WorldWideScience

Sample records for hippocampal h19-7 cells

  1. Hippocampal place cells construct reward related sequences through unexplored space.

    Ólafsdóttir, H Freyja; Barry, Caswell; Saleem, Aman B; Hassabis, Demis; Spiers, Hugo J

    2015-06-26

    Dominant theories of hippocampal function propose that place cell representations are formed during an animal's first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such 'preplay' was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments.

  2. Independent rate and temporal coding in hippocampal pyramidal cells.

    Huxter, John; Burgess, Neil; O'Keefe, John

    2003-10-23

    In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory.

  3. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping

    Wang, Melissa E.; Yuan, Robin K.; Keinath, Alexander T.; Ramos Álvarez, Manuel M.

    2015-01-01

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation. PMID:26085635

  4. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  6. Anoxia increases potassium conductance in hippocampal nerve cells.

    Hansen, A J; Hounsgaard, J; Jahnsen, H

    1982-07-01

    The effect of anoxia on nerve cell function was studied by intra- and extracellular microelectrode recordings from the CA1 and CA3 region in guinea pig hippocampal slices. Hyperpolarization and concomitant reduction of the nerve cell input resistance was observed early during anoxia. During this period the spontaneous activity first disappeared, then the evoked activity gradually disappeared. The hyperpolarization was followed by depolarization and an absence of a measurable input resistance. All the induced changes were reversed when the slice was reoxygenated. Reversal of the electro-chemical gradient for Cl- across the nerve cell membrane did not affect the course of events during anoxia. Aminopyridines blocked the anoxic hyperpolarization and attenuated the decrease of membrane resistance, but had no effect on the later depolarization. Blockers of synaptic transmission. Mn++, Mg++ and of Na+-channels (TTX) were without effect on the nerve cell changes during anoxia. It is suggested that the reduction of nerve cell excitability in anoxia is primarily due to increased K+-conductance. Thus, the nerve cells are hyperpolarized and the input resistance reduced, causing higher threshold and reduction of synaptic potentials. The mechanism of the K+-conductance activation is unknown at present.

  7. The influence of electric fields on hippocampal neural progenitor cells.

    Ariza, Carlos Atico; Fleury, Asha T; Tormos, Christian J; Petruk, Vadim; Chawla, Sagar; Oh, Jisun; Sakaguchi, Donald S; Mallapragada, Surya K

    2010-12-01

    The differentiation and proliferation of neural stem/progenitor cells (NPCs) depend on various in vivo environmental factors or cues, which may include an endogenous electrical field (EF), as observed during nervous system development and repair. In this study, we investigate the morphologic, phenotypic, and mitotic alterations of adult hippocampal NPCs that occur when exposed to two EFs of estimated endogenous strengths. NPCs treated with a 437 mV/mm direct current (DC) EF aligned perpendicularly to the EF vector and had a greater tendency to differentiate into neurons, but not into oligodendrocytes or astrocytes, compared to controls. Furthermore, NPC process growth was promoted perpendicularly and inhibited anodally in the 437 mV/mm DC EF. Yet fewer cells were observed in the DC EF, which in part was due to a decrease in cell viability. The other EF applied was a 46 mV/mm alternating current (AC) EF. However, the 46 mV/mm AC EF showed no major differences in alignment or differentiation, compared to control conditions. For both EF treatments, the percent of mitotic cells during the last 14 h of the experiment were statistically similar to controls. Reported here, to our knowledge, is the first evidence of adult NPC differentiation affected in an EF in vitro. Further investigation and application of EFs on stem cells is warranted to elucidate the utility of EFs to control phenotypic behavior. With progress, the use of EFs may be engineered to control differentiation and target the growth of transplanted cells in a stem cell-based therapy to treat nervous system disorders.

  8. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  9. Balloon cells associated with granule cell dispersion in the dentate gyrus in hippocampal sclerosis.

    Thom, M; Martinian, L; Caboclo, L O; McEvoy, A W; Sisodiya, S M

    2008-06-01

    Granule cell dispersion (GCD) is a common finding in hippocampal sclerosis in patients with intractable focal epilepsy. It is considered to be an acquired, post-developmental rather than a pre-existing abnormality, involving dispersion of either mature or newborn neurones, but the precise factors regulating it and its relationship to seizures are unknown. We present two cases of GCD with associated CD34-immunopositive balloon cells, a cell phenotype associated with focal cortical dysplasia type IIB, considered to be a developmental cortical lesion promoting epilepsy. This observation opens up the debate regarding the origin of balloon cells and CD34 expression and their temporal relationship to seizures.

  10. Nitrous Oxide Induces Prominent Cell Proliferation in Adult Rat Hippocampal Dentate Gyrus

    Farah Chamaa

    2018-05-01

    Full Text Available The identification of distinct and more efficacious antidepressant treatments is highly needed. Nitrous oxide (N2O is an N-methyl-D-aspartic acid (NMDA antagonist that has been reported to exhibit antidepressant effects in treatment-resistant depression (TRD patients. Yet, no studies have investigated the effects of sub-anesthetic dosages of N2O on hippocampal cell proliferation and neurogenesis in adult brain rats. In our study, adult male Sprague-Dawley rats were exposed to single or multiple exposures to mixtures of 70% N2O and 30% oxygen (O2. Sham groups were exposed to 30% O2 and the control groups to atmospheric air. Hippocampal cell proliferation was assessed by bromodeoxyuridine (BrdU incorporation, and BrdU-positive cells were counted in the dentate gyrus (DG using confocal microscopy. Results showed that while the rates of hippocampal cell proliferation were comparable between the N2O and sham groups at day 1, levels increased by 1.4 folds at day 7 after one session exposure to N2O. Multiple N2O exposures significantly increased the rate of hippocampal cell proliferation to two folds. Therefore, sub-anesthetic doses of N2O, similar to ketamine, increase hippocampal cell proliferation, suggesting that there will ultimately be an increase in neurogenesis. Future studies should investigate added N2O exposures and their antidepressant behavioral correlates.

  11. Survival of mossy cells of the hippocampal dentate gyrus in humans with mesial temporal lobe epilepsy.

    Seress, László; Abrahám, Hajnalka; Horváth, Zsolt; Dóczi, Tamás; Janszky, József; Klemm, Joyce; Byrne, Richard; Bakay, Roy A E

    2009-12-01

    Hippocampal sclerosis can be identified in most patients with mesial temporal lobe epilepsy (TLE). Surgical removal of the sclerotic hippocampus is widely performed to treat patients with drug-resistant mesial TLE. In general, both epilepsy-prone and epilepsy-resistant neurons are believed to be in the hippocampal formation. The hilar mossy cells of the hippocampal dentate gyrus are usually considered one of the most vulnerable types of neurons. The aim of this study was to clarify the fate of mossy cells in the hippocampus in epileptic humans. Of the 19 patients included in this study, 15 underwent temporal lobe resection because of drug-resistant TLE. Four patients were used as controls because they harbored tumors that had not invaded the hippocampus and they had experienced no seizures. Histological evaluation of resected hippocampal tissues was performed using immunohistochemistry. Mossy cells were identified in the control as well as the epileptic hippocampi by using cocaine- and amphetamine-regulated transcript peptide immunohistochemistry. In most cases the number of mossy cells was reduced and thorny excrescences were smaller in the epileptic hippocampi than in controls; however, there was a significant loss of pyramidal cells and a partial loss of granule cells in the same epileptic hippocampi in which mossy cell loss was apparent. The loss of mossy cells could be correlated with the extent of hippocampal sclerosis, patient age at seizure onset, duration of epilepsy, and frequency of seizures. In many cases large numbers of mossy cells were present in the hilus of the dentate gyrus when most pyramidal neurons of the CA1 and CA3 areas of the Ammon's horn were lost, suggesting that mossy cells may not be more vulnerable to epileptic seizures than the hippocampal pyramidal neurons.

  12. Changes in reward contingency modulate the trial-to-trial variability of hippocampal place cells.

    Wikenheiser, Andrew M; Redish, A David

    2011-08-01

    Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning. Theories of hippocampal function suggest that these "place cells" implement multiple, independent neural representations of position (maps), based on different reference frames or environmental features. Consistent with the "multiple maps" theory, previous studies have shown that manipulating spatial factors related to task performance modulates the within-session variability (overdispersion) of cells in the hippocampus. However, the influence of changes in reward contingency on overdispersion has not been examined. To test this, we first trained rats to collect food from three feeders positioned around a circular track (task(1)). When subjects were proficient, the reward contingency was altered such that every other feeder delivered food (task(2)). We recorded ensembles of hippocampal neurons as rats performed both tasks. Place cell overdispersion was high during task(1) but decreased significantly during task(2), and this increased reliability could not be accounted for by changes in running speed or familiarity with the task. Intuitively, decreased variability might be expected to improve neural representations of position. To test this, we used Bayesian decoding of hippocampal spike trains to estimate subjects' location. Neither the amount of probability decoded to subjects' position (local probability) nor the difference between estimated position and true location (decoding accuracy) differed between tasks. However, we found that hippocampal ensembles were significantly more self-consistent during task(2) performance. These results suggest that changes in task demands can affect the firing statistics of hippocampal neurons, leading to changes in the properties of decoded neural representations.

  13. Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis

    Roelof Maarten evan Dijk

    2016-03-01

    Full Text Available While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non

  14. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  15. Medial Entorhinal Cortex Lesions Only Partially Disrupt Hippocampal Place Cells and Hippocampus-Dependent Place Memory

    Jena B. Hales

    2014-11-01

    Full Text Available The entorhinal cortex provides the primary cortical projections to the hippocampus, a brain structure critical for memory. However, it remains unclear how the precise firing patterns of medial entorhinal cortex (MEC cells influence hippocampal physiology and hippocampus-dependent behavior. We found that complete bilateral lesions of the MEC resulted in a lower proportion of active hippocampal cells. The remaining active cells had place fields, but with decreased spatial precision and decreased long-term spatial stability. In addition, MEC rats were as impaired in the water maze as hippocampus rats, while rats with combined MEC and hippocampal lesions had an even greater deficit. However, MEC rats were not impaired on other hippocampus-dependent tasks, including those in which an object location or context was remembered. Thus, the MEC is not necessary for all types of spatial coding or for all types of hippocampus-dependent memory, but it is necessary for the normal acquisition of place memory.

  16. Real-time position reconstruction with hippocampal place cells.

    Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V

    2011-01-01

    Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.

  17. Gonadal Steroids: Effects on Excitability of Hippocampal Pyramidal Cells

    Teyler, Timothy J.; Vardaris, Richard M.; Lewis, Deborah; Rawitch, Allen B.

    1980-08-01

    Electrophysiological field potentials from hippocampal slices of rat brain show sex-linked differences in response to 1 × 10-10M concentrations of estradiol and testosterone added to the incubation medium. Slices from male rats show increased excitability to estradiol and not to testosterone. Slices from female rats are not affected by estradiol, but slices from female rats in diestrus show increased excitability in response to testosterone whereas slices from females in proestrus show decreased excitability.

  18. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  19. Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons.

    Stankowska, Dorota L; Krishnamoorthy, Vignesh R; Ellis, Dorette Z; Krishnamoorthy, Raghu R

    2017-06-01

    Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro

  20. Cytokines effects on radio-induced apoptosis in cortical and hippocampal rat cells in culture

    Coffigny, H.; Briot, D.; Le Nin, I.

    2000-01-01

    In the central nervous system in development the radio-induced cell death occurs mainly by apoptosis. The effects of modulating factors like cytokines were studied on this kind of death. To handle more easily parameters implicated in nerve cell apoptosis, we studied the effects of radiation with a in vitro system. Cells were isolated from rat foetal cortex and hippocampus, two of the major structures implicated in human mental retardation observed after exposition in utero at Hiroshima and Nagasaki. Cortical or hippocampal cells were isolated from 17 day-old rat foetuses by enzymatic and mechanical treatments and irradiated with 0.50 or 1 Gy. The cells from both structures were cultured 1 or 3 days in serum free medium. Cytokines like βNGF, NT3, EGF, βTGF, α and βFGF, IGF I and II, interleukines like Il 1β, Il 2 and IL 6 were added to the medium. In 3 days cortical cell culture, only βFGF increased cell survival with as little as 10 ng/ml. This effect was dose dependent. In hippocampal cell culture, no significant increase of cell survival occurred with 10 ng/ml of any cytokines. In the same system culture with 1 Gy irradiation, the positive or negative effect of the association of βFGF with another cytokine was tested on cell survival. Only the association with EGF induced higher cell survival in cortical cell culture. In hippocampal cell culture where βFGF alone had no effect, the cell survival was not modified by the association. In the same system, the triple association of βFGF-EGF with another cytokine was tested on hippocampal and cortical cell cultures. No significant effect was observed in both cultures but cell survival trented to decrease with βTGF. In order to avoid the mitotic effect of cytokines in the 3 day-old culture, experiments were carried out on 20 hours cell culture, before the end of the first round of the cell cycle, with the selected cytokines (βFGF or βFGF-EGF). Without irradiation, the percentage of cortical cell survival

  1. Retrovirally transduced NCAM140 facilitates neuronal fate choice of hippocampal progenitor cells.

    Kim, Ju Hee; Lee, Jung-Ha; Park, Jin-Yong; Park, Chang-Hwan; Yun, Chae-Ok; Lee, Sang-Hun; Lee, Yong-Sung; Son, Hyeon

    2005-07-01

    Neural cell adhesion molecule (NCAM) influences proliferation and differentiation of neuronal cells. However, only a little is known about the downstream effects of NCAM signalling, such as alterations in gene transcription, which are associated with cell fate choice. To examine whether NCAM plays a role in cell fate choice during hippocampal neurogenesis, we performed a gain-of-function study, using a retroviral vector which contained full-length NCAM140 cDNA and the marker gene EGFP, and found that NCAM140 promoted neurogenesis by activating proneural transcription activators with concurrent inhibition of gliogenesis. The enhanced transcript levels of proneural transcription factors in NCAM140-transduced cells were down-regulated by treatment of the cells with mitogen-activated protein kinase kinase (MEK) inhibitor PD098059. Overall, these findings suggest that NCAM140 may facilitate hippocampal neurogenesis via regulation of proneurogenic transcription factors in an extracellular signal-regulated kinase (ERK)-dependent manner.

  2. Physical Exercise Leads to Rapid Adaptations in Hippocampal Vasculature : Temporal Dynamics and Relationship to Cell Proliferation and Neurogenesis

    Van der Borght, Karin; Kobor-Nyakas, Dora E.; Klauke, Karin; Eggen, Bart J. L.; Nyakas, Csaba; Van der Zee, Eddy A.; Meerlo, Peter

    2009-01-01

    Increased levels of angiogenesis and neurogenesis possibly mediate the beneficial effects of physical activity on hippocampal plasticity. This study was designed to investigate the temporal dynamics of exercise-induced changes in hippocampal angiogenesis and cell proliferation. Mice were housed with

  3. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  4. Neurotoxic effect of 2,5-hexanedione on neural progenitor cells and hippocampal neurogenesis

    Kim, Min-Sun; Park, Hee Ra; Park, Mikyung; Kim, So Jung; Kwon, Mugil; Yu, Byung Pal; Chung, Hae Young; Kim, Hyung Sik; Kwack, Seung Jun; Kang, Tae Seok; Kim, Seung Hee; Lee, Jaewon

    2009-01-01

    2,5-Hexanedione (HD), a metabolite of n-hexane, causes central and peripheral neuropathy leading to motor neuron deficits. Although chronic exposure to n-hexane is known to cause gradual sensorimotor neuropathy, there are no reports on the effects of low doses of HD on neurogenesis in the central nervous system. In the current study, we explored HD toxicity in murine neural progenitor cells (NPC), primary neuronal culture and young adult mice. HD (500 nM∼50 μM) dose-dependently suppressed NPC proliferation and cell viability, and also increased the production of reactive oxygen species (ROS). HD (10 or 50 mg/kg for 2 weeks) inhibited hippocampal neuronal and NPC proliferation in 6-week-old male ICR mice, as measured by BrdU incorporation in the dentate gyrus, indicating HD impaired hippocampal neurogenesis. In addition, elevated microglial activation was observed in the hippocampal CA3 region and lateral ventricles of HD-treated mice. Lastly, HD dose-dependently decreased the viability of primary cultured neurons. Based on biochemical and histochemical evidence from both cell culture and HD-treated animals, the neurotoxic mechanisms by which HD inhibits NPC proliferation and hippocampal neurogenesis may relate to its ability to elicit an increased generation of deleterious ROS.

  5. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo

    Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313

  6. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  7. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis.

    Griffin, Nicole G; Wang, Yu; Hulette, Christine M; Halvorsen, Matt; Cronin, Kenneth D; Walley, Nicole M; Haglund, Michael M; Radtke, Rodney A; Skene, J H Pate; Sinha, Saurabh R; Heinzen, Erin L

    2016-03-01

    Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis. RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology. Wiley Periodicals, Inc. © 2016

  8. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of Hippocampal Cells

    O’Mara, Shane M.

    2018-01-01

    To understand the hippocampus, it is necessary to understand the subiculum. Unlike other hippocampal subfields, the subiculum projects to almost all distal hippocampal targets, highlighting its critical importance for external networks. The present studies, in male rats and mice, reveal a new category of dorsal subiculum neurons that innervate both the mammillary bodies (MBs) and the retrosplenial cortex (RSP). These bifurcating neurons comprise almost half of the hippocampal cells that project to RSP. The termination of these numerous collateral projections was visualized within the medial mammillary nucleus and the granular RSP (area 29). These collateral projections included subiculum efferents that cross to the contralateral MBs. Within the granular RSP, the collateral projections form a particularly dense plexus in deep Layer II and Layer III. This retrosplenial termination site colocalized with markers for VGluT2 and neurotensin. While efferents from the hippocampal CA fields standardly collateralize, subiculum projections often have only one target site. Consequently, the many collateral projections involving the RSP and the MBs present a relatively unusual pattern for the subiculum, which presumably relates to how both targets have complementary roles in spatial processing. Furthermore, along with the anterior thalamic nuclei, the MBs and RSP are key members of a memory circuit, which is usually described as both starting and finishing in the hippocampus. The present findings reveal how the hippocampus simultaneously engages different parts of this circuit, so forcing an important revision of this network. PMID:29527569

  10. Effects of Electromagnetic Radiation from Smartphones on Learning Ability and Hippocampal Progenitor Cell Proliferation in Mice.

    Choi, Yu-Jin; Choi, Yun-Sik

    2016-02-01

    Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2'-deoxyuridine administration and immunohistochemical detection. When spatial working memory on a Y maze was examined in the 9(th) week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior.

  11. Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation and learning and memory in stressed rats.

    Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F

    2012-10-11

    Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a

  12. cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells.

    Inda, Carolina; Bonfiglio, Juan José; Dos Santos Claro, Paula A; Senin, Sergio A; Armando, Natalia G; Deussing, Jan M; Silberstein, Susana

    2017-05-16

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells). By characterising CRHR1 signalling mechanisms involved in the neuritogenic effect, we demonstrate that neurite outgrowth in HT22-CRHR1 cells takes place by a sAC-dependent, ERK1/2-independent signalling cascade. Both tmACs and sAC are involved in corticotropin-releasing hormone (CRH)-mediated CREB phosphorylation and c-fos induction, but only sAC-generated cAMP pools are critical for the neuritogenic effect of CRH, further highlighting the engagement of two sources of cAMP downstream of the activation of a GPCR, and reinforcing the notion that restricted cAMP microdomains may regulate independent cellular processes.

  13. Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures

    Benedikz, Eirikur; Casaccia-Bonnefil, P; Stelzer, A

    1993-01-01

    Loss of hippocampal interneurons has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainate. We investigated the relationship between KA induced epileptiform discharge and loss of interneurons in hippocampal slice cultures. Application of KA (1 micro......M) produced reversible epileptiform discharge without neurotoxicity. KA (5 microM), in contrast, produced irreversible epileptiform discharge and neurotoxicity, suggesting that the irreversible epileptiform discharge was required for the neuronal loss. Loss of CA3 pyramidal cells and parvalbumin......-like immunoreactive (PV-I) interneurons preceded loss of somatostatin-like immunoreactive (SS-I) interneurons suggesting a different time course of KA neurotoxicity in these subpopulations of interneurons....

  14. Fluoxetine prevents the memory deficits and reduction in hippocampal cell proliferation caused by valproic acid.

    Welbat, Jariya Umka; Sangrich, Preeyanuch; Sirichoat, Apiwat; Chaisawang, Pornthip; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Wigmore, Peter

    2016-12-01

    Valproic acid (VPA), a commonly used antiepileptic drug, has been reported to cause cognitive impairments in patients. In a previous study, using a rodent model, we showed that VPA treatment impaired cognition which was associated with a reduction in the cell proliferation required for hippocampal neurogenesis. The antidepressant fluoxetine has been shown to increase hippocampal neurogenesis and to reverse the memory deficits found in a number of pathological conditions. In the present study we investigated the protective effects of fluoxetine treatment against the impairments in memory and hippocampal cell proliferation produced by VPA. Male Sprague Dawley rats received daily treatment with fluoxetine (10mg/kg) by oral gavage for 21days. Some rats were co-administered with VPA (300mg/kg, twice daily i.p. injections) for 14days from day 8 to day 21 of the fluoxetine treatment. Spatial memory was tested using the novel object location (NOL) test. The number of proliferating cells present in the sub granular zone of the dentate gyrus was quantified using Ki67 immunohistochemistry at the end of the experiment. Levels of the receptor Notch1, the neurotrophic factor BDNF and the neural differentiation marker DCX were determined by Western blotting. VPA-treated rats showed memory deficits, a decrease in the number of proliferating cells in the sub granular zone and decreases in the levels of Notch1 and BDNF but not DCX compared to control animals. These changes in behavior, cell proliferation and Notch1 and BDNF were prevented in animals which had received both VPA and fluoxetine. Rats receiving fluoxetine alone did not show a significant difference in the number of proliferating cells or behavior compared to controls. These results demonstrated that the spatial memory deficits and reduction of cell proliferation produced by VPA can be ameliorated by the simultaneous administration of the antidepressant fluoxetine. Crown Copyright © 2016. Published by Elsevier B

  15. Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation.

    Ryan, Sinead M; O'Keeffe, Gerard W; O'Connor, Caitriona; Keeshan, Karen; Nolan, Yvonne M

    2013-10-01

    Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders.

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  17. Apoptosis after irradiation of the rat cortical and hippocampal cells in culture

    Coffigny, H.; Lane, M.C.

    1997-01-01

    During the development of the central nervous system many neurons are generated but over 50% die by natural apoptosis; this phenomenon occurred in neurons without or with wrong connections with their target cells. Children exposed in utero to Hiroshima or Nagasaki bombing presented microcephaly due to cell deaths and mental retardation. In animals, the number of apoptotic cells in the developing central nervous system increased as a function of the dose received. In vitro, we have shown that 1 Gy irradiation induced 50 % decrease of cortical and hippocampal cell survival. Nervous cells when seeded in a plate were round without processes. Neuritis outgrowth increased with culture time and physical contacts were established between cells. Our purpose is to test the importance of these contacts in the radio-induced apoptosis. (authors)

  18. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons.

    Kang, Young-Jin; Lewis, Hannah Elisabeth Smashey; Young, Mason William; Govindaiah, Gubbi; Greenfield, Lazar John; Garcia-Rill, Edgar; Lee, Sang-Hun

    2018-04-15

    The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB 1 BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB 1 BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Impact of age-related neuroglial cell responses on hippocampal deterioration

    Joseph O Ojo

    2015-04-01

    Full Text Available Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS. These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signalling. Normally, these changes occur without any concurrent pathology, however, they can correlate with deteriorations in hippocampal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function and underlying neuroglial response(s, and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.

  20. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells

    Caroline Fasano

    2017-05-01

    Full Text Available Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT and the atypical type III vesicular glutamate transporter (VGLUT3; therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer’s collaterals – CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

  1. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons

    Wang, Wei-Ping; Iyo, Abiye H.; Miguel-Hidalgo, Javier; Regunathan, Soundar; Zhu, Meng-Yang

    2010-01-01

    Agmatine is a polyamine and has been considered as a novel neurotransmitter or neuromodulator in the central nervous system. In the present study, the neuroprotective effect of agmatine against cell damage caused by N-methyl-d-aspartate (NMDA) and glutamate was investigated in cultured rat hippocampal neurons. Lactate dehydrogenase (LDH) activity assay, β-tubulin III immunocytochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay were conducted to detect cell damage. Exposure of 12-day neuronal cultures of rat hippocampus to NMDA or glutamate for 1 h caused a concentration-dependent neurotoxicity, as indicated by the significant increase in released LDH activities. Addition of 100 µM agmatine into media ablated the neurotoxicity induced by NMDA or glutamate, an effect also produced by the specific NMDA receptor antagonist dizocilpine hydrogen maleate (MK801). Arcaine, an analog of agmatine with similar structure as agmatine, fully prevented the NMDA- or glutamate-induced neuronal damage. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidine moiety of agmatine, failed to show this effect, indicating a structural relevance for this neuroprotection. Immunocytochemical staining and TUNEL assay confirmed the findings in the LDH measurement. That is, agmatine and MK801 markedly attenuated NMDA-induced neuronal death and significantly reduced TUNEL-positive cell numbers induced by exposure of cultured hippocampal neurons to NMDA. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from NMDA- or glutamate-induced excitotoxicity, through a possible blockade of the NMDA receptor channels or a potential anti-apoptotic property. PMID:16546145

  2. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

    Semerci, Fatih; Choi, William Tin-Shing; Bajic, Aleksandar; Thakkar, Aarohi; Encinas, Juan Manuel; Depreux, Frederic; Segil, Neil; Groves, Andrew K; Maletic-Savatic, Mirjana

    2017-07-12

    Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe ( Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

  3. Apoptosis of mouse hippocampal cells induced by Taenia crassiceps metacestode factor.

    Zepeda, N; Solano, S; Copitin, N; Chávez, J L; Fernández, A M; García, F; Tato, P; Molinari, J L

    2017-03-01

    Seizures, headache, depression and neurological deficits are the signs and symptoms most frequently reported in human neurocysticercosis. However, the cause of the associated learning and memory deficits is unknown. Here, we used Taenia crassiceps infection in mice as a model of human cysticercosis. The effects of T. crassiceps metacestode infection or T. crassiceps metacestode factor (MF) treatment on mouse hippocampal cells were studied; control mice were included. At 45 days after infection or treatment of the mice with MF, all mice were anaesthetized and perfused transcardially with saline followed by phosphate-buffered 10% formalin. Then the brains were carefully removed. Coronal sections stained using several techniques were analysed. Extensive and significant apoptosis was found in the experimental animals, mainly in the dentate gyrus, CA1, CA2, CA3 and neighbouring regions, in comparison with the apparently intact cells from control mice (P < 0.01). These results suggest that neurological deficits, especially the learning and memory deficits, may be generated by extensive apoptosis of hippocampal cells.

  4. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.

    Kohara, Keigo; Pignatelli, Michele; Rivest, Alexander J; Jung, Hae-Yoon; Kitamura, Takashi; Suh, Junghyup; Frank, Dominic; Kajikawa, Koichiro; Mise, Nathan; Obata, Yuichi; Wickersham, Ian R; Tonegawa, Susumu

    2014-02-01

    The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.

  5. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  6. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission.

    Lalic, Tatjana; Pettingill, Philippa; Vincent, Angela; Capogna, Marco

    2011-01-01

    Limbic encephalitis (LE) is a central nervous system (CNS) disease characterized by subacute onset of memory loss and epileptic seizures. A well-recognized form of LE is associated with voltage-gated potassium channel complex antibodies (VGKC-Abs) in the patients' sera. We aimed to test the hypothesis that purified immunoglobulin G (IgG) from a VGKC-Ab LE serum would excite hippocampal CA3 pyramidal cells by reducing VGKC function at mossy-fiber (MF)-CA3 pyramidal cell synapses. We compared the effects of LE and healthy control IgG by whole-cell patch-clamp and extracellular recordings from CA3 pyramidal cells of rat hippocampal acute slices. We found that the LE IgG induced epileptiform activity at a population level, since synaptic stimulation elicited multiple population spikes extracellularly recorded in the CA3 area. Moreover, the LE IgG increased the rate of tonic firing and strengthened the MF-evoked synaptic responses. The synaptic failure of evoked excitatory postsynaptic currents (EPSCs) was significantly lower in the presence of the LE IgG compared to the control IgG. This suggests that the LE IgG increased the release probability on MF-CA3 pyramidal cell synapses compared to the control IgG. Interestingly, α-dendrotoxin (120 nm), a selective Kv1.1, 1.2, and 1.6 subunit antagonist of VGKC, mimicked the LE IgG-mediated effects. This is the first functional demonstration that LE IgGs reduce VGKC function at CNS synapses and increase cell excitability. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  7. Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells

    Jean-Pierre Majoral

    2013-09-01

    Full Text Available A new class of viologen-phosphorus dendrimers (VPDs has been recently shown to possess the ability to inhibit neurodegenerative processes in vitro. Nevertheless, in the Central Nervous Systems domain, there is little information on their impact on cell functions, especially on neuronal cells. In this work, we examined the influence of two VPD (VPD1 and VPD3 of zero generation (G0 on murine hippocampal cell line (named mHippoE-18. Extended analyses of cell responses to these nanomolecules comprised cytotoxicity test, reactive oxygen species (ROS generation studies, mitochondrial membrane potential (ΔΨm assay, cell death detection, cell morphology assessment, cell cycle studies, as well as measurements of catalase (CAT activity and glutathione (GSH level. The results indicate that VPD1 is more toxic than VPD3. However, these two tested dendrimers did not cause a strong cellular response, and induced a low level of apoptosis. Interestingly, VPD1 and VPD3 treatment led to a small decline in ROS level compared to untreated cells, which correlated with slightly increased catalase activity. This result indicates that the VPDs can indirectly lower the level of ROS in cells. Summarising, low-cytotoxicity on mHippoE-18 cells together with their ability to quench ROS, make the VPDs very promising nanodevices for future applications in the biomedical field as nanocarriers and/or drugs per se.

  8. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation.

    Pardo, M; Abrial, E; Jope, R S; Beurel, E

    2016-03-01

    Abnormally active glycogen synthase kinase-3 (GSK3) contributes to pathological processes in multiple psychiatric and neurological disorders. Modeled in mice, this includes increasing susceptibility to dysregulation of mood-relevant behaviors, impairing performance in several cognitive tasks and impairing adult hippocampal neural precursor cell (NPC) proliferation. These deficits are all evident in GSK3α/β knockin mice, in which serine-to-alanine mutations block the inhibitory serine phosphorylation regulation of both GSK3 isoforms, leaving GSK3 hyperactive. It was unknown if both GSK3 isoforms perform redundant actions in these processes, or if hyperactivity of one GSK3 isoform has a predominant effect. To test this, we examined GSK3α or GSK3β knockin mice in which only one isoform was mutated to a hyperactive form. Only GSK3β, not GSK3α, knockin mice displayed heightened vulnerability to the learned helplessness model of depression-like behavior. Three cognitive measures impaired in GSK3α/β knockin mice showed differential regulation by GSK3 isoforms. Novel object recognition was impaired in GSK3β, not in GSK3α, knockin mice, whereas temporal order memory was not impaired in GSK3α or GSK3β knockin mice, and co-ordinate spatial processing was impaired in both GSK3α and GSK3β knockin mice. Adult hippocampal NPC proliferation was severely impaired in GSK3β knockin mice, but not impaired in GSK3α knockin mice. Increased activity of GSK3β, in the absence of overexpression or disease pathology, is sufficient to impair mood regulation, novel object recognition and hippocampal NPC proliferation, whereas hyperactive GSK3α individually does not impair these processes. These results show that hyperactivity of the two GSK3 isoforms execute non-redundant effects on these processes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  10. Alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats.

    Sun, Hongli; Su, Qian; Zhang, Huifang; Liu, Weimin; Zhang, Huiping; Ding, Ding; Zhu, Zhongliang; Li, Hui

    2015-06-01

    To clarify the alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats. We investigated the impact of prenatal restraint stress on the hipocampal cell proliferation in the progeny with 5-bromo-2'-deoxyuridine (BrdU), which is a marker of proliferating cells and their progeny. In addition, we observed the differentiation of neural stem cells (NSCs) with double labeling of BrdU/neurofilament (NF), BrdU/glial fibrillary acidic protein (GFAP) in the hipocampus. Prenatal stress (PS) increased cell proliferation in the dentate gyrus (DG) only in female and neuron differentiation of newly divided cells in the DG and CA4 in both male and female. Moreover, the NF and GFAP-positive cells, but not the BrdU-positive cells, BrdU/NF and BrdU/GFAP-positive cells, were found frequently in the CA3 and CA1 in the offspring of each group. These results possibly suggest a compensatory adaptive response to neuronal damage or loss in hippocampus induced by PS. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation

    Williams Sylvain

    2006-03-01

    Full Text Available Abstract Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+-butaclamol and L-741,742. These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (--raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (--raclopride (10-6 M was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M. Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.

  12. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    Maria del Carmen Cardenas-Aguayo

    Full Text Available The level of brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD, Parkinson's disease (PD, depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5 corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18 primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706 of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2O(2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  13. Dehydroepiandrosterone protects male and female hippocampal neurons and neuroblastoma cells from glucose deprivation.

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Ghorbanpoor, Samar; Kucharski, Luiz Carlos; Arevalo, Maria A; Garcia-Segura, Luis Miguel; Ribeiro, Maria Flávia M

    2016-08-01

    Dehydroepiandrosterone (DHEA) modulates neurogenesis, neuronal function, neuronal survival and metabolism, enhancing mitochondrial oxidative capacity. Glucose deprivation and hypometabolism have been implicated in the mechanisms that mediate neuronal damage in neurological disorders, and some studies have shown that these mechanisms are sexually dimorphic. It was also demonstrated that DHEA is able to attenuate the hypometabolism that is related to some neurodegenerative diseases, eliciting neuroprotective effects in different experimental models of neurodegeneration. The aim of this study was to evaluate the effect of DHEA on the viability of male and female hippocampal neurons and SH-SY5Y neuroblastoma cells exposed to glucose deprivation. It was observed that after 12h of pre-treatment, DHEA was able to protect SH-SY5Y cells from glucose deprivation for 6h (DHEA 10(-12), 10(-8) and 10(-6)M) and 8h (DHEA 10(-8)M). In contrast, DHEA was not neuroprotective against glucose deprivation for 12 or 24h. DHEA (10(-8)M) also protected SH-SY5Y cells when added together or even 1h after the beginning of glucose deprivation (6h). Furthermore, DHEA (10(-8)M) also protected primary neurons from both sexes against glucose deprivation. In summary, our findings indicate that DHEA is neuroprotective against glucose deprivation in human neuroblastoma cells and in male and female mouse hippocampal neurons. These results suggest that DHEA could be a promising candidate to be used in clinical studies aiming to reduce neuronal damage in people from both sexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

    Ó'Léime, Ciarán S; Kozareva, Danka A; Hoban, Alan E; Long-Smith, Caitriona M; Cryan, John F; Nolan, Yvonne M

    2018-02-01

    Hippocampal neurogenesis is a lifelong process whereby new neurons are produced and integrate into the host circuitry within the hippocampus. It is regulated by a multitude of extrinsic and intrinsic regulators and is believed to contribute to certain hippocampal-dependent cognitive tasks. Hippocampal neurogenesis and associated cognition have been demonstrated to be impaired after increases in the levels of proinflammatory cytokine IL-1β in the hippocampus, such as that which occurs in various neurodegenerative and psychiatric disorders. IL-1β also suppresses the expression of TLX (orphan nuclear receptor tailless homolog), which is an orphan nuclear receptor that functions to promote neural progenitor cell (NPC) proliferation and suppress neuronal differentiation; therefore, manipulation of TLX represents a potential strategy with which to prevent the antiproliferative effects of IL-1β. In this study, we assessed the mechanism that underlies IL-1β-induced changes in TLX expression and determined the protective capacity of TLX to mitigate the effects of IL-1β on embryonic rat hippocampal neurosphere expansion. We demonstrate that IL-1β activated the NF-κB pathway in proliferating NPCs and that this activation was responsible for IL-1β-induced changes in TLX expression. In addition, we report that enhancing TLX expression prevented the IL-1β-induced suppression of neurosphere expansion. Thus, we highlight TLX as a potential protective regulator of the antiproliferative effects of IL-1β on hippocampal neurogenesis.-Ó'Léime, C. S., Kozareva, D. A., Hoban, A. E., Long-Smith, C. M., Cryan, J. F., Nolan, Y. M. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

  15. Deletion of psychiatric risk gene Cacna1c impairs hippocampal neurogenesis in cell-autonomous fashion.

    Völkening, Bianca; Schönig, Kai; Kronenberg, Golo; Bartsch, Dusan; Weber, Tillmann

    2017-05-01

    Ca 2+ is a universal signal transducer which fulfills essential functions in cell development and differentiation. CACNA1C, the gene encoding the alpha-1C subunit (i.e., Ca v 1.2) of the voltage-dependent l-type calcium channel (LTCC), has been implicated as a risk gene in a variety of neuropsychiatric disorders. To parse the role of Ca v 1.2 channels located on astrocyte-like stem cells and their descendants in the development of new granule neurons, we created Tg GLAST-CreERT2 /Cacna1c fl/fl /RCE:loxP mice, a transgenic tool that allows cell-type-specific inducible deletion of Cacna1c. The EGFP reporter was used to trace the progeny of recombined type-1 cells. FACS-sorted Cacna1c-deficient neural precursor cells from the dentate gyrus showed reduced proliferative activity in neurosphere cultures. Moreover, under differentiation conditions, Cacna1c-deficient NPCs gave rise to fewer neurons and more astroglia. Similarly, under basal conditions in vivo, Cacna1c gene deletion in type-1 cells decreased type-1 cell proliferation and reduced the neuronal fate-choice decision of newly born cells, resulting in reduced net hippocampal neurogenesis. Unexpectedly, electroconvulsive seizures completely compensated for the proliferation deficit of Cacna1c deficient type-1 cells, indicating that there must be Ca v 1.2-independent mechanisms of controlling proliferation related to excitation. In the aggregate, this is the first report demonstrating the presence of functional L-type 1.2 channels on type-1 cells. Ca v 1.2 channels promote type-1 cell proliferation and push the glia-to-neuron ratio in the direction of a neuronal fate choice and subsequent neuronal differentiation. Ca v 1.2 channels expressed on NPCs and their progeny possess the ability to shape neurogenesis in a cell-autonomous fashion. © 2017 Wiley Periodicals, Inc.

  16. Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway.

    Yang, Yang; Li, Xi; Sun, Qinwei; He, Bin; Jia, Yimin; Cai, Demin; Zhao, Ruqian

    2016-10-01

    Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (Pmethyl transfer pathway and hypermethylation of IGF-1 gene promoter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Lindane blocks GABAA-mediated inhibition and modulates pyramidal cell excitability in the rat hippocampal slice.

    Joy, R M; Walby, W F; Stark, L G; Albertson, T E

    1995-01-01

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of lindane on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. This was done to establish simultaneous effects on a simple neural network and to develop procedures for more detailed analyses of the effects of lindane. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid. Electrodes were placed in the CA1 region to record extracellular population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural (SC/C) fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. Perfusion with lindane produced both time and dose dependent changes in a number of the responses measured. The most striking effect produced by lindane was the loss of GABAA-mediated recurrent collateral inhibition. This tended to occur rapidly, often before changes in EPSP or PS responses could be detected. With longer exposures to lindane, repetitive discharge of pyramidal cells developed resulting in multiple PSs to single stimuli. Lindane (50 microM) also completely reversed the effects of the injectable anesthetic, propofol, a compound known to potentiate GABAA-mediated inhibition via a direct action on the GABAA receptor-chloride channel complex. An analysis of input/output relationships at varying stimulus intensities showed that lindane increased EPSP and PS response amplitudes at any given stimulus intensity resulting in a leftward shift in the EPSP amplitude/stimulus intensity, PS amplitude/stimulus intensity and PS amplitude/EPSP amplitude relationships. This effect was most noticeable with low intensity stimuli and became progressively less so as stimulus intensities approached those yielding maximal responses. In addition lindane significantly increased paired pulse

  18. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells.

    Sanzgiri, R P; Araque, A; Haydon, P G

    1999-11-05

    Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.

  19. Opposing Effects of α2- and β-Adrenergic Receptor Stimulation on Quiescent Neural Precursor Cell Activity and Adult Hippocampal Neurogenesis

    Prosper, Boris W.; Marathe, Swanand; Husain, Basma F. A.; Kernie, Steven G.; Bartlett, Perry F.; Vaidya, Vidita A.

    2014-01-01

    Norepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood. In this study, we used transgenic Nestin-GFP mice and neurosphere assays to show that modulation of α2- and β-adrenergic receptor activity directly affects Nestin-GFP/GFAP-positive precursor cell population albeit in an opposing fashion. While selective stimulation of α2-adrenergic receptors decreases precursor cell activation, proliferation and immature neuron number, stimulation of β-adrenergic receptors activates the quiescent precursor pool and enhances their proliferation in the adult hippocampus. Furthermore, our data indicate no major role for α1-adrenergic receptors, as we did not observe any change in either the activation and proliferation of hippocampal precursors following selective stimulation or blockade of α1-adrenergic receptors. Taken together, our data suggest that under physiological as well as under conditions that lead to enhanced norepinephrine release, the balance between α2- and β-adrenergic receptor activity regulates precursor cell activity and hippocampal neurogenesis. PMID:24922313

  20. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells

    Altman, J.; Bayer, S.A.

    1990-01-01

    This study deals with the site of origin, migration, and settling of the principal cell constituents of the rat hippocampus during the embryonic period. The results indicate that the hippocampal neuroepithelium consists of three morphogenetically discrete components--the Ammonic neuroepithelium, the primary dentate neuroepithelium, and the fimbrial glioepithelium--and that these are discrete sources of the large neurons of Ammon's horn, the smaller granular neurons of the dentate gyrus, and the glial cells of the fimbria. The putative Ammonic neuroepithelium is marked in short-survival thymidine radiograms by a high level of proliferative activity and evidence of interkinetic nuclear migration from day E16 until day E19. On days E16 and E17 a diffuse band of unlabeled cells forms outside the Ammonic neuroepithelium. These postmitotic cells are considered to be stratum radiatum and stratum oriens neurons, which are produced in large numbers as early as day E15. A cell-dense layer, the incipient stratum pyramidale, begins to form on day E18 and spindle-shaped cells can be traced to it from the Ammonic neuroepithelium. This migratory band increases in size for several days, then declines, and finally disappears by day E22. It is inferred that this migration contains the pyramidal cells of Ammon's horn that are produced mostly on days E17 through E20. The putative primary dentate neuroepithelium is distinguished from the Ammonic neuroepithelium during the early phases of embryonic development by its location, shape, and cellular dynamics. It is located around a ventricular indentation, the dentate notch, contains fewer mitotic cells near the lumen of the ventricle than the Ammonic neuroepithelium, and shows a different labeling pattern both in short-survival and sequential-survival thymidine radiograms

  1. Epigenetic control of hippocampal stem cells: modulation by hyperactivation, glucocorticoids and aging

    Schouten, M.

    2015-01-01

    The adult brain has the ability to structurally and functionally adapt to changes in its environment. Examples of these adaptations are the addition of new neurons to neurogenic regions such as the hippocampal dentate gyrus, termed adult hippocampal neurogenesis, and alterations in neuronal

  2. Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1.

    Keohane, Aoife; Ryan, Sinead; Maloney, Eimer; Sullivan, Aideen M; Nolan, Yvonne M

    2010-01-01

    Tumour necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine, which influences neuronal survival and function yet there is limited information available on its effects on hippocampal neural precursor cells (NPCs). We show that TNFalpha treatment during proliferation had no effect on the percentage of proliferating cells prepared from embryonic rat hippocampal neurosphere cultures, nor did it affect cell fate towards either an astrocytic or neuronal lineage when cells were then allowed to differentiate. However, when cells were differentiated in the presence of TNFalpha, significantly reduced percentages of newly born and post-mitotic neurons, significantly increased percentages of astrocytes and increased expression of TNFalpha receptors, TNF-R1 and TNF-R2, as well as expression of the anti-neurogenic Hes1 gene, were observed. These data indicate that exposure of hippocampal NPCs to TNFalpha when they are undergoing differentiation but not proliferation has a detrimental effect on their neuronal lineage fate, which may be mediated through increased expression of Hes1. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells.

    Villanueva-Castillo, Cindy; Tecuatl, Carolina; Herrera-López, Gabriel; Galván, Emilio J

    2017-01-01

    The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line.

    Freitas, Andiara E; Egea, Javier; Buendía, Izaskun; Navarro, Elisa; Rada, Patricia; Cuadrado, Antonio; Rodrigues, Ana Lúcia S; López, Manuela G

    2015-01-01

    Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of L-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression.

  5. Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.

    Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran

    2012-01-01

    Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups.

  6. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-10-14

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

  7. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  8. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  9. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    Jessberger Sebastian

    2006-11-01

    Full Text Available Abstract Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2 the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3 positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis.

  10. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal.

    Chung, Kyung Min; Park, Hyunhee; Jung, Seonghee; Ha, Shinwon; Yoo, Seung-Jun; Woo, Hanwoong; Lee, Hyang Ju; Kim, Seong Who; Kim, Eun-Kyoung; Moon, Cheil; Yu, Seong-Woon

    2015-10-01

    Programmed cell death (PCD) has significant effects on the function of neural stem cells (NSCs) during brain development and degeneration. We have previously reported that adult rat hippocampal neural stem (HCN) cells underwent autophagic cell death (ACD) rather than apoptosis following insulin withdrawal despite their intact apoptotic capabilities. Here, we report a switch in the mode of cell death in HCN cells with calpain as a critical determinant. In HCN cells, calpain 1 expression was barely detectable while calpain 2 was predominant. Inhibition of calpain in insulin-deprived HCN cells further augmented ACD. In contrast, expression of calpain 1 switched ACD to apoptosis. The proteasome inhibitor lactacystin blocked calpain 2 degradation and elevated the intracellular Ca(2+) concentration. In combination, these effects potentiated calpain activity and converted the mode of cell death to apoptosis. Our results indicate that low calpain activity, due to absence of calpain 1 and degradation of calpain 2, results in a preference for ACD over apoptosis in insulin-deprived HCN cells. On the other hand, conditions leading to high calpain activity completely switch the mode of cell death to apoptosis. This is the first report on the PCD mode switching mechanism in NSCs. The dynamic change in calpain activity through the proteasome-mediated modulation of the calpain and intracellular Ca(2+) levels may be the critical contributor to the demise of NSCs. Our findings provide a novel insight into the complex mechanisms interconnecting autophagy and apoptosis and their roles in the regulation of NSC death. © 2015 AlphaMed Press.

  12. Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells

    Park, Junghyung; Lee, Dong Gil; Kim, Bokyung; Park, Sun-Ji; Kim, Jung-Hak; Lee, Sang-Rae; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2015-01-01

    Highlights: • FAC-induced iron overload promotes neuronal apoptosis. • Iron overload causes mitochondrial fragmentation in a Drp1-dependent manner. • Iron-induced Drp1 activation depends on dephosphorylation of Drp1(Ser637). • Calcineurin is a key regulator of Drp1-dependent mitochondrial fission by iron. - Abstract: The accumulation of iron in neurons has been proposed to contribute to the pathology of numerous neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. However, insufficient research has been conducted on the precise mechanism underlying iron toxicity in neurons. In this study, we investigated mitochondrial dynamics in hippocampal HT-22 neurons exposed to ferric ammonium citrate (FAC) as a model of iron overload and neurodegeneration. Incubation with 150 μM FAC for 48 h resulted in decreased cell viability and apoptotic death in HT-22 cells. The FAC-induced iron overload triggered mitochondrial fragmentation, which was accompanied by Drp1(Ser637) dephosphorylation. Iron chelation with deferoxamine prevented the FAC-induced mitochondrial fragmentation and apoptotic cell death by inhibiting Drp1(Ser637) dephosphorylation. In addition, a S637D mutation of Drp1, which resulted in a phosphorylation-mimetic form of Drp1 at Ser637, protected against the FAC-induced mitochondrial fragmentation and neuronal apoptosis. FK506 and cyclosporine A, inhibitors of calcineurin activation, determined that calcineurin was associated with the iron-induced changes in mitochondrial morphology and the phosphorylation levels of Drp1. These results indicate that the FAC-induced dephosphorylation of Drp1-dependent mitochondrial fragmentation was rescued by the inhibition of calcineurin activation. Therefore, these findings suggest that calcineurin-mediated phosphorylation of Drp1(Ser637) acts as a key regulator of neuronal cell loss by modulating mitochondrial dynamics in iron-induced toxicity. These results may contribute to the

  13. Molecular analysis of ivy cells of the hippocampal CA1 stratum radiatum using spectral identification of immunofluorophores

    Jozsef eSomogyi

    2012-05-01

    Full Text Available Nitric oxide synthase-expressing (NOS+ GABAergic interneurons are common in hippocampal stratum radiatum, but these cells are less well characterised than NOS+ ivy cells in stratum pyramidale or neurogliaform cells in stratum lacunosum-moleculare. Here we have studied the laminar distribution of the axons and dendrites, and the immunoreactivity of these neurons recorded in rat hippocampal slices. We have used spectral analysis of antibody- or streptavidin conjugated fluorophores to improve recognition of genuine signals in reactions for molecules such as NOS and neuropeptide-Y, when immunolabelling was low in the recorded cell. We found that most NOS+ cells with soma in the CA1 area stratum radiatum exhibit characteristic properties of ivy cells; all tested cells were positive for NPY and negative for reelin. However, laminar distributions of their neurites differ from original characterization of ivy cells with the soma close to stratum pyramidale. Both their dendrites and axon are mainly in stratum radiatum and to a lesser extent in stratum oriens. In addition, both the dendrites and axons often extend to stratum lacunosum-moleculare. We conclude that ivy cells in stratum radiatum are predominantly feedforward inhibitory interneurons in the CA1 area, and their axonal output delivering GABA, NPY and NO can influence both the entorhinal cortex innervated and the CA3 innervated zones pre- and postsynaptically. Spectral analysis of fluorophores provides an objective algorithm to analyze signals in immunoreactions for neurochemical markers.

  14. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells

    Sara V. Maurer

    2017-11-01

    Full Text Available Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer’s disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholine (ACh receptor, as stimulation of this receptor prevents many of the effects of immune activation. Microglia and astrocytes both express this receptor, so it is possible that some cholinergic effects may be via these non-neuronal cells. Though the presence of microglia is required for memory, overactivated microglia due to an immune challenge overproduce inflammatory cytokines, which is adverse for memory. Blocking these exaggerated effects, specifically by decreasing the release of tumor necrosis factor α (TNF-α, interleukin 1β (IL-1β, and interleukin 6 (IL-6, has been shown to prevent inflammation-induced memory impairment. While there is considerable evidence that cholinergic signaling improves memory, fewer studies have linked the “cholinergic anti-inflammatory pathway” to memory processes. This review will summarize the current understanding of the cholinergic anti-inflammatory pathway as it relates to memory and will argue that one mechanism by which the cholinergic system modulates hippocampal memory processes is its influence on neuroimmune function via the α7 nicotinic ACh receptor.

  16. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    Franco, D Lorena; Rezával, Carolina; Cáceres, Alfredo; Schinder, Alejandro F; Ceriani, M Fernanda

    2010-06-01

    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration. 2010 Elsevier Inc. All rights reserved.

  17. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  18. Sub-chronic agmatine treatment modulates hippocampal neuroplasticity and cell survival signaling pathways in mice.

    Freitas, Andiara E; Bettio, Luis E B; Neis, Vivian B; Moretti, Morgana; Ribeiro, Camille M; Lopes, Mark W; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    2014-11-01

    Agmatine is an endogenous neuromodulator which, based on animal and human studies, is a putative novel antidepressant drug. In this study, we investigated the ability of sub-chronic (21 days) p.o. agmatine administration to produce an antidepressant-like effect in the tail suspension test and examined the hippocampal cell signaling pathways implicated in such an effect. Agmatine at doses of 0.01 and 0.1 mg/kg (p.o.) produced a significant antidepressant-like effect in the tail suspension test and no effect in the open-field test. Additionally, agmatine (0.001-0.1 mg/kg, p.o.) increased the phosphorylation of protein kinase A substrates (237-258% of control), protein kinase B/Akt (Ser(473)) (116-127% of control), glycogen synthase kinase-3β (Ser(9)) (110-113% of control), extracellular signal-regulated kinases 1/2 (119-137% and 121-138% of control, respectively) and cAMP response elements (Ser(133)) (127-152% of control), and brain-derived-neurotrophic factor (137-175% of control) immunocontent in a dose-dependent manner in the hippocampus. Agmatine (0.001-0.1 mg/kg, p.o.) also reduced the c-jun N-terminal kinase 1/2 phosphorylation (77-71% and 65-51% of control, respectively). Neither protein kinase C nor p38(MAPK) phosphorylation was altered under any experimental conditions. Taken together, the present study extends the available data on the mechanisms that underlie the antidepressant action of agmatine by showing an antidepressant-like effect following sub-chronic administration. In addition, our results are the first to demonstrate the ability of agmatine to elicit the activation of cellular signaling pathways associated with neuroplasticity/cell survival and the inhibition of signaling pathways associated with cell death in the hippocampus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  20. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons.

    Costain, Willard J; Tauskela, Joseph S; Rasquinha, Ingrid; Comas, Tanya; Hewitt, Melissa; Marleau, Vincent; Soo, Evelyn C

    2016-09-05

    There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs. Copyright © 2016. Published by Elsevier B.V.

  1. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice.

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1996-05-24

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.

  2. Novel oxindole derivatives prevent oxidative stress-induced cell death in mouse hippocampal HT22 cells.

    Hirata, Yoko; Yamada, Chika; Ito, Yuki; Yamamoto, Shotaro; Nagase, Haruna; Oh-Hashi, Kentaro; Kiuchi, Kazutoshi; Suzuki, Hiromi; Sawada, Makoto; Furuta, Kyoji

    2018-03-15

    The current medical and surgical therapies for neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease offer symptomatic relief but do not provide a cure. Thus, small synthetic compounds that protect neuronal cells from degeneration are critically needed to prevent and treat these. Oxidative stress has been implicated in various pathophysiological conditions, including neurodegenerative diseases. In a search for neuroprotective agents against oxidative stress using the murine hippocampal HT22 cell line, we found a novel oxindole compound, GIF-0726-r, which prevented oxidative stress-induced cell death, including glutamate-induced oxytosis and erastin-induced ferroptosis. This compound also exerted a protective effect on tunicamycin-induced ER stress to a lesser extent but had no effect on campthothecin-, etoposide- or staurosporine-induced apoptosis. In addition, GIF-0726-r was also found to be effective after the occurrence of oxidative stress. GIF-0726-r was capable of inhibiting reactive oxygen species accumulation and Ca 2+ influx, a presumed executor in cell death, and was capable of activating the antioxidant response element, which is a cis-acting regulatory element in promoter regions of several genes encoding phase II detoxification enzymes and antioxidant proteins. These results suggest that GIF-0726-r is a low-molecular-weight compound that prevents neuronal cell death through attenuation of oxidative stress. Among the more than 200 derivatives of the GIF-0726-r synthesized, we identified the 11 most potent activators of the antioxidant response element and characterized their neuroprotective activity in HT22 cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging.

    Sahay, Peeyush; Shukla, Pradeep K; Ghimire, Hemendra M; Almabadi, Huda M; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-03-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  4. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting

    Gispen, W.H.; Proper, E.A.; Jansen, G.H.; Veelen, C.W. van; Rijen, P.C. van; Graan, P.N.E. de

    2001-01-01

    Abstract. In patients suffering from temporal lobe epilepsy (TLE) a highly variable degree of hippocampal sclerosis (HS) can be observed. For standard neuropathological evaluation after hippocampal resection, neuronal cell loss in the hippocampal subareas is assessed (Wyler score 0-4) [Wyler et al.

  5. Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat.

    Jorge E Castro

    Full Text Available The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA, a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test. We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals. Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and -independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants' action in hippocampal neurogenesis and in their link to depression-like behaviors.

  6. Hippocampal Dysfunction Provoked by Mercury Chloride Exposure: Evaluation of Cognitive Impairment, Oxidative Stress, Tissue Injury and Nature of Cell Death

    Walessa Alana Bragança Aragão

    2018-01-01

    Full Text Available Mercury (Hg is a highly toxic metal, which can be found in its inorganic form in the environment. This form presents lower liposolubility and lower absorption in the body. In order to elucidate the possible toxicity of inorganic Hg in the hippocampus, we investigated the potential of low doses of mercury chloride (HgCl2 to promote hippocampal dysfunction by employing a chronic exposure model. For this, 56 rats were exposed to HgCl2 (0.375 mg/kg/day via the oral route for 45 days. After the exposure period, the animals were submitted to the cognitive test of fear memory. The hippocampus was collected for the measurement of total Hg levels, analysis of oxidative stress, and evaluation of cytotoxicity, apoptosis, and tissue injury. It was observed that chronic exposure to inorganic Hg promotes an increase in mercury levels in this region and damage to short- and long-term memory. Furthermore, we found that this exposure model provoked oxidative stress, which led to cytotoxicity and cell death by apoptosis, affecting astrocytes and neurons in the hippocampus. Our study demonstrated that inorganic Hg, even with its low liposolubility, is able to produce deleterious effects in the central nervous system, resulting in cognitive impairment and hippocampal damage when administered for a long time at low doses in rats.

  7. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • The effect of maternal exposure to HCP on rat hippocampal neurogenesis was examined. • HCP induces myelin vacuolation of nerve tracts in the septal–hippocampal pathway. • Myelin changes suppress Chrnb2-mediated cholinergic inputs to the dentate gyrus. • SGZ apoptosis occurs via the mitochondrial pathway and targets type-2b cells. • Dysfunction of cholinergic inputs is related to type-2b SGZ cell apoptosis. - Abstract: Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2 + progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling + apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction

  8. Changes in the proliferative activity of hippocampal neural stem cells from manganismus mice

    Guohe Tan; Boning Yang; Guofu Tan; Bo Liang; Jiangu Gong; Xiaodong Ge; Songchao Guo

    2007-01-01

    's region was recorded as the performance of spatial memory. At the final two days of the water maze tests, all the animals were daily intraperitoneally injected with 50 mg/kg BrdU three times successively, once every 4 hours. At 24 hours after the final BrdU injection, all the animals were sacrificed and perfused, and their brains were harvested, fixed and successively sliced at coronary plane on a freezing microtome. Distribution and number of BrdU-positive cells in the subgranular zone ofhippocampus of brains of experimental animas were detected respectively by immunohistochemistry for reflecting the proliferation of NSCs. Single-factor analysis of variance was used for comparing the difference of measurement data. Linear correlation analysis was used among the performance record in Morris water maze test, the number of BrdU-immunopositive cells and the dose of manganism.MAIN OUTCOME MEASURES: Learning and memory ability and the number of hippocampal NSCs of mice in each group.RESULTS: ①Performance of mice in Morris water maze: In the place navigation test, there was a significant retarded learning in mice of high-dose manganism group from the 3rd day as compared with control group (P < 0.01). Till the 5th day, escape latency of mice in each manganism group was prolonged,and learning performance was significantly decreased (P < 0.05), while swimming speed did not affect above results. In the spatial probe test, the average frequency of middle- and high-dose manganism groups was 1.17±1.60 and 0.80±1.10, respectively, and decreased remarkably than that of control group which was 4.86 ±1.35 (P < 0.01), indicating memory ability was decreased; while the average frequency of low-dose manganism group did not differ obviously from that of control group (P =0.066) although it was 2.67 ± 3.27.The difference of swimming speed in each group was still of no statistic significance (P > 0.05). ②Effect of manganism on the number of NSCs: After counting, the average

  9. Plasticity of hippocampal stem/progenitor cells to enhance neurogenesis in response to kainate-induced injury is lost by middle age

    Hattiangady, Bharathi; Rao, Muddanna S.; Shetty, Ashok K.

    2008-01-01

    A remarkable up-regulation of neurogenesis through increased proliferation of neural stem/progenitor cells (NSCs) is a well-known plasticity displayed by the young dentate gyrus (DG) following brain injury. To ascertain whether this plasticity is preserved during aging, we quantified DG neurogenesis in the young adult, middle-aged and aged F344 rats after kainic acid induced hippocampal injury. Measurement of new cells that are added to the dentate granule cell layer (GCL) between post-injury...

  10. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  11. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  12. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  13. Cooperation of HIF- and NCAM-mediated mechanisms in cell viability of hippocampal cultures after oxygen-glucose deprivation.

    Lushnikova, Iryna; Nikandrova, Yelyzaveta; Skibo, Galyna

    2017-10-01

    Neurodegenerative diseases of different genesis are the result of cellular damages including those caused by oxygen and glucose deficit. Neuronal survival or death in brain pathologies depends on a variety of interrelated molecular mechanisms. A key role in modulation of neuron viability belongs to HIF (hypoxia-inducible factor) and NCAM (neural cell adhesion molecules) signaling pathways. In this work, we used organotypic and dissociated hippocampal cultures to analyze cell viability and HIF-1α immunopositive (HIF-1α + ) signal after 30 min oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation in the presence of FGL (synthetic NCAM-derived mimetic peptide). According to LDH- and MTS-assay of cell viability, FGL showed a neuroprotective effect, which was attributed to the association with FGFR. We showed that these effects correlated with changes of the HIF-1α + level suggesting the communications of HIF and NCAM signaling pathways. These data extend our knowledge of neurodegeneration mechanisms and open additional potential for the development of neuroprotection strategies. © 2017 International Federation for Cell Biology.

  14. The effects of lindane and long-term potentiation (LTP) on pyramidal cell excitability in the rat hippocampal slice.

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1997-01-01

    An in vitro orthodromic stimulation technique was used to examine the effects of lindane and long-term potentiation (LTP) inducing stimuli, alone or in combination, on the excitatory afferent terminal of CA1 pyramidal cells and on recurrent collateral evoked inhibition using the rat hippocampal slice model. Hippocampal slices of 400 microns thickness were perfused with oxygenated artificial cerebrospinal fluid. Stimulation of Schaffer collateral/commissural fibers produced extracellular excitatory postsynaptic potential (EPSP) and/or populations spike (PS) responses recorded from electrodes in the CA1 region. A paired-pulse technique was used to measure gamma-aminobutyric acid (GABAA)-mediated recurrent inhibition before and after treatments. After both lindane and LTP, larger PS amplitudes for a given stimulus intensity were seen. The resulting leftward shift in the curve of the PS amplitude versus stimulus intensity was larger after LTP than after 25 microM lindane. Both lindane and LTP treatments reduced PS thresholds and reduced or eliminated recurrent inhibition as measured by paired-pulse stimulation at the 15 msec interval. The reduction of recurrent inhibition after both treatments was more pronounced at lower stimulus intensities. When LTP stimuli were applied after lindane exposure a further large shift to the left was seen in the PS amplitude versus stimulus intensity curve. A smaller shift to the left was seen in the PS amplitude versus stimulus intensity curve only at the higher stimuli when lindane exposure occurred after LTP. Only at low stimulus intensities were further argumentations seen in PS amplitudes when the LTP stimuli was followed by a second LTP stimuli. Previous exposure to 25 microM lindane stimuli does not block the development of a further robust LTP in this in vitro model.

  15. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats

    Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Sugita-Konishi, Yoshiko; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • Maternal AFB 1 exposure effect on hippocampal neurogenesis was examined in rats. • AFB 1 reversibly reduced cell proliferation and type-3 progenitor cells in the SGZ. • Suppressed cholinergic signals to GABAergic interneurons may reduce type-3 cells. • Suppressed BDNF–TRKB signaling may contribute to aberration of neurogenesis. • The NOAEL for offspring was determined to be 0.1 ppm (7.1–13.6 μg/kg BW/day). - Abstract: To elucidate the maternal exposure effects of aflatoxin B 1 (AFB 1 ) and its metabolite aflatoxin M 1 , which is transferred into milk, on postnatal hippocampal neurogenesis, pregnant Sprague-Dawley rats were provided a diet containing AFB 1 at 0, 0.1, 0.3, or 1.0 ppm from gestational day 6 to day 21 after delivery on weaning. Offspring were maintained through postnatal day (PND) 77 without AFB 1 exposure. Following exposure to 1.0 ppm AFB 1 , offspring showed no apparent systemic toxicity at weaning, whereas dams showed increased liver weight and DNA repair gene upregulation in the liver. In the hippocampal dentate gyrus of male PND 21 offspring, the number of doublecortin + progenitor cells were decreased, which was associated with decreased proliferative cell population in the subgranular zone at ≥0.3 ppm, although T-box brain 2 + cells, tubulin beta III + cells, gamma-H2A histone family, member X + cells, and cyclin-dependent kinase inhibitor 1A + cells did not fluctuate in number. AFB 1 exposure examined at 1.0 ppm also resulted in transcript downregulation of the cholinergic receptor subunit Chrna7 and dopaminergic receptor Drd2 in the dentate gyrus, although there was no change in transcript levels of DNA repair genes. In the hippocampal dentate hilus, interneurons expressing CHRNA7 or phosphorylated tropomyosin receptor kinase B (TRKB) decreased at ≥0.3 ppm. On PND 77, there were no changes in neurogenesis-related parameters. These results suggested that maternal AFB 1 exposure reversibly affects hippocampal

  16. Effects of 1950 MHz radiofrequency electromagnetic fields on Aβ processing in human neuroblastoma and mouse hippocampal neuronal cells

    Park, Jeongyeon; Kwon, Jong Hwa; Kim, Nam; Song, Kiwon

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease leading to progressive loss of memory and other cognitive functions. One of the well-known pathological markers of AD is the accumulation of amyloid-beta protein (Aβ), and its plaques, in the brain. Recent studies using Tg-5XFAD mice as a model of AD have reported that exposure to radiofrequency electromagnetic fields (RF-EMF) from cellular phones reduced Aβ plaques in the brain and showed beneficial effects on AD. In this study, we examined whether exposure to 1950 MHz RF-EMF affects Aβ processing in neural cells. We exposed HT22 mouse hippocampal neuronal cells and SH-SY5Y human neuroblastoma cells to RF-EMF (SAR 6 W/kg) for 2 h per day for 3 days, and analyzed the mRNA and protein expression of the key genes related to Aβ processing. When exposed to RF-EMF, mRNA levels of APP, BACE1, ADAM10 and PSEN1 were decreased in HT22, but the mRNA level of APP was not changed in SH-SY5Y cells. The protein expression of APP and BACE1, as well as the secreted Aβ peptide, was not significantly different between RF-EMF–exposed 7w-PSML, HT22 and SH-SY5Y cells and the unexposed controls. These observations suggest that RF-EMF exposure may not have a significant physiological effect on Aβ processing of neural cells in the short term. However, considering that we only exposed HT22 and SH-SY5Y cells to RF-EMF for 2 h per day for 3 days, we cannot exclude the possibility that 1950 MHz RF-EMF induces physiological change in Aβ processing with long-term and continuous exposure.

  17. Hippocampal cell fate regulation by chronic cocaine during periods of adolescent vulnerability: Consequences of cocaine exposure during adolescence on behavioral despair in adulthood.

    García-Cabrerizo, R; Keller, B; García-Fuster, M J

    2015-09-24

    Given that adolescence represents a critical moment for shaping adult behavior and may predispose to disease vulnerability later in life, the aim of this study was to find a vulnerable period during adolescence in which hippocampal cell fate regulation was altered by cocaine exposure, and to evaluate the long-term consequences of a cocaine experience during adolescence in affecting hippocampal plasticity and behavioral despair in adulthood. Study I: Male rats were treated with cocaine (15mg/kg, i.p.) or saline for 7 consecutive days during adolescence (early post-natal day (PND) 33-39, mid PND 40-46, late PND 47-53). Hippocampal plasticity (i.e., cell fate regulation, cell genesis) was evaluated 24h after the last treatment dose during the course of adolescence (PND 40, PND 47, PND 54). Study II: The consequences of cocaine exposure during adolescence (PND 33-39 or PND 33-46; 7 or 14days) were measured in adulthood at the behavioral (i.e., forced swim test, PND 62-63) and molecular (hippocampal cell markers, PND 64) levels. Chronic cocaine during early adolescence dysregulated FADD forms only in the hippocampus (HC), as compared to other brain regions, and during mid adolescence, impaired cell proliferation (Ki-67) and increased PARP-1 cleavage (a cell death maker) in the HC. Interestingly, chronic cocaine exposure during adolescence did not alter the time adult rats spent immobile in the forced swim test. These results suggest that this paradigm of chronic cocaine administration during adolescence did not contribute to the later manifestation of behavioral despair (i.e., one pro-depressive symptom) as measured by the forced swim test in adulthood. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  19. Curcumin protects neuronal cells against status-epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis.

    Wang, Jin; Liu, Yuan; Li, Xiao-Hui; Zeng, Xiang-Chang; Li, Jian; Zhou, Jun; Xiao, Bo; Hu, Kai

    2017-05-01

    Status epilepticus, the most severe form of epilepsy, is characterized by progressive functional and structural damage in the hippocampus, ultimately leading to the development and clinical appearance of spontaneous, recurrent seizures. Although the pathogenesis underlying epileptogenesis processes remains unclear, a substantial body of evidence has shown that status epilepticus acts as an important initial factor in triggering epileptogenesis. Notably, besides classical cell death mechanisms such as apoptosis and necrosis, 2 novel regulators of cell fate known as necroptosis and autophagy, are demonstrated to be involved in neuronal damage in various neurodegenerative and neuropsychiatric disorders. However, whether necroptosis and autophagy play a role in post-status-epilepticus rat hippocampus and other epilepsy mechanisms deserves further research effort. In addition, research is needed to determine whether compounds from traditional Chinese herbs possess antiepileptic effects through the modulation of necroptosis and autophagy. In this study, we found that curcumin, a polyphenolic phytochemical extracted from the Curcuma longa plant, protects neuronal cells against status-epilepticus-induced hippocampal neuronal damage in the lithium-pilocarpine-induced status epilepticus rat model through induction of autophagy and inhibition of necroptosis.

  20. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods

    Altman, J.; Bayer, S.A.

    1990-01-01

    Methacrylate-embedded sections and short-survival thymidine radiograms of the hippocampal dentate gyrus were examined in perinatal and postnatal rats in order to trace the site of origin and migration of the precursors of granule cells and study the morphogenesis of the granular layer. The densely packed, spindle-shaped cells of the secondary dentate matrix (a derivative of the primary dentate neuroepithelium) stream in a subpial position towards the granular layer of the internal dentate limb during the perinatal and early postnatal periods. By an accretionary process, the crest of the granular layer forms on day E21 and on the subsequent days the granular layer of the internal dentate limb expands progressively in a lateral direction. Granule cells differentiation, as judged by the transformation of polymorph, darkly staining small cells into rounder, lightly staining larger granule cells, follows the same gradient from the external dentate limb to the internal dentate limb. The secondary dentate matrix is in a process of dissolution by day P5. This matrix is the source of what will later become the outer shell of the granular layer composed of early generated granule cells. The thicker inner shell of the granular layer, formed during the infantile and juvenile periods, derives from an intrinsic, tertiary germinal matrix. On day E22, the dentate migration of the secondary dentate matrix becomes partitioned into two components: (a) the subpial component of extradentate origin, referred to in this context as the first dentate migration, and (b) the second dentate migration. The latter is distributed in the basal polymorph layer throughout the entire dentate gyrus and is henceforth recognized as the tertiary dentate matrix. The tertiary dentate matrix is prominent between days P3 and P10

  1. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    Sérgio Gomes da Silva

    Full Text Available Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task. Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation and associative (spatial learning mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning and increases BDNF levels and cell numbers in the hippocampal formation of offspring.

  2. Effect of Aggregated β-Amyloid (1-42 on Synaptic Plasticity of Hippocampal Dentate Gyrus Granule Cells in Vivo

    Shirin Babri

    2012-12-01

    Full Text Available Introduction: Alzheimer’s disease (AD is a common neurodegenerative disorder in elderly people with an impairment of cognitive decline and memory loss. β-amyloid (Aβ as a potent neurotoxic peptide has a pivotal role in the pathogenesis of AD. This disease begins with impairment in synaptic functions before developing into later neuro­degeneration and neuronal loss. The aim of this study was to evaluate the synaptic plasticity and electrophysiological function of granule cells in hippocampal dentate gyrus (DG after intracerebroventricular (i.c.v. administration of aggregated Aβ (1-42 peptide in vivo. Methods: Animals were divided to control and Aβ (1-42 groups. Long-term potentia­tion (LTP in perforant path-DG synapses was assessed in order to investigate the effect of aggregated Aβ (1-42 on synaptic plasticity. Field excitatory post-synaptic potential (fEPSP slope and population spike (PS amplitude were measured. Results: Administration of Aβ (1-42 significantly decreased fEPSP slope and PS amplitude in Aβ (1-42 group comparing with the control group and had no effect on baseline activity of neurons. Conclusion: The present study indicates that administration of aggregated form of Aβ (1-42 into the lateral ventricle effectively inhibits LTP in granular cells of the DG in hippocampus in vivo.

  3. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  4. [Effect of electroacupuncture on differentiation and proliferation of hippocampal nerve stem cells in splenic asthenia pedo-rats].

    Zhuo, Yuan-yuan; Yang, Zhuo-xin; Wu, Jia-man

    2011-10-01

    To observe the effect of electroacupuncture (EA) on the differentiation and proliferation of nerve stem cells in the hippocampal dentate gyrus (DG) in splenic asthenia pedo-rats so as to study its central mechanism. A total of 72 SD male rats were randomly assigned to normal control group (n=24), model group (n=24) and EA group (n=24) which were further divided into 7 d, 14 d, 28 d and 49 d time-points (n=6). Splenic asthenia model was established by intraperitoneal injection of reserpine and gavage of Dahuang (Radix et Rhizoma Rhei) fluid. EA was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 min, once daily for 7, 14, 28 and 49 days respectively. Brdu, Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE) expression in the DG of hippocampus were detected by immunohistochemistry double staining. Compared with the normal control group, the numbers of Brdu, Brdu/GFAP, Brdu/NSE Immunoreactive (IR) positive cells in the DG of hippocampus on day 7 and 14, and that of Brdu/Nestin IR-positive cells on day 7 were decreased considerably in the model group (P 0.05). EA of ST 36 and SP 6 can effectively suppress splenic asthenia syndrome-induced decrease of the numbers of Brdu, Brdu/GFAP, Brdu/Nestin and Brdu/NSE IR-positive cells in the DG of hippocampus at the early stage in the splenic asthenia rats, which may contribute to its effect in improving splenic asthenia symptoms in clinic by promoting the proliferation and differentiation of some nerve stem cells in the hippocampus.

  5. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.

    Praveen K Pilly

    Full Text Available Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous

  6. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.

    Peter A Appleby

    Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus

  7. Black Rice (Oryza sativa L., Poaceae) Extract Reduces Hippocampal Neuronal Cell Death Induced by Transient Global Cerebral Ischemia in Mice.

    Hwang, Sun-Nyoung; Kim, Jae-Cheon; Bhuiyan, Mohammad Iqbal Hossain; Kim, Joo Youn; Yang, Ji Seon; Yoon, Shin Hee; Yoon, Kee Dong; Kim, Seong Yun

    2018-04-01

    Rice is the most commonly consumed grain in the world. Black rice has been suggested to contain various bioactive compounds including anthocyanin antioxidants. There is currently little information about the nutritional benefits of black rice on brain pathology. Here, we investigated the effects of black rice ( Oryza sativa L ., Poaceae) extract (BRE) on the hippocampal neuronal damage induced by ischemic insult. BRE (300 mg/kg) was orally administered to adult male C57BL/6 mice once a day for 21 days. Bilateral common carotid artery occlusion (BCCAO) was performed for 23 min on the 8th day of BRE or vehicle administration. Histological analyses conducted on the 22nd day of BRE or vehicle administration revealed that administering BRE profoundly attenuated neuronal cell death, inhibited reactive astrogliosis, and prevented loss of glutathione peroxidase expression in the hippocampus when compared to vehicle treatment. In addition, BRE considerably ameliorated BCCAO-induced memory impairment on the Morris water maze test from the 15th day to the 22nd day of BRE or vehicle administration. These results indicate that chronic administration of BRE is potentially beneficial in cerebral ischemia.

  8. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons.

    Guzowski, John F; Miyashita, Teiko; Chawla, Monica K; Sanderson, Jennifer; Maes, Levi I; Houston, Frank P; Lipa, Peter; McNaughton, Bruce L; Worley, Paul F; Barnes, Carol A

    2006-01-24

    The ability of neurons to alter their transcriptional programs in response to synaptic input is of fundamental importance to the neuroplastic mechanisms underlying learning and memory. Because of technical limitations of conventional gene detection methods, the current view of activity-dependent neural transcription derives from experiments in which neurons are assumed quiescent until a signaling stimulus is given. The present study was designed to move beyond this static model by examining how earlier episodes of neural activity influence transcription of the immediate-early gene Arc. Using a sensitive FISH method that detects primary transcript at genomic alleles, the proportion of hippocampal CA1 neurons that activate transcription of Arc RNA was constant at approximately 40% in response to both a single novel exploration session and daily sessions repeated over 9 days. This proportion is similar to the percentage of active neurons defined electrophysiologically. However, this close correspondence was disrupted in rats exposed briefly, but repeatedly, to the same environment within a single day. Arc transcription in CA1 neurons declined dramatically after as few as four 5-min sessions, despite stable electrophysiological activity during all sessions. Additional experiments indicate that the decrement in Arc transcription occurred at the cellular, rather than synaptic level, and was not simply linked to habituation to novelty. Thus, the neural genomic response is governed by recent, but not remote, cell firing history in the behaving animal. This state-dependence of neuronal transcriptional coupling provides a mechanism of metaplasticity and may regulate capacity for synaptic modification in neural networks.

  9. Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI.

    Waddell, Jaylyn; Hanscom, Marie; Shalon Edwards, N; McKenna, Mary C; McCarthy, Margaret M

    2016-01-01

    Hypoxia-ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning. Published by Elsevier Inc.

  10. Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI

    Waddell, Jaylyn; Hanscom, Marie; Edwards, N. Shalon; McKenna, Mary C.; McCarthy, Margaret M.

    2015-01-01

    Hypoxia ischemia (HI) of the brain in near-term and term infants is a leading cause of infant mortality and lifelong disability but current therapeutic approaches remain limited. Males consistently display greater vulnerability to the deleterious consequences of HI in both humans and animal models. Neurogenesis increases after neonatal HI and offers a potential therapeutic target for recovery. The steroid hormone estradiol has been extensively explored as a neuroprotectant in adult models of stroke but with mixed results. Less consideration has been afforded to this naturally occurring agent in the developing brain, which has unique challenges from the adult. Using a model of term HI in the rat we have explored the impact of this insult on cell genesis in the hippocampus of males and females and the ability of estradiol treatment immediately after insult to restore function. Both short-term (3 days) and long-term (7 days) post-injury were assessed and revealed that only females had markedly increased cell genesis on the short-term but both sexes were increased long-term. A battery of behavioral tests revealed motor impairment in males and compromised episodic memory while both sexes were modestly impaired in spatial memory. Juvenile social play was also depressed in both sexes after HI. Estradiol therapy improved behavioral performance in both sexes but did not reverse a deficit in hippocampal volume ipsilateral to the insult. Thus the effects of estradiol do not appear to be via cell death or proliferation but rather involve other components of neural functioning. PMID:26376217

  11. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse☆

    Kerrigan, T.L.; Brown, J.T.; Randall, A.D.

    2014-01-01

    Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9–10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled ‘Neurodevelopment Disorder’. PMID:24055500

  12. Cudarflavone B Provides Neuroprotection against Glutamate-Induced Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling Pathways

    Dong-Sung Lee

    2014-07-01

    Full Text Available Oxidative cell damage contributes to neuronal degeneration in many central nervous system (CNS diseases such as Alzheimer’s disease, Parkinson’s disease, and ischemia. Nrf2 signaling-mediated heme oxygenase (HO-1 expression acts against oxidants that are thought to play a key role in the pathogenesis of neuronal diseases. Cudraflavone B is a prenylated flavone isolated from C. tricuspidata which has shown anti-proliferative activity, mouse brain monoamine oxidase (MAO inhibitory effects, apoptotic actions in human gastric carcinoma cells and mouse melanoma cells, and hepatoprotective activity. In this study, cudraflavone B showed neuroprotective effects and reactive oxygen species (ROS inhibition against glutamate-induced neurotoxicity by inducing the expression of HO-1 in mouse hippocampal HT22 cells. Furthermore, cudraflavone B caused the nuclear accumulation of nuclear factor-E2-related factor 2 (Nrf2 and increased the promoter activity of antioxidant response elements (ARE in mouse hippocampal HT22 cells. In addition, we found that the Nrf2-midiated HO-1 expression by cudraflavone B is involved in the cell protective response and ROS reductions, and cudraflavone B-induced expression of HO-1 was mediated through the phosphatidylinositol 3-kinase (PI3K/Akt pathway in HT22 cells. Our results demonstrated the potential application of naturally occurring cudraflavone B as a therapeutic agent from neurodegenerative disease.

  13. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 1; Postnatal maturation of hippocampal cells

    Represa, A; Dessi, F; Beaudoin, M; Ben-Ari, Y [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)

    1991-01-01

    The axons of dentate granule cells, the mossy fibres, establish synaptic contacts with the thorny excrescences of the apical dendrite of CA3 pyramidal neurons. Dentate granule cells develop postnatally in rats, whereas the CA3 pyramidal cells are generated before birth. In the present studies, using unilateral neonatal {gamma}-ray irradiation to destroy the granule cells in one hemisphere, we have studied the effect of mossy fibre deprivation on the development of their targets. We show that such ''degranulation'' prevents the normal development of giant thorny excrescences, suggesting that the development of thorny excrescences in CA3 pyramidal neurons is under the control of mossy fibres. In contrast, irradiation of the hippocampus of the neonatal rat does not affect the development of the dendritic arborization of CA3 pyramidal cells and their non-mossy dendritic spines. (author).

  14. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury.

    Deborah R Boone

    Full Text Available Cognitive deficits in survivors of traumatic brain injury (TBI are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive or surviving (Fluoro-Jade-negative pyramidal neurons obtained by laser capture microdissection (LCM. In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.

  15. Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule

    Borcel, Erika; Pérez-Alvarez, Laura; Herrero, Ana Isabel

    2008-01-01

    In this study, we examined whether chronic stress in adulthood can exert long-term effects on spatial-cognitive abilities and on the survival of newborn hippocampal cells in aging animals. Male Wistar rats were subjected to chronic unpredictable stress at midlife (12 months old) and then reexposed...... in the hippocampus. Interestingly, spatial-memory performance in the Morris water maze was positively correlated with the number of newborn cells that survived in the dentate gyrus: better spatial memory in the water maze was associated with more 5-bromo-2-deoxyuridine (BrdU)-labeled cells. Administration of FGL......, a peptide mimetic of neural cell adhesion molecule, during the 4 weeks of continuous stress not only prevented the deleterious effects of chronic stress on spatial memory, but also reduced the survival of the newly generated hippocampal cells in aging animals. FGL treatment did not, however, prevent...

  16. Acute alterations of somatodendritic action potential dynamics in hippocampal CA1 pyramidal cells after kainate-induced status epilepticus in mice.

    Daniel Minge

    Full Text Available Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP dynamics immediately following status epilepticus (SE in mice. SE was induced by intraperitoneal (i.p. injection of kainate, and behavioral manifestation of SE was monitored for 3-4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca(2+ imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2-5 mV. No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP, was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP-induced Ca(2+ signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na(+ and K(+ current components.

  17. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  18. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  19. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K 3 ) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of ATP

  20. Transplantation of bone marrow mononuclear cells modulates hippocampal expression of growth factors in chronically epileptic animals.

    Zanirati, Gabriele; Azevedo, Pamella Nunes; Marinowic, Daniel Rodrigo; Rodrigues, Felipe; de Oliveira Dias, Ana Christina; Venturin, Gianina Teribele; Greggio, Samuel; Simão, Fabrício; DaCosta, Jaderson Costa

    2015-05-01

    In previous studies, transplantation of bone marrow mononuclear cells (BMMCs) in epileptic animals has been found to be neuroprotective. However, the mechanism by which the BMMCs act remains unclear. We hypothesize that BMMCs may provide neuroprotection to the epileptic brain through trophic support. To test our hypothesis, we studied the temporal expression of neurotrophins after BMMC transplantation in the epileptic rat hippocampus. Chronically epileptic rats were intravenously transplanted with 1 × 10(7) BMMCs isolated from GFP transgenic mice. Expression levels of BDNF, GDNF, NGF, VEGF, and TGF-β1, and their receptors, were evaluated by ELISA and/or qRT-PCR analysis. Our data revealed increased protein expression of BDNF, GDNF, NGF, and VEGF and reduced levels of TGF-β1 in the hippocampus of transplanted epileptic animals. Additionally, an increase in the mRNA expression of BDNF, GDNF, and VEGF, a reduction in TGF-β1, and a decrease in mRNA levels of the TrkA and TGFR-β1 receptors were also observed. The gain provided by transplanted BMMCs in the epileptic brain may be related to the ability of these cells in modulating the network of neurotrophins and angiogenic signals. © 2015 John Wiley & Sons Ltd.

  1. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  2. Live-cell imaging of post-golgi transport vesicles in cultured hippocampal neurons

    Jensen, Camilla Stampe; Misonou, Hiroaki

    2015-01-01

    compartments of neurons. In the past two decades, the establishment and advancement of fluorescent protein technology have provided us with opportunities to study how proteins are trafficked in living cells. However, live imaging of trafficking processes in neurons necessitate imaging tools to distinguish...... the several different routes that neurons use for protein trafficking. Here we provide a novel protocol to selectively visualize post-Golgi transport vesicles carrying fluorescent-labeled ion channel proteins in living neurons. Further, we provide a number of analytical tools we developed to quantify...... mechanisms by which post-Golgi vesicles are trafficked in neurons. Our protocol uniquely combines the classic temperature-block with close monitoring of the transient expression of transfected protein tagged with fluorescent proteins, and provides a quick and easy way to study protein trafficking in living...

  3. Seizure-like activity leads to the release of BAD from 14-3-3 protein and cell death in hippocampal neurons in vitro.

    Meller, R; Schindler, C K; Chu, X P; Xiong, Z G; Cameron, J A; Simon, R P; Henshall, D C

    2003-05-01

    Seizure-induced neuronal death may involve engagement of the BCL-2 family of apoptosis-regulating proteins. In the present study we examined the activation of proapoptotic BAD in cultured hippocampal neurons following seizures induced by removal of chronic glutamatergic transmission blockade. Kynurenic acid withdrawal elicited an increase in seizure-like electrical activity, which was inhibited by blockers of AMPA (CNQX) and NMDA (MK801 and AP5) receptor function. However, only NMDA receptor antagonists inhibited calcium entry as assessed by fura-2, and cell death of hippocampal neurons. Seizures increased proteolysis of caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) of cells. Seizure-like activity induced dephosphorylation of BAD and the disruption of its constitutive interaction with 14-3-3 proteins. In turn, BAD dimerized with antiapoptotic BCL-Xl after seizures. However, the absence of neuroprotective effects of pathway intervention suggests that BAD may perform a reinforcement rather than instigator role in cell death following seizures in vitro.

  4. Haloperidol normalized prenatal vitamin D depletion-induced reduction of hippocampal cell proliferation in adult rats.

    Keilhoff, Gerburg; Grecksch, Gisela; Becker, Axel

    2010-05-31

    Considering the fact that schizophrenia is a highly complex disorder of the human brain, different models are needed to test specific causative or mechanistic hypotheses. The pathogenesis of schizophrenia is also characterized by abnormal neuronal development. It was found that schizophrenia as well as antipsychotic treatment are accompanied by alterations in neuronal proliferation. Recently we reported on increased neurogenesis and their controllability by neuroleptics in a pharmacological (ketamine) model of schizophrenia. To complete our understanding, here we studied neurogenesis and its sensitivity to the classical neuroleptic haloperidol in a developmental model of schizophrenia (maternal vitamin D deficiency). It was found that maternal vitamin D deficiency resulted in decreased neurogenesis. This effect was ameliorated by subchronic treatment with haloperidol. Thus, the results complete previous findings concerning the ability of haloperidol to ameliorate behavioral abnormalities induced by prenatal vitamin D deficiency and introduce the possibility to explain the curative effects of haloperidol, at least in part, due to re-establishment of disturbed cell proliferation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis☆

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2013-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K3) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. PMID:22575170

  6. B-Raf and CRHR1 internalization mediate biphasic ERK1/2 activation by CRH in hippocampal HT22 Cells.

    Bonfiglio, Juan J; Inda, Carolina; Senin, Sergio; Maccarrone, Giuseppina; Refojo, Damián; Giacomini, Damiana; Turck, Christoph W; Holsboer, Florian; Arzt, Eduardo; Silberstein, Susana

    2013-03-01

    CRH is a key regulator of neuroendocrine, autonomic, and behavioral response to stress. CRH-stimulated CRH receptor 1 (CRHR1) activates ERK1/2 depending on intracellular context. In a previous work, we demonstrated that CRH activates ERK1/2 in limbic areas of the mouse brain (hippocampus and basolateral amygdala). ERK1/2 is an essential mediator of hippocampal physiological processes including emotional behavior, synaptic plasticity, learning, and memory. To elucidate the molecular mechanisms by which CRH activates ERK1/2 in hippocampal neurons, we used the mouse hippocampal cell line HT22. We document for the first time that ERK1/2 activation in response to CRH is biphasic, involving a first cAMP- and B-Raf-dependent early phase and a second phase that critically depends on CRHR1 internalization and β-arrestin2. By means of mass-spectrometry-based screening, we identified B-Raf-associated proteins that coimmunoprecipitate with endogenous B-Raf after CRHR1 activation. Using molecular and pharmacological tools, the functional impact of selected B-Raf partners in CRH-dependent ERK1/2 activation was dissected. These results indicate that 14-3-3 proteins, protein kinase A, and Rap1, are essential for early CRH-induced ERK1/2 activation, whereas dynamin and vimentin are required for the CRHR1 internalization-dependent phase. Both phases of ERK1/2 activation depend on calcium influx and are affected by calcium/calmodulin-dependent protein kinase II inactivation. Thus, this report describes the dynamics and biphasic nature of ERK1/2 activation downstream neuronal CRHR1 and identifies several new critical components of the CRHR1 signaling machinery that selectively controls the early and late phases of ERK1/2 activation, thus providing new potential therapeutic targets for stress-related disorders.

  7. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model.

    Kim, So Mi; Hwang, In Koo; Yoo, Dae Young; Eum, Won Sik; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Jo, Hyo Sang; Ryu, Eun Ji; Yong, Ji In; Cho, Sung-Woo; Kwon, Oh-Shin; Lee, Keun Wook; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Choi, Soo Young

    2015-06-01

    Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Extinction of Contextual Cocaine Memories Requires Cav1.2 within D1R-Expressing Cells and Recruits Hippocampal Cav1.2-Dependent Signaling Mechanisms.

    Burgdorf, Caitlin E; Schierberl, Kathryn C; Lee, Anni S; Fischer, Delaney K; Van Kempen, Tracey A; Mudragel, Vladimir; Huganir, Richard L; Milner, Teresa A; Glass, Michael J; Rajadhyaksha, Anjali M

    2017-12-06

    Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Ca v 1.2 L-type Ca 2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Ca v 1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Ca v 1.2 targets revealed that extinction recruited calcium/calmodulin (Ca 2+ /CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Ca v 1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Ca v 1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Ca v 1.2 channels in extinction of contextual cocaine-associated memories. SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of

  9. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Wang-shu Xu

    2016-01-01

    Full Text Available Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  10. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  11. A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation.

    Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul; Guo, Junjie U; Sun, Gerald J; Will, Brett; Yang, Zhengang; Jang, Mi-Hyeon; Song, Hongjun; Ming, Guo-li; Christian, Kimberly M

    2015-09-04

    A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.

  12. Protective Effect of Water Extracted Spirulina maxima on Glutamate-induced Neuronal Cell Death in Mouse Hippocampal HT22 Cell.

    Lee, Hyeon Yong; Ryu, Ga Hee; Choi, Woon Yong; Yang, Woo Seung; Lee, Hyeon Woo; Ma, Choong Je

    2018-01-01

    Spirulina maxima was used as important nutritional source in the Aztec civilization because it is rich in proteins and vitamins. It contains various antioxidants such as phycocyanin and flavonoids. Based on abundant antioxidants, S. maxima is known to possess anti-inflammatory effect, especially on neuronal cells. S. maxima was extracted in water and contain of phycocyanin was identified by high-performance liquid chromatography. Cell viability test was performed with treatment of S. maxima extract. After, oxidative stress-related mechanisms were evaluated by detecting the accumulation of reactive oxygen species (ROS) and Ca 2+ influx, and decrease of mitochondrial membrane potential (MMP) level. Then, the glutathione (GSH) related assays were conducted. The water extracted S. maxima exerted the neuroprotective activity by attenuating the ROS and Ca 2+ formation, maintaining the MMP level, and protecting the activity of the antioxidant enzymes by increasing reduced GSH against oxidative stress compared to control. The results suggested that water extracted S. maxima showed powerful neuroprotective effect through the mechanism related to antioxidant activity, able to preventing the radical-mediated cell death. Water extracted Spirulina maxima contains C-phycocyaninWater extracted Spirulina maxima exerts neuroprotective effect on HT22 cellTo investigate the protective mechanisms, reactive oxygen species, Ca 2+ , mitochondrial membrane potential, Glutathione-related assays were performed. Abbreviations used: ROS: Reactive oxygen species; MMP: Mitochondrial membrane potential; GSH: Glutathione; GSSG: Glutathione disulfide, oxidized glutathione; GPx: Glutathione peroxidase; GR: Glutathione reductase; DMEM: Dulbecco's modified Eagle's medium; FBS: Fetal bovine serum; DCF-DA: 2',7'-dichlorofluorescein diacetate; PBS: Phosphate buffered serum; Rho 123: Rhodamine 123; NADPH: Nicotinamide adenine dinucleotide phosphate; DTNB: 5,5'-dithiobis-2-nitrobenzoic acid, Ellman

  13. Hippocampal sclerosis in advanced age: clinical and pathological features.

    Nelson, Peter T; Schmitt, Frederick A; Lin, Yushun; Abner, Erin L; Jicha, Gregory A; Patel, Ela; Thomason, Paula C; Neltner, Janna H; Smith, Charles D; Santacruz, Karen S; Sonnen, Joshua A; Poon, Leonard W; Gearing, Marla; Green, Robert C; Woodard, John L; Van Eldik, Linda J; Kryscio, Richard J

    2011-05-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer's disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer's Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n=106). For individuals aged≥95 years at death (n=179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of 'definite' Alzheimer's disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n=10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar degeneration TAR

  14. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John

  15. Risk of Hippocampal Metastases in Small Cell Lung Cancer Patients at Presentation and After Cranial Irradiation: A Safety Profile Study for Hippocampal Sparing During Prophylactic or Therapeutic Cranial Irradiation

    Kundapur, Vijayananda; Ellchuk, Tasha; Ahmed, Shahid; Gondi, Vinai

    2015-01-01

    Purpose: Neurocognitive impairment (NI) in patients with small cell lung cancer (SCLC) after whole brain radiation treatment (WBRT) is a significant cause of morbidity. Hippocampal avoidance (HA) during WBRT may mitigate or prevent NI in such patients. However, this has not been tested in SCLC patients. The estimated risk of metastases in the HA region (HM) in patients with SCLC at diagnosis or after WBRT is unknown. Our study aimed to determine the risk of HM in patients with SCLC and to assess correlated clinical factors. Methods and Materials: Patients with SCLC who experienced brain metastases (BM) at presentation (de novo) or after WBRT treated at the Saskatoon Cancer Centre between 2005 and 2012 were studied. Relevant neuroimaging was independently reviewed by a neuroradiologist. HM was defined as metastases within 5 mm of the hippocampus. Logistic regression analysis was performed to assess correlation between various clinical variables and HM. Results: Seventy eligible patients were identified. Of 59 patients presenting with de novo BM, 3 patients (5%, 95% confidence interval [CI]: 0%-10.7%) had HM. Collectively there were 359 (range, 1-33) de novo BM with 3 (0.8%, 95% CI: 0%-1.7%) HM deposits. Twenty patients experienced progression of metastatic disease in the brain after WBRT. Of the 20 patients, only 1 patient (5%, 95% CI: 0%-14.5%) experienced HM. On logistic regression, no factors significantly correlated with HM. Conclusion: The overall incidence of HM before or after WBRT in SCLC patients is low, providing preliminary support for the safety of HA during planned clinical trials of HA-WBRT for SCLC

  16. Risk of Hippocampal Metastases in Small Cell Lung Cancer Patients at Presentation and After Cranial Irradiation: A Safety Profile Study for Hippocampal Sparing During Prophylactic or Therapeutic Cranial Irradiation

    Kundapur, Vijayananda, E-mail: Vijayananda.kundapur@saskcancer.ca [Saskatoon Cancer Center, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Ellchuk, Tasha [Department of Radiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Ahmed, Shahid [Saskatoon Cancer Center, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Gondi, Vinai [Cadence Health Brain Tumor Center and Cadence Health Proton Center, Chicago, Illinois (United States)

    2015-03-15

    Purpose: Neurocognitive impairment (NI) in patients with small cell lung cancer (SCLC) after whole brain radiation treatment (WBRT) is a significant cause of morbidity. Hippocampal avoidance (HA) during WBRT may mitigate or prevent NI in such patients. However, this has not been tested in SCLC patients. The estimated risk of metastases in the HA region (HM) in patients with SCLC at diagnosis or after WBRT is unknown. Our study aimed to determine the risk of HM in patients with SCLC and to assess correlated clinical factors. Methods and Materials: Patients with SCLC who experienced brain metastases (BM) at presentation (de novo) or after WBRT treated at the Saskatoon Cancer Centre between 2005 and 2012 were studied. Relevant neuroimaging was independently reviewed by a neuroradiologist. HM was defined as metastases within 5 mm of the hippocampus. Logistic regression analysis was performed to assess correlation between various clinical variables and HM. Results: Seventy eligible patients were identified. Of 59 patients presenting with de novo BM, 3 patients (5%, 95% confidence interval [CI]: 0%-10.7%) had HM. Collectively there were 359 (range, 1-33) de novo BM with 3 (0.8%, 95% CI: 0%-1.7%) HM deposits. Twenty patients experienced progression of metastatic disease in the brain after WBRT. Of the 20 patients, only 1 patient (5%, 95% CI: 0%-14.5%) experienced HM. On logistic regression, no factors significantly correlated with HM. Conclusion: The overall incidence of HM before or after WBRT in SCLC patients is low, providing preliminary support for the safety of HA during planned clinical trials of HA-WBRT for SCLC.

  17. Taurine increases hippocampal neurogenesis in aging mice

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  18. Maternal separation decreases adult hippocampal cell proliferation and impairs cognitive performance but has little effect on stress sensitivity and anxiety in adult Wistar rats.

    Hulshof, Henriëtte J; Novati, Arianna; Sgoifo, Andrea; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2011-01-20

    Stressful events during childhood are thought to increase the risk for the development of adult psychopathology. A widely used animal model for early life stress is maternal separation (MS), which is thought to affect development and cause alterations in neuroendocrine stress reactivity and emotionality lasting into adulthood. However, results obtained with this paradigm are inconsistent. Here we investigated whether this variation may be related to the type of stressor or the tests used to assess adult stress sensitivity and behavioral performance. Rat pups were exposed to a 3h daily MS protocol during postnatal weeks 1-2. In adulthood, animals were subjected to a wide variety of stressors and tests to obtain a better view on the effects of MS on adult hypothalamic-pituitary-adrenal (HPA) axis regulation, anxiety-like behavior, social interaction and cognition. Also, the influence of MS on adult hippocampal neurogenesis was studied because it might underlie changes in neuroendocrine regulation and behavioral performance. The results show that, independent of the nature of the stressor, MS did not affect the neuroendocrine response. MS did not influence anxiety-like behavior, explorative behavior and social interaction, but did affect cognitive function in an object recognition task. The amount of new born cells in the hippocampal dentate gyrus was significantly decreased in MS animals; yet, cell differentiation and survival were not altered. In conclusion, while interfering with the mother-infant relationship early in life did affect some aspects of adult neuroplasticity and cognitive function, it did not lead to permanent changes in stress sensitivity and emotionality. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Inactivation of the Lateral Entorhinal Area Increases the Influence of Visual Cues on Hippocampal Place Cell Activity

    Kristin M. Scaplen

    2017-05-01

    Full Text Available The hippocampus is important for both navigation and associative learning. We previously showed that the hippocampus processes two-dimensional (2D landmarks and objects differently. Our findings suggested that landmarks are more likely to be used for orientation and navigation, whereas objects are more likely to be used for associative learning. The process by which cues are recognized as relevant for navigation or associative learning, however, is an open question. Presumably both spatial and nonspatial information are necessary for classifying cues as landmarks or objects. The lateral entorhinal area (LEA is a good candidate for participating in this process as it is implicated in the processing of three-dimensional (3D objects and object location. Because the LEA is one synapse upstream of the hippocampus and processes both spatial and nonspatial information, it is reasonable to hypothesize that the LEA modulates how the hippocampus uses 2D landmarks and objects. To test this hypothesis, we temporarily inactivated the LEA ipsilateral to the dorsal hippocampal recording site using fluorophore-conjugated muscimol (FCM 30 min prior to three foraging sessions in which either the 2D landmark or the 2D object was back-projected to the floor of an open field. Prior to the second session we rotated the 2D cue by 90°. Cues were returned to the original configuration for the third session. Compared to the Saline treatment, FCM inactivation increased the percentage of rotation responses to manipulations of the landmark cue, but had no effect on information content of place fields. In contrast, FCM inactivation increased information content of place fields in the presence of the object cue, but had no effect on rotation responses to the object cue. Thus, LEA inactivation increased the influence of visual cues on hippocampal activity, but the impact was qualitatively different for cues that are useful for navigation vs. cues that may not be useful for

  20. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka; Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3 + apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB + interneurons, although the number of reelin + interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of cholinergic

  1. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway.

    Mao, Xiao-Yuan; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2016-08-01

    Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway.

  2. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2015-09-15

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of

  3. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  4. The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice

    Emma eHoffman

    2015-04-01

    Full Text Available The integration of newly generated neurons persists throughout life in the mammalian olfactory bulb and hippocampus, regions involved in olfactory and spatial learning. Social cues can be potent stimuli for increasing adult neurogenesis; for example, odors from dominant but not subordinate male mice increase neurogenesis in both brain regions of adult females. However, little is known about the role of neurogenesis in social recognition or the assessment of potential mates. Dominant male mice scent-mark territories using urine that contains a number of pheromones including darcin (MUP20, a male-specific major urinary protein that stimulates rapid learned attraction to the spatial location and individual odor signature of the scent owner. Here we investigate whether exposure to darcin stimulates neurogenesis in the female brain. Hippocampal neurons and cellular proliferation in the lateral ventricles that supply neurons to the olfactory bulbs increased in females exposed for seven days to male urine containing at least 0.5µg/µl darcin. Darcin was effective whether presented alone or in the context of male urine, but other information in male urine appeared to modulate the proliferative response. When exposed to urine from wild male mice, hippocampal proliferation increased only if urine was from the same individual over seven days, suggesting that consistency of individual scent signatures is important. While seven days exposure to male scent initiated the first stages of increased neurogenesis, this caused no immediate increase in female attraction to the scent or in the strength or robustness of spatial learning in short-term conditioned place preference tests. The reliable and consistent stimulation of neurogenesis by a pheromone important in rapid social learning suggests that this may provide an excellent model to explore the relationship between the integration of new neurons and plasticity in spatial and olfactory learning in a socially

  5. Somatic Arc protein expression in hippocampal granule cells is increased in response to environmental change but independent of task-specific learning.

    Cleland, J P; Willis, E F; Bartlett, P F; Vukovic, J

    2017-09-29

    Activated neurons express immediate-early genes, such as Arc. Expression of Arc in the hippocampal granule cell layer, an area crucial for spatial learning and memory, is increased during acquisition of spatial learning; however, it is unclear whether this effect is related to the task-specific learning process or to nonspecific aspects of the testing procedure (e.g. exposure to the testing apparatus and exploration of the environment). Herein, we show that Arc-positive cells numbers are increased to the same extent in the granule cell layer after both acquisition of a single spatial learning event in the active place avoidance task and exploration of the testing environment, as compared to naïve (i.e. caged) mice. Repeated exposure the testing apparatus and environment did not reduce Arc expression. Furthermore, Arc expression did not correlate with performance in both adult and aged animals, suggesting that exploration of the testing environment, rather than the specific acquisition of the active place avoidance task, induces Arc expression in the dentate granule cell layer. These findings thus suggest that Arc is an experience-induced immediate-early gene.

  6. Removal of area CA3 from hippocampal slices induces postsynaptic plasticity at Schaffer collateral synapses that normalizes CA1 pyramidal cell discharge.

    Dumas, Theodore C; Uttaro, Michael R; Barriga, Carolina; Brinkley, Tiffany; Halavi, Maryam; Wright, Susan N; Ferrante, Michele; Evans, Rebekah C; Hawes, Sarah L; Sanders, Erin M

    2018-05-05

    Neural networks that undergo acute insults display remarkable reorganization. This injury related plasticity is thought to permit recovery of function in the face of damage that cannot be reversed. Previously, an increase in the transmission strength at Schaffer collateral to CA1 pyramidal cell synapses was observed after long-term activity reduction in organotypic hippocampal slices. Here we report that, following acute preparation of adult rat hippocampal slices and surgical removal of area CA3, input to area CA1 was reduced and Schaffer collateral synapses underwent functional strengthening. This increase in synaptic strength was limited to Schaffer collateral inputs (no alteration to temporoammonic synapses) and acted to normalize postsynaptic discharge, supporting a homeostatic or compensatory response. Short-term plasticity was not altered, but an increase in immunohistochemical labeling of GluA1 subunits was observed in the stratum radiatum (but not stratum moleculare), suggesting increased numbers of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and a postsynaptic locus of expression. Combined, these data support the idea that, in response to the reduction in presynaptic activity caused by removal of area CA3, Schaffer collateral synapses undergo a relatively rapid increase in functional efficacy likely supported by insertion of more AMPARs, which maintains postsynaptic excitability in CA1 pyramidal neurons. This novel fast compensatory plasticity exhibits properties that would allow it to maintain optimal network activity levels in the hippocampus, a brain structure lauded for its ongoing experience-dependent malleability. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Time- and cell-type specific changes in iron, ferritin, and transferrin in the gerbil hippocampal CA1 region after transient forebrain ischemia

    Dae Young Yoo

    2016-01-01

    Full Text Available In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H, and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1-2 days and then increased once again within the CA1 region at 4-7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4-7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.

  8. Involvement of Heme Oxygenase-1 Induction in the Cytoprotective and Immunomodulatory Activities of Viola patrinii in Murine Hippocampal and Microglia Cells

    Bin Li

    2012-01-01

    Full Text Available A number of diseases that lead to injury of the central nervous system are caused by oxidative stress and inflammation in the brain. In this study, NNMBS275, consisting of the ethanol extract of Viola patrinii, showed potent antioxidative and anti-inflammatory activity in murine hippocampal HT22 cells and BV2 microglia. NNMBS275 increased cellular resistance to oxidative injury caused by glutamate-induced neurotoxicity and reactive oxygen species generation in HT22 cells. In addition, the anti-inflammatory effects of NNMBS275 were demonstrated by the suppression of proinflammatory mediators, including proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2 and cytokines (tumor necrosis factor-α and interleukin-1β. Furthermore, we found that the neuroprotective and anti-inflammatory effects of NNMBS275 were linked to the upregulation of nuclear transcription factor-E2-related factor 2-dependent expression of heme oxygenase-1 in HT22 and BV2 cells. These results suggest that NNMBS275 possesses therapeutic potential against neurodegenerative diseases that are induced by oxidative stress and neuroinflammation.

  9. Effect of Vitamin D in HN9.10e Embryonic Hippocampal Cells and in Hippocampus from MPTP-Induced Parkinson’s Disease Mouse Model

    Samuela Cataldi

    2018-02-01

    Full Text Available It has long been proven that neurogenesis continues in the adult brains of mammals in the dentatus gyrus of the hippocampus due to the presence of neural stem cells. Although a large number of studies have been carried out to highlight the localization of vitamin D receptor in hippocampus, the expression of vitamin D receptor in neurogenic dentatus gyrus of hippocampus in Parkinson’s disease (PD and the molecular mechanisms triggered by vitamin D underlying the production of differentiated neurons from embryonic cells remain unknown. Thus, we performed a preclinical in vivo study by inducing PD in mice with MPTP and showed a reduction of glial fibrillary acidic protein (GFAP and vitamin D receptor in the dentatus gyrus of hippocampus. Then, we performed an in vitro study by inducing embryonic hippocampal cell differentiation with vitamin D. Interestingly, vitamin D stimulates the expression of its receptor. Vitamin D receptor is a transcription factor that probably is responsible for the upregulation of microtubule associated protein 2 and neurofilament heavy polypeptide genes. The latter increases heavy neurofilament protein expression, essential for neurofilament growth. Notably N-cadherin, implicated in activity for dendritic outgrowth, is upregulated by vitamin D.

  10. Optimized Model of Cerebral Ischemia In situ for the Long-Lasting Assessment of Hippocampal Cell Death

    Oksana Rybachuk

    2017-07-01

    Full Text Available Among all the brain, the hippocampus is the most susceptible region to ischemic lesion, with the highest vulnerability of CA1 pyramidal neurons to ischemic damage. This damage may cause either prompt neuronal death (within hours or with a delayed appearance (over days, providing a window for applying potential therapies to reduce or prevent ischemic impairments. However, the time course when ischemic damage turns to neuronal death strictly depends on experimental modeling of cerebral ischemia and, up to now, studies were predominantly focused on a short time-window—from hours to up to a few days post-lesion. Using different schemes of oxygen-glucose deprivation (OGD, the conditions taking place upon cerebral ischemia, we optimized a model of mimicking ischemic conditions in organotypical hippocampal slices for the long-lasting assessment of CA1 neuronal death (at least 3 weeks. By combining morphology and electrophysiology, we show that prolonged (30-min duration OGD results in a massive neuronal death and overwhelmed astrogliosis within a week post-OGD whereas OGD of a shorter duration (10-min triggered programmed CA1 neuronal death with a significant delay—within 2 weeks—accompanied with drastically impaired CA1 neuron functions. Our results provide a rationale toward optimized modeling of cerebral ischemia for reliable examination of potential treatments for brain neuroprotection, neuro-regeneration, or testing neuroprotective compounds in situ.

  11. Characterisation of Signalling by the Endogenous GPER1 (GPR30 Receptor in an Embryonic Mouse Hippocampal Cell Line (mHippoE-18.

    Nicholas J Evans

    Full Text Available Estrogen can modulate neuronal development and signalling by both genomic and non-genomic pathways. Many of its rapid, non-genomic effects on nervous tissue have been suggested to be mediated via the activation of the estrogen sensitive G-protein coupled receptor (GPER1 or GPR30. There has been much controversy over the cellular location, signalling properties and endogenous activators of GPER1. Here we describe the pharmacology and signalling properties of GPER1 in an immortalized embryonic hippocampal cell line, mHippoE-18. This cell line does not suffer from the inherent problems associated with the study of this receptor in native tissue or the problems associated with heterologously expression in clonal cell lines. In mHippoE-18 cells, 17β-Estradiol can mediate a dose-dependent rapid potentiation of forskolin-stimulated cyclic AMP levels but does not appear to activate the ERK1/2 pathway. The effect of 17β-Estradiol can be mimicked by the GPER1 agonist, G1, and also by tamoxifen and ICI 182,780 which activate GPER1 in a variety of other preparations. The response is not mimicked by the application of the classical estrogen receptor agonists, PPT, (an ERα agonist or DPN, (an ERβ agonist, further suggesting that this effect of 17β-Estradiol is mediated through the activation of GPER1. However, after exposure of the cells to the GPER1 specific antagonists, G15 and G36, the stimulatory effects of the above agonists are replaced by dose-dependent inhibitions of forskolin-stimulated cyclic AMP levels. This inhibitory effect is mimicked by aldosterone in a dose-dependent way even in the absence of the GPER1 antagonists. The results are discussed in terms of possible "Biased Antagonism" whereby the antagonists change the conformation of the receptor resulting in changes in the agonist induced coupling of the receptor to different second messenger pathways.

  12. Updating the lamellar hypothesis of hippocampal organization

    Robert S Sloviter

    2012-12-01

    Full Text Available In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the lamellar distribution of dentate granule cell axons (the mossy fibers, which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly lamellar mossy fiber pathway. The existence of pathways with translamellar distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis [Amaral and Witter. 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571-591]. We suggest that the functional implications of longitudinally-projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar

  13. Effect of pertussis and cholera toxins administered supraspinally on CA3 hippocampal neuronal cell death and the blood glucose level induced by kainic acid in mice.

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Sharma, Naveen; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-12-01

    The effect of cholera toxin (CTX) or pertussis toxin (PTX) administered supraspinally on hippocampal neuronal cell death in CA3 region induced by kainic acid (KA) was examined in mice. After the pretreatment with either PTX or CTX intracerebroventricularly (i.c.v.), mice were administered i.c.v. with KA. The i.c.v. treatment with KA caused a neuronal cell death in CA3 region and PTX, but not CTX, attenuated the KA-induced neuronal cell death. In addition, i.c.v. treatment with KA caused an elevation of the blood glucose level. The i.c.v. PTX pretreatment alone caused a hypoglycemia and inhibited KA-induced hyperglycemic effect. However, i.c.v. pretreatment with CTX did not affect the basal blood glucose level and KA-induced hyperglycemic effect. Moreover, KA administered i.c.v. caused an elevation of corticosterone level and reduction of the blood insulin level. Whereas, i.c.v. pretreatment with PTX further enhanced KA-induced up-regulation of corticosterone level. Furthermore, i.c.v. administration of PTX alone increased the insulin level and KA-induced hypoinsulinemic effect was reversed. In addition, PTX pretreatment reduces the KA-induced seizure activity. Our results suggest that supraspinally administered PTX, exerts neuroprotective effect against KA-induced neuronal cells death in CA3 region and neuroprotective effect of PTX is mediated by the reduction of KA-induced blood glucose level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  14. Hippocampal “Time Cells”: Time versus Path Integration

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  15. Neuroprotective effect of prenylated arylbenzofuran and flavonoids from morus alba fruits on glutamate-induced oxidative injury in HT22 hippocampal cells.

    Seo, Kyeong-Hwa; Lee, Dae-Young; Jeong, Rak-Hun; Lee, Dong-Sung; Kim, Young-Eon; Hong, Eock-Kee; Kim, Youn-Chul; Baek, Nam-In

    2015-04-01

    A prenylated arylbenzofuran and six flavonoids were isolated from the fruits of Morus alba L. through silica gel, octadecyl silica gel, and Diaion HP-20 column chromatography. Based on the nuclear magnetic resonance, mass spectrometry, and infrared spectroscopic data, the chemical structures of the compounds were determined to be artoindonesianin O (1), isobavachalcone (2), morachalcone A (3), quercetin (4), astragalin (5), isoquercetin (6), and rutin (7). The isolated compounds were evaluated for protection of HT22-immortalized hippocampal cells against glutamate-induced oxidative stress. Compounds 1 and 3 exhibited protective effects with EC(50) values of 19.7±1.2 and 35.5±2.1 μM, respectively. The major compounds 1-3 and 7 were quantified using liquid chromatography/mass spectrometry analysis and were determined to be 1.88±2.1, 1.90±1.8, 0.78±1.5, and 37.29±2.2 mg/kg, respectively, in the ethanol extract of M. alba L. fruits.

  16. Two cell circuits of oriented adult hippocampal neurons on self-assembled monolayers for use in the study of neuronal communication in a defined system.

    Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J

    2013-08-21

    In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.

  17. Docosahexaenoic (DHA modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4 gene expression to ensure self-protection from oxidative damage in hippocampal cells

    Veronica eCasañas-Sanchez

    2015-07-01

    Full Text Available Docosahexaenoic acid (DHA, 22:6n-3 is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4, the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and APP/PS1 transgenic mice, a familial model of Alzheimer’s disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the ‘sentinel RNA hypothesis’ would expand the ability of Gpx4 (and DHA to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear

  18. Stress, depression and hippocampal damage

    Amongst the prime targets of stress in the brain is the hippocampus, which has high receptor ... effects on different hippocampal subfields (McEwen 1999). ... disorders, and decreases in hippocampal volume have been observed in patients of ...

  19. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit.

    Bouchard-Cannon, Pascale; Mendoza-Viveros, Lucia; Yuen, Andrew; Kærn, Mads; Cheng, Hai-Ying M

    2013-11-27

    The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The Circadian Molecular Clock Regulates Adult Hippocampal Neurogenesis by Controlling the Timing of Cell-Cycle Entry and Exit

    Pascale Bouchard-Cannon

    2013-11-01

    Full Text Available The subgranular zone (SGZ of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body.

  1. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease.

    Lefort, Roger; Pozueta, Julio; Shelanski, Michael

    2012-08-01

    The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.

  3. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat

    Zahra-Nadia Sharifi

    2012-01-01

    Full Text Available Transient global cerebral ischemia causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the neurotrophic effect of the immunosuppressant agent FK506 in rat after global cerebral ischemia. Both common carotid arteries were occluded for 20 minutes followed by reperfusion. In experimental group 1, FK506 (6 mg/kg was given as a single dose exactly at the time of reperfusion. In the second group, FK506 was administered at the beginning of reperfusion, followed by its administration intraperitoneally (IP 6, 24, 48, and 72 hours after reperfusion. FK506 failed to show neurotrophic effects on CA1 region when applied as a single dose of 6 mg/kg. The cell number and size of the CA1 pyramidal cells were increased, also the number of cell death decreased in this region when FK506 was administrated 48 h after reperfusion. This work supports the possible use of FK506 in treatment of ischemic brain damage.

  4. Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures

    Poulsen, Frantz Rom; Blaabjerg, Morten; Montero, Maria

    2005-01-01

    facing CA1 and the immediate subgranular zone, exposure for 3 days to the NMDA receptor blocking agents MK-801 (10 microM) or APV (25 microM) in the culture medium, increased the number of TOAD-64/Ulip/CRMP-4 (TUC-4)-positive cells as counted in the slice cultures at the end of the 3-day treatment period...

  5. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line.

    Park, Sun Young; Jung, Won Jung; Kang, Jum Soon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2015-02-01

    Since oxidative stress is critically involved in excitotoxic damage, we sought to determine whether the activation of the transcription factors, cAMP-responsive element binding protein (CREB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also known as NFE2L2), by α-iso-cubebene is involved in its protective effects against glutamate-induced neuronal cell death. Pre-treatment with α-iso-cubebene significantly attenuated glutamate-induced cytotoxicity in mouse hippocampus-derived neuronal cells. α-iso-cubebene also reduced the glutamate-induced generation of reactive oxygen species and calcium influx, thus preventing apoptotic cell death. α-iso-cubebene inhibited glutamate-induced mitochondrial membrane depolarization and, consequently, inhibited the release of the apoptosis-inducing factor from the mitochondria. Immunoblot anlaysis revealed that the phosphorylation of extracellular signal-regulated kinase (ERK) by glutamate was reduced in the presence of α-iso-cubebene. α-iso-cubebene activated protein kinase A (PKA), CREB and Nrf2, which mediate the expression of the antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1), involved in neuroprotection. In addition, α-iso-cubebene induced the expression of antioxidant responsive element and CRE transcriptional activity, thus conferring neuroprotection against glutamate-induced oxidative injury. α-iso-cubebene also induced the expression of Nrf2-dependent genes encoding HO-1 and NQO1. Furthermore, the knockdown of CREB and Nrf2 by small interfering RNA attenuated the neuroprotective effects of α-iso-cubebene. Taken together, our results indicate that α-iso-cubebene protects HT22 cells from glutamate-induced oxidative damage through the activation of Nrf2/HO-1/NQO-1, as well as through the PKA and CREB signaling pathways.

  7. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin.

    Baghishani, Farideh; Mohammadipour, Abbas; Hosseinzadeh, Hossain; Hosseini, Mahmoud; Ebrahimzadeh-Bideskan, Alireza

    2018-06-01

    Tramadol, a frequently used pain reliever drug, present neurotoxic effects associated to cognitive dysfunction. Moreover, crocin has been reported to have neuroprotective effects. The aim of this study was to assess crocin's capacity to protect learning, and memory abilities on tramadol-treated rats. A total of 35 rats were divided into five groups: Control, Saline, tramadol (50 mg/kg), tramadol + crocin(30 mg/kg), crocin groups and treated orally for 28 consecutive days. Morris water maze (MWM) and passive avoidance (PA) tests were done, followed by dissection of the rat's brains for toluidine blue and TUNEL staining. In MWM test, tramadol group spent lower time and traveled shorter distance in the target quadrant (Q1) (P DNs) and apoptotic cells in CA1, CA3 and DG increased (P DNs and apoptotic cells in these areas (P DNs and apoptotic cells in the hippocampus. Considering these results, the potential capacity of crocin for decreasing side effects of tramadol on the nervous system is suggested.

  8. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis.

    Jardim, Anaclara Prada; Corso, Jeana Torres; Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Comper, Sandra Mara; Lancellotti, Carmen Lúcia Penteado; Centeno, Ricardo Silva; Carrete, Henrique; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2016-12-01

    To correlate hippocampal volumes obtained from brain structural imaging with histopathological patterns of hippocampal sclerosis (HS), in order to predict surgical outcome. Patients with mesial temporal lobe epilepsy (MTLE) with HS were selected. Clinical data were assessed pre-operatively and surgical outcome in the first year post surgery. One block of mid hippocampal body was selected for HS classification according to ILAE criteria. NeuN-immunoreactive cell bodies were counted within hippocampal subfields, in four randomly visual fields, and cell densities were transformed into z-score values. FreeSurfer processing of 1.5T brain structural images was used for subcortical and cortical volumetric estimation of the ipsilateral hippocampus. Univariate analysis of variance and Pearson's correlation test were applied for statistical analyses. Sixty-two cases (31 female, 32 right HS) were included. ILAE type 1 HS was identified in 48 patients, type 2 in eight, type 3 in two, and four had no-HS. Better results regarding seizure control, i.e. ILAE 1, were achieved by patients with type 1 HS (58.3%). Patients with types 1 and 2 had smaller hippocampal volumes compared to those with no-HS (p<0.001 and p=0.004, respectively). Positive correlation was encountered between hippocampal volumes and CA1, CA3, CA4, and total estimated neuronal densities. CA2 was the only sector which did not correlate its neuronal density with hippocampal volume (p=0.390). This is the first study correlating hippocampal volume on MRI submitted to FreeSurfer processing with ILAE patterns of HS and neuronal loss within each hippocampal subfield, a fundamental finding to anticipate surgical prognosis for patients with drug-resistant MTLE and HS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hippocampal sclerosis in advanced age: clinical and pathological features

    Schmitt, Frederick A.; Lin, Yushun; Abner, Erin L.; Jicha, Gregory A.; Patel, Ela; Thomason, Paula C.; Neltner, Janna H.; Smith, Charles D.; Santacruz, Karen S.; Sonnen, Joshua A.; Poon, Leonard W.; Gearing, Marla; Green, Robert C.; Woodard, John L.; Van Eldik, Linda J.; Kryscio, Richard J.

    2011-01-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer’s disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer’s Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n = 106). For individuals aged ≥95 years at death (n = 179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of ‘definite’ Alzheimer’s disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n = 10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar

  10. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  11. Assessment of the role of intracranial hypertension and stress on hippocampal cell apoptosis and hypothalamic-pituitary dysfunction after TBI.

    Tan, Huajun; Yang, Weijian; Wu, Chenggang; Liu, Baolong; Lu, Hao; Wang, Hong; Yan, Hua

    2017-06-19

    In recent years, hypopituitarism caused by traumatic brain injury (TBI) has been explored in many clinical studies; however, few studies have focused on intracranial hypertension and stress caused by TBI. In this study, an intracranial hypertension model, with epidural hematoma as the cause, was used to explore the physiopathological and neuroendocrine changes in the hypothalamic-pituitary axis and hippocampus. The results demonstrated that intracranial hypertension increased the apoptosis rate, caspase-3 levels and proliferating cell nuclear antigen (PCNA) in the hippocampus, hypothalamus, pituitary gland and showed a consistent rate of apoptosis within each group. The apoptosis rates of hippocampus, hypothalamus and pituitary gland were further increased when intracranial pressure (ICP) at 24 hour (h) were still increased. The change rates of apoptosis in hypothalamus and pituitary gland were significantly higher than hippocampus. Moreover, the stress caused by surgery may be a crucial factor in apoptosis. To confirm stress leads to apoptosis in the hypothalamus and pituitary gland, we used rabbits to establish a standard stress model. The results confirmed that stress leads to apoptosis of neuroendocrine cells in the hypothalamus and pituitary gland, moreover, the higher the stress intensity, the higher the apoptosis rate in the hypothalamus and pituitary gland.

  12. Low concentrations of the solvent dimethyl sulphoxide alter intrinsic excitability properties of cortical and hippocampal pyramidal cells.

    Francesco Tamagnini

    Full Text Available Dimethylsulfoxide (DMSO is a widely used solvent in biology. It has many applications perhaps the most common of which is in aiding the preparation of drug solutions from hydrophobic chemical entities. Recent studies have suggested that this molecule may be able to induce apoptosis in neural tissues urging caution regarding its introduction into humans, for example as part of stem cell transplants. Here we have used in vitro electrophysiological methods applied to murine brain slices to examine whether a few hours treatment with 0.05% DMSO (a concentration regarded by many as innocuous alters intrinsic excitability properties of neurones. We investigated pyramidal neurones in two distinct brain regions, namely area CA1 of the hippocampus and layer 2 of perirhinal cortex. In the former there was no effect on resting potential but input resistance was decreased by DMSO pre-treatment. In line with this action potential count for any level of depolarizing current stimulus was reduced by ∼25% following DMSO treatment. Ih-mediated "sag" was also increased in CA1 pyramids and action potential waveform analysis demonstrated that DMSO treatment moved action potential threshold towards resting potential. In perirhinal cortex a decreased action potential output for various depolarizing current stimuli was also seen. In these cells action potential threshold was unaltered by DMSO but a significant increase in action potential width was apparent. These data indicate that pre-treatment with this widely employed solvent can elicit multifaceted neurophysiological changes in mammalian neurones at concentrations below those frequently encountered in the published literature.

  13. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice

    Shao-Heng Li

    2017-06-01

    Full Text Available Alzheimer's disease (AD is the most serious neurodegenerative disease worldwide and is characterized by progressive cognitive impairment and multiple neurological changes, including neuronal loss in the brain. However, there are no available drugs to delay or cure this disease. Consequently, neuronal replacement therapy may be a strategy to treat AD. Osthole (Ost, a natural coumarin derivative, crosses the blood-brain barrier and exerts strong neuroprotective effects against AD in vitro and in vivo. Recently, microRNAs (miRNAs have demonstrated a crucial role in pathological processes of AD, implying that targeting miRNAs could be a therapeutic approach to AD. In the present study, we investigated whether Ost could enhance cell viability and prevent cell death in amyloid precursor protein (APP-expressing neural stem cells (NSCs as well as promote APP-expressing NSCs differentiation into more neurons by upregulating microRNA (miR-9 and inhibiting the Notch signaling pathway in vitro. In addition, Ost treatment in APP/PS1 double transgenic (Tg mice markedly restored cognitive functions, reduced Aβ plague production and rescued functional impairment of hippocampal neurons. The results of the present study provides evidence of the neurogenesis effects and neurobiological mechanisms of Ost against AD, suggesting that Ost is a promising drug for treatment of AD or other neurodegenerative diseases.

  14. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    Cholecystokinin (CCK)-expressing basket cells encompass a subclass of inhibitory GABAergic interneurons that regulate memory-forming oscillatory network activity of the hippocampal formation in accordance to the emotional and motivational state of the animal, conveyed onto these cells by respective...... are modulated by neuropeptide Y (NPY), one of the major local neuropeptides that strongly inhibits hippocampal excitability and has significant effect on its memory function. Here, using GAD65-GFP transgenic mice for prospective identification of CCK basket cells and whole-cell patch-clamp recordings, we show...

  15. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons.

    Alp, Murat; Cucinotta, Francis A

    2018-03-01

    Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen ( 16 O, 600 MeV/n) and titanium ( 48 Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions

  16. Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressant-resistant animal model for PTSD.

    Hendrikus Hendriksen

    Full Text Available BACKGROUND: Post traumatic stress disorder (PTSD can be considered the result of a failure to recover after a traumatic experience. Here we studied possible protective and therapeutic aspects of environmental enrichment (with and without a running wheel in Sprague Dawley rats exposed to an inescapable foot shock procedure (IFS. METHODOLOGY/PRINCIPAL FINDINGS: IFS induced long-lasting contextual and non-contextual anxiety, modeling some aspects of PTSD. Even 10 weeks after IFS the rats showed reduced locomotion in an open field. The antidepressants imipramine and escitalopram did not improve anxiogenic behavior following IFS. Also the histone deacetylase (HDAC inhibitor sodium butyrate did not alleviate the IFS induced immobility. While environmental enrichment (EE starting two weeks before IFS did not protect the animals from the behavioral effects of the shocks, exposure to EE either immediately after the shock or one week later induced complete recovery three weeks after IFS. In the next set of experiments a running wheel was added to the EE to enable voluntary exercise (EE/VE. This also led to reduced anxiety. Importantly, this behavioral recovery was not due to a loss of memory for the traumatic experience. The behavioral recovery correlated with an increase in cell proliferation in hippocampus, a decrease in the tissue levels of noradrenalin and increased turnover of 5-HT in prefrontal cortex and hippocampus. CONCLUSIONS/SIGNIFICANCE: This animal study shows the importance of (physical exercise in the treatment of psychiatric diseases, including post-traumatic stress disorder and points out the possible role of EE in studying the mechanism of recovery from anxiety disorders.

  17. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells.

    Wable, G S; Chen, Y-W; Rashid, S; Aoki, C

    2015-12-03

    Adolescent females are particularly vulnerable to mental illnesses with co-morbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel-running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain resistance

  18. A role for progesterone and α4-containing GABAA receptors of hippocampal pyramidal cells in the exacerbated running response of adolescent female mice to repeated food restriction stress

    Wable, Gauri; Chen, Yi-Wen; Rashid, Shannon; Aoki, Chiye

    2015-01-01

    Adolescent females are particularly vulnerable to mental illnesses with comorbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline-runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 expression levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain

  19. Hippocampal MR volumetry

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  20. Relationships between hippocampal activity and breathing patterns

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  1. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  2. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy

    Eleni Paizanis

    2007-01-01

    Full Text Available There is a growing body of evidence that neural stem cells reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone, where it is controlled by several trophic factors and neuroactive molecules. Neurogenesis is involved in processes such as learning and memory and accumulating evidence implicates hippocampal neurogenesis in the physiopathology of depression. We herein review experimental and clinical data demonstrating that stress and antidepressant treatments affect neurogenesis in opposite direction in rodents. In particular, the stimulation of hippocampal neurogenesis by all types of antidepressant drugs supports the view that neuroplastic phenomena are involved in the physiopathology of depression and underlie—at least partly—antidepressant therapy.

  3. Distemper virus encephalitis exerts detrimental effects on hippocampal neurogenesis.

    von Rüden, E-L; Avemary, J; Zellinger, C; Algermissen, D; Bock, P; Beineke, A; Baumgärtner, W; Stein, V M; Tipold, A; Potschka, H

    2012-08-01

    Despite knowledge about the impact of brain inflammation on hippocampal neurogenesis, data on the influence of virus encephalitis on dentate granule cell neurogenesis are so far limited. Canine distemper is considered an interesting model of virus encephalitis, which can be associated with a chronic progressing disease course and can cause symptomatic seizures. To determine the impact of canine distemper virus (CDV) infection on hippocampal neurogenesis, we compared post-mortem tissue from dogs with infection with and without seizures, from epileptic dogs with non-viral aetiology and from dogs without central nervous system diseases. The majority of animals with infection and with epilepsy of non-viral aetiology exhibited neuronal progenitor numbers below the age average in controls. Virus infection with and without seizures significantly decreased the mean number of neuronal progenitor cells by 43% and 76% as compared to age-matched controls. Ki-67 labelling demonstrated that hippocampal cell proliferation was neither affected by infection nor by epilepsy of non-viral aetiology. Analysis of CDV infection in cells expressing caspase-3, doublecortin or Ki-67 indicated that infection of neuronal progenitor cells is extremely rare and suggests that infection might damage non-differentiated progenitor cells, hamper neuronal differentiation and promote glial differentiation. A high inter-individual variance in the number of lectin-reactive microglial cells was evident in dogs with distemper infection. Statistical analyses did not reveal a correlation between the number of lectin-reactive microglia cells and neuronal progenitor cells. Our data demonstrate that virus encephalitis with and without seizures can exert detrimental effects on hippocampal neurogenesis, which might contribute to long-term consequences of the disease. The lack of a significant impact of distemper virus on Ki-67-labelled cells indicates that the infection affected neuronal differentiation and

  4. Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons.

    Yu, Yang; Wu, Xiuquan; Pu, Jingnan; Luo, Peng; Ma, Wenke; Wang, Jiu; Wei, Jialiang; Wang, Yuanxin; Fei, Zhou

    2018-01-01

    Lycium barbarum polysaccharide (LBP) is the main active ingredient of Lycium barbarum, which exhibits several beneficial effects, including neuroprotection, anti-aging and anti-oxidation. However, the mechanism by which LBP protects against cerebral ischemia/reperfusion-induced injury remains obscure. In this study, we found that LBP pretreatment greatly attenuated oxygen glucose deprivation/reperfusion (OGD/R) injury in primary cultured hippocampal neurons. LBP also suppressed OGD/R-induced lactate dehydrogenase (LDH) leakage, and ameliorated oxidative stress. In addition, LBP significantly reduced OGD/R-induced apoptosis and autophagic cell death. LBP caused the down-regulation of cleaved Caspase-3/Caspase-3, LC3II/LC3I and Beclin 1, as well as up-regulation of Bcl-2/Bax and p62. Furthermore, mechanistic studies indicated that LBP pretreatment increased p-Akt and p-mTOR levels after OGD/R. In summary, our results indicated that LBP protects against OGD/R-induced neuronal injury in primary hippocampal neurons by activating the PI3K/Akt/mTOR signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  6. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Gu Gong

    Full Text Available Tetramethylpyrazine (TMP has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD. The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32 induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  7. Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines

    Dong-Cheol Kim

    2016-04-01

    Full Text Available In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal HT22 cells. TMC-256C1 was shown to develop a cellular resistance to oxidative damage caused by glutamate-induced cytotoxicity and reactive oxygen species (ROS generation in HT22 cells, and suppress the inflammation process in LPS-stimulated BV2 cells. Furthermore, the neuroprotective and anti-neuroinflammatory activities of TMC-256C1 were associated with upregulated expression of heme oxygenase (HO-1 and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2 in HT22 and BV2 cells. We also found that TMC-256C1 activated p38 mitogen-activated protein kinases (MAPK and phosphatidylinositol 3-kinase (PI3K/Akt signaling pathways in HT22 and BV2 cells. These results demonstrated that TMC-256C1 activates HO-1 protein expression, probably by increasing nuclear Nrf2 levels via the activation of the p38 MAPK and PI3K/Akt pathways.

  8. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  9. Spatial representation in the hippocampal formation: a history.

    Moser, Edvard I; Moser, May-Britt; McNaughton, Bruce L

    2017-10-26

    Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal-entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.

  10. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.

  11. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model.

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong

    2014-06-24

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.

  12. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J.; Caboclo, L; Sisodiya, S M.

    2009-01-01

    Background: Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Methods: Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21–96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Results: Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Conclusion: Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon. GLOSSARY AED = antiepileptic drug; CA1p = CA1-predominant hippocampal sclerosis; CHS = classical hippocampal sclerosis; EFG = end folium gliosis; EFS = end folium sclerosis; GCD = granule cell dispersion; GCL = granule cell layer; HS = hippocampal sclerosis; MFS = mossy fiber sprouting; MTLE = mesial temporal lobe epilepsy; NPY = neuropeptide Y; ROI = region of interest; SE = status epilepticus; TLE = temporal lobe epilepsy. PMID:19710404

  13. Novel genetic loci associated with hippocampal volume

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); L.T. Strike (Lachlan); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  14. Novel genetic loci associated with hippocampal volume

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  15. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.

    Kim, Ah Hyun; Chun, Hye Jeong; Lee, Seulah; Kim, Hyung Sik; Lee, Jaewon

    2017-08-01

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Novel genetic loci associated with hippocampal volume

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  17. Hippocampal Sclerosis in Older Patients

    Cykowski, Matthew D.; Powell, Suzanne Z.; Schulz, Paul E.; Takei, Hidehiro; Rivera, Andreana L.; Jackson, Robert E.; Roman, Gustavo; Jicha, Gregory A.; Nelson, Peter T.

    2018-01-01

    Context Autopsy studies of the older population (≥65 years of age), and particularly of the “oldest-old” (≥85 years of age), have identified a significant proportion (~20%) of cognitively impaired patients in which hippocampal sclerosis is the major substrate of an amnestic syndrome. Hippocampal sclerosis may also be comorbid with frontotemporal lobar degeneration, Alzheimer disease, and Lewy body disease. Until recently, the terms hippocampal sclerosis of aging or hippocampal sclerosis dementia were applied in this context. Recent discoveries have prompted a conceptual expansion of hippocampal sclerosis of aging because (1) cellular inclusions of TAR DNA-binding protein 43 kDa (TDP-43) are frequent; (2) TDP-43 pathology may be found outside hippocampus; and (3) brain arteriolosclerosis is a common, possibly pathogenic, component. Objective To aid pathologists with recent recommendations for diagnoses of common neuropathologies in older persons, particularly hippocampal sclerosis, and highlight the recent shift in diagnostic terminology from HS-aging to cerebral age-related TDP-43 with sclerosis (CARTS). Data Sources Peer-reviewed literature and 5 autopsy examples that illustrate common age-related neuropathologies, including CARTS, and emphasize the importance of distinguishing CARTS from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology. Conclusions In advanced old age, the substrates of cognitive impairment are often multifactorial. This article demonstrates common and frequently comorbid neuropathologic substrates of cognitive impairment in the older population, including CARTS, to aid those practicing in this area of pathology. PMID:28467211

  18. Food restriction reduces neurogenesis in the avian hippocampal formation.

    Barbara-Anne Robertson

    Full Text Available The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the

  19. PirB regulates asymmetries in hippocampal circuitry.

    Hikari Ukai

    Full Text Available Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B. By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB, an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.

  20. Comparison of Hippocampal Volume in Dementia Subtypes

    Vijayakumar, Avinash; Vijayakumar, Abhishek

    2012-01-01

    Aims. To examine the relationship between different types of dementia and hippocampal volume. Methods. Hippocampal volume was measured using FL3D sequence magnetic resonance imaging in 26 Alzheimer's, vascular dementia, mixed dementia, and normal pressure hydrocephalus patients and 15 healthy controls and also hippocampal ratio, analyzed. Minimental scale was used to stratify patients on cognitive function impairments. Results. Hippocampal volume and ratio was reduced by 25% in Alzheimer's disease, 21% in mixed dementia, 11% in vascular dementia and 5% in normal pressure hydrocephalus in comparison to control. Also an asymmetrical decrease in volume of left hippocampus was noted. The severity of dementia increased in accordance to decreasing hippocampal volume. Conclusion. Measurement in hippocampal volume may facilitate in differentiating different types of dementia and in disease progression. There was a correlation between hippocampal volume and severity of cognitive impairment

  1. Hippocampal Abnormalities and Seizure Recurrence

    J Gordon Millichap

    2006-08-01

    Full Text Available Hippocampal volumetry and T2 relaxometry were performed on 84 consecutive patients (adolescents and adults with partial epilepsy submitted to antiepileptic drug (AED withdrawal after at least 2 years of seizure control, in a study at State University of Campinas-UNICAMP, Brazil.

  2. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: A model of post-partum stress and possible depression.

    Brummelte, Susanne; Pawluski, Jodi L; Galea, Liisa A M

    2006-09-01

    Post-partum stress and depression (PPD) have a significant effect on child development and behavior. Depression is associated with hypercortisolism in humans, and the fluctuating levels of hormones, including corticosterone, during pregnancy and the post-partum, may contribute to PPD. The present study was developed to investigate the effects of high-level corticosterone (CORT) post-partum in the mother on postnatal neurogenesis and behavior in the offspring. Sprague-Dawley dams were treated with either CORT (40 mg/kg) or sesame oil injections daily for 26 days beginning the day after giving birth. Dams were tested in the forced swim test (FST) and in the open field test (OFT) on days 24-26 post-partum. Results showed that the dams exposed to CORT expressed "depressive-like" behavior compared to controls, with decreased struggling behavior and increased immobility in the FST. To investigate the effects of treatment on hippocampal postnatal cell proliferation and survival in the offspring, males and females from treated dams were injected with BrdU (50 mg/kg) on postnatal day 21 and perfused either 24 h (cell proliferation) or 21 days (cell survival) later. Furthermore, male and female offspring from each litter were tested in adulthood on various behavioral tests, including the forced swim test, open field test, resistance to capture test and elevated plus maze. Intriguingly, male, but not female, offspring of CORT-treated dams exhibited decreased postnatal cell proliferation in the dentate gyrus. Both male and female offspring of CORT-treated dams showed higher resistance to capture and greater locomotor activity as assessed in the open field test. As high levels of CORT may be a characteristic of stress and/or depression, these findings support a model of 'CORT-induced' post-partum stress and possibly depression and demonstrate that the offspring of affected dams can exhibit changes in postnatal neurogenesis and behavior in adulthood.

  3. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  4. Adult hippocampal neurogenesis in natural populations of mammals.

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human A{beta}{sub 1-42} and tau

    Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca [Human Health Therapeutics, National Research Council of Canada, Ottawa, ON (Canada); Gaudet, Chantal; Menard, Michel; Brown, Leslie; Atkinson, Trevor [Human Health Therapeutics, National Research Council of Canada, Ottawa, ON (Canada); LaFerla, Frank M. [Department of Neurobiology and Behavior, University of California, Irvine, CA (United States); Ito, Shingo [Human Health Therapeutics, National Research Council of Canada, Ottawa, ON (Canada); Armato, Ubaldo; Dal Pra, Ilaria [Department of Life and Reproduction Sciences, University of Verona Medical School, Verona (Italy); Whitfield, James [Human Health Therapeutics, National Research Council of Canada, Ottawa, ON (Canada)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatin receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.

  6. Differential Structural Development of Adult-Born Septal Hippocampal Granule Cells in the Thy1-GFP Mouse, Nuclear Size as a New Index of Maturation.

    Tijana Radic

    Full Text Available Adult neurogenesis is frequently studied in the mouse hippocampus. We examined the morphological development of adult-born, immature granule cells in the suprapyramidal blade of the septal dentate gyrus over the period of 7-77 days after mitosis with BrdU-labeling in 6-weeks-old male Thy1-GFP mice. As Thy1-GFP expression was restricted to maturated granule cells, it was combined with doublecortin-immunolabeling of immature granule cells. We developed a novel classification system that is easily applicable and enables objective and direct categorization of newborn granule cells based on the degree of dendritic development in relation to the layer specificity of the dentate gyrus. The structural development of adult-generated granule cells was correlated with age, albeit with notable differences in the time course of development between individual cells. In addition, the size of the nucleus, immunolabeled with the granule cell specific marker Prospero-related homeobox 1 gene, was a stable indicator of the degree of a cell's structural maturation and could be used as a straightforward parameter of granule cell development. Therefore, further studies could employ our doublecortin-staging system and nuclear size measurement to perform investigations of morphological development in combination with functional studies of adult-born granule cells. Furthermore, the Thy1-GFP transgenic mouse model can be used as an additional investigation tool because the reporter gene labels granule cells that are 4 weeks or older, while very young cells could be visualized through the immature marker doublecortin. This will enable comparison studies regarding the structure and function between young immature and older matured granule cells.

  7. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  8. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  9. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2

    Laura Micheli; Manuela Ceccarelli; Roberta Gioia; Giorgio D’Andrea; Stefano Farioli-Vecchioli; Marco Costanzi; Daniele Saraulli; Daniele Saraulli; Vincenzo Cestari; Felice Tirone

    2017-01-01

    Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As ...

  10. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    Noraberg, J; Zimmer, J

    1998-01-01

    loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity.......Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...

  11. Decoding the cognitive map: ensemble hippocampal sequences and decision making

    Wikenheiser, Andrew M.; Redish, A. David

    2014-01-01

    Tolman proposed that complex animal behavior is mediated by the cognitive map, an integrative learning system that allows animals to reconfigure previous experience in order to compute predictions about the future. The discovery of place cells in the rodent hippocampus immediately suggested a plausible neural mechanism to fulfill the “map” component of Tolman’s theory. Recent work examining hippocampal representations occurring at fast time scales suggests that these sequences might be import...

  12. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation.

    Ma, Ting Martin; Grimm, Jimm; McIntyre, Riley; Anderson-Keightly, Heather; Kleinberg, Lawrence R; Hales, Russell K; Moore, Joseph; Vannorsdall, Tracy; Redmond, Kristin J

    2017-11-01

    To prospectively evaluate hippocampal radiation dose volume effects and memory decline following cranial irradiation. Effects of hippocampal radiation over a wide range of doses were investigated by combining data from three prospective studies. In one, adults with small cell lung cancer received hippocampal-avoidance prophylactic cranial irradiation. In the other two, adults with glioblastoma multiforme received neural progenitor cell sparing radiation or no sparing with extra dose delivered to subventricular zone. Memory was measured by the Hopkins Verbal Learning Test-Revised Delayed Recall (HVLT-R DR) at 6 months after radiation. Dose-volume histograms were generated and dose-response data were fitted to a nonlinear model. Of 60 patients enrolled, 30 were analyzable based on HVLT-R DR testing completion status, baseline HVLT-R DR and intracranial metastasis/recurrence or prior hippocampal resection status. We observed a dose-response of radiation to the hippocampus with regard to decline in HVLT-R DR. D50% of the bilateral hippocampi of 22.1 Gy is associated with 20% risk of decline. This prospective study demonstrates an association between hippocampal dose volume effects and memory decline measured by HVLT-R DR over a wide dose range. These data support a potential benefit of hippocampal sparing and encourage continued trial enrollment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  14. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  15. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  16. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2

    Laura Micheli

    2017-07-01

    Full Text Available Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine, the other cognitive (the Morris water maze (MWM training. Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate.

  18. Tactile modulation of hippocampal place fields.

    Gener, Thomas; Perez-Mendez, Lorena; Sanchez-Vives, Maria V

    2013-12-01

    Neural correlates of spatial representation can be found in the activity of the hippocampal place cells. These neurons are characterized by firing whenever the animal is located in a particular area of the space, the place field. Place fields are modulated by sensory cues, such as visual, auditory, or olfactory cues, being the influence of visual inputs the most thoroughly studied. Tactile information gathered by the whiskers has a prominent representation in the rat cerebral cortex. However, the influence of whisker-detected tactile cues on place fields remains an open question. Here we studied place fields in an enriched tactile environment where the remaining sensory cues were occluded. First, place cells were recorded before and after blockade of tactile transmission by means of lidocaine applied on the whisker pad. Following tactile deprivation, the majority of place cells decreased their firing rate and their place fields expanded. We next rotated the tactile cues and 90% of place fields rotated with them. Our results demonstrate that tactile information is integrated into place cells at least in a tactile-enriched arena and when other sensory cues are not available. Copyright © 2013 Wiley Periodicals, Inc.

  19. D-serine increases adult hippocampal neurogenesis

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  20. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy

    Kazda, Tomas; Slampa, Pavel; Laack, Nadia N; Jancalek, Radim; Pospisil, Petr; Sevela, Ondrej; Prochazka, Tomas; Vrzal, Miroslav; Burkon, Petr; Slavik, Marek; Hynkova, Ludmila

    2014-01-01

    The goal of this review is to summarize the rationale for and feasibility of hippocampal sparing techniques during brain irradiation. Radiotherapy is the most effective non-surgical treatment of brain tumors and with the improvement in overall survival for these patients over the last few decades, there is an effort to minimize potential adverse effects leading to possible worsening in quality of life, especially worsening of neurocognitive function. The hippocampus and associated limbic system have long been known to be important in memory formation and pre-clinical models show loss of hippocampal stem cells with radiation as well as changes in architecture and function of mature neurons. Cognitive outcomes in clinical studies are beginning to provide evidence of cognitive effects associated with hippocampal dose and the cognitive benefits of hippocampal sparing. Numerous feasibility planning studies support the feasibility of using modern radiotherapy systems for hippocampal sparing during brain irradiation. Although results of the ongoing phase II and phase III studies are needed to confirm the benefit of hippocampal sparing brain radiotherapy on neurocognitive function, it is now technically and dosimetrically feasible to create hippocampal sparing treatment plans with appropriate irradiation of target volumes. The purpose of this review is to provide a brief overview of studies that provide a rationale for hippocampal avoidance and provide summary of published feasibility studies in order to help clinicians prepare for clinical usage of these complex and challenging techniques

  1. Interaction of single-walled carbon nanotubes and saxitoxin: Ab initio simulations and biological responses in hippocampal cell line HT-22.

    Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José

    2017-07-01

    Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4  cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.

  2. Effect of gene dosage on single-cell hippocampal electrophysiology in a murine model of SSADH deficiency (gamma-hydroxybutyric aciduria)

    Dósa, Zita; Nieto-Gonzalez, Jose Luis; Korshoej, Anders Rosendal

    2010-01-01

    phasic GABAergic neurotransmission was unaffected in the same cells. Our results indicate global disruption of cortical networks in SSADH KO mice, affecting both excitatory and inhibitory neurons. Our findings provide new clues concerning seizure evolution in the murine model (absence-->tonic-clonic-->status...... epilepticus), and extend pathophysiological insight into human SSADH deficiency....

  3. Decoding the cognitive map: ensemble hippocampal sequences and decision making.

    Wikenheiser, Andrew M; Redish, A David

    2015-06-01

    Tolman proposed that complex animal behavior is mediated by the cognitive map, an integrative learning system that allows animals to reconfigure previous experience in order to compute predictions about the future. The discovery of place cells in the rodent hippocampus immediately suggested a plausible neural mechanism to fulfill the 'map' component of Tolman's theory. Recent work examining hippocampal representations occurring at fast time scales suggests that these sequences might be important for supporting the inferential mental operations associated with the cognitive map function. New findings that hippocampal sequences play an important causal role in mediating adaptive behavior on a moment-by-moment basis suggest specific neural processes that may underlie Tolman's cognitive map framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of Alzheimer’s disease

    Mina Eftekharzadeh

    2015-05-01

    Full Text Available Objective(s: Intracerebral injection of bone marrow stromal cells (BMSCs is being investigated as a therapeutic tool to prevent Alzheimer's disease (AD. Our aim was to investigate the effects of BMSCs by intrathecal injection in AD rat model. Materials and Methods: BMSCs were obtained from the bone marrow of Wistar rat and transplanted into AD rat model via intrathecal injection. The rat model had received an injection of β amyloid into the hippocampus for histological and immunohistochemical studies. Results: Histological examination of the brains in transplanted rats compared to controls demonstrated the migration of BrdU-labeled BMSCs from the site of delivery, confirmed the differentiation of BMSCs transplanted cells into the cholinergic neurons, and increased number of healthy and decreased number of dark neurons. Conclusion: Our results showed that BMSCs intratechal administration could be a promising method for treatment ofAlzheimer’s disease in rat model.

  5. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line.

    Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta

    2018-01-05

    Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on the toxicity of mixtures. In this study, four common neurotoxicity heavy metals lead (Pb) cadmium (Cd), arsenic (As), and methylmercury (MeHg) were exposed individually and as mixtures to HT-22 cell line for 8days. The study established that low dose exposures induced toxicity to the HT-22 cell line during 8days. The results indicates potency dependent response, the toxicity of single metals on the HT-22 cells; MeHg > As > Cd > Pb. The cytotoxicity data of single metals were used to determine the mixtures interaction profile by using the dose additivity and effect additivity method. Metal mixtures showed higher toxicities compared to individual metals. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures in low dose exposure. The interactive responses of mixtures depend on the co-exposure metal and their respective concentration. We concluded that the combined effects should be considered in the risk assessment of heavy metal co-exposure and potency. In future, comprehensive mechanistic based investigations needed for understanding the real interactive mixtures effects at molecular level. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Trafficking of astrocytic vesicles in hippocampal slices

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  7. Building hippocampal circuits to learn and remember: insights into the development of human memory.

    Lavenex, Pierre; Banta Lavenex, Pamela

    2013-10-01

    The hippocampal formation is essential for the processing of episodic memories for autobiographical events that happen in unique spatiotemporal contexts. Interestingly, before 2 years of age, children are unable to form or store episodic memories for recall later in life, a phenomenon known as infantile amnesia. From 2 to 7 years of age, there are fewer memories than predicted based on a forgetting function alone, a phenomenon known as childhood amnesia. Here, we discuss the postnatal maturation of the primate hippocampal formation with the goal of characterizing the development of the neurobiological substrates thought to subserve the emergence of episodic memory. Distinct regions, layers and cells of the hippocampal formation exhibit different profiles of structural and molecular development during early postnatal life. The protracted period of neuronal addition and maturation in the dentate gyrus is accompanied by the late maturation of specific layers in different hippocampal regions that are located downstream from the dentate gyrus, particularly CA3. In contrast, distinct layers in several hippocampal regions, particularly CA1, which receive direct projections from the entorhinal cortex, exhibit an early maturation. In addition, hippocampal regions that are more highly interconnected with subcortical structures, including the subiculum, presubiculum, parasubiculum and CA2, mature even earlier. These findings, together with our studies of the development of human spatial memory, support the hypothesis that the differential maturation of distinct hippocampal circuits might underlie the differential emergence of specific "hippocampus-dependent" memory processes, culminating in the emergence of episodic memory concomitant with the maturation of all hippocampal circuits. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effects of Early-Life Adversity on Hippocampal Structures and Associated HPA Axis Functions.

    Dahmen, Brigitte; Puetz, Vanessa B; Scharke, Wolfgang; von Polier, Georg G; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2018-01-01

    Early-life adversity (ELA) is one of the major risk factors for serious mental and physical health risks later in life. ELA has been associated with dysfunctional neurodevelopment, especially in brain structures such as the hippocampus, and with dysfunction of the stress system, including the hypothalamic-pituitary-adrenal (HPA) axis. Children who have experienced ELA are also more likely to suffer from mental health disorders such as depression later in life. The exact interplay of aberrant neurodevelopment and HPA axis dysfunction as risks for psychopathology is not yet clear. We investigated volume differences in the bilateral hippocampus and in stress-sensitive hippocampal subfields, behavior problems, and diurnal cortisol activity in 24 children who had experienced documented ELA (including out-of-home placement) in a circumscribed duration of adversity only in their first 3 years of life in comparison to data on 25 control children raised by their biological parents. Hippocampal volumes and stress-sensitive hippocampal subfields (Cornu ammonis [CA]1, CA3, and the granule-cell layer of the dentate gyrus [GCL-DG]) were significantly smaller in children who had experienced ELA, taking psychiatric diagnoses and dimensional psychopathological symptoms into account. ELA moderated the relationship between left hippocampal volume and cortisol: in the control group, hippocampal volumes were not related to diurnal cortisol, while in ELA children, a positive linear relationship between left hippocampal volume and diurnal cortisol was present. Our findings show that ELA is associated with altered development of the hippocampus, and an altered relationship between hippocampal volume and HPA axis activity in youth in care, even after they have lived in stable and caring foster family environments for years. Altered hippocampal development after ELA could thus be associated with a risk phenotype for the development of psychiatric disorders later in life. © 2017 S. Karger

  9. Enduring Effects of Paternal Deprivation in California Mice (Peromyscus californicus: Behavioral Dysfunction and Sex-Dependent Alterations in Hippocampal New Cell Survival

    Erica R. Glasper

    2018-02-01

    Full Text Available Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus. California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1 biparental care: mate pairs remained with their offspring until weaning; or (2 paternal deprivation (PD: paternal males were permanently removed from their home cage on postnatal day (PND 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stress-coping behaviors (i.e., percent time spent immobile during the forced swim task—an effect that was also not sex

  10. Neuroprotective effects of ginsenoside Rg1 against oxygen–glucose deprivation in cultured hippocampal neurons

    Qing He

    2014-03-01

    Conclusion: Ginsenoside Rg1 has neuroprotective effect on ischemia–reperfusion injury in cultured hippocampal cells mediated by blocking calcium over-influx into neuronal cells and decreasing the nNOS activity after OGD exposure. We infer that ginsenoside Rg1 may serve as a potential therapeutic agent for cerebral ischemia injury.

  11. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    ) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed...... to in vivo cell stain observations of rats acutely exposed to TMT. The mean PI uptake of the cultures and the LDH efflux into the medium were highly correlated. The combined results obtained by the different markers indicate that the hippocampal slice culture method is a feasible model for further studies...

  12. Effects of Aging on Hippocampal Neurogenesis After Irradiation

    Cheng, Zoey; Li, Yu-Qing; Wong, C. Shun

    2016-01-01

    Purpose: To assess the influence of aging on hippocampal neuronal development after irradiation (IR). Methods and Materials: Male mice, 2, 4, 6, 12, and 18 months of age, were given a single dose of 0 or 5 Gy of IR. A bromodeoxyuridine (BrdU) incorporation study was used to label newborn cells. Neural progenitors, newborn neurons, and microglia in dentate gyrus (DG) were identified by phenotypic markers, and their numbers were quantified by nonbiased stereology 9 weeks after IR. Results: BrdU-positive or newborn cells in DG decreased with aging and after IR. The number of neuroblasts and newborn neurons decreased with aging, and a further significant reduction was observed after IR. Total type 1 cells (the putative neural stem cells), and newborn type 1 cells decreased with aging, and further reduction in total type 1 cells was observed after IR. Aging-associated activation of microglia in hippocampus was enhanced after IR. Conclusions: The aging-associated decline in hippocampal neurogenesis was further inhibited after IR. Ablation of neural progenitors and activation of microglia may contribute to the inhibition of neuronal development after IR across all ages.

  13. Effects of Aging on Hippocampal Neurogenesis After Irradiation

    Cheng, Zoey [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario (Canada); Li, Yu-Qing [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Wong, C. Shun, E-mail: shun.wong@sunnybrook.ca [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Institute of Medical Science, University of Toronto, Toronto, Ontario (Canada); Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2016-04-01

    Purpose: To assess the influence of aging on hippocampal neuronal development after irradiation (IR). Methods and Materials: Male mice, 2, 4, 6, 12, and 18 months of age, were given a single dose of 0 or 5 Gy of IR. A bromodeoxyuridine (BrdU) incorporation study was used to label newborn cells. Neural progenitors, newborn neurons, and microglia in dentate gyrus (DG) were identified by phenotypic markers, and their numbers were quantified by nonbiased stereology 9 weeks after IR. Results: BrdU-positive or newborn cells in DG decreased with aging and after IR. The number of neuroblasts and newborn neurons decreased with aging, and a further significant reduction was observed after IR. Total type 1 cells (the putative neural stem cells), and newborn type 1 cells decreased with aging, and further reduction in total type 1 cells was observed after IR. Aging-associated activation of microglia in hippocampus was enhanced after IR. Conclusions: The aging-associated decline in hippocampal neurogenesis was further inhibited after IR. Ablation of neural progenitors and activation of microglia may contribute to the inhibition of neuronal development after IR across all ages.

  14. Novel genetic loci associated with hippocampal volume.

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  15. Juvenile Hippocampal CA2 Region Expresses Aggrecan

    Asako Noguchi

    2017-05-01

    Full Text Available Perineuronal nets (PNNs are distributed primarily around inhibitory interneurons in the hippocampus, such as parvalbumin-positive interneurons. PNNs are also present around excitatory neurons in some brain regions and prevent plasticity in these neurons. A recent study demonstrated that PNNs also exist around mouse hippocampal pyramidal cells, which are the principle type of excitatory neurons, in the CA2 subregion and modulate the excitability and plasticity of these neurons. However, the development of PNNs in the CA2 region during postnatal maturation was not fully investigated. This study found that a main component of PNNs, aggrecan, existed in the pyramidal cell layer of the putative CA2 subarea prior to the appearance of the CA2 region, which was defined by the CA2 marker protein regulator of G protein signaling 14 (RGS14. We also found that aggrecan immunoreactivity was more evident in the anterior sections of the CA2 area than the posterior sections, which suggests that the function of CA2 PNNs varies along the anterior-posterior axis.

  16. Active hippocampal networks undergo spontaneous synaptic modification.

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  17. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  18. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory.

    Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L

    2016-05-04

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.

  19. Turmeric (Curcuma longa L.) extract may prevent the deterioration of spatial memory and the deficit of estimated total number of hippocampal pyramidal cells of trimethyltin-exposed rats.

    Yuliani, Sapto; Mustofa; Partadiredja, Ginus

    2018-01-01

    Protection of neurons from degeneration is an important preventive strategy for dementia. Much of the dementia pathology implicates oxidative stress pathways. Turmeric (Curcuma longa L.) contains curcuminoids which has anti-oxidative and neuro-protective effects. These effects are considered to be similar to those of citicoline which has been regularly used as one of standard medications for dementia. This study aimed at investigating the effects of turmeric rhizome extract on the hippocampus of trimethyltin (TMT)-treated Sprague-Dawley rats. The rats were divided randomly into six groups, i.e., a normal control group (N); Sn group, which was given TMT chloride; Sn-Cit group, which was treated with citicoline and TMT chloride; and three Sn-TE groups, which were treated with three different dosages of turmeric rhizome extract and TMT chloride. Morris water maze test was carried out to examine the spatial memory. The estimated total number of CA1 and CA2-CA3 pyramidal cells was calculated using a stereological method. The administration of turmeric extract at a dose of 200 mg/kg bw has been shown to prevent the deficits in the spatial memory performance and partially inhibit the reduction of the number of CA2-CA3 regions pyramidal neurons. TMT-induced neurotoxic damage seemed to be mediated by the generation of reactive oxygen species and reactive nitrogen species. Turmeric extract might act as anti inflammatory as well as anti-oxidant agent. The effects of turmeric extract at a dose of 200 mg/kg bw seem to be comparable to those of citicoline.

  20. Visual performance of pigeons following hippocampal lesions.

    Bingman, V P; Hodos, W

    1992-11-15

    The effect of hippocampal lesions on performance in two psychophysical measures of spatial vision (acuity and size-difference threshold) was examined in 7 pigeons. No difference between the preoperative and postoperative thresholds of the experimental birds was found. The visual performance of pigeons in the psychophysical tasks failed to reveal a role of the hippocampal formation in vision. The results argue strongly that the behavioral deficits found in pigeons with hippocampal lesions when tested in a variety of memory-related spatial tasks is not based on a defect in spatial vision but impaired spatial cognition.

  1. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction.

    Mantor, Duangkamol; Pratchayasakul, Wasana; Minta, Wanitchaya; Sutham, Wissuta; Palee, Siripong; Sripetchwandee, Jirapas; Kerdphoo, Sasiwan; Jaiwongkum, Thidarat; Sriwichaiin, Sirawit; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-04-17

    Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity. Copyright © 2017. Published by Elsevier Inc.

  2. Hypothalamic-pituitary-adrenal axis tonus is associated with hippocampal microstructural asymmetry

    Madsen, Kathrine Skak; Jernigan, Terry L; Iversen, Pernille

    2012-01-01

    It is well-established that prolonged high levels of cortisol have adverse effects on hippocampal neurons and glial cells. Morphometric studies linking hippocampus volume to basal HPA-axis activity, however, have yielded less consistent results. Asymmetry may also be considered, since there is gr......It is well-established that prolonged high levels of cortisol have adverse effects on hippocampal neurons and glial cells. Morphometric studies linking hippocampus volume to basal HPA-axis activity, however, have yielded less consistent results. Asymmetry may also be considered, since....... Observed associations raise a number of possibilities, among them an asymmetric role of the hippocampus on HPA-axis regulation, or conversely, that individual variations in secreted cortisol, perhaps associated with stress, may have lateralized effects on hippocampal microstructure. Our results point...

  3. Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats

    Olesen, Mikkel Vestergaard; Wörtwein, Gitta; Folke, Jonas

    2017-01-01

    Electroconvulsive stimulation (ECS) is one of the strongest stimulators of hippocampal neurogenesis in rodents that represents a plausible mechanism for the efficacy of electroconvulsive therapy (ECT) in major depressive disorder. Using design-based stereological cell counting, we recently...... in neurogenesis facilitates the behavioral outcome of the forced swim test (FST), an animal model of depression. The results showed that ECS in conjunction with CRS stimulates hippocampal neurogenesis, and that a significant quantity of the newly formed hippocampal neurons survives up to 12 months. The new Brd......U-positive neurons showed time-dependent attrition of ∼40% from day 1 to 3 months, with no further decline between 3 and 12 months. ECS did not affect the number of pre-existing dentate granule neurons or the volume of the dentate granule cell layer, suggesting no damaging effect of the treatment. Finally, we found...

  4. Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.

    Tingley, David; Buzsáki, György

    2018-05-15

    The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  6. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  7. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Nabi Shamsaei; Mehdi Khaksari; Sohaila Erfani; Hamid Rajabi; Nahid Aboutaleb

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral isch-emic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic ex-ercise signiifcantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  8. Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus

    Dunleavy, Mark; Schindler, Clara K; Shinoda, Sachiko; Crilly, Shane; Henshall, David C

    2014-01-01

    Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis. PMID:25755841

  9. Peripheral Etanercept Administration Normalizes Behavior, Hippocampal Neurogenesis, and Hippocampal Reelin and GABAA Receptor Expression in a Preclinical Model of Depression

    Kyle J. Brymer

    2018-02-01

    Full Text Available Depression is a serious psychiatric disorder frequently comorbid with autoimmune disorders. Previous work in our lab has demonstrated that repeated corticosterone (CORT injections in rats reliably increase depressive-like behavior, impair hippocampal-dependent memory, reduce the number and complexity of adult-generated neurons in the dentate gyrus, decrease hippocampal reelin expression, and alter markers of GABAergic function. We hypothesized that peripheral injections of the TNF-α inhibitor etanercept could exert antidepressant effects through a restoration of many of these neurobiological changes. To test this hypothesis, we examined the effect of repeated CORT injections and concurrent injections of etanercept on measures of object-location and object-in-place memory, forced-swim test behavior, hippocampal neurogenesis, and reelin and GABA β2/3 immunohistochemistry. CORT increased immobility behavior in the forced swim test and impaired both object-location and object-in-place memory, and these effects were reversed by etanercept. CORT also decreased both the number and complexity of adult-generated neurons, but etanercept restored these measures back to control levels. Finally, CORT decreased the number of reelin and GABA β2/3-ir cells within the subgranular zone of the dentate gyrus, and etanercept restored these to control levels. These novel results demonstrate that peripheral etanercept has antidepressant effects that are accompanied by a restoration of cognitive function, hippocampal neurogenesis, and GABAergic plasticity, and suggest that a normalization of reelin expression in the dentate gyrus could be a key component underlying these novel antidepressant effects.

  10. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    Okujava, M.; Ebner, A.; Schmitt, J.; Woermann, F.G.

    2002-01-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  12. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    Okujava, M [Institute of Radiology and Interventional Diagnostics, Tbilisi (Georgia); Ebner, A; Schmitt, J; Woermann, F G [Bethel Epilepsy Centre, Mara Hospital, Bielefeld (Germany)

    2002-07-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  13. Morphological Variations of Hippocampal Formation in Epilepsy

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Hospital Sao Paulo and other centers in Brazil compared the hippocampal formation (HF morphology of healthy asymptomatic individuals (n=30 with that of patients with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS(n=68, of patients with malformations of cortical development (MCD(n=34, and of patients with morphological HF variations without other structural signs (pure MVHF(n=12.

  14. Optogenetic stimulation of a hippocampal engram activates fear memory recall.

    Liu, Xu; Ramirez, Steve; Pang, Petti T; Puryear, Corey B; Govindarajan, Arvind; Deisseroth, Karl; Tonegawa, Susumu

    2012-03-22

    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.

  15. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla.

    Carvalho-Paulo, Dario; de Morais Magalhães, Nara G; de Almeida Miranda, Diego; Diniz, Daniel G; Henrique, Ediely P; Moraes, Isis A M; Pereira, Patrick D C; de Melo, Mauro A D; de Lima, Camila M; de Oliveira, Marcus A; Guerreiro-Diniz, Cristovam; Sherry, David F; Diniz, Cristovam W P

    2017-01-01

    Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla , that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy ( n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period ( n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play

  16. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla

    Dario Carvalho-Paulo

    2018-01-01

    Full Text Available Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells. Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes

  17. Protective effects of hydroponic Teucrium polium on hippocampal neurodegeneration in ovariectomized rats.

    Simonyan, K V; Chavushyan, V A

    2016-10-24

    The hippocampus is a target of ovarian hormones, and is necessary for memory. Ovarian hormone loss is associated with a progressive reduction in synaptic strength and dendritic spine. Teucrium polium has beneficial effects on learning and memory. However, it remains unknown whether Teucrium polium ameliorates hippocampal cells spike activity and morphological impairments induced by estrogen deficiency. In the present study, we investigated the effects of hydroponic Teucrium polium on hippocampal neuronal activity and morpho-histochemistry of bilateral ovariectomized (OVX) rats. Tetanic potentiation or depression with posttetanic potentiation and depression was recorded extracellularly in response to ipsilateral entorhinal cortex high frequency stimulation. In morpho-histochemical study revealing of the activity of Ca 2+ -dependent acid phosphatase was observed. In all groups (sham-operated, sham + Teucrium polium, OVX, OVX + Teucrium polium), most recorded hippocampal neurons at HFS of entorhinal cortex showed TD-PTP responses. After 8 weeks in OVX group an anomalous evoked spike activity was detected (a high percentage of typical areactive units). In OVX + Teucrium polium group a synaptic activity was revealed, indicating prevention OVX-induced degenerative alterations: balance of types of responses was close to norm and areactive units were not recorded. All recorded neurons in sham + Teucrium polium group were characterized by the highest mean frequency background and poststimulus activity. In OVX+ Teucrium polium group the hippocampal cells had recovered their size and shape in CA1 and CA3 field compared with OVX group where hippocampal cells were characterized by a sharp drop in phosphatase activity and there was a complete lack of processes reaction. Thus, Teucrium polium reduced OVX-induce neurodegenerative alterations in entorhinal cortex-hippocamp circuitry and facilitated neuronal survival by modulating activity of neurotransmitters and

  18. Phenolic antioxidants attenuate hippocampal neuronal cell damage ...

    Unknown

    CP had lower Fe3+ reducing activity in comparison to WS and AV. Plant extracts given singly ... modulators of nervous system damage. In epilepsy, ex- ..... D 1978 Antimicrobial agents from higher plants, Glycy- rrhiza glabra L. I. Some ...

  19. Dentate gyrus expression of nestin-immunoreactivity in patients with drug-resistant temporal lobe epilepsy and hippocampal sclerosis.

    D'Alessio, L; Konopka, H; Escobar, E; Acuña, A; Oddo, S; Solís, P; Seoane, E; Kochen, S

    2015-04-01

    Granule cells pathology in dentate gyrus, have received considerable attention in terms of understanding the pathophysiology of temporal lobe epilepsy with hippocampal sclerosis. The aim of this study was to determine the nestin (an intermediate filament protein expressed by newly formed cells), immunoreactivity (IR) in granular cells layers of hippocampal tissue extirpated during epilepsy surgical procedure, in patients with drug-resistant epilepsy. Hippocampal sections of 16 patients with hippocampal sclerosis and drug-resistant temporal lobe epilepsy were processed using immunoperoxidase with antibody to nestin. Archival material from 8 normal post-mortem hippocampus, were simultaneously processed. Reactive area for nestin-IR, the total number of positive nestin cells per field (20×), and the MGV (mean gray value) was determined by computerized image analysis (ImageJ), and compared between groups. Student's t test was used for statistical analysis. Nestin-IR cells were found in granule cells layers of both controls and patients. Larger reactive somas (p gyrus may reflect changes in dentate gyrus neuroplasticity associated to chronic temporal epilepsy with hippocampal sclerosis. Further studies are required to determine the clinical implications on memory an emotional alterations such as depression. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  2. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress

    Kole, MHP; Czeh, B; Fuchs, E

    2004-01-01

    The experience of chronic stress induces a reversible regression of hippocampal CA3 apical neuron dendrites. Although such postsynaptic membrane reduction will obviously diminish the possibility of synaptic input, the consequences for the functional membrane properties of these cells are not well

  3. Possible Role of the Glycogen Synthase Kinase-3 Signaling Pathway in Trimethyltin-Induced Hippocampal Neurodegeneration in Mice

    Kim, Sung-Ho; Kim, Jong-Choon; Wang, Hongbing; Shin, Taekyun; Moon, Changjong

    2013-01-01

    Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction. PMID:23940567

  4. Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB.

    Rolando, Chiara; Erni, Andrea; Grison, Alice; Beattie, Robert; Engler, Anna; Gokhale, Paul J; Milo, Marta; Wegleiter, Thomas; Jessberger, Sebastian; Taylor, Verdon

    2016-11-03

    Adult neural stem cells (NSCs) are defined by their inherent capacity to self-renew and give rise to neurons, astrocytes, and oligodendrocytes. In vivo, however, hippocampal NSCs do not generate oligodendrocytes for reasons that have remained enigmatic. Here, we report that deletion of Drosha in adult dentate gyrus NSCs activates oligodendrogenesis and reduces neurogenesis at the expense of gliogenesis. We further find that Drosha directly targets NFIB to repress its expression independently of Dicer and microRNAs. Knockdown of NFIB in Drosha-deficient hippocampal NSCs restores neurogenesis, suggesting that the Drosha/NFIB mechanism robustly prevents oligodendrocyte fate acquisition in vivo. Taken together, our findings establish that adult hippocampal NSCs inherently possess multilineage potential but that Drosha functions as a molecular barrier preventing oligodendrogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Long-term potentiation expands information content of hippocampal dentate gyrus synapses.

    Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M

    2018-03-06

    An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.

  6. Transient extracellular application of gold nanostars increases hippocampal neuronal activity.

    Salinas, Kirstie; Kereselidze, Zurab; DeLuna, Frank; Peralta, Xomalin G; Santamaria, Fidel

    2014-08-20

    With the increased use of nanoparticles in biomedical applications there is a growing need to understand the effects that nanoparticles may have on cell function. Identifying these effects and understanding the mechanism through which nanoparticles interfere with the normal functioning of a cell is necessary for any therapeutic or diagnostic application. The aim of this study is to evaluate if gold nanoparticles can affect the normal function of neurons, namely their activity and coding properties. We synthesized star shaped gold nanoparticles of 180 nm average size. We applied the nanoparticles to acute mouse hippocampal slices while recording the action potentials from single neurons in the CA3 region. Our results show that CA3 hippocampal neurons increase their firing rate by 17% after the application of gold nanostars. The increase in excitability lasted for as much as 50 minutes after a transient 5 min application of the nanoparticles. Further analyses of the action potential shape and computational modeling suggest that nanoparticles block potassium channels responsible for the repolarization of the action potentials, thus allowing the cell to increase its firing rate. Our results show that gold nanoparticles can affect the coding properties of neurons by modifying their excitability.

  7. A computational theory of the hippocampal cognitive map.

    O'Keefe, J

    1990-01-01

    Evidence from single unit and lesion studies suggests that the hippocampal formation acts as a spatial or cognitive map (O'Keefe and Nadel, 1978). In this chapter, I summarise some of the unit recording data and then outline the most recent computational version of the cognitive map theory. The novel aspects of the present version of the theory are that it identifies two allocentric parameters, the centroid and the eccentricity, which can be calculated from the array of cues in an environment and which can serve as the bases for an allocentric polar co-ordinate system. Computations within this framework enable the animal to identify its location within an environment, to predict the location which will be reached as a result of any specific movement from that location, and conversely, to calculate the spatial transformation necessary to go from the current location to a desired location. Aspects of the model are identified with the information provided by cells in the hippocampus and dorsal presubiculum. The hippocampal place cells are involved in the calculation of the centroid and the presubicular direction cells in the calculation of the eccentricity.

  8. Moxibustion upregulates hippocampal progranulin expression

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  9. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis.

    Comper, Sandra Mara; Jardim, Anaclara Prada; Corso, Jeana Torres; Gaça, Larissa Botelho; Noffs, Maria Helena Silva; Lancellotti, Carmen Lúcia Penteado; Cavalheiro, Esper Abrão; Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas

    2017-10-01

    The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (pepilepsy duration were associated with visual memory performance in patients with right HS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Protective Effect of SGK1 in Rat Hippocampal Neurons Subjected to Ischemia Reperfusion

    Wei Zhang

    2014-07-01

    Full Text Available Background/Aims: To investigate the protective effect of SGK1 (serum- and glucocorticoid-inducible protein kinase 1 in rat hippocampal neurons in vitro and in vivo following ischemia reperfusion (I/R. Methods: Isolated rat hippocampal neurons were subjected to 2 h of oxygen and glucose deprivation (OGD then returned to normoxic conditions for 10, 30 or 60 min. Cell apoptosis and protein expression of SGK1 were analyzed. To examine SGK1 function, we overexpressed SGK1 in rat hippocampal neurons. Finally we examined the involvement of PI3K/Akt/GSK3β signaling by treating the cells (untransfected or transfected with expression vector encoding SGK1 with the PI3K inhibitor LY294002. Findings were confirmed in vivo in a rat model of middle cerebral artery occlusion. Results: I/R caused a time-dependent increase in apoptosis, both in vitro and in vivo. SGK1 protein levels decreased significantly under the same conditions. Overexpression of SGK1 reduced apoptosis following OGD or I/R compared to cells transfected with empty vector and subjected to the same treatment, or sham-operated animals. Addition of LY294002 revealed that the action of SGK1 in suppressing apoptosis was mediated by the PI3K/Akt/GSK3β pathway. Conclusion: SGK1 plays a protective role in ischemia reperfusion in rat hippocampal neurons, exerting its effects via the PI3K/Akt/GSK3β pathway.

  11. Preventive effect of piracetam and vinpocetine on hypoxia-reoxygenation induced injury in primary hippocampal culture.

    Solanki, P; Prasad, D; Muthuraju, S; Sharma, A K; Singh, S B; Ilavzhagan, G

    2011-04-01

    The present study investigates the potential of Piracetam and Vinpocetine (nootropic drugs, known to possess neuroprotective properties) in preventing hypoxia-reoxygenation induced oxidative stress in primary hippocampal cell culture. The hippocampal culture was exposed to hypoxia (95% N(2), 5% CO(2)) for 3h and followed by 1h of reoxygenation (21% O(2) and 5% CO(2)) at 37 °C. The primary hippocampal cultures were supplemented with the optimum dose of Piracetam and Vinpocetine, independently, and the cultures were divided into six groups, viz. Control/Normoxia, Hypoxia, Hypoxia+Piracetam, Hypoxia+Vinpocetine, Normoxia + Piracetam and Normoxia+Vinpocetine. The cell-viability assays and biochemical oxidative stress parameters were evaluated for each of the six groups. Administration of 1mM Piracetam or 500 nM Vinpocetine significantly prevents the culture from hypoxia-reoxygenation injury when determined by Neutral Red assay, LDH release and Acetylcholine esterase activity. Results showed that Piracetam and Vinpocetine supplementation significantly prevented the fall of mitochondrial membrane potential, rise in ROS generation and reduction in antioxidant levels associated with the hypoxia-reoxygenation injury. In conclusion, the present study establishes that both Piracetam and Vinpocetine give neuroprotection against hypoxia-reoxygenation injury in primary hippocampal cell culture. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  13. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  14. Caffeine Increases Hippocampal Sharp Waves in Vitro.

    Watanabe, Yusuke; Ikegaya, Yuji

    2017-01-01

    Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A 1 receptor antagonist, but not by an A 2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A 1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A 1 receptors in the hippocampal CA3 region or the dentate gyrus.

  15. Sampling the Mouse Hippocampal Dentate Gyrus

    Lisa Basler

    2017-12-01

    Full Text Available Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus. We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.

  16. Differential response of hippocampal subregions to stress and learning.

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  17. Adult hippocampal neurogenesis and cognitive aging

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  18. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene.

    Middleton, Steven J; Kneller, Emily M; Chen, Shuo; Ogiwara, Ikuo; Montal, Mauricio; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-06-04

    An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.

  19. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    J Matthew Mahoney

    Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  20. Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations.

    Aivar, Paloma; Valero, Manuel; Bellistri, Elisa; Menendez de la Prida, Liset

    2014-02-19

    Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.

  1. Hippocampal Sclerosis of Aging Can Be Segmental: Two Cases and Review of the Literature

    Ighodaro, Eseosa T.; Jicha, Gregory A.; Schmitt, Frederick A.; Neltner, Janna H.; Abner, Erin L.; Kryscio, Richard J.; Smith, Charles D.; Duplessis, Taylor; Anderson, Sonya; Patel, Ela; Bachstetter, Adam; Van Eldik, Linda J.; Nelson, Peter T.

    2015-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a neurodegenerative disease that mimics Alzheimer disease (AD) clinically and has a prevalence rivaling AD in advanced age. Whereas clinical biomarkers are not yet optimized, HS-Aging has distinctive pathological features that distinguish it from other diseases with “hippocampal sclerosis” pathology, such as epilepsy, cerebrovascular perturbations, and frontotemporal lobar degeneration. By definition, HS-Aging brains show neuronal cell loss and gliosis in the hippocampal formation out of proportion to AD-type pathology; it is strongly associated with aberrant TDP-43 pathology and arteriolosclerosis. Here, we describe 2 cases of “segmental” HS-Aging in which “sclerosis” in the hippocampus was evident only in a subset of brain sections by hematoxylin and eosin (H&E) stain. In these cases, TDP-43 pathology was more widespread on immunostained sections than the neuronal cell loss and gliosis seen in H&E stains. The 2 patients were cognitively intact at baseline and were tracked longitudinally over a decade using cognitive studies with at least 1 neuroimaging scan. We discuss the relevant HS-Aging literature, which indicates the need for a clearer consensus-based delineation of “hippocampal sclerosis” and TDP-43 pathologies in aged subjects. PMID:26083567

  2. PMC-12, a traditional herbal medicine, enhances learning memory and hippocampal neurogenesis in mice.

    Park, Hee Ra; Kim, Ju Yeon; Lee, Yujeong; Chun, Hye Jeong; Choi, Young Whan; Shin, Hwa Kyoung; Choi, Byung Tae; Kim, Cheol Min; Lee, Jaewon

    2016-03-23

    The beneficial effects of traditional Korean medicine are recognized during the treatment of neurodegenerative conditions, such as, Alzheimer's disease and neurocognitive dysfunction, and recently, hippocampal neurogenesis has been reported to be associated with memory function. In this study, the authors investigated the beneficial effects of polygonum multiflorum Thunberg complex composition-12 (PMC-12), which is a mixture of four medicinal herbs, that is, Polygonum multiflorum, Polygala tenuifolia, Rehmannia glutinosa, and Acorus gramineus, on hippocampal neurogenesis, learning, and memory in mice. PMC-12 was orally administered to male C57BL/6 mice (5 weeks old) at 100 or 500 mg/kg daily for 2 weeks. PMC-12 administration significantly was found to increase the proliferation of neural progenitor cells and the survival of newly-generated cells in the dentate gyrus. In the Morris water maze test, the latency times of PMC-12 treated mice (100 or 500 mg/kg) were shorter than those of vehicle-control mice. In addition, PMC-12 increased the levels of BDNF, p-CREB, and synaptophysin, which are known to be associated with neural plasticity and hippocampal neurogenesis. These findings suggest PMC-12 enhances hippocampal neurogenesis and neurocognitive function and imply that PMC-12 ameliorates memory impairment and cognitive deficits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Inhibitory neuron and hippocampal circuit dysfunction in an aged mouse model of Alzheimer's disease.

    Anupam Hazra

    Full Text Available In Alzheimer's disease (AD, a decline in explicit memory is one of the earliest signs of disease and is associated with hippocampal dysfunction. Amyloid protein exerts a disruptive impact on neuronal function, but the specific effects on hippocampal network activity are not well known. In this study, fast voltage-sensitive dye imaging and extracellular and whole-cell electrophysiology were used on entorhinal cortical-hippocampal slice preparations to characterize hippocampal network activity in 12-16 month old female APPswe/PSEN1DeltaE9 (APdE9 mice mice. Aged APdE9 mice exhibited profound disruptions in dentate gyrus circuit activation. High frequency stimulation of the perforant pathway in the dentate gyrus (DG area of APdE9 mouse tissue evoked abnormally large field potential responses corresponding to the wider neural activation maps. Whole-cell patch clamp recordings of the identified inhibitory interneurons in the molecular layer of DG revealed that they fail to reliably fire action potentials. Taken together, abnormal DG excitability and an inhibitory neuron failure to generate action potentials are suggested to be important contributors to the underlying cellular mechanisms of early-stage Alzheimer's disease pathophysiology.

  4. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior.

    Sun, Dong; Sun, Xiang-Dong; Zhao, Lu; Lee, Dae-Hoon; Hu, Jin-Xia; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Zhu, Xiao-Juan; Xiong, Wen-Cheng

    2018-01-08

    Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.

  5. Memory impairment in multiple sclerosis: Relevance of hippocampal activation and hippocampal connectivity

    Hulst, H.E.; Schoonheim, M.M.; van Geest, Q.; Uitdehaag, B.M.J.; Barkhof, F.; Geurts, J.J.G.

    2015-01-01

    Background: Memory impairment is frequent in multiple sclerosis (MS), but it is unclear what functional brain changes underlie this cognitive deterioration. Objective: To investigate functional hippocampal activation and connectivity, in relation to memory performance in MS. Methods: Structural and

  6. MicroRNA-132 protects hippocampal neurons against oxygen-glucose deprivation-induced apoptosis.

    Sun, Zu-Zhen; Lv, Zhan-Yun; Tian, Wen-Jing; Yang, Yan

    2017-09-01

    Hypoxic-ischemic brain injury (HIBI) results in death or long-term neurologic impairment in both adults and children. In this study, we investigated the effects of microRNA-132 (miR-132) dysregulation on oxygen-glucose deprivation (OGD)-induced apoptosis in fetal rat hippocampal neurons, in order to reveal the therapeutic potential of miR-132 on HIBI. MiR-132 dysregulation was induced prior to OGD exposure by transfection of primary fetal rat hippocampal neurons with miR-132 mimic or miR-132 inhibitor. The effects of miR-132 overexpression and suppression on OGD-stimulated hippocampal neurons were evaluated by detection of cell viability, apoptotic cells rate, and the expression of apoptosis-related proteins. Besides, TargetScan database and dual luciferase activity assay were used to seek a target gene of miR-132. As a result, miR-132 was highly expressed in hippocampal neurons following 2 h of OGD exposure. MiR-132 overexpression significantly increased OGD-diminished cell viability and reduced OGD-induced apoptosis at 12, 24, and 48 h post-OGD. MiR-132 overexpression significantly down-regulated the expressions of Bax, cytochrome c, and caspase-9, but up-regulated BCl-2. Caspase-3 activity was also significantly decreased by miR-132 overexpression. Furthermore, FOXO3 was a direct target of miR-132, and it was negatively regulated by miR-132. To conclude, our results provide evidence that miR-132 protects hippocampal neurons against OGD injury by inhibiting apoptosis.

  7. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation

    Chhunchha, Bhavana; Fatma, Nigar; Kubo, Eri; Rai, Prerana; Singh, Sanjay P.

    2013-01-01

    Oxidative stress and endoplasmic reticulum (ER) stress are emerging as crucial events in the etiopathology of many neurodegenerative diseases. While the neuroprotective contributions of the dietary compound curcumin has been recognized, the molecular mechanisms underlying curcumin's neuroprotection under oxidative and ER stresses remains elusive. Herein, we show that curcumin protects HT22 from oxidative and ER stresses evoked by the hypoxia (1% O2 or CoCl2 treatment) by enhancing peroxiredoxin 6 (Prdx6) expression. Cells exposed to CoCl2 displayed reduced expression of Prdx6 with higher reactive oxygen species (ROS) expression and activation of NF-κB with IκB phosphorylation. When NF-κB activity was blocked by using SN50, an inhibitor of NF-κB, or cells treated with curcumin, the repression of Prdx6 expression was restored, suggesting the involvement of NF-κB in modulating Prdx6 expression. These cells were enriched with an accumulation of ER stress proteins, C/EBP homologous protein (CHOP), GRP/78, and calreticulin, and had activated states of caspases 12, 9, and 3. Reinforced expression of Prdx6 in HT22 cells by curcumin reestablished survival signaling by reducing propagation of ROS and blunting ER stress signaling. Intriguingly, knockdown of Prdx6 by antisense revealed that loss of Prdx6 contributed to cell death by sustaining enhanced levels of ER stress-responsive proapoptotic proteins, which was due to elevated ROS production, suggesting that Prdx6 deficiency is a cause of initiation of ROS-mediated ER stress-induced apoptosis. We propose that using curcumin to reinforce the naturally occurring Prdx6 expression and attenuate ROS-based ER stress and NF-κB-mediated aberrant signaling improves cell survival and may provide an avenue to treat and/or postpone diseases associated with ROS or ER stress. PMID:23364261

  8. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  9. Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus.

    Amanda E Hernan

    Full Text Available Neurodevelopmental insults leading to malformations of cortical development (MCD are a common cause of psychiatric disorders, learning impairments and epilepsy. In the methylazoxymethanol (MAM model of MCDs, animals have impairments in spatial cognition that, remarkably, are improved by post-weaning environmental enrichment (EE. To establish how EE impacts network-level mechanisms of spatial cognition, hippocampal in vivo single unit recordings were performed in freely moving animals in an open arena. We took a generalized linear modeling approach to extract fine spike timing (FST characteristics and related these to place cell fidelity used as a surrogate of spatial cognition. We find that MAM disrupts FST and place-modulated rate coding in hippocampal CA1 and that EE improves many FST parameters towards normal. Moreover, FST parameters predict spatial coherence of neurons, suggesting that mechanisms determining altered FST are responsible for impaired cognition in MCDs. This suggests that FST parameters could represent a therapeutic target to improve cognition even in the context of a brain that develops with a structural abnormality.

  10. Review: Hippocampal sclerosis in epilepsy: a neuropathology review

    Thom, Maria

    2014-01-01

    Hippocampal sclerosis (HS) is a common pathology encountered in mesial temporal lobe epilepsy (MTLE) as well as other epilepsy syndromes and in both surgical and post-mortem practice. The 2013 International League Against Epilepsy (ILAE) classification segregates HS into typical (type 1) and atypical (type 2 and 3) groups, based on the histological patterns of subfield neuronal loss and gliosis. In addition, granule cell reorganization and alterations of interneuronal populations, neuropeptide fibre networks and mossy fibre sprouting are distinctive features of HS associated with epilepsies; they can be useful diagnostic aids to discriminate from other causes of HS, as well as highlighting potential mechanisms of hippocampal epileptogenesis. The cause of HS remains elusive and may be multifactorial; the contribution of febrile seizures, genetic susceptibility, inflammatory and neurodevelopmental factors are discussed. Post-mortem based research in HS, as an addition to studies on surgical samples, has the added advantage of enabling the study of the wider network changes associated with HS, the long-term effects of epilepsy on the pathology and associated comorbidities. It is likely that HS is heterogeneous in aspects of its cause, epileptogenetic mechanisms, network alterations and response to medical and surgical treatments. Future neuropathological studies will contribute to better recognition and understanding of these clinical and patho-aetiological subtypes of HS. PMID:24762203

  11. Hippocampal insulin resistance and cognitive dysfunction

    Biessels, Geert Jan; Reagan, Lawrence P.

    2015-01-01

    Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as

  12. Hippocampal Abnormalities after Prolonged Febrile Convulsions

    J Gordon Millichap

    2003-11-01

    Full Text Available Hippocampal volume and T2 relaxation times were determined in an MRI study of 14 children with prolonged febrile convulsions (PFC who were investigated, 1 within 5 days of a PFC, and 2 at follow-up 4-8 months after the acute study, at the Institute of Child Health, University College, and Great Ormond Street Hospital, London, UK.

  13. Amnesia due to bilateral hippocampal glioblastoma

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  14. Hippocampal theta frequency shifts and operant behaviour

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  15. Hippocampal gamma oscillations increase with memory load

    Van Vugt, Marieke K.; Schulze-Bonhage, Andreas; Litt, Brian; Brandt, Armin; Kahana, Michael J.

    2010-01-01

    Although the hippocampus plays a crucial role in encoding and retrieval of contextually mediated episodic memories, considerable controversy surrounds the role of the hippocampus in short-term or working memory. To examine both hippocampal and neocortical contributions to working memory function, we

  16. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs.

    Pernille Tveden-Nyborg

    Full Text Available While having the highest vitamin C (VitC concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg or Low (100 mg VitC per kg diet. Newborn pups (n = 157 were randomized into a total of four postnatal feeding regimens: High/High (Control; High/Low (Depleted, Low/Low (Deficient; and Low/High (Repleted. Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001 which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01. We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.

  17. Prenatal choline deficiency does not enhance hippocampal vulnerability after kainic acid-induced seizures in adulthood.

    Wong-Goodrich, Sarah J E; Tognoni, Christina M; Mellott, Tiffany J; Glenn, Melissa J; Blusztajn, Jan K; Williams, Christina L

    2011-09-21

    Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12-17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade

    Tope eLanre-Amos

    2010-09-01

    Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.

  19. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.

    Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  20. Test-retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and Alzheimer's disease populations.

    Worker, Amanda; Dima, Danai; Combes, Anna; Crum, William R; Streffer, Johannes; Einstein, Steven; Mehta, Mitul A; Barker, Gareth J; C R Williams, Steve; O'daly, Owen

    2018-04-01

    The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles. Therefore, there is a growing interest in imaging the subregions of the hippocampal formation rather than modelling the hippocampus as a homogenous structure, driving the development of new automated analysis tools. Consequently, there is a pressing need to understand the stability of the measures derived from these new techniques. In this study, an automated hippocampal subregion segmentation pipeline, released as a developmental version of Freesurfer (v6.0), was applied to T1-weighted magnetic resonance imaging (MRI) scans of 22 healthy older participants, scanned on 3 separate occasions and a separate longitudinal dataset of 40 Alzheimer's disease (AD) patients. Test-retest reliability of hippocampal subregion volumes was assessed using the intra-class correlation coefficient (ICC), percentage volume difference and percentage volume overlap (Dice). Sensitivity of the regional estimates to longitudinal change was estimated using linear mixed effects (LME) modelling. The results show that out of the 24 hippocampal subregions, 20 had ICC scores of 0.9 or higher in both samples; these regions include the molecular layer, granule cell layer of the dentate gyrus, CA1, CA3 and the subiculum (ICC > 0.9), whilst the hippocampal fissure and fimbria had lower ICC scores (0.73-0.88). Furthermore, LME analysis of the independent AD dataset demonstrated sensitivity to group and individual differences in the rate of volume change over time in several hippocampal subregions (CA1, molecular layer, CA3, hippocampal tail, fissure and presubiculum

  1. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice.

    Zhang, Zhuan; Hong, Juan; Zhang, Suyun; Zhang, Tingting; Sha, Sha; Yang, Rong; Qian, Yanning; Chen, Ling

    2016-04-01

    Postpartum estrogen withdrawal is known to be a particularly vulnerable time for depressive symptoms. Ovariectomized adult mice (OVX-mice) treated with hormone-simulated pregnancy (HSP mice) followed by a subsequent estradiol benzoate (EB) withdrawal (EW mice) exhibited depression- and anxiety-like behaviors, as assessed by forced swim, tail suspension and elevated plus-maze, while HSP mice, OVX mice or EB-treated OVX mice (OVX/EB mice) did not. The survival and neurite growth of newborn neurons in hippocampal dentate gyrus were examined on day 5 after EW. Compared with controls, the numbers of 28-day-old BrdU(+) and BrdU(+)/NeuN(+) cells were increased in HSP mice but significantly decreased in EW mice; the numbers of 10-day-old BrdU(+) cells were increased in HSP mice and OVX/EB mice; and the density of DCX(+) fibers was reduced in EW mice and OVX mice. The phosphorylation of hippocampal NMDA receptor (NMDAr) NR2B subunit or Src was increased in HSP mice but decreased in EW mice. NMDAr agonist NMDA prevented the loss of 28-day-old BrdU(+) cells and the depression- and anxiety-like behaviors in EW mice. NR2B inhibitor Ro25-6981 or Src inhibitor dasatinib caused depression- and anxiety-like behaviors in HSP mice with the reduction of 28-day-old BrdU(+) cells. The hippocampal BDNF levels were reduced in EW mice and OVX mice. TrkB receptor inhibitor K252a reduced the density of DCX(+) fibers in HSP mice without the reduction of 28-day-old BrdU(+) cells, or the production of affective disorder. Collectively, these results indicate that postpartum estrogen withdrawal impairs hippocampal neurogenesis in mice that show depression- and anxiety-like behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. [Protective effect of Uncaria rhynchophylla total alkaloids pretreatment on hippocampal neurons after acute hypoxia].

    Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng

    2006-05-01

    To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.

  4. Prediction of dementia by hippocampal shape analysis

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  5. A Compressed Sensing Perspective of Hippocampal Function

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  6. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

    Cutsuridis, Vassilis; Hasselmo, Michael

    2012-07-01

    Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories

  7. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    Debora eCutuli

    2014-08-01

    Full Text Available As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations found in n-3 PUFA supplemented mice also pointed towards an effective neuroprotection.On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

  9. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis.

    O'Léime, Ciarán S; Cryan, John F; Nolan, Yvonne M

    2017-11-01

    Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  11. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [Effect of electroacupuncture intervention on learning-memory ability and injured hippocampal neurons in depression rats].

    Bao, Wu-Ye; Jiao, Shuang; Lu, Jun; Tu, Ya; Song, Ying-Zhou; Wu, Qian; A, Ying-Ge

    2014-04-01

    To observe the effect of electroacupuncture (EA) stimulation of "Baihui" (GV 20)-"Yintang" (EX-HN 3) on changes of learning-memory ability and hippocampal neuron structure in chronic stress-stimulation induced depression rats. Forty-eight SD rats were randomly divided into normal, model, EA and medication (Fluoxetine) groups, with 12 rats in each group. The depression model was established by chronic unpredictable mild stress stimulation (swimming in 4 degrees C water, fasting, water deprivation, reversed day and night, etc). Treatment was applied to "Baihui" (GV 20) and "Yintang" (EX-HN 3) for 20 min, once every day for 21 days. For rats of the medication group, Fluoxetine (3.3 mg/kg) was given by gavage (p.o.), once daily for 21 days. The learning-memory ability was detected by Morris water maze tests. The pathological and ultrastructural changes of the hippocampal tissue and neurons were assessed by H.E. staining, light microscope and transmission electron microscopy, respectively. Compared to the normal group, the rats' body weight on day 14 and day 21 after modeling was significantly decreased in the model group (P learning-memory ability. Observations of light microscope and transmission electron microscope showed that modeling induced pathological changes such as reduction in hippocampal cell layers, vague and broken cellular membrane, and ultrastructural changes of hippocampal neurons including swelling and reduction of mitochondria and mitochondrial crests were relived after EA and Fluoxetine treatment. EA intervention can improve the learning-memory ability and relieving impairment of hippocampal neurons in depression rats, which may be one of its mechanisms underlying bettering depression.

  13. Prolonged life of human acute hippocampal slices from temporal lobe epilepsy surgery

    Wickham, J; Brödjegård, N G; Vighagen, R

    2018-01-01

    Resected hippocampal tissue from patients with drug-resistant epilepsy presents a unique possibility to test novel treatment strategies directly in target tissue. The post-resection time for testing and analysis however is normally limited. Acute tissue slices allow for electrophysiological...... granule whole-cell recordings, can be consistently induced in these slices, underlying the usefulness of this methodology for testing and/or validating novel treatment strategies for epilepsy....

  14. Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    Le Magueresse, Corentin; Monyer, Hannah

    2012-01-01

    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance. PMID:22675480

  15. Neuroprotective effects of ginsenoside Rg1 against oxygen–glucose deprivation in cultured hippocampal neurons

    He, Qing; Sun, Jianguo; Wang, Qin; Wang, Wei; He, Bin

    2014-01-01

    Background: Ginsenoside Rg1 (Rg1) is believed to be one of the main active principles in ginseng, a traditional Chinese medicine extensively used to enhance stamina and deal with fatigue as well as physical stress. It has been reported that Rg1 performs multiple biological activities, including neuroprotective activity. In this study, we investigated the efficacy of ginsenoside Rg1 on ischemia–reperfusion injury in cultured hippocampal cells and also probed its possible mechanisms. Methods...

  16. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  17. Metabolic therapy for temporal lobe epilepsy in a dish: investigating mechanisms of ketogenic diet using electrophysiological recordings in hippocampal slices

    Masahito Kawamura

    2016-11-01

    Full Text Available The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1 direct application of ketone bodies, (2 mimicking the ketogenic diet condition during a whole-cell patch-clamp technique, and (3 reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including ATP-sensitive potassium channels, vesicular glutamate transporter, pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.

  18. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices

    Kawamura, Masahito Jr.; Ruskin, David N.; Masino, Susan A.

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy. PMID:27847463

  19. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...

  20. Opposite effects of glucocorticoid receptor activation on hippocampal CA1 dendritic complexity in chronically stressed and handled animals

    Alfarez, D.N.; Karst, H.; Velzing, E.H.; Joëls, M.; Krugers, H.J.

    2008-01-01

    Remodeling of synaptic networks is believed to contribute to synaptic plasticity and long-term memory performance, both of which are modulated by chronic stress. We here examined whether chronic stress modulates dendritic complexity of hippocampal CA1 pyramidal cells, under conditions of basal as

  1. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  2. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  3. Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation.

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Zhang, Mengren

    2014-06-01

    Recent studies showed that hyperglycemia is the main trigger of diabetic cognitive impairment and can cause hippocampus abnormalities. The goal of this study is to explore the effects of different concentrations of high glucose for different exposure time on cell viability as well as intracellular reactive oxygen species (ROS) generation of primary cultured hippocampal neurons. Hippocampal neurons were exposed to different concentrations of high glucose (50, 75, 100, 125, and 150 mM) for 24, 48, 72 and 96 h. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. Intracellular ROS were monitored using the fluorescent probe DCFH-DA. The results showed that, compared with control group, the cell viability of all high glucose-treated groups decreased significantly after 72 h and there also was a significant increase of apoptotic nuclei in high glucose-treated groups from 72 to 96 h. Furthermore, 50 mM glucose induced a peak rise in ROS generation at 24 h and the intracellular ROS levels of 50 mM glucose group were significantly higher than the corresponding control group from 6 to 72 h. These results suggest that hippocampal neurons could be injured by high glucose exposure and the neuronal injury induced by high glucose is potentially mediated through intracellular ROS accumulation.

  4. Hippocampal developmental vulnerability to methylmercury extends into prepubescence

    Maryann eObiorah

    2015-05-01

    Full Text Available The developing brain is sensitive to environmental toxicants such as methylmercury (MeHg, to which humans are exposed via contaminated seafood. Prenatal exposure in children is associated with learning, memory and IQ deficits, which can result from hippocampal dysfunction. To explore underlying mechanisms, we have used the postnatal day (P7 rat to model the third trimester of human gestation. We previously showed that a single low exposure (0.6 µg/gbw that approaches human exposure reduced hippocampal neurogenesis in the dentate gyrus (DG 24 hours later, including later proliferation and memory in adolescence. Yet, the vulnerable stem cell population and period of developmental vulnerability remain undefined. In this study, we find that P7 exposure of stem cells has long-term consequences for adolescent neurogenesis. It reduced the number of mitotic S-phase cells (BrdU, especially those in the highly proliferative Tbr2+ population, and immature neurons (Doublecortin in adolescence, suggesting partial depletion of the later stem cell pool. To define developmental vulnerability to MeHg in prepubescent (P14 and adolescent (P21 rats, we examined acute 24 h effects of MeHg exposure on mitosis and apoptosis. We found that low exposure did not adversely impact neurogenesis at either age, but that a higher exposure (5 µg/gbw at P14 reduced the total number of neural stem cells (Sox2+ by 23% and BrdU+ cells by 26% in the DG hilus, suggesting that vulnerability diminishes with age. To see if these effects may reflect changes in MeHg transfer across the blood brain barrier, we assessed Hg content in the hippocampus after peripheral injection and found that similar levels (~800 ng/gm were obtained at 24 h at both P14 and P21, declining in parallel, suggesting that changes in vulnerability depend more on local tissue and cellular mechanisms. Together, we show that MeHg vulnerability depends on age, and that early exposure impairs later neurogenesis in

  5. Glehnia littoralis Extract Promotes Neurogenesis in the Hippocampal Dentate Gyrus of the Adult Mouse through Increasing Expressions of Brain-Derived Neurotrophic Factor and Tropomyosin-Related Kinase B

    Joon Ha Park

    2018-01-01

    Conclusion: G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.

  6. Neuroprotective effects of ginsenoside Rg1 against oxygen-glucose deprivation in cultured hippocampal neurons.

    He, Qing; Sun, Jianguo; Wang, Qin; Wang, Wei; He, Bin

    2014-03-01

    Ginsenoside Rg1 (Rg1) is believed to be one of the main active principles in ginseng, a traditional Chinese medicine extensively used to enhance stamina and deal with fatigue as well as physical stress. It has been reported that Rg1 performs multiple biological activities, including neuroprotective activity. In this study, we investigated the efficacy of ginsenoside Rg1 on ischemia-reperfusion injury in cultured hippocampal cells and also probed its possible mechanisms. To establish a model of oxygen-glucose deprivation (OGD) and reperfusion, cultured hippocampal neurons were exposed to OGD for 2.5 hours, followed by a 24-hour reoxygenation. Cultured hippocampal neurons were randomly divided into control group, model group (vehicle), and ginsenoside Rg1 treatment groups (5μM, 20μM, 60μM). At 24 hours post-OGD, the intracellular free calcium concentration was detected using Furo-3/AM-loaded hippocampal neurons deprived of oxygen and glucose. Neuronal nitric oxide synthase (nNOS) activity was measured by chemical colorimetry. Cell apoptosis was evaluated by Hoechst staining, and the neuron viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Excitotoxic neuronal injury of OGD was demonstrated by the increase of intracellular free calcium concentrations and elevated nNOS activity in the model group compared with the control group. The intracellular free calcium concentrations and the nNOS activity in the groups receiving intermediate and high dose of ginsenoside Rg1 were significantly lower than those of the control group (p cell viability loss (p cell apoptosis induced by OGD. Ginsenoside Rg1 has neuroprotective effect on ischemia-reperfusion injury in cultured hippocampal cells mediated by blocking calcium over-influx into neuronal cells and decreasing the nNOS activity after OGD exposure. We infer that ginsenoside Rg1 may serve as a potential therapeutic agent for cerebral ischemia injury. Copyright © 2014

  7. Adaptation of Microplate-based Respirometry for Hippocampal Slices and Analysis of Respiratory Capacity

    Schuh, Rosemary A.; Clerc, Pascaline; Hwang, Hyehyun; Mehrabian, Zara; Bittman, Kevin; Chen, Hegang; Polster, Brian M.

    2011-01-01

    Multiple neurodegenerative disorders are associated with altered mitochondrial bioenergetics. Although mitochondrial O2 consumption is frequently measured in isolated mitochondria, isolated synaptic nerve terminals (synaptosomes), or cultured cells, the absence of mature brain circuitry is a remaining limitation. Here we describe the development of a method that adapts the Seahorse Extracellular Flux Analyzer (XF24) for the microplate-based measurement of hippocampal slice O2 consumption. As a first evaluation of the technique, we compared whole slice bioenergetics to previous measurements made with synaptosomes or cultured neurons. We found that mitochondrial respiratory capacity and O2 consumption coupled to ATP synthesis could be estimated in cultured or acute hippocampal slices with preserved neural architecture. Mouse organotypic hippocampal slices oxidizing glucose displayed mitochondrial O2 consumption that was well-coupled, as determined by the sensitivity to the ATP synthase inhibitor oligomycin. However stimulation of respiration by uncoupler was modest (<120% of basal respiration) compared to previous measurements in cells or synaptosomes, although enhanced slightly (to ~150% of basal respiration) by the acute addition of the mitochondrial complex I-linked substrate pyruvate. These findings suggest a high basal utilization of respiratory capacity in slices and a limitation of glucose-derived substrate for maximal respiration. The improved throughput of microplate-based hippocampal respirometry over traditional O2 electrode-based methods is conducive to neuroprotective drug screening. When coupled with cell type-specific pharmacology or genetic manipulations, the ability to efficiently measure O2 consumption from whole slices should advance our understanding of mitochondrial roles in physiology and neuropathology. PMID:21520220

  8. Spatial learning depends on both the addition and removal of new hippocampal neurons.

    David Dupret

    2007-08-01

    Full Text Available The role of adult hippocampal neurogenesis in spatial learning remains a matter of debate. Here, we show that spatial learning modifies neurogenesis by inducing a cascade of events that resembles the selective stabilization process characterizing development. Learning promotes survival of relatively mature neurons, apoptosis of more immature cells, and finally, proliferation of neural precursors. These are three interrelated events mediating learning. Thus, blocking apoptosis impairs memory and inhibits learning-induced cell survival and cell proliferation. In conclusion, during learning, similar to the selective stabilization process, neuronal networks are sculpted by a tightly regulated selection and suppression of different populations of newly born neurons.

  9. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures

    Bonde, C; Kristensen, B W; Blaabjerg, M

    2000-01-01

    -producing HiB5 cells, were added to slice cultures I h before exposure to 10 microM NMDA for 48h. Neuronal cell death was monitored, before and during the NMDA exposure, by densitometric measurements of propidium iodide (PI) uptake and loss of Nissl staining. Both the addition of rhGDNF and NBN......The potential neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) and neublastin (NBN) against NMDA-induced excitotoxicity were examined in hippocampal brain slice cultures. Recombinant human GDNF (25-100 ng/ ml) or NBN, in medium conditioned by growth of transfected, NBN...

  10. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo.

    Lau, Petrina Yau-Pok; Katona, Linda; Saghy, Peter; Newton, Kathryn; Somogyi, Peter; Lamsa, Karri P

    2017-05-01

    Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

  11. BDNF val(66)met affects hippocampal volume and emotion-related hippocampal memory activity

    Molendijk, M. L.; van Tol, M-J; Penninx, B. W. J. H.; van der Wee, N. J. A.; Aleman, A.; Veltman, D. J.; Spinhoven, P.; Elzinga, B. M.

    2012-01-01

    The val(66)met polymorphism on the BDNF gene has been reported to explain individual differences in hippocampal volume and memory-related activity. These findings, however, have not been replicated consistently and no studies to date controlled for the potentially confounding impact of early life

  12. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  13. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews

    Keuker, J.I.H.; de Biurrun, G.; Luiten, P.G.M.; Fuchs, E.

    2004-01-01

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many

  14. Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus

    Kimura, Takashi; Griffin, Diane E.

    2003-01-01

    Viral infections of the central nervous system and immune responses to these infections cause a variety of neurological diseases. Infection of weanling mice with Sindbis virus causes acute nonfatal encephalomyelitis followed by clearance of infectious virus, but persistence of viral RNA. Infection with a neuroadapted strain of Sindbis virus (NSV) causes fatal encephalomyelitis, but passive transfer of immune serum after infection protects from fatal disease and infectious virus is cleared. To determine whether persistent NSV RNA is associated with neurological damage, we examined the brains of recovered mice and found progressive loss of the hippocampal gyrus, adjacent white matter, and deep cerebral cortex associated with mononuclear cell infiltration. Mice deficient in CD4 + T cells showed less tissue loss, while mice lacking CD8 + T cells showed lesions comparable to those in immunocompetent mice. Mice deficient in both CD4 + and CD8 + T cells developed severe tissue loss similar to immunocompetent mice and this was associated with extensive infiltration of macrophages. The number of CD4 + cells and macrophage/microglial cells, but not CD8 + cells, infiltrating the hippocampal gyrus was correlated with the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive pyramidal neurons. These results suggest that CD4 + T cells can promote progressive neuronal death and tissue injury, despite clearance of infectious virus

  15. Subfield-specific loss of hippocampal N-acetyl aspartate in temporal lobe epilepsy.

    Vielhaber, Stefan; Niessen, Heiko G; Debska-Vielhaber, Grazyna; Kudin, Alexei P; Wellmer, Jörg; Kaufmann, Jörn; Schönfeld, Mircea Ariel; Fendrich, Robert; Willker, Wieland; Leibfritz, Dieter; Schramm, Johannes; Elger, Christian E; Heinze, Hans-Jochen; Kunz, Wolfram S

    2008-01-01

    In patients with mesial temporal lobe epilepsy (MTLE) it remains an unresolved issue whether the interictal decrease in N-acetyl aspartate (NAA) detected by proton magnetic resonance spectroscopy ((1)H-MRS) reflects the epilepsy-associated loss of hippocampal pyramidal neurons or metabolic dysfunction. To address this problem, we applied high-resolution (1)H-MRS at 14.1 Tesla to measure metabolite concentrations in ex vivo tissue slices from three hippocampal subfields (CA1, CA3, dentate gyrus) as well as from the parahippocampal region of 12 patients with MTLE. In contrast to four patients with lesion-caused MTLE, we found a large variance of NAA concentrations in the individual hippocampal regions of patients with Ammon's horn sclerosis (AHS). Specifically, in subfield CA3 of AHS patients despite of a moderate preservation of neuronal cell densities the concentration of NAA was significantly lowered, while the concentrations of lactate, glucose, and succinate were elevated. We suggest that these subfield-specific alterations of metabolite concentrations in AHS are very likely caused by impairment of mitochondrial function and not related to neuronal cell loss. A subfield-specific impairment of energy metabolism is the probable cause for lowered NAA concentrations in sclerotic hippocampi of MTLE patients.

  16. Protocol for culturing low density pure rat hippocampal neurons supported by mature mixed neuron cultures.

    Yang, Qian; Ke, Yini; Luo, Jianhong; Tang, Yang

    2017-02-01

    primary hippocampal neuron cultures allow for subcellular morphological dissection, easy access to drug treatment and electrophysiology analysis of individual neurons, and is therefore an ideal model for the study of neuron physiology. While neuron and glia mixed cultures are relatively easy to prepare, pure neurons are particular hard to culture at low densities which are suitable for morphology studies. This may be due to a lack of neurotrophic factors such as brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and Glial cell line-derived neurotrophic factor (GDNF). In this study we used a two step protocol in which neuron-glia mixed cultures were initially prepared for maturation to support the growth of young neurons plated at very low densities. Our protocol showed that neurotrophic support resulted in physiologically functional hippocampal neurons with larger cell body, increased neurite length and decreased branching and complexity compared to cultures prepared using a conventional method. Our protocol provides a novel way to culture highly uniformed hippocampal neurons for acquiring high quality, neuron based data. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability

    Zha YY

    2012-06-01

    Full Text Available Ying-ying Zha,1 Bo Yang,1 Ming-liang Tang,2 Qiu-chen Guo,1 Ju-tao Chen,1 Long-ping Wen,3 Ming Wang11CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 2Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 3Laboratory of Nano-biology, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of ChinaBackground: Recent studies have shown that the biological actions and toxicity of the water-soluble compound, polyhydroxyfullerene (fullerenol, are related to the concentrations present at a particular site of action. This study investigated the effects of different concentrations of fullerenol on cultured rat hippocampal neurons.Methods and results: Fullerenol at low concentrations significantly enhanced hippocampal neuron viability as tested by MTT assay and Hoechst 33342/propidium iodide double stain detection. At high concentrations, fullerenol induced apoptosis confirmed by Comet assay and assessment of caspase proteins.Conclusion: These findings suggest that fullerenol promotes cell death and protects against cell damage, depending on the concentration present. The concentration-dependent effects of fullerenol were mainly due to its influence on the reduction-oxidation pathway.Keywords: fullerenol, nanomaterial, neurotoxicity, neuroprotection, hippocampal neuron

  18. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear.

    Tronson, Natalie C; Schrick, Christina; Guzman, Yomayra F; Huh, Kyu Hwan; Srivastava, Deepak P; Penzes, Peter; Guedea, Anita L; Gao, Can; Radulovic, Jelena

    2009-03-18

    Learning processes mediating conditioning and extinction of contextual fear require activation of several key signaling pathways in the hippocampus. Principal hippocampal CA1 neurons respond to fear conditioning by a coordinated activation of multiple protein kinases and immediate early genes, such as cFos, enabling rapid and lasting consolidation of contextual fear memory. The extracellular signal-regulated kinase (Erk) additionally acts as a central mediator of fear extinction. It is not known however, whether these molecular events take place in overlapping or nonoverlapping neuronal populations. By using mouse models of conditioning and extinction of fear, we set out to determine the time course of cFos and Erk activity, their cellular overlap, and regulation by afferent cholinergic input from the medial septum. Analyses of cFos(+) and pErk(+) cells by immunofluorescence revealed predominant nuclear activation of either protein during conditioning and extinction of fear, respectively. Transgenic cFos-LacZ mice were further used to label in vivo Fos(+) hippocampal cells during conditioning followed by pErk immunostaining after extinction. The results showed that these signaling molecules were activated in segregated populations of hippocampal principal neurons. Furthermore, immunotoxin-induced lesions of medial septal neurons, providing cholinergic input into the hippocampus, selectively abolished Erk activation and extinction of fear without affecting cFos responses and conditioning. These results demonstrate that extinction mechanisms based on Erk signaling involve a specific population of CA1 principal neurons distinctively regulated by afferent cholinergic input from the medial septum.

  19. Cryptic sexual dimorphism in spatial memory and hippocampal oxytocin receptors in prairie voles (Microtus ochrogaster).

    Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G

    2017-09-01

    Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons.

    Cuesto, Germán; Enriquez-Barreto, Lilian; Caramés, Cristina; Cantarero, Marta; Gasull, Xavier; Sandi, Carmen; Ferrús, Alberto; Acebes, Ángel; Morales, Miguel

    2011-02-23

    The possibility of changing the number of synapses may be an important asset in the treatment of neurological diseases. In this context, the synaptogenic role of the phosphoinositide-3-kinase (PI3K) signaling cascade has been previously demonstrated in Drosophila. This study shows that treatment with a PI3K-activating transduction peptide is able to promote synaptogenesis and spinogenesis in primary cultures of rat hippocampal neurons, as well as in CA1 hippocampal neurons in vivo. In culture, the peptide increases synapse density independently of cell density, culture age, dendritic complexity, or synapse type. The induced synapses also increase neurotransmitter release from cultured neurons. The synaptogenic signaling pathway includes PI3K-Akt. Furthermore, the treatment is effective on adult neurons, where it induces spinogenesis and enhances the cognitive behavior of treated animals in a fear-conditioning assay. These findings demonstrate that functional synaptogenesis can be induced in mature mammalian brains through PI3K activation.

  1. Thallium stimulates ethanol production in immortalized hippocampal neurons.

    Laura Colombaioni

    Full Text Available Lactate and ethanol (EtOH were determined in cell culture medium (CCM of immortalized hippocampal neurons (HN9.10e cell line before and after incubation with Thallium (Tl. This cell line is a reliable, in vitro model of one of the most vulnerable regions of central nervous system. Cells were incubated for 48 h with three different single Tl doses: 1, 10, 100 μg/L (corresponding to 4.9, 49 and 490 nM, respectively. After 48 h, neurons were "reperfused" with fresh CCM every 24/48 h until 7 days after the treatment and the removed CCM was collected and analysed. Confocal microscopy was employed to observe morphological changes. EtOH was determined by head space-solid phase microextraction -gas chromatography -mass spectrometry (HS-SPME-GCMS, lactate by RP-HPLC with UV detection. Tl exposure had significant effects on neuronal growth rate and morphology. The damage degree was dose-dependent. In not exposed cells, EtOH concentration was 0.18 ± 0.013 mM, which represents about 5% of lactate concentration (3.4 ± 0.10 mM. After Tl exposure lactate and EtOH increased. In CCM of 100 and 10 μg/L Tl-treated cells, lactate increased 24 h after reperfusion up to 2 and 3.3 times the control value, respectively. In CCM of 10 and 100 μg/L Tl-treated cells 24 h after reperfusion, EtOH increased up to 0.3 and 0.58 mmol/L. respectively. These results are consistent with significant alterations in energy metabolism, despite the low doses of Tl employed and the relatively short incubation time.

  2. Thallium stimulates ethanol production in immortalized hippocampal neurons.

    Colombaioni, Laura; Onor, Massimo; Benedetti, Edoardo; Bramanti, Emilia

    2017-01-01

    Lactate and ethanol (EtOH) were determined in cell culture medium (CCM) of immortalized hippocampal neurons (HN9.10e cell line) before and after incubation with Thallium (Tl). This cell line is a reliable, in vitro model of one of the most vulnerable regions of central nervous system. Cells were incubated for 48 h with three different single Tl doses: 1, 10, 100 μg/L (corresponding to 4.9, 49 and 490 nM, respectively). After 48 h, neurons were "reperfused" with fresh CCM every 24/48 h until 7 days after the treatment and the removed CCM was collected and analysed. Confocal microscopy was employed to observe morphological changes. EtOH was determined by head space-solid phase microextraction -gas chromatography -mass spectrometry (HS-SPME-GCMS), lactate by RP-HPLC with UV detection. Tl exposure had significant effects on neuronal growth rate and morphology. The damage degree was dose-dependent. In not exposed cells, EtOH concentration was 0.18 ± 0.013 mM, which represents about 5% of lactate concentration (3.4 ± 0.10 mM). After Tl exposure lactate and EtOH increased. In CCM of 100 and 10 μg/L Tl-treated cells, lactate increased 24 h after reperfusion up to 2 and 3.3 times the control value, respectively. In CCM of 10 and 100 μg/L Tl-treated cells 24 h after reperfusion, EtOH increased up to 0.3 and 0.58 mmol/L. respectively. These results are consistent with significant alterations in energy metabolism, despite the low doses of Tl employed and the relatively short incubation time.

  3. Hippocampal neurogenesis and cortical cellular plasticity in Wahlberg's epauletted fruit bat: a qualitative and quantitative study.

    Gatome, Catherine W; Mwangi, Deter K; Lipp, Hans-Peter; Amrein, Irmgard

    2010-01-01

    Species-specific characteristics of neuronal plasticity emerging from comparative studies can address the functional relevance of hippocampal or cortical plasticity in the light of ecological adaptation and evolutionary history of a given species. Here, we present a quantitative and qualitative analysis of neurogenesis in young and adult free-living Wahlberg's epauletted fruit bats. Using the markers for proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BrdU), doublecortin (DCX) and polysialic acid neural cell adhesion molecule (PSA-NCAM), our findings in the hippocampus, olfactory bulb and cortical regions are described and compared to reports in other mammals. Expressed as a percentage of the total number of granule cells, PCNA- and BrdU-positive cells accounted for 0.04 in young to 0.01% in adult animals; DCX-positive cells for 0.05 (young) to 0.01% (adult); PSA-NCAM-positive cells for 0.1 (young) to 0.02% (adult), and pyknotic cells for 0.007 (young) to 0.005% (adult). The numbers were comparable to other long-lived, late-maturing mammals such as primates. A significant increase in the total granule cell number from young to adult animals demonstrated the successful formation and integration of new cells. In adulthood, granule cell number appeared stable and was surprisingly low in comparison to other species. Observations in the olfactory bulb and rostral migratory stream were qualitatively similar to descriptions in other species. In the ventral horn of the lateral ventricle, we noted prominent expression of DCX and PSA-NCAM forming a temporal migratory stream targeting the piriform cortex, possibly reflecting the importance of olfaction to these species. Low, but persistent hippocampal neurogenesis in non-echolocating fruit bats contrasted the findings in echolocating microbats, in which hippocampal neurogenesis was largely absent. Together with the observed intense cortical plasticity in the olfactory system of fruit bats we suggest a

  4. Hippocampal sclerosis in children younger than 2 years

    Kadom, Nadja [Children' s National Medical Center, Department of Diagnostic Imaging and Radiology, Washington, DC (United States); Tsuchida, Tammy; Gaillard, William D. [Children' s National Medical Center, Department of Neurology, Washington, DC (United States)

    2011-10-15

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  5. Hippocampal sclerosis in children younger than 2 years

    Kadom, Nadja; Tsuchida, Tammy; Gaillard, William D.

    2011-01-01

    Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology. (orig.)

  6. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. © The Author(s) 2013.

  7. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats

    Valentina eCorvino

    2015-11-01

    Full Text Available Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2 administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT administration (8mg/kg, characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg i.p. or vehicle, and were sacrificed 48h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48h upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, Cadherin and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad 67, neuropeptide Y (Npy, parvalbumin , Pgc-1α and Sirtuin 1genes, the latter involved in parvalbumin (PV synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.

  8. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion.

    Oumei Cheng

    Full Text Available Sleep deprivation (SD plays a complex role in central nervous system (CNS diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR.One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU and neuron-specific enolase (NSE, respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d.The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects.Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.

  9. Alzheimer's Disease Diagnostic Performance of a Multi-Atlas Hippocampal Segmentation Method using the Harmonized Hippocampal Protocol

    Anker, Cecilie Benedicte; Sørensen, Lauge; Pai, Akshay

    PURPOSE Hippocampal volumetry is the most widely used structural MRI biomarker of Alzheimer’s disease (AD), and state-of-the-art, automatic hippocampal segmentation can be obtained using longitudinal FreeSurfer. In this study, we compare the diagnostic AD performance of a single time point, multi...

  10. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  11. Microglia modulate hippocampal neural precursor activity in response to exercise and aging.

    Vukovic, Jana; Colditz, Michael J; Blackmore, Daniel G; Ruitenberg, Marc J; Bartlett, Perry F

    2012-05-09

    Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX(3)CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blocking antibody against the CX(3)CL1 receptor, CX(3)CR1, but not control IgG, dramatically reduced the neurosphere formation frequency in mice that had exercised. While an increase in soluble CX(3)CL1 was observed following running, reduced levels of this chemokine were found in the aged brain. Lower levels of CX(3)CL1 with advancing age correlated with the natural decline in neural precursor cell activity, a state that could be partially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX(3)CL1-CX(3)CR1 axis critically contributes toward this process.

  12. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks. © The Author(s) 2015.

  13. Low-Dose Sevoflurane Promotes Hippocampal Neurogenesis and Facilitates the Development of Dentate Gyrus-Dependent Learning in Neonatal Rats

    Chong Chen

    2015-04-01

    Full Text Available Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8% sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6 were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  14. Decreased hippocampal 5-HT2A receptors in post mortem tissue from schizophrenic but not bipolar subjects

    Scarr, E.; Pavey, G.; Bradbury, R.; Copolov, D.L.; Dean, B.

    2001-01-01

    Full text: The hippocampus is important in cognition and sensory gating,both of which are thought to be impaired in schizophrenia. Since 5HT has also been implicated in cognition we investigated the hippocampal serotonergic system in subjects with either schizophrenia or bipolar mood disorder. Using autoradiography,we found significant (p 3 H] ketanserin binding in the CA3 (Mean ±SEM:29.6 ± 4.0 vs.46.6 ± 4.2 fmol/mgETE), the stratum radiatum (27.3 ± 2.7 vs.38.7 ± 3.9 fmol/mgETE) and pyramidal cell layer (35.6 ± 3.4 vs.51.4 ± 2.7 fmol/ mgETE) of CA1 as well as the outer (8.3 ± 1.5 vs.12.2 ± 1.4 fmol/mgETE) and pyramidal cell layer (16.4 ± 2.5 vs.32.1 ± 3.2 fmol/mgETE) of the subiculum in hippocampal tissue from schizophrenic subjects. No such differences were found in the dentate gyrus or CA2 region from schizophrenia subjects or in any hippocampal region from bipolar subjects. The lack of change in the bipolar cohort suggests that the decreased density of hippocampal 5-HT 2A receptors is disease specific and not a result of neuroleptic treatment, which both cohorts received. Copyright (2001) Australian Neuroscience Society

  15. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Hippocampal and diencephalic pathology in developmental amnesia.

    Dzieciol, Anna M; Bachevalier, Jocelyne; Saleem, Kadharbatcha S; Gadian, David G; Saunders, Richard; Chong, W K Kling; Banks, Tina; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-01-01

    Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  18. Cortisol, Cytokines, and Hippocampal Volume in the Elderly

    Keith Daniel Sudheimer

    2014-07-01

    Full Text Available Separate bodies of literature report that elevated pro-inflammatory cytokines and cortisol negatively affect hippocampal structure and cognitive functioning, particularly in older adults. Although interactions between cytokines and cortisol occur through a variety of known mechanisms, few studies consider how their interactions affect brain structure. In this preliminary study, we assess the impact of interactions between circulating levels of IL-1Beta, IL-6, IL-8, IL-10, IL-12, TNF-alpha, and waking cortisol on hippocampal volume. Twenty-eight community-dwelling older adults underwent blood draws for quantification of circulating cytokines and saliva collections to quantify the cortisol awakening response. Hippocampal volume measurements were made using structural magnetic resonance imaging. Elevated levels of waking cortisol in conjunction with higher concentrations of IL-6 and TNF-alpha were associated with smaller hippocampal volumes. In addition, independent of cortisol, higher levels of IL-1beta and TNF-alpha were also associated with smaller hippocampal volumes. These data provide preliminary evidence that higher cortisol, in conjunction with higher IL-6 and TNF-alpha, are associated with smaller hippocampal volume in older adults. We suggest that the dynamic balance between the hypothalamic-pituitary adrenal axis and inflammation processes may explain hippocampal volume reductions in older adults better than either set of measures do in isolation.

  19. Hippocampal multimodal structural changes and subclinical depression in healthy individuals.

    Spalletta, Gianfranco; Piras, Fabrizio; Caltagirone, Carlo; Fagioli, Sabrina

    2014-01-01

    Several neuroimaging studies report reduced hippocampal volume in depressed patients. However, it is still unclear if hippocampal changes in healthy individuals can be considered a risk factor for progression to clinical depression. Here, we investigated subclinical depression and its hippocampal correlates in a non-clinical sample of healthy individuals, with particular regard to gender differences. One-hundred-two participants underwent a comprehensive clinical assessment, a high-resolution T1-weighted magnetic resonance imaging and diffusion tensor imaging protocol using a 3T MRI scanner. Data of macro-(volume) and micro-(mean diffusivity, MD) structural changes of the hippocampus were analyzed with reference to the Beck Depression Inventory score. Results of multivariate regression analyses revealed reduced bilateral volume, along with increased bilateral MD in hippocampal formation predicting subclinical depressive phenomenology only in healthy males. Conversely, subclinical depressive phenomenology in healthy female was accounted for by only lower educational level, in the absence of any hippocampal structure variations. To date, this is the only evidence reporting a relationship between subclinical depressive phenomenology and changes in hippocampal formation in healthy individuals. Our findings demonstrated that reduced volume, along with increased MD in hippocampal formation, is significantly associated with subclinical depressive phenomenology in healthy males. This encourages to study the hypothesis that early macro- and microstructural changes in hippocampi associated with subclinical depression may constitute a risk factor of developing depressive disorders in males. © 2013 Elsevier B.V. All rights reserved.

  20. Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes.

    Alvarez, Edgardo O; Beauquis, Juan; Revsin, Yanina; Banzan, Arturo M; Roig, Paulina; De Nicola, Alejandro F; Saravia, Flavia

    2009-03-02

    Type 1 diabetes (T1D) is accompanied by a "diabetic encephalopathy" including hypersensitivity to stress, increased risk of stroke, dementia and cognitive impairment. In previous works we reported several brain alterations including a strong decrease in hippocampal proliferation and survival in both spontaneous and streptozotocin-induced models of experimental T1D. The aim of this study was to explore in streptozotocin-treated mice and other parameters associated to mild neurodegeneration in the dentate gyrus and the potential correlation with behavioural changes. The neurogenic status, measured by doublecortin (DCX) expression, showed an important decline in the number of positive cells in the subgranular zone (SGZ). However, neuronal migration was not affected. We found a marked enhancement of intracellular lipofuscin deposits, characteristic of increased oxidative stress and aging in both, the hilus and the SGZ and granular cell layer (GCL). Diabetic mice showed a significant impairment in learning and memory tests, exhibiting a higher latency to show an escape response and a poorer learning efficiency of an active avoiding response compared with control mice. Both, exploratory and non-exploratory activities in a conflictive environment in the asymmetric elevated plus maze were not affected by the diabetic condition. In conclusion, experimental diabetes showed clear signs of changes in the dentate gyrus, changes similar to those present in the aging process. Correlatively, these alterations were in line with a reduced performance in learning and memory tests. The mechanism that could potentially link neural and behavioural disturbances is not yet fully comprehended.

  1. Chronic Loss of CA2 Transmission Leads to Hippocampal Hyperexcitability.

    Boehringer, Roman; Polygalov, Denis; Huang, Arthur J Y; Middleton, Steven J; Robert, Vincent; Wintzer, Marie E; Piskorowski, Rebecca A; Chevaleyre, Vivien; McHugh, Thomas J

    2017-05-03

    Hippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network. In behaving mice, this led to spatially triggered episodes of network-wide hyperexcitability during exploration accompanied by the emergence of high-frequency discharges during rest. These findings reveal CA2 as a regulator of network processing in hippocampus and suggest that CA2-mediated inhibition in CA3 plays a key role in establishing the dynamic excitatory and inhibitory balance required for proper network function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis.

    Lee, Chang Hwan; Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Liu, Xiaotong; Cai, Mudan; Hong, Jin Gyu; Park, Jeong Hill; Ryu, Jong Hoon

    2013-09-01

    Panax ginseng C.A. Meyer has been used in traditional herb prescriptions for thousands of years. A heat-processing method has been used to increase the efficacy of ginseng, yielding what is known as red ginseng. In addition, recently, a slightly modified heat-processing method was applied to ginseng, to obtain a new type of processed ginseng with increased biological activity; this new form of ginseng is referred to as Sun ginseng (SG). The aim of this study was to investigate the effect of SG on memory enhancement and neurogenesis in the hippocampal dentate gyrus (DG) region. The subchronic administration of SG (for 14 days) significantly increased the latency time in the passive avoidance task relative to the administration of the vehicle control (P memory-enhancing activities and that these effects are mediated, in part, by the increase in the levels of pERK and pAkt and by the increases in cell proliferation and cell survival. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Miniature excitatory synaptic currents in cultured hippocampal neurons.

    Finch, D M; Fisher, R S; Jackson, M B

    1990-06-04

    We performed patch clamp recordings in the whole cell mode from cultured embryonic mouse hippocampal neurons. In bathing solutions containing tetrodotoxin (TTX), the cells showed spontaneous inward currents (SICs) ranging in size from 1 to 100 pA. Several observations indicated that the SICs were miniature excitatory synaptic currents mediated primarily by non-NMDA (N-methyl-D-aspartate) excitatory amino acid receptors: the rising phase of SICs was fast (1 ms to half amplitude at room temperature) and smooth, suggesting unitary events. The SICs were blocked by the broad-spectrum glutamate receptor antagonist gamma-D-glutamylglycine (DGG), but not by the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (5-APV). SICs were also blocked by desensitizing concentrations of quisqualate. Incubating cells in tetanus toxin, which blocks exocytotic transmitter release, eliminated SICs. The presence of SICs was consistent with the morphological arrangement of glutamatergic innervation in the cell cultures demonstrated immunohistochemically. Spontaneous outward currents (SOCs) were blocked by bicuculline and presumed to be mediated by GABAA receptors. This is consistent with immunohistochemical demonstration of GABAergic synapses. SIC frequency was increased in a calcium dependent manner by bathing the cells in a solution high in K+, and application of the dihydropyridine L-type calcium channel agonist BAY K 8644 increased the frequency of SICs. Increases in SIC frequency produced by high K+ solutions were reversed by Cd2+ and omega-conotoxin GVIA, but not by the selective L-type channel antagonist nimodipine. This suggested that presynaptic L-type channels were in a gating mode that was not blocked by nimodipine, and/or that another class of calcium channel makes a dominant contribution to excitatory transmitter release.

  4. Temporal lobe developmental malformations and epilepsy: dual pathology and bilateral hippocampal abnormalities.

    Ho, S S; Kuzniecky, R I; Gilliam, F; Faught, E; Morawetz, R

    1998-03-01

    Temporal lobe developmental malformations (TLDM) with focal cortical dysplasia and balloon cells may coexist with mesial temporal sclerosis. The true incidence of this dual pathology is unknown. Our aim was to assess the frequency of amygdala (AM)-hippocampal abnormality in a homogeneous population with this specific developmental malformation. MRI-based volumetry of the AM and hippocampal formation (HF) in 30 patients with unilateral TLDM and intractable partial epilepsy was performed. A volume normalization process defined a normal range of HF and AM volumes in control subjects, and enabled the detection of bilateral volume loss. Normalized volumes detected HF atrophy in 26 patients (nine unilateral and 17 bilateral) and AM atrophy in 18 patients (three unilateral and 15 bilateral). Visual analysis detected unilateral HF abnormality in 21 patients and bilateral abnormality in two. When compared with a group of patients with temporal lobe epilepsy and pure hippocampal sclerosis (N = 92), where volumetry revealed bilateral HF atrophy in 18%, a significant difference in the frequency of bilateral HF atrophy was found (p Dual pathology is frequent in patients with TLDM (87%), and the AM-HF abnormality is often bilateral (57%). Our data suggest that more widespread and potentially epileptogenic lesions coexist with visibly detectable unilateral TLDM. This has implications for the selection of patients for temporal lobe surgery and may influence surgical strategies.

  5. The aPKC-CBP Pathway Regulates Adult Hippocampal Neurogenesis in an Age-Dependent Manner

    Ayden Gouveia

    2016-10-01

    Full Text Available While epigenetic modifications have emerged as attractive substrates to integrate environmental changes into the determination of cell identity and function, specific signals that directly activate these epigenetic modifications remain unknown. Here, we examine the role of atypical protein kinase C (aPKC-mediated Ser436 phosphorylation of CBP, a histone acetyltransferase, in adult hippocampal neurogenesis and memory. Using a knockin mouse strain (CbpS436A in which the aPKC-CBP pathway is deficient, we observe impaired hippocampal neuronal differentiation, maturation, and memory and diminished binding of CBP to CREB in 6-month-old CbpS436A mice, but not at 3 months of age. Importantly, elevation of CREB activity rescues these deficits, and CREB activity is reduced whereas aPKC activity is increased in the murine hippocampus as they age from 3 to 6 months regardless of genotype. Thus, the aPKC-CBP pathway is a homeostatic compensatory mechanism that modulates hippocampal neurogenesis and memory in an age-dependent manner in response to reduced CREB activity.

  6. A mental retardation gene, motopsin/neurotrypsin/prss12, modulates hippocampal function and social interaction.

    Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi

    2009-12-01

    Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions, including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin's function in the mammalian brain, motopsin knockout (KO) mice were generated. Motopsin KO mice did not have significant deficits in memory formation, as tested using the Morris water maze, passive avoidance and Y-maze tests. A social recognition test showed that the motopsin KO mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin KO mice spent a longer time investigating a familiar mouse than wild-type (WT) mice did. In a resident-intruder test, motopsin KO mice showed prolonged social interaction as compared with WT mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin KO mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP-responsive element-binding protein (CREB) in hippocampal neurons of WT mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons.

  7. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases

    Krishna eVadodaria

    2013-08-01

    Full Text Available Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1 and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including several growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus circuitry.

  8. Hypothyroidism Causes Endoplasmic Reticulum Stress in Adult Rat Hippocampus: A Mechanism Associated with Hippocampal Damage

    Alejandra Paola Torres-Manzo

    2018-01-01

    Full Text Available Thyroid hormones (TH are essential for hippocampal neuronal viability in adulthood, and their deficiency causes hypothyroidism, which is related to oxidative stress events and neuronal damage. Also, it has been hypothesized that hypothyroidism causes a glucose deprivation in the neuron. This study is aimed at evaluating the temporal participation of the endoplasmic reticulum stress (ERE in hippocampal neurons of adult hypothyroid rats and its association with the oxidative stress events. Adult Wistar male rats were divided into euthyroid and hypothyroid groups. Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism at three weeks postsurgery. Oxidative stress, redox environment, and antioxidant enzyme markers, as well as the expression of the ERE through the pathways of PERK, ATF6, and IRE1, were evaluated at the 3rd and 4th weeks postsurgery. We found a rise in ROS and nitrite production; also, catalase increased and glutathione peroxidase diminished their activities. These events promote an enhancement of the lipoperoxidation, as well as of γ-GT, myeloperoxidase, and caspase 3 activities. With respect to ERE, there were ATF6, IRE1, and GADD153 overexpressions with a reduction in mitochondrial activity and GSH2/GSSG ratio. We conclude that the endoplasmic reticulum stress might play a pivotal role in the activation of hypothyroidism-induced hippocampal cell death.

  9. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  10. Hippocampal sclerosis: correlation of MR imaging findings with surgical outcome

    Kim, Yoon Hee; Chang, Kee Hyun; Kim, Kyung Won; Han, Moon Hee; Park, Sung Ho; Nam, Hyun Woo; Choi, Kyu Ho; Cho, Woo Ho

    2001-01-01

    Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p 0.05). Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator

  11. Learned helplessness activates hippocampal microglia in rats: A potential target for the antidepressant imipramine.

    Iwata, Masaaki; Ishida, Hisahito; Kaneko, Koichi; Shirayama, Yukihiko

    An accumulating body of evidence has demonstrated that inflammation is associated with the pathology of depression. We recently found that psychological stress induces inflammation in the hippocampus of the rat brain through the inflammasome, a component of the innate immune system. Microglia, the resident macrophages in the brain, play a central role in the innate immune system and express inflammasomes; thus, we hypothesized that hippocampal microglia would be key mediators in the development of depression via stress-induced inflammation. To test this hypothesis and to determine how antidepressants modulate microglial function, we used immunohistochemistry to examine the morphological changes that occur in the hippocampal microglia of rats exposed to the learned helplessness (LH) paradigm. We noted significantly increased numbers of activated microglia in the granule cell layer, hilus, CA1, and CA3 regions of the hippocampi of LH rats. Conversely, administering imipramine to LH rats for 7days produced a significant decrease in the number of activated microglia in the hilus, but not in the other examined regions. Nonetheless, there were no significant differences in the combined number of activated and non-activated microglia either in LH or LH+imipramine rats relative to control rats. In addition, treating the naïve rats with imipramine or fluvoxamine produced no discernible microglial changes. These data suggest that stress activates hippocampal microglia, while certain antidepressants decrease the number of activated microglia in the hilus, but not in other hippocampal regions. Therefore, the hilus represents a candidate target region for the antidepressant imipramine. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The influence of cold temperature on cellular excitability of hippocampal networks.

    de la Peña, Elvira; Mälkiä, Annika; Vara, Hugo; Caires, Rebeca; Ballesta, Juan J; Belmonte, Carlos; Viana, Felix

    2012-01-01

    The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP) family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K(2P)), TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K(2P) channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.

  13. The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats.

    Robinson, L; Goonawardena, A V; Pertwee, R G; Hampson, R E; Riedel, G

    2007-07-01

    Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.

  14. Thyroid Hormone Supplementation Restores Spatial Memory, Hippocampal Markers of Neuroinflammation, Plasticity-Related Signaling Molecules, and β-Amyloid Peptide Load in Hypothyroid Rats.

    Chaalal, Amina; Poirier, Roseline; Blum, David; Laroche, Serge; Enderlin, Valérie

    2018-05-23

    Hypothyroidism is a condition that becomes more prevalent with age. Patients with untreated hypothyroidism have consistently reported symptoms of severe cognitive impairments. In patients suffering hypothyroidism, thyroid hormone supplementation offers the prospect to alleviate the cognitive consequences of hypothyroidism; however, the therapeutic value of TH supplementation remains at present uncertain and the link between cellular modifications associated with hypothyroidism and neurodegeneration remains to be elucidated. In the present study, we therefore evaluated the molecular and behavioral consequences of T3 hormone replacement in an animal model of hypothyroidism. We have previously reported that the antithyroid molecule propylthiouracil (PTU) given in the drinking water favors cerebral atrophy, brain neuroinflammation, Aβ production, Tau hyperphosphorylation, and altered plasticity-related cell-signaling pathways in the hippocampus in association with hippocampal-dependent spatial memory deficits. In the present study, our aim was to explore, in this model, the effect of hippocampal T3 signaling normalization on various molecular mechanisms involved in learning and memory that goes awry under conditions of hypothyroidism and to evaluate its potential for recovery of hippocampal-dependent memory deficits. We report that T3 supplementation can alleviate hippocampal-dependent memory impairments displayed by hypothyroid rats and normalize key markers of thyroid status in the hippocampus, of neuroinflammation, Aβ production, and of cell-signaling pathways known to be involved in synaptic plasticity and memory function. Together, these findings suggest that normalization of hippocampal T3 signaling is sufficient to reverse molecular and cognitive dysfunctions associated with hypothyroidism.

  15. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  16. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  17. Fluoxetine Increases Hippocampal Neurogenesis and Induces Epigenetic Factors But Does Not Improve Functional Recovery after Traumatic Brain Injury

    Wang, Yonggang; Neumann, Melanie; Hansen, Katharina; Hong, Shuwhey M.; Kim, Sharon; Noble-Haeusslein, Linda J.

    2011-01-01

    Abstract The selective serotonin reuptake inhibitor fluoxetine induces hippocampal neurogenesis, stimulates maturation and synaptic plasticity of adult hippocampal neurons, and reduces motor/sensory and memory impairments in several CNS disorders. In the setting of traumatic brain injury (TBI), its effects on neuroplasticity and function have yet to be thoroughly investigated. Here we examined the efficacy of fluoxetine after a moderate to severe TBI, produced by a controlled cortical impact. Three days after TBI or sham surgery, mice were treated with fluoxetine (10 mg/kg/d) or vehicle for 4 weeks. To evaluate the effects of fluoxetine on neuroplasticity, hippocampal neurogenesis and epigenetic modification were studied. Stereologic analysis of the dentate gyrus revealed a significant increase in doublecortin-positive cells in brain-injured animals treated with fluoxetine relative to controls, a finding consistent with enhanced hippocampal neurogenesis. Epigenetic modifications, including an increase in histone 3 acetylation and induction of methyl-CpG-binding protein, a transcription factor involved in DNA methylation, were likewise seen by immunohistochemistry and quantitative Western immunoblots, respectively, in brain-injured animals treated with fluoxetine. To determine if fluoxetine improves neurological outcomes after TBI, gait function and spatial learning and memory were assessed by the CatWalk-assisted gait test and Barnes maze test, respectively. No differences in these parameters were seen between fluoxetine- and vehicle-treated animals. Thus while fluoxetine enhanced neuroplasticity in the hippocampus after TBI, its chronic administration did not restore locomotor function or ameliorate memory deficits. PMID:21175261

  18. BDNF val66met Polymorphism Impairs Hippocampal Long-Term Depression by Down-Regulation of 5-HT3 Receptors

    Rui Hao

    2017-10-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a key regulator of neuronal plasticity and cognitive functions. BDNF val66met polymorphism, a human single-nucleotide polymorphism (SNP in the pro-domain of BDNF gene, is associated with deficits in activity-dependent BDNF secretion and hippocampus-dependent memory. However, the underlying mechanism remains unclear. Here we show that in the BDNFMet/Met mouse line mimicking the human SNP, BDNF expression in the hippocampus was decreased. There was a reduction in the total number of cells in hippocampal CA1 region, while hippocampal expression of mRNAs for NR2a, 2b, GluR1, 2 and GABAARβ3 subunits were up-regulated. Although basal glutamatergic neurotransmission was unaltered, hippocampal long-term depression (LTD induced by low-frequency stimulation was impaired, which was partially rescued by exogenous application of BDNF. Interestingly, 5-HT3a receptors were down-regulated in the hippocampus of BDNFMet/Met mice, whereas 5-HT2c receptors were up-regulated. Moreover, impaired LTD in BDNFMet/Met mice was reversed by 5-HT3aR agonist. Thus, these observations indicate that BDNF val66met polymorphism changes hippocampal synaptic plasticity via down-regulation of 5-HT3a receptors, which may underlie cognition dysfunction of Met allele carriers.

  19. Estradiol treatment in preadolescent females enhances adolescent spatial memory and differentially modulates hippocampal region-specific phosphorylated ERK labeling.

    Wartman, Brianne C; Keeley, Robin J; Holahan, Matthew R

    2012-10-24

    Estrogen levels in rats are positively correlated with enhanced memory function and hippocampal dendritic spine density. There is much less work on the long-term effects of estradiol manipulation in preadolescent rats. The present work examined how injections of estradiol during postnatal days 19-22 (p19-22; preadolescence) affected water maze performance and hippocampal phosphorylated ERK labeling. To investigate this, half of the estradiol- and vehicle-treated female rats were trained on a water maze task 24h after the end of estradiol treatment (p23-27) while the other half was not trained. All female rats were tested on the water maze from p40 to p44 (adolescence) and hippocampal pERK1/2 labeling was assessed as a putative marker of neuronal plasticity. During adolescence, preadolescent-trained groups showed lower latencies than groups without preadolescent training. Retention data revealed lower latencies in both estradiol groups, whether preadolescent trained or not. Immunohistochemical detection of hippocampal pERK1/2 revealed elevations in granule cell labeling associated with the preadolescent trained groups and reductions in CA1 labeling associated with estradiol treatment. These results show a latent beneficial effect of preadolescent estradiol treatment on adolescent spatial performance and suggest an organizational effect of prepubescent exogenously applied estradiol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. ATP induces NO production in hippocampal neurons by P2X(7 receptor activation independent of glutamate signaling.

    Juan Francisco Codocedo

    Full Text Available To assess the putative role of adenosine triphosphate (ATP upon nitric oxide (NO production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2'(3'-O-(4-Benzoylbenzoyl ATP (Bz-ATP elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG or by N(ω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV, but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity.

  1. Tau protein and adult hippocampal neurogenesis

    Almudena eFuster-Matanzo

    2012-07-01

    Full Text Available Tau protein is a microtubule associated protein found in the axonal compartment that stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism has attracted much attention because of its role in neurodegenerative disorders called tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskeleton. Those functions are carried out in part by tau isoform with only three microtubule-binding domains (without exon 10 and by presence of hypherphosphorylated tau forms. Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.

  2. Spatial relational memory requires hippocampal adult neurogenesis.

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  3. Gene-environment effects on hippocampal neurodevelopment

    Rosenthal, Eva Helga

    Mental disorders like schizophrenia and autism put a heavy load on today’s societies, creating a steady call for revealing underlying disease mechanisms and the development of effective treatments. The etiology of major psychiatric illnesses is complex involving gene by environment susceptibility...... factors. Hence, a deeper understanding is needed of how cortical neurodevelopmental deficiencies can arise from such gene-environment interactions. The convergence of genetic and environmental risk factors is a recent field of research. It is now clear that disease, infection and stress factors may...... and antipsychotics mediate their effects on hippocampal neurodevelopment through deregulation of the Zbtb20 gene. A short presentation of the status of this work will shown....

  4. Hummingbirds have a greatly enlarged hippocampal formation.

    Ward, Brian J; Day, Lainy B; Wilkening, Steven R; Wylie, Douglas R; Saucier, Deborah M; Iwaniuk, Andrew N

    2012-08-23

    Both field and laboratory studies demonstrate that hummingbirds (Apodiformes, Trochilidae) have exceptional spatial memory. The complexity of spatial-temporal information that hummingbirds must retain and use daily is probably subserved by the hippocampal formation (HF), and therefore, hummingbirds should have a greatly expanded HF. Here, we compare the relative size of the HF in several hummingbird species with that of other birds. Our analyses reveal that the HF in hummingbirds is significantly larger, relative to telencephalic volume, than any bird examined to date. When expressed as a percentage of telencephalic volume, the hummingbird HF is two to five times larger than that of caching and non-caching songbirds, seabirds and woodpeckers. This HF expansion in hummingbirds probably underlies their ability to remember the location, distribution and nectar content of flowers, but more detailed analyses are required to determine the extent to which this arises from an expansion of HF or a decrease in size of other brain regions.

  5. Glucocorticoid effects on hippocampal protein synthesis

    Schlatter, L.K.

    1988-01-01

    Following subcutaneous injection of rats with 5 mg corticosterone, hippocampal slices in vitro show increased [ 35 S]-methionine labeling of a cytosolic protein with an apparent molecular weight (M r ) of 35,000 and an isoelectric point (IEP) of 6.6. This labeling is temporally consistent with a transcriptional event, and is steroid- and tissue-specific. The pear serum concentration of steroid occurs one hour or less following the injection. Maximal labeling of this protein is reached whenever serum corticosterone values are approximately 100 ng/ml. When endogenous corticosterone levels are elevated to 100 ng/ml through stressors or exogenous ACTH injections the same maximal increase in synthesis of the 35,000 M r protein is observed. Adrenalectomy prevents the observed response from occurring following stressor application or ACTH injections. Comparison of the increases observed after administration of the type 2 receptor agonist RU 28362 and aldosterone, which has a higher affinity for the type 1 receptor, shows a 50-fold greater sensitivity of the response to the type 2 receptor agonist. Synthesis of this protein following serum increases of steroid possibly correlates to the theorized function of the type 2 receptor feedback regulation. The similar protein in the liver has an IEP of 6.8 and a slightly higher M r . A second hippocampal protein with an M r of 46,000 and an IEP of 6.2 is also increased in labeling. Two additional liver proteins, one of Mr 53,000 (IEP of 6.2) and the other with an M r of 45,000 (IEP of 8.7-7.8) are increased in the liver following glucocorticoid administration

  6. Hippocampal damage and memory impairment in congenital cyanotic heart disease.

    Muñoz-López, Mónica; Hoskote, Aparna; Chadwick, Martin J; Dzieciol, Anna M; Gadian, David G; Chong, Kling; Banks, Tina; de Haan, Michelle; Baldeweg, Torsten; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-04-01

    Neonatal hypoxia can lead to hippocampal atrophy, which can lead, in turn, to memory impairment. To test the generalizability of this causal sequence, we examined a cohort of 41 children aged 8-16, who, having received the arterial switch operation to correct for transposition of the great arteries, had sustained significant neonatal cyanosis but were otherwise neurodevelopmentally normal. As predicted, the cohort had significant bilateral reduction of hippocampal volumes relative to the volumes of 64 normal controls. They also had significant, yet selective, impairment of episodic memory as measured by standard tests of memory, despite relatively normal levels of intelligence, academic attainment, and verbal fluency. Across the cohort, degree of memory impairment was correlated with degree of hippocampal atrophy suggesting that even as early as neonatal life no other structure can fully compensate for hippocampal injury and its special role in serving episodic long term memory. © 2017 Wiley Periodicals, Inc. © 2017 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  7. Extent of hippocampal atrophy predicts degree of deficit in recall.

    Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-13

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.

  8. DEVELOPMENTAL HYPOTHYROIDISM IMPAIRS HIPPOCAMPAL LEARNING AND SYNAPTIC TRANSMISSION IN VIVO.

    A number of environmental chemicals have been reported to alter thyroid hormone (TH) function. It is well established that severe hypothyroidism during critical periods of brain development leads to alterations in hippocampal structure and learning deficits, yet evaluation of ...

  9. Free and membrane-bound ribosomes and polysomes in hippocampal neurons during a learning experiment.

    Wenzel, J; David, H; Pohle, W; Marx, I; Matthies, H

    1975-01-24

    The ribosomes of the CA1 and CA3 pyramidal cells of hipocampus were investigated by morphometric methods after the acquisition of a shock-motivated brightness discrimination in rats. A significant increase in the total number of ribosomes was observed in CA1 cells of trained animals and in CA3 cells of both active controls and trained rats. A significant increase in membrane-bound ribosomes was obtained in CA1 and CA3 cells after training only. The results confirm the suggestion of an increased protein synthesis in hippocampal neurons during and after the acquisition of a brightness discrimination, as we have concluded from out previous investigations on the incorporation of labeled amino acids under identical experimental conditions. The results lead to the assumption that the protein synthesis in some neuronal cells may probably differ not only quantitatively, but also qualitatively in trained and untrained animals.

  10. Erythropoietin enhances hippocampal response during memory retrieval in humans

    Miskowiak, Kamilla; O'Sullivan, Ursula; Harmer, Catherine J

    2007-01-01

    Although erythropoietin (Epo) is best known for its effects on erythropoiesis, recent evidence suggests that it also has neurotrophic and neuroprotective properties in animal models of hippocampal function. Such an action in humans would make it an intriguing novel compound for the treatment....... This is consistent with upregulation of hippocampal BDNF and neurotrophic actions found in animals and highlights Epo as a promising candidate for treatment of psychiatric disorders....

  11. Comparison with hippocampal atrophy and hypoperfusion in Alzheimer's disease

    Chung, YA; Kim, SH; Chung, SK; Juh, RH; Sohn, HS; Suh, TS; Choe, BY

    2004-01-01

    Objective: Hypoperfusion and hippocampal atropy of the medial temporal lobe are peculiarity of Alzheimer's disease (AD). The manual ROI (region of interest) technique for hippocampal volume estimation is specific and sensitive for the detection of hippocampal atrophy. In patients with AD reported a significant correlation between hippocampal volume and hypoperfusion. This study investigated correlations between atrophy distinct medial temporal lobe structure and hypoperfusion in hippocampal volumetry. Methods: The hippocampi were individually outlined on Tl-weighted volumetry MRI and calculated with MATLAB in 12 patients with AD. All volume measurements were performed by a segmentation technique with a combination of tracing and thresholding. The volume of a given structure in each slice was obtained by automatically counting the number of pixels within the segmented regions and multiplying the number by a voxel size. In order to permit direct regional comparisons, both of each patient's Tc- 99m ECD SPECT was then registered to the patient's MRI. Delineation continued anteriorly in each contiguous slice reaching the head of the hippocampus, which was distinguished from the overlying amygdala by the presence of the alveus or uncal recess. The right hippocampus (RH) was measured first, followed by the left hippocampus (LH). The accuracy of registration was investigated in a validation study with developed brain phantom. Results:The mean total intracranial volume of the AD was significantly smaller volume (1492.9 cm 3 ) and hypo perfused than those in normal subjects. The mean hippocampal volumes were 2.01 cm 3 and l.99 cm 3 for the RH and LH. The correlations between volume and hypoperfusion in the affected hippocampi were found to be significant; especially the medial temporal lobe is markedly hypo perfused. Conclusion: Volumetry is the most sensitive tool for the detection of hippocampal abnormality in AD, and significant correlation between asymmetry in

  12. Damage of hippocampal neurons in rats with chronic alcoholism

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons i...

  13. The effects of hormones and physical exercise on hippocampal structural plasticity.

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Social isolation disrupts hippocampal neurogenesis in young non-human primates

    Simone M Cinini

    2014-03-01

    Full Text Available Social relationships are crucial for the development and maintenance of normal behavior in non-human primates. Animals that are raised in isolation develop abnormal patterns of behavior that persist even when they are later reunited with their parents. In rodents, social isolation is a stressful event and is associated with a decrease in hippocampal neurogenesis but considerably less is known about the effects of social isolation in non-human primates during the transition from adolescence to adulthood. To investigate how social isolation affects young marmosets, these were isolated from other members of the colony for one or three weeks and evaluated for alterations in their behavior and hippocampal cell proliferation. We found that anxiety-related behaviors like scent-marking and locomotor activity increased after social isolation when compared to baseline levels. In agreement, grooming - an indicative of attenuation of tension - was reduced among isolated marmosets. These results were consistent with increased cortisol levels after one and three weeks of isolation. After social isolation (one or three weeks, reduced proliferation of neural cells in the subgranular zone of dentate granule cell layer was identified and a smaller proportion of BrdU-positive cells underwent neuronal fate (doublecortin labeling. Our data is consistent with the notion that social deprivation during the transition from adolescence to adulthood leads to stress and produces anxiety-like behaviors that in turn might affect neurogenesis and contribute to the deleterious consequences of prolonged stressful conditions.

  15. Pretreatment with apoaequorin protects hippocampal CA1 neurons from oxygen-glucose deprivation.

    Detert, Julia A; Adams, Erin L; Lescher, Jacob D; Lyons, Jeri-Anne; Moyer, James R

    2013-01-01

    Ischemic stroke affects ∼795,000 people each year in the U.S., which results in an estimated annual cost of $73.7 billion. Calcium is pivotal in a variety of neuronal signaling cascades, however, during ischemia, excess calcium influx can trigger excitotoxic cell death. Calcium binding proteins help neurons regulate/buffer intracellular calcium levels during ischemia. Aequorin is a calcium binding protein isolated from the jellyfish Aequorea victoria, and has been used for years as a calcium indicator, but little is known about its neuroprotective properties. The present study used an in vitro rat brain slice preparation to test the hypothesis that an intra-hippocampal infusion of apoaequorin (the calcium binding component of aequorin) protects neurons from ischemic cell death. Bilaterally cannulated rats received an apoaequorin infusion in one hemisphere and vehicle control in the other. Hippocampal slices were then prepared and subjected to 5 minutes of oxygen-glucose deprivation (OGD), and cell death was assayed by trypan blue exclusion. Apoaequorin dose-dependently protected neurons from OGD--doses of 1% and 4% (but not 0.4%) significantly decreased the number of trypan blue-labeled neurons. This effect was also time dependent, lasting up to 48 hours. This time dependent effect was paralleled by changes in cytokine and chemokine expression, indicating that apoaequorin may protect neurons via a neuroimmunomodulatory mechanism. These data support the hypothesis that pretreatment with apoaequorin protects neurons against ischemic cell death, and may be an effective neurotherapeutic.

  16. Functional clustering in hippocampal cultures: relating network structure and dynamics

    Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E

    2010-01-01

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures

  17. Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks

    Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko

    2016-01-01

    Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849

  18. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  19. Hippocampal lesions, contextual retrieval, and autoshaping in pigeons.

    Richmond, Jenny; Colombo, Michael

    2002-02-22

    Both pigeons and rats with damage to the hippocampus are slow to acquire an autoshaped response and emit fewer overall responses than control animals. Experiment 1 explored the possibility that the autoshaping deficit was due to an impairment in contextual retrieval. Pigeons were trained for 14 days on an autoshaping task in which a red stimulus was followed by reinforcement in context A, and a green stimulus was followed by reinforcement in context B. On day 15, the subjects were given a context test in which the red and green stimuli were presented simultaneously in context A and then later in context B. Both control and hippocampal animals showed context specificity, that is, they responded more to the red stimulus in context A and to the green stimulus in context B. In Experiment 2 we video-recorded the control and hippocampal animals performing the autoshaping task. Hippocampal animals tended to miss-peck the key more often than control animals. In addition, the number of missed pecks increased across days for hippocampal animals but not for control animals, suggesting that while the control animals increased their pecking accuracy, the hippocampal animals actually decreased their pecking accuracy. Our findings suggest that impairments in moving through space may underlie the hippocampal autoshaping deficit.

  20. Preliminary evidence of hippocampal damage in chronic users of ecstasy.

    den Hollander, Bjørnar; Schouw, Marieke; Groot, Paul; Huisman, Henk; Caan, Matthan; Barkhof, Frederik; Reneman, Liesbeth

    2012-01-01

    Various studies have shown that ecstasy (3,4-methylenedioxymethamphetamine) users display significant memory impairments, whereas their performance on other cognitive tests is generally normal. The hippocampus plays an essential role in short-term memory. There are, however, no structural human data on the effects of ecstasy on the hippocampus. The objective of this study was to investigate whether the hippocampal volume of chronic ecstasy users is reduced when compared with healthy polydrug-using controls, as an indicator of hippocampal damage. The hippocampus was manually outlined in volumetric MRI scans in 10 male ecstasy users (mean age 25.4 years) and seven healthy age- and gender-matched control subjects (21.3 years). Other than the use of ecstasy, there were no statistically significant differences between both groups in exposure to other drugs of abuse and alcohol. The ecstasy users were on average drug-free for more than 2 months and had used on average 281 tablets over the past six and a half years. The hippocampal volume in the ecstasy using group was on average 10.5% smaller than the hippocampal volume in the control group (p=0.032). These data provide preliminary evidence that ecstasy users may be prone to incurring hippocampal damage, in line with previous reports of acute hippocampal sclerosis and subsequent atrophy in chronic users of this drug.

  1. Differential expression of alpha-synuclein in hippocampal neurons.

    Katsutoshi Taguchi

    Full Text Available α-Synuclein is the major pathological component of synucleinopathies including Parkinson's disease and dementia with Lewy bodies. Recent studies have demonstrated that α-synuclein also plays important roles in the release of synaptic vesicles and synaptic membrane recycling in healthy neurons. However, the precise relationship between the pathogenicity and physiological functions of α-synuclein remains to be elucidated. To address this issue, we investigated the subcellular localization of α-synuclein in normal and pathological conditions using primary mouse hippocampal neuronal cultures. While some neurons expressed high levels of α-synuclein in presynaptic boutons and cell bodies, other neurons either did not or only very weakly expressed the protein. These α-synuclein-negative cells were identified as inhibitory neurons by immunostaining with specific antibodies against glutamic acid decarboxylase (GAD, parvalbumin, and somatostatin. In contrast, α-synuclein-positive synapses were colocalized with the excitatory synapse marker vesicular glutamate transporter-1. This expression profile of α-synuclein was conserved in the hippocampus in vivo. In addition, we found that while presynaptic α-synuclein colocalizes with synapsin, a marker of presynaptic vesicles, it is not essential for activity-dependent membrane recycling induced by high potassium treatment. Exogenous supply of preformed fibrils generated by recombinant α-synuclein was shown to promote the formation of Lewy body (LB -like intracellular aggregates involving endogenous α-synuclein. GAD-positive neurons did not form LB-like aggregates following treatment with preformed fibrils, however, exogenous expression of human α-synuclein allowed intracellular aggregate formation in these cells. These results suggest the presence of a different mechanism for regulation of the expression of α-synuclein between excitatory and inhibitory neurons. Furthermore, α-synuclein expression

  2. Chronic inflammation in refractory hippocampal sclerosis-related temporal lobe epilepsy.

    Gales, Jordan M; Prayson, Richard A

    2017-10-01

    Emerging evidence suggests chronic inflammation may play a role in hippocampal sclerosis-associated temporal lobe epilepsy. We sought to systematically evaluate for its presence in a group of 315 patients who underwent surgery for medically-refractory epilepsy and who had hippocampal sclerosis. Upon histologic review of hematoxylin and eosin stained tissue sections, 95 (41%) cases demonstrated the presence of lymphocytes within the perivascular region and diffusely within the brain parenchyma. Those cases with chronic inflammation evident on hematoxylin and eosin staining were significantly more likely to experience a post-operative seizure recurrence than those without it (p=0.03). In 9 cases of hippocampi with chronic inflammation observed on hematoxylin and eosin stained sections, there was a mixture of both T (CD3+) and B (CD20+) lymphocytes located around blood vessels and interspersed within the brain parenchyma and a predominance of CD4 positive T cells versus CD8 positive cells. Ten hippocampi, apparently devoid of chronic inflammation upon inspection with hematoxylin and eosin stained sections, were stained with the lymphocyte common antigen CD45. In all 10 cases, scattered lymphoid cells were observed in the brain parenchyma, suggesting some level of chronic inflammation may be present in more cases than casual inspection might suggest. This study was the first to evaluate the incidence of chronic inflammation within a large temporal lobe epilepsy population. The study findings suggest chronic inflammation may be a more common component of hippocampal sclerosis -associated temporal lobe epilepsy than previously believed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  4. Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats

    Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.

    2016-12-01

    Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.

  5. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry.

    Mattson, M P; Lee, R E; Adams, M E; Guthrie, P B; Kater, S B

    1988-11-01

    A coculture system consisting of input axons from entorhinal cortex explants and target hippocampal pyramidal neurons was used to demonstrate that glutamate, released spontaneously from afferent axons, can influence both dendritic geometry of target neurons and formation of presumptive synaptic sites. Dendritic outgrowth was reduced in hippocampal neurons growing on entorhinal axons when compared with neurons growing off the axons. Presumptive presynaptic sites were observed in association with hippocampal neuron dendrites and somas. HPLC analysis showed that glutamate was released from the explants in an activity- and Ca2(+)-dependent manner. The general glutamate receptor antagonist D-glutamylglycine significantly increased dendritic outgrowth in pyramidal neurons associated with entorhinal axons and reduced presumptive presynaptic sites. Tetrodotoxin and reduction of extracellular Ca2+ also promoted dendritic outgrowth and reduced the formation of presumptive synaptic sites. The results suggest that the neurotransmitter glutamate may play important roles in the development of hippocampal circuitry.

  6. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    Eriko Kamiki

    2018-05-01

    Full Text Available p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5, a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice.

  7. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.

    2018-01-01

    p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369

  8. Sharp wave/ripple network oscillations and learning-associated hippocampal maps.

    Csicsvari, Jozsef; Dupret, David

    2014-02-05

    Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.

  9. A fraction enriched in rat hippocampal mossy fibre synaptosomes contains trophic activities.

    Taupin, P; Roisin, M P; Ben-Ari, Y; Barbin, G

    1994-06-27

    Subcellular fractions prepared from the rat hippocampus, were assessed for the presence of trophic activities. The cytosol of synaptosomal fractions induced mitotic reinitiation of confluent 3T3 fibroblasts. The synaptosomal fraction, enriched in mossy fibre terminals, contained the highest mitotic activity. The mitogenic activity was heat and trypsin sensitive, suggesting that polypeptides are involved. The cytosol of the mossy fibre synaptosomal fraction promoted neuritic outgrowth of PC 12 cells and embryonic hippocampal neurones in primary cultures. These results suggest that mossy fibres contain both mitogenic and neurotrophic activities. These factors could participate in mossy fibre sprouting that occur following brief seizures or experimental lesions.

  10. HIPPOCAMPAL ADULT NEUROGENESIS: ITS REGULATION AND POTENTIAL ROLE IN SPATIAL LEARNING AND MEMORY

    Lieberwirth, Claudia; Pan, Yongliang; Liu, Yan; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk). PMID:27174001

  11. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit.

    Lamsa, Karri P; Heeroma, Joost H; Somogyi, Peter; Rusakov, Dmitri A; Kullmann, Dimitri M

    2007-03-02

    Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.

  12. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  13. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning.

    Hoffmann, Loren C; Cicchese, Joseph J; Berry, Stephen D

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3-12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3-7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.

  14. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brain

    Hansen, A; Jørgensen, Ole Steen; Bolwig, T G

    1990-01-01

    The effect of hippocampal kindling on neuronal and glial marker proteins was studied in the rat by immunochemical methods. In hippocampus, pyriform cortex and amygdala there was an increase in glial fibrillary acidic protein (GFAP), indicating reactive gliosis, and an increase in the glycolytic...... enzyme NSE, suggesting increased anaerobic metabolism. Neuronal cell adhesion molecule (NCAM) decreased in pyriform cortex and amygdala of kindled rats, indicating neuronal degeneration....

  15. Brain-derived neurotrophic factor Val66Met polymorphism and hippocampal activation during episodic encoding and retrieval tasks

    Dennis, Nancy A.; Cabeza, Roberto; Need, Anna C.; Waters-Metenier, Sheena; Goldstein, David B.; LaBar, Kevin S.

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin which has been shown to regulate cell survival and proliferation, as well as synaptic growth and hippocampal long-term potentiation. A naturally occurring single nucleotide polymorphism in the human BDNF gene (val66met) has been associated with altered intercellular trafficking and regulated secretion of BDNF in met compared to val carriers. Additionally, previous studies have found a relationship between the BDNF val66met genotype an...

  16. Mutant APP and Amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease.

    Reddy, P Hemachandra; Yin, XiangLin; Manczak, Maria; Kumar, Subodh; Jangampalli Adi, Pradeepkiran; Vijayan, Murali; Reddy, Arubala P

    2018-04-25

    The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in human mutant APP (mAPP) cDNA transfected with primary mouse hippocampal neurons (HT22). Hippocampal tissues are the best source of studying learning and memory functions in patients with Alzheimer's disease (AD) and healthy controls. However, investigating immortalized hippocampal neurons that express AD proteins provide an excellent opportunity for drug testing. Using quantitative RT-PCR, immunoblotting & immunofluorescence, and transmission electron microscopy, we assessed mRNA and protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2, and assessed mitochondrial number and length in mAPP-HT22 cells that express Swedish/Indiana mutations. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Increased levels of mRNA and protein levels of mitochondrial fission genes, Drp1 and Fis1 and decreased levels fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 & TFAM), autophagy (ATG5 & LC3BI, LC3BII), mitophagy (PINK1 & TERT, BCL2 & BNIPBL), synaptic (synaptophysin & PSD95) and dendritic (MAP2) genes were found in mAPP-HT22 cells relative to WT-HT22 cells. Cell survival was significantly reduced mAPP-HT22 cells. GTPase-Dp1 enzymatic activity was increased in mAPP-HT22 cells. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins & reduced dendritic spines and mitochondrial structural and functional changes in mutant APP hippocampal cells. These observations strongly suggest that accumulation of mAPP and A

  17. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  18. Activation of Transient Receptor Potential Vanilloid 4 Impairs the Dendritic Arborization of Newborn Neurons in the Hippocampal Dentate Gyrus through the AMPK and Akt Signaling Pathways

    Yujing Tian; Mengwen Qi; Zhouqing Wang; Chunfeng Wu; Zhen Sun; Yingchun Li; Sha Sha; Yimei Du; Lei Chen; Lei Chen; Ling Chen

    2017-01-01

    Neurite growth is an important process for the adult hippocampal neurogenesis which is regulated by a specific range of the intracellular free Ca2+ concentration ([Ca2+]i). Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable channel and activation of it causes an increase in [Ca2+]i. We recently reported that TRPV4 activation promotes the proliferation of stem cells in the adult hippocampal dentate gyrus (DG). The present study aimed to examine the effect of TRPV4 activati...

  19. Increased synthesis of heparin affin regulatory peptide in the perforant path lesioned mouse hippocampal formation

    Poulsen, F R; Lagord, C; Courty, J

    2000-01-01

    differentiation in vivo. Here we have investigated the expression of HARP mRNA and protein in the perforant path lesioned C57B1/6 mouse hippocampal formation from 1 to 35 days after surgery. This type of lesion induces a dense anterograde and terminal axonal degeneration, activation of glial cells, and reactive...... axonal sprouting within the perforant path zones of the fascia dentata and hippocampus as well as axotomy-induced retrograde neuronal degeneration in the entorhinal cortex. Analysis of sham- and unoperated control mice showed that HARP mRNA is expressed in neurons and white and gray matter glial cells...... as well as vascular and pial cells throughout the normal, adult brain. Lesioning induced high levels of HARP mRNA in astroglial-like cells in the denervated zones of fascia dentata and hippocampus as soon as day 2 postlesion. This expression reached maximum at day 4, and declined toward normal at day 7...

  20. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.

    Adamchik, Y; Frantseva, M V; Weisspapir, M; Carlen, P L; Perez Velazquez, J L

    2000-04-01

    Organotypic brain slice cultures have been used in a variety of studies on neurodegenerative processes [K.M. Abdel-Hamid, M. Tymianski, Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins, J. Neurosci. 17, 1997, pp. 3538-3553; D.W. Newell, A. Barth, V. Papermaster, A.T. Malouf, Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures, J. Neurosci. 15, 1995, pp. 7702-7711; J.L. Perez Velazquez, M.V. Frantseva, P.L. Carlen, In vitro ischemia promotes glutamate mediated free radical generation and intracellular calcium accumulation in pyramidal neurons of cultured hippocampal slices, J. Neurosci. 23, 1997, pp. 9085-9094; L. Stoppini, L.A. Buchs, D. Muller, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods 37, 1991, pp. 173-182; R.C. Tasker, J.T. Coyle, J.J. Vornov, The regional vulnerability to hypoglycemia induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK 801, J. Neurosci. 12, 1992, pp. 4298-4308.]. We describe two methods to induce traumatic cell damage in hippocampal organotypic cultures. Primary trauma injury was achieved by rolling a stainless steel cylinder (0.9 g) on the organotypic slices. Secondary injury was followed after dropping a weight (0.137 g) on a localised area of the organotypic slice, from a height of 2 mm. The time course and extent of cell death were determined by measuring the fluorescence of the viability indicator propidium iodide (PI) at several time points after the injury. The initial localised impact damage spread 24 and 67 h after injury, cell death being 25% and 54%, respectively, when slices were kept at 37 degrees C. To validate these methods as models to assess neuroprotective strategies, similar insults were applied to slices at relatively low temperatures (30

  1. Running throughout middle-age improves memory function, hippocampal neurogenesis and BDNF levels in female C57Bl/6J mice.

    Marlatt, M.W.; Potter, M.C.; Lucassen, P.J.; van Praag, H.

    2012-01-01

    Age-related memory loss is considered to commence at middle-age and coincides with reduced adult hippocampal neurogenesis and neurotrophin levels. Consistent physical activity at midlife may preserve brain-derived neurotrophic factor (BDNF) levels, new cell genesis and learning. In the present

  2. [Expression of proteasome subunits PSMB5 and PSMB9 mRNA in hippocampal neurons in experimental diabetes mellitus: link with apoptosis and necrosis].

    Lebid', Iu V; Dosenko, V Ie; Skybo, H H

    2010-01-01

    There is a huge body of evidence showing that long-termed diabetes mellitus is followed with hippocampal dysfunction. The goal of this work was to investigate the expression of proteasome subunits PSMB5 and PSMB9 mRNA in CA1, CA2 and CA3 areas of hippocampus in parallel with processes of cell death (apoptosis and necrosis) in development dynamics of streptozotocine-induced diabetes. We have studied hippocampal neurons using chromatine dye Hoechst-33342 and immunohistochemical detection of apoptotic cell death marker caspase-3. At day 3 and 7 after injection of streptozotocine we have performed visualization of caspase-3-immunopositive neurons showing signs of neurodegeneration in hippocampal sections using confocal microscope Olympus FV1000. The rate of proteasome subunits PSMB5 and PSMB9 mRNA expression was determined with RT-PCR. The results indicated elevation of PSMB9 mRNA content (from 4807 +/- 0.392 arbU up to 20,023 +/- 4949 arbU on day 3 and up to 20,253 +/- 5141 arbU on day 7). A maximal number of cells with signs of chromatin condensation was observed at day 3 and day 7 in CA2 and CA3 area (11.51% and 12.49% respectively). That indicates an intensification of proapoptotic processes. Summarizing the results presented above we can conclude that during the first week of diabetes mellitus development, hippocampal cells undergo the process of impairment and degeneration.

  3. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition.

    Jing Liu

    Full Text Available Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium, which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF. Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH levels (biomarkers of ictal activity and cell death, respectively in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.

  4. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition.

    Liu, Jing; Saponjian, Yero; Mahoney, Mark M; Staley, Kevin J; Berdichevsky, Yevgeny

    2017-01-01

    Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH) levels (biomarkers of ictal activity and cell death, respectively) in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.

  5. Neuronal response of the hippocampal formation to injury: blood flow, glucose metabolism, and protein synthesis

    Kameyama, M.; Wasterlain, C.G.; Ackermann, R.F.; Finch, D.; Lear, J.; Kuhl, D.E.

    1983-01-01

    The reaction of the hippocampal formation to entorhinal lesions was studied from the viewpoints of cerebral blood flow ([ 123 I]isopropyl-iodoamphetamine[IMP])-glucose utilization ([ 14 C]2-deoxyglucose), and protein synthesis ([ 14 C]leucine), using single- and double-label autoradiography. Researchers' studies showed decreased glucose utilization in the inner part, and increased glucose utilization in the outer part of the molecular layer of the dentate gyrus, starting 3 days after the lesion; increased uptake of [ 123 I]IMP around the lesion from 1 to 3 days postlesion; and starting 3 days after the lesion, marked decrease in [ 14 C]leucine incorporation into proteins and cell loss in the dorsal CA1 and dorsal subiculum in about one-half of the rats. These changes were present only in animals with lesions which invaded the ventral hippocampal formation in which axons of CA1 cells travel. By contrast, transsection of the 3rd and 4th cranial nerves resulted, 3 to 9 days after injury, in a striking increase in protein synthesis in the oculomotor and trochlear nuclei. These results raise the possibility that in some neurons the failure of central regeneration may result from the cell's inability to increase its rate of protein synthesis in response to axonal injury

  6. Role of adult hippocampal neurogenesis in stress resilience

    Brunno R. Levone

    2015-01-01

    Full Text Available There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders.

  7. Longitudinal study of hippocampal volumes in heavy cannabis users.

    Koenders, L; Lorenzetti, V; de Haan, L; Suo, C; Vingerhoets, Wam; van den Brink, W; Wiers, R W; Meijer, C J; Machielsen, Mwj; Goudriaan, A E; Veltman, D J; Yücel, M; Cousijn, J

    2017-08-01

    Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes. Twenty heavy cannabis users (mean age 21 years, range 18-24 years) and 23 matched non-cannabis using healthy controls were submitted to a comprehensive psychological assessment and magnetic resonance imaging scan at baseline and at follow-up (average of 39 months post-baseline; standard deviation=2.4). Cannabis users started smoking around 16 years and smoked on average five days per week. A novel aspect of the current study is that hippocampal volume estimates were obtained from manual tracing the hippocampus on T1-weighted anatomical magnetic resonance imaging scans, using a previously validated protocol. Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes. Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy.

  8. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD

  9. Protein tyrosine phosphatase PTP1B is involved in hippocampal synapse formation and learning.

    Federico Fuentes

    Full Text Available ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B(-/- (KO mice compared to wild type (WT mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1B(fl/fl-Emx1-Cre. PTP1B(fl/fl-Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole, utilized a more efficient strategy (cued, and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.

  10. NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

    Marta Perez-Rando

    2017-06-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to adult mice which constitutively express enhanced green fluorescent protein (EGFP in these cells. We have behaviorally tested the animals, confirming effects of the drug on locomotion and anxiety-related behaviors. NMDARs were expressed in the somata and dendritic spines of somatostatin-expressing interneurons. Twenty-four hours after the injection, the density of spines did not vary, but we found a significant increase in the density of their en passant boutons (EPB. We have also used entorhino-hippocampal organotypic cultures to study these interneurons in real-time. There was a rapid decrease in the apparition rate of spines after MK-801 administration, which persisted for 24 h and returned to basal levels afterwards. A similar reversible decrease was detected in spine density. Our results show that both spines and axons of interneurons can undergo remodeling and highlight NMDARs as regulators of this plasticity. These results are specially relevant given the importance of all these players on hippocampal physiology and the etiopathology of certain psychiatric disorders.

  11. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice.

    Anna Fiorentini

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. METHODOLOGY/PRINCIPAL FINDINGS: The double transgenic (Tg CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein, aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. CONCLUSIONS: Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.

  12. The PPARα Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-01-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) α agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARα knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of 137 Cs γ-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARα-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARα ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  13. Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory.

    Liu, Yu-Zhang; Wang, Yao; Shen, Weida; Wang, Zhiru

    2017-08-01

    Learning and memory storage requires neuronal plasticity induced in the hippocampus and other related brain areas, and this process is thought to rely on synchronized activity in neural networks. We used paired whole-cell recording in vivo to examine the synchronized activity that was induced in hippocampal CA1 neurons by associative fear learning. We found that both membrane potential synchronization and spike synchronization of CA1 neurons could be transiently enhanced after task learning, as observed on day 1 but not day 5. On day 1 after learning, CA1 neurons showed a decrease in firing threshold and rise times of suprathreshold membrane potential changes as well as an increase in spontaneous firing rates, possibly contributing to the enhancement of spike synchronization. The transient enhancement of CA1 neuronal synchronization may play important roles in the induction of neuronal plasticity for initial storage and consolidation of associative memory. The hippocampus is critical for memory acquisition and consolidation. This function requires activity- and experience-induced neuronal plasticity. It is known that neuronal plasticity is largely dependent on synchronized activity. As has been well characterized, repetitive correlated activity of presynaptic and postsynaptic neurons can lead to long-term modifications at their synapses. Studies on network activity have also suggested that memory processing in the hippocampus may involve learning-induced changes of neuronal synchronization, as observed in vivo between hippocampal CA3 and CA1 networks as well as between the rhinal cortex and the hippocampus. However, further investigation of learning-induced synchronized activity in the hippocampus is needed for a full understanding of hippocampal memory processing. In this study, by performing paired whole-cell recording in vivo on CA1 pyramidal cells (PCs) in anaesthetized adult rats, we examined CA1 neuronal synchronization before and after associative fear

  14. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study

    Tsai, Ping-Fang; Yang, Chi-Cheng; Chuang, Chi-Cheng; Huang, Ting-Yi; Wu, Yi-Ming; Pai, Ping-Ching; Tseng, Chen-Kan; Wu, Tung-Ho; Shen, Yi-Liang; Lin, Shinn-Yn

    2015-01-01

    Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD 2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that

  15. A high fat diet-induced decrease in hippocampal newly-born neurons of male mice is exacerbated by mild psychological stress using a Communication Box.

    Murata, Yusuke; Narisawa, Yukiyasu; Shimono, Rima; Ohmori, Hiraku; Mori, Masayoshi; Ohe, Kenji; Mine, Kazunori; Enjoji, Munechika

    2017-02-01

    Obese persons have a higher incidence of depression than healthy-weight persons. Several studies indicated that the exposure to a high fat diet (HFD) results in a decrease in hippocampal neurogenesis, which leads to higher stress response and stress-induced depression. Although stress is a risk factor for obesity and depression, no studies to date have investigated the effect of stress on the hippocampal neurogenesis of HFD-induced obese animals. The aim of this study was to elucidate whether or not obese HFD-fed mice are vulnerable to stress-induced depression by investigating hippocampal neurogenesis. Sixty-four male ICR mice (four weeks of age) were fed a control (N=24) or 45%HFD (N=40) for seven weeks. Of the HFD-fed group, twenty-four mice met the criteria for "diet-induced obesity". The animals were then exposed to three consecutive days of psychological stress using a Communication Box. Half were sacrificed to evaluate the physiological changes, and the other half were perfused to quantify hippocampal neuroblasts/immature neurons by the estimation of doublecortin-immunopositive cells. In the HFD-fed mice, psychological stress resulted in increases in caloric intake and visceral adipose tissue and a significant decrease in doublecortin-positive cells in the dentate gyrus; however, no such differences were found in the control diet-fed group. Limitations Further study using other neurogenic markers to assess the stage-specific changes in hippocampal neurogenesis will be required CONCLUSIONS: Our findings suggest that an HFD-induced decrease in hippocampal newly-born neurons leads to stress vulnerability, which may contribute to a high risk of stress-induced depression for obese persons. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Prefrontal-hippocampal interactions for spatial navigation.

    Ito, Hiroshi T

    2018-04-01

    Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  17. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol.

    Boccardi, Marina; Bocchetta, Martina; Morency, Félix C; Collins, D Louis; Nishikawa, Masami; Ganzola, Rossana; Grothe, Michel J; Wolf, Dominik; Redolfi, Alberto; Pievani, Michela; Antelmi, Luigi; Fellgiebel, Andreas; Matsuda, Hiroshi; Teipel, Stefan; Duchesne, Simon; Jack, Clifford R; Frisoni, Giovanni B

    2015-02-01

    The European Alzheimer's Disease Consortium and Alzheimer's Disease Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) is a Delphi definition of manual hippocampal segmentation from magnetic resonance imaging (MRI) that can be used as the standard of truth to train new tracers, and to validate automated segmentation algorithms. Training requires large and representative data sets of segmented hippocampi. This work aims to produce a set of HarP labels for the proper training and certification of tracers and algorithms. Sixty-eight 1.5 T and 67 3 T volumetric structural ADNI scans from different subjects, balanced by age, medial temporal atrophy, and scanner manufacturer, were segmented by five qualified HarP tracers whose absolute interrater intraclass correlation coefficients were 0.953 and 0.975 (left and right). Labels were validated as HarP compliant through centralized quality check and correction. Hippocampal volumes (mm(3)) were as follows: controls: left = 3060 (standard deviation [SD], 502), right = 3120 (SD, 897); mild cognitive impairment (MCI): left = 2596 (SD, 447), right = 2686 (SD, 473); and Alzheimer's disease (AD): left = 2301 (SD, 492), right = 2445 (SD, 525). Volumes significantly correlated with atrophy severity at Scheltens' scale (Spearman's ρ = segmentation algorithms. The publicly released labels will allow the widespread implementation of the standard segmentation protocol. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  18. Memory reconsolidation mediates the updating of hippocampal memory content

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  19. Remote semantic memory is impoverished in hippocampal amnesia.

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Hippocampal and Amygdalar Volumes in Dissociative Identity Disorder

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J.; Bremner, J. Douglas

    2011-01-01

    Objective Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. Method The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Results Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. Conclusions The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects. PMID:16585437

  1. Hippocampal and amygdalar volumes in dissociative identity disorder.

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J; Bremner, J Douglas

    2006-04-01

    Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects.

  2. Hippocampal functional connectivity and episodic memory in early childhood.

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth

    2016-06-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Qualitative and Quantitative Hippocampal MRI Assessments in Intractable Epilepsy

    Paramdeep Singh

    2013-01-01

    Full Text Available Aims. To acquire normative data of hippocampal volumes and T2 relaxation times, to evaluate and compare qualitative and quantitative assessments in evaluating hippocampi in patients with different durations of intractable epilepsy, and to propose an imaging protocol based on performance of these techniques. Methods. MRI analysis was done in 50 nonepileptic controls and 30 patients with intractable epilepsy on 1.5T scanner. Visual assessment and hippocampal volumetry were done on oblique coronal IR/T2W and T1W MP-RAGE images, respectively. T2 relaxation times were measured using 16-echo Carr-Purcell-Meiboom-Gill sequence. Volumetric data was normalized for variation in head size between individuals. Patients were divided into temporal ( and extratemporal ( groups based on clinical and EEG localization. Results. In controls, right hippocampal volume was slightly more than the left with no effect of age or gender. In TLE patients, hippocampal volumetry provided maximum concordance with EEG. Visual assessment of unilateral pathology concurred well with measured quantitative values but poorly in cases with bilateral pathologies. There were no significant differences of mean values between extratemporal group and controls group. Quantitative techniques detected mild abnormalities, undetected on visual assessment. Conclusions. Quantitative techniques are more sensitive to diagnose bilateral and mild unilateral hippocampal abnormalities.

  4. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  5. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD.

    Moorthi, P; Premkumar, P; Priyanka, R; Jayachandran, K S; Anusuyadevi, M

    2015-08-20

    Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. Furthermore, the neuroprotective effect of Resveratrol (RSV) was attempted to study in the formation of hippocampal neuronal-circuits. Radial-Arm-Maze was conducted to evaluate hippocampal-dependent spatial and learning memory in control and experimental rats. Nissl staining of frontal cortex (FC), subiculum, hippocampal-proper (CA1→CA2→CA3→CA4), DG, amygdala, cerebellum, thalamus, hypothalamus, layers of temporal and parietal lobe of the neocortex were examined for pathological changes in young and aged wistar rats, with and without RSV. Hippocampal trisynaptic circuit (EC layerII→DG→CA3→CA1) forming new memory and monosynaptic circuit (EC→CA1) that strengthen old memories were found disturbed in aged rats. Loss of Granular neuron observed in DG and polymorphic cells of CA4 can lead to decreased mossy fibers disturbing neural-transmission (CA4→CA3) in perforant pathway. Further, intensity of nissl granules (stratum lacunosum moleculare (SLM)-SR-SO) of CA3 pyramidal neurons was decreased, disturbing the communication in schaffer collaterals (CA3-CA1) during aging. We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the

  6. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  8. Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

    Davidson, Terry L.; Hargrave, Sara L.; Swithers, Susan E.; Sample, Camille H.; Fu, Xue; Kinzig, Kimberly P.; Zheng, Wei

    2013-01-01

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD...

  9. Increased synthesis of heparin affin regulatory peptide in the perforant path lesioned mouse hippocampal formation

    Poulsen, F R; Lagord, C; Courty, J

    2000-01-01

    Heparin affin regulatory peptide (HARP), also known as pleiotrophin or heparin-binding growth-associated molecule, is a developmentally regulated extracellular matrix protein that induces cell proliferation and promotes neurite outgrowth in vitro as well as pre- and postsynaptic developmental...... differentiation in vivo. Here we have investigated the expression of HARP mRNA and protein in the perforant path lesioned C57B1/6 mouse hippocampal formation from 1 to 35 days after surgery. This type of lesion induces a dense anterograde and terminal axonal degeneration, activation of glial cells, and reactive...... axonal sprouting within the perforant path zones of the fascia dentata and hippocampus as well as axotomy-induced retrograde neuronal degeneration in the entorhinal cortex. Analysis of sham- and unoperated control mice showed that HARP mRNA is expressed in neurons and white and gray matter glial cells...

  10. Effects of a whole body gamma irradiation on GABA repartition in infant rats cerebellum and hippocampal formation

    Menetrier, F.; Vernois, Y.; Court, L.

    1992-01-01

    'Full-Text:' Thirteen-day-old rats were exposed to a single dose of 4 or 0,5 Gy of gamma at a dose rate of 0,25 Gy/min and were killed about 5h after. Fixation was achieved in situ using glutaraldehyde. For GABA immunocytochemistry transversal sections were incubated with antiserum against GABA, then with PAP and revealed with diaminobenzidine. Proliferative layers are still observed in the infant rat cerebellum (external granular layer) and hippocampal formation (subgranular layer of the dentate gyrus). When irradiation occurs a high percent of these two layers cells are pycnotic. In the normal cerebellum, no immunostaining is observed in external granular layer cell bodies. The only labelled structures are few cytoplasmic expansions coming from subjacent layers. When irradiated, a strong GABA staining appears around pycnotic cells as a network with labelled meshes. GABA staining and pycnotic cells were more especially important when the irradiation increases. Further studies are needed to specify the nature of labelled meshes. In the normal hippocampal formation, subgranular cells are not GABA stained. Staining occurs in cells which are not granule cells. They are scattered throughout cell layers of the dentate gyrus with predominance in the hilus. After irradiation, GABA repartition is not modified. After a 4 Gy whole body gamma irradiation, the inhibitory GABA system is not injured. Other amino-acid neurotransmitters such as Glutamate could be modified. (author)

  11. Voluntary wheel running reverses age-induced changes in hippocampal gene expression.

    Rachel A Kohman

    Full Text Available Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic exercise. Aged subjects that exercise show e