neuronal impairment have not been fully understood. We explored the neuroprotective effects of carvacrol in vivo and in vitro. Male C57BL/6 mice were exposed to 35% ethanol for 4 weeks to establish ethanol model in vivo, and hippocampal neuron injury was simulated by 200 mM ethanol in vitro. Morris water maze test was performed to evaluate the cognitive dysfunction. The oxidative stress injury of hippocampal neurons was evaluated by measuring the levels of oxidative stress biomarkers. Histopathological examinations and western blot were performed to evaluate the apoptosis of neurons. The results showed that carvacrol attenuates the cognitive dysfunction, oxidative stress, and apoptosis of the mice treated with ethanol and decreases hippocampal neurons apoptosis induced by ethanol in vitro. In addition, western blot analysis revealed that carvacrol modulates the protein expression of Bcl-2, Bax, caspase-3, and p-ERK, without influence of p-JNK and p-p38. Our results suggest that carvacrol alleviates ethanol-mediated hippocampal neuronal impairment by antioxidative and antiapoptotic effects.

  17. Antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism.

    Science.gov (United States)

    da Conceição, Rodrigo Rodrigues; Laureano-Melo, Roberto; Oliveira, Kelen Carneiro; de Carvalho Melo, Maria Clara; Kasamatsu, Tereza Sayoko; de Barros Maciel, Rui Monteiro; de Souza, Janaina Sena; Giannocco, Gisele

    2016-04-01

    Thyroidectomy is a surgical procedure indicated in cases of several maligned or benign thyroid diseases, thus, the aim of our study was to verify how the hypothyroidism induced by thyroidectomy influences behavioral parameters and its relation to thyroid hormones metabolism and neurogenesis at hippocampus. For this purpose, Adult male Wistar rats underwent to thyroidectomy to induce hypothyroidism. Behavioral tests, the thyroid profile and hippocampal gene expression were evaluated in control and in thyroidectomized animals. It was observed that thyroidectomized group had a significant increasing in serum thyroid-stimulating hormone (TSH) and a decreasing in thyroxine (T4) levels as well as in triiodothyronine (T3) serum level. It was also observed reduction of the monocarboxylate transporter 8 (Mct8), thyroid hormone receptor alfa (Trα1), deiodinase type 2 (Dio2), ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2) and brain-derived neurotrophic factor (Bdnf) mRNA expression in hippocampus of thyroidectomized animals. In the forced swimming test, it was verified that thyroidectomy promotes a decrease in time of immobility and climbing when compared with the control group. In summary, we demonstrated that antidepressant behavior in thyroidectomized Wistar rats is induced by hippocampal hypothyroidism. This effect could be associated to an impaired neuronal activity in acute stress response as it is observed in forced swimming paradigm. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. MADP, a salidroside analog, protects hippocampal neurons from glutamate induced apoptosis.

    Science.gov (United States)

    Xian, Hua; Zhao, Jing; Zheng, Yuan; Wang, Meihong; Huang, Jun; Wu, Bingxin; Sun, Cheng; Yang, Yumin

    2014-05-08

    To investigate the anti-apoptotic effect of MADP, an analog of salidroside, against glutamate induced apoptosis in the cultured rat hippocampal neurons. Cytotoxicity was determined by the MTT method and lactate dehydrogenase release to the medium. Cell apoptosis was evaluated by Hoechst 33342 staining, TUNEL assay and flow cytometric analysis. Western blotting was applied for detecting protein levels of cellular signaling molecules. Our results showed that glutamate exposure significantly induces cell apoptosis, whereas the pretreatment of salidroside or MADP remarkably improves cell viability. Most importantly, the anti-apoptotic effect of MADP against glutamate insult is superior to salidroside. To explore the involved mechanisms, we measured some pro-apoptotic and anti-apoptotic protein levels, and several cell survival signaling pathways were analyzed as well. No visible alterations in Bcl-2 and Bax protein levels were observed by MADP or salidroside. Akt and JNK phosphorylation was robustly stimulated by MADP in the glutamate-treated neurons. Salidroside treatment results in a slight activation in Akt, while no significant alteration in JNK activity was observed. MADP exhibits higher capacity to attenuate glutamate induced cell apoptosis in the cultured rat hippocampal neurons, suggesting that MADP might be a better candidate than salidroside for developing novel drugs treating neuron loss associated disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons.

    Science.gov (United States)

    Hong, Zhiwen; Jie, Pinghui; Tian, Yujing; Chen, Tingting; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is reported to control the resting membrane potential and increase excitability in many types of cells. Voltage-gated sodium channels (VGSCs) play an important role in initiating action potentials in neurons. However, whether VGSCs can be modulated by the activation of TRPV4 in hippocampal pyramidal neurons remains unknown. In this study, we tested the effect of TRPV4 agonists (GSK1016790A and 4α-PDD) on voltage-gated sodium current (I Na) in hippocampal CA1 pyramidal neurons and the protein levels of α/β-subunit of VGSCs in the hippocampus of mice subjected to intracerebroventricular (icv.) injection of GSK1016790A (GSK-injected mice). Herein, we report that I Na was inhibited by acute application of GSK1016790A or 4α-PDD. In the presence of TRPV4 agonists, the voltage-dependent inactivation curve shifted to the hyperpolarization, whereas the voltage-dependent activation curve remained unchanged. The TRPV4 agonist-induced inhibition of I Na was blocked by the TRPV4 antagonist or tetrodotoxin. Moreover, blocking protein kinase A (PKA) markedly attenuated the GSK1016790A-induced inhibition of I Na, whereas antagonism of protein kinase C or p38 mitogen-activated protein kinase did not change GSK1016790A action. Finally, the protein levels of Nav1.1, Nav1.2, and Nav1.6 in the hippocampus increased in GSK-injected mice, whereas those of Nav1.3 and Navβ1 remained nearly unchanged. We conclude that I Na is inhibited by the acute activation of TRPV4 through PKA signaling pathway in hippocampal pyramidal neurons, but protein expression of α-subunit of VGSCs is increased by sustained TRPV4 activation, which may compensate for the acute inhibition of I Na and provide a possibility for hyper-excitability upon sustained TRPV4 activation.

  20. Hippocampal epileptiform activity induced by magnesium-free medium: differences between areas CA1 and CA2-3.

    Science.gov (United States)

    Lewis, D V; Jones, L S; Mott, D D

    1990-07-01

    Hippocampal slices, from which the entorhinal cortex had been removed, were exposed to artificial cerebrospinal fluid containing no magnesium (0-Mg ACSF) to elicit interictal bursts (IIBs) and electrographic seizures (EGSs). In 0-Mg ACSF, IIBs and EGSs occurred in both area CA1 and area CA3. The IIBs in CA3 led the IIBs in CA1 by several milliseconds. The epileptiform bursts occurring during the EGSs seemed to have the opposite relationship, with bursts in CA1 leading those in CA3 by several milliseconds. When the connections between CA1 and CA2-3 were cut, the IIBs ceased in CA1 and continued in CA3. To further characterize the local differences in epileptiform activity, totally separate minislices of area CA1 and area CA2-3 were prepared. In the CA2-3 minislices, a few EGSs occurred and thereafter only persistent IIBs prevailed. Conversely, in the CA1 minislices, many spontaneous EGSs occurred for long periods of time and no IIBs were seen. Periodic stimulation of the CA1 minislices triggered IIBs that suppressed the recurrent EGSs. In the hippocampal slice exposed to low magnesium, IIBs originate in CA2-3 and are propagated to CA1, where they can have a suppressant effect on EGSs. Furthermore, unlike IIBs, the bursts making up the EGSs seem to start in CA1 and invade CA2-3.

  1. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice.

    Science.gov (United States)

    Ramírez-Rodríguez, Gerardo; Vega-Rivera, Nelly Maritza; Oikawa-Sala, Julián; Gómez-Sánchez, Ariadna; Ortiz-López, Leonardo; Estrada-Camarena, Erika

    2014-05-01

    Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity.

    Science.gov (United States)

    Mahati, K; Bhagya, V; Christofer, T; Sneha, A; Shankaranarayana Rao, B S

    2016-10-01

    Severe depression compromises structural and functional integrity of the brain and results in impaired learning and memory, maladaptive synaptic plasticity as well as degenerative changes in the hippocampus and amygdala. The precise mechanisms underlying cognitive dysfunctions in depression remain largely unknown. On the other hand, enriched environment (EE) offers beneficial effects on cognitive functions, synaptic plasticity in the hippocampus. However, the effect of EE on endogenous depression associated cognitive dysfunction has not been explored. Accordingly, we have attempted to address this issue by investigating behavioural, structural and synaptic plasticity mechanisms in an animal model of endogenous depression after exposure to enriched environment. Our results demonstrate that depression is associated with impaired spatial learning and enhanced anxiety-like behaviour which is correlated with hypotrophy of the dentate gyrus and amygdalar hypertrophy. We also observed a gross reduction in the hippocampal long-term potentiation (LTP). We report a complete behavioural recovery with reduced indices of anhedonia and behavioural despair, reduced anxiety-like behaviour and improved spatial learning along with a complete restoration of dentate gyrus and amygdalar volumes in depressive rats subjected to EE. Enrichment also facilitated CA3-Schaffer collateral LTP. Our study convincingly proves that depression-induces learning deficits and impairs hippocampal synaptic plasticity. It also highlights the role of environmental stimuli in restoring depression-induced cognitive deficits which might prove vital in outlining more effective strategies to treat major depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats.

    Directory of Open Access Journals (Sweden)

    Tomoko Inagaki

    Full Text Available Transient global forebrain ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons, and the ovarian hormone 17β-estradiol (E2 reduces neuronal loss in young and middle-aged females. The neuroprotective efficacy of E2 after a prolonged period of hormone deprivation is controversial, and few studies examine this issue in aged animals given E2 treatment after induction of ischemia.The present study investigated the neuroprotective effects of E2 administered immediately after global ischemia in aged female rats (15-18 months after 6 months of hormone deprivation. We also used electrophysiological methods to assess whether CA1 synapses in the aging hippocampus remain responsive to E2 after prolonged hormone withdrawal. Animals were ovariohysterectomized and underwent 10 min global ischemia 6 months later. A single dose of E2 (2.25 µg infused intraventricularly after reperfusion significantly increased cell survival, with 45% of CA1 neurons surviving vs 15% in controls. Ischemia also induced moderate loss of CA3/CA4 pyramidal cells. Bath application of 1 nM E2 onto brain slices derived from non-ischemic aged females after 6 months of hormone withdrawal significantly enhanced excitatory transmission at CA1 synapses evoked by Schaffer collateral stimulation, and normal long-term potentiation (LTP was induced. The magnitude of LTP and of E2 enhancement of field excitatory postsynaptic potentials was indistinguishable from that recorded in slices from young rats.The data demonstrate that 1 acute post-ischemic infusion of E2 into the brain ventricles is neuroprotective in aged rats after 6 months of hormone deprivation; and 2 E2 enhances synaptic transmission in CA1 pyramidal neurons of aged long-term hormone deprived females. These findings provide evidence that the aging hippocampus remains responsive to E2 administered either in vivo or in vitro even after prolonged periods of hormone withdrawal.

  4. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro.

    Science.gov (United States)

    Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Govitrapong, Piyarat

    2015-05-01

    Methamphetamine (METH) is an extremely addictive stimulatory drug. A recent study suggested that METH may cause an impairment in the proliferation of hippocampal neural progenitor cells, but the underlying mechanism of this effect remains unknown. Blood and cerebrospinal levels of melatonin derive primarily from the pineal gland, and that performs many biological functions. Our previous study demonstrated that melatonin promotes the proliferation of progenitor cells originating from the hippocampus. In this study, hippocampal progenitor cells from adult Wistar rats were used to determine the effects of METH on cell proliferation and the mechanisms underlying these effects. We investigated the effects of melatonin on the METH-induced alteration in cell proliferation. The results demonstrated that 500 μm METH induced a decrease (63.0%) in neurosphere cell proliferation and altered the expression of neuronal phenotype markers in the neurosphere cell population. Moreover, METH induced an increase in the protein expression of the tumor suppressor p53 (124.4%) and the cell cycle inhibitor p21(CIP) (1) (p21) (128.1%), resulting in the accumulation of p21 in the nucleus. We also found that METH altered the expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A (79.6%) and NR2B (126.7%) and Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) (74.0%). In addition, pretreatment with 1 μm melatonin attenuated the effects induced by METH treatment. According to these results, we concluded that METH induces a reduction in cell proliferation by upregulating the cell cycle regulators p53/p21 and promoting the accumulation of p21 in the nucleus and that melatonin ameliorates these negative effects of METH. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

    Directory of Open Access Journals (Sweden)

    Minoru Namikawa

    2017-12-01

    Full Text Available The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP and -resistant (SAMR mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5 in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we

  8. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  9. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation

    Directory of Open Access Journals (Sweden)

    Williams Sylvain

    2006-03-01

    Full Text Available Abstract Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+-butaclamol and L-741,742. These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (--raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (--raclopride (10-6 M was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M. Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.

  10. Functional decortication lowers ventromedial hypothalamic activation induced by hippocampal neostigmine injection.

    Science.gov (United States)

    Monda, M; Viggiano, A; De Luca, V

    2000-12-01

    This experiment tested the effects of cortical spreading depression (CSD) on the ventromedial hypothalamic activity and on the related thermogenesis, both stimulated by an injection of neostigmine in the hippocampus. The firing rate of the neurons of the ventromedial hypothalamus, and the temperature of the interscapular brown adipose tissue and of the colon (T:(IBAT) and T:(C)) were monitored in 24 urethane-anesthetized male Sprague-Dawley rats divided into four groups. These variables were measured before and after hippocampal injection of neostigmine (5 x 10(-7) mol) in the first and second groups or of saline in the third and fourth groups. The hippocampal injection was preceded by CSD in the first and third groups, while CSD was not induced in the second and fourth groups. The same procedure was carried out in the other four groups of six rats each and oxygen consumption was monitored. The results show an increase in the firing rate, T:(IBAT), T:(C) and oxygen consumption after the neostigmine injection. CSD significantly reduces these enhancements. The findings demonstrate that: (i) the activation of ventromedial hypothalamic neurons are involved in the thermogenic changes due to the effects of a neostigmine injection into the hippocampus; and (ii) integrity of cerebral cortex is required for this activation of thermogenesis.

  11. Contextual Fear Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Stansley, Branden J; Fisher, Nicole M; Gogliotti, Rocco G; Lindsley, Craig W; Conn, P Jeffrey; Niswender, Colleen M

    2017-11-09

    Dysregulated fear memory can lead to a broad spectrum of anxiety disorders. The brain systems underlying fear memory are manifold, with the hippocampus being prominently involved by housing fear-related spatial memories as engrams, which are created and stored through neural changes such as synaptic plasticity. Although metabotropic glutamate (mGlu) receptors contribute significantly to both fear behavior and hippocampal synaptic plasticity, the relationship between these two phenomena has not been fully elucidated. Here, we report that contextual fear extinction induces a novel form of metaplasticity mediated by mGlu5 at the hippocampal SC-CA1 synapse. Further, blockade of mGlu5 prevents both contextual fear extinction and expression of this metaplasticity. This form of metaplasticity was absent in a mouse model of MECP2-duplication syndrome, corresponding to a complete deficit in extinction learning. These findings suggest that mGlu5-dependent metaplasticity within the hippocampus may play a critical role in extinction of contextual fear. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    Science.gov (United States)

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  13. Pinacidil and levamisole prevent glutamate-induced death of hippocampal neuronal cells through reducing ROS production.

    Science.gov (United States)

    Shukry, Mustafa; Kamal, Tarek; Ali, Radi; Farrag, Foad; Almadaly, Essam; Saleh, Ayman A; Abu El-Magd, Mohammed

    2015-10-01

    Activators of both adenosine 5'-triphosphate (ATP)-sensitive K(+) (KATP) channel and cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have significant in vivo and in vitro neuroprotection against glutamate-induced death of some neuronal cells. Here, the effect of the KATP channel activator, pinacidil, and the CFTR Cl(-) channel opener, levamisole, against glutamate-induced oxidative stress were investigated in mouse hippocampal cells, HT22. The results from cell viability assay (WST-1) showed that pinacidil and levamisole weakly protected cells against glutamate-induced toxicity at 10 μM and their effect increased in a dose-dependent manner till reach maximum protection at 300 μM. Pretreatment with pinacidil or levamisole significantly suppressed the elevation of reactive oxygen species (ROS) triggered by glutamate through stabilising mitochondrial membrane potential and subsequently protected HT22 cells against glutamate-induced death. HT22 cells viability was maintained by pinacidil and levamisole in presence of glutathione inhibitor, BSO. Also, pinacidil and levamisole pretreatment did not induce recovery of glutathione levels decreased by glutamate Expectedly, this protection was abolished by the KATP and CFTR Cl(-) channels blocker, glibenclamide. Thus, both pinacidil and levamisole protect HT22 cells against glutamate-induced cell death through stabilising mitochondrial membrane potential and subsequently decreasing ROS production.

  14. Genetic variability to diet-induced hippocampal dysfunction in BXD recombinant inbred (RI) mouse strains.

    Science.gov (United States)

    Xue, Yueqiang; Li, JingJing; Yan, Lei; Lu, Lu; Liao, Francesca-Fang

    2015-10-01

    Evidence has emerged suggesting that diet-induced obesity can have a negative effect on cognitive function. Here, we exploited a mouse genetic reference population to look for the linkage between these two processes on a genome-wide scale. The focus of this report is to determine whether the various BXD RI strains exhibited different behavioral performance and hippocampal function under high fat dietary (HFD) condition. We quantified genetic variation in body weight gain and consequent influences on behavioral tests in a cohort of 14 BXD strains of mice (8-12 mice/strain, n = 153), for which we have matched data on gene expression and neuroanatomical changes in the hippocampus. It showed that BXD66 was the most susceptible, whereas BXD77 was the least susceptible strain to dietary influences. The performance of spatial reference memory tasks was strongly correlated with body weight gain (P < 0.05). The obesity-prone strains displayed more pronounced spatial memory defects compared to the obesity-resistant strains. These abnormalities were associated with neuroinflammation, synaptic dysfunction, and neuronal loss in the hippocampus. The biological relevance of DSCAM gene polymorphism was assessed using the trait correlation analysis tool in Genenetwork. Furthermore, a significant strain-dependent gene expression difference of DSCAM was detected in the hippocampus of obese BXD strains by real-time quantitative PCR. In conclusion, a variety of across-strain hippocampal alterations and genetic predispositions to diet-induced obesity were found in a set of BXD strains. The obesity-prone and obesity-resistant lines we have identified should be highly useful to study the molecular genetics of diet-induced cognitive decline. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Low Dose Radiation Overcomes Diabetes-induced Suppression of Hippocampal Neuronal Cell Proliferation in Rats

    Science.gov (United States)

    Kim, Sang-Ki; Hong, Seong-Eon; Lee, Taeck-Hyun; Kim, Chang-Ju

    2006-01-01

    We investigated the effect of low dose radiation on diabetes induced suppression of neurogenesis in the hippocampal dentate gyrus of rat. After 0.01 Gy, 0.1 Gy, 1 Gy and 10 Gy radiation was delivered, the dentate gyrus of hippocampus of streptozotocin (STZ)-induced diabetic rats were evaluated using immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU), caspase-3, and terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) staining. The number of BrdU positive cells in the non-diabetic rats, diabetic rats without radiation, diabetic rats with 0.01 Gy radiation, diabetic rats with 0.1 Gy radiation, diabetic rats with 1 Gy radiation and diabetic rats with 10 Gy radiation were 55.4±8.5/mm2, 33.3±6.4/mm2, 67.7±10.5/mm2, 66.6±10.0/mm2, 23.5±6.3/mm2and 14.3±7.2/mm2, respectively. The number of caspase-3 positive cells was 132.6±37.4/mm2, 378.6±99.1/mm2, 15.0±2.8/mm2, 57.1±16.9/mm2, 191.8±44.8/mm2and 450.4±58.3/mm2, respectively. The number of TUNEL-positive cells was 24.5±2.0/mm2, 21.7±4.0/mm2, 20.4±2.0/mm2, 18.96±2.1/mm2, 58.3±7.9/mm2, and 106.0±9.8/mm2, respectively. These results suggest low doses of radiation paradoxically improved diabetes induced neuronal cell suppression in the hippocampal dentate gyrus of rat. PMID:16778397

  16. Oxidative Stress Mediated Hippocampal Neuron Apoptosis Participated in Carbon Disulfide-Induced Rats Cognitive Dysfunction.

    Science.gov (United States)

    Wang, Shuo; Irving, Gleniece; Jiang, Lulu; Wang, Hui; Li, Ming; Wang, Xujing; Han, Wenting; Xu, Yongpeng; Yang, Yilin; Zeng, Tao; Song, Fuyong; Zhao, Xiulan; Xie, Keqin

    2017-02-01

    Occupational exposure to carbon disulfide (CS2) exhibits central nervous systems toxicity. But the mechanism is unclear. The present study was designed to investigate the relationship between the CNS damage and cognitive dysfunction caused by CS2, and eventually reveal the possible oxidative-related mechanism of hippocampus pathological changes in CS2 exposed rats. Male Wistar rats were administrated with CS2 at dosage of 200, 400 and 600 mg/kg for consecutive 20 days, respectively. Cognitive performances were evaluated by Morris water maze tests. Thionin and immunohistochemical analysis were used to investigate the hippocampal neuron damage, and the expression of apoptosis related proteins (cleaved-caspase 3, Bax and Bcl-2) were detected to explore the possible mechanisms of neuronal loss. Oxidative stress parameters were checked by commercial assay kits. Rats exposed to CS2 displayed cognitive dysfunction manifested as decreased spatial learning ability and memory lesion. Pathological changes and significant neuron loss were observed in hippocampus, especially in CA1 and CA3 sub-regions. Mitochondria-dependent apoptosis pathway was implicated in the CS2-induced neuronal loss which was demonstrated by the up-regulation of cleaved-caspase 3 and Bax accompanied with down-regulation of Bcl-2. Furthermore, extensive oxidative stress induced by CS2 was also revealed by the measurement of ROS, RNS, MDA, GSH&GSSG and antioxidant enzymes (CAT, T-SOD, and GSH-Px). Our study suggested that oxidative stress mediated hippocampal neuron apoptosis might play an important role in CS2 induced CNS damage and cognitive dysfunction.

  17. NEUROPATHIC PAIN-INDUCED DEPRESSIVE-LIKE BEHAVIOR AND HIPPOCAMPAL NEUROGENESIS AND PLASTICITY ARE DEPENDENT ON TNFR1 SIGNALING

    Science.gov (United States)

    Anna, Dellarole; Paul, Morton; Roberta, Brambilla; Winston, Walters; Spencer, Summer; Danielle, Bernardes; Mariagrazia, Grilli; R, Bethea John

    2014-01-01

    Patients suffering from neuropathic pain have a higher incidence of mood disorders such as depression. Increased expression of tumor necrosis factor (TNF) has been reported in neuropathic pain and depressive-like conditions and most of the pro-inflammatory effects of TNF are mediated by the TNF receptor 1 (TNFR1). Here we sought to investigate: 1) the occurrence of depressive-like behavior in chronic neuropathic pain and the associated forms of hippocampal plasticity, and 2) the involvement of TNFR1-mediated TNF signaling as a possible regulator of such events. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve in wild-type and TNFR1−/− mice. Anhedonia, weight loss and physical state were measured as symptoms of depression. Hippocampal neurogenesis, neuroplasticity, myelin remodeling and TNF/TNFRs expression were analyzed by immunohistochemical analysis and western blot assay. We found that neuropathic pain resulted in the development of depressive symptoms in a time dependent manner and was associated with profound hippocampal alterations such as impaired neurogenesis, reduced expression of neuroplasticity markers and myelin proteins. The onset of depressive-like behavior also coincided with increased hippocampal levels of TNF, and decreased expression of TNF receptor 2 (TNFR2), which were all fully restored after mice spontaneously recovered from pain. Notably, TNFR1−/− mice did not develop depressive-like symptoms after injury, nor were there changes in hippocampal neurogenesis and plasticity. Our data show that neuropathic pain induces a cluster of depressive-like symptoms and profound hippocampal plasticity that are dependent on TNF signaling through TNFR1. PMID:24938671

  18. Hippocampal brain-derived neurotrophic factor mediates recovery from chronic stress-induced spatial reference memory deficits.

    Science.gov (United States)

    Ortiz, J Bryce; Mathewson, Coy M; Hoffman, Ann N; Hanavan, Paul D; Terwilliger, Ernest F; Conrad, Cheryl D

    2014-11-01

    Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain-derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the dorsal hippocampal cornu ammonis (CA)3 region with an adeno-associated viral vector containing the sequence for a short hairpin RNA (shRNA) directed against BDNF or a scrambled sequence (Scr). Rats were then chronically restrained (wire mesh, 6 h/day for 21 days) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trials. Rats in the Str-Imm group, regardless of adeno-associated viral contents, committed more errors in the spatial reference memory domain on the single retention trial during day 3 than did the non-stressed controls. Importantly, the typical improvement in spatial memory following the recovery from chronic stress was blocked with the shRNA against BDNF, as Str-Rec-shRNA performed worse on the RAWM compared with the non-stressed controls or Str-Rec-Scr. The stress effects were specific for the reference memory domain, but knockdown of hippocampal BDNF in unstressed controls briefly disrupted spatial working memory as measured by repeated entry errors on day 2 of training. These results demonstrated that hippocampal BDNF was necessary for the recovery from stress-induced hippocampal-dependent spatial memory deficits in the reference memory domain. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement.

    Directory of Open Access Journals (Sweden)

    Giuseppe Esposito

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPARγ has been reported to be involved in the etiology of pathological features of Alzheimer's disease (AD. Cannabidiol (CBD, a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARγ, which has been recently indicated as its putative binding site. CBD actions on β-amyloid-induced neurotoxicity in rat AD models, either in presence or absence of PPAR antagonists were investigated. Results showed that the blockade of PPARγ was able to significantly blunt CBD effects on reactive gliosis and subsequently on neuronal damage. Moreover, due to its interaction at PPARγ, CBD was observed to stimulate hippocampal neurogenesis. All these findings report the inescapable role of this receptor in mediating CBD actions, here reported.

  20. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    Directory of Open Access Journals (Sweden)

    Laurent Chazalviel

    2016-01-01

    Full Text Available Normobaric oxygen (NBO and hyperbaric oxygen (HBO are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO 2 = 1 atmospheres absolute (ATA = 0.1 MPa and HBO (pO 2 = 2.5 ATA = 0.25 MPa through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  1. Hippocampal serotonin-1A receptor function in a mouse model of anxiety induced by long-term voluntary wheel running.

    Science.gov (United States)

    Fuss, Johannes; Vogt, Miriam A; Weber, Klaus-Josef; Burke, Teresa F; Gass, Peter; Hensler, Julie G

    2013-10-01

    We have recently demonstrated that, in C57/Bl6 mice, long-term voluntary wheel running is anxiogenic, and focal hippocampal irradiation prevents the increase in anxiety-like behaviors and neurobiological changes in the hippocampus induced by wheel running. Evidence supports a role of hippocampal 5-HT1A receptors in anxiety. Therefore, we investigated hippocampal binding and function of 5-HT1A receptors in this mouse model of anxiety. Four weeks of voluntary wheel running resulted in hippocampal subregion-specific changes in 5-HT1A receptor binding sites and function, as measured by autoradiography of [(3) H] 8-hydroxy-2-(di-n-propylamino)tetralin binding and agonist-stimulated binding of [(35) S]GTPγS to G proteins, respectively. In the dorsal CA1 region, 5-HT1A receptor binding and function were not altered by wheel running or irradiation. In the dorsal dentate gyrus and CA2/3 region, 5-HT1A receptor function was decreased by not only running but also irradiation. In the ventral pyramidal layer, wheel running resulted in a decrease of 5-HT1A receptor function, which was prevented by irradiation. Neither irradiation nor wheel running affected 5-HT1A receptors in medial prefrontal cortex or in the dorsal or median raphe nuclei. Our data indicate that downregulation of 5-HT1A receptor function in ventral pyramidal layer may play a role in anxiety-like behavior induced by wheel running. Copyright © 2013 Wiley Periodicals, Inc.

  2. Hippocampal CA1 local field potential oscillations induced by olfactory cue of liked food.

    Science.gov (United States)

    Samerphob, Nifareeda; Cheaha, Dania; Chatpun, Surapong; Kumarnsit, Ekkasit

    2017-07-01

    Eating motivation is induced not only by negative energy balance but also food related cues. However, neural processing for acquisition of learned food preference remains to be established. This study aimed to identify hippocampal neural signaling in response to olfactory cue (chocolate scent) after completion of repetitive chocolate sessions. Male Swiss albino mice implanted with intracranial electrode into the hippocampus were used for local field potential (LFP) recording. Animals were given chocolate sessions (a piece of 2g chocolate per each mouse to eat on day 1, 3, 5 and 7). Hippocampal CA1 LFP signals and exploratory behavior of animals receiving chocolate scent were analyzed before and after chocolate sessions. The experiment was performed in a place preference-like apparatus with the zones of normal food pellet and chocolate (both kept in a small perforated cup for smell dispersion) at the opposite ends. Following chocolate sessions, time spent in a chocolate zone and CA1 LFP patterns were analyzed in comparison to control levels. Two-way ANOVA revealed significant increase in time spent seeking for chocolate. Frequency analysis of LFP power spectra revealed significant increases in delta and theta powers. Phase-amplitude analysis showed significant increase in maximal modulation index and decrease in frequency for phase of theta-high gamma coupling. Taken together, neural signaling in the hippocampus was sensitive to chocolate olfactory cue that might underlie learning process in response to repeated chocolate consumptions that primed intense food approaching behavior. Ultimately, these LFP patterns might reflect motivation to eat and predict feeding probability. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Diverse Effects of an Acetylcholinesterase Inhibitor, Donepezil, on Hippocampal Neuronal Death after Pilocarpine-Induced Seizure.

    Science.gov (United States)

    Jeong, Jeong Hyun; Choi, Bo Young; Kho, A Ra; Lee, Song Hee; Hong, Dae Ki; Lee, Sang Hwon; Lee, Sang Yup; Song, Hong Ki; Choi, Hui Chul; Suh, Sang Won

    2017-11-02

    Epileptic seizures are short episodes of abnormal brain electrical activity. Many survivors of severe epilepsy display delayed neuronal death and permanent cognitive impairment. Donepezil is an acetylcholinesterase inhibitor and is an effective treatment agent for Alzheimer's disease. However, the role of donepezil in seizure-induced hippocampal injury remains untested. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25 mg/kg). Donepezil (2.5 mg/kg/day) was administered by gavage in three different settings: (1) pretreatment for three days before the seizure; (2) for one week immediately after the seizure; and (3) for three weeks from three weeks after the seizure. We found that donepezil showed mixed effects on seizure-induced brain injury, which were dependent on the treatment schedule. Pretreatment with donepezil aggravated neuronal death, oxidative injury, and microglia activation. Early treatment with donepezil for one week showed neither adverse nor beneficial effects; however, a treatment duration of three weeks starting three weeks after the seizure showed a significant reduction in neuronal death, oxidative injury, and microglia activation. In conclusion, donepezil has therapeutic effects when injected for three weeks after seizure activity subsides. Therefore, the present study suggests that the therapeutic use of donepezil for epilepsy patients requires a well-conceived strategy for administration.

  4. Physical exercise reverses spatial memory deficit and induces hippocampal astrocyte plasticity in diabetic rats.

    Science.gov (United States)

    de Senna, Priscylla Nunes; Bagatini, Pamela Brambilla; Galland, Fabiana; Bobermin, Larissa; do Nascimento, Patrícia Severo; Nardin, Patrícia; Tramontina, Ana Carolina; Gonçalves, Carlos Alberto; Achaval, Matilde; Xavier, Léder Leal

    2017-01-15

    Physical exercise can induce brain plasticity and reduce the cognitive decline observed in type 1 diabetes mellitus (T1DM). We investigated the effects of physical exercise to prevent or reverse spatial memory deficits produced by diabetes and some biochemical and immunohistochemical changes in hippocampal astrocytes of T1DM model. In this study, 56 male Wistar rats were divided in four groups: trained control (TC), non-trained control (NTC), trained diabetic (TD) and non-trained diabetic (NTD). 27 days after streptozotocin-induced (STZ) diabetes, the exercise groups were submitted to 5 weeks of aerobic exercise. All groups were assessed in place recognition (PR) test before and after training. The glial fibrillary acidic protein (GFAP) positive astrocytes were evaluated using planar morphology, optical densitometry and Sholl's concentric circles method. Glucose and glutamate uptake, reduced glutathione (GSH) and glutamine synthetase (GS) levels were measured using biochemical assays. Our main results are: 1-Exercise reverses spatial memory impairments generated by T1DM; 2-Exercise increases GSH and GS in TC but not in TD rats; 3-Exercise increases density of GFAP positive astrocytes in the TC and TD groups and increases astrocytic ramification in TD animals. Our findings indicate that physical exercise reverses the cognitive deficits present in T1DM and induces important biochemical and immunohistochemical astrocytic changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Novel candidate genes associated with hippocampal oscillations.

    NARCIS (Netherlands)

    Jansen, R.; Timmerman, J.; Loos, M.; Spijker, S.; van Ooyen, A.; Brussaard, A.B.; Mansvelder, H.D.; Smit, A.B.; de Gunst, M.; Linkenkaer-Hansen, K.

    2011-01-01

    The hippocampus is critical for a wide range of emotional and cognitive behaviors. Here, we performed the first genome-wide search for genes influencing hippocampal oscillations. We measured local field potentials (LFPs) using 64-channel multi-electrode arrays in acute hippocampal slices of 29 BXD

  6. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shang-Der, E-mail: chensd@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Lin, Tsu-Kung [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Yang, Ding-I. [Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan (China); Lee, Su-Ying [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Shaw, Fu-Zen [Department of Psychology, National Cheng Kung University, Tainan, Taiwan (China); Liou, Chia-Wei [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Chuang, Yao-Chung, E-mail: ycchuang@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China)

    2015-05-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.

  7. Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons.

    Science.gov (United States)

    Yin, Chunchun; Luo, Xiaoping; Duan, Yuqing; Duan, Wenyi; Zhang, Haihui; He, Yuanqing; Sun, Guibo; Sun, Xiaobo

    2016-08-01

    The present study investigated the protective effects of lotus seedpod procyanidins (LSPCs) on extremely low frequency electromagnetic field (ELF-EMF)-induced neurotoxicity in primary cultured rat hippocampal neurons and the underlying molecular mechanism. The results of MTT, morphological observation, superoxide dismutase (SOD) and malondialdehyde (MDA) assays showed that compared with control, incubating neurons under ELF-EMF exposure significantly decreased cell viability and increased the number of apoptotic cells, whereas LSPCs evidently protected the hippocampal neurons against ELF-EMF-induced cell damage. Moreover, a certain concentration of LSPCs inhibited the elevation of intracellular reactive oxygen species (ROS) and Ca(2+) level, as well as prevented the disruption of mitochondrial membrane potential induced by ELF-EMF exposure. In addition, supplementation with LSPCs could alleviate DNA damage, block cell cycle arrest at S phase, and inhibit apoptosis and necrosis of hippocampal neurons under ELF-EMF exposure. Further study demonstrated that LSPCs up-regulated the activations of Bcl-2, Bcl-xl proteins and suppressed the expressions of Bad, Bax proteins caused by ELF-EMF exposure. In conclusion, these findings revealed that LSPCs protected against ELF-EMF-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptotic pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Tat-HSP22 inhibits oxidative stress-induced hippocampal neuronal cell death by regulation of the mitochondrial pathway.

    Science.gov (United States)

    Jo, Hyo Sang; Kim, Dae Won; Shin, Min Jea; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Yeo, Hyeon Ji; Sohn, Eun Jeong; Son, Ora; Cho, Sung-Woo; Kim, Duk-Soo; Yu, Yeon Hee; Lee, Keun Wook; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2017-01-04

    Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.

  9. Fluoxetine Increases Hippocampal Neurogenesis and Induces Epigenetic Factors But Does Not Improve Functional Recovery after Traumatic Brain Injury

    Science.gov (United States)

    Wang, Yonggang; Neumann, Melanie; Hansen, Katharina; Hong, Shuwhey M.; Kim, Sharon; Noble-Haeusslein, Linda J.

    2011-01-01

    Abstract The selective serotonin reuptake inhibitor fluoxetine induces hippocampal neurogenesis, stimulates maturation and synaptic plasticity of adult hippocampal neurons, and reduces motor/sensory and memory impairments in several CNS disorders. In the setting of traumatic brain injury (TBI), its effects on neuroplasticity and function have yet to be thoroughly investigated. Here we examined the efficacy of fluoxetine after a moderate to severe TBI, produced by a controlled cortical impact. Three days after TBI or sham surgery, mice were treated with fluoxetine (10 mg/kg/d) or vehicle for 4 weeks. To evaluate the effects of fluoxetine on neuroplasticity, hippocampal neurogenesis and epigenetic modification were studied. Stereologic analysis of the dentate gyrus revealed a significant increase in doublecortin-positive cells in brain-injured animals treated with fluoxetine relative to controls, a finding consistent with enhanced hippocampal neurogenesis. Epigenetic modifications, including an increase in histone 3 acetylation and induction of methyl-CpG-binding protein, a transcription factor involved in DNA methylation, were likewise seen by immunohistochemistry and quantitative Western immunoblots, respectively, in brain-injured animals treated with fluoxetine. To determine if fluoxetine improves neurological outcomes after TBI, gait function and spatial learning and memory were assessed by the CatWalk-assisted gait test and Barnes maze test, respectively. No differences in these parameters were seen between fluoxetine- and vehicle-treated animals. Thus while fluoxetine enhanced neuroplasticity in the hippocampus after TBI, its chronic administration did not restore locomotor function or ameliorate memory deficits. PMID:21175261

  10. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

    OpenAIRE

    Kolarow, Richard; Kuhlmann, Christoph R. W.; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J.; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthas...

  11. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

    OpenAIRE

    Richard eKolarow; Richard eKolarow; Christoph eKuhlmann; Thomas eMunsch; Christoph eZehendner; Tanja eBrigadski; Tanja eBrigadski; Heiko J Luhmann; Volkmar eLessmann; Volkmar eLessmann

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase...

  12. Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice.

    Science.gov (United States)

    Drexel, Meinrad; Romanov, Roman A; Wood, James; Weger, Stefan; Heilbronn, Regine; Wulff, Peer; Tasan, Ramon O; Harkany, Tibor; Sperk, Günther

    2017-08-23

    Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present

  13. Black seed oil ameliorated scopolamine-induced memory dysfunction and cortico-hippocampal neural alterations in male Wistar rats

    Directory of Open Access Journals (Sweden)

    A. Imam

    2016-06-01

    Scopolamine resulted in memory impairment, by delayed latency in the MWM, reduced percentage alternation in the Y maze that was coupled by alterations in the cortico-hippocampal neurons. Posttreatment of rats with BSO mitigated scopolamine-induced amnesia, by reducing latency period and increasing percentage alternation and histological changes. The observed anti-amnestic effect of BSO makes it a promising anti-amnesic agent for clinical trials in patients with cognitive impairment.

  14. Role of hippocampal β-adrenergic and glucocorticoid receptors in the novelty-induced enhancement of fear extinction.

    Science.gov (United States)

    Liu, Jian-Feng; Yang, Chang; Deng, Jia-Hui; Yan, Wei; Wang, Hui-Min; Luo, Yi-Xiao; Shi, Hai-Shui; Meng, Shi-Qiu; Chai, Bai-Sheng; Fang, Qin; Chai, Ning; Xue, Yan-Xue; Sun, Jia; Chen, Chen; Wang, Xue-Yi; Wang, Ji-Shi; Lu, Lin

    2015-05-27

    Fear extinction forms a new memory but does not erase the original fear memory. Exposure to novelty facilitates transfer of short-term extinction memory to long-lasting memory. However, the underlying cellular and molecular mechanisms are still unclear. Using a classical contextual fear-conditioning model, we investigated the effect of novelty on long-lasting extinction memory in rats. We found that exposure to a novel environment but not familiar environment 1 h before or after extinction enhanced extinction long-term memory (LTM) and reduced fear reinstatement. However, exploring novelty 6 h before or after extinction had no such effect. Infusion of the β-adrenergic receptor (βAR) inhibitor propranolol and glucocorticoid receptor (GR) inhibitor RU486 into the CA1 area of the dorsal hippocampus before novelty exposure blocked the effect of novelty on extinction memory. Propranolol prevented activation of the hippocampal PKA-CREB pathway, and RU486 prevented activation of the hippocampal extracellular signal-regulated kinase 1/2 (Erk1/2)-CREB pathway induced by novelty exposure. These results indicate that the hippocampal βAR-PKA-CREB and GR-Erk1/2-CREB pathways mediate the extinction-enhancing effect of novelty exposure. Infusion of RU486 or the Erk1/2 inhibitor U0126, but not propranolol or the PKA inhibitor Rp-cAMPS, into the CA1 before extinction disrupted the formation of extinction LTM, suggesting that hippocampal GR and Erk1/2 but not βAR or PKA play critical roles in this process. These results indicate that novelty promotes extinction memory via hippocampal βAR- and GR-dependent pathways, and Erk1/2 may serve as a behavioral tag of extinction. Copyright © 2015 the authors 0270-6474/15/358308-14$15.00/0.

  15. Sepsis-induced selective loss of NMDA receptors modulates hippocampal neuropathology in surviving septic mice.

    Directory of Open Access Journals (Sweden)

    Shuibing Zhang

    Full Text Available Sepsis-induced neuroinflammation plays an important role in sepsis-related brain dysfunction. However, the molecules that are targeted during neuroinflammation resulting from sepsis-induced brain dysfunction remain unclear. Herein, we tried to investigate the expression and roles of NMDA receptor subunits during sepsis-related brain dysfunction.Sepsis was induced by cecal ligation and perforation (CLP or by a single intraperitoneal injection of lipopolysaccharide (LPS, 8 mg/kg in C57BL/6J mice. The NMDA receptor co-agonist D-serine was injected intraperitoneally for 3 days (500 mg/kg/day to compensate for the loss of NMDA receptors. The behaviors of mice were tested in the Barnes maze and in the open field test. The mice were euthanized at the indicated time points. The brains were collected to detect the following: the levels of synaptophysin and NMDA receptor subunits GluN2A, GluN2B and GluN1 (by Western blot and RT-PCR; the number of CA1 neurons (by Nissl staining; neuronal activity (by p-CREB staining; neuroinflammation (by staining of Iba-1 and inflammatory factors IL-1β, TNF-α, NLRP3; and the levels of oxidative stress [by dihydroethidium (DHE].Sepsis selectively decreased the protein and mRNA levels of GluN2A, GluN2B and GluN1 but not the levels of synaptophysin or the neuronal number in the hippocampus of mice in either of the classic CLP-induced or LPS-induced sepsis models during the first 7 days after sepsis. Intraperitoneal injection of D-serine obviously limited the lipopolysaccharide-induced changes, including the impairment of learning and memory, the loss of NMDA receptor subunits, robust neuroinflammation, the levels of ROS stress and the decrease of p-CREB in the hippocampus of mice.These data suggest that the sepsis-induced selective loss of NMDA receptors modulates hippocampal neuropathology in the mice that survived sepsis, and the data show that NMDA receptors are potential targets for the improvement of brain dysfunction

  16. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Directory of Open Access Journals (Sweden)

    Francisco J Rubio

    2013-05-01

    Full Text Available Antidepressant drugs are usually administered for long time for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor fluoxetine to naϊve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of treatment with 0.7 mg/kg of fluoxetine on long-term potentiation (LTP and long-term depression (LTD in the Schaffer collateral-CA1 synapses and the perforant path-CA1 synapses. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining experiments revealed decreased AMPA-R Ca2+ permeability in the stratum radiatum together with increased GluA2-containing, Ca2+-impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  17. Apamin induces plastic changes in hippocampal neurons in senile Sprague-Dawley rats.

    Science.gov (United States)

    Romero-Curiel, Alejandra; López-Carpinteyro, Diana; Gamboa, Citlalli; De la Cruz, Fidel; Zamudio, Sergio; Flores, Gonzalo

    2011-10-01

    Apamin is a neurotoxin extracted from honey bee venom and is a selective blocker of small-conductance Ca²⁺-activated K⁺ channels (SK). Several behavioral and electrophysiological studies indicate that SK-blockade by apamin may enhance neuron excitability, synaptic plasticity, and long-term potentiation in the CA1 hippocampal region, and, for that reason, apamin has been proposed as a therapeutic agent in Alzheimer's disease treatment. However, the dendritic morphological mechanisms implied in such enhancement are unknown. In the present work, Golgi-Cox stain protocol and Sholl analysis were used to study the effect of apamin on the dendritic morphology of pyramidal neurons from hippocampus and the prefrontal cortex as well as on the medium spiny neurons from the nucleus accumbens and granule cells from the dentate gyrus (DG) of the hippocampus. We found that only granule cells from the DG and pyramidal neurons from dorsal and ventral hippocampus were altered in senile rats injected with apamin. Our research suggests that apamin may increase the dendritic morphology in the hippocampus, which could be related to the neuronal excitability and synaptic plasticity enhancement induced by apamin. Copyright © 2011 Wiley-Liss, Inc.

  18. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia.

    Science.gov (United States)

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal's learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity.

  19. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.

    Science.gov (United States)

    Song, Kibbeum; Kim, Sokho; Na, Ji-Young; Park, Jong-Heum; Kim, Jae-Kyung; Kim, Jae-Hun; Kwon, Jungkee

    2014-10-01

    Rutin is derived from buckwheat, apples, and black tea. It has been shown to have beneficial anti-inflammatory and antioxidant effects. Ethanol is a central nervous system depressant and neurotoxin. Its metabolite, acetaldehyde, is critically toxic. Aldehyde dehydrogenase 2 (ALDH2) metabolizes acetaldehyde into nontoxic acetate. This study examined rutin's effects on ALDH2 activity in hippocampal neuronal cells (HT22 cells). Rutin's protective effects against acetaldehyde-based ethanol neurotoxicity were confirmed. Daidzin, an ALDH2 inhibitor, was used to clarify the mechanisms of rutin's protective effects. Cell viability was significantly increased after rutin treatment. Rutin significantly reversed ethanol-increased Bax, cytochrome c expression and caspase 3 activity, and decreased Bcl-2 and Bcl-xL protein expression in HT22 cells. Interestingly, rutin increased ALDH2 expression, while daidzin reversed this beneficial effect. Thus, this study demonstrates rutin protects HT22 cells against ethanol-induced neurotoxicity by increasing ALDH2 activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Appetite-Inducing Peptide, Ghrelin, Induces Intracellular Store-Mediated Rises in Calcium in Addiction and Arousal-Related Laterodorsal Tegmental Neurons in Mouse Brain Slices

    DEFF Research Database (Denmark)

    Hauberg, Katrine; Kohlmeier, Kristi Anne

    2015-01-01

    Ghrelin, a gut and brain peptide, has recently been shown to be involved in motivated behavior and regulation of the sleep and wakefulness cycle. The laterodorsal tegmental nucleus (LDT) is involved in appetitive behavior and control of the arousal state of an organism, and accordingly, behavioral...... actions of ghrelin could be mediated by direct cellular actions within this nucleus. Consistent with this interpretation, postsynaptically mediated depolarizing membrane actions of ghrelin on LDT neurons have been reported. Direct actions were ascribed solely to closure of a potassium conductance however...... this peptide has been shown in other cell types to lead to rises in calcium via release of calcium from intracellular stores. To determine whether ghrelin induced intracellular calcium rises in mouse LDT neurons, we conducted calcium imaging studies in LDT brain slices loaded with the calcium binding dye, Fura...

  1. Deletion of Running-Induced Hippocampal Neurogenesis by Irradiation Prevents Development of an Anxious Phenotype in Mice

    Science.gov (United States)

    Hensley, Frank W.; Weber, Klaus-Josef; Hellweg, Rainer; Gass, Peter

    2010-01-01

    Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF) by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety. PMID:20862278

  2. The Protective Effects of Insulin and Natural Honey against Hippocampal Cell Death in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Iraj Jafari Anarkooli

    2014-01-01

    Full Text Available We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each, including the control group (C, and four diabetic groups (control (D and 3 groups treated with insulin (I, honey (H, and insulin plus honey (I + H. Diabetes was induced by streptozotocin injection (IP, 60 mg/kg. Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC, group H received honey (5 mg/kg/day, IP, and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, “H & E” staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples.

  3. Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice.

    Directory of Open Access Journals (Sweden)

    Johannes Fuss

    Full Text Available Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety.

  4. Early Transcriptional Changes Induced by Wnt/β-Catenin Signaling in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Eduardo Pérez-Palma

    2016-01-01

    Full Text Available Wnt/β-catenin signaling modulates brain development and function and its deregulation underlies pathological changes occurring in neurodegenerative and neurodevelopmental disorders. Since one of the main effects of Wnt/β-catenin signaling is the modulation of target genes, in the present work we examined global transcriptional changes induced by short-term Wnt3a treatment (4 h in primary cultures of rat hippocampal neurons. RNAseq experiments allowed the identification of 170 differentially expressed genes, including known Wnt/β-catenin target genes such as Notum, Axin2, and Lef1, as well as novel potential candidates Fam84a, Stk32a, and Itga9. Main biological processes enriched with differentially expressed genes included neural precursor (GO:0061364, p-adjusted = 2.5 × 10−7, forebrain development (GO:0030900, p-adjusted = 7.3 × 10−7, and stem cell differentiation (GO:0048863 p-adjusted = 7.3 × 10−7. Likewise, following activation of the signaling cascade, the expression of a significant number of genes with transcription factor activity (GO:0043565, p-adjusted = 4.1 × 10−6 was induced. We also studied molecular networks enriched upon Wnt3a activation and detected three highly significant expression modules involved in glycerolipid metabolic process (GO:0046486, p-adjusted = 4.5 × 10−19, learning or memory (GO:0007611, p-adjusted = 4.0 × 10−5, and neurotransmitter secretion (GO:0007269, p-adjusted = 5.3 × 10−12. Our results indicate that Wnt/β-catenin mediated transcription controls multiple biological processes related to neuronal structure and activity that are affected in synaptic dysfunction disorders.

  5. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    Science.gov (United States)

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  6. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats

    Science.gov (United States)

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-01-01

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751

  7. Chronic Benzodiazepine-induced reduction in GABAA receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection

    Science.gov (United States)

    Xiang, Kun; Tietz, Elizabeth I.

    2008-01-01

    One week oral flurazepam (FZP) administration in rats results in reduced GABAA receptor-mediated synaptic transmission in CA1 pyramidal neurons associated with benzodiazepine tolerance in vivo and in vitro. Since voltage-gated calcium channel (VGCC) current density is enhanced 2-fold during chronic FZP treatment, the role of L-type VGCCs in regulating benzodiazepine-induced changes in CA1 neuron GABAA receptor-mediated function was evaluated. Nimodipine (10 mg/kg, i.p.) or vehicle (0.5 % Tween 80, 2 ml/kg) was injected 1 day after ending FZP treatment and 24 hours prior to hippocampal slice preparation for measurement of mIPSC characteristics and in vitro tolerance to zolpidem. The reduction in GABAA receptor-mediated mIPSC amplitude and estimated unitary channel conductance measured 2 days after drug removal was no longer observed following prior nimodipine injection. However, the single nimodipine injection failed to prevent in vitro tolerance to zolpidem's ability to prolong mIPSC decay in FZP-treated neurons, suggesting multiple mechanisms may be involved in regulating GABAA receptor-mediated synaptic transmission following chronic FZP administration. As reported previously in recombinant receptors, nimodipine inhibited synaptic GABAA receptor currents only at high concentrations (>30 μM), significantly greater than attained in vivo (1 μM) 45 min after a single antagonist injection. Thus, the effects of nimodipine were unlikely to be related to direct effects on GABAA receptors. As with nimodipine injection, buffering intracellular free [Ca2+] with BAPTA similarly prevented the effects on GABAA receptor-mediated synaptic transmission, suggesting intracellular Ca2+ homeostasis is important to maintain GABAA receptor function. The findings further support a role for activation of L-type VGCCs, and perhaps other Ca2+-mediated signaling pathways, in the modulation of GABAA receptor synaptic function following chronic benzodiazepine administration, independent of

  8. Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays.

    Science.gov (United States)

    Ferrea, E; Maccione, A; Medrihan, L; Nieus, T; Ghezzi, D; Baldelli, P; Benfenati, F; Berdondini, L

    2012-01-01

    Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-scale array recording simultaneously from 4096 electrodes used to study propagating spontaneous and evoked network activity in acute murine cortico-hippocampal brain slices at unprecedented spatial and temporal resolution. We demonstrate that multiple chemically induced epileptiform episodes in the mouse cortex and hippocampus can be classified according to their spatio-temporal dynamics. Additionally, the large-scale and high-density features of our recording system enable the topological localization and quantification of the effects of antiepileptic drugs in local neuronal microcircuits, based on the distinct field potential propagation patterns. This novel high-resolution approach paves the way to detailed electrophysiological studies in brain circuits spanning spatial scales from single neurons up to the entire slice network.

  9. Surgery-induced hippocampal angiotensin II elevation causes blood-brain barrier disruption via MMP/TIMP in aged rats

    Directory of Open Access Journals (Sweden)

    Zhengqian eLi

    2016-04-01

    Full Text Available Reversible BBB disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD. Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2 and -9 (MMP-9, as well as three of their endogenous tissue inhibitors (TIMP-1, -2, -3, and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II and Ang II receptor type 1 (AT1 after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1, as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor.

  10. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade

    Directory of Open Access Journals (Sweden)

    Tope eLanre-Amos

    2010-09-01

    Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.

  11. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septo-temporal axis in adulthood and middle age

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-01-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septo-temporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septo-temporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  12. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  13. Thick Slice and Thin Slice Teaching Evaluations

    Science.gov (United States)

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  14. Hippocampal MR volumetry

    Science.gov (United States)

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  15. Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder.

    LENUS (Irish Health Repository)

    Frodl, T

    2012-01-01

    Neuroplasticity may have a core role in the pathophysiology of major depressive disorder (MDD), a concept supported by experimental studies that found that excessive cortisol secretion and\\/or excessive production of inflammatory cytokines impairs neuronal plasticity and neurogenesis in the hippocampus. The objective of this study was to examine how changes in the glucocorticoid and inflammatory systems may affect hippocampal volumes in MDD. A multimodal approach with structural neuroimaging of hippocampus and amygdala, measurement of peripheral inflammatory proteins interleukin (IL)-6 and C-reactive protein (CRP), glucocorticoid receptor (GR) mRNA expression, and expression of glucocorticoid-inducible genes (glucocorticoid-inducible genes Leucin Zipper (GILZ) and glucocorticoid-inducible kinase-1 (SGK-1)) was used in 40 patients with MDD and 43 healthy controls (HC). Patients with MDD showed smaller hippocampal volumes and increased inflammatory proteins IL-6 and CRP compared with HC. Childhood maltreatment was associated with increased CRP. Patients with MDD, who had less expression of the glucocorticoid-inducible genes GILZ or SGK-1 had smaller hippocampal volumes. Regression analysis showed a strong positive effect of GILZ and SGK-1 mRNA expression, and further inverse effects of IL-6 concentration, on hippocampal volumes. These findings suggest that childhood maltreatment, peripheral inflammatory and glucocorticoid markers and hippocampal volume are interrelated factors in the pathophysiology of MDD. Glucocorticoid-inducible genes GILZ and SGK-1 might be promising candidate markers for hippocampal volume changes relevant for diseases like MDD. Further studies need to explore the possible clinical usefulness of such a blood biomarker, for example, for diagnosis or prediction of therapy response.

  16. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    Science.gov (United States)

    Orellana, Juan A; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J; Stehberg, Jimmy; Sáez, Juan C

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  17. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    Science.gov (United States)

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  18. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    OpenAIRE

    Seifert, Bianca; Eckenstaler, Robert; R?nicke, Raik; Leschik, Julia; Lutz, Beat; Reymann, Klaus; Lessmann, Volkmar; Brigadski, Tanja

    2016-01-01

    The neurotrophin brain derived neurotrophic factor (BDNF) is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD). To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD...

  19. A Radiation-Induced Hippocampal Vascular Injury Surrogate Marker Predicts Late Neurocognitive Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Farjam, Reza [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pramanik, Priyanka; Aryal, Madhava P. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Srinivasan, Ashok [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Chapman, Christopher H. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina I. [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2015-11-15

    Purpose: We aimed to develop a hippocampal vascular injury surrogate marker for early prediction of late neurocognitive dysfunction in patients receiving brain radiation therapy (RT). Methods and Materials: Twenty-seven patients (17 males and 10 females, 31-80 years of age) were enrolled in an institutional review board-approved prospective longitudinal study. Patients received diagnoses of low-grade glioma or benign tumor and were treated by (3D) conformal or intensity-modulated RT with a median dose of 54 Gy (50.4-59.4 Gy in 1.8-Gy fractions). Six dynamic-contrast enhanced MRI scans were performed from pre-RT to 18-month post-RT, and quantified for vascular parameters related to blood-brain barrier permeability, K{sup trans}, and the fraction of blood plasma volume, V{sub p}. The temporal changes in the means of hippocampal transfer constant K{sup trans} and V{sub p} after starting RT were modeled by integrating the dose effects with age, sex, hippocampal laterality, and presence of tumor or edema near a hippocampus. Finally, the early vascular dose response in hippocampi was correlated with neurocognitive dysfunction at 6 and 18 months post-RT. Results: The mean K{sup trans} Increased significantly from pre-RT to 1-month post-RT (P<.0004), which significantly depended on sex (P<.0007) and age (P<.00004), with the dose response more pronounced in older females. Also, the vascular dose response in the left hippocampus of females correlated significantly with changes in memory function at 6 (r=−0.95, P<.0006) and 18-months (r=−0.88, P<.02) post-RT. Conclusions: The early hippocampal vascular dose response could be a predictor of late neurocognitive dysfunction. A personalized hippocampus sparing strategy may be considered in the future.

  20. Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats

    Directory of Open Access Journals (Sweden)

    Cheung Timothy HC

    2005-05-01

    Full Text Available Abstract Background Animals must frequently act to influence the world even when the reinforcing outcomes of their actions are delayed. Learning with action-outcome delays is a complex problem, and little is known of the neural mechanisms that bridge such delays. When outcomes are delayed, they may be attributed to (or associated with the action that caused them, or mistakenly attributed to other stimuli, such as the environmental context. Consequently, animals that are poor at forming context-outcome associations might learn action-outcome associations better with delayed reinforcement than normal animals. The hippocampus contributes to the representation of environmental context, being required for aspects of contextual conditioning. We therefore hypothesized that animals with hippocampal lesions would be better than normal animals at learning to act on the basis of delayed reinforcement. We tested the ability of hippocampal-lesioned rats to learn a free-operant instrumental response using delayed reinforcement, and what is potentially a related ability – the ability to exhibit self-controlled choice, or to sacrifice an immediate, small reward in order to obtain a delayed but larger reward. Results Rats with sham or excitotoxic hippocampal lesions acquired an instrumental response with different delays (0, 10, or 20 s between the response and reinforcer delivery. These delays retarded learning in normal rats. Hippocampal-lesioned rats responded slightly less than sham-operated controls in the absence of delays, but they became better at learning (relative to shams as the delays increased; delays impaired learning less in hippocampal-lesioned rats than in shams. In contrast, lesioned rats exhibited impulsive choice, preferring an immediate, small reward to a delayed, larger reward, even though they preferred the large reward when it was not delayed. Conclusion These results support the view that the hippocampus hinders action-outcome learning

  1. Median raphe stimulation-induced motor inhibition concurrent with suppression of type 1 and type 2 hippocampal theta.

    Science.gov (United States)

    Bland, Brian H; Bland, Cheryl E; MacIver, M Bruce

    2016-03-01

    This study investigated behavioral, anatomical and electrophysiological effects produced by electrical stimulation of posterior hypothalamic (PH) or median raphe (MR) nuclei, independently and during combined stimulation of both PH and MR. These three stimulation conditions were applied during spontaneous behavior in an open field and during PH stimulation-induced wheel running, while simultaneously recording hippocampal (HPC) field activity. An additional objective was to determine the effects of MR stimulation on Type 1 movement related theta and Type 2 sensory processing related theta. To achieve the latter, when behavioral studies were completed we studied the same rats under urethane anesthesia and then during urethane anesthesia with the addition of atropine sulfate (ATSO4). Here we demonstrated that electrical stimulation of a localized region of the MR nucleus resulted in a profound inhibition of both spontaneously occurring theta related motor behaviors and the theta related motor behaviors induced by electrical stimulation of the PH nucleus. Furthermore, this motor inhibition occurred concurrently with strong suppression of hippocampal theta field oscillations in the freely moving rat, a condition where the theta recorded is Type 2 sensory processing theta occurring coincidently with Type 1 movement related theta (Bland, 1986). Our results indicate that motor inhibition resulted from stimulation of neurons located in the mid central region of the MR, while stimulation in adjacent regions produced variable responses, including movements and theta activity. The present study provided evidence that the pharmacological basis of the suppression of Type 2 sensory processing HPC theta was cholinergic. However, MR inhibition of PH-induced wheel running was not affected by cholinergic blockade, which blocks Type 2 theta, indicating that MR stimulation-induced motor inhibition also requires the suppression of Type 1 theta. © 2015 Wiley Periodicals, Inc.

  2. Action potential changes associated with impairment of functional properties of sodium channels in hippocampal neurons induced by melamine.

    Science.gov (United States)

    Yang, Jia-Jia; Yang, Zhuo; Zhang, Tao

    2010-10-05

    Since the melamine-contamination event happened in September 2008, there have been lots of studies about melamine toxicity, but very limited studies focused on central nervous system (CNS). In the present study, we investigated the effects of melamine (5x10(-4), 5x10(-5) and 5x10(-6)g/ml) on voltage-gated sodium channels (VGSCs) in hippocampal CA1 neurons using whole-cell patch-clamp recordings technique. The results showed that only 5x10(-4)g/ml melamine reduced the amplitude of voltage-gated sodium current (I(Na)). At the concentrations of 5x10(-5) and 5x10(-4)g/ml, melamine produced a hyperpolarizing shift in the steady-state activation curve of I(Na) and also enhanced the steady-state inactivate processing of I(Na). Action potential properties and the pattern of repetitive firing were examined using current-clamp recording, which indicated that peak amplitude and overshoot of the evoked single action potential were decreased. The half-width and the firing rate of repetitive firing were increased in a concentration-dependent manner. The data suggest that melamine alters the action potential of hippocampal CA1 neurons by impairing the functional properties of VGSCs, which may be the underlie mechanisms of neurotoxicity induced by melamine. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. ClC-3 Expression and Its Association with Hyperglycemia Induced HT22 Hippocampal Neuronal Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Feiyan Fan

    2016-01-01

    Full Text Available Although apoptosis plays an important role in the development of Diabetic Encephalopathy (DE, the underlying molecular mechanisms remain unclear. With respect to this, the present work aims to study the variation in chloride/proton exchanger ClC-3 expression and its association with HT22 hippocampal neuronal apoptosis under hyperglycemic condition in vitro. The cells were stimulated with added 0, 5, or 25 mM glucose or mannitol for up to 72 hours before assessing the rate of ClC-3 expression, cell viability, and apoptosis. In a consecutive experiment, cells received chloride channel blocker in addition to glucose. The rate of cellular death/apoptosis and viability was measured using Flow Cytometry and MTT assay, respectively. Changes in ClC-3 expression were assessed using immunofluorescence staining and western blot analysis. The results revealed a significant increase in cellular apoptosis and reduction in viability, associated with increased ClC-3 expression in high glucose group. Osmolarity had no role to play. Addition of chloride channel blocker completely abolished this effect. Thus we conclude that, with its increased expression, ClC-3 plays a major role in hyperglycemia induced hippocampal neuronal apoptosis. To strengthen our understanding of this aforesaid association, we conducted an extensive literature search which is presented in this paper.

  4. The energy demand of fast neuronal network oscillations: insights from brain slice preparations

    Directory of Open Access Journals (Sweden)

    Oliver eKann

    2012-01-01

    Full Text Available Fast neuronal network oscillations in the gamma range (30-100 Hz in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.

  5. INTRACEREBROVENTRICULAR APPLICATION OF COMPETITIVE AND NONCOMPETITIVE NMDA ANTAGONISTS INDUCE SIMILAR EFFECTS UPON RAT HIPPOCAMPAL ELECTROENCEPHALOGRAM AND LOCAL CEREBRAL GLUCOSE-UTILIZATION

    NARCIS (Netherlands)

    BODDEKE, HWGM; WIEDERHOLD, KH; PALACIOS, JM

    1992-01-01

    In this study we have used electrophysiological and metabolic markers to investigate the effects of competitive and non-competitive NMDA antagonists in rats after central or peripheral administration. The non-competitive antagonist, MK-801, induced dose-dependent suppression of rat hippocampal EEG

  6. Intracerebroventricular application of competitive and non-competitive NMDA antagonists induce similar effects upon rat hippocampal electroencephalogram and local cerebral glucose utilization

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Wiederhold, K.H.; Palacios, J.M.

    1992-01-01

    In this study we have used electrophysiological and metabolic markers to investigate the effects of competitive and non-competitive NMDA antagonists in rats after central or peripheral administration. The non-competitive antagonist, MK-801, induced dose-dependent suppression of rat hippocampal EEG

  7. Acupuncture Attenuated Vascular Dementia-Induced Hippocampal Long-Term Potentiation Impairments via Activation of D1/D5 Receptors.

    Science.gov (United States)

    Ye, Yang; Li, Hui; Yang, Jing-Wen; Wang, Xue-Rui; Shi, Guang-Xia; Yan, Chao-Qun; Ma, Si-Ming; Zhu, Wen; Li, Qian-Qian; Li, Tian-Ran; Xiao, Ling-Yong; Liu, Cun-Zhi

    2017-04-01

    Emerging evidence suggests that acupuncture could improve cognitive impairment in vascular dementia by enhancing synaptic plasticity in the hippocampus. The purpose of this study is to investigate whether dopamine, a key mediator of synaptic plasticity, is involved in this cognitive improvement. Vascular dementia model was established by bilateral common carotid arteries occlusion in male Wistar rats. Three days after the operation, animals received acupuncture treatment for 2 weeks, once daily. The D1/D5 receptors antagonist SCH23390 was administered intraperitoneally 15 minutes before each acupuncture treatment. Morris water maze was examined after acupuncture. Long-term potentiation was studied by an electrophysiological technique. Dopamine and metabolites levels were detected by microdialysis and high-performance liquid chromatography from brain tissue. The expression of D1R and D5R was analyzed by immunofluorescence. Acupuncture remarkably reversed cognitive deficits in 2-vessel occlusion model (2VO) rats, and the acupuncture points Zusanli (ST36) and Baihui (GV20) were confirmed to be the most effective combination. Electrophysiological recording data showed that 2VO-induced impairments of long-term potentiation were prevented by acupuncture. In addition, acupuncture promoted the release of dopamine and its major metabolites in the hippocampus of 2VO rats. The immunofluorescence experiment showed that the decrease of D1R and D5R in hippocampal dentate gyrus region of 2VO rats was reversed by acupuncture. Furthermore, we found that the effects of acupuncture against 2VO-induced impairments in cognition and synaptic plasticity were abolished by SCH23390. Improvement in cognition and hippocampal synaptic plasticity induced by acupuncture was achieved via activation of D1/D5 receptors in 2VO rats. © 2017 American Heart Association, Inc.

  8. Hippocampal-related memory deficits and histological damage induced by neonatal ionizing radiation exposure. Role of oxidative status.

    Science.gov (United States)

    Caceres, Lucila Guadalupe; Aon Bertolino, Laura; Saraceno, Gustavo Ezequiel; Zorrilla Zubilete, María Aurelia; Uran, Soledad Lucía; Capani, Francisco; Guelman, Laura Ruth

    2010-02-02

    Ionizing radiations induce oxidative stress on target tissues, mainly through the generation of reactive oxygen species (ROS). However, there are few data available on the behavioral effects of moderate doses of ionizing radiation. The aim of the present work was to evaluate the performance of adult rats irradiated at birth in different hippocampal-dependent behavioral tasks and to establish a relationship with the oxidative status and histological changes in rat hippocampus (Hip). Male Wistar rats were irradiated with 5 Gy of X rays between 24 and 48 h after birth. Thirty days later, rats were subjected to open field, object recognition and inhibitory avoidance tasks. In addition, oxidative status markers as well as protein kinase C (PKC) activity and histological changes were assessed in control and irradiated Hip. Results show an impairment in recognition and habituation memories in 30-day-old animals exposed to neonatal ionizing radiation, both at short- (ST) and at long-term (LT), whereas an improvement in associative memory was observed at ST. In addition, histological alterations were observed in irradiated Hip. Although an increase in ROS levels and PKC activity were found in irradiated Hip, no changes in the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were observed. Taken together, our results support the hypothesis that an increased PKC activity, induced by neonatal ionizing radiation on rat Hip, could play a role in the generation of an imbalance between ROS levels and antioxidant systems and might underlie radiation-induced hippocampal histological damage as well as the Hip-dependent behavioral changes found in irradiated rats. (c) 2009 Elsevier B.V. All rights reserved.

  9. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes

    DEFF Research Database (Denmark)

    Jahnsen, Henrik; Kristensen, Bjarne Winther; Thiébaud, P

    1999-01-01

    such hippocampal rat brain slice cultures on biocompatible silicon-based chips with arrays of electrodes with a histological organization comparable to that of conventional brain slice cultures grown by the roller drum technique and on semiporous membranes. Intracellular and extracellular recordings from neurons...

  10. Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field depending on strength of training in rats

    Science.gov (United States)

    Garín-Aguilar, María E.; Díaz-Cintra, Sofía; Quirarte, Gina L.; Aguilar-Vázquez, Azucena; Medina, Andrea C.; Prado-Alcalá, Roberto A.

    2012-01-01

    Numerous reports indicate that learning and memory of conditioned responses are accompanied by genesis of dendritic spines in the hippocampus, although there is a conspicuous lack of information regarding spine modifications after behavioral extinction. There is ample evidence that treatments that typically produce amnesia become innocuous when animals are submitted to a procedure of enhanced training. We now report that extinction of inhibitory avoidance (IA), trained with relatively low foot-shock intensities, induces pruning of dendritic spines along the length of the apical dendrites of hippocampal CA1 neurons. When animals are trained with a relatively high foot-shock there is a high resistance to extinction, and pruning in the proximal and medial segments of the apical dendrite are seen, while spine count in the distal dendrite remains normal. These results indicate that pruning is involved in behavioral extinction, while maintenance of spines is a probable mechanism that mediates the protecting effect against amnesic treatments produced by enhanced training. PMID:22438840

  11. Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field depending on strength of training in rats

    Directory of Open Access Journals (Sweden)

    María Eugenia Garín-Aguilar

    2012-03-01

    Full Text Available Numerous reports indicate that learning and memory of conditioned responses are accompanied by genesis of dendritic spines in the hippocampus, although there is a conspicuous lack of information regarding spine modifications after behavioral extinction. There is ample evidence that treatments that typically produce amnesia become innocuous when animals are submitted to a procedure of enhanced training. We now report that extinction of inhibitory avoidance, trained with relatively low foot-shock intensities, induces pruning of dendritic spines along the length of the apical dendrites of hippocampal CA1 neurons. When animals are trained with a relatively high foot-shock there is a high resistance to extinction, and pruning in the proximal and medial segments of the apical dendrite are seen, while spine count in the distal dendrite remains normal. These results indicate that pruning is involved in behavioral extinction, while maintenance of spines is a probable mechanism that mediates the protecting effect against amnesic treatments produced by enhanced training.

  12. Contribution of hippocampal area CA1 to acetone cyanohydrin-induced loss of motor coordination in rats.

    Science.gov (United States)

    Rivadeneyra-Domínguez, E; Vázquez-Luna, A; Díaz-Sobac, R; Briones-Céspedes, E E; Rodríguez-Landa, J F

    2017-05-01

    Some vegetable foodstuffs contain toxic compounds that, when consumed, favour the development of certain diseases. Cassava (Manihot esculenta Crantz) is an important food source, but it contains cyanogenic glucosides (linamarin and lotaustralin) that have been associated with the development of tropical ataxic neuropathy and konzo. In rats, intraperitoneal administration of acetone cyanohydrin (a metabolite of linamarin) produces neurological disorders and neuronal damage in the hippocampus. However, it is unknown whether hippocampal area CA1 plays a role in neurological disorders associated with acetone cyanohydrin. A total of 32 male Wistar rats 3 months old were assigned to 4 groups (n=8 per group) as follows: vehicle (1μl physiological saline), and 3 groups with acetone cyanohydrin (1μl of 10, 15, and 20mM solution, respectively). The substances were microinjected intrahippocampally every 24hours for 7 consecutive days, and their effects on locomotor activity, rota-rod and swim tests were assessed daily. On the fifth day post-treatment, rats underwent further assessment with behavioural tests to identify or rule out permanent damage induced by acetone cyanohydrin. Microinjection of acetone cyanohydrin 20mM resulted in hyperactivity, motor impairment, and reduced exploration from the third day of treatment. All concentrations of acetone cyanohydrin produced rotational behaviour in the swim test from the first day of microinjection. The hippocampal area CA1 is involved in motor alterations induced by microinjection of acetone cyanohydrin, as has been reported for other cassava compounds. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior by Upregulation of Sirt-1: Involvement in Suppression of Hippocampal Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Liu, Shu-Yun; Li, Dan; Zeng, Hai-Ying; Kan, Li-Yuan; Zou, Wei; Zhang, Ping; Gu, Hong-Feng; Tang, Xiao-Qing

    2017-11-01

    Hydrogen sulfide (H2S) is a crucial signaling molecule with a wide range of physiological functions. Previously, we confirmed that stress-induced depression is accompanied with disturbance of H2S generation in hippocampus. The present work attempted to investigate the inhibitory effect of H2S on chronic unpredictable mild stress-induced depressive-like behaviors and the underlying mechanism. We established the rat model of chronic unpredictable mild stress to simulate depression. Open field test, forced swim test, and tail suspension test were used to assess depressive-like behaviors. The expression of Sirt-1 and three marked proteins related to endoplasmic reticulum stress (GRP-78, CHOP, and cleaved caspase-12) were detected by western blot. We found that chronic unpredictable mild stress-exposed rats exhibit depression-like behavior responses, including significantly increased immobility time in the forced swim test and tail suspension test, and decreased climbing time and swimming time in the forced swim test. In parallel, chronic unpredictable mild stress-exposed rats showed elevated levels of hippocampal endoplasmic reticulum stress and reduced levels of Sirt-1. However, NaHS (a donor of H2S) not only alleviated chronic unpredictable mild stress-induced depressive-like behaviors and hippocampal endoplasmic reticulum stress, but it also increased the expression of hippocampal Sirt-1 in chronic unpredictable mild stress-exposed rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the protective effects of H2S against chronic unpredictable mild stress-induced depression-like behaviors and hippocampal endoplasmic reticulum stress. These results demonstrated that H2S has an antidepressant potential, and the underlying mechanism is involved in the inhibition of hippocampal endoplasmic reticulum stress by upregulation of Sirt-1 in hippocampus. These findings identify H2S as a novel therapeutic target for depression.

  14. Escitalopram attenuates ?-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3? pathway

    OpenAIRE

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-? (A?)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with A?1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased A?1?42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3? pathway, and t...

  15. Parametric Trace Slicing

    Science.gov (United States)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  16. Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells.

    Science.gov (United States)

    Ma, Yan-Mei; Ibeanu, Gordon; Wang, Li-Yao; Zhang, Jian-Zhong; Chang, Yue; Dong, Jian-Da; Li, P Andy; Jing, Li

    2017-01-19

    Previous studies have indicated that selenium supplementation may be beneficial in neuroprotection against glutamate-induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. However, the exact mechanisms by which selenium protects against glutamate-provoked mitochondrial perturbation remain ambiguous. In this study glutamate exposed murine hippocampal neuronal HT22 cell was used as a model to investigate the underlying mechanisms of selenium-dependent protection against mitochondria damage. We find that glutamate-induced cytotoxicity was associated with enhancement of superoxide production, activation of caspase-9 and -3, increases of mitochondrial fission marker and mitochondrial morphological changes. Selenium significantly resolved the glutamate-induced mitochondria structural damage, alleviated oxidative stress, decreased Apaf-1, caspases-9 and -3 contents, and altered the autophagy process as observed by a decline in the ratio of the autophagy markers LC3-I and LC3-II. These findings suggest that the protection of selenium against glutamate stimulated cell damage of HT22 cells is associated with amelioration of mitochondrial dynamic imbalance.

  17. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye, E-mail: dryetian@hotmail.com

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  18. Alcohol induces parallel changes in hippocampal histone H3 phosphorylation and c-fos protein expression in male rats

    Science.gov (United States)

    McClain, Justin A.; Nixon, Kimberly

    2015-01-01

    Background Changes in gene expression associated with alcohol-induced neuroadaptations are controlled in part by post-translational histone modifications. Serine 10 phosphorylation of histone H3 (H3S10ph) has been implicated in drug-induced changes in gene expression; however, ethanol’s effects on H3S10ph have yet to be examined in brain. Therefore, hippocampal H3S10ph was examined after acute alcohol exposure and alcohol dependence. Methods Adult male Sprague-Dawley rats received an acute exposure of ethanol (0–5 g/kg) via gavage. Or, rats were made alcohol dependent by administering 25% w/v ethanol every 8 hours for 4 days following a modified Majchrowicz protocol. In both cases, rats were perfused transcardially and paraformaldehyde-fixed brains were collected and processed for immunohistochemistry for H3S10ph or the immediate early gene, c-fos. Results Acute ethanol exposure dose-dependently altered the number of H3S10ph-positive (+) cells in the hippocampus. Specifically, 1 g/kg ethanol increased the number of H3S10ph+ cells in all neuronal layers, while 2.5 and 5 g/kg ethanol reduced the number of H3S10ph+ cells, an effect that was confined to the granule cell layer (GCL). In ethanol dependent rats, the number of H3S10ph+ cells in the GCL was reduced by 66% during intoxication; however, H3S10ph+ cells were increased in all neuronal layers during peak withdrawal. Subsequent examination of c-fos, a gene known to be regulated by H3S10ph, revealed that ethanol and withdrawal-associated changes in c-fos closely paralleled changes in H3S10ph. Conclusions These results suggest that H3S10ph regulates ethanol-mediated changes in c-fos expression, effects that likely have important implications for ethanol-induced changes in hippocampal neuronal plasticity. PMID:26727528

  19. Chewing Prevents Stress-Induced Hippocampal LTD Formation and Anxiety-Related Behaviors: A Possible Role of the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available The present study examined the effects of chewing on stress-induced long-term depression (LTD and anxiogenic behavior. Experiments were performed in adult male rats under three conditions: restraint stress condition, voluntary chewing condition during stress, and control condition without any treatments except handling. Chewing ameliorated LTD development in the hippocampal CA1 region. It also counteracted the stress-suppressed number of entries to the center region of the open field when they were tested immediately, 30 min, or 60 min after restraint. At the latter two poststress time periods, chewing during restraint significantly increased the number of times of open arm entries in the elevated plus maze, when compared with those without chewing. The in vivo microdialysis further revealed that extracellular dopamine concentration in the ventral hippocampus, which is involved in anxiety-related behavior, was significantly greater in chewing rats than in those without chewing from 30 to 105 min after stress exposure. Development of LTD and anxiolytic effects ameliorated by chewing were counteracted by administering the D1 dopamine receptor antagonist SCH23390, which suggested that chewing may activate the dopaminergic system in the ventral hippocampus to suppress stress-induced anxiogenic behavior.

  20. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G.; Mungenast, Alison E.; Deisseroth, Karl; Tsai, Li-Huei

    2015-01-01

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation. PMID:25995364

  1. β-Asarone Reverses Chronic Unpredictable Mild Stress-Induced Depression-Like Behavior and Promotes Hippocampal Neurogenesis in Rats

    Directory of Open Access Journals (Sweden)

    Haiying Dong

    2014-04-01

    Full Text Available In this study, we investigated the influence of β-asarone, the major ingredient of Acorus tatarinowii Schott, on depressive-like behavior induced by the chronic unpredictable mild stresses (CUMS paradigm and to clarify the underlying mechanisms. The results show that β-asarone treatment partially reversed the CUMS-induced depression-like behaviors in both the forced swim and sucrose preference tests. The behavioral effects were associated with increased hippocampal neurogenesis indicated by bromodeoxyuridine (BrdU immunoreactivity. β-Asarone treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF at levels of transcription and translation. Moreover, CUMS caused significant reduction in ERK1/2 and CREB phosphorylation, both of which were partially attenuated by β-asarone administration. It is important to note that β-asarone treatment had no effect on total levels or phosphorylation state of any of the proteins examined in ERK1/2-CREB pathway in no stress rats, suggesting that β-asarone acts in a stress-dependent manner to block ERK1/2-CREB signaling. We did not observe a complete reversal of depression-like behaviors to control levels by β-asarone. To our knowledge, the present study is the first to demonstrate that adult neurogenesis is involved in the antidepressant-like behavioral effects of β-asarone, suggesting that β-asarone is a promising candidate for the treatment of depression.

  2. Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors.

    Science.gov (United States)

    Pittman, Julian T; Lott, Chad S

    2014-01-17

    Zebrafish (Danio rerio) are rapidly becoming a popular animal model for neurobehavioral and psychopharmacological research. While startle testing is a well-established assay to investigate anxiety-like behaviors in different species, screening of the startle response and its habituation in zebrafish is a new direction of translational biomedical research. This study focuses on a novel behavioral protocol to assess a tapping-induced startle response and its habituation in adult zebrafish that have been pharmacologically-induced to exhibit anxiety/depression-like behaviors. We demonstrated that zebrafish exhibit robust learning performance in a task adapted from the mammalian literature, a modified plus maze, and showed that ethanol and fluoxetine impair memory performance in this maze when administered after training at a dose that does not impair motor function, however, leads to significant upregulation of hippocampal serotoninergic neurons. These results suggest that the maze associative learning paradigm has face and construct validity and that zebrafish may become a translationally relevant study species for the analysis of the mechanisms of learning and memory changes associated with psychopharmacological treatment of anxiety/depression. © 2013.

  3. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Lingyun Hao

    2016-07-01

    Full Text Available Nitric oxide (NO can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor, and in vivo, endogenous NO synthesized by NO synthases (NOS could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR antagonist could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R. Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.

  4. Rutin upregulates neurotrophic factors resulting in attenuation of ethanol-induced oxidative stress in HT22 hippocampal neuronal cells.

    Science.gov (United States)

    Song, Kibbeum; Na, Ji-Young; Kim, Sokho; Kwon, Jungkee

    2015-08-15

    Alcoholism, which refers to the excessive consumption of alcohol, has deleterious effects on personal and social health worldwide. Oxidative stress evoked by ethanol plays an important role in the pathogenesis of neurodegenerative diseases. Rutin is a bioflavonoid that has been demonstrated to scavenge superoxide radicals. However, the effects of rutin on neuronal toxicity following ethanol-induced oxidative stress have not previously been investigated. Thus we investigated the antioxidant effect of rutin in hippocampal neuronal cells (HT22 cells) exposed to ethanol. We found that rutin pretreatment prevented the ethanol-induced decrease in protein level expression of nerve growth factor, glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in HT22 cells. Cell viability as analyzed by the MTT method revealed a significant increase in cell viability in the rutin-treated group compared with the ethanol-only treated group. Antioxidant effect of rutin was confirmed to be due to reduction of intracellular reactive oxidative species production in ethanol-treated HT22 cells. Moreover, rutin significantly increased the level of the antioxidant glutathione, and the activities of the antioxidant enzymes superoxide dismutase and catalase. These findings indicate that rutin has potential as a therapeutic agent to treat alcohol-related neurodegenerative disorders. © 2014 Society of Chemical Industry.

  5. Electrophysiological recordings from rat hippocampus slices following in vivo brain ischemia.

    Science.gov (United States)

    Jensen, M S; Lambert, J D; Johansen, F F

    1991-07-19

    Pyramidal neurons in area CA1 of the septal hippocampus degenerate 2-3 days after an episode of transient global cerebral ischemia. The purpose of this study was to investigate synaptic transmission and passive neuronal properties in the post-ischemic period prior to neuronal death. Electrophysiological recordings were made from area CA1 in hippocampal slices prepared from rats which had survived a period of 20 min of ischemia for up to 5 days. In septal slices, field responses were in area CA1 unaltered up to 24 h after the ischemic insult. Forty-eight hours after ischemia, the mean amplitude of the population spike, but not the field-EPSP, was significantly reduced. In septal slices prepared more than 48 h after ischemia field potentials were absent or strongly attenuated, whereas they were intact in slices prepared from the temporal pole. No spontaneous discharges were detected in slices prepared at any time from post-ischemic rats. Intracellular recordings were obtained from slices up to 48 h after the ischemic episode. There was no significant difference in the resting membrane potential or input resistance between these neurons and those from control slices. Action potentials followed by a fast afterhyperpolarization and spike accommodation were preserved in all post-ischemic neurons. In all neurons investigated, orthodromic stimulation evoked an EPSP followed by a fast- and then a slow-IPSP. One hour after ischemia, the slow-IPSP was reduced. Forty-eight hours after ischemia, the fast-IPSP was significantly increased. The EPSP was markedly attenuated by the non N-methyl-D-aspartate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM). The residual depolarizing component was amplified by perfusing with Mg(2+)-free medium and blocked by the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid. Paired-pulse facilitation of the EPSP was also preserved. As in control slices, the slow-IPSP and paired-pulse depression of the fast

  6. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Liu

    2012-01-01

    Full Text Available Uncaria rhynchophylla (UR, which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA- induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus

  7. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P

    2005-01-01

    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects of th...

  8. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway.

    Science.gov (United States)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague-Dawley rats received a single dose of 20Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF-pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF-pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    Science.gov (United States)

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

  10. Folic acid prevents depressive-like behavior and hippocampal antioxidant imbalance induced by restraint stress in mice.

    Science.gov (United States)

    Budni, Josiane; Zomkowski, Andréa Dias; Engel, Daiane; Santos, Danúbia Bonfanti; dos Santos, Alessandra Antunes; Moretti, Morgana; Valvassori, Samira S; Ornell, Felipe; Quevedo, João; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2013-02-01

    Experimental and epidemiological studies have shown the close relationship between stressful events, depression, and cognitive impairment. Folic acid has been reported to present antidepressant-like effects in both experimental and clinical approaches. However, the mechanisms mediating such effects are not understood. In the present study, we evaluated if folic acid administration to mice could protect against restraint stress-induced depressive-like behavior and cognitive deficit. Considering that oxidative stress has been pointed as a key event involved with depressive disorders, cerebrocortical and hippocampal oxidative stress-related parameters, such as the activities of antioxidant enzymes (mainly those related to the hydroperoxide-detoxifying system) and markers of lipid peroxidation, were also investigated. Restraint stress induced depressive-like behavior in the forced swimming test and memory impairment in the object recognition test, without altering locomotor activity of mice. Folic acid (50 mg/kg, p.o.) was able to prevent the stress-induced increase on immobility time in the forced swimming test, but did not prevent memory impairment. Moreover, restraint stress increased thiobarbituric acid reactive substance levels, and catalase, glutathione peroxidase and glutathione reductase activities in the cerebral cortex and hippocampus, and superoxide dismutase activity in the hippocampus. Folic acid treatment restored the activity of the antioxidant enzymes and reduced lipid peroxidation in the hippocampus. Glutathione, a non-enzymatic antioxidant, was not altered by stress and/or folic acid administration. Together, the results of the present work reinforce the notion that folic acid displays a specific antidepressant profile in the restraint stress paradigm that may be at least partly due to its antioxidant role. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Slice hyperholomorphic Schur analysis

    CERN Document Server

    Alpay, Daniel; Sabadini, Irene

    2016-01-01

    This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.

  12. Fermented Sipjeondaebo-tang Alleviates Memory Deficits and Loss of Hippocampal Neurogenesis in Scopolamine-induced Amnesia in Mice.

    Science.gov (United States)

    Park, Hee Ra; Lee, Heeeun; Park, Hwayong; Cho, Won-Kyung; Ma, Jin Yeul

    2016-03-04

    We investigated the anti-amnesic effects of SJ and fermented SJ (FSJ) on scopolamine (SCO)-induced amnesia mouse model. Mice were orally co-treated with SJ or FSJ (125, 250, and 500 mg/kg) and SCO (1 mg/kg), which was injected intraperitoneally for 14 days. SCO decreased the step-through latency and prolonged latency time to find the hidden platform in the passive avoidance test and Morris water maze test, respectively, and both SCO effects were ameliorated by FSJ treatment. FSJ was discovered to promote hippocampal neurogenesis during SCO treatment by increasing proliferation and survival of BrdU-positive cells, immature/mature neurons. In the hippocampus of SCO, oxidative stress and the activity of acetylcholinesterase were elevated, whereas the levels of acetylcholine and choline acetyltransferase were diminished; however, all of these alterations were attenuated by FSJ-treatment. The alterations in brain-derived neurotrophic factor, phosphorylated cAMP response element-binding protein, and phosphorylated Akt that occurred following SCO treatment were protected by FSJ administration. Therefore, our findings are the first to suggest that FSJ may be a promising therapeutic drug for the treatment of amnesia and aging-related or neurodegenerative disease-related memory impairment. Furthermore, the molecular mechanism by which FSJ exerts its effects may involve modulation of the cholinergic system and BDNF/CREB/Akt pathway.

  13. Gene Expression Profiling as a Tool to Investigate the Molecular Machinery Activated during Hippocampal Neurodegeneration Induced by Trimethyltin (TMT Administration

    Directory of Open Access Journals (Sweden)

    Maria Concetta Geloso

    2013-08-01

    Full Text Available Trimethyltin (TMT is an organotin compound exhibiting neurotoxicant effects selectively localized in the limbic system and especially marked in the hippocampus, in both experimental animal models and accidentally exposed humans. TMT administration causes selective neuronal death involving either the granular neurons of the dentate gyrus or the pyramidal cells of the Cornu Ammonis, with a different pattern of localization depending on the different species studied or the dosage schedule. TMT is broadly used to realize experimental models of hippocampal neurodegeneration associated with cognitive impairment and temporal lobe epilepsy, though the molecular mechanisms underlying the associated selective neuronal death are still not conclusively clarified. Experimental evidence indicates that TMT-induced neurodegeneration is a complex event involving different pathogenetic mechanisms, probably acting differently in animal and cell models, which include neuroinflammation, intracellular calcium overload, and oxidative stress. Microarray-based, genome-wide expression analysis has been used to investigate the molecular scenario occurring in the TMT-injured brain in different in vivo and in vitro models, producing an overwhelming amount of data. The aim of this review is to discuss and rationalize the state-of-the-art on TMT-associated genome wide expression profiles in order to identify comparable and reproducible data that may allow focusing on significantly involved pathways.

  14. Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure.

    Directory of Open Access Journals (Sweden)

    Yuki Sugiura

    Full Text Available We report the use of matrix-assisted laser desorption/ionization (MALDI imaging mass spectrometry combined with capillary electrophoresis (CE mass spectrometry to visualize energy metabolism in the mouse hippocampus by imaging energy-related metabolites. We show the distribution patterns of ATP, ADP, and AMP in the hippocampus as well as changes in their amounts and distribution patterns in a murine model of limbic, kainate-induced seizure. As an acute response to kainate administration, we found massive and moderate reductions in ATP and ADP levels, respectively, but no significant changes in AMP levels--especially in cells of the CA3 layer. The results suggest the existence of CA3 neuron-selective energy metabolism at the anhydride bonds of ATP and ADP in the hippocampal neurons during seizure. In addition, metabolome analysis of energy synthesis pathways indicates accelerated glycolysis and possibly TCA cycle activity during seizure, presumably due to the depletion of ATP. Consistent with this result, the observed energy depletion significantly recovered up to 180 min after kainate administration. However, the recovery rate was remarkably low in part of the data-pixel population in the CA3 cell layer region, which likely reflects acute and CA3-selective neural death. Taken together, the present approach successfully revealed the spatiotemporal energy metabolism of the mouse hippocampus at a cellular resolution--both quantitatively and qualitatively. We aim to further elucidate various metabolic processes in the neural system.

  15. Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway.

    Science.gov (United States)

    Lee, Sang Hun; Lutz, David; Mossalam, Mohanad; Bolshakov, Vadim Y; Frotscher, Michael; Shen, Jie

    2017-06-15

    Presenilins play a major role in the pathogenesis of Alzheimer's disease, in which the hippocampus is particularly vulnerable. Previous studies of Presenilin function in the synapse, however, focused exclusively on the hippocampal Schaffer collateral (SC) pathway. Whether Presenilins play similar or distinct roles in other hippocampal synapses is unknown. To investigate the role of Presenilins at mossy fiber (MF) synapses we performed field and whole-cell electrophysiological recordings and Ca 2+ imaging using acute hippocampal slices of postnatal forebrain-restricted Presenilin conditional double knockout (PS cDKO) and control mice at 2 months of age. We also performed quantitative electron microscopy (EM) analysis to determine whether mitochondrial content is affected at presynaptic MF boutons of PS cDKO mice. We further conducted behavioral analysis to assess spatial learning and memory of PS cDKO and control mice at 2 months in the Morris water maze. We found that long-term potentiation and short-term plasticity, such as paired-pulse and frequency facilitation, are impaired at MF synapses of PS cDKO mice. Moreover, post-tetanic potentiation (PTP), another form of short-term plasticity, is also impaired at MF synapses of PS cDKO mice. Furthermore, blockade of mitochondrial Ca 2+ efflux mimics and occludes the PTP deficits at MF synapses of PS cDKO mice, suggesting that mitochondrial Ca 2+ homeostasis is impaired in the absence of PS. Quantitative EM analysis showed normal number and area of mitochondria at presynaptic MF boutons of PS cDKO mice, indicating unchanged mitochondrial content. Ca 2+ imaging of dentate gyrus granule neurons further revealed that cytosolic Ca 2+ increases induced by tetanic stimulation are reduced in PS cDKO granule neurons in acute hippocampal slices, and that inhibition of mitochondrial Ca 2+ release during high frequency stimulation mimics and occludes the Ca 2+ defects observed in PS cDKO neurons. Consistent with synaptic

  16. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  17. A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Le, Vivian; Morris, Margaret J

    2016-06-01

    Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKβ were affected, with reductions in GSKβ under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of

  18. Brilliant Blue G improves cognition in an animal model of Alzheimer's disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons.

    Science.gov (United States)

    Chen, X; Hu, J; Jiang, L; Xu, S; Zheng, B; Wang, C; Zhang, J; Wei, X; Chang, L; Wang, Q

    2014-10-24

    Deposits of amyloid-β (Aβ) protein are one of the hallmarks of Alzheimer's disease (AD). Numerous studies report that the Aβ peptide, especially in the oligomeric form, causes memory decline and other cognitive deficits. However, there have been very few effective interventions for termination or even delay of AD progression. Brilliant Blue G (BBG), a safe triphenylmethane dye and P2X7 antagonist, has been reported to have protective effects on neuroinflammation, ischemia, spinal injury and neurodegenerative disorders. Here we report that systematic administration of BBG diminishes spatial memory impairment and cognitive deficits in a mouse AD model produced by injecting soluble Aβ peptide into the hippocampal CA1 region. In addition, we show that Aβ-induced loss of filopodia and spine density in cultured hippocampal neurons was prevented by administration of BBG. We conclude that BBG prevents the learning and memory impairment and cognitive deficits induced by the toxicity of soluble Aβ, and improves the development of dendritic spines in hippocampal neurons in an AD model mouse. Considering the safety and blood-brain-barrier (BBB)-permeability of BBG, our data suggest a potential for BBG as a new therapy for AD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy

    Science.gov (United States)

    Patel, Dipan C.; Wallis, Glenna; Dahle, E. Jill; McElroy, Pallavi B.; Thomson, Kyle E.; West, Peter J.; Smeal, Roy M.; Patel, Manisha; Fujinami, Robert S.; White, H. Steve

    2017-01-01

    Abstract Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler’s murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2–/– mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection. PMID:28497109

  20. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy.

    Science.gov (United States)

    Patel, Dipan C; Wallis, Glenna; Dahle, E Jill; McElroy, Pallavi B; Thomson, Kyle E; Tesi, Raymond J; Szymkowski, David E; West, Peter J; Smeal, Roy M; Patel, Manisha; Fujinami, Robert S; White, H Steve; Wilcox, Karen S

    2017-01-01

    Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler's murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2(-/-) mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection.

  1. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats.

    Directory of Open Access Journals (Sweden)

    Hanna B Laurén

    Full Text Available Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA-induced status epilepticus (SE in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed, and long-term potentiation (LTP; 18 genes changed. Also genes involved in Ca(2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP, apolipoprotein E (apo E, cannabinoid type 1 receptor (CB1, Purkinje cell protein 4 (PEP-19, and interleukin 8 receptor (CXCR1, with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE. However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the

  2. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons.

    Science.gov (United States)

    Arrázola, Macarena S; Ramos-Fernández, Eva; Cisternas, Pedro; Ordenes, Daniela; Inestrosa, Nibaldo C

    2017-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mitochondrial structure and thus, neuronal viability. In AD, Aβ oligomers (Aβos) favor the opening of the pore, activating mitochondria-dependent neuronal cell death cascades. The Wnt signaling activated through the ligand Wnt3a has been described as a neuroprotective signaling pathway against amyloid-β (Aβ) peptide toxicity in AD. However, the mechanisms by which Wnt signaling prevents Aβos-induced neuronal cell death are unclear. We proposed here to study whether Wnt signaling protects neurons earlier than the late damages in the progression of the disease, through the preservation of the mitochondrial structure by the mPTP inhibition. To study specific events related to mitochondrial permeabilization we performed live-cell imaging from primary rat hippocampal neurons, and electron microscopy to analyze the mitochondrial morphology and structure. We report here that Wnt3a prevents an Aβos-induced cascade of mitochondrial events that leads to neuronal cell death. This cascade involves (a) mPTP opening, (b) mitochondrial swelling, (c) mitochondrial membrane potential loss and (d) cytochrome c release, thus leading to neuronal cell death. Furthermore, our results suggest that the activation of the Wnt signaling prevents mPTP opening by two possible mechanisms, which involve the inhibition of mitochondrial GSK-3β and/or the modulation of mitochondrial hexokinase II levels and activity. This study suggests a possible new approach for the treatment of AD from a mitochondrial perspective, and will also open new lines of study in the field of Wnt signaling in neuroprotection.

  3. Streptozotocin-induced hippocampal astrogliosis and insulin signaling malfunction as experimental scales for subclinical sporadic Alzheimer model.

    Science.gov (United States)

    Rostami, Farzaneh; Javan, Mohammad; Moghimi, Ali; Haddad-Mashadrizeh, Aliakbar; Fereidoni, Masoud

    2017-11-01

    Insulin signaling malfunction has recently been suggested as a preliminary event involved in the etiology of Sporadic Alzheimer's disease (SAD). In order to develop insulin resistance-related SAD model, rats were treated with streptozotocin, intracerebroventricularly (icv-STZ). Nevertheless, given the lack of knowledge regarding sub-clinical stages of SAD, the current challenging issue is establishing a practical pre-clinical SAD model. Despite some proposed mechanisms, such as insulin malfunction, neuroinflammation, and gliosis, icv-STZ mechanism of action is not fully understood yet and Streptozotocin-induced rat model of Alzheimer has still major shortcomings. Using three STZ doses (0.5, 1, and 3mg/kg) and three testing time (short-term, medium-term and long-term), we sought the best dose of STZ in order to mimic the characteristic feature of sAD in rats. So, we conducted a series of fifteen-week follow-up cognitive and non-cognitive studies. Besides, IR, tau and ChAT mRNA levels were measured, along with histological analysis of astrocyte, dark neuron numbers, and pyramidal layer thickness, in order to compare the effects of different doses of icv-STZ. STZ 3mg/kg caused cognitive and insulin signaling disturbance from the very first testing-time. STZ1-injected animals, however, showed an augmented hippocampal astrocyte numbers in a short time; they, also, were diagnosed with disturbed insulin signaling in medium-term post icv-STZ-injection. Moreover, behavioral, molecular and histological impairments induced by 0.5mg/kg icv-STZ were slowly progressing in comparison to high doses of STZ. STZ1 and 0.5mg/kg-treated animals are, respectively, suggested as a suitable experimental model of MCI, and sub-clinical stage. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Prospective ECG triggering reduces prosthetic heart valve-induced artefacts compared with retrospective ECG gating on 256-slice CT.

    Science.gov (United States)

    Symersky, Petr; Habets, Jesse; Westers, Paul; de Mol, Bas A J M; Prokop, Mathias; Budde, Ricardo P J

    2012-06-01

    Multidetector computed tomography (MDCT) has diagnostic value for the evaluation of prosthetic heart valve (PHV) dysfunction but it is hampered by artefacts. We hypothesised that image acquisition using prospective triggering instead of retrospective gating would reduce artefacts related to pulsating PHV. In a pulsatile in vitro model, a mono- and bileaflet PHV were imaged using 256 MDCT at 60, 75 and 90 beats per minute (BPM) with either retrospective gating (120 kV, 600 mAs, pitch 0.2, CTDI(vol) 39.8 mGy) or prospective triggering (120 kV, 200 mAs, CTDI(vol) 13.3 mGy). Two thresholds (>175 and <-45HU), derived from the density of surrounding structures, were used for quantification of hyper- and hypodense artefacts. Image noise and artefacts were compared between protocols. Prospective triggering reduced hyperdense artefacts for both valves at every BPM (P = 0.001 all comparisons). Hypodense artefacts were reduced for the monoleaflet valve at 60 (P = 0.009), 75 (P = 0.016) and 90 BPM (P = 0.001), and for the bileaflet valves at 60 (P = 0.001), 90 (P = 0.001) but not at 75 BPM (P = 0.6). Prospective triggering reduced image noise at 60 (P = 0.001) and 75 (P < 0.03) but not at 90 BPM. Compared with retrospective gating, prospective triggering reduced most artefacts related to pulsating PHV in vitro. • Computed tomographic images are often degraded by prosthetic heart valve-induced artefacts • Prospective triggering reduces prosthetic heart valve-induced artefacts in vitro • Artefact reduction at 90 beats per minute occurs without image noise reduction • Prospective triggering may improve CT image quality of moving hyperdense structures.

  5. Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity.

    Science.gov (United States)

    Jenson, Daniel; Yang, Kechun; Acevedo-Rodriguez, Alexandra; Levine, Amber; Broussard, John I; Tang, Jianrong; Dani, John A

    2015-03-01

    Attention-deficit hyperactive disorder (ADHD) is the most commonly studied and diagnosed psychiatric disorder in children. Methylphenidate (MPH, e.g., Ritalin) has been used to treat ADHD for over 50 years. It is the most commonly prescribed treatment for ADHD, and in the past decade it was the drug most commonly prescribed to teenagers. In addition, MPH has become one of the most widely abused drugs on college campuses. In this study, we examined the effects of MPH on hippocampal synaptic plasticity, which serves as a measurable quantification of memory mechanisms. Field potentials were recorded with permanently implanted electrodes in freely-moving mice to quantify MPH modulation of perforant path synaptic transmission onto granule cells of the dentate gyrus. Our hypothesis was that MPH affects hippocampal synaptic plasticity underlying learning because MPH boosts catecholamine signaling by blocking the dopamine and norepinephrine transporters (DAT and NET respectively). In vitro hippocampal slice experiments indicated MPH enhances perforant path plasticity, and this MPH enhancement arose from action via D1-type dopamine receptors and β-type adrenergic receptors. Similarly, MPH boosted in vivo initiation of long-term potentiation (LTP). While there was an effect via both dopamine and adrenergic receptors in vivo, LTP induction was more dependent on the MPH-induced action via D1-type dopamine receptors. Under biologically reasonable experimental conditions, MPH enhances hippocampal synaptic plasticity via catecholamine receptors. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The virtual slice setup.

    Science.gov (United States)

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  7. Task- and Treatment Length–Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats

    Science.gov (United States)

    Pehrson, Alan L.; Hillhouse, Todd M.; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H.; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine’s ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine’s effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine’s pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine’s moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine′s cognitive effects, which are observed under chronic dosing conditions in patients with MDD. PMID:27402279

  8. Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats.

    Science.gov (United States)

    Pehrson, Alan L; Hillhouse, Todd M; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel; Sanchez, Connie

    2016-09-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD. Copyright © 2016 The Author(s).

  9. Agomelatine reverses the decrease in hippocampal cell survival induced by chronic mild stress

    NARCIS (Netherlands)

    Dagyte, Girstaute; Crescente, Ilaria; Postema, Folkert; Seguin, Laure; Gabriel, Cecilia; Mocaer, Elisabeth; Den Boer, Johan A.; Koolhaas, Jaap M.; Dagytė, Girstautė

    2011-01-01

    The antidepressant agomelatine is a MT1/MT2 receptor agonist and 5-HT2C antagonist. Its antidepressant activity is proposed to result from the synergy between these sets of receptors. Agomelatine-induced changes in the brain have been reported under basal conditions. Yet, little is known about its

  10. Microfluidic culture chamber for the long-term perfusion and precise chemical stimulation of organotypic brain tissue slices

    DEFF Research Database (Denmark)

    Caicedo, H. H.; Vignes, M.; Brugg, B.

    2010-01-01

    We have developed a microfluidic perfusion-based culture system to study long-term in-vitro responses of organo-typic brain slices exposed to localized neurochemical stimulation. Using this microperfusion chamber we show that hip-pocampal organotypic brain slices cultures grown on nitrocellulose......-vitro micro environment, long-term culture of viable brain slices, and delivery of fluids to selected brain regions in a multiplexed and spatially defined manner....

  11. TH-E-BRF-03: A Multivariate Interaction Model for Assessment of Hippocampal Vascular Dose-Response and Early Prediction of Radiation-Induced Neurocognitive Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Farjam, R; Pramanik, P; Srinivasan, A; Chapman, C; Tsien, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States)

    2014-06-15

    Purpose: Vascular injury could be a cause of hippocampal dysfunction leading to late neurocognitive decline in patients receiving brain radiotherapy (RT). Hence, our aim was to develop a multivariate interaction model for characterization of hippocampal vascular dose-response and early prediction of radiation-induced late neurocognitive impairments. Methods: 27 patients (17 males and 10 females, age 31–80 years) were enrolled in an IRB-approved prospective longitudinal study. All patients were diagnosed with a low-grade glioma or benign tumor and treated by 3-D conformal or intensity-modulated RT with a median dose of 54 Gy (50.4–59.4 Gy in 1.8− Gy fractions). Six DCE-MRI scans were performed from pre-RT to 18 months post-RT. DCE data were fitted to the modified Toft model to obtain the transfer constant of gadolinium influx from the intravascular space into the extravascular extracellular space, Ktrans, and the fraction of blood plasma volume, Vp. The hippocampus vascular property alterations after starting RT were characterized by changes in the hippocampal mean values of, μh(Ktrans)τ and μh(Vp)τ. The dose-response, Δμh(Ktrans/Vp)pre->τ, was modeled using a multivariate linear regression considering integrations of doses with age, sex, hippocampal laterality and presence of tumor/edema near a hippocampus. Finally, the early vascular dose-response in hippocampus was correlated with neurocognitive decline 6 and 18 months post-RT. Results: The μh(Ktrans) increased significantly from pre-RT to 1 month post-RT (p<0.0004). The multivariate model showed that the dose effect on Δμh(Ktrans)pre->1M post-RT was interacted with sex (p<0.0007) and age (p<0.00004), with the dose-response more pronounced in older females. Also, the vascular dose-response in the left hippocampus of females was significantly correlated with memory function decline at 6 (r = − 0.95, p<0.0006) and 18 (r = −0.88, p<0.02) months post-RT. Conclusion: The hippocampal vascular

  12. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    LENUS (Irish Health Repository)

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  13. Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Yoshinori Okada

    2013-01-01

    Full Text Available Aim: Alzheimer′s disease (AD is characterized by large deposits of amyloid β (Aβ peptide. Aβ is known to increase reactive oxygen species (ROS production in neurons, leading to cell death. In this study, we screened 15 plant seeds′ aqueous extracts (PSAE for inhibitory effects on Aβ (25-35-induced cell death using hippocampus neurons (HIPN. Materials and Methods: Fifteen chosen plants were nine medical herbs (Japanese honeywort, luffa, rapeseed, Chinese colza, potherb mustard, Japanese radish, bitter melon, red shiso, corn, and kaiware radish and six general commercial plants (common bean, komatsuna, Qing geng cai, bell pepper, kale, and lettuce. PSAE were measured for total phenolic content (TPC with the Folin-Ciocalteu method, and the 2-diphenyl-1-picryl-hydrazyl (DPPH radical scavenging effect of each seed extract was measured. To find a protectant against Aβ-induced oxidative stress, we screened 15 PSAE using a 2′, 7′-dichlorofluorescein diacetate assay. To further unravel the anti-inflammatory effects of PSAE on Aβ-induced inflammation, PSAE were added to HIPN. The neuroprotective effects of the PSAE were evaluated by Cell Counting Kit-8 assay, measuring the cell viability in Aβ-induced HIPN. Results: TPC of 15 PSAE was in the range of 0.024-1.96 mg of chlorogenic acid equivalents/gram. The aqueous extracts showed antioxidant activities. Furthermore, intracellular ROS accumulation resulting from Aβ treatment was reduced when cells were treated with some PSAE. Kale, bitter melon, kaiware radish, red shiso, and corn inhibited tumor necrosis factor-alpha secretion by the Aβ-stimulated neurons and all samples except Japanese honeywort showed enhancement of cell survival. Conclusion: From these results, we suggest that some plant seed extracts offer protection against Aβ-mediated cell death.

  14. Alterations of inducible and constitutive nitric oxide synthase after hippocampal injury in rats.

    Science.gov (United States)

    Safari, M; Ghahari, L

    2009-08-15

    The aim of this study was to study the changes of inducible and constitutive Nitric Oxide Synthase (NOS) after brain injury. In order to brain injury 42 wistar rats were submitted and divided in 7 groups. Nitric oxide synthase activities were assayed at different times after injury. Present results showed that a significant increase of iNOS and cNOS activity 8 h after lesion. In conclusion, both isoformes of NOS increase at different time after brain injury.

  15. Fe(2+) and Fe(3+) in micromolar concentrations modulate glycine-induced Cl(-) current in rat hippocampal neurons.

    Science.gov (United States)

    Solntseva, E I; Bukanova, J V; Kondratenko, R V; Skrebitsky, V G

    2015-06-01

    The effects of Fe(2+) and Fe(3+) on glycine-activated chloride current (IGly) were studied in rat isolated pyramidal hippocampal neurons using patch-clamp technique in whole-cell configuration. 25, 100 or 500 μM glycine was applied for 600 ms with 40s intervals. Fe(2+) and Fe(3+) were co-applied with glycine in the range of concentrations of 0.01-100 μM. We found that Fe(2+) and Fe(3+) affected IGly in a similar manner. Two types of effects of iron on IGly were observed. In low concentrations (0.1 μM) Fe ions caused an acceleration of the IGly desensitization, and the effect was more pronounced for IGly induced by 100 and 500 μM glycine than by 25 μM glycine. Higher Fe concentrations (1-100 μM) decreased the peak amplitude of IGly with weak influence on its kinetics. The values of IC50 of the effect were close to 10 μM for all glycine concentrations tested. The effect of iron on IGly peak did not depend on the membrane potential. This inhibition was noncompetitive and voltage-independent, suggesting that Fe ions do not exert their action on the agonist binding site of GlyRs or block the channel pore. An important characteristic of both effects of Fe was their progressive development during repetitive Fe applications (use-dependence). Our results suggest an existence of at least two binding sites for Fe ions which vary in affinity and mechanism of action, with the low-affinity site suppressing the activity of the high-affinity one. Physiological implication of our observations is that Fe ions in low micromolar concentrations can suppress tonic inhibition and cause hyperexcitability in hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available Amyloid β-peptide (Aβ accumulation leads to neurodegeneration and Alzheimer's disease (AD. Aβ metabolism is a dynamic process in the Aβ production and clearance that requires neprilysin (NEP and other enzymes to degrade Aβ. It has been reported that NEP expression is significantly decreased in the brain of AD patients. Previously we have documented hypoxia is a risk factor for Aβ generation in vivo and in vitro through increasing Aβ generation by altering β-cleavage and γ-cleavage of APP and down-regulating NEP, and causing tau hyperphosphorylation. Here, we investigated the molecular mechanisms of hypoxia-induced down-regulation of NEP. We found a significant decrease in NEP expression at the mRNA and protein levels after hypoxic treatment in mouse primary cortical and hippocampal neurons. Chromatin immunoprecipitation (ChIP assays and relative quantitative PCR (q-PCR revealed an increase of histone H3-lysine9 demethylation (H3K9me2 and a decrease of H3 acetylation (H3-Ace in the NEP promoter regions following hypoxia. In addition, we found that hypoxia caused up-regulation of histone methyl transferase (HMT G9a and histone deacetylases (HDACs HDAC-1. Decreased expression of NEP during hypoxia can be prevented by application with the epigenetic regulators 5-Aza-2'-deoxycytidine (5-Aza, HDACs inhibitor sodium valproate (VA, and siRNA-mediated knockdown of G9a or HDAC1. DNA methylation PCR data do not support that hypoxia affects the methylation of NEP promoters. This study suggests that hypoxia may down-regulate NEP by increasing H3K9me2 and decreasing H3-Ace modulation.

  17. Alcohol Administration Blocks Stress-Induced Impairments in Memory and Anxiety, and Alters Hippocampal Neurotransmitter Receptor Expression in Male Rats

    Science.gov (United States)

    Gomez, J.L.; Lewis, M.J.; Sebastian, V.; Serrano, P.; Luine, V.N.

    2013-01-01

    Chronic exposure to stress has many deleterious effects on behavior, which can often lead to self-medication with anxiolytics, antidepressants, or alcohol. We determined the effects of alcohol administration following a stressor on established behavioral, physiological, and neural responses to stress. Male Sprague-Dawley rats received: No alcohol / No stress (CON), Alcohol alone (ALC), Stress alone (STR), or Stress plus Alcohol (STR+ALC). For seven consecutive days, two cohorts received an oral dose of 2 g/kg of either 20% ethanol or saline. In Cohort 1, behavioral testing began after the final treatment (day-8). Memory was tested using the object recognition (OR) and Y-maze, anxiety on the plus maze, and depression on the forced swim task. Memory on OR and Y-maze tasks was impaired in the ALC and STR groups. This deficit was reversed in the STR+ALC group, which performed not differently from the CON group. Stress alone was associated with increased anxiety, which was alleviated with alcohol treatment. No treatment effects were found in the forced swim task. In Cohort 2, hippocampal GABAα4 was upregulated in the STR+ALC group and GluN2B was upregulated in the ALC and STR+ALC groups. The STR+ALC group in Cohort 1 showed enhanced corticosterone levels after forced swim. The STR+ALC group in Cohort 2 showed increased corticosterone levels on day-1 of treatment and a habituation by day-7. In conclusion, this study found a reversal of stress-induced deficits in cognition and anxiety when alcohol was given post-stress, and changes in neurotransmitter receptor expression may contribute to these behavioral effects. PMID:23376488

  18. Activation of the dorsal hippocampal nicotinic acetylcholine receptors improves tamoxifen-induced memory retrieval impairment in adult female rats.

    Science.gov (United States)

    Tajik, Azam; Rezayof, Ameneh; Ghasemzadeh, Zahra; Sardari, Maryam

    2016-07-07

    Tamoxifen (TAM), a selective estrogen receptor modulator, has frequently been used in the treatment of breast cancer. In view of the fact that cognitive deficits in women who receive adjuvant chemotherapy for breast cancer is a common health problem, using female animal models for investigating the cognitive effects of TAM administration may improve our knowledge of TAM therapy. Therefore, the present study assessed the role of dorsal hippocampal cholinergic nicotinic receptors (nAChRs) in the effect of TAM administration on memory retrieval in ovariectomized (OVX) and non-OVX female rats using a passive avoidance learning task. Our results showed that pre-test administration of TAM (2-6mg/kg) impaired memory retrieval. Pre-test intra-CA1 microinjection of nicotine (0.3-0.5μg/rat) reversed TAM-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (0.1-0.3μg/rat) plus 2mg/kg (an ineffective dose) of TAM impaired memory retrieval. Pre-test intra-CA1 microinjection of the same doses of nicotine and mecamylamine by themselves had no effect on memory retrieval. In OVX rats, the administration of TAM (6mg/kg) produced memory impairment but pre-test intra-CA1 microinjection of nicotine (0.5μg/rat) had no effect on TAM response. Moreover, the administration of an ineffective dose of TAM (2mg/kg) had no effect on memory retrieval in OVX rats, while pre-test intra-CA1 microinjection of mecamylamine (0.3μg/rat) impaired memory retrieval. Taken together, it can be concluded that the impairing effect of TAM on memory formation may be modulated by nAChRs of the CA1 regions. It seems that memory impairment may be considered as an important side effect of TAM. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP /probenecid-induced Parkinson's disease mouse model.

    Science.gov (United States)

    Sung, Yun-Hee

    2015-10-01

    [Purpose] This study aimed to investigate the effect of treadmill exercise on non-motor function, specifically long-term memory, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease mouse model. [Methods] A mouse model of Parkinson's disease was developed by injecting 20 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 250 mg/kg of probenecid (P). We divided in into four groups: probenecid group, probenecid-exercise group, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group. Mice in the exercise groups ran on treadmill for 30 min/day, five times per week for 4 weeks. [Results] Latency in the passive avoidance test increased in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group compared with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. In addition, the number of 5-bromo-2-deoxyuridine/NeuN-positive cells and 5-bromo-2-deoxyuridine/doublecortin-positive cells in the hippocampal dentate gyrus was higher in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group than that in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. These changes were associated with the expression of brain-derived neurotrophic factor in the hippocampus. [Conclusion] Our results suggest that treadmill exercise may improve long-term memory in Parkinson's disease mice by facilitating neurogenesis via increased expression of neurotrophic factors.

  20. Tacrolimus (FK506 reduces ischemia-induced hippocampal damage in rats: a 7- and 30-day study

    Directory of Open Access Journals (Sweden)

    F. Giordani

    2003-04-01

    Full Text Available The neuroprotective effect of the immunosuppressant agent FK506 was evaluated in rats after brain ischemia induced for 15 min in the 4-vessel occlusion model. In the first experimental series, single doses of 1.0, 3.0 or 6.0 mg FK506/kg were given intravenously (iv immediately after ischemia. In the second series, FK506 (1.0 mg/kg was given iv at the beginning of reperfusion, followed by doses applied intraperitoneally (ip 6, 24, 48, and 72 h post-ischemia. The same protocol was used in the third series except that all 5 doses were given iv. Damage to the hippocampal field CA1 was assessed 7 or 30 days post-ischemia on three different stereotaxic planes along the septotemporal axis of the hippocampus. Ischemia caused marked neurodegeneration on all planes (P<0.001. FK506 failed to provide neuroprotection to CA1 both when applied iv as a single dose of 1.0, 3.0 or 6.0 mg/kg (experiment 1, and after five iv injections of 1.0 mg/kg (experiment 3. In contrast, the repeated administration of FK506 combining iv plus ip administration reduced CA1 cell death on all stereotaxic planes both 7 and 30 days post-ischemia (experiment 2; P<=0.01. Compared to vehicle alone, FK506 reduced rectal temperature in a dose-dependent manner (P<=0.05; however, this effect did not alter normothermia (37ºC. FK506 reduced ischemic brain damage, an effect sustained over time and apparently dependent on repeated doses and on delivery route. The present data extend previous findings on the rat 4-vessel occlusion model, further supporting the possible use of FK506 in the treatment of ischemic brain damage.

  1. Amyloid β-induced impairments on mitochondrial dynamics, hippocampal neurogenesis, and memory are restored by phosphodiesterase 7 inhibition.

    Science.gov (United States)

    Bartolome, Fernando; de la Cueva, Macarena; Pascual, Consuelo; Antequera, Desiree; Fernandez, Tamara; Gil, Carmen; Martinez, Ana; Carro, Eva

    2018-02-20

    The phosphodiesterase (PDE) 7 inhibitor S14 is a cell-permeable small heterocyclic molecule that is able to cross the blood-brain barrier. We previously found that intraperitoneal treatment with S14 exerted neuroprotection in an Alzheimer's disease (AD) model (in APP/PS1 mice). The objective of this study was to investigate the neurogenic and cellular effects of oral administration of S14 on amyloid β (Aβ) overload. We orally administered the PDE7 inhibitor S14 (15 mg/kg/day) or vehicle in 6-month-old APP/PS1 mice. After 5 weeks of S14 treatment, we evaluated cognitive functions and brain tissues. We also assessed the effects of S14 on the Aβ-treated human neuroblastome SH-SY5Y cell line. Targeting the cyclic adenosine monophosphate (cAMP)/cAMP-response element binding protein (CREB) pathway, S14 rescued cognitive decline by improving hippocampal neurogenesis in APP/PS1 transgenic mice. Additionally, S14 treatment reverted the Aβ-induced reduction in mitochondrial mass in APP/PS1 mice and in the human neuroblastoma SH-SY5Y cells co-exposed to Aβ. The restoration of the mitochondrial mass was found to be a dual effect of S14: a rescue of the mitochondrial biogenesis formerly slowed down by Aβ overload, and a reduction in the Aβ-increased mitochondrial clearance mechanism of mitophagy. Here, we show new therapeutic effects of the PDE7 inhibitor, confirming S14 as a potential therapeutic drug for AD.

  2. Alcohol administration blocks stress-induced impairments in memory and anxiety, and alters hippocampal neurotransmitter receptor expression in male rats.

    Science.gov (United States)

    Gomez, J L; Lewis, M J; Sebastian, V; Serrano, P; Luine, V N

    2013-04-01

    Chronic exposure to stress has many deleterious effects on behavior, which can often lead to self-medication with anxiolytics, antidepressants, or alcohol. We determined the effects of alcohol administration following a stressor on established behavioral, physiological, and neural responses to stress. Male Sprague-Dawley rats received: No alcohol/No stress (CON), Alcohol alone (ALC), Stress alone (STR), or Stress plus Alcohol (STR+ALC). For seven consecutive days, two cohorts received an oral dose of 2.0 g/kg of either 20% ethanol or saline. In Cohort 1, behavioral testing began after the final treatment (day-8). Memory was tested using the object recognition (OR) and Y-maze, anxiety on the plus maze, and depression on the forced swim task. Memory on OR and Y-maze tasks was impaired in the ALC and STR groups. This deficit was reversed in the STR+ALC group, which performed not differently from the CON group. Stress alone was associated with increased anxiety, which was alleviated with alcohol treatment. No treatment effects were found in the forced swim task. In Cohort 2, hippocampal GABAα4 was upregulated in the STR+ALC group and GluN2B was upregulated in the ALC and STR+ALC groups. The STR+ALC group in Cohort 1 showed enhanced corticosterone levels after forced swim. The STR+ALC group in Cohort 2 showed increased corticosterone levels on day-1 of treatment and a habituation by day-7. In conclusion, this study found a reversal of stress-induced deficits in cognition and anxiety when alcohol was given post-stress, and changes in neurotransmitter receptor expression may contribute to these behavioral effects. Published by Elsevier Inc.

  3. Physical exercise promotes memory capability by enhancing hippocampal mitochondrial functions and inhibiting apoptosis in obesity-induced insulin resistance by high fat diet.

    Science.gov (United States)

    Park, Hye-Sang; Cho, Han-Sam; Kim, Tae-Woon

    2018-02-01

    A high-fat diet induces obesity in mice, leading to insulin resistance, decreased mitochondrial function, and increased apoptosis in the hippocampus, which eventually result in memory loss. The present study investigated the effect of physical exercise on memory, hippocampal mitochondrial function, and apoptosis in mice with in insulin resistance caused by obesity due to high-fat diet. Mice were randomly divided into four groups: control (CON), control and exercise (CON + EX), high fat diet (HFD), and high fat diet and exercise (HFD + EX). After receiving a high-fat (60%) diet for 20 weeks to induce obesity, the animals were subjected to an exercise routine 6 times per week, for 12 weeks. The exercise duration and intensity gradually increased over 4-week intervals. Hippocampal memory was examined using the step-down avoidance task. Mitochondrial function and apoptosis were also examined in the hippocampus and dentate gyrus. We found that obesity owing to a high-fat diet induced insulin resistance and caused a decrease in memory function. Insulin resistance also caused a decrease in mitochondrial function in the hippocampus by reducing Ca 2+ retention and O 2, respiration, increasing the levels of H 2 O 2 , and Cyp-D, and mPTP opening. In addition, apoptosis in the hippocampus increased owing to decreased expression of Bcl-2 and increased expression of Bax, cytochrome c, and caspase-3 and TUNEL-positive cells. In contrast, physical exercise led to reduced insulin resistance, improved mitochondrial function, and reduced apoptosis in the hippocampus. The results suggest that physiological stimulations such as exercise improve hippocampal function and suppress apoptosis, potentially preventing the memory loss associated with obesity-induced insulin resistance.

  4. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells.

    Science.gov (United States)

    Yang, Eun-Ju; Kim, Geum-Soog; Jun, Mira; Song, Kyung-Sik

    2014-07-25

    It is thought that the neuronal cell loss caused by oxidative stress is the primary mechanism underlying the pathogenesis of several neurodegenerative disorders. Glutamate is an endogenous neurotransmitter, but at high concentrations it can act as a neurotoxicant by increasing the intracellular levels of reactive oxygen species (ROS). Therefore, the development of factors that can attenuate glutamate-induced oxidative stress in neuronal cells is a good strategy by which new drugs could be discovered that may treat or prevent neurodegenerative diseases. Here, the neuroprotective effects of kaempferol (KF) isolated from the stems of butterbur (Petasites japonicus) were examined in glutamate-treated hippocampal neuronal cells (HT22). The administration of KF (25 μM) resulted in a significant increase in cell viability (105.18 ± 7.48%) compared with the control (100.00 ± 3.05%), while glutamate (5 mM) reduced cell viability by 39.94 ± 1.61%. The glutamate-induced calcium (Ca(2+)) influx (1.93 ± 0.08-fold) was significantly reduced by 0.89 ± 0.02-fold following the administration of 25 μM KF. Additionally, when HT22 cells were stressed with excessive glutamate, there was a 3.70 ± 0.01-fold increase in intracellular ROS generation, even though this was effectively attenuated by KF (25 μM, 0.72 ± 0.01-fold). The protective effects of KF in HT22 cells were later confirmed using a lactate dehydrogenase (LDH) assay and a FITC-annexin V/propidium iodide double staining procedure. These findings also revealed that the neuroprotective effects of KF are a result of the regulation of the expression levels of proteins, such as Bcl-2, Bid, apoptosis-inducing factor (AIF), and mitogen-activated protein kinase (MAPK). This is the first report to investigate the neuroprotective influence of KF in glutamate-treated HT22 cells. These data demonstrate that KF may be a useful candidate for pharmacological therapies that can prevent and treat neurodegenerative diseases such as

  5. Neuroprotective effects of Polygonum multiflorum extract against glutamate-induced oxidative toxicity in HT22 hippocampal cells.

    Science.gov (United States)

    Kim, Ha Neui; Kim, Yu Ri; Jang, Ji Yeon; Choi, Young Whan; Baek, Jin Ung; Hong, Jin Woo; Choi, Yung Hyun; Shin, Hwa Kyoung; Choi, Byung Tae

    2013-10-28

    Dried roots of Polygonum multiflorum have traditionally been used in the retarding of aging process in East Asian countries and its extracts exhibit anti-oxidative activities. Neuroprotective effects of ethyl acetate extract from Polygonum multiflorum (EEPM) were investigated against glutamate-induced oxidative cell death in HT22 hippocampal cells. Cell viability, cytotoxicity, morphological, flow cytometry, and Western blot assays were performed in order to observe alterations of neuronal cell survival or death related pathways. Pretreatment with EEPM resulted in significantly decreased glutamate-induced neurotoxicity and also resulted in drastically inhibited glutamate-induced apoptotic and necrotic neuronal death. To elucidate possible pathways of neuroprotection by EEPM, we explored the activation of mitogen activated protein kinases (MAPKs), phosphatidylinositol-3-kinase, and cAMP responsive element binding protein (CREB). Treatment with glutamate alone led to activation of extracellular regulated kinase (ERK), Jun N-terminal kinase, and p38 during the late phase after glutamate exposure, but pretreatment with EEPM resulted in significantly attenuated activation of these proteins. Pretreatment with EEPM resulted in increased activation of CREB. The specific inhibitors of ERK and p38, PD98059 and SB203580, abrogated the neuroprotective effects of EEPM. When we evaluated calpain I and striatal-enriched protein tyrosine phosphatase (STEP), active form of calpain I was significantly increased after glutamate exposure, and, along with this, active form of STEP showed a decrease. Pretreatment with EEPM resulted in significant recovery of pro-calpain I and active form of STEP caused by glutamate. Co-treatment with calpain inhibitor ALLN and EEPM had a synergistic effect on neuronal death and contributed to blockade of activation of both ERK and p38 with increased activation of CREB. These results suggest that Polygonum multiflorum extract may have neuroprotective

  6. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25-35) in cultured hippocampal neurons.

    Science.gov (United States)

    Sendrowski, Krzysztof; Sobaniec, Wojciech; Stasiak-Barmuta, Anna; Sobaniec, Piotr; Popko, Janusz

    2015-04-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder, in which progressive neuron loss, mainly in the hippocampus, is observed. The critical events in the pathogenesis of AD are associated with accumulation of β-amyloid (Aβ) peptides in the brain. Deposits of Aβ initiate a neurotoxic "cascade" leading to apoptotic death of neurons. Aim of this study was to assess a putative neuroprotective effects of two nootropic drugs: piracetam (PIR) and levetiracetam (LEV) on Aβ-injured hippocampal neurons in culture. Primary cultures of rat's hippocampal neurons at 7 day in vitro were exposed to Aβ(25-35) in the presence or absence of nootropics in varied concentrations. Flow cytometry with Annexin V/PI staining was used for counting and establishing neurons as viable, necrotic or apoptotic. Additionally, release of lactate dehydrogenase (LDH) to the culture medium, as a marker of cell death, was evaluated. Aβ(25-35) caused concentration-dependent death of about one third number of hippocampal neurons, mainly through an apoptotic pathway. In drugs-containing cultures, number of neurons injured with 20 μM Aβ(25-35) was about one-third lesser for PIR and almost two-fold lesser for LEV. When 40 μM Aβ(25-35) was used, only LEV exerted beneficial neuroprotective action, while PIR was ineffective. Our results suggest the protective potential of both studied nootropics against Aβ-induced death of cultured hippocampal neurons with more powerful neuroprotective effects of LEV. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Effects of dietary supplementation with docosahexaenoic acid (DHA on hippocampal gene expression in streptozotocin induced diabetic C57Bl/6 mice

    Directory of Open Access Journals (Sweden)

    Jency Thomas

    2015-08-01

    Full Text Available A body of evidence has accumulated indicating diabetes is associated with cognitive impairments. Effective strategies are therefore needed that will delay or prevent the onset of these diabetes-related deficits. In this regard, dietary modification with the naturally occurring compound, docosahexaenoic acid (DHA, holds significant promise as it has been shown to have anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The hippocampus, a limbic structure involved in cognitive functions such as memory formation, is particularly vulnerable to the neurotoxic effects related to diabetes, and we have previously shown that streptozotocin-induced diabetes alters hippocampal gene expression, including genes involved in synaptic plasticity and neurogenesis. In the present study, we explored the effects of dietary supplementation with DHA on hippocampal gene expression in C57Bl/6 diabetic mice. Diabetes was established using streptozotocin (STZ and once stable, the dietary intervention group received AIN93G diet supplemented with DHA (50 mg/kg/day for 6 weeks. Microarray based genome-wide expression analysis was carried out on the hippocampus of DHA supplemented diabetic mice and confirmed by real time polymerase chain reaction (RT-qPCR. Genome-wide analysis identified 353 differentially expressed genes compared to non-supplemented diabetic mice. For example, six weeks of dietary DHA supplementation resulted in increased hippocampal expression of Igf II and Sirt1 and decreased expression of Tnf-α, Il6, Mapkapk2 and ApoE, compared to non-supplemented diabetic mice. Overall, DHA supplementation appears to alter hippocampal gene expression in a way that is consistent with it being neuroprotective in the context of the metabolic and inflammatory insults associated with diabetes.

  8. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats.

    Science.gov (United States)

    Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam

    2017-05-15

    Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Risperidone ameliorated Aβ1-42-induced cognitive and hippocampal synaptic impairments in mice.

    Science.gov (United States)

    Wu, Lingzhi; Feng, Xiaowen; Li, Tingting; Sun, Baojuan; Khan, Muhammad Zahid; He, Ling

    2017-03-30

    Alzheimer's disease (AD) is a complex neurodegenerative disorder with cognitive impairment and major neuropathologic hallmark of amyloid-beta (Aβ) peptides. Risperidone, an atypical antipsychotic, can improve concentration and cognitive deficit in schizophrenia patients. In this study, behavior tests including Morris Water Maze test, Step-through passive avoidance test, Open Field test, Step-Down test, Hole-Board test and Novel object recognition test were preformed to examine the effect of Risperidone on Aβ 1-42 -induced cognitive dysfunction in both long-term and short-term memory. Furthermore, ELISA assay was conducted to measure the levels of Aβ 1-42, BACE1 and p-Tau in the hippocampus and cortex. Moreover, primary cortical neuron was cultured in vitro, and the cell viability, mitochondrial membrane potential, and the level of p-Akt, GSK3β and Caspase-3 protein were measured. For behavior tests, the results showed that Risperidone significantly reversed the Aβ 1-42 -induced dysfunction in learning, memory, locomotor activity and exploratory behavior. As detected by ELISA assay, risperidone decreased the levels of Aβ 1-42 , BACE1 and p-Tau in the hippocampus and cortex of AD model mice. Biochemical assay showed that Risperidone reversed the Aβ 1-42 -induced decrease of cell viability and mitochondrial membrane potential in cultured cortical neurons. The expression of p-Akt was increased, whereas the expression of GSK3β and Caspase-3 were decreased. These results suggested that Risperidone may be used as a promising candidate for AD treatment, for its effects of inhibiting Aβ generation and improving cognitive impairment in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. MALDI imaging delineates hippocampal glycosphingolipid changes associated with neurotoxin induced proteopathy following neonatal BMAA exposure.

    Science.gov (United States)

    Karlsson, Oskar; Michno, Wojciech; Ransome, Yusuf; Hanrieder, Jörg

    2017-07-01

    The environmental toxin β-N-methylamino-L-alanine (BMAA) has been proposed to contribute to neurodegenerative diseases. We have previously shown that neonatal exposure to BMAA results in dose-dependent cognitive impairments, proteomic alterations and progressive neurodegeneration in the hippocampus of adult rats. A high BMAA dose (460mg/kg) also induced intracellular fibril formation, increased protein ubiquitination and enrichment of proteins important for lipid transport and metabolism. The aim of this study was therefore to elucidate the role of neuronal lipids in BMAA-induced neurodegeneration. By using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we characterized the spatial lipid profile in the hippocampus of six month-old rats that were treated neonatally (postnatal days 9-10) with 460mg/kg BMAA. Multivariate statistical analysis revealed long-term changes in distinct ganglioside species (GM, GD, GT) in the dentate gyrus. These changes could be a consequence of direct effects on ganglioside biosynthesis through the b-series (GM3-GD3-GD2-GD1b-GT1b) and may be linked to astrogliosis. Complementary immunohistochemistry experiments towards GFAP and S100β further verified the role of increased astrocyte activity in BMAA-induced brain damage. This highlights the potential of imaging MS for probing chemical changes associated with neuropathological mechanisms in situ. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Involvement of hippocampal CAMKII/CREB signaling in the spatial memory retention induced by creatine.

    Science.gov (United States)

    Souza, Mauren Assis; Magni, Danieli Valnes; Guerra, Gustavo Petri; Oliveira, Mauro Schneider; Furian, Ana Flávia; Pereira, Letícia; Marquez, Silvia Vacari; Ferreira, Juliano; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2012-12-01

    Although Creatine (Cr) and Phosphocreatine (PCr) systems play a key role in cellular energy and energy transport in neuronal cells, its implications for learning and memory are still controversial. Thus, we decided to investigate the involvement of cAMP-dependent protein kinase A (PKA), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cAMP responsive element binding protein (CREB) in the spatial consolidation after an intrahippocampal injection of Cr. Statistical analysis revealed that Cr (2.5 nmol/hippocampus) (post-training) decreased the latency for escape and the mean number of errors on Barnes maze test. Post-training co-administration of the PKA inhibitor (H-89 25 ρmol/hippocampus) did not alter the facilitatory effect of Cr in this memory test. On the other hand, Cr-induced spatial retention was reverted by co-administration of the CaMKII inhibitor (STO-609 5 nmol/hippocampus). Neurochemical analysis revealed that intrahippocampal injection of Cr, when analyzed after 30 min rather than after 3 h, increased the levels of pCREB and pCaMKII but not pPKA levels. Statistical analysis also revealed that the post-training co-administration of STO-609 but not H-89 reversed the increase of pCREB levels induced by Cr. The results presented in this report suggest that intracellular CaMKII/CREB pathway plays a key role in the Cr-induced spatial retention. Thus, it is plausible to propose that Cr plays a putative role as a neuromodulator in the brain, and that at least some of its effects may be mediated by intracellular CaMKII/CREB pathway.

  12. Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice

    Science.gov (United States)

    Mans, Robert A.; Chowdhury, Nazma; Cao, Dongfeng; McMahon, Lori L.; Li, Ling

    2010-01-01

    Statins inhibit 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA), the rate-limiting enzyme in the cholesterol biosynthetic pathway, and they are widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of statins extend to the central nervous system. Statins have been shown to improve the outcome of stroke and traumatic brain injury, and statin use has been associated with a reduced prevalence of Alzheimer’s disease (AD) and dementia. However, prospective studies with statins in AD have produced mixed results. Recently, we reported that simvastatin, a widely used statin in humans, enhances learning and memory in non-transgenic mice as well as in transgenic mice with AD-like pathology on a mixed genetic background. However, the cellular and molecular mechanisms underlying the beneficial effects of simvastatin on learning and memory remain elusive. The present study was undertaken to investigate the effect of acute simvastatin treatment on hippocampal long-term potentiation (LTP), a cellular model of learning and memory, in brain slices from C57BL/6 mice. Our results demonstrate that a prolonged in vitro simvastatin treatment for 2-4 hrs, but not a short-term 20-min exposure, significantly increases the magnitude of LTP at CA3-CA1 synapses without altering basal synaptic transmission or the paired-pulse facilitation ratio in hippocampal slices. Furthermore, we show that phosphorylation of Akt (protein kinase B) is increased significantly in the CA1 region following 2-hour treatment with simvastatin, and that inhibition of Akt phosphorylation suppresses the simvastatin-induced enhancement of LTP. These findings suggest activation of Akt as a molecular pathway for augmented hippocampal LTP by simvastatin treatment, and implicate enhancement of hippocampal LTP as a potential cellular mechanism underlying the beneficial effects of simvastatin on cognitive function. PMID

  13. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented....... The positive effect of continuous flow of growth medium, and thus stability of the glucose concentration and waste removal, is simulated and compared to the effect of stagnant medium that is most often used in tissue culturing. Furthermore, placement of the tissue slices in the developed device was studied...... by numerical simulations in order to optimize the nutrient distribution. The device was tested by culturing transverse hippocampal slices from 7 days old NMRI mice for a duration of 14 days. The slices were inspected visually and the slices cultured in the fluidic system appeared to have preserved...

  14. Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity.

    Science.gov (United States)

    Uran, S L; Gómez-Casati, M E; Guelman, L R

    2014-10-01

    Sound is an important part of man's contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97 dB SPL, 2 h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway

  15. Hippocampal Injury Induced Cognitive and Mood Dysfunction, Altered Neurogenesis and Epilepsy: Can Early Neural Stem Cell Grafting Intervention Provide Protection?

    Science.gov (United States)

    Shetty, Ashok K.

    2014-01-01

    Damage to hippocampus can occur through many causes including head trauma, ischemia, stroke, status epilepticus and Alzheimer’s disease. Certain changes such as increased levels of neurogenesis and elevated concentrations of multiple neurotrophic factors that ensue in the acute phase after injury seem beneficial for restraining hippocampal dysfunction. However, many alterations that arise in the intermediate to chronic phase after injury such as abnormal migration of newly born neurons, aberrant synaptic reorganization, progressive loss of inhibitory gamma-amino butyric acid positive interneurons including those expressing reelin, greatly declined neurogenesis and sustained inflammation are detrimental. Consequently, the net effect of post-injury plasticity in the hippocampus remains inadequate for promoting significant functional recovery. Hence, ideal therapeutic interventions ought to be efficient for restraining these detrimental changes in order to block the propensity of most hippocampal injuries to evolve into learning deficits, memory dysfunction, depression, and temporal lobe epilepsy. Neural stem cell (NSC) grafting into the hippocampus early after injury appears alluring from this perspective because several recent studies have demonstrated therapeutic value of this intervention, especially for preventing/easing memory dysfunction, depresion and temporal lobe epilepsy development in the chronic phase after injury. These beneficial effects of NSC grafting appeared to be mediated through considerable modulation of aberrant hippocampal post-injury plasticity with additions of new inhibitory gamma-amino butyric acid positive interneurons, and astrocytes secreting a variety of neurotrophic factors and anticonvulsant proteins. This review confers advancements made in NSC grafting therapy for treating hippocampal injury in animal models of excitotoxic injury, traumatic brain injury, Alzheimer’s disease and status epilepticus, potential mechanisms of

  16. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    NARCIS (Netherlands)

    Holsheimer, J.

    1987-01-01

    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were

  17. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cudarflavone B Provides Neuroprotection against Glutamate-Induced Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Dong-Sung Lee

    2014-07-01

    Full Text Available Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS diseases such as Alzheimer’s disease, Parkinson’s disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. Cudraflavone B is a prenylated flavone isolated from C. tricuspidata which has shown anti-proliferative activity, mouse brain monoamine oxidase (MAO inhibitory effects, apoptotic actions in human gastric carcinoma cells and mouse melanoma cells, and hepatoprotective activity. In this study, cudraflavone B showed neuroprotective effects and reactive oxygen species (ROS inhibition against glutamate-induced neurotoxicity by inducing the expression of HO-1 in mouse hippocampal HT22 cells. Furthermore, cudraflavone B caused the nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2 and increased the promoter activity of antioxidant response elements (ARE in mouse hippocampal HT22 cells. In addition, we found that the Nrf2-midiated HO-1 expression by cudraflavone B is involved in the cell protective response and ROS reductions, and cudraflavone B-induced expression of HO-1 was mediated through the phosphatidylinositol 3-kinase (PI3K/Akt pathway in HT22 cells. Our results demonstrated the potential application of naturally occurring cudraflavone B as a therapeutic agent from neurodegenerative disease.

  19. Pigment epithelium-derived factor up-regulation induced by memantine, an N-methyl-D-aspartate receptor antagonist, is involved in increased proliferation of hippocampal progenitor cells.

    Science.gov (United States)

    Namba, T; Yabe, T; Gonda, Y; Ichikawa, N; Sanagi, T; Arikawa-Hirasawa, E; Mochizuki, H; Kohsaka, S; Uchino, S

    2010-05-05

    Memantine is classified as an NMDA receptor antagonist. We recently reported that memantine promoted the proliferation of neural progenitor cells and the production of mature granule neurons in the adult hippocampus. However, the molecular mechanism responsible for the memantine-induced promotion of cellular proliferation remains unknown. In this study we searched for a factor that mediates memantine-induced cellular proliferation, and found that pigment epithelium-derived factor (PEDF), a broad-acting neurotrophic factor, is up-regulated in the dentate gyrus of adult mice after the injection of memantine. PEDF mRNA expression increased significantly by 3.5-fold at 1 day after the injection of memantine. In addition, the expression level of PEDF protein also increased by 1.8-fold at 2 days after the injection of memantine. Immunohistochemical study using anti-PEDF antibody showed that the majority of the PEDF-expressing cells were protoplasmic and perivascular astrocytes. Using a neurosphere assay, we confirmed that PEDF enhanced cellular proliferation under the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) but was not involved in the multilineage potency of hippocampal progenitor cells. Over expression of PEDF by adeno-associated virus, however, did not stimulate cellular proliferation, suggesting PEDF per se does not promote cellular proliferation in vivo. These findings suggest that the memantine induced PEDF up-regulation is involved in increased proliferation of hippocampal progenitor cells. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level.

    Science.gov (United States)

    Kasbe, Prajapati; Jangra, Ashok; Lahkar, Mangala

    2015-01-01

    Mangiferin is a phytochemical primarily present in the stem, leaves and bark of Mangifera indica. It offers neuroprotection mainly through inhibition of oxidative stress, and decreasing proinflammatory cytokines level in the brain. Aluminium has been reported to cause oxidative stress-associated damage in the brain. In the present investigation, protective effect of mangiferin against aluminium chloride (AlCl3)-induced neurotoxicity and cognitive impairment was studied in male Swiss albino mice. AlCl3 (100 mg/kg) was administered once daily through oral gavage for 42 days. Mangiferin (20 and 40 mg/kg, p.o.) was given to mice for last 21 days of the study. We found cognitive dysfunction in AlCl3-treated group, which was assessed by Morris water maze test, and novel object recognition test. AlCl3-treated group showed elevated level of oxidative stress markers, proinflammatory cytokines level and lowered hippocampal brain-derived neurotrophic factor (BDNF) content. Mangiferin (40 mg/kg) prevented the cognitive deficits, hippocampal BDNF depletion, and biochemical anomalies induced by AlCl3-treatment. In conclusion, our data demonstrated that mangiferin offers neuroprotection in AlCl3-induced neurotoxicity and it may be a potential therapeutic approach in the treatment of oxido-nitrosative stress and inflammation-associated neurotoxicity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats

    Directory of Open Access Journals (Sweden)

    Enrico eCherubini

    2013-05-01

    Full Text Available Fluoxetine (Prozac, an antidepressant known to selectively inhibit serotonin reuptake, is widely used to treat mood disorders in women suffering from depression during pregnancy and postpartum period. Several lines of evidence suggest that this drug, which crosses the human placenta and is secreted into milk during lactation, exerts its action not only by interfering with serotoninergic but also with GABAergic transmission. GABA is known to play a crucial role in the construction of neuronal circuits early in postnatal development. The immature hippocampus is characterized by an early type of network activity, the so-called Giant Depolarizing Potentials (GDPs, generated by the synergistic action of glutamate and GABA, both depolarizing and excitatory. Here we tested the hypothesis that fluoxetine may interfere with GABAergic signaling during the first postnatal week, thus producing harmful effects on brain development. At micromolar concentrations fluoxetine severely depressed GDPs frequency (IC50 22 M in a reversible manner and independently of its action on serotonin reuptake. This effect was dependent on a reduced GABAergic (but not glutamatergic drive to principal cells most probably from parvalbumin-positive fast spiking neurons. Cholecystokinin-positive GABAergic interneurons were not involved since the effects of the drug persisted when cannabinoid receptors were occluded with WIN55,212-2, a CB1/CB2 receptor agonist. Fluoxetine effects on GABAergic transmission were associated with a reduced firing rate of both principal cells and interneurons further suggesting that changes in network excitability account for GDPs disruption. This may have critical consequences on the functional organization and stabilization of neuronal circuits early in postnatal development.

  2. 3-nitropropionic acid neurotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noer, Helle; Kristensen, Bjarne W; Noraberg, Jens

    2002-01-01

    iodide (PI) uptake and lactate dehydrogenase (LDH) efflux into the medium revealed time- and dose-dependent cell death by 3-NP, with EC(50) values of about 60 microM in high or normal glucose. Regional vulnerability, as assessed by PI uptake and MAP2 immunostaining, in 3-week-old cultures was as follows...

  3. Cav3.1 T-type calcium channel modulates the epileptogenicity of hippocampal seizures in the kainic acid-induced temporal lobe epilepsy model.

    Science.gov (United States)

    Kim, Chong-Hyun

    2015-10-05

    The molecular mechanism of temporal lobe epilepsy has not been clearly identified. T-type calcium channels play a role in burst firing in neurons and have been implicated in several seizure models. In this study, the role of Cav3.1 T-type (α1G) calcium channel has been investigated in the kainic acid (KA)-induced temporal lobe epilepsy model (TLE) by using conventional α1G knock-out (ko) mice. After intraperitoneal (i.p.) administration or intrahippocampal injection of KA, depth hippocampal and cortical electroencephalogram (EEG) and behavioral monitoring were recorded, and timm and Nissl staining of brain sections were made later. Seizure was mainly identified by EEG signals, rather than behaviorally, with analytic criteria. During the acute status epilepticus (SE) period, both the duration and the frequency of hippocampal seizures were significantly reduced and increased, respectively, in αlG ko mice compared to those of wild type mice. Epileptogenicity, the total period of seizures (hr(-1)), was also significantly reduced in α1G ko mice. However, the latency of seizure occurrence was not significantly different between wild type and ko mice. These differential effects were not observed in cortical seizures. Furthermore, the injection of KA caused a strong increase in δ rhythm power spectrum density (PSD) of EEG in αlG ko mice compared to that in wild type mice. The results with conventional ko mice indicate that α1G T-type calcium channel plays a modulatory role in the duration and frequency of hippocampal seizures as well as the epileptogenicity of KA-induced TLE in mice, mostly during acute periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation.

    Science.gov (United States)

    Rame, Marion; Caudal, Dorian; Schenker, Esther; Svenningsson, Per; Spedding, Michael; Jay, Thérèse M; Godsil, Bill P

    2017-01-01

    Single sub-anesthetic doses of ketamine can exacerbate the symptoms of patients diagnosed with schizophrenia, yet similar ketamine treatments rapidly reduce depressive symptoms in major depression. Acute doses of the atypical antipsychotic drug clozapine have also been shown to counteract ketamine-induced psychotic effects. In the interest of understanding whether these drug effects could be modeled with alterations in neuroplasticity, we examined the impact of acutely-administered ketamine and clozapine on in vivo long-term potentiation (LTP) in the rat's hippocampus-to-prefrontal cortex (H-PFC) pathway. We found that a low dose of ketamine depressed H-PFC LTP, whereas animals that were co-administrated the two drugs displayed LTP that was similar to a saline-treated control. To address which signaling molecules might mediate such effects, we also examined phosphorylation and total protein levels of GSK3β, GluA1, TrkB, ERK, and mTOR in prefrontal and hippocampal sub-regions. Among the statistically significant effects that were detected (a) both ketamine and clozapine increased the phosphorylation of Ser9-GSK3β throughout the prefrontal cortex and of Ser2481-mTOR in the dorsal hippocampus (DH), (b) clozapine increased the phosphorylation of Ser831-GluA1 throughout the prefrontal cortex and of Ser845-GluA1 in the ventral hippocampus, (c) ketamine treatment increased the phosphorylation of Thr202/Tyr204-ERK in the medial PFC (mPFC), and (d) clozapine treatment was associated with decreases in the phosphorylation of Tyr705-TrkB in the DH and of Try816-TrkB in the mPFC. Further analyses involving phosphorylation effect sizes also suggested Ser831-GluA1 in the PFC displayed the highest degree of clozapine-responsivity relative to ketamine. These results provide evidence for how ketamine and clozapine treatments affect neuroplasticity and signaling pathways in the stress-sensitive H-PFC network. They also demonstrate the potential relevance of H-PFC pathway

  5. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng [Department of Pharmacology, University of Cambridge (United Kingdom); Johnson, Hong W.; Schell, Michael J. [Department of Pharmacology, Uniformed Services University, Bethesda (United States); Lord, Rebecca L. [Department of Biology, University of York (United Kingdom); Chawla, Sangeeta, E-mail: sangeeta.chawla@york.ac.uk [Department of Pharmacology, University of Cambridge (United Kingdom); Department of Biology, University of York (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited

  6. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition.

    Science.gov (United States)

    Zhang, Long-Hua; Gong, Neng; Fei, Da; Xu, Lin; Xu, Tian-Le

    2008-02-01

    Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their role in hippocampal function remains unclear. Since the concentration of ambient glycine is determined by the presence of powerful glycine transporter (GlyT), we blocked the reuptake of glycine in hippocampal slices to examine the role of GlyRs. Antagonists of GlyT type 1 (GlyT1) but not that of GlyT type 2 (GlyT2) induced excitatory postsynaptic potential (EPSP)-spike depression, which was reversed by the specific GlyR antagonist strychnine. Moreover, endogenously elevating the glycine concentration with the GlyT1 antagonists facilitated NMDA receptor-dependent long-term potentiation induction, and elicited a strychnine-sensitive chloride current. In addition, impairment of glial function with fluoroacetate blocked the effect of GlyT1 antagonists on the EPSP-spike curve. Furthermore, pretreatment with sarcosine was effective in controlling pentylenetetrazol-induced seizures. These results indicate an essential role of GlyTs in fine-tuning tonic activation of GlyRs and suggest a potential role of GlyR-dependent EPSP-spike depression in hippocampal network stability.

  7. Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons

    DEFF Research Database (Denmark)

    Kang, J.; Kang, N.; Yu, Y.

    2010-01-01

    Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 microM) for 10...

  8. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  9. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Soledad Ferreras

    2017-11-01

    Full Text Available Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

  10. Grape seed proanthocyanidin extract inhibits glutamate-induced cell death through inhibition of calcium signals and nitric oxide formation in cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Kim Myung-Jun

    2011-08-01

    Full Text Available Abstract Background Proanthocyanidin is a polyphenolic bioflavonoid with known antioxidant activity. Some flavonoids have a modulatory effect on [Ca2+]i. Although proanthocyanidin extract from blueberries reportedly affects Ca2+ buffering capacity, there are no reports on the effects of proanthocyanidin on glutamate-induced [Ca2+]i or cell death. In the present study, the effects of grape seed proanthocyanidin extract (GSPE on glutamate-induced excitotoxicity was investigated through calcium signals and nitric oxide (NO in cultured rat hippocampal neurons. Results Pretreatment with GSPE (0.3-10 μg/ml for 5 min inhibited the [Ca2+]i increase normally induced by treatment with glutamate (100 μM for 1 min, in a concentration-dependent manner. Pretreatment with GSPE (6 μg/ml for 5 min significantly decreased the [Ca2+]i increase normally induced by two ionotropic glutamate receptor agonists, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA. GSPE further decreased AMPA-induced response in the presence of 1 μM nimodipine. However, GSPE did not affect the 50 mM K+-induced increase in [Ca2+]i. GSPE significantly decreased the metabotropic glutamate receptor agonist (RS-3,5-Dihydroxyphenylglycine-induced increase in [Ca2+]i, but it did not affect caffeine-induced response. GSPE (0.3-6 μg/ml significantly inhibited synaptically induced [Ca2+]i spikes by 0.1 mM [Mg2+]o. In addition, pretreatment with GSPE (6 μg/ml for 5 min inhibited 0.1 mM [Mg2+]o- and glutamate-induced formation of NO. Treatment with GSPE (6 μg/ml significantly inhibited 0.1 mM [Mg2+]o- and oxygen glucose deprivation-induced neuronal cell death. Conclusions All these data suggest that GSPE inhibits 0.1 mM [Mg2+]o- and oxygen glucose deprivation-induced neurotoxicity through inhibition of calcium signals and NO formation in cultured rat hippocampal neurons.

  11. The effect of PTZ-induced epileptic seizures on hippocampal expression of PSA-NCAM in offspring born to kindled rats

    Directory of Open Access Journals (Sweden)

    Rajabzadeh Aliakbar

    2012-05-01

    Full Text Available Abstract Background Maternal epileptic seizures during pregnancy can affect the hippocampal neurons in the offspring. The polysialylated neural cell adhesion molecule (PSA-NCAM, which is expressed in the developing central nervous system, may play important roles in neuronal migration, synaptogenesis, and axonal outgrowth. This study was designed to assess the effects of kindling either with or without maternal seizures on hippocampal PSA-NCAM expression in rat offspring. Methods Forty timed-pregnant Wistar rats were divided into four groups: A Kind+/Seiz+, pregnant kindled (induced two weeks prior to pregnancy rats that received repeated intraperitoneal (i.p. pentylenetetrazol, PTZ injections on gestational days (GD 14-19; B Kind-/Seiz+, pregnant non-kindled rats that received PTZ injections on GD14-GD19; C Kind+/Seiz-, pregnant kindled rats that did not receive any PTZ injections; and D Kind-/Seiz-, the sham controls. Following birth, the pups were sacrificed on PD1 and PD14, and PSA-NCAM expression and localization in neonates’ hippocampi were analyzed by Western blots and immunohistochemistry. Results Our data show a significant down regulation of hippocampal PSA-NCAM expression in the offspring of Kind+/Seiz+ (p = 0.001 and Kind-/Seiz+ (p = 0.001 groups compared to the sham control group. The PSA-NCAM immunoreactivity was markedly decreased in all parts of the hippocampus, especially in the CA3 region, in Kind+/Seiz+ (p = 0.007 and Kind-/Seiz+ (p = 0.007 group’s newborns on both PD1 and 14. Conclusion Our findings demonstrate that maternal seizures but not kindling influence the expression of PSA-NCAM in the offspring’s hippocampi, which may be considered as a factor for learning/memory and cognitive impairments reported in children born to epileptic mothers.

  12. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice.

    Science.gov (United States)

    Zhu, G; Wang, Y; Li, J; Wang, J

    2015-04-30

    Ginseng serves as a potential candidate for the treatment of aging-related memory decline or memory loss. However, the related mechanism is not fully understood. In this study, we applied an intraperitoneal injection of ginsenoside Rg1, an active compound from ginseng in middle-aged mice and detected memory improvement and the underlying mechanisms. Our results showed that a period of 30-day administration of ginsenoside Rg1 enhanced long-term memory in the middle-aged animals. Consistent with the memory improvement, ginsenoside Rg1 administration facilitated weak theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in acute hippocampal slices from middle-aged animals. Ginsenoside Rg1 administration increased the dendritic apical spine numbers and area in the CA1 region. In addition, ginsenoside Rg1 administration up-regulated the expression of hippocampal p-AKT, brain-derived neurotrophic factor (BDNF), proBDNF and glutamate receptor 1 (GluR1), but not p-ERK. Interestingly, the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor (bpV) mimicked the ginsenoside Rg1 effects, including increasing p-AKT expression, promoting hippocampal basal synaptic transmission, LTP and memory. Taken together, our data suggest that ginsenoside Rg1 treatment improves memory in middle-aged mice possibly through regulating the PI3K/AKT pathway, altering apical spines and facilitating hippocampal LTP. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Effects of XE991, retigabine, losigamone and ZD7288 on kainate-induced theta-like and gamma network oscillations in the rat hippocampus in vitro.

    Science.gov (United States)

    Boehlen, Anne; Kunert, Alexandra; Heinemann, Uwe

    2009-10-27

    Ion currents such as M-currents (I(M)), persistent sodium currents (I(NaP)) and H-currents (I(h)) have been observed in a variety of brain regions, including the hippocampal formation, where storage and retrieval of information are facilitated by oscillatory network activities. They have been suggested to play an important role in neuronal excitability, synaptic transmission, membrane oscillatory activity, and in shaping resonance. Resonance and membrane potential oscillations have been implied in the generation of theta but not gamma oscillations. Here, we performed extracellular field potential recordings in hippocampal slices from adult rats and applied either the I(M) blocker XE991, the I(M) activator retigabine, the I(NaP) blocker losigamone or the I(h) inhibitor ZD7288 to test if these currents contribute to the generation of network oscillations. Kainate application induced network theta-like frequency oscillations in coronal slices as well as network gamma frequency oscillations in horizontal slices, and these remained stable for up to 3h. Power spectrum analysis revealed that all agents dose-dependently reduced the network oscillations in both frequency bands in areas CA3 and CA1. In contrast, the peak oscillation frequency was affected differentially. These results confirm that theta-like frequency oscillations are induced in longitudinal slices while gamma frequency oscillations dominate in horizontal slices. They also suggest that modifying neuronal excitability and transmitter release alters hippocampal network oscillations which are thought to be crucial for memory processing.

  14. Kukoamine A Prevents Radiation-Induced Neuroinflammation and Preserves Hippocampal Neurogenesis in Rats by Inhibiting Activation of NF-κB and AP-1.

    Science.gov (United States)

    Zhang, Yaqiong; Gao, Lingyue; Cheng, Zhihua; Cai, Jiayi; Niu, Yixuan; Meng, Weihong; Zhao, Qingchun

    2017-02-01

    Impaired hippocampal neurogenesis and neuroinflammation are involved in the pathogenesis of radiation-induced brain injury. Kukoamine A (KuA) was demonstrated to have neuroprotective effects through inhibiting oxidative stress and apoptosis after whole-brain irradiation (WBI) in rats. The aim of this study was to investigate whether administration of KuA would prevent radiation-induced neuroinflammation and the detrimental effect on hippocampal neurogenesis. For this study, male Wistar rats received either sham irradiation or WBI (30 Gy single dose of X-rays) followed by the immediate injection of either KuA or vehicle intravenously. The dose of KuA was 5, 10, and 20 mg/kg, respectively. The levels of pro-inflammatory cytokines were assayed by ELISA kits. The newborn neurons were detected by 5-bromo-2-deoxyuridine (BrdU)/neuronal nuclei (NeuN) double immunofluorescence. Microglial activation was measured by Iba-1 immunofluorescence. The expression of Cox-2 and the activation of nuclear factor κB (NF-κB), activating protein 1(AP-1), and PPARδ were evaluated by western blot. WBI led to a significant increase in the level of TNF-α, IL-1β, and Cox-2, and it was alleviated by KuA administration. KuA attenuated microglial activation in rat hippocampus after WBI. Neurogenesis impairment induced by WBI was ameliorated by KuA. Additionally, KuA alleviated the increased translocation of NF-κB p65 subunit and phosphorylation of c-jun induced by WBI and elevated the expression of PPARδ. These data indicate that KuA could ameliorate the neuroinflammatory response and protect neurogenesis after WBI, partially through regulating the activation of NF-κB, AP-1, and PPARδ.

  15. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Seth, Brashket; Agarwal, Swati; Yadav, Anuradha; Karmakar, Madhumita; Gupta, Shailendra Kumar; Choubey, Vinay; Sharma, Abhay; Chaturvedi, Rajnish Kumar

    2015-11-20

    Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Shanshan Sun

    2017-04-01

    Full Text Available Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD, a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen–glucose-deprivation/reperfusion (OGD/R model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XFe24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP+ ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.

  17. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons.

    Science.gov (United States)

    Sun, Shanshan; Hu, Fangyuan; Wu, Jihong; Zhang, Shenghai

    2017-04-01

    Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen-glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XF e 24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP + ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Repeated Administration of Ketamine can Induce Hippocampal Neurodegeneration and Long-Term Cognitive Impairment via the ROS/HIF-1α Pathway in Developing Rats

    Directory of Open Access Journals (Sweden)

    Jia Yan

    2014-05-01

    Full Text Available Background: Recent animal experiments have suggested that ketamine administration during development might induce widespread neurodegeneration and long-term cognitive deficits. The underlying mechanism is not fully understood. Methods: Immature rat hippocampal neurons and newborn rats underwent repeated exposure to ketamine, ketamine+inhibitor of hypoxia-inducible factor (HIF-1α(YC-1, ketamine+inhibitor of reactive oxygen species(ROS (L-carnitine or ketamine+Ca2+ blocker(nimodipine. Apoptosis of the hippocampal neurons was analyzed by TUNEL and flow cytometry. Intracellular ROS were measured using 2',7'-dichlorofluorescein diacetate. The expression of HIF- 1α and apoptosis-related proteins was analyzed by western blot or qPCR. As these rats grew, behavioral tests were performed to evaluate cognitive function. Results: The apoptotic rate in the ketamine group was significantly higher than that in the other groups, and the intracellular ROS levels in the ketamine and ketamine+YC-1 groups were higher than those in the other groups. The expression of HIF- 1α, p53, BNIP3 and cleaved caspase-3 proteins increased, and the ratio of Bcl-2/Bax decreased in the ketamine group. The transcriptional levels of HIF-1α in the ketamine and ketamine+YC-1 groups were higher than those in the other groups. Cognitive deficits were found only in the ketamine group. Conclusion: We suggest that ketamine-induced neurodegeneration in neonatal rats, followed by long-term cognitive deficits, might be mediated via the ROS/HIF-1α pathway.

  19. White light emitting diode suppresses proliferation and induces apoptosis in hippocampal neuron cells through mitochondrial cytochrome c oxydase-mediated IGF-1 and TNF-α pathways.

    Science.gov (United States)

    Yang, Yang; Zong, Yibo; Sun, Qinwei; Jia, Yimin; Zhao, Ruqian

    2017-12-01

    Light emitting diode (LED) light has been tested to treat traumatic brain injury, neural degenerative diseases and psychiatric disorders. Previous studies indicate that blue LED light affects cell proliferation and apoptosis in photosensitive cells and cancer cells. In this study, we demonstrate that white LED light exposure impaired proliferation and induced apoptosis in HeLa and HT-22 hippocampal neural cells, but not C2C12 cells. Furthermore, the mechanisms underlying the effect of white LED light exposure on HT-22 cells were elucidated. In HeLa and HT-22 cells, white LED light activated mitochondrial cytochrome c oxidase (Cco), in association with enhanced ATP synthase activity and elevated intracellular ATP concentration. Also, reactive oxygen species (ROS) and nitric oxide (NO) production were increased, accompanied by higher calcium concentration and lower mitochondrial membrane potential. HT-22 cells exposed to white LED light for 24h showed reduced viability, with higher apoptotic rate and a cell cycle arrest at G0/G1 phase. Concurrently, the mRNA expression and the concentration of IGF-1 were decreased, while that of TNF-α were increased, in light-exposed cells, which was supported by the luciferase activity of both gene promoters. The down-stream mitogen-activated protein kinase (MAPK), AKT/mTOR pathways were inhibited, in association with an activation of apoptotic caspase 3. N-Acetylcysteine, a ROS scavenger, protected the cells from LED light-induced cellular damage, with rescued cell viability and restored mRNA expression of IGF-1 and TNF-α. Our data demonstrate that white LED light suppresses proliferation and induces apoptosis in hippocampal neuron cells through mitochondrial Cco/ROS-mediated IGF-1 and TNF-α pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Taraxacum coreanum protects against glutamate-induced neurotoxicity through heme oxygenase-1 expression in mouse hippocampal HT22 cells.

    Science.gov (United States)

    Yoon, Chi-Su; Ko, Wonmin; Lee, Dong-Sung; Kim, Dong-Cheol; Kim, Jongsu; Choi, Moonbum; Beom, Jin Seon; An, Ren-Bo; Oh, Hyuncheol; Kim, Youn-Chul

    2017-04-01

    Taraxacum coreanum Nakai is a dandelion that is native to Korea, and is widely used as an edible and medicinal herb. The present study revealed the neuroprotective effect of this plant against glutamate-induced oxidative stress in HT22 murine hippocampal neuronal cells. Ethanolic extracts from the aerial (TCAE) and the root parts (TCRE) of T. coreanum were prepared. Both extracts were demonstrated, by high performance liquid chromatography, to contain caffeic acid and ferulic acid as representative constituents. TCAE and TCRE significantly increased cell viability against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Western blot analysis revealed that treatment of HT22 cells with the extracts induced increased expression of the enzyme heme oxygenase-1 (HO-1), compared with untreated cells, in a concentration-dependent manner. Increased HO-1 enzymatic activity, compared with untreated cells, was also demonstrated following treatment with TCAE and TCRE. In addition, western blot analysis of the nuclear fractions of both TCAE and TCRE-treated HT22 cells revealed increased levels of nuclear factor erythroid 2 like 2 (Nrf2) compared with untreated cells, and decreased Nrf2 levels in the cytoplasmic fraction compared with untreated cells. The present study suggested that the neuroprotective effect of T. coreanum is associated with induction of HO-1 expression and Nrf2 translocation to the nucleus. Therefore, T. coreanum exhibits a promising function in prevention of neurodegeneration. Further studies will be required for the isolation and the full characterization of its active substances.

  1. Neuroprotective action of raloxifene against hypoxia-induced damage in mouse hippocampal cells depends on ERα but not ERβ or GPR30 signalling.

    Science.gov (United States)

    Rzemieniec, J; Litwa, E; Wnuk, A; Lason, W; Gołas, A; Krzeptowski, W; Kajta, M

    2015-02-01

    Raloxifene is the selective estrogen receptor modulator (SERM) currently used in clinical practice to activate estrogen receptors (ERs) in bone tissue and to antagonise ERs in breast and uterine cancers. Little is known, however, about mechanisms of action of raloxifene on hypoxia-induced neuronal cell damage. The aim of the present study was to investigate the neuroprotective potential of raloxifene against hypoxia-induced damage of mouse hippocampal cells in primary cultures, with a particular focus on raloxifene interactions with the classical nuclear ERs (ERα, ERβ) and the recently identified membrane ER G-protein-coupled receptor 30 (GPR30). In this study, 18 h of hypoxia increased hypoxia inducible factor 1 alpha (Hif1α) mRNA expression and induced apoptotic processes, such as loss of the mitochondrial membrane potential, activation of caspase-3 and fragmentation of cell nuclei based on Hoechst 33342 staining. These effects were accompanied by reduced ATPase and intracellular esterase activities as well as substantial lactate dehydrogenase (LDH) release from cells exposed to hypoxia. Our study demonstrated strong neuroprotective and anti-apoptotic caspase-3-independent actions of raloxifene in hippocampal cells exposed to hypoxia. Raloxifene also inhibited the hypoxia-induced decrease in Erα mRNA expression and attenuated the hypoxia-induced rise in Erβ and Gpr30 mRNA expression levels. Impact of raloxifene on hypoxia-affected Erα mRNA was mirrored by fluctuations in the protein level of the receptor as demonstrated by Western blot and immunofluorescent labelling. Raloxifene-induced changes in Erβ mRNA expression level were in parallel with ERβ immunofluorescent labeling. However, changes in Gpr30 mRNA level were not reflected by changes in the protein levels measured either by ELISA, Western blot or immunofluorescent staining at 24h post-treatment. Using specific siRNAs, we provided evidence for a key involvement of ERα, but not ERβ or GPR30 in

  2. Slice Segal-Bargmann transform

    Science.gov (United States)

    Cnudde, L.; De Bie, H.

    2017-06-01

    The Segal-Bargmann transform is a unitary map between the Schrödinger and Fock space, which is used, for example, to show the integrability of quantum Rabi models. Slice monogenic functions provide the framework in which functional calculus for quaternionic quantum mechanics can be developed. In this paper, a generalisation of the Segal-Bargmann transform, to the context of slice monogenic functions, is constructed and studied in detail. It is shown to interact appropriately with the recently constructed slice Fourier transform. This leads furthermore to a construction of a slice Fock space, which is shown to be a reproducing kernel space.

  3. Corticosterone enhances the potency of ethanol against hippocampal long-term potentiation via local neurosteroid synthesis

    Directory of Open Access Journals (Sweden)

    Yukitoshi eIzumi

    2015-07-01

    Full Text Available Corticosterone is known to accumulate in brain after various stressors including alcohol intoxication. Just as severe alcohol intoxication is typically required to impair memory formation only high concentrations of ethanol (60mM acutely inhibit long-term potentiation (LTP, a cellular memory mechanism, in naïve hippocampal slices. This LTP inhibition involves synthesis of neurosteroids, including allopregnanolone, and appears to involve a form of cellular stress. In the CA1 region of rat hippocampal slices, we examined whether a lower concentration of ethanol (20 mM inhibits LTP in the presence of corticosterone, a stress-related modulator, and whether corticosterone stimulates local neurosteroid synthesis. Although low micromolar corticosterone alone did not inhibit LTP induction, we found that 20 mM ethanol inhibited LTP in the presence of corticosterone. At 20 mM, ethanol alone did not stimulate neurosteroid synthesis or inhibit LTP. LTP inhibition by corticosterone plus ethanol was blocked by finasteride, an inhibitor of 5α-reductase, suggesting a role for neurosteroid synthesis. We also found that corticosterone alone enhanced neurosteroid immunostaining in CA1 pyramidal neurons and that this immunostaining was further augmented by 20 mM ethanol. The enhanced neurosteroid staining was blocked by finasteride and the N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovalerate (APV. These results indicate that corticosterone promotes neurosteroid synthesis in hippocampal pyramidal neurons and can participate in ethanol-mediated synaptic dysfunction even at moderate ethanol levels. These effects may contribute to the influence of stress on alcohol-induced cognitive impairment.

  4. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat.

    Directory of Open Access Journals (Sweden)

    Ze-qiang Qu

    Full Text Available Previously we have demonstrated that a Rhodiola crenulata extract (RCE, containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD induced by an intracerebroventricular injection of streptozotocin (STZ, and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1 exposure of neural stem cells (NSCs from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS levels, induced cell death and perturbed cell proliferation and differentiation, (2 hydrogen peroxide induced similar cellular activities as STZ, (3 pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4 likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS.

  5. Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat

    Science.gov (United States)

    Qu, Ze-qiang; Zhou, Yan; Zeng, Yuan-shan; Lin, Yu-kun; Li, Yan; Zhong, Zhi-qiang; Chan, Wood Yee

    2012-01-01

    Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS. PMID:22235318

  6. 9-Methyl-β-carboline-induced cognitive enhancement is associated with elevated hippocampal dopamine levels and dendritic and synaptic proliferation.

    Science.gov (United States)

    Gruss, Michael; Appenroth, Dorothea; Flubacher, Armin; Enzensperger, Christoph; Bock, Jörg; Fleck, Christian; Gille, Gabriele; Braun, Katharina

    2012-06-01

    β-Carbolines (BCs) belong to the heterogenous family of carbolines, which have been found exogenously, that is, in various fruits, meats, tobacco smoke, alcohol and coffee, but also endogenously, that is, blood, brain and CSF. These exogenous and endogenous BCs and some of their metabolites can exert neurotoxic effects, however, an unexpected stimulatory effect of 9-methyl-β-carboline (9-me-BC) on dopaminergic neurons in primary mesencephalic cultures was recently discovered. The aim of the present study was to extend our knowledge on the stimulatory effects of 9-me-BC and to test the hypothesis that 9-me-BC may act as a cognitive enhancer. We found that 10 days (but not 5 days) of pharmacological treatment with 9-me-BC (i) improves spatial learning in the radial maze, (ii) elevates dopamine levels in the hippocampal formation, and (iii) results after 10 days of treatment in elongated, more complex dendritic trees and higher spine numbers on granule neurons in the dentate gyrus of 9-me-BC-treated rats. Our results demonstrate that beyond its neuroprotective/neurorestorative and anti-inflammatory effects, 9-me-BC acts as a cognitive enhancer in a hippocampus-dependent task, and that the behavioral effects may be associated with a stimulatory impact on hippocampal dopamine levels and dendritic and synaptic proliferation. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  7. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Corticosterone protects against memory impairments and reduced hippocampal BDNF levels induced by a chronic low dose of ethanol in C57BL/6J mice.

    Science.gov (United States)

    Ebada, Mohamed Elsaed; Latif, Liaque M; Kendall, David A; Pardon, Marie Christine

    2014-01-01

    Acute low doses of ethanol can produce reversible memory deficits, but it is unknown whether they persist upon chronic use. We investigated whether the chronic intake of a low dose of ethanol induces memory impairments in the ethanol-preferring C57BL/6J mouse strain. Because stress precipitates alcohol abuse and the stress hormone corticosterone contributes to memory processes, ethanol consumption and toxic effects, we also determined the impact of co-treatment with corticosterone on these effects. BDNF contributes to memory function and toxic effects of ethanol, therefore its levels were quantified in the hippocampus and frontal cortex. Ethanol (1% in drinking water) and corticosterone (250 μg/mL) were administered using the two-bottle choice test to monitor their appetitive properties. Spatial and non-spatial memory performance was assessed using the spontaneous alternation, object recognition and object location tests. The chronic exposure to a low dose of ethanol caused spatial and non-spatial memory deficits after withdrawal associated with a reduction in hippocampal BDNF levels, which were prevented by co-treatment with corticosterone (~21 mg/kg/day). The protective effect of corticosterone on memory was no longer observed at higher doses (~41 mg/kg/day), but persisted for hippocampal BDNF levels. C57BL/6J mice did not develop an appetence for 1% ethanol, but the addition of corticosterone increased voluntary consumption of and preference for the ethanol+corticosterone solutions. Although acute low doses of corticosterone (1 mg/kg) were found to rescue established memory impairments, this is the first report of a protective effect of chronic doses of corticosterone in the range of 20-32 mg/kg, and particularly against memory deficits induced by alcohol.

  9. Astrocytic Ca(2+) waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to aggravate brain damage during ischemia.

    Science.gov (United States)

    Dong, Qi-Ping; He, Jing-Quan; Chai, Zhen

    2013-10-01

    Excitotoxicity plays a central role in the neuronal damage during ischemic stroke. Although growing evidence suggests that activation of extrasynaptic NMDA receptors initiates neuronal death, no direct evidence demonstrated their activation during ischemia. Using rat hippocampal slices, we detected oxygen-glucose deprivation (OGD) induced slow inward currents (SICs) mediated by extrasynaptic NMDA receptors in CA1 pyramidal neurons. Moreover, Ca(2+) chelator BAPTA dialysis into astrocytic network decreased the frequency of OGD induced SICs, indicating that the activation of extrasynaptic NMDA receptors depended on astrocytic Ca(2+) activity. To further demonstrate the importance of astrocytic Ca(2+) activity, we tested hippocampal slices from inositol triphosphate receptor type 2 (IP3R2) knock-out mice which abolished the astrocytic Ca(2+) activity. As expected, the frequency of OGD induced SICs was reduced. Using two-photon Ca(2+) imaging, we characterized the astrocytic Ca(2+) dynamics. By controlling Ca(2+) level in the individual astrocytes using targeted photolysis, we found that OGD facilitated the propagation of intercellular Ca(2+) waves, which were inhibited by gap junction blocker carbenoxolone (CBX). CBX also inhibited the Ca(2+) activity of the astrocytic network and decreased the SIC frequency during OGD. Functionally, the infarct volumes from brain ischemia were reduced in IP3R2 knock-out mice and in rat intracerebrally delivered with CBX. Our results demonstrate that enhanced Ca(2+) activity of the astrocytic network plays a key role on the activation of extrasynaptic NMDA receptors in hippocampal neurons, which enhances brain damage during ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Administration of Zinc plus Cyclo-(His-Pro) Increases Hippocampal Neurogenesis in Rats during the Early Phase of Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Choi, Bo Young; Kim, In Yeol; Kim, Jin Hee; Lee, Bo Eun; Lee, Song Hee; Kho, A Ra; Sohn, Min; Suh, Sang Won

    2017-01-01

    The effects of zinc supplementation on hippocampal neurogenesis in diabetes mellitus have not been studied. Herein, we investigated the effects of zinc plus cyclo-(His-Pro) (ZC) on neurogenesis occurring in the subgranular zone of dentate gyrus after streptozotocin (STZ)-induced diabetes. ZC (27 mg/kg) was administered by gavage once daily for one or six weeks from the third day after the STZ injection, and histological evaluation was performed at 10 (early phase) or 45 (late phase) days after STZ injection. We found that the proliferation of progenitor cells in STZ-induced diabetic rats showed an increase in the early phase. Additionally, ZC treatment remarkably increased the number of neural progenitor cells (NPCs) and immature neurons in the early phase of STZ-induced diabetic rats. Furthermore, ZC treatment showed increased survival rate of newly generated cells but no difference in the level of neurogenesis in the late phase of STZ-induced diabetic rats. The present study demonstrates that zinc supplementation by ZC increases both NPCs proliferation and neuroblast production at the early phase of diabetes. Thus, this study suggests that zinc supplemented with a histidine/proline complex may have beneficial effects on neurogenesis in patients experiencing the early phase of Type 1 diabetes.

  11. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Dick, Oliver; Bading, Hilmar

    2010-06-18

    Synaptic activity and the generation of nuclear calcium signals promote neuronal survival through a transcription-dependent process that is not fully understood. Here we show that one mechanism of activity-induced acquired neuroprotection involves the Forkhead transcription factor, FoxO3a, which is known to induce genomic death responses upon translocation from the cytosol to the nucleus. Depletion of endogenous FoxO3a using RNA interference renders hippocampal neurons more resistant to excitotoxic cell death. Using a FoxO3a-green fluorescent protein (GFP) fusion protein to monitor in real time the localization of FoxO3a in hippocampal neurons, we found that several cell death inducing stimuli, including the stimulation of extrasynaptic N-methyl-D-aspartate receptors, growth factor withdrawal, and oxygen-glucose deprivation, caused a swift translocation of FoxO3a-GFP from the cytosol to the cell nucleus. This translocation was inhibited in hippocampal neurons that had undergone prolonged periods of synaptic activity before exposure to cell death-inducing conditions. The activity-dependent protection from death signal-induced FoxO3a-GFP nuclear translocation required synaptic N-methyl-D-aspartate receptor activation and was dependent on nuclear calcium signaling and calcium/calmodulin-dependent protein kinase IV. The modulation of nucleo-cytoplasmic shuttling of FoxO3a may represent one mechanism through which nuclear calcium-induced genomic responses affect cell death processes.

  12. Synaptic Activity and Nuclear Calcium Signaling Protect Hippocampal Neurons from Death Signal-associated Nuclear Translocation of FoxO3a Induced by Extrasynaptic N-Methyl-d-aspartate Receptors*

    Science.gov (United States)

    Dick, Oliver; Bading, Hilmar

    2010-01-01

    Synaptic activity and the generation of nuclear calcium signals promote neuronal survival through a transcription-dependent process that is not fully understood. Here we show that one mechanism of activity-induced acquired neuroprotection involves the Forkhead transcription factor, FoxO3a, which is known to induce genomic death responses upon translocation from the cytosol to the nucleus. Depletion of endogenous FoxO3a using RNA interference renders hippocampal neurons more resistant to excitotoxic cell death. Using a FoxO3a-green fluorescent protein (GFP) fusion protein to monitor in real time the localization of FoxO3a in hippocampal neurons, we found that several cell death inducing stimuli, including the stimulation of extrasynaptic N-methyl-d-aspartate receptors, growth factor withdrawal, and oxygen-glucose deprivation, caused a swift translocation of FoxO3a-GFP from the cytosol to the cell nucleus. This translocation was inhibited in hippocampal neurons that had undergone prolonged periods of synaptic activity before exposure to cell death-inducing conditions. The activity-dependent protection from death signal-induced FoxO3a-GFP nuclear translocation required synaptic N-methyl-d-aspartate receptor activation and was dependent on nuclear calcium signaling and calcium/calmodulin-dependent protein kinase IV. The modulation of nucleo-cytoplasmic shuttling of FoxO3a may represent one mechanism through which nuclear calcium-induced genomic responses affect cell death processes. PMID:20404335

  13. Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Möhle

    2016-05-01

    Full Text Available Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6Chi monocytes in the brain than antibiotic-treated mice. Elimination of Ly6Chi monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6Chi monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6Chi monocytes.

  14. Effects of intra-hippocampal microinjection of vitamin B12 on the orofacial pain and memory impairments induced by scopolamine and orofacial pain in rats.

    Science.gov (United States)

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Nemati, Shaghayegh

    2017-03-01

    In the present study, we investigated the effects of microinjection of vitamin B12 into the hippocampus on the orofacial pain and memory impairments induced by scopolamine and orofacial pain. In ketamine-xylazine anesthetized rats, the right and left sides of the dorsal hippocampus (CA1) were implanted with two guide cannulas. Orofacial pain was induced by subcutaneous injection of formalin (1.5%, 50μl) into the right vibrissa pad, and the durations of face rubbing were recorded at 3-min blocks for 45min. Morris water maze (MWM) was used for evaluation of learning and memory. Finally, locomotor activity was assessed using an open-field test. Vitamin B12 attenuated both phases of formalin-induced orofacial pain. Prior administration of naloxone and naloxonazine, but not naltrindole and nor-binaltorphimine, prevented this effect. Vitamin B12 and physostigmine decreased latency time as well as traveled distance in Morris water maze. In addition, these chemicals improved scopolamine-induced memory impairment. The memory impairment induced by orofacial pain was improved by vitamin B12 and physostigmine used alone. Naloxone prevented, whereas physostigmine enhanced the memory improving effect of vitamin B12 in the pain-induced memory impairment. All the above-mentioned chemicals did not alter locomotor activity. The results of the present study showed that at the level of the dorsal hippocampus, vitamin B12 modulated orofacial pain through a mu-opioid receptor mechanism. In addition, vitamin B12 contributed to hippocampal cholinergic system in processing of memory. Moreover, cholinergic and opioid systems may be involved in improving effect of vitamin B12 on pain-induced memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Quercetin Protects against Okadaic Acid-Induced Injury via MAPK and PI3K/Akt/GSK3β Signaling Pathways in HT22 Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Increasing evidence shows that oxidative stress and the hyperphosphorylation of tau protein play essential roles in the progression of Alzheimer's disease (AD. Quercetin is a major flavonoid that has anti-oxidant, anti-cancer and anti-inflammatory properties. We investigated the neuroprotective effects of quercetin to HT22 cells (a cell line from mouse hippocampal neurons. We found that Okadaic acid (OA induced the hyperphosphorylation of tau protein at Ser199, Ser396, Thr205, and Thr231 and produced oxidative stress to the HT22 cells. The oxidative stress suppressed the cell viability and decreased the levels of lactate dehydrogenase (LDH, superoxide dismutase (SOD, mitochondria membrane potential (MMP and Glutathione peroxidase (GSH-Px. It up-regulated malondialdehyde (MDA production and intracellular reactive oxygen species (ROS. In addition, phosphoinositide 3 kinase/protein kinase B/Glycogen synthase kinase3β (PI3K/Akt/GSK3β and mitogen activated protein kinase (MAPK were also involved in this process. We found that pre-treatment with quercetin can inhibited OA-induced the hyperphosphorylation of tau protein and oxidative stress. Moreover, pre-treatment with quercetin not only inhibited OA-induced apoptosis via the reduction of Bax, and up-regulation of cleaved caspase 3, but also via the inhibition of PI3K/Akt/GSK3β, MAPKs and activation of NF-κB p65. Our findings suggest the therapeutic potential of quercetin to treat AD.

  16. Polyozellin, a key constituent of the edible mushroom Polyozellus multiplex, attenuates glutamate-induced mouse hippocampal neuronal HT22 cell death.

    Science.gov (United States)

    Yang, Eun-Ju; Song, Kyung-Sik

    2015-12-01

    Polyozellus multiplex (PM), a Korean edible mushroom, has biological activities such as chemoprevention of stomach cancer, inhibition of lipid peroxidation, and reduction of prolyl endopeptidase activity. However, there are little reports on the protective effects of PM or its constituents against glutamate-induced mouse hippocampal neuronal cell (HT22) death. In this study, polyozellin (PZ), a key constituent of PM, was applied to glutamate-treated HT22 cells to evaluate its neuroprotective mechanisms. PZ (25 μM) dramatically increased the HT22 cell viability when the cell death was induced by 5 mM glutamate for 12 h, which was mediated by inhibition of Ca(2+) influx, intracellular reactive oxygen species (ROS) production, and lipid peroxidation. PZ also regulated expression of Bid, Bcl-2, and apoptosis-inducing factor (AIF), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). These data suggest that PM and its constituent PZ might be useful for prevention and treatment of neurodegenerative disorders.

  17. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice

    Science.gov (United States)

    Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony

    2017-01-01

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high

  18. The influence of cold temperature on cellular excitability of hippocampal networks.

    Directory of Open Access Journals (Sweden)

    Elvira de la Peña

    Full Text Available The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K(2P, TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K(2P channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.

  19. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice.

    Science.gov (United States)

    Castellano, Joseph M; Mosher, Kira I; Abbey, Rachelle J; McBride, Alisha A; James, Michelle L; Berdnik, Daniela; Shen, Jadon C; Zou, Bende; Xie, Xinmin S; Tingle, Martha; Hinkson, Izumi V; Angst, Martin S; Wyss-Coray, Tony

    2017-04-27

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation and downregulated in the aged brain. In addition to revitalizing other aged tissues, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease

  20. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  1. Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter.

    Science.gov (United States)

    Chen, Tong; Yi, Xiaoke; Huang, Thomas; Minasian, Robert A

    2010-12-01

    A spectrum sliced microwave photonic signal processor structure, which is all-fiber based and features simplicity, together with the ability to realize tunability, reconfigurability, bipolar taps, and multiple-tap rf filtering, is presented. It is based on thermally controlled optical slicing filters induced into two linearly chirped fiber Bragg gratings. Experimental results demonstrate the realization of versatile microwave photonic filters with frequency tunable, reconfiguration, and bipolar-tap generation capabilities.

  2. Transgenic Overexpression of the Type I Isoform of Neuregulin 1 Affects Working Memory and Hippocampal Oscillations but not Long-term Potentiation

    Science.gov (United States)

    Deakin, Inga H.; Nissen, Wiebke; Law, Amanda J.; Lane, Tracy; Kanso, Riam; Schwab, Markus H.; Nave, Klaus-Armin; Lamsa, Karri P.; Paulsen, Ole; Bannerman, David M.

    2012-01-01

    Neuregulin 1 (NRG1) is a growth factor involved in neurodevelopment and plasticity. It is a schizophrenia candidate gene, and hippocampal expression of the NRG1 type I isoform is increased in the disorder. We have studied transgenic mice overexpressing NRG1 type I (NRG1tg-type I) and their wild-type littermates and measured hippocampal electrophysiological and behavioral phenotypes. Young NRG1tg-type I mice showed normal memory performance, but in older NRG1tg-type I mice, hippocampus-dependent spatial working memory was selectively impaired. Hippocampal slice preparations from NRG1tg-type I mice exhibited a reduced frequency of carbachol-induced gamma oscillations and an increased tendency to epileptiform activity. Long-term potentiation in NRG1tg-type I mice was normal. The results provide evidence that NRG1 type I impacts on hippocampal function and circuitry. The effects are likely mediated via inhibitory interneurons and may be relevant to the involvement of NRG1 in schizophrenia. However, the findings, in concert with those from other genetic and pharmacological manipulations of NRG1, emphasize the complex and pleiotropic nature of the gene, even with regard to a single isoform. PMID:21878485

  3. Neurosteroids block the increase in intracellular calcium level induced by Alzheimer’s β-amyloid protein in long-term cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Midori Kato-Negishi

    2008-03-01

    Full Text Available Midori Kato-Negishi1, Masahiro Kawahara21Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183- 8526, Japan; 2Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, JapanAbstract: The neurotoxicity of β-amyloid protein (AβP is implicated in the etiology of Alzheimer’s disease. We previously have demonstrated that AβP forms Ca2+-permeable pores on neuronal membranes, causes a marked increase in intracellular calcium level, and leads to neuronal death. Here, we investigated in detail the features of AβP-induced changes in intracellular Ca2+ level in primary cultured rat hippocampal neurons using a multisite Ca2+- imaging system with fura-2 as a fluorescent probe. Only a small fraction of short-term cultured hippocampal neurons (ca 1 week in vitro exhibited changes in intracellular Ca2+ level after AβP exposure. However, AβP caused an acute increase in intracellular Ca2+ level in long-term cultured neurons (ca 1 month in vitro. The responses to AβP were highly heterogeneous, and immunohistochemical analysis using an antibody to AβP revealed that AβP is deposited on some but not all neurons. Considering that the disruption of Ca2+ homeostasis is the primary event in AβP neurotoxicity, substances that protect neurons from an AβP-induced intracellular Ca2+ level increase may be candidates as therapeutic drugs for Alzheimer’s disease. In line with the search for such protective substances, we found that the preadministration of neurosteroids including dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone significantly inhibits the increase in intracellular calcium level induced by AβP. Our results suggest the possible significance of neurosteroids, whose levels are reduced in the elderly, in preventing AβP neurotoxicity

  4. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    Science.gov (United States)

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  5. Kainic acid (KA)-induced Ca2+/calmodulin-dependent protein kinase II (CaMK II) expression in the neurons, astrocytes and microglia of the mouse hippocampal CA3 region, and the phosphorylated CaMK II only in the hippocampal neurons.

    Science.gov (United States)

    Suh, Hong-Won; Lee, Han-Kyu; Seo, Young-Jun; Kwon, Min-Soo; Shim, Eon-Jeong; Lee, Jin-Young; Choi, Seong-Soo; Lee, Jong-Ho

    2005-06-24

    In the present study, we investigated the role of Ca2+/calmodulin-dependent protein kinase II (CaMK II) and which types of neuronal cells contain CaMK II and phosphorylated CaMK II (p-CaMK II) in the CA3 hippocampal region of mice using confocal immunofluorescence study. KA increased the CaMK II, p-CaMK II, glial fibrillary acidic protein (GFAP) and complement receptor type 3 (OX-42) immunoreactivities (IR) at 30 min after KA treatment in mouse hippocampal area. In studies, nevertheless KA-induced CaMK II is expressed in neurons or astrocytes or microglia, p-CaMK II is expressed only in neurons. Thus, our results suggest that the activated CaMK II in early time may be performed important roles only in neurons but not in the astrocytes and microglia.

  6. The Effect of N-acetyl-cysteine on Memory Retrieval and the Number of Intact Neurons of Hippocampal CA1 Area in Streptozotocin-induced Alzheimeric Male Rats

    Directory of Open Access Journals (Sweden)

    Niloufar Darbandi

    2018-01-01

    Full Text Available Abstract Background: Alzheimer is a neurodegenerative disease wich caused memory impairment, reduced cognitive functions, intellectual ability and behavior changes. In this study, the effect of N-acetyl-cysteine (NAC as a strong antioxidant on memory deficiency and number of CA1 pyramidal neurons in Streptozotocine (STZ - induced Alzheimeric rats were studied. Materials and Methods: 32 Male Wistar rats were divided into four groups: sham group, streptozotocin group, treated group with streptozotocin plus N-acetyl-cysteine, and treated group with N-acetyl-cysteine alone. Intracerebroventricular (ICV administration of STZ was done in the first and the third day of surgery and i.p injection of N-acetyl-cysteine was done in the fourth of surgery. After the memory test, the animals were killed and their brains were fixed and density of intact neurons in the CA1 area of the hippocampus was investigated. Statistical analysis was performed with software SPSS, ANOVA and Prisme software. The level of statistical significance was set at p 0.05. Conclusion: N-acetyl-cysteine improved memory retrieval and hippocampal CA1 area intact neurons in streptozotocin-induced Alzheimeric male rats.

  7. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons

    DEFF Research Database (Denmark)

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L

    2013-01-01

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling....... Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the p......Hluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic p...

  8. Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life.

    Directory of Open Access Journals (Sweden)

    Mei Bai

    Full Text Available Some environmental stressors lead to the onset of depression via inhibiting hippocampal BDNF expression, but other environmental stressors-induced depression exhibits no change in BDNF expression. The underlying mechanisms behind the divergence remain unknown. In this study, depression-like behaviors were induced in rats by maternal deprivation (MD and chronic unpredictable stress (CUPS. Depression-like behaviors were tested by open field test, forced swimming test, and sucrose consumption test. BDNF and miR-16 expressions in the hippocampus were examined by real-time PCR. MD and CUPS rats crawled less distance, exhibited decreased vertical activity, and produced more fecal pellets than control rats in the open field test. However, MD rats crawled less distance and produced significantly less fecal pellets than CUPS rats. In the forced swimming and sucrose consumption tests, CUPS and MD rats exhibited longer floating time and consumed less sucrose than control rats, but MD rats exhibited shorter floating time and consumed less sucrose than CUPS rats. MD but not CUPS rats showed lower BDNF mRNA and higher miR-16 expression than control rats. In MD rats, BDNF mRNA expression negatively correlated with the expression of miR-16. BDNF expression positively correlated with the total distance rats crawled and vertical activity in the open field test while miR-16 expression negatively correlated the two behaviors. BDNF positively correlated with sucrose preference rate while miR-16 negatively correlated with sucrose preference rate of the sucrose consumption test. Our study suggests that MD and CUPS induced different depression-like behaviors in rats. Depression induced by MD but not CUPS was significantly associated with upregulation of miR-16 and possibly subsequent downregulation of BDNF in hippocampus.

  9. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie; Ni, Cheng [Department of Anesthesiology, Peking University Third Hospital, Beijing 100191 (China); Tian, Xiao-Sheng [Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Peking University Health Science Center, Beijing 100191 (China); Mo, Na [Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021 (China); Chui, De-Hua, E-mail: dchui@bjmu.edu.cn [Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Peking University Health Science Center, Beijing 100191 (China); Guo, Xiang-Yang, E-mail: puthmzk@163.com [Department of Anesthesiology, Peking University Third Hospital, Beijing 100191 (China)

    2013-09-06

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels and anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats.

  10. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    Directory of Open Access Journals (Sweden)

    Ming-Chao Liu

    Full Text Available Exposure of Lead (Pb, a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.

  11. Nonneurogenic hypoxia sensitivity in rat adrenal slices.

    Science.gov (United States)

    Takeuchi, Y; Mochizuki-Oda, N; Yamada, H; Kurokawa, K; Watanabe, Y

    2001-11-23

    A change in the intracellular Ca(2+) ([Ca(2+)](i)) level induced by hypoxia was detected in rat adrenal slices by use of fura-2/AM. After hypoxic stress, an increase in [Ca(2+)](i) was observed only in the adrenal medulla. This increase was inhibited by nifedipine, but not modified by the cholinergic receptor blockers. The hypoxia-induced increase in [Ca(2+)](i) was observed in all postnatal developmental stages to a similar extent, whereas the nicotine and high K(+) sensitivities increased along with postnatal development. A 10 nM ryanodine enhanced the hypoxia-induced [Ca(2+)](i) increase in adult but not in neonatal rat slices. These results suggest the existence of an oxygen-sensing mechanism in adult rat adrenals even after sympathetic innervation. Hypoxic responses seemed to be similar both in neonate and in adult rat adrenals and were triggered by the influx of Ca(2+) via L-type voltage-sensitive Ca(2+) channels. However, the sustained [Ca(2+)](i) increase caused by hypoxia might depend on postnatal development and be triggered by Ca(2+)-induced Ca(2+) release (CICR). Copyright 2001 Academic Press.

  12. Cannabidiol Post-Treatment Alleviates Rat Epileptic-Related Behaviors and Activates Hippocampal Cell Autophagy Pathway Along with Antioxidant Defense in Chronic Phase of Pilocarpine-Induced Seizure.

    Science.gov (United States)

    Hosseinzadeh, Mahshid; Nikseresht, Sara; Khodagholi, Fariba; Naderi, Nima; Maghsoudi, Nader

    2016-04-01

    Abnormal and sometimes severe behavioral and molecular symptoms are usually observed in epileptic humans and animals. To address this issue, we examined the behavioral and molecular aspects of seizure evoked by pilocarpine. Autophagy can promote both cell survival and death, but there are controversial reports about the neuroprotective or neurodegenerative effects of autophagy in seizure. Cannabidiol has anticonvulsant properties in some animal models when used as a pretreatment. In this study, we investigated alteration of seizure scores, autophagy pathway proteins, and antioxidant status in hippocampal cells during the chronic phase of pilocarpine-induced epilepsy after treatment with cannabidiol. Cannabidiol (100 ng, intracerebroventricular injection) delayed the chronic phase of epilepsy. Single administration of cannabidiol during the chronic phase of seizure significantly diminished seizure scores such as mouth clonus, head nodding, monolateral and bilateral forelimb clonus and increased the activity of catalase enzyme and reduced glutathione content. Such a protective effect in the behavioral scores of epileptic rats was also observed after repeated administrations of cannabidiol at the onset of the silent phase. Moreover, the amount of Atg7, conjugation of Atg5/12, Atg12, and LC3II/LC3I ratio increased significantly in epileptic rats treated with repeated injections of cannabidiol. In short, our results suggest that post-treatment of Cannabidiol could enhance the induction of autophagy pathway and antioxidant defense in the chronic phase of epilepsy, which could be considered as the protective mechanisms of cannabidiol in a temporal lobe epilepsy model.

  13. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuting; Zhao, Lei; Fu, Huiqun [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China); Wu, Yan [Department of Anatomy, Capital Medical University, 100069 Beijing (China); Wang, Tianlong, E-mail: litingliting258@163.com [Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 100053 Beijing (China)

    2015-03-20

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence.

  14. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats.

    Science.gov (United States)

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Raman spectroscopic detection of rapid, reversible, early-stage inflammatory cytokine-induced apoptosis of adult hippocampal progenitors/stem cells

    CERN Document Server

    Ladiwala, Uma; Thakur, Bhushan; Santhosh, Chidangil; Mathur, Deepak

    2014-01-01

    The role of neuro-inflammation in diverse, acute and chronic brain pathologies is being increasingly recognized. Neuro-inflammation is accompanied by increased levels of both pro- and anti-inflammatory cytokines; these have deleterious as well as protective/reparative effects. Inflammation has varying effects on neurogenesis and is a subject of intense contemporary interest. We show that TNF-alpha and IFN-gamma, used concomitantly, cause apoptosis of adult rat hippocampal progenitor/stem cells in vitro as detected by the TUNEL and MTT assays on time scales of several hours. We have coupled Raman spectroscopy to an optical trap to probe early changes of apoptosis in single, live neural stem cells that have been treated with pro-inflammatory cytokines, TNF-alpha and IFN-gamma. Changes caused by inflammation-induced denaturation of DNA are observed in the Raman spectra that correspond to very early stages of apoptosis, occurring on very fast time scales: as short as 10 minutes. Addition of the anti-inflammatory ...

  16. Chemotherapy drug thioTEPA exacerbates stress-induced anhedonia and corticosteroid responses but not impairment of hippocampal cell proliferation in adult mice

    Science.gov (United States)

    Wilson, Courtney L.; Weber, E. Todd

    2012-01-01

    Cancer patients often suffer long-lasting affective and cognitive impairments as a result of chemotherapy treatment. Previous work in our lab has shown deficits in learning and memory and hippocampal cell proliferation in mice lasting up to 20 weeks following acute administration of thioTEPA. In this study, the effects of thioTEPA in conjunction with effects of chronic stress on depression-related behavior were examined in C57BL/6J mice, 12 weeks following thioTEPA administration. Chemotherapy-treated mice showed a diminished sucralose preference compared to controls that was further exacerbated after 2 weeks of daily restraint stress. This intensifying effect was not observed in the Porsolt forced swim test. Moreover, stress-induced corticosteroid responses were exaggerated in thioTEPA-treated mice. Cell proliferation in the dentate gyrus of the hippocampus was also impaired similarly by prior thioTEPA treatment and by daily restraint stress, with no additive effect. Results suggest that some depression-related impairments may be exacerbated by chemotherapy treatment through altered corticosteroid regulation. PMID:22981560

  17. Hippocampal Arc (Arg3.1) expression is induced by memory recall and required for memory reconsolidation in trace fear conditioning.

    Science.gov (United States)

    Chia, Chester; Otto, Tim

    2013-11-01

    Mounting evidence suggests that long-lasting, protein synthesis-dependent changes in synaptic strength accompany both the initial acquisition and subsequent recall of specific memories. Within brain areas thought to be important for learning and memory, including the hippocampus, learning-related plasticity is likely mediated in part by NMDA receptor activation and experience-dependent changes in gene expression. In the present study, we examined the role of activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) expression in the acquisition, recall, and reconsolidation of memory in a trace fear conditioning paradigm. First, we show that the expression of Arc protein in ventral hippocampus (VH) is dramatically enhanced by memory recall 24h after the acquisition of trace fear conditioning, and that both memory recall and the associated recall-induced enhancement of Arc expression are blocked by pre-training administration of 2-amino-5-phosphonovaleric acid (APV). Next, we show that while infusion of Arc antisense oligodeoxynucleotides (ODNs) into VH prior to testing had little effect on memory recall, it significantly reduced both Arc protein expression and freezing behavior during subsequent testing sessions. Collectively, these results suggest that Arc/Arg3.1 protein plays an important functional role in both the initial acquisition of hippocampal-dependent memory and the reconsolidation of these memories after recall. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line.

    Science.gov (United States)

    Park, Sun Young; Jung, Won Jung; Kang, Jum Soon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2015-02-01

    Since oxidative stress is critically involved in excitotoxic damage, we sought to determine whether the activation of the transcription factors, cAMP-responsive element binding protein (CREB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also known as NFE2L2), by α-iso-cubebene is involved in its protective effects against glutamate-induced neuronal cell death. Pre-treatment with α-iso-cubebene significantly attenuated glutamate-induced cytotoxicity in mouse hippocampus-derived neuronal cells. α-iso-cubebene also reduced the glutamate-induced generation of reactive oxygen species and calcium influx, thus preventing apoptotic cell death. α-iso-cubebene inhibited glutamate-induced mitochondrial membrane depolarization and, consequently, inhibited the release of the apoptosis-inducing factor from the mitochondria. Immunoblot anlaysis revealed that the phosphorylation of extracellular signal-regulated kinase (ERK) by glutamate was reduced in the presence of α-iso-cubebene. α-iso-cubebene activated protein kinase A (PKA), CREB and Nrf2, which mediate the expression of the antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1), involved in neuroprotection. In addition, α-iso-cubebene induced the expression of antioxidant responsive element and CRE transcriptional activity, thus conferring neuroprotection against glutamate-induced oxidative injury. α-iso-cubebene also induced the expression of Nrf2-dependent genes encoding HO-1 and NQO1. Furthermore, the knockdown of CREB and Nrf2 by small interfering RNA attenuated the neuroprotective effects of α-iso-cubebene. Taken together, our results indicate that α-iso-cubebene protects HT22 cells from glutamate-induced oxidative damage through the activation of Nrf2/HO-1/NQO-1, as well as through the PKA and CREB signaling pathways.

  19. Optimized Protocol of Methanol Treatment for Immunofluorescent Staining in Fixed Brain Slices.

    Science.gov (United States)

    Yuan, Feng; Xiong, Guoxiang; Cohen, Noam A; Cohen, Akiva S

    2017-03-01

    We optimized methanol treatment in paraformaldehyde-fixed slices for immunofluorescent staining of ependymal basal bodies in brain ventricles. As 100% methanol induced severe deformations to the slices (including rolling and folding over), we tried to decrease methanol concentration. We found that 33.3% to 75% methanol could result in ideal immunostaining of basal bodies without inducing obvious deformations. Instead of treating slices at -20°C (without proper cryoprotection measurements) as suggested in previous studies, we carried out methanol treatment at room temperature. Our modified protocol can not only raise immunostaining efficiency in tissue slices, it may also prevent potential freezing damages to the samples.

  20. Correlated alterations in serotonergic and dopaminergic modulations at the hippocampal mossy fiber synapse in mice lacking dysbindin.

    Directory of Open Access Journals (Sweden)

    Katsunori Kobayashi

    Full Text Available Dysbindin-1 (dystrobrevin-binding protein 1, DTNBP1 is one of the promising schizophrenia susceptibility genes. Dysbindin protein is abundantly expressed in synaptic regions of the hippocampus, including the terminal field of the mossy fibers, and this hippocampal expression of dysbindin is strongly reduced in patients with schizophrenia. In the present study, we examined the functional role of dysbindin in hippocampal mossy fiber-CA3 synaptic transmission and its modulation using the sandy mouse, a spontaneous mutant with deletion in the dysbindin gene. Electrophysiological recordings were made in hippocampal slices prepared from adult male sandy mice and their wild-type littermates. Basic properties of the mossy fiber synaptic transmission in the mutant mice were generally normal except for slightly reduced frequency facilitation. Serotonin and dopamine, two major neuromodulators implicated in the pathophysiology of schizophrenia, can potentiate mossy fiber synaptic transmission probably via an increase in cAMP levels. Synaptic potentiation induced by serotonin and dopamine was very variable in magnitude in the mutant mice, with some mice showing prominent enhancement as compared with the wild-type mice. In addition, the magnitude of potentiation induced by these monoamines significantly correlated with each other in the mutant mice, indicating that a subpopulation of sandy mice has marked hypersensitivity to both serotonin and dopamine. While direct activation of the cAMP cascade by forskolin induced robust synaptic potentiation in both wild-type and mutant mice, this forskolin-induced potentaition correlated in magnitude with the serotonin-induced potentiation only in the mutant mice, suggesting a possible change in coupling of receptor activation to downstream signaling. These results suggest that the dysbindin deficiency could be an essential genetic factor that causes synaptic hypersensitivity to dopamine and serotonin. The altered

  1. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  2. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Directory of Open Access Journals (Sweden)

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  3. Anti-inflammatory and hepatoprotective effects of glycyrrhetinic acid on CCl4-induced damage in precision-cut liver slices from Jian carp (Cyprinus carpio var. jian) through inhibition of the nf-kƁ pathway.

    Science.gov (United States)

    Cao, Liping; Ding, Weidong; Jia, Rui; Du, Jingliang; Wang, Tao; Zhang, Chunyun; Gu, Zhengyan; Yin, Guojun

    2017-05-01

    In order to evaluate the antioxidant and anti-inflammatory effects of glycyrrhetinic acid (GA) on carbon tetrachloride (CCl 4 )-induced damage in precision-cut liver slices (PCLS) from Jian carp (Cyprinus carpio. Jian), an acute liver damage model was established in this study. The viability of PCLS, levels of anti-oxidases in liver homogenates, expression of inflammation-related genes including nuclear factor-κB (nf-κB)/c-rel, inducible nitric oxide synthase (inos), interleukin-1β (il-1β), interleukin-6 (il-6) and interleukin-8 (il-8), and protein levels of (nf-κB)/c-rel in liver tissues were measured. The results showed that pretreatment of PCLS with GA at 5 and 10 μg/mL for 6 h significantly inhibited the cytotoxicity of CCl 4 . GA attenuated CCl 4 -induced oxidative stress in PCLS through promoting the recovery of superoxide dismutase (SOD) and glutathione (GSH) levels, and inhibiting malondialdehyde (MDA) synthesis. In inflammatory response, GA at both 5 and 10 μg/mL significantly inhibited the increase in mRNA levels of inflammatory cytokines including nf-kƁ/c-rel, inos, il-1β, il-6 and il-8, and the protein level of Nf-kƁ/C-rel induced by CCl 4 . Furthermore, treatment with pyrrolyl dithiocarbamate (PDTC, 4 μg/mL), an inhibitor of nuclear transcription factor nf-kB, significantly inhibited nf-kB levels, and transcription of downstream cytokines inos, il-1β, il-6 and il-8, also the viability of PCLS was significantly increased. These results indicated that GA suppressed inflammation and reduced cytotoxicity by inhibiting the nf-kƁ signaling pathway, and plays a role in liver protection. Copyright © 2017. Published by Elsevier Ltd.

  4. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    Science.gov (United States)

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High-Speed Imaging Reveals Opposing Effects of Chronic Stress and Antidepressants on Neuronal Activity Propagation through the Hippocampal Trisynaptic Circuit

    Directory of Open Access Journals (Sweden)

    Jens eStepan

    2015-11-01

    Full Text Available Antidepressants (ADs are used as first-line treatment for most stress-related psychiatric disorders. The alterations in brain circuit dynamics that can arise from stress exposure and underlie therapeutic actions of ADs remain, however, poorly understood. Here, enabled by a recently developed voltage-sensitive dye imaging assay in mouse brain slices, we examined the impact of chronic stress and concentration-dependent effects of eight clinically used ADs (belonging to different chemical/functional classes on evoked neuronal activity propagations through the hippocampal trisynaptic circuitry (HTC: perforant path - dentate gyrus - area CA3 - area CA1. Exposure of mice to chronic social defeat stress led to markedly weakened activity propagations (HTC-Waves. In contrast, at concentrations in the low micromolar range, all ADs, which were bath applied to slices, caused an amplification of HTC-Waves in CA regions (invariably in area CA1. The fast-acting antidepressant ketamine, the mood stabilizer lithium, and brain-derived neurotrophic factor (BDNF exerted comparable enhancing effects, whereas the antipsychotic haloperidol and the anxiolytic diazepam attenuated HTC-Waves. Collectively, we provide direct experimental evidence that chronic stress can depress neuronal signal flow through the HTC and demonstrate shared opposing effects of ADs. Thus, our study points to a circuit-level mechanism of ADs to counteract stress-induced impairment of hippocampal network function. However, the observed effects of ADs are impossible to depend on enhanced neurogenesis.

  6. Short-term plasticity of kainate receptor-mediated EPSCs induced by NMDA receptors at hippocampal mossy fiber synapses.

    Science.gov (United States)

    Rebola, Nelson; Sachidhanandam, Shankar; Perrais, David; Cunha, Rodrigo A; Mulle, Christophe

    2007-04-11

    Kainate receptors (KARs) are heteromeric ionotropic glutamate receptors that play a variety of functions in the regulation of the activity of synaptic networks. Little is known about the regulation of the function of synaptic KARs in the brain. In the present study, we found that a conditioning activation of synaptic NMDA receptors (NMDARs) induces short-term depression of KAR-EPSCs but not of AMPA receptor-EPSCs at synapses between mossy fibers and CA3 pyramidal cells. Short-term depression of KAR-EPSCs by synaptic NMDARs peaked at 1 s and reversed within 20 s, was likely induced and expressed postsynaptically, and was homosynaptic. It depended on a rise of Ca2+ in the postsynaptic cell and on the activation of the phosphatase calcineurin that likely binds to the GluR6b (glutamate receptor subunit 6b) subunit splice variant allowing the dephosphorylation of KARs and inhibition of activity. Finally, we show in the current-clamp mode that short-term depression of KAR-EPSPs is induced by the coincident discharge of action potentials in the postsynaptic cell together with synaptic stimulation. Hence, this study describes a form of short-term synaptic plasticity that is postsynaptic, depends on the temporal order of presynaptic and postsynaptic spiking, and likely affects the summation properties of mossy fiber EPSPs.

  7. Senegenin attenuates hepatic ischemia-reperfusion induced cognitive dysfunction by increasing hippocampal NR2B expression in rats.

    Directory of Open Access Journals (Sweden)

    Weibin Xie

    Full Text Available BACKGROUND: The root of Polygala tenuifolia, a traditional Chinese medicine, has been used to improve memory and intelligence, while the underlying mechanisms remain largely unknown. In this study, we investigated the protective effects of senegenin, an component of Polygala tenuifolia root extracts, on cognitive dysfunction induced by hepatic ischemia-reperfusion. METHODOLOGY/PRINCIPAL FINDINGS: Initially, we constructed a rat model of hepatic ischemia-reperfusion (HIR and found that the memory retention ability of rats in the step-down and Y maze test was impaired after HIR, paralleled by a decrease of N-methyl-D-aspartate (NMDA receptor NR2B subunit mRNA and protein expressions in hippocampus. Furthermore, we found that administration of senegenin by gavage attenuated HIR-induced cognitive impairment in a dose and time dependent manner, and its mechanisms might partly due to the increasing expression of NR2B in rat hippocampus. CONCLUSIONS/SIGNIFICANCE: Cognitive dysfunction induced by HIR is associated with reduction of NR2B expression. Senegenin plays a neuroprotective role in HIR via increasing NR2B expression in rat hippocampus. These findings suggest that senegenin might be a potential agent for prevention and treatment of postoperative cognitive dysfunction (POCD or other neurodegenerative diseases.

  8. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms.

    Science.gov (United States)

    Piao, M-H; Liu, Y; Wang, Y-S; Qiu, J-P; Feng, C-S

    2013-10-01

    Volatile anesthetic isoflurane contributes to postoperative cognitive dysfunction and inhibition of long-term potentiation (LTP), a synaptic model of learning and memory, but the mechanisms are uncertain. Central neuronal α4β2 subtype nicotinic acetylcholine receptors (nAChRs) are involved in the induction of LTP in the hippocampus. Isoflurane inhibits α4β2 nAChRs at concentrations lower than those used for anesthesia. Therefore, we hypothesized that isoflurane-inhibited LTP induction of hippocampal CA1 neurons via α4β2 nAChRs subtype inhibition. Transverse hippocampal slices (400μm thick) were obtained from male rats (6-8 weeks old). Population spikes were evoked using extracellular electrodes by electrical stimulation of the Schaffer collateral-commissural pathway of rat hippocampal slices. LTP was induced using high frequency stimulation (HFS; 100Hz, 1s). Clinically relevant concentrations (0.125-0.5mM) of isoflurane with or without nicotine (nAChRs agonist), mecamylamine (nAChRs antagonist), 3-[2(S)-2-azetidinylmethoxy] pyridine (A85380) and epibatidine (α4β2 nAChRs agonist), dihydro β erythroidine (DHβE) (α4β2 nAChRs antagonist) were added to the perfusion solution 20min before HFS to test their effects on LTP by HFS respectively. A brief HFS induced stable LTP in rat hippocampal slices, but LTP was significantly inhibited in the presence of isoflurane at concentrations of 0.125-0.5mM. The inhibitive effect of isoflurane on LTP was not only reversible and could be prevented by nAChRs agonist nicotine and α4β2 nAChRs agonist A85380 and epibatidine, but also mimicked and potentiated by nAChRs antagonist mecamylamine and α4β2 nAChRs antagonist DHβE. Inhibition of α4β2 nAChRs subtype of hippocampus participates in isoflurane-mediated LTP inhibition. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  9. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism.

    Science.gov (United States)

    Shahin, Saba; Banerjee, Somanshu; Singh, Surya Pal; Chaturvedi, Chandra Mohini

    2015-12-01

    A close association between microwave (MW) radiation exposure and neurobehavioral disorders has been postulated but the direct effects of MW radiation on central nervous system still remains contradictory. This study was performed to understand the effect of short (15 days) and long-term (30 and 60 days) low-level MW radiation exposure on hippocampus with special reference to spatial learning and memory and its underlying mechanism in Swiss strain male mice, Mus musculus. Twelve-weeks old mice were exposed to 2.45 GHz MW radiation (continuous-wave [CW] with overall average power density of 0.0248 mW/cm(2) and overall average whole body specific absorption rate value of 0.0146 W/Kg) for 2 h/day over a period of 15, 30, and 60 days). Spatial learning and memory was monitored by Morris Water Maze. We have checked the alterations in hippocampal oxidative/nitrosative stress, neuronal morphology, and expression of pro-apoptotic proteins (p53 and Bax), inactive executioner Caspase- (pro-Caspase-3), and uncleaved Poly (ADP-ribose) polymerase-1 in the hippocampal subfield neuronal and nonneuronal cells (DG, CA1, CA2, and CA3). We observed that, short-term as well as long-term 2.45 GHz MW radiation exposure increases the oxidative/nitrosative stress leading to enhanced apoptosis in hippocampal subfield neuronal and nonneuronal cells. Present findings also suggest that learning and spatial memory deficit which increases with the increased duration of MW exposure (15 stress induced p53-dependent/independent activation of hippocampal neuronal and nonneuronal apoptosis associated with spatial memory loss. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Abnormalities of hippocampal signal intensity in patients with familial mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Coan A.C.

    2004-01-01

    Full Text Available Mesial temporal lobe epilepsy (MTLE is associated with hippocampal atrophy and hippocampal signal abnormalities. In our series of familial MTLE (FMTLE, we found a high proportion of hippocampal abnormalities. To quantify signal abnormalities in patients with FMTLE we studied 152 individuals (46 of them asymptomatic with FMTLE. We used NIH-Image® for volumetry and signal quantification in coronal T1 inversion recovery and T2 for all cross-sections of the hippocampus. Values diverging by 2 or more SD from the control mean were considered abnormal. T2 hippocampal signal abnormalities were found in 52% of all individuals: 54% of affected subjects and 48% of asymptomatic subjects. T1 hippocampal signal changes were found in 34% of all individuals: 42.5% of affected subjects and 15% of asymptomatic subjects. Analysis of the hippocampal head (first three slices revealed T2 abnormalities in 73% of all individuals (74% of affected subjects and 72% of asymptomatic subjects and T1 abnormalities in 59% (67% of affected subjects and 41% of asymptomatic subjects. Affected individuals had smaller volumes than controls (P < 0.0001. There was no difference in hippocampal volumes between asymptomatic subjects and controls, although 39% of asymptomatic patients had hippocampal atrophy. Patients with an abnormal hippocampal signal (133 individuals had smaller ipsilateral volume, but no linear correlation could be determined. Hippocampal signal abnormalities in FMTLE were more frequently found in the hippocampal head in both affected and asymptomatic family members, including those with normal volumes. These results indicate that subtle abnormalities leading to an abnormal hippocampal signal in FMTLE are not necessarily related to seizures and may be determined by genetic factors.

  11. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model.

    Science.gov (United States)

    Manchanda, Shaffi; Kaur, Gurcharan

    2017-03-03

    Sedentary lifestyle, psychological stress and labor saving devices in this current society often disrupts the energy gain and expenditure balance leading to obesity. High caloric diet is associated with the high prevalence of cognitive dysfunction and neuropsychiatric disorders in addition to cardiovascular and metabolic abnormalities. The present study was aimed to elucidate the potential beneficial effect of dry leaf powder of Withania somnifera (Ashwagandha) in preventing the cognitive decline associated with diet induced obesity. Experiments were performed on four groups of young adult female rats: [Low fat diet (LFD) rats fed on regular low fat chow, High fat diet (HFD) rats on feed containing 30% fat by weight, Low fat diet extract (LFDE) rats given regular chow and dry leaf powder of Ashwagandha 1 mg/g of body weight (ASH) and high fat diet extract (HFDE) rats fed on diet containing high fat and dry leaf powder of ASH. All the rats were kept on their respective diet regimen for 12 weeks. ASH treated rats showed significant improvement in their working memory and locomotor coordination during behavioral studies as compared to HFD rats. At the molecular level, ASH treatment was observed to restore the levels of BDNF and its receptor TRKB as well as the expression of other synaptic regulators, which are highly implicated in synaptic plasticity. Further, ASH triggered the activation of PI3/AKT pathway of cell survival and plasticity by enhancing the levels of phosphorylated Akt-1 and immediate early genes viz. c-Jun and c-fos. ASH could be a key regulator in maintaining the synaptic plasticity in HFD induced obesity and can serve as a nootropic candidate against obesity induced cognitive impairments.

  12. Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressant-resistant animal model for PTSD.

    Directory of Open Access Journals (Sweden)

    Hendrikus Hendriksen

    Full Text Available BACKGROUND: Post traumatic stress disorder (PTSD can be considered the result of a failure to recover after a traumatic experience. Here we studied possible protective and therapeutic aspects of environmental enrichment (with and without a running wheel in Sprague Dawley rats exposed to an inescapable foot shock procedure (IFS. METHODOLOGY/PRINCIPAL FINDINGS: IFS induced long-lasting contextual and non-contextual anxiety, modeling some aspects of PTSD. Even 10 weeks after IFS the rats showed reduced locomotion in an open field. The antidepressants imipramine and escitalopram did not improve anxiogenic behavior following IFS. Also the histone deacetylase (HDAC inhibitor sodium butyrate did not alleviate the IFS induced immobility. While environmental enrichment (EE starting two weeks before IFS did not protect the animals from the behavioral effects of the shocks, exposure to EE either immediately after the shock or one week later induced complete recovery three weeks after IFS. In the next set of experiments a running wheel was added to the EE to enable voluntary exercise (EE/VE. This also led to reduced anxiety. Importantly, this behavioral recovery was not due to a loss of memory for the traumatic experience. The behavioral recovery correlated with an increase in cell proliferation in hippocampus, a decrease in the tissue levels of noradrenalin and increased turnover of 5-HT in prefrontal cortex and hippocampus. CONCLUSIONS/SIGNIFICANCE: This animal study shows the importance of (physical exercise in the treatment of psychiatric diseases, including post-traumatic stress disorder and points out the possible role of EE in studying the mechanism of recovery from anxiety disorders.

  13. Empathy in hippocampal amnesia.

    Science.gov (United States)

    Beadle, J N; Tranel, D; Cohen, N J; Duff, M C

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy.

  14. SUMOylation is required for glycine-induced increases in AMPA receptor surface expression (ChemLTP in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Nadia Jaafari

    Full Text Available Multiple pathways participate in the AMPA receptor trafficking that underlies long-term potentiation (LTP of synaptic transmission. Here we demonstrate that protein SUMOylation is required for insertion of the GluA1 AMPAR subunit following transient glycine-evoked increase in AMPA receptor surface expression (ChemLTP in dispersed neuronal cultures. ChemLTP increases co-localisation of SUMO-1 and the SUMO conjugating enzyme Ubc9 and with PSD95 consistent with the recruitment of SUMOylated proteins to dendritic spines. In addition, we show that ChemLTP increases dendritic levels of SUMO-1 and Ubc9 mRNA. Consistent with activity dependent translocation of these mRNAs to sites near synapses, levels of the mRNA binding and dendritic transport protein CPEB are also increased by ChemLTP. Importantly, reducing the extent of substrate protein SUMOylation by overexpressing the deSUMOylating enzyme SENP-1 or inhibiting SUMOylation by expressing dominant negative Ubc9 prevent the ChemLTP-induced increase in both AMPAR surface expression and dendritic SUMO-1 mRNA. Taken together these data demonstrate that SUMOylation of synaptic protein(s involved in AMPA receptor trafficking is necessary for activity-dependent increases in AMPAR surface expression.

  15. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Directory of Open Access Journals (Sweden)

    Anna E. Blanken

    2017-01-01

    Full Text Available Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD and 7 cognitively normal (NC subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ, tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP.

  16. Stimulation of Ethylene Production in Apple Tissue Slices by Methionine

    Science.gov (United States)

    Lieberman, Morris; Kunishi, Alice; Mapson, L. W.; Wardale, D. A.

    1966-01-01

    Methionine can induce more than a 100% increase in ethylene production by apple tissue slices. The increased amount of ethylene derives from carbons 3 and 4 of methionine. Only post-climacteric fruit tissues are stimulated by methionine, and stimulation is optimum after 8 months' storage. Copper chelators such as sodium diethyl dithiocarbamate and cuprizone very markedly inhibit ethylene production by tissue slices. Carbon monoxide does not effect ethylene production by the slices. These data suggest that the mechanism for the conversion of methionine to ethylene, in apple tissues, is similar to the previously described model system for producing ethylene from methionine and reduced copper. Therefore, it is suggested that one of the ethylene-forming systems in tissues derives from methionine and proceeds to ethylene via a copper enzyme system which may be a peroxidase. PMID:16656267

  17. Acupuncture reversed hippocampal mitochondrial dysfunction in vascular dementia rats.

    Science.gov (United States)

    Li, Hui; Liu, Yi; Lin, Li-Ting; Wang, Xue-Rui; Du, Si-Qi; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Liu, Cun-Zhi

    2016-01-01

    Hippocampal mitochondrial dysfunction due to oxidative stress has been considered to play a major role in the pathogenesis of vascular dementia (VD). Previous studies suggested that acupuncture could improve cerebral hypoperfusion-induced cognitive impairments. However, whether hippocampal mitochondria are associated with this cognitive improvement remains unclear. In this study, an animal model of VD was established via bilateral common carotid arteries occlusion (BCCAO) to investigate the alterations of cognitive ability and hippocampal mitochondrial function. BCCAO rats showed impairments in hippocampal mitochondrial function, overproduction of reactive oxygen species (ROS) and learning and memory deficits. After two-week acupuncture treatment, BCCAO-induced spatial learning and memory impairments as shown in Morris water maze were ameliorated. Hippocampal mitochondrial respiratory complex enzymes (complex I, II, IV) activities and cytochrome c oxidase IV expression significantly increased, which might contribute to the reduction of hippocampal ROS generation. In addition, acupuncture significantly improve mitochondrial bioenergy parameters such as mitochondrial respiratory control rate and membrane potential not PDH A1 expression. Placebo-acupuncture did not produce similar therapeutic effects. These findings suggested that acupuncture reversed BCCAO-induced hippocampal mitochondrial dysfunction, which might contribute to its prevention on cognitive deficits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: Possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits.

    Science.gov (United States)

    Yang, Miyoung; Kim, Joong-Sun; Song, Myoung-Sub; Kim, Sung-Ho; Kang, Seong Soo; Bae, Chun-Sik; Kim, Jong-Choon; Wang, Hongbing; Shin, Taekyun; Moon, Changjong

    2010-05-01

    Cyclophosphamide (CYP) is an anti-neoplastic agent as well as an immunosuppressive agent. In order to elucidate the alteration in adult hippocampal function following acute CYP treatment, hippocampus-related behavioral dysfunction and changes in adult hippocampal neurogenesis in CYP-treated (intraperitoneally, 40 mg/kg) mice (8-10-week-old ICR) were analyzed using hippocampus-dependent learning and memory tasks (passive avoidance and object recognition memory test) and immunohistochemical markers of neurogenesis (Ki-67 and doublecortin (DCX)). Compared to the vehicle-treated controls, mice trained at 12h after CYP injection showed significant memory deficits in passive avoidance and the object recognition memory test. The number of Ki-67- and DCX-positive cells began to decrease significantly at 12h post-injection, reaching the lowest level at 24h after CYP injection; however, this reverted gradually to the vehicle-treated control level between 2 and 10 days. We suggest that the administration of a chemotherapeutic agent in adult mice interrupts hippocampal functions, including learning and memory, possibly through the suppression of hippocampal neurogenesis. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Amygdala electrical stimulation inducing spatial memory recovery produces an increase of hippocampal bdnf and arc gene expression.

    Science.gov (United States)

    Mercerón-Martínez, D; Almaguer-Melian, W; Alberti-Amador, E; Estupiñán, B; Fernández, I; Bergado, J A

    2016-06-01

    Amygdala seems to promote the consolidation of plastic modification in different brain areas and these long-term brain changes require a rapid de novo RNA and protein synthesis. We have previously shown that basolateral amygdala electrical stimulation produces a partial recovery of spatial memory in fimbria-fornix lesioned animals and it is also able to increase the BDNF protein content in the hippocampus. The emerging question is whether these increased BDNF protein content arises from previously synthesized RNA or from de novo RNA expression. Now we address the question if amygdala electrical stimulation 15min after daily water maze training produces a rapid de novo RNA synthesis in the hippocampus, a critical brain area for spatial memory recovery in fimbria-fornix lesioned animals. In addition, we also study RNA arc expression, a gene which is essential for memory and neural plasticity processes. To this purpose, we study amygdala stimulation effects on the expression of plasticity related-early-genes bdnf and arc in the hippocampus of fimbria-fornix lesioned animals trained in a water-maze for 4days. We also checked on the expression of both genes in non-lesioned, untrained animals (acute condition) at 0.5, 1, 2 and 24h after basolateral amygdala electrical stimulation. Our data from trained animals confirm that daily amygdala electrical stimulation 15min after water maze training produces a partial memory recovery and that is coupled to an increase of bdnf and arc genes expression in the hippocampus. Additionally, the acute study shows that a single session of amygdala stimulation induces a transient increase of both genes (peaking at 30min). These results confirm the memory improving effect of amygdala stimulation in fimbria-fornix-lesioned animals and sustain the assumption that the memory improving effect is mediated by newly synthetized BDNF acting on a memory relevant structure like the hippocampus. The increased amount of BDNF within the hippocampus

  20. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring.

    Science.gov (United States)

    Maturana, Carola J; Aguirre, Adam; Sáez, Juan C

    2017-05-01

    Exposure to high levels of glucocorticoids (GCs) during early life induces long-lasting neuroinflammation. GCs induce rapid degranulation of mast cells, which release proinflammatory molecules promoting activation of microglia and astrocytes. The possible involvement of oligodendrocytes, however, remains poorly understood. It was studied whether high GC levels during gestation activates the inflammasome in hippocampal oligodendrocytes of mouse offspring. Oligodendrocytes of control pups showed expression of inflammasome components (NLRP3, ACS, and caspase-1) and their levels were increased by prenatal administration of dexamethasone (DEX), a synthetic GC. These cells also showed high levels of IL-1β and TNF-α, revealing activation of the inflammasome. Moreover, they showed increased levels of the P2X 7 receptor and pannexin1, which are associated to inflammasome activation. However, levels of connexins either were not affected (Cx29) or reduced (Cx32 and Cx47). Nonetheless, the functional states of pannexin1 and connexin hemichannels were elevated and directly associated to functional P2X 7 receptors. As observed in DEX-treated brain slices, hemichannel activity first increased in hippocampal mast cells and later in microglia and macroglia. DEX-induced oligodendrocyte hemichannel activity was mimicked by urocortin-II, which is a corticotropin-releasing hormone receptor (CRHR) agonist. Response to DEX and urocortin-II was inhibited by antalarmin (a CRHR blocker) or by mast cells or microglia inhibitors. The increase in hemichannel activity persisted for several weeks after birth and cross-fostering with a control mother did not reverse this condition. It is proposed that activation of the oligodendrocyte inflammasome might be relevant in demyelinating diseases associated with early life exposure to high GC levels. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 625-642, 2017. © 2016 Wiley Periodicals, Inc.

  1. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  2. Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD

    DEFF Research Database (Denmark)

    Thorsen, Thor S; Madsen, Kenneth L; Rebola, Nelson

    2010-01-01

    interacting protein 1 (GRIP1). Pretreatment of cultured hippocampal neurons with FSC231 inhibited coimmunopreciptation of the AMPA receptor GluR2 subunit with PICK1. In agreement with inhibiting the role of PICK1 in GluR2 trafficking, FSC231 accelerated recycling of pHluorin-tagged GluR2 in hippocampal...... neurons after internalization in response to NMDA receptor activation. FSC231 blocked the expression of both long-term depression and long-term potentiation in hippocampal CA1 neurons from acute slices, consistent with inhibition of the bidirectional function of PICK1 in synaptic plasticity. Given...

  3. Robust reflective pupil slicing technology

    Science.gov (United States)

    Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.

    2014-07-01

    Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly

  4. Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning-Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor-Dependent Hippocampal Neurogenesis.

    Science.gov (United States)

    Liu, Wen-Chung; Yang, San-Nan; Wu, Chih-Wei J; Chen, Lee-Wei; Chan, Julie Y H

    2016-01-01

    To test the hypothesis that hyperbaric oxygen therapy ameliorates delayed cognitive impairment after acute carbon monoxide poisoning by promoting neurogenesis through upregulating the brain-derived neurotrophic factor in the hippocampus. Laboratory animal experiments. University/Medical center research laboratory. Adult, male Sprague-Dawley rats. Rats were divided into five groups: (1) non-carbon monoxide-treated control, (2) acute carbon monoxide poisoning, (3) acute carbon monoxide poisoning followed by 7-day hyperbaric oxygen treatment, (4) carbon monoxide + hyperbaric oxygen with additional intracerebroventricular infusion of Fc fragment of tyrosine kinase receptor B protein (TrkB-Fc) chimera, and (5) acute carbon monoxide poisoning followed by intracerebroventricular infusion of brain-derived neurotrophic factor. Acute carbon monoxide poisoning was achieved by exposing the rats to carbon monoxide at 2,500 ppm for 40 minutes, followed by 3,000 ppm for 20 minutes. Hyperbaric oxygen therapy (at 2.5 atmospheres absolute with 100% oxygen for 60 min) was conducted during the first 7 days after carbon monoxide poisoning. Recombinant human TrkB-Fc chimera or brain-derived neurotrophic factor was infused into the lateral ventricle via the implanted osmotic minipump. For labeling of mitotic cells in the hippocampus, bromodeoxyuridine was injected into the peritoneal cavity. Distribution of bromodeoxyuridine and two additional adult neurogenesis markers, Ki-67 and doublecortin, in the hippocampus was evaluated by immunohistochemistry or immunofluorescence staining. Tissue level of brain-derived neurotrophic factor was assessed by enzyme-linked immunosorbent assay. Cognitive behavior was evaluated by the use of eight-arm radial maze. Acute carbon monoxide poisoning significantly suppressed adult hippocampal neurogenesis evident by the reduction in number of bromodeoxyuridine-positive, Ki-67⁺, and doublecortin⁺ cells in the subgranular zone of the dentate gyrus. This

  5. Empathy in hippocampal amnesia

    Directory of Open Access Journals (Sweden)

    Janelle N Beadle

    2013-03-01

    Full Text Available The scientific investigation of empathy has become a cornerstone in the field of social cognition. Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. Scientific investigations of empathy have focused on characterizing its cognitive and neural substrates, pointing to a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate. While the hippocampus has rarely been the focus of empathy research, we propose that there are compelling reasons to inquire about the contribution of the hippocampus to social cognition. We propose that the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity make it well-suited to meet the demands of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female with focal, bilateral hippocampal (HC damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. In response to the empathy inductions, unlike healthy comparison participants, hippocampal patients reported no increase in empathy ratings or prosocial behavior from the control condition. Taken together, these results provide preliminary evidence for a role of hippocampal declarative memory in empathy.

  6. Stochastic resonance in hippocampal CA1 neurons

    Science.gov (United States)

    Stacey, William Charles

    Stochastic Resonance (SR) is a phenomenon observed in nonlinear systems whereby the introduction of noise enhances the detection of a subthreshold signal for a certain range of noise intensity. Many central neurons, such as hippocampal CAI cells, are good candidates for SR due to their function of signal detection in a noisy environment, but the role of SR in the CNS is unclear. Physiological levels of noise are able to improve signal detection through SR, as found in simulated CAI neurons and in vitro rat hippocampal slices. Further investigation, utilizing a novel method of in vitro noise modulation, shows that endogenous noise sources can generate SR activity. These results suggest SR may provide a means for the hippocampus to modulate detection of specific inputs through endogenous noise sources. The role of noise in signal detection for a network of CAI cells is tested with a network simulation. The network shows improved detection as the number of cells and coupling increase for noise with low variance. One cell receiving the signal cannot recruit the remaining cells unless the network is very active and tuned by the coupling and noise. Periodic oscillations at high noise amplitudes corrupt all outputs. These oscillations develop into synchronized, periodic bursts as a function of both noise and coupling. These findings are relevant for the analysis of the role of physiological noise in signal processing in the brain and in the synchronization of neural activity as in epilepsy.

  7. Discrete frequency slice wavelet transform

    Science.gov (United States)

    Yan, Zhonghong; Tao, Ting; Jiang, Zhongwei; Wang, Haibin

    2017-11-01

    This paper introduces a new kind of Time-Frequency Representation (TFR) method called Discrete Frequency Slice Wavelet Transform (DFSWT). It is an improved version of Frequency Slice Wavelet Transform (FSWT). The previous researches on FSWT show that it is a new efficient TFR in an easy way without strict limitation as traditional wavelet theory. DFSWT as well as FSWT are defined directly in frequency domain, and still keep its properties in time-frequency domain as FSWT decomposition, reconstruction and filter design, etc. However, the original signal is decomposed and reconstructed on a Chosen Frequency Domains (CFD) as need of application. CFD means that the decomposition and reconstruction are not completed on all frequency components. At first, it is important to discuss the necessary condition of CFD to reconstruct the original signal. And then based on norm l2, an optimization algorithm is introduced to reconstruct the original signal even accurately. Finally, for a test example, the TFR analysis of a real life signal is shown. Some conclusions are drawn that the concept of CFD is very useful to application, and the DFSWT can become a simple and easy tool of TFR method, and also provide a new idea of low speed sampling of high frequency signal in applications.

  8. Antisense hippocampal knockdown of NMDA-NR1 by HVJ-liposome vector induces deficit of prepulse inhibition but not of spatial memory.

    Science.gov (United States)

    Inada, Ken; Ishigooka, Jun; Anzai, Takeshi; Suzuki, Eiji; Miyaoka, Hitoshi; Saji, Makoto

    2003-04-01

    Considerable evidence suggests that an N-methyl-D-aspartate (NMDA) receptor plays a crucial role in memory and cognitive function. To identify the role of this receptor in higher functions of the brain, we delivered antisense oligonucleotides against an NMDA-NR1 subunit (NR1) to the hippocampus in rats using the HVJ-liposome-mediated gene-transfer method. NR1 hippocampal knockdown was performed by the focal injection of the NR1 antisense-HVJ-liposome complex into the bilateral hippocampus. The blocking effect of NR1-antisense on the expression of NR1 was confirmed by Western blot analysis. Spatial memory was tested by a water maze task, and sensorimotor gating was examined by prepulse inhibition (PPI). Western blot analysis demonstrated that the NR1-antisense treatment specifically provided the down-regulation (about 30%) of NR1 protein levels in the hippocampus. The water maze task showed that the antisense treatment did not affect spatial memory, while the PPI test revealed that NR1 hippocampal knockdown caused a deficit in sensorimotor gating. We conclude that mild dysfunction of hippocampal NMDA receptor causes sensorimotor gating deficit and relatively intact in spatial memory.

  9. A High-Fructose-High-Coconut Oil Diet Induces Dysregulating Expressions of Hippocampal Leptin and Stearoyl-CoA Desaturase, and Spatial Memory Deficits in Rats.

    Science.gov (United States)

    Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang

    2017-06-16

    We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group ( n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain.

  10. The effects of vestibular lesions on hippocampal function in rats.

    Science.gov (United States)

    Smith, Paul F; Horii, Arata; Russell, Noah; Bilkey, David K; Zheng, Yiwen; Liu, Ping; Kerr, D Steve; Darlington, Cynthia L

    2005-04-01

    Interest in interaction between the vestibular system and the hippocampus was stimulated by evidence that peripheral vestibular lesions could impair performance in learning and memory tasks requiring spatial information processing. By the 1990s, electrophysiological data were emerging that the brainstem vestibular nucleus complex (VNC) and the hippocampus were connected polysynaptically and that hippocampal place cells could respond to vestibular stimulation. The aim of this review is to summarise and critically evaluate research published in the last 5 years that has seen major progress in understanding the effects of vestibular damage on the hippocampus. In addition to new behavioural studies demonstrating that animals with vestibular lesions exhibit impairments in spatial memory tasks, electrophysiological studies have confirmed long-latency, polysynaptic pathways between the VNC and the hippocampus. Peripheral vestibular lesions have been shown to cause long-term changes in place cell function, hippocampal EEG activity and even CA1 field potentials in brain slices maintained in vitro. During the same period, neurochemical investigations have shown that some hippocampal subregions exhibit long-term changes in the expression of neuronal nitric oxide synthase, arginase I and II, and the NR1 and NR2A N-methyl-D-aspartate (NMDA) receptor subunits following peripheral vestibular damage. Despite the progress, a number of important issues remain to be resolved, such as the possible contribution of auditory damage associated with vestibular lesions, to the hippocampal effects observed. Furthermore, although these studies demonstrate that damage to the vestibular system does have a long-term impact on the electrophysiological and neurochemical function of the hippocampus, they do not indicate precisely how vestibular information might be used in hippocampal functions such as developing spatial representations of the environment. Understanding this will require detailed

  11. Dietary Supplementation ofHericium erinaceusIncreases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice.

    Science.gov (United States)

    Brandalise, Federico; Cesaroni, Valentina; Gregori, Andrej; Repetti, Margherita; Romano, Chiara; Orrù, Germano; Botta, Laura; Girometta, Carolina; Guglielminetti, Maria Lidia; Savino, Elena; Rossi, Paola

    2017-01-01

    Hericium erinaceus (Bull.) Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions.

  12. Dietary Supplementation of Hericium erinaceus Increases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice

    Science.gov (United States)

    Cesaroni, Valentina; Gregori, Andrej; Repetti, Margherita; Romano, Chiara; Orrù, Germano; Botta, Laura; Girometta, Carolina; Guglielminetti, Maria Lidia; Savino, Elena

    2017-01-01

    Hericium erinaceus (Bull.) Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions. PMID:28115973

  13. Dietary Supplementation of Hericium erinaceus Increases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice

    Directory of Open Access Journals (Sweden)

    Federico Brandalise

    2017-01-01

    Full Text Available Hericium erinaceus (Bull. Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions.

  14. Hippocampal development at gestation weeks 23 to 36. An ultrasound study on preterm neonates

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, Dragan; Raininko, Raili [Uppsala University, Department of Radiology, University Hospital, Uppsala (Sweden); Ewald, Uwe [Uppsala University, Department of Women' s and Children' s Health, Uppsala (Sweden)

    2010-06-15

    During fetal development, the hippocampal structures fold around the hippocampal sulcus into the temporal lobe. According to the literature, this inversion should be completed at gestation week (GW) 21. Thereafter, the hippocampal shape should resemble the adult shape. However, incomplete hippocampal inversion (IHI) is found in 19% of the common population. The aim of this study was to study fetal hippocampal development by examining neonates born preterm. We analyzed cranial ultrasound examinations, performed as a part of the routine assessment of all preterm infants, over a 3-year period and excluded the infants with brain pathology. The final material consisted of 158 children born <35 GW. A rounded form (the ratio between the horizontal and vertical diameters of the hippocampal body {<=}1) in coronal slices was considered the sign of IHI. The age at examination was 23-24 GW in 24 neonates, 25-28 GW in 70 neonates, and 29-36 GW in 64 neonates. IHI was found in 50%, 24%, and 14%, respectively. The difference between the neonates <25 GW and {>=}25 GW was statistically highly significant (p < 0.001). The frequency of bilateral IHI was highest in the youngest age group. In the other groups, the left-sided IHI was the most common. In about 50% of the neonates, hippocampal inversion is not completed up to GW 24; but from 25 GW onwards, the frequency and laterality of IHI is similar to that in the adult population. (orig.)

  15. Expression Profiles of Long Noncoding RNAs and Messenger RNAs in Mn-Exposed Hippocampal Neurons of Sprague-Dawley Rats Ascertained by Microarray: Implications for Mn-Induced Neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Shuyan Ma

    Full Text Available Manganese (Mn is an essential trace element, while excessive expose may induce neurotoxicity. Recently, lncRNAs have been extensively studied and it has been confirmed that lncRNAs participate in neural functions and aberrantly expressed lncRNAs are involved in neurological diseases. However, the pathological effects of lncRNAs on Mn-induced neurotoxicity remain unclear. In this study, the expression profiles of lncRNAs and messenger RNAs (mRNAs were identified in Mn-treated hippocampal neurons and control neurons via microarray. Bioinformatic methods and intersection analysis were also employed. Results indicated that 566, 1161, and 1474 lncRNAs meanwhile 1848, 3228, and 4022 mRNAs were aberrantly expressed in low, intermediate, and high Mn-exposed groups compared with the control group, respectively. Go analysis determined that differentially expressed mRNAs were targeted to biological processes, cellular components, and molecular functions. Pathway analysis indicated that these mRNAs were enriched in insulin secretion, cell cycle, and DNA replication. Intersection analysis denominated that 135 lncRNAs and 373 mRNAs were consistently up-regulated while 150 lncRNAs and 560 mRNAs were consistently down-regulated. Meanwhile, lncRNA BC079195 was significantly up-regulated while lncRNAs uc.229- and BC089928 were significantly down-regulated in three comparison groups. The relative expression levels of 3 lncRNAs and 4 mRNAs were validated through qRT-PCR. To the best of our knowledge, this study is the first to identify the expression patterns of lncRNAs and mRNAs in hippocampal neurons of Sprague-Dawley rats. The results may provide evidence on underlying mechanisms of Mn-induced neurotoxicity, and aberrantly expressed lncRNAs/mRNAs may be useful in further investigations to detect early symptoms of Mn-induced neuropsychiatric disorders in the central nervous system.

  16. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7.

    Science.gov (United States)

    Coleman, Leon G; Zou, Jian; Crews, Fulton T

    2017-01-25

    Toll-like receptor (TLR) signaling is emerging as an important component of neurodegeneration. TLR7 senses viral RNA and certain endogenous miRNAs to initiate innate immune responses leading to neurodegeneration. Alcoholism is associated with hippocampal degeneration, with preclinical studies linking ethanol-induced neurodegeneration with central innate immune induction and TLR activation. The endogenous miRNA let-7b binds TLR7 to cause neurodegeneration. TLR7 and other immune markers were assessed in postmortem human hippocampal tissue that was obtained from the New South Wales Tissue Bank. Rat hippocampal-entorhinal cortex (HEC) slice culture was used to assess specific effects of ethanol on TLR7, let-7b, and microvesicles. We report here that hippocampal tissue from postmortem human alcoholic brains shows increased expression of TLR7 and increased microglial activation. Using HEC slice culture, we found that ethanol induces TLR7 and let-7b expression. Ethanol caused TLR7-associated neuroimmune gene induction and initiated the release let-7b in microvesicles (MVs), enhancing TLR7-mediated neurotoxicity. Further, ethanol increased let-7b binding to the danger signaling molecule high mobility group box-1 (HMGB1) in MVs, while reducing let-7 binding to classical chaperone protein argonaute (Ago2). Flow cytometric analysis of MVs from HEC media and analysis of MVs from brain cell culture lines found that microglia were the primary source of let-7b and HMGB1-containing MVs. Our results identify that ethanol induces neuroimmune pathology involving the release of let-7b/HMGB1 complexes in microglia-derived microvesicles. This contributes to hippocampal neurodegeneration and may play a role in the pathology of alcoholism.

  17. Resveratrol: A Potential Hippocampal Plasticity Enhancer

    Directory of Open Access Journals (Sweden)

    Gisele Pereira Dias

    2016-01-01

    Full Text Available The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis (AHN, can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by “nutraceutical” agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries, as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions.

  18. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  19. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo

    Science.gov (United States)

    Varela-Nallar, Lorena; Rojas-Abalos, Macarena; Abbott, Ana C.; Moya, Esteban A.; Iturriaga, Rodrigo; Inestrosa, Nibaldo C.

    2014-01-01

    Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired. PMID:24574965

  20. Chronic hypoxia induces the in vivo activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1deltaE9 transgenic mice

    Directory of Open Access Journals (Sweden)

    Lorena eVarela-Nallar

    2014-02-01

    Full Text Available Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin a key component of the canonical Wnt signaling pathway. Here we studied in vivo the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice. As a molecular control of the physiological hypoxic response the hypoxia-inducible transcription factor-1α (HIF-1α was analyzed. Exposure to chronic hypoxia (10% oxygen for 6-72 h stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, BrdU incorporation and double labeling with doublecortin. Chronic hypoxia also induced neurogenesis in double transgenic APPswe-PS1deltaE9 mouse model of Alzheimer’s disease (AD, which shows decreased levels of neurogenesis at the SGZ. Our results show for the first time that in vivo exposure to hypoxia can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorder associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired.

  1. [PI 3 K/Akt signaling pathway contributed to the protective effect of acupuncture intervention on epileptic seizure-induced injury of hippocampal pyramidal cells in epilepsy rats].

    Science.gov (United States)

    Yang, Fan; Ang, Wen-Ping; Shen, De-Kai; Liu, Xiang-Guo; Yang, Yong-Qing; Ma, Yun

    2013-02-01

    To observe the protective effect of acupuncture stimulation on pyramidal cells in hippocampal CA 1 and CA 3 regions and to analyze the involvement of phosphatidy linositol-3-kinase (PI 3 K)/protein kinase B(PKB or Akt) signaling pathway in the acupuncture effect in epilepsy rats. A total of 120 SD rats were randomly divided into normal control group, model group, LY 294002 (a specific antagonist for PI 3 K/Akt signaling) group, acupuncture+ LY 294002 group and acupuncture group (n = 24 in each group, 12 for H. E. staining, and 12 for electron microscope observation). Epilepsy model was established by intraperitoneal injection of pentylenetetrazol (PTZ, 5 microL). Manual acupuncture stimulation was applied to "Baihui" (GV 20) and "Dazhui" (GV 14) once daily for 5 days. Dimethyl Sulfoxide (DMSO, 5 microL, a control solvent) was given to rats of the normal, model and acupuncture groups, and LY294002 (5 microL, dissolved in DMSO) given to rats of the LY 294002 and acupuncture+ LY 294002 groups by lateral ventricular injection. Four hours and 24 h after modeling, the hippocampus tissues were sampled for observing pathological changes of CA 1 and CA 3 regions after H. E. staining under light microscope and for checkin ultrastructural changes of the pyramidal cells under transmission electron microscope. In comparison with the normal control group, the numbers of pyramidal cells of hippocampal CA 3 region in the model group were decreased significantly 4 h and 24 h after epileptic seizure (P acupuncture group were increased considerably in the number at both 4 h and 24 h after seizure (P acupuncture+ LY 294002 and model groups in the numbers of pyramidal cells at 4 h and 24 h after seizure (P > 0.05). Findings of the light microscope and electron microscope showed that the injury severity of pyramidal cells of hippocampal CA 1 and CA 3 regions was moderate 4 h after epileptic seizure and even worse 24 h after seizure in the model group, LY 294002 group and acupuncture+ LY

  2. Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects

    Science.gov (United States)

    Geil, Chelsea R.; Hayes, Dayna M.; McClain, Justin A.; Liput, Daniel J.; Marshall, S. Alex; Chen, Kevin Y.; Nixon, Kimberly

    2014-01-01

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche. PMID:24842804

  3. Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal.

    Science.gov (United States)

    Shen, Guofu; Van Sickle, Bradley J; Tietz, Elizabeth I

    2010-08-01

    Benzodiazepine withdrawal anxiety is associated with potentiation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) currents in hippocampal CA1 pyramidal neurons attributable to increased synaptic incorporation of GluA1-containing AMPARs. The contribution of calcium/calmodulin-dependent protein kinase II (CaMKII) to enhanced glutamatergic synaptic strength during withdrawal from 1-week oral flurazepam (FZP) administration was further examined in hippocampal slices. As earlier reported, AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, along with increased single-channel conductance in neurons from 2-day rats, estimated by non-stationary noise analysis. Input-output curve slope was increased without a change in paired-pulse facilitation, suggesting increased AMPAR postsynaptic efficacy rather than altered glutamate release. The increased mEPSC amplitude and AMPAR conductance were related to CaMKII activity, as intracellular inclusion of CaMKIINtide or autocamtide-2-related inhibitory peptide, but not scrambled peptide, prevented both AMPAR amplitude and conductance changes. mEPSC inhibition by 1-naphthyl acetyl spermine and the negative shift in rectification index at both withdrawal time points were consistent with functional incorporation of GluA2-lacking AMPARs. GluA1 but not GluA2 or GluA3 levels were increased in immunoblots of postsynaptic density (PSD)-enriched subcellular fractions of CA1 minislices from 1-day FZP-withdrawn rats, when mEPSC amplitude, but not conductance, was increased. Both GluA1 expression levels and CaMKII alpha-mediated GluA1 Ser(831) phosphorylation were increased in PSD-subfractions from 2-day FZP-withdrawn rats. As phospho-Thr(286)CaMKII alpha was unchanged, CaMKII alpha may be activated through an alternative signaling pathway. Synaptic insertion and subsequent CaMKII alpha-mediated Ser(831) phosphorylation of GluA1 homomers

  4. Preparation of osmotic dehydrated ripe banana slices.

    Science.gov (United States)

    Chavan, U D; Prabhukhanolkar, A E; Pawar, V D

    2010-08-01

    Process for preparation of ripe banana slices using osmotic dehydration was standardized. Fully ripe banana fruits were peeled and slices of 8 mm thickness were prepared. The slices were divided into 5 lots and pretreated with sulphur fumigation @ 2 g/kg of slices for 2 h then each lot was soaked in 60 (0)Brix sugar syrup containing 0.1% KMS + 0.1 % citrate, 0.1% KMS + 0.1% citrate + 0.2%, 0.4% and 0.8% ascorbic acid and control respectively. After 16 h soaking, quick washing, blotting and then cabinet drying at 55 °C for 10 h up to 18% moisture content was done. The dried products were packed in 200 gauge polypropylene bags and stored at ambient condition for 6 months. The chemical, microbial and organoleptic changes were monitored for 6 months. The osmo-dried banana slices prepared with sulphur fumigation @ 2 g /kg slices for 2 h followed by soaking in 60(0)Brix sugar syrup containing 0.1% KMS + 0.1% citrate + 0.2% ascorbic acid were found better with respect to colour and appearance, flavour, texture, taste and overall acceptability with non-stickiness of the product. Storage study showed that there was marginal decrease in moisture content and organoleptic quality and increase in TSS, total sugars and reducing sugars content of osmodried banana slices. The products were found microbiologically safe and sensorily acceptable up to 6 months storage at ambient condition.

  5. Afferent input selects NMDA receptor subtype to determine the persistency of hippocampal LTP in freely behaving mice

    Directory of Open Access Journals (Sweden)

    Jesús Javier Ballesteros

    2016-10-01

    Full Text Available The glutamatergic N-methyl-D-aspartate receptor (NMDAR is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2 mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern, and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistencies in freely behaving mice. We applied differing high-frequency stimulation (HFS patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT mice, that endured for 24h (late (L-LTP. In GluN2A-KO mice, E-LTP (HFS, 50 pulses was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 x 50 pulses and L-LTP (HFS, 4 x 50 pulses were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E- LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B

  6. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Science.gov (United States)

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  7. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Nuria Domínguez-Iturza

    2016-01-01

    Full Text Available Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  8. Hippocampal disconnection in early Alzheimer's disease: a 7 tesla MRI study

    NARCIS (Netherlands)

    Wisse, L.E.; Reijmer, Y.D.; Telgte, A. ter; Kuijf, H.J.; Leemans, A.; Luijten, P.R.; Koek, H.L.; Geerlings, M.I.; Biessels, G.J.

    2015-01-01

    BACKGROUND: In patients with Alzheimer's disease (AD), atrophy of the entorhinal cortex (ERC) and hippocampal formation may induce degeneration of connecting white matter tracts. OBJECTIVE: We examined the association of hippocampal subfield and ERC atrophy at 7 tesla MRI with fornix and

  9. Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats.

    Science.gov (United States)

    Amorim, Beatriz Oliveira; Hamani, Clement; Ferreira, Elenn; Miranda, Maísa Ferreira; Fernandes, Maria José S; Rodrigues, Antonio M; de Almeida, Antônio-Carlos G; Covolan, Luciene

    2016-08-01

    Adenosine is an endogenous anticonvulsant that activates pre- and postsynaptic adenosine A1 receptors. A1 receptor agonists increase the latency for the development of seizures and status epilepticus following pilocarpine administration. Although hippocampal adenosine is increased in the chronic phase of the pilocarpine model, it is not known whether the modulation of A1 receptors may influence the frequency of spontaneous recurrent seizures (SRS). Here, we tested the hypothesis that the A1 receptor agonist RPia ([R]-N-phenylisopropyladenosine) and the A1 antagonist DPCPX (8-Cyclopentyl-1,3-dipropylxanthine) administered to chronic pilocarpine epileptic rats would respectively decrease and increase the frequency of SRS and hippocampal excitability. Four months after Pilo-induced SE, chronic epileptic rats were video-monitored for the recording of SRS before (basal) and after a 2-week treatment with RPia (25μg/kg) or DPCPX (50μg/kg). Following sacrifice, brain slices were studied with electrophysiology. We found that rats given RPia had a 93% nonsignificant reduction in the frequency of seizures compared with their own pretreatment baseline. In contrast, the administration of DPCPX resulted in an 87% significant increase in seizure rate. Nontreated epileptic rats had a similar frequency of seizures along the study. Corroborating our behavioral data, in vitro recordings showed that slices from animals previously given DPCPX had a shorter latency to develop epileptiform activity, longer and higher DC shifts, and higher spike amplitude compared with slices from nontreated Pilo controls. In contrast, smaller spike amplitude was recorded in slices from animals given RPia. In summary, the administration of A1 agonists reduced hippocampal excitability but not the frequency of spontaneous recurrent seizures in chronic epileptic rats, whereas A1 receptor antagonists increased both. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.

    Science.gov (United States)

    Oomura, Y; Hori, N; Shiraishi, T; Fukunaga, K; Takeda, H; Tsuji, M; Matsumiya, T; Ishibashi, M; Aou, S; Li, X L; Kohno, D; Uramura, K; Sougawa, H; Yada, T; Wayner, M J; Sasaki, K

    2006-11-01

    Leptin, an adipocytokine encoded by an obesity gene and expressed in adipose tissue, affects feeding behavior, thermogenesis, and neuroendocrine status via leptin receptors distributed in the brain, especially in the hypothalamus. Leptin may also modulate the synaptic plasticity and behavioral performance related to learning and memory since: leptin receptors are found in the hippocampus, and both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines that modulate long-term potentiation (LTP) in the hippocampus. We therefore examined the effect of leptin on (1) behavioral performance in emotional and spatial learning tasks, (2) LTP at Schaffer collateral-CA1 synapses, (3) presynaptic and postsynaptic activities in hippocampal CA1 neurons, (4) the intracellular Ca(2+) concentration ([Ca(2+)](i)) in CA1 neurons, and (5) the activity of Ca(2+)/calmodulin protein kinase II (CaMK II) in the hippocampal CA1 tissue that exhibits LTP. Intravenous injection of 5 and/or 50mug/kg, but not of 500mug/kg leptin, facilitated behavioral performance in passive avoidance and Morris water-maze tasks. Bath application of 10(-12)M leptin in slice experiments enhanced LTP and increased the presynaptic transmitter release, whereas 10(-10)M leptin suppressed LTP and reduced the postsynaptic receptor sensitivity to N-methyl-d-aspartic acid. The increase in the [Ca(2+)](i) induced by 10(-10)M leptin was two times greater than that induced by 10(-12)M leptin. In addition, the facilitation (10(-12)M) and suppression (10(-10)M) of LTP by leptin was closely associated with an increase and decrease in Ca(2+)-independent activity of CaMK II. Our results show that leptin not only affects hypothalamic functions (such as feeding, thermogenesis, and neuroendocrine status), but also modulates higher nervous functions, such as the behavioral performance related to learning and memory and hippocampal synaptic plasticity.

  11. 256-slice wide-detector computed tomography.

    Science.gov (United States)

    2007-11-01

    This article provides opinions and predictions about an emerging technology-256-slice wide-detector computed tomography-to help healthcare facilities decide whether the technology is worth tracking and when it might be ready for adoption. We believe 256-slice CT is worth monitoring based on its predicted clinical and business impact. We consider it unlikely, however, that more than a few select facilities will begin adopting this technology within the next three years.

  12. Exposure to a highly caloric palatable diet during pregestational and gestational periods affects hypothalamic and hippocampal endocannabinoid levels at birth and induces adiposity and anxiety-like behaviors in male rat offspring

    Directory of Open Access Journals (Sweden)

    Maria Teresa eRamírez-López

    2016-01-01

    Full Text Available Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and, although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory and emotions.

  13. Pyruvate prevents the inhibition of the long-term potentiation induced by amyloid-β through protein phosphatase 2A inactivation.

    Science.gov (United States)

    Wang, Xiaonan; Takata, Toshihiro; Bai, Xiaojuan; Ou, Fengrong; Yokono, Koichi; Sakurai, Takashi

    2012-01-01

    Amyloid-β (Aβ) oligomers are derived from proteolytic cleavage of amyloid-β protein precursor and can impair memory and hippocampal long-term potentiation (LTP) in vivo and in vitro. They are recognized as the primary neurotoxic agents in Alzheimer's disease. Pyruvate has a protective effect against Aβ-induced neuronal cell death in hippocampal slice cultures. However, whether pyruvate also has a protective effect against the inhibition of neuronal plasticity induced by Aβ remains to be elucidated. This study examined the effect of pyruvate on the Aβ-induced inhibition of LTP in the rat hippocampus. We found that pyruvate prevented the Aβ-induced inhibition of LTP as strong as fostriecin, a specific protein phosphatase 2A (PP2A) inhibitor. Pyruvate prevented the Aβ block of Ca(2+)/calmodulin dependent protein kinase 2 (CaMK2) autophosphorylation and the Aβ-induced PP2A activation. Pyruvate, but not lactate, decreased reactive oxygen species levels in CA1 slices exposed to Aβ. We propose that pyruvate could prevent the Aβ-induced inhibition of LTP by the re-autophosphorylation of CaMK2 through PP2A inactivation. The reduction of reactive oxygen species production is considered to be the upstream mechanism of this observed pyruvate protection.

  14. Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice.

    Science.gov (United States)

    Vecsey, Christopher G; Wimmer, Mathieu E J; Havekes, Robbert; Park, Alan J; Perron, Isaac J; Meerlo, Peter; Abel, Ted

    2013-04-01

    Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to the actual period of sleep deprivation. It was therefore suggested that acclimation handling could mediate some of the observed effects of subsequent sleep deprivation. Here, we examine whether acclimation handling, performed as in our sleep deprivation studies, alters sleep/wake behavior, stress, or forms of hippocampal synaptic plasticity that are impaired by sleep deprivation. Adult C57BL/6J mice were either handled daily for 6 days or were left undisturbed in their home cages. On the day after the 6(th) day of handling, long-term potentiation (LTP) was induced in hippocampal slices with spaced four-train stimulation, which we previously demonstrated to be impaired by brief sleep deprivation. Basal synaptic properties were also assessed. In three other sets of animals, activity monitoring, polysomnography, and stress hormone measurements were performed during the 6 days of handling. Daily gentle handling alone does not alter LTP, rest/activity patterns, or sleep/wake architecture. Handling initially induces a minimal stress response, but by the 6(th) day, stress hormone levels are unaltered by handling. It is possible to handle mice daily to accustom them to the researcher without causing alterations in sleep, stress, or synaptic plasticity in the hippocampus. Therefore, effects of acclimation handling cannot explain the impairments in signaling mechanisms, synaptic plasticity, and memory that result from brief sleep deprivation.

  15. Slicing sodium from bakery products

    NARCIS (Netherlands)

    Noort, M.

    2012-01-01

    The need for sodium reduction in our diet is clear to consumers, dieticians and food manufacturers. As sodium concentration has a strengthening effect on gluten, sodium reduction decreases dough mixing tolerance, dough resistance and induces dough stickiness. In particular, the latter may cause

  16. Updating stored memory requires adult hippocampal neurogenesis

    OpenAIRE

    Suárez-Pereira, Irene; Carrión, Ángel M

    2015-01-01

    Adult hippocampal neurogenesis appears to influence hippocampal functions, such as memory formation for example. While adult hippocampal neurogenesis is known to be involved in hippocampal-dependent learning and consolidation processes, the role of such immature neurons in memory reconsolidation, a process involved in the modification of stored memories, remains unclear. Here, using a novel fast X-ray ablation protocol to deplete neurogenic cells, we have found that adult hippocampal neurogen...

  17. Origins of an intrinsic hippocampal EEG pattern.

    Directory of Open Access Journals (Sweden)

    Christopher S Rex

    2009-11-01

    Full Text Available Sharp waves (SPWs are irregular waves that originate in field CA3 and spread throughout the hippocampus when animals are alert but immobile or as a component of the sleep EEG. The work described here used rat hippocampal slices to investigate the factors that initiate SPWs and govern their frequency. Acute transection of the mossy fibers reduced the amplitude but not the frequency of SPWs, suggesting that activity in the dentate gyrus may enhance, but is not essential for, the CA3 waves. However, selective destruction of the granule cells and mossy fibers by in vivo colchicine injections profoundly depressed SPW frequency. Reducing mossy fiber release with an mGluR2 receptor agonist or enhancing it with forskolin respectively depressed or increased the incidence of SPWs. Collectively, these results indicate that SPWs can be triggered by constitutive release from the mossy fibers. The waves were not followed by large after-hyperpolarizing potentials and their frequency was not strongly affected by blockers of various slow potassium channels. Antagonists of GABA-B mediated IPSCs also had little effect on incidence. It appears from these results that the spacing of SPWs is not dictated by slow potentials. However, modeling work suggests that the frequency and variance of large mEPSCs from the mossy boutons can account for the temporal distribution of the waves. Together, these results indicate that constitutive release from the mossy fiber terminal boutons regulates the incidence of SPWs and their contribution to information processing in hippocampus.

  18. Moxibustion upregulates hippocampal progranulin expression

    Directory of Open Access Journals (Sweden)

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  19. Update on Hippocampal Sclerosis.

    Science.gov (United States)

    Dutra, Juliana R; Cortés, Etty P; Vonsattel, Jean Paul G

    2015-10-01

    The diagnostic hallmarks of hippocampal sclerosis (HS) are severe volume loss of the hippocampus, severe neuronal loss, and reactive gliosis involving primarily two especially vulnerable fields, CA1 and the subiculum. Occasionally, HS may be the only neuropathological change detected in older individuals with dementia and is known as pure HS. In the majority of cases, HS occurs in the setting of other degenerative changes, usually Alzheimer's disease (AD). In these cases, it is classified as combined HS. Although a clinical profile for HS has been identified, its similarities with AD make the diagnosis during life quite challenging; thus, the diagnosis is often made postmortem. The pathogenesis of HS is not completely understood, but the strong association with transactive response DNA-binding protein 43 (TDP-43), in approximately 90%, and the recent discovery of genetic risk factors are important contributions to a better understanding of the disease process.

  20. Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin.

    Science.gov (United States)

    Okazaki, M M; Evenson, D A; Nadler, J V

    1995-02-20

    In complex partial epilepsy and in animal models of epilepsy, hippocampal mossy fibers appear to develop recurrent collaterals that invade the dentate molecular layer. Mossy fiber collaterals have been proposed to subserve recurrent excitation by forming granule cell-granule cell synapses. This hypothesis was tested by visualizing dentate granule cells and their mossy fibers after terminal uptake and retrograde transport of biocytin. Labeling studies were performed with transverse slices of the caudal rat hippocampal formation prepared 2.6-70.0 weeks after pilocarpine-induced or kainic acid-induced status epilepticus. Light microscopy demonstrated the progressive growth of recurrent mossy fibers into the molecular layer; the densest innervation was observed in slices from pilocarpine-treated rats that had survived 10 weeks or longer after status epilepticus. Thin mossy fiber collaterals originated predominantly from deep within the hilar region, crossed the granule cell body layer, and formed an axonal plexus oriented parallel to the cell body layer within the inner one-third of the molecular layer. When sprouting was most robust, some recurrent mossy fibers at the apex of the dentate gyrus reached the outer two-thirds of the molecular layer. The distribution and density of mossy fiber-like Timm staining correlated with the biocytin labeling. When viewed with the electron microscope, the inner one-third of the dentate molecular layer contained numerous mossy fiber boutons. In some instances, biocytin-labeled mossy fiber boutons were engaged in synaptic contact with biocytin-labeled granule cell dendrites. Granule cell dendrites did not develop large complex spines ("thorny excrescences") at the site of synapse formation, and they did not appear to have been permanently damaged by seizure activity. These results establish the validity of Timm staining as a marker for mossy fiber sprouting and support the view that status epilepticus provokes the formation of a novel

  1. Interactive Slice of the CMS detector

    CERN Multimedia

    Davis, Siona Ruth

    2016-01-01

    This slice shows a colorful cross-section of the CMS detector with all parts of the detector labelled. Viewers are invited to click on buttons associated with five types of particles to see what happens when each type interacts with the sections of the detector. The five types of particles users can select to send through the slice are muons, electrons, neutral hadrons, charged hadrons and photons. Supplementary information on each type of particles is given. Useful for inclusion into general talks on CMS etc. *Animated CMS "slice" for Powerpoint (Mac & PC) Original version - 2004 Updated version - July 2010 *Six slides required - first is a set of buttons; others are for each particle type (muon, electron, charged/neutral hadron, photon) Recommend putting slide 1 anywhere in your presentation and the rest at the end

  2. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  3. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  4. Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice.

    Directory of Open Access Journals (Sweden)

    Jarrah R Spencer

    2013-02-01

    Full Text Available Neuregulin 1 (NRG1 is linked to an increased risk of developing schizophrenia and cannabis dependence. Mice that are hypomorphic for Nrg1 (Nrg1 HET mice display schizophrenia-relevant behavioural phenotypes and aberrant expression of serotonin and glutamate receptors. Nrg1 HET mice also display idiosyncratic responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC. To gain traction on the molecular pathways disrupted by Nrg1 hypomorphism and Nrg1-cannabinoid interactions we conducted a proteomic study. Adolescent wildtype (WT and Nrg1 HET mice were exposed to repeated injections of vehicle or THC and their hippocampi were submitted to 2D gel proteomics. Comparison of WT and Nrg1 HET mice identified proteins linked to molecular changes in schizophrenia that have not been previously associated with Nrg1. These proteins are involved in vesicular release of neurotransmitters such as SNARE proteins; enzymes impacting serotonergic neurotransmission, and; proteins affecting growth factor expression. Nrg1 HET mice treated with THC expressed a distinct protein expression signature compared to WT mice. Replicating prior findings, THC caused proteomic changes in WT mice suggestive of greater oxidative stress and neurodegeneration. We have previously observed that THC selectively increased hippocampal NMDA receptor binding of adolescent Nrg1 HET mice. Here we observed outcomes consistent with heightened NMDA-mediated glutamatergic neurotransmission. This included differential expression of proteins involved in NMDA receptor trafficking to the synaptic membrane; lipid raft stabilization of synaptic NMDA receptors; and homeostatic responses to dampen excitotoxicity. These findings uncover for the first time novel proteins altered in response to Nrg1 hypomorphism and Nrg1-cannabinoid interactions that improves our molecular understanding of Nrg1 signaling and Nrg1-mediated genetic vulnerability to the neurobehavioural effects

  5. The effect of pre-eclampsia-like syndrome induced by L-NAME on learning and memory and hippocampal glucocorticoid receptor expression: A rat model.

    Science.gov (United States)

    Zhu, Hao; Zhu, Weimin; Hu, Rong; Wang, Huijun; Ma, Duan; Li, Xiaotian

    2017-02-01

    We aimed to study the impacts of pre-eclampsia on the cognitive and learning capabilities of adolescent rat offspring and to explore the possible underlying mechanisms at the molecular level. Pregnant rats were subcutaneously injected with saline solution (control) (n = 16) or NG-nitro-L-arginine methyl ester (L-NAME) (n = 16) from the 13th day of gestation until parturition. The brain tissues from fetal rats delivered by cesarean section were examined in both groups with hematoxylin and eosin (H&E) staining. Rats born vaginally in both groups were subjected to the Morris water maze test when 8-week-old and their hippocampi were analyzed for glucocorticoid receptor (GR) expression. A pre-eclampsia-like model was successfully built in pregnant rats by infusion of the NO synthase inhibitor L-NAME, including phenotypes as maternal hypertension and proteinuria, high stillbirth rate, and fetal growth retardation. Neuroepithelial cell proliferation was found in the hippocampus of fetal rats in the L-NAME group. Grown to 8-week-old, the L-NAME group showed significantly longer escape latency than the control group in the beginning as well as in the end of navigation trials. At the same time, the swimming distance achieved by the L-NAME group was significantly longer than that of the control group. Such differences in cognitive and learning capabilities between the two groups were not gender dependent. Besides, the 8-week-old rats in the L-NAME group had increased GR expression in the hippocampus than the control group. Pre-eclampsia would impair cognitive and learning capabilities in adolescent offspring, and the upregulated expression of hippocampal GR may be involved in the underlying mechanisms.

  6. Role of the medial septum diagonal band of Broca cholinergic neurons in oestrogen-induced spine synapse formation on hippocampal CA1 pyramidal cells of female rats.

    Science.gov (United States)

    Lâm, Thiên-Trí; Leranth, Csaba

    2003-05-01

    Oestrogen is known to influence pyramidal cell spine synapse plasticity in the CA1 subfield of the hippocampus. Apart from direct oestrogen action on the hippocampus, oestrogen effects mediated by subcortical structures are known to be important. The purpose of this study was to investigate whether the medial septum diagonal band of Broca (MSDB) takes part in mediating oestrogen effects to the hippocampus. Special attention was given to the role of cholinergic MSDB neurons that project to the hippocampus, as a rather large population of them contains oestrogen receptors and, consequently, may be sensitive to oestrogen signals. Adult female rats were ovariectomized. Oestradiol- and cholesterol-filled cannulae (control) were implanted into the MSDB. To selectively eliminate the cholinergic population of MSDB neurons of oestrogen-treated animals, a group of rats was injected with 192 IgG-saporin (SAP) into the lateral ventricle 1 week before the cannula implant. Immunostaining with anti-choline acetyltransferase and parvalbumin (PA) showed that cholinergic but not PA-containing GABAergic neurons were substantially reduced in the MSDB of SAP rats. Comparative electron microscopic unbiased stereological analysis on the spine synapse density of CA1 area pyramidal cells was performed between all animal groups. Rats that received oestradiol-filled cannulae showed a higher (30%) spine synapse density than control animals. Oestrogen-treated rats that had received SAP treatment showed no significant difference to controls. Thus, this observation indicates that septo-hippocampal cholinergic neurons are involved in mediating oestrogen effects to the hippocampus. The relevance of this observation to mnemonic functions and Alzheimer's disease is discussed.

  7. Hippocampal Injections of oligomeric amyloid β-peptide (1-42 induce selective working memory deficits and long-lasting alterations of ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Pierre eFaucher

    2016-01-01

    Full Text Available Increasing evidence suggests that abnormal brain accumulation of soluble rather than aggregated amyloid-β1-42 oligomers (Aβo(1-42 plays a causal role in Alzheimer’s disease (AD. However, as yet, animal’s models of AD based on oligomeric amyloid-β1-42 injections in the brain have not investigated their long-lasting impacts on molecular and cognitive functions. In addition, the injections have been most often performed in ventricles, but not in the hippocampus, in spite of the fact that the hippocampus is importantly involved in memory processes and is strongly and precociously affected during the early stages of AD. Thus, in the present study, we investigated the long-lasting impacts of intra-hippocampal injections of oligomeric forms of Aβo(1-42 on working and spatial memory and on the related activation of ERK1/2. Indeed, the extracellular signal-regulated kinase (ERK which is involved in memory function had been found to be activated by amyloid peptides. We found that repeated bilateral injections (1injection/day over 4 successive days of oligomeric forms of Aβo(1-42 into the dorsal hippocampus lead to long-lasting impairments in two working memory tasks, these deficits being observed seven days after the last injection, while spatial memory remained unaffected. Moreover, the working memory deficits were correlated with sustained impairments of ERK1/2 activation in the medial prefrontal cortex and the septum, two brain areas tightly connected with the hippocampus and involved in working memory. Thus, our study is first to evidence that sub-chronic injections of oligomeric forms of Aβo(1-42 into the dorsal hippocampus produces the main sign of cognitive impairments corresponding to the early stages of AD, via long-lasting alterations of an ERK/MAPK pathway in an interconnected brain networks.

  8. Holographic entanglement entropy on generic time slices

    Science.gov (United States)

    Kusuki, Yuya; Takayanagi, Tadashi; Umemoto, Koji

    2017-06-01

    We study the holographic entanglement entropy and mutual information for Lorentz boosted subsystems. In holographic CFTs at zero and finite temperature, we find that the mutual information gets divergent in a universal way when the end points of two subsystems are light-like separated. In Lifshitz and hyperscaling violating geometries dual to non-relativistic theories, we show that the holographic entanglement entropy is not well-defined for Lorentz boosted subsystems in general. This strongly suggests that in non-relativistic theories, we cannot make a real space factorization of the Hilbert space on a generic time slice except the constant time slice, as opposed to relativistic field theories.

  9. Slice through an LHC bending magnet

    CERN Multimedia

    Slice through an LHC superconducting dipole (bending) magnet. The slice includes a cut through the magnet wiring (niobium titanium), the beampipe and the steel magnet yokes. Particle beams in the Large Hadron Collider (LHC) have the same energy as a high-speed train, squeezed ready for collision into a space narrower than a human hair. Huge forces are needed to control them. Dipole magnets (2 poles) are used to bend the paths of the protons around the 27 km ring. Quadrupole magnets (4 poles) focus the proton beams and squeeze them so that more particles collide when the beams’ paths cross. There are 1232 15m long dipole magnets in the LHC.

  10. Inhibition of NKCC1 attenuated hippocampal LTP formation and inhibitory avoidance in rat.

    Directory of Open Access Journals (Sweden)

    Meng Chang Ko

    Full Text Available The loop diuretic bumetanide (Bumex is thought to have antiepileptic properties via modulate GABAA mediated signaling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signaling, we sought to investigate whether they also affect hippocampal function. The current study was performed to evaluate the possible role of NKCC1 on the hippocampal function. Brain slice extracellular recording, inhibitory avoidance, and western blot were applied in this study. Results showed that hippocampal Long-term potentiation was attenuated by suprafusion of NKCC1 inhibitor bumetanide, in a dose dependent manner. Sequent experiment result showed that Intravenous injection of bumetanide (15.2 mg/kg 30 min prior to the training session blocked inhibitory avoidance learning significantly. Subsequent control experiment's results excluded the possible non-specific effect of bumetanide on avoidance learning. We also found the phosphorylation of hippocampal MAPK was attenuated after bumetanide administration. These results suggested that hippocampal NKCC1 may via MAPK signaling cascade to possess its function.

  11. The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, Jens; Zimmer, Jens

    2003-01-01

    The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic interneu......, while muscimol (100-1000 microM) and ATPA (1-3 microM) were without effect. The results demonstrate that direct GABA(A) agonism can mediate neuroprotection in the hippocampus in vitro as previously suggested in vivo....

  12. Effects of Acetylcholinesterase Inhibition on Cholinergic Transmission in the Hippocampal Slice.

    Science.gov (United States)

    1985-02-08

    effects on possible second messenger systems. One of the more exciting recent developments in cholinergic pharmacology has been the discovery (see...Investigator at several universities and professional meetings. The work on * desensitization was the topic of a poster at the Neurscience Society Meeting...Inventions, patents - None Other Information Two developments have influenced the timing of the research and the degree to which various components

  13. The Effects of Cyanide on Neural and Synaptic Function in Hippocampal Slices

    Science.gov (United States)

    1989-01-01

    INTRODUCTION Hartree, 1938; Albaum et al.. 1946; Camerino and King, 1966; Schubert and Brill, 1968; Ballanyne et al., 1972; Piantadosi et al., 1983...Physiol 1988; 401:60 (London) 1939; 127:167-191 Camerino PW, King TE. Studies on Kirino T, Sano, K. Selective vulnerability in cytochrome oxidase 11

  14. Reducing central serotonin in adulthood promotes hippocampal neurogenesis.

    Science.gov (United States)

    Song, Ning-Ning; Jia, Yun-Fang; Zhang, Lei; Zhang, Qiong; Huang, Ying; Liu, Xiao-Zhen; Hu, Ling; Lan, Wei; Chen, Ling; Lesch, Klaus-Peter; Chen, Xiaoyan; Xu, Lin; Ding, Yu-Qiang

    2016-02-03

    Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER(T2) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.

  15. Memory reconsolidation mediates the updating of hippocampal memory content

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  16. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States); Fisher, Robyn L. [Vitron Inc., Tucson, AZ (United States); Vickers, Alison E.M., E-mail: vickers_alison@allergan.com [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States)

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  17. Cyclothiazide prolongs low [Mg2+]-induced seizure-like events.

    Science.gov (United States)

    Lasztóczi, Bálint; Kardos, Julianna

    2006-12-01

    Here we address the effects of cyclothiazide (CTZ), an allosteric inhibitor of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor desensitization, on low [Mg(2+)]-induced seizure-like events (SLEs) recorded from the CA3 pyramidal layer of juvenile rat hippocampal slices. CTZ (100 microM) made the period of tonic-like discharges (161 +/- 18% of control) and the whole SLE (151 +/- 15% of control) longer (in 7 of 9 slices) or induced endless SLE by stabilizing clonic-like bursting (in 2 of 9 slices). CTZ (30 microM) had no significant effects on SLE dynamics (n = 4), whereas 300 microM CTZ induced endless SLEs in four of eight slices. Co-application of CTZ (100 microM) with 100 microM GYKI-52466, the allosteric inhibitor of AMPA receptor function, restrained the effects of CTZ and shortened SLEs and their tonic phases to 37 +/- 4.2 and 47 +/- 4.2% of the control, respectively. Effects of GYKI-52466 and GYKI-52466 with CTZ on SLE dynamics were indistinguishable. 4-aminopyridine (4-AP; 50 microM) alone (n = 5) or in combination with CTZ (n = 6) transformed recurrent SLE pattern into incessant epileptiform activity with patterns distinguishable from those under 100 microM CTZ application. The effect of 4-AP may suggest a role for facilitated presynaptic glutamate release in disrupting recurrent dynamics. In contrast, the self-similar slow-down of low [Mg(2+)]-induced SLE dynamics by CTZ indicate AMPA receptor desensitization as a parameter shaping SLEs.

  18. α-Calcium calmodulin kinase II modulates the temporal structure of hippocampal bursting patterns.

    Directory of Open Access Journals (Sweden)

    Jeiwon Cho

    Full Text Available The alpha calcium calmodulin kinase II (α-CaMKII is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit studies, with α-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (α-CaMKII(T305D mutants, that indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that α-CaMKII(T305D mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns of α-CaMKII(T305D mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in α-CaMKII(T305D mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-known function in synaptic plasticity, α-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular processes involved in acquiring information may also shape the patterns used to encode this information.

  19. Silicon ingot casting: Heat exchanger method. Multi-wire slicing: Fixed abrasive slicing technique, phase 3

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    In the area of ingot casting the proof of concept of heat exchanger method (HEM) was established. It was also established that HEM cast silicon yielded solar cell performance comparable to Czochralski grown material. Solar cells with conversion efficiencies of up to 15% were fabricated. It was shown that square cross-section ingots can be cast. In the area of crystal slicing, it was established that silicon can be sliced efficiently with the fixed abrasive slicing technique approach. This concept was carried forward to 10 cm diameter workpiece.

  20. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Monika Burns

    Full Text Available Helicobacter pylori (H.pylori, a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA, enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40 were used; half were placed on a moderately iron deficient (ID diet immediately post-weaning, and the other half were maintained on an iron replete (IR diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet. All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (p<0.001. Hippocampal gene expression of myelination markers and dopamine receptor 1 was significantly downregulated in mice on an ID diet (both p<0.05, independent of infection status. At 12 months postinfection, hematocrit (Hct and hemoglobin (Hgb concentration were significantly lower in +Hp, ID diet mice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA.

  1. Adaptive slices for acquisition of anisotropic BRDF

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    (2018) ISSN 2096-0433 R&D Projects: GA ČR GA17-18407S Institutional support: RVO:67985556 Keywords : anisotropic BRDF * slice * sampling Subject RIV: BD - Theory of Information http:// library .utia.cas.cz/separaty/2018/RO/vavra-0486116.pdf

  2. Thin-Slice Perception Develops Slowly

    Science.gov (United States)

    Balas, Benjamin; Kanwisher, Nancy; Saxe, Rebecca

    2012-01-01

    Body language and facial gesture provide sufficient visual information to support high-level social inferences from "thin slices" of behavior. Given short movies of nonverbal behavior, adults make reliable judgments in a large number of tasks. Here we find that the high precision of adults' nonverbal social perception depends on the slow…

  3. Detecting Psychopathy from Thin Slices of Behavior

    Science.gov (United States)

    Fowler, Katherine A.; Lilienfeld, Scott O.; Patrick, Christopher J.

    2009-01-01

    This study is the first to demonstrate that features of psychopathy can be reliably and validly detected by lay raters from "thin slices" (i.e., small samples) of behavior. Brief excerpts (5 s, 10 s, and 20 s) from interviews with 96 maximum-security inmates were presented in video or audio form or in both modalities combined. Forty raters used…

  4. nem_slice ver. 3.34

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-08

    Nem_slice reads in a finite element model description of the geometry of a problem from an ExodusII file and generates either a nodal or elemental graph of the problem. It then calls Chaco to load balance the graph and then outputs a NemesisI load-balance file.

  5. Effects of met-enkephalin on GABAergic spontaneous miniature IPSPs in organotypic slice cultures of the rat hippocampus

    DEFF Research Database (Denmark)

    Rekling, J C

    1993-01-01

    The action of met-enkephalin on GABAergic spontaneous miniature IPSPs (smIPSPs) was investigated in CA1 neurons from hippocampal slice cultures. In the presence of excitatory amino acid blockers (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline, DL-2-amino-5-phosphonovaleric acid) and TTX......, a continuous high-frequency bombardment of smIPSPs was recorded. The smIPSPs were blocked by the GABAA antagonist bicuculline. The occurrence of the smIPSPs was random and their amplitude distribution was skewed toward larger smIPSPs. Met-enkephalin (10-20 microM) reversibly reduced the frequency and changed...

  6. Impaired Hippocampal Glutamate and Glutamine Metabolism in the db/db Mouse Model of Type 2 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; Nissen, Jakob Dahl; Christensen, Sofie Kjellerup

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is a risk factor for the development of Alzheimer's disease, and changes in brain energy metabolism have been suggested as a causative mechanism. The aim of this study was to investigate the cerebral metabolism of the important amino acids glutamate and glutamine...... in the db/db mouse model of T2DM. Glutamate and glutamine are both substrates for mitochondrial oxidation, and oxygen consumption was assessed in isolated brain mitochondria by Seahorse XFe96 analysis. In addition, acutely isolated cerebral cortical and hippocampal slices were incubated with [U-13C......]glutamate and [U-13C]glutamine, and tissue extracts were analyzed by gas chromatography-mass spectrometry. The oxygen consumption rate using glutamate and glutamine as substrates was not different in isolated cerebral mitochondria of db/db mice compared to controls. Hippocampal slices of db/db mice exhibited...

  7. Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis.

    Science.gov (United States)

    Wilkinson, Samuel T; Sanacora, Gerard; Bloch, Michael H

    2017-05-01

    Reduced hippocampal volume is one of the most consistent morphological findings in Major Depressive Disorder (MDD). Electroconvulsive therapy (ECT) is the most effective therapy for MDD, yet its mechanism of action remains poorly understood. Animal models show that ECT induces several neuroplastic processes, which lead to hippocampal volume increases. We conducted a meta-analysis of ECT studies in humans to investigate its effects on hippocampal volume. PubMed was searched for studies examining hippocampal volume before and after ECT. A random-effects model was used for meta-analysis with standardized mean difference (SMD) of the change in hippocampal volume before and after ECT as the primary outcome. Nine studies involving 174 participants were included. Total hippocampal volumes increased significantly following ECT compared to pre-treatment values (SMD=1.10; 95% CI 0.80-1.39; z=7.34; pchange in total hippocampal volume (beta=-1.28, 95% CI -4.51-1.95, z=-0.78, p=0.44). We demonstrate fairly consistent increases in hippocampal volume bilaterally following ECT treatment. The relationship among these volumetric changes and clinical improvement and cognitive side effects of ECT should be explored by larger, multisite studies with harmonized imaging methods.

  8. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons.

    Science.gov (United States)

    Tobaben, S; Grohm, J; Seiler, A; Conrad, M; Plesnila, N; Culmsee, C

    2011-02-01

    Glutamate toxicity involves increases in intracellular calcium levels and enhanced formation of reactive oxygen species (ROS) causing neuronal dysfunction and death in acute and chronic neurodegenerative disorders. The molecular mechanisms mediating glutamate-induced ROS formation are, however, still poorly defined. Using a model system that lacks glutamate-operated calcium channels, we demonstrate that glutamate-induced acceleration of ROS levels occurs in two steps and is initiated by lipoxygenases (LOXs) and then significantly accelerated through Bid-dependent mitochondrial damage. The Bid-mediated secondary boost of ROS formation downstream of LOX activity further involves mitochondrial fragmentation and release of mitochondrial apoptosis-inducing factor (AIF) to the nucleus. These data imply that the activation of Bid is an essential step in amplifying glutamate-induced formation of lipid peroxides to irreversible mitochondrial damage associated with further enhanced free radical formation and AIF-dependent execution of cell death.

  9. Cannabinoids prevent the amyloid β-induced activation of astroglial hemichannels: A neuroprotective mechanism.

    Science.gov (United States)

    Gajardo-Gómez, Rosario; Labra, Valeria C; Maturana, Carola J; Shoji, Kenji F; Santibañez, Cristian A; Sáez, Juan C; Giaume, Christian; Orellana, Juan A

    2017-01-01

    The mechanisms involved in Alzheimer's disease are not completely understood and how astrocytes and their gliotransmission contribute to this neurodegenerative disease remains to be fully elucidated. Previous studies have shown that amyloid-β peptide (Aβ) induces neuronal death by a mechanism that involves the excitotoxic release of ATP and glutamate associated to astroglial hemichannel opening. We have demonstrated that synthetic and endogenous cannabinoids (CBs) reduce the opening of astrocyte Cx43 hemichannels evoked by activated microglia or inflammatory mediators. Nevertheless, whether CBs could prevent the astroglial hemichannel-dependent death of neurons evoked by Aβ is unknown. Astrocytes as well as acute hippocampal slices were treated with the active fragment of Aβ alone or in combination with the following CBs: WIN, 2-AG, or methanandamide (Meth). Hemichannel activity was monitored by single channel recordings and by time-lapse ethidium uptake while neuronal death was assessed by Fluoro-Jade C staining. We report that CBs fully prevented the hemichannel activity and inflammatory profile evoked by Aβ in astrocytes. Moreover, CBs fully abolished the Aβ-induced release of excitotoxic glutamate and ATP associated to astrocyte Cx43 hemichannel activity, as well as neuronal damage in hippocampal slices exposed to Aβ. Consequently, this work opens novel avenues for alternative treatments that target astrocytes to maintain neuronal function and survival during AD. GLIA 2016 GLIA 2017;65:122-137. © 2016 Wiley Periodicals, Inc.

  10. Epigenetics, estradiol, and hippocampal memory consolidation

    Science.gov (United States)

    Frick, Karyn M.

    2013-01-01

    Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the etiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that regulation of these epigenetic processes by modulatory factors such as environmental enrichment, stress, and hormones substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-estradiol (E2) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and aging. This review will provide a brief overview of the literature on epigenetics and memory, describe in detail our findings demonstrating that epigenetic alterations regulate E2-induced memory enhancement in female mice, and discuss future directions for research on the epigenetic regulation of E2-induced memory enhancement. PMID:24028406

  11. Diazepam treatment blocks the elevation of hippocampal activity and the accelerated proliferation of hippocampal neural stem cells after focal cerebral ischemia in mice.

    Science.gov (United States)

    Nochi, Rokuya; Kaneko, Jun; Okada, Natsumi; Terazono, Yasushi; Matani, Ayumu; Hisatsune, Tatsuhiro

    2013-11-01

    Hippocampal neurogenesis is accelerated during the elevation of hippocampal neural activities under both physiological and pathophysiological conditions. One of these conditions, middle cerebral artery occlusion (MCAO), induces both the hyperactivities of hippocampal network and the elevation of neural stem cell (NSC) proliferation. However, the causal relationship between the elevated activity and the elevation of NSC proliferation is still unclear. In this study, to block the elevation of hippocampal activity after MCAO in mice, we utilized a typical γ-aminobutyric acid type A (GABAA ) receptor active modulator, diazepam. With MCAO mice treated with diazepam, we observed complete disappearance of the elevation of hippocampal activity. Additionally, the diazepam treatment blocked the elevation of NSC proliferation after MCAO. From this result, it is speculated that the increased NSC proliferation is blocked by the suppression of elevated neural activity. However, diazepam might have effects other than the suppression of hippocampal activity, so we performed additional experiment and found that diazepam did not affect the number of bromodeoxyuridine-positive cells under the normal condition, whereas the GABA agonist pentobarbital stimulated NSC/neural progenitor cell proliferation and differentiation. Next, we evaluated the expression of the diazepam-binding inhibitor (DBI) protein and found that the cells expressed DBI in soma and on the surface of cell membrane. From these observations, we can propose that diazepam blocks the elevation of hippocampal activity and also NSC proliferation after MCAO. Copyright © 2013 Wiley Periodicals, Inc.

  12. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); V.M. Strike (Vanessa); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  13. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  14. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators

    Science.gov (United States)

    Hueston, C M; Cryan, J F; Nolan, Y M

    2017-01-01

    Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system