WorldWideScience

Sample records for hippocampal brain slices

  1. Differential Conditioning of Associative Synaptic Enhancement in Hippocampal Brain Slices

    Science.gov (United States)

    Kelso, Stephen R.; Brown, Thomas H.

    1986-04-01

    An electrophysiological stimulation paradigm similar to one that produces Pavlovian conditioning was applied to synaptic inputs to pyramidal neurons of hippocampal brain slices. Persistent synaptic enhancement was induced in one of two weak synaptic inputs by pairing high-frequency electrical stimulation of the weak input with stimulation of a third, stronger input to the same region. Forward (temporally overlapping) but not backward (temporally separate) pairings caused this enhancement. Thus hippocampal synapses in vitro can undergo the conditional and selective type of associative modification that could provide the substrate for some of the mnemonic functions in which the hippocampus is thought to participate.

  2. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Thiébaud, P

    2001-01-01

    In this study we examined the passive biocompatibility of a three-dimensional microelectrode array (MEA), designed to be coupled to organotypic brain slice cultures for multisite recording of electrophysiological signals. Hippocampal (and corticostriatal) brain slices from 1-week-old (and newborn...

  3. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  4. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Kayode Komolafe

    2014-01-01

    Full Text Available Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL or catechin (1, 5, or 10 µg/mL for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity.

  5. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair

    DEFF Research Database (Denmark)

    Noraberg, Jens; Poulsen, Frantz Rom; Blaabjerg, Morten

    2005-01-01

    ), Alzheimer's disease (AD) and epilepsia. Studies of non-excitotoxic neurotoxic compounds and the experimental use of slice cultures in studies of HIV neurotoxicity, traumatic brain injury (TBI) and neurogenesis are included. For cerebral ischemia, experimental models with oxygen-glucose deprivation (OGD......) and exposure to glutamate receptor agonists (excitotoxins) are reviewed. For epilepsia, focus is on induction of seizures with effects on neuronal loss, axonal sprouting and neurogenesis. For Alzheimer's disease, the review centers on the use of beta-amyloid (Abeta) in different models, while the section...... on repair is focused on neurogenesis and cell migration. The culturing techniques, set-up of models, and analytical tools, including markers for neurodegeneration, like the fluorescent dye propidium iodide (PI), are reviewed and discussed. Comparisons are made between hippocampal slice cultures and other...

  6. Inhibitory effects of matrine on electrical signals and amino acid neurotransmitters in hippocampal brain slices

    Institute of Scientific and Technical Information of China (English)

    Xuping Wang; Jiping Chen; Guizhi Zhao; Dan Shou; Xuezhi Hong; Jianmin Zhang

    2009-01-01

    BACKGROUND: Studies on electrical signals of hippocampal brain slices in vivo have shown that matrine inhibits benzylpenicillin sodium-induced activation of neuronal signal transduction.OBJECTIVE: To verify the inhibition effect of matrine on activation of electrical signals in rat brain slices and the role matrine plays in hippocampal amino acid transmitter release.DESIGN, TIME AND SETTING: The in vitro, neurophysiological, controlled experiment was performed in the Zhejiang Province Key Laboratory of Cardio-cerebrovascular Disease and Nerve System Drugs Appraisement and Chinese Traditional Medicine Screening and Research between July 2003 and May 2004. The in vivo, neuronal, biochemical experiment was performed in the Zhejiang Province Key Laboratory of Chinese Traditional Medicine Quality Standardization from July 2005 to December 2006.MATERIALS: Forty healthy, Sprague Dawley rats, 7-8 weeks old, and 120 healthy, ICR mice, 5-6weeks old, were included in this study, irrespective of gender. Matrine powder was provided by the National Institute for the Control of Pharmaceutical and Biological Products, China. Matrine injection was purchased from Zhuhai Biochemical Pharmaceutical Factory, China. Penicillin was bought from Shijiazhuang Pharmaceutical Group Co., Ltd., China.METHODS: (1) Rats were randomly assigned to four groups: control, penicillin model, and matrine high-dose and low-dose, with 10 rats in each group. The control group was perfused with artificial cerebrospinal fluid, in the remaining three groups, hippocampal brain slices were perfused with normal artificial cerebrospinal fluid containing 1x106 U/L penicillin for the first 10 minutes. The penicillin model group received artificial cerebrospinal fluid for an additional 30 minutes, while the matrine high-dose and low-dose groups received 0.1 g/L and 0.05 g/L matdne, respectively, for an additional 30 minutes. (2) Mice were randomly assigned to four groups (n=30). The matrine high-,medium-, and low

  7. Histamine H1 and endothelin ETB receptors mediate phospholipase D stimulation in rat brain hippocampal slices.

    Science.gov (United States)

    Sarri, E; Picatoste, F; Claro, E

    1995-08-01

    Different neurotransmitter receptor agonists [carbachol, serotonin, noradrenaline, histamine, endothelin-1, and trans-(1S,3R)-aminocyclopentyl-1,3-dicarboxylic acid (trans-ACPD)], known as stimuli of phospholipase C in brain tissue, were tested for phospholipase D stimulation in [32P]Pi-prelabeled rat brain cortical and hippocampal slices. The accumulation of [32P]phosphatidylethanol was measured as an index of phospholipase D-catalyzed transphosphatidylation in the presence of ethanol. Among the six neurotransmitter receptor agonists tested, only noradrenaline, histamine, endothelin-1, and trans-ACPD stimulated phospholipase D in hippocampus and cortex, an effect that was strictly dependent of the presence of millimolar extracellular calcium concentrations. The effect of histamine (EC50 18 microM) was inhibited by the H1 receptor antagonist mepyramine with a Ki constant of 0.7 nM and was resistant to H2 and H3 receptor antagonists (ranitidine and tioperamide, respectively). Endothelin-1-stimulated phospholipase D (EC50 44 nM) was not blocked by BQ-123, a specific antagonist of the ETA receptor. Endothelin-3 and the specific ETB receptor agonist safarotoxin 6c were also able to stimulate phospholipase D with efficacies similar to that of endothelin-1, and EC50 values of 16 and 3 nM, respectively. These results show that histamine and endothelin-1 stimulate phospholipase D in rat brain through H1 and ETB receptors, respectively.

  8. Dose-response testing of peptides by hippocampal brain slice recording.

    Science.gov (United States)

    Phillips, M I; Palovcik, R A

    1989-01-01

    The brain slice chamber described offers a method of studying, with intracellular electrodes, the relationship of response to dose of peptides. By raising the level of the slices 1 mm above the level of flowing perfusion medium, we can test substances in known concentrations, free from artifacts, during long duration, stable intracellular recordings. Manipulation of Ca2+/Mg2+ ratios in the medium can help to define synaptic and second messenger mediation of the responses. The addition of substances to the perfusion medium in this system could be combined with iontophoresis and/or micropressure techniques. Pathways in the slices may also be stimulated electrically and analyzed for the involvement of various synaptic transmitters. The results with the method so far show distinct differences among the peptides studied. Thus, there are several advantages to this method in establishing the physiological role of peptides in the brain.

  9. Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor.

    Science.gov (United States)

    Scharfman, H E

    1997-08-01

    Effects of brain-derived neurotrophic factor (BDNF) in area CA3, the dentate gyrus, and medial entorhinal cortex were examined electrophysiologically by bath application of BDNF in slices containing the hippocampus and entorhinal cortex. Bath application of 25-100 ng/ml BDNF for 30-90 min increased responses to single afferent stimuli in selective pathways in the majority of slices. In area CA3, responses to mossy fiber stimulation increased in 73% of slices and entorhinal cortex responses to white matter stimulation increased in 64% of slices. After exposure to BDNF, these areas also demonstrated evidence of hyperexcitability, because responses to repetitive stimulation (1-Hz paired pulses for several s) produced multiple population spikes in response to mossy fiber stimulation in CA3 or multiple field potentials in response to white matter stimulation in the entorhinal cortex. Repetitive field potentials persisted after repetitive stimulation ended and usually were followed by spreading depression. Enhancement of responses to single stimuli and hyperexcitability were never evoked in untreated slices or after bath application of boiled BDNF or cytochrome C. The tyrosine kinase antagonist K252a (2 microM) blocked the effects of BDNF. In area CA3, both the potentiation of responses to single stimuli and hyperexcitability showed afferent specificity, because responses to mossy fiber stimulation were affected but responses to fimbria or Schaffer collateral stimulation were not. In addition, regional specificity was demonstrated in that the dentate gyrus was much less affected. The effects of BDNF in area CA3 were similar to those produced by bath application of low doses of kainic acid, which is thought to modulate glutamate release from mossy fiber terminals by a presynaptic action. These results suggest that BDNF has acute effects on excitability in different areas of the hippocampal-entorhinal circuit. These effects appear to be greatest in areas that are highly

  10. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Thiébaud, P

    2001-01-01

    ) rats were grown for 4-8 weeks on the perforated silicon chips with silicon nitride surfaces and 40 microm sized holes and compared with corresponding tissue slices grown on conventional semiporous membranes. In terms of preservation of the basic cellular and connective organization, as visualized...... around the upper recording part of the 47-microm-high platinum-tip electrodes. Slice cultures grown on a separate set of chips with platinum instead of silicon nitride surfaces also displayed normal MAP2 and GFAP immunostaining. The width of the GFAP-rich zone (glia limitans) at the bottom surface...... of the slice cultures was the same ( approximately 20 microm) in cultures grown on chips with silicon nitride and platinum surfaces and on conventional insert membranes. The slice cultures grown on chips maintained a normal, subfield differentiated susceptibility to the glutamate receptor agonist N...

  11. Brain-derived neurotrophic factor, but not neurotrophin-3, prevents ischaemia-induced neuronal cell death in organotypic rat hippocampal slice cultures.

    Science.gov (United States)

    Pringle, A K; Sundstrom, L E; Wilde, G J; Williams, L R; Iannotti, F

    1996-06-28

    We have investigated the neuroprotective actions of neurotrophins in a model of ischaemia using slice cultures. Ischaemia was induced in organotypic hippocampal cultures by simultaneous oxygen and glucose deprivation. Cell death was assessed 24 h later by propidium iodide fluorescence. Pre- but not post-ischaemic addition of brain-derived neurotrophic factor (BDNF) produced a concentration-dependent reduction in neuronal damage. Neurotrophin-3 was not neuroprotective. These data suggest that BDNF may form part of an endogenous neuroprotective mechanism.

  12. β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices

    Directory of Open Access Journals (Sweden)

    Cilio Corrado

    2010-12-01

    Full Text Available Abstract Background Inflammation acting in synergy with brain ischemia aggravates perinatal ischemic brain damage. The sensitizing effect of pro-inflammatory exposure prior to hypoxia is dependent on signaling by TNF-α through TNF receptor (TNFR 1. Adrenoceptor (AR activation is known to modulate the immune response and synaptic transmission. The possible protective effect of α˜ and β˜AR activation against neuronal damage caused by tissue ischemia and inflammation, acting in concert, was evaluated in murine hippocampal organotypic slices treated with lipopolysaccharide (LPS and subsequently subjected to oxygen-glucose deprivation (OGD. Method Hippocampal slices from mice were obtained at P6, and were grown in vitro for 9 days on nitrocellulose membranes. Slices were treated with β1(dobutamine-, β2(terbutaline-, α1(phenylephrine- and α2(clonidine-AR agonists (5 and 50 μM, respectively during LPS (1 μg/mL, 24 h -exposure followed by exposure to OGD (15 min in a hypoxic chamber. Cell death in the slice CA1 region was assessed by propidium iodide staining of dead cells. Results Exposure to LPS + OGD caused extensive cell death from 4 up to 48 h after reoxygenation. Co-incubation with β1-agonist (50 μM during LPS exposure before OGD conferred complete protection from cell death (P -/- and TNFR2-/- slices exposed to LPS followed by OGD. Conclusions Our data demonstrate that activation of both β1- and β2-receptors is neuroprotective and may offer mechanistic insights valuable for development of neuro-protective strategies in neonates.

  13. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H;

    1993-01-01

    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  14. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxico......The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model...... for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5-100 microM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a...... of TMT neurotoxicity....

  15. Staining protocol for organotypic hippocampal slice cultures.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method to immunostain organotypic slice cultures from mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly, from the time of isolation at postnatal day 6-9 up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over periods ranging from seconds to months. Subsequent to imaging, the slices can be processed for immunocytochemistry to collect further information about the imaged structures. This protocol can be completed in 3 d.

  16. Preliminary Study of Realistic Blast Impact on Cultured Brain Slices

    Science.gov (United States)

    2015-04-01

    hippocampal slice samples to better understand blast-induced brain damage. 15. SUBJECT TERMS RDX spheres , organotypic cultures of hippocampus, small...Preliminary Study of Realistic Blast Impact on Cultured Brain Slices by Thuvan Piehler, Rohan Banton, Lars Piehler, Richard Benjamin, Ray...Aberdeen Proving Ground, MD 21005-5066 ARL-TR-7197 April 2015 Preliminary Study of Realistic Blast Impact on Cultured Brain Slices Thuvan

  17. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...... loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity....

  18. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert

    2003-01-01

    The microtubule-disrupting agent colchicine is known to be particular toxic for certain types of neurons, including the granule cells of the dentate gyrus. In this study we investigated whether colchicine could induce such neuron-specific degeneration in developing (1 week in vitro) and mature (3...... weeks in vitro) organotypic hippocampal slice cultures and whether the induced cell death was apoptotic and/or necrotic. When applied to 1-week-old cultures for 48 h, colchicine induced primarily apoptotic, but also a minor degree of necrotic cell death in the dentate granule cells, as investigated...... the formation of active caspase 3 protein and apoptotic nuclei induced by colchicine, but the formation of necrotic nuclei increased correspondingly and the PI uptake was unaffected. We conclude that colchicine induces caspase 3-dependent apoptotic cell death of dentate granule cells in hippocampal brain slice...

  19. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity.......Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...

  20. Neuroprotection against diisopropylfluorophosphate in acute hippocampal slices

    Science.gov (United States)

    Ferchmin, P. A.; Pérez, Dinely; Cuadrado, Brenda L.; Carrasco, Marimée; Martins, Antonio H.; Eterović, Vesna A.

    2015-01-01

    Diisopropylfluorophosphate (DFP) is an irreversible inhibitor of acetylcholine esterase (AChE) and a surrogate of the organophosphorus (OP) nerve agent sarin. The neurotoxicity of DFP was assessed as a reduction of population spike (PS) area elicited by synaptic stimulation in acute hippocampal slices. Two classical antidotes, atropine, and pralidoxime, and two novel antidotes, 4R-cembranotriene-diol (4R) and a caspase 9 inhibitor, were tested. Atropine, pralidoxime, and 4R significantly protected when applied 30 min after DFP. The caspase inhibitor was neuroprotective when applied 5–10 min before or after DFP, suggesting that early synaptic apoptosis is responsible for the loss of PSs. It is likely that apoptosis starts at the synapses and, if antidotes are not applied, descends to the cell bodies, causing death. The acute slice is a reliable tool for mechanistic studies, and the assessment of neurotoxicity and neuroprotection with PS areas is, in general, pharmacologically congruent with in vivo results and predicts the effect of drugs in vivo. 4R was first found to be neuroprotective in slices and later we demonstrated that 4R is neuroprotective in vivo. The mechanism of neurotoxicity of OPs is not well understood, and there is a need for novel antidotes that could be discovered using acute slices. PMID:26438150

  1. Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model

    OpenAIRE

    Zhang, Huaqiu; Xie, Minjie; Gary P. Schools; Feustel, Paul F.; Wang, Wei; Lei, Ting; Kimelberg, Harold K.; Zhou, Min

    2008-01-01

    Pretreatment of ovarectomized rats with estrogen shows long-term protection via activation of the estrogen receptor (ER). However, it remains unknown whether activation of the ER can provide protection against early neuronal damage when given acutely, we simulated ischemic conditions by applying oxygen and glucose deprived (OGD) solution to acute male rat hippocampal slices and examined the neuronal electrophysiological changes. Pyramidal neurons and interneurons showed a time-dependent membr...

  2. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke

    2010-08-01

    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  3. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2003-01-01

    Some anticonvulsants show neuroprotective effects, and may be of use in reducing neuronal death resulting from stroke or traumatic brain injury. Here I report that a broad range of anticonvulsants protect cells in hippocampal slice cultures from death induced by oxygen/glucose deprivation (OGD...

  4. Unstable periodic orbits in human epileptic hippocampal slices.

    Science.gov (United States)

    Pen-Ning Yu; Min-Chi Hsiao; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    Inter-ictal activity is studied in hippocampal slices resected from patients with epilepsy using local field potential recording. Inter-ictal activity in the dentate gyrus (DG) is induced by high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 μM 4-aminopyridine(4-AP). The dynamics of the inter-ictal activity is investigated by developing the first return map with inter-pulse intervals. Unstable periodic orbits (UPOs) are detected in the hippocampal slice at the DG area according to both the topological recurrence method and the periodic orbit transform method. Surrogate analysis suggests the presence of UPOs in hippocampal slices from patients with epilepsy. This finding also suggests that inter-ictal activity is a chaotic system and will allow us to apply chaos control techniques to manipulate inter-ictal activity.

  5. Stochastic neural network model for spontaneous bursting in hippocampal slices.

    Science.gov (United States)

    Biswal, B; Dasgupta, C

    2002-11-01

    A biologically plausible, stochastic, neural network model that exhibits spontaneous transitions between a low-activity (normal) state and a high-activity (epileptic) state is studied by computer simulation. Brief excursions of the network to the high-activity state lead to spontaneous population bursting similar to the behavior observed in hippocampal slices bathed in a high-potassium medium. Although the variability of interburst intervals in this model is due to stochasticity, first return maps of successive interburst intervals show trajectories that resemble the behavior expected near unstable periodic orbits (UPOs) of systems exhibiting deterministic chaos. Simulations of the effects of the application of chaos control, periodic pacing, and anticontrol to the network model yield results that are qualitatively similar to those obtained in experiments on hippocampal slices. Estimation of the statistical significance of UPOs through surrogate data analysis also leads to results that resemble those of similar analysis of data obtained from slice experiments and human epileptic activity. These results suggest that spontaneous population bursting in hippocampal slices may be a manifestation of stochastic bistable dynamics, rather than of deterministic chaos. Our results also question the reliability of some of the recently proposed, UPO-based, statistical methods for detecting determinism and chaos in experimental time-series data.

  6. 5-HT4-receptors modulate induction of long-term depression but not potentiation at hippocampal output synapses in acute rat brain slices.

    Directory of Open Access Journals (Sweden)

    Matthias Wawra

    Full Text Available The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD. In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4 receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1, 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output.

  7. Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    Ze-jian WANG; Guang-mei LI; Wen-lu TANG; Ming YIN

    2006-01-01

    Aim: To observe the effects of stearic acid, a long-chain saturated fatty acid consisting of 18 carbon atoms, on brain (cortical or hippocampal) slices insulted by oxygen-glucose deprivation (OGD), glutamate or sodium azide (NaN3) in vitro.Methods: The activities of hippocampal slices were monitored by population spikes recorded in the CA1 region. In vitro injury models of brain slice were induced by 10 min of OGD, 1 mmol/L glutamate or 10 mmol/L NaN3. After 30 min of preincubation with stearic acid (3-30 μmol/L), brain slices (cortical or hippocampal)were subjected to OGD, glutamate or NaN3, and the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. MK886 [5 mmol/L;a noncompetitive inhibitor of proliferator-activated receptor (PPAR-α)] or BADGE (bisphenol A diglycidyl ether; 100 μmol/L; an antagonist of PPAR-γ) were tested for their effects on the neuroprotection afforded by stearic acid. Results: Viability of brain slices was not changed significantly after direct incubation with stearic acid. OGD, glutamate and NaN3 injury significantly decreased the viability of brain slices. Stearic acid (3-30 μmol/L) dose-dependently protected brain slices from OGD and glutamate injury but not from NaN3 injury, and its neuroprotective effect was completely abolished by BADGE. Conclusion: Stearic acid can protect brain slices (cortical or hippocampal) against injury induced by OGD or glutamate.Its neuroprotective effect may be mainly mediated by the activation of PPAR-γ.

  8. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bonde, C; Kristensen, B W; Blaabjerg, M;

    2000-01-01

    The potential neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) and neublastin (NBN) against NMDA-induced excitotoxicity were examined in hippocampal brain slice cultures. Recombinant human GDNF (25-100 ng/ ml) or NBN, in medium conditioned by growth of transfected, NBN......-producing HiB5 cells, were added to slice cultures I h before exposure to 10 microM NMDA for 48h. Neuronal cell death was monitored, before and during the NMDA exposure, by densitometric measurements of propidium iodide (PI) uptake and loss of Nissl staining. Both the addition of rhGDNF and NBN...

  9. Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model.

    Science.gov (United States)

    Zhang, Huaqiu; Xie, Minjie; Schools, Gary P; Feustel, Paul F; Wang, Wei; Lei, Ting; Kimelberg, Harold K; Zhou, Min

    2009-01-09

    Pretreatment of ovarectomized rats with estrogen shows long-term protection via activation of the estrogen receptor (ER). However, it remains unknown whether activation of the ER can provide protection against early neuronal damage when given acutely. We simulated ischemic conditions by applying oxygen and glucose deprived (OGD) solution to acute male rat hippocampal slices and examined the neuronal electrophysiological changes. Pyramidal neurons and interneurons showed a time-dependent membrane potential depolarization and reduction in evoked action potential frequency and amplitude over a 10 to 15 min OGD exposure. These changes were largely suppressed by 10 microM TAM. The TAM effect was neuron-specific as the OGD-induced astrocytic membrane potential depolarization was not altered. The TAM effect was mediated through ER activation because it could be simulated by 17beta-estradiol and was completely inhibited by the ER inhibitor ICI 182, 780, and is therefore an example of TAM's selective estrogen receptor modulator (SERM) action. We further show that TAM's effects on OGD-induced impairment of neuronal excitability was largely due to activation of neuroprotective BK channels, as the TAM effect was markedly attenuated by the BK channel inhibitor paxilline at 10 microM. TAM also significantly reduced the frequency and amplitude of AMPA receptor mediated spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons which is an early consequence of OGD. Altogether, this study demonstrates that both 17beta-estradiol and TAM attenuate neuronal excitability impairment early on in a simulated ischemia model via ER activation mediated potentiation of BK K(+) channels and reduction in enhanced neuronal AMPA/NMDA receptor-mediated excitotoxicity.

  10. Circadian rhythm modulates long-term potentiation induced at CA1 in rat hippocampal slices.

    Science.gov (United States)

    Nakatsuka, Hiroki; Natsume, Kiyohisa

    2014-03-01

    Circadian rhythm affects neuronal plasticity. Consistent with this, some forms of synaptic long-term potentiation (LTP) are modulated by the light/dark cycle (LD cycle). For example, this type of modulation is observed in hippocampal slices. In rodents, which are nocturnal, LTP is usually facilitated in the dark phase, but the rat hippocampal CA1 is an exception. The reason why LTP in the dark phase is suppressed in CA1 remains unknown. Previously, LTP was induced with high-frequency stimulation. In this study, we found that in the dark phase, theta-burst stimulation-induced LTP is indeed facilitated in CA1, similar to other regions in the rodent brain. Population excitatory postsynaptic potentials (pEPSP)-LTP and population spikes (PS)-LTP were recorded at CA1. The magnitude of PS-LTP in dark-phase slices was significantly larger than in light-phase slices, while that of pEPSP-LTP was unchanged. Using antidromic-orthodromic stimulation, we found that recurrent inhibition is suppressed in the dark phase. Local gabazine-application to stratum pyramidale in light-phase slices mimicked this disinhibition and facilitated LTP in dark-phase slices. These results suggest that the disinhibition of a GABAA recurrent inhibitory network can be induced in the dark phase, thereby facilitating LTP.

  11. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Directory of Open Access Journals (Sweden)

    Tanara Vieira Peres

    2013-01-01

    Full Text Available The molecular mechanisms mediating manganese (Mn-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs and tyrosine hydroxylase (TH could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old. The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK 1/2, as well as c-Jun N-terminal kinase (JNK 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3 in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain.

  12. In Vitro Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats

    Science.gov (United States)

    Peres, Tanara Vieira; Pedro, Daniela Zótico; de Cordova, Fabiano Mendes; Lopes, Mark William; Gonçalves, Filipe Marques; Mendes-de-Aguiar, Cláudia Beatriz Nedel; Walz, Roger; Farina, Marcelo; Aschner, Michael; Leal, Rodrigo Bainy

    2013-01-01

    The molecular mechanisms mediating manganese (Mn)-induced neurotoxicity, particularly in the immature central nervous system, have yet to be completely understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs) and tyrosine hydroxylase (TH) could represent potential targets of Mn in striatal and hippocampal slices obtained from immature rats (14 days old). The aim of this study was to evaluate if the MAPK pathways are modulated after subtoxic Mn exposure, which do not significantly affect cell viability. The concentrations of manganese chloride (MnCl2; 10–1,000 μM) caused no change in cell viability in slices exposed for 3 or 6 hours. However, Mn exposure significantly increased extracellular signal-regulated kinase (ERK) 1/2, as well as c-Jun N-terminal kinase (JNK) 1/2/3 phosphorylation at both 3 and 6 hours incubations, in both brain structures. Furthermore, Mn exposure did not change the total content or phosphorylation of TH at the serine 40 site in striatal slices. Thus, Mn at concentrations that do not disrupt cell viability causes activation of MAPKs (ERK1/2 and JNK1/2/3) in immature hippocampal and striatal slices. These findings suggest that altered intracellular MAPKs signaling pathways may represent an early event concerning the effects of Mn in the immature brain. PMID:24324973

  13. Metabolic therapy for temporal lobe epilepsy in a dish: investigating mechanisms of ketogenic diet using electrophysiological recordings in hippocampal slices

    Directory of Open Access Journals (Sweden)

    Masahito Kawamura

    2016-11-01

    Full Text Available The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1 direct application of ketone bodies, (2 mimicking the ketogenic diet condition during a whole-cell patch-clamp technique, and (3 reduced glucose incubation of hippocampal slices from ketogenic diet–fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including ATP-sensitive potassium channels, vesicular glutamate transporter, pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.

  14. Metabolic Therapy for Temporal Lobe Epilepsy in a Dish: Investigating Mechanisms of Ketogenic Diet using Electrophysiological Recordings in Hippocampal Slices.

    Science.gov (United States)

    Kawamura, Masahito Jr; Ruskin, David N; Masino, Susan A

    2016-01-01

    The hippocampus is prone to epileptic seizures and is a key brain region and experimental platform for investigating mechanisms associated with the abnormal neuronal excitability that characterizes a seizure. Accordingly, the hippocampal slice is a common in vitro model to study treatments that may prevent or reduce seizure activity. The ketogenic diet is a metabolic therapy used to treat epilepsy in adults and children for nearly 100 years; it can reduce or eliminate even severe or refractory seizures. New insights into its underlying mechanisms have been revealed by diverse types of electrophysiological recordings in hippocampal slices. Here we review these reports and their relevant mechanistic findings. We acknowledge that a major difficulty in using hippocampal slices is the inability to reproduce precisely the in vivo condition of ketogenic diet feeding in any in vitro preparation, and progress has been made in this in vivo/in vitro transition. Thus far at least three different approaches are reported to reproduce relevant diet effects in the hippocampal slices: (1) direct application of ketone bodies; (2) mimicking the ketogenic diet condition during a whole-cell patch-clamp technique; and (3) reduced glucose incubation of hippocampal slices from ketogenic diet-fed animals. Significant results have been found with each of these methods and provide options for further study into short- and long-term mechanisms including Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, vesicular glutamate transporter (VGLUT), pannexin channels and adenosine receptors underlying ketogenic diet and other forms of metabolic therapy.

  15. Organotypic slice culture of embryonic brain tissue.

    Science.gov (United States)

    Daza, Ray A M; Englund, Chris; Hevner, Robert F

    2007-12-01

    INTRODUCTIONThis protocol describes how to dissect, assemble, and cultivate mouse embryonic (E) brain tissue from age E11.5 to E18.5 (days) for organotypic slice culture. These preparations can be used for a variety of assays and studies including coculture of different brain regions, cell migration assays, axon guidance assays, and DNA electroporation experiments. During electroporation, an electric current is applied to the surface of a specific target area of the brain slice in order to open holes in the plasma membrane and introduce a plasmid of coding DNA. The floating slice-on-membrane construct helps to preserve the structural integrity of the brain slices, while maintaining easy experimental access and optimal viability. Experiments can be monitored in living slices (e.g., with confocal imaging), and further studies can be completed using slices that have been fixed and cryosectioned at the end of the experiment. Any region of embryonic brain or spinal tissue can be used in this protocol.

  16. Cutting of living hippocampal slices by a highly pressurised water jet (macromingotome).

    Science.gov (United States)

    Bingmann, D; Wiemann, M; Speckmann, E J; Köhling, R; Straub, H; Dunze, K; Wittkowski, W

    2000-10-15

    Living brain slices are usually cut with razor blades, which compress a ca. 50-microm-thick layer of tissue. This results in cell debris and lesioned cells which, e.g. form diffusion barriers between the bath and living neurons underneath, thereby prolonging response times of neurons to drugs in the bath saline and impeding the experimental access to intact neurons. To avoid such drawbacks, a macromingotome was developed which cuts nervous tissue with water jets. Physiological saline under pressures of 100-1800 bar was ejected through nozzles of 35-100 microm to cut 300-500-microm-thick hippocampal slices. Systematic variations of pressure and nozzle diameter revealed best results at 400-600 bar and with nozzle diameters of 60-80 microm. Under these conditions, intact CA1- and CA3-neurons as well as granule cells were detected with infrared microscopy at less than 10 microm underneath the surface of the slice. Superficial neurons with intact fine structures were also seen when the slices were studied by light-microscopy. Intra- and extracellular recordings from superficial neurons showed normal membrane- and full action potentials and the development of stable epileptiform discharges in 0 Mg(2+)-saline. These results indicate that the macromingotome offers an alternative way of cutting slices which may facilitate electrophysiological/neuropharmacological or fluorometric studies on superficial neurons.

  17. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  18. Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures.

    Science.gov (United States)

    Gerlach, Johannes; Donkels, Catharina; Münzner, Gert; Haas, Carola A

    2016-01-01

    Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC), which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within 7 days of cultivation. Accordingly, reverse transcription quantitative polymerase chain reaction analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential

  19. Persistent gliosis interferes with neurogenesis in organotypic hippocampal slice cultures

    Directory of Open Access Journals (Sweden)

    Johannes eGerlach

    2016-05-01

    Full Text Available Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC, which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within seven days of cultivation. Accordingly, RT-qPCR analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor (CNTF accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling

  20. Complement C1q expression induced by Abeta in rat hippocampal organotypic slice cultures.

    Science.gov (United States)

    Fan, Rong; Tenner, Andrea J

    2004-02-01

    Amyloid beta peptide (Abeta) is a major component of senile plaques, one of the principle pathological features in Alzheimer's disease (AD) brains. Fibrillar Abeta has been shown to bind C1 via C1q, the recognition component of the classical complement pathway, resulting in the activation of the complement pathway, thereby initiating an inflammatory cascade in the brain. C1q has also been shown to enhance phagocytic activities of microglia, which could benefit in clearance of apoptotic cells or cellular debris. To begin to define the role of C1q in tissue injury mediated by Abeta, we assessed the appearance of C1q in hippocampal slice cultures treated with freshly solubilized or fibrillar Abeta 1-42. Here we demonstrate a dose- and time-dependent uptake of exogenously applied Abeta by pyramidal neurons in organotypic slice cultures from rat hippocampus. Importantly, when slices were immunostained with antibody against rat C1q, a distinct reactivity for C1q in cells within the neuronal cell layer of cornu ammonis (CA) of hippocampus, primarily the CA1/CA2, was observed in the Abeta-treated slices. No such immunoreactivity was detected in untreated cultures or upon addition of control peptides. ELISA assays also showed an increase in C1q in tissue extracts from slices of the treated group. Similarly, the mRNA level of C1q in slices was increased within 24 h after Abeta treatment. These data demonstrate that upon exposure to Abeta, C1q is expressed in neurons in this organotypic system. The induction of C1q may be an early, perhaps beneficial, tissue or cellular response to injury triggered by particular pathogenic stimuli.

  1. Delivery of recombinant alphavirus into hippocampal slice tissue culture.

    Science.gov (United States)

    Lundstrom, Kenneth

    2012-08-01

    The alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) have been used frequently as expression vectors in vitro and in vivo. Usually, these systems consist of replication-deficient vectors that require a helper vector for packaging of recombinant particles. Replication-proficient vectors have also been engineered. Alphaviral vectors can be used as nucleic-acid-based vectors (DNA and RNA) or infectious particles. High-titer viral production is achieved in alphaviruses facilitates studies in mammalian and nonmammalian cell lines, primary cells in culture, and in vivo. The strong preference for expression in neuronal cells has made alphaviruses particularly useful in neurobiological studies. Unfortunately, their strong cytotoxic effect on host cells, relatively short-term transient expression patterns, and the reasonably high cost of viral production remain drawbacks. However, novel mutant alphaviruses have shown reduced cytotoxicity and prolonged expression. This protocol describes gene delivery of recombinant alphavirus to hippocampal slice cultures. Organotypic slices are covered by a layer of glial cells that impedes the penetration of viral particles to the neurons. Thus, viral particles should be injected manually into the extracellular space of the tissue.

  2. Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.

    Science.gov (United States)

    Danzer, S C; Pan, E; Nef, S; Parada, L F; McNamara, J O

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor tyrosine kinase B (TrkB) play important roles in regulating survival, structure, and function of CNS neurons. One method of studying the functions of these molecules has utilized in vitro hippocampal slice preparations. An important caveat to using slices, however, is that slice preparation itself might alter the expression of BDNF, thereby confounding experimental results. To address this concern, BDNF immunoreactivity was examined in rodent slices using two different methods of slice preparation. Rapid and anatomically selective regulation of BDNF content followed slice preparation using both methodologies; however, different patterns of altered BDNF immunoreactivity were observed. First, in cultured slices, BDNF content decreased in the dentate molecular layer and increased in the CA3 pyramidal cell layer and the mossy fiber pathway of the hippocampus after 30 min. Furthermore, an initially "punctate" pattern of BDNF labeling observed in the mossy fiber pathway of control sections changed to homogenous labeling of the pathway in vitro. In contrast to these findings, slices prepared as for acute slice physiology exhibited no change in BDNF content in the molecular layer and mossy fiber pathway 30 min after slicing, but exhibited significant increases in the dentate granule and CA3 pyramidal cell layers. These findings demonstrate that BDNF protein content is altered following slice preparation, that different methods of slice preparation produce different patterns of BDNF regulation, and raise the possibility that BDNF release and TrkB activation may also be regulated. These consequences of hippocampal slice preparation may confound analyses of exogenous or endogenous BDNF on hippocampal neuronal structure or function.

  3. Erythropoietin improves synaptic transmission during and following ischemia in rat hippocampal slice cultures.

    Science.gov (United States)

    Weber, Astrid; Maier, Rolf F; Hoffmann, Ulrike; Grips, Martin; Hoppenz, Marc; Aktas, Ayse G; Heinemann, Uwe; Obladen, Michael; Schuchmann, Sebastian

    2002-12-27

    Erythropoietin (EPO) prevents neuronal damage following ischemic, metabolic, and excitotoxic stress. In this study evoked extracellular field potentials (FP) were used to investigate the effect of EPO on synaptic transmission in hippocampal slice cultures. EPO treated cultured slices (40 units/ml for 48 h) showed significantly increased FP during and following oxygen and glucose deprivation compared with untreated control slices. The addition of the Jak2 inhibitor AG490 (50 microM for 48 h) blocked the EPO effect. These data suggest that EPO improves synaptic transmission during and following ischemia in hippocampal slice cultures.

  4. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model

    Science.gov (United States)

    Healy, Sinead; McMahon, Jill; Owens, Peter; FitzGerald, Una

    2016-01-01

    Aberrant iron deposition in the brain is associated with neurodegenerative disorders including Multiple Sclerosis, Alzheimer’s disease and Parkinson’s disease. To study the collective response to iron loading, we have used hippocampal organotypic slices as a platform to develop a novel ex vivo model of iron accumulation. We demonstrated differential uptake and toxicity of iron after 12 h exposure to 10 μM ferrous ammonium sulphate, ferric citrate or ferrocene. Having established the supremacy of ferrocene in this model, the cultures were then loaded with 0.1–100 μM ferrocene for 12 h. One μM ferrocene exposure produced the maximal 1.6-fold increase in iron compared with vehicle. This was accompanied by a 1.4-fold increase in ferritin transcripts and mild toxicity. Using dual-immunohistochemistry, we detected ferritin in oligodendrocytes, microglia, but rarely in astrocytes and never in neurons in iron-loaded slice cultures. Moreover, iron loading led to a 15% loss of olig2-positive cells and a 16% increase in number and greater activation of microglia compared with vehicle. However, there was no appreciable effect of iron loading on astrocytes. In what we believe is a significant advance on traditional mono- or dual-cultures, our novel ex vivo slice-culture model allows characterization of the collective response of brain cells to iron-loading. PMID:27808258

  5. The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, Jens; Zimmer, Jens

    2003-01-01

    interneurons, were examined in hippocampal slice cultures exposed to N-methyl-D-aspartate (NMDA). The NMDA-induced excitotoxicity was quantified by densitometric measurements of propidium iodide (PI) uptake. THIP (100-1000 microM) was neuroprotective in slice cultures co-exposed to NMDA (10 microM) for 48 h...

  6. Altered network timing in the CA3-CA1 circuit of hippocampal slices from aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel J Kanak

    Full Text Available Network patterns are believed to provide unique temporal contexts for coordinating neuronal activity within and across different regions of the brain. Some of the characteristics of network patterns modeled in vitro are altered in the CA3 or CA1 subregions of hippocampal slices from aged mice. CA3-CA1 network interactions have not been examined previously. We used slices from aged and adult mice to model spontaneous sharp wave ripples and carbachol-induced gamma oscillations, and compared measures of CA3-CA1 network timing between age groups. Coherent sharp wave ripples and gamma oscillations were evident in the CA3-CA1 circuit in both age groups, but the relative timing of activity in CA1 stratum pyramidale was delayed in the aged. In another sample of aged slices, evoked Schaffer collateral responses were attenuated in CA3 (antidromic spike amplitude and CA1 (orthodromic field EPSP slope. However, the amplitude and timing of spontaneous sharp waves recorded in CA1 stratum radiatum were similar to adults. In both age groups unit activity recorded juxtacellularly from unidentified neurons in CA1 stratum pyramidale and stratum oriens was temporally modulated by CA3 ripples. However, aged neurons exhibited reduced spike probability during the early cycles of the CA3 ripple oscillation. These findings suggest that aging disrupts the coordination of patterned activity in the CA3-CA1 circuit.

  7. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    Science.gov (United States)

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion.

  8. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    DEFF Research Database (Denmark)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few...... to incubation, slices were extracted and extracts analyzed for (13)C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation...... media. Based on the measured (13)C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of (13)C-labeling observed with [U-(13)C...

  9. Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices.

    Science.gov (United States)

    Markus, Tina; Cronberg, Tobias; Cilio, Corrado; Pronk, Cornelis; Wieloch, Tadeusz; Ley, David

    2009-01-01

    Inflammation and ischemia have a synergistic damaging effect in the immature brain. The role of tumor necrosis factor (TNF) receptors 1 and 2 in lipopolysaccharide (LPS)-induced sensitization and tolerance to oxygen-glucose deprivation (OGD) was evaluated in neonatal murine hippocampal organotypic slices. Hippocampal slices from balb/c, C57BL/6 TNFR1(-/-), TNFR2(-/-), and wild-type (WT) mice obtained at P6 were grown in vitro for 9 days. Preexposure to LPS immediately before OGD increased propidium iodide-determined cell death in regions CA1, CA3, and dentate gyrus from 4 up to 48 h after OGD (P<0.001). Extending the time interval between LPS exposure and OGD to 72 h resulted in tolerance, that is reduced neuronal cell death after OGD (P<0.05). Slices from TNFR1(-/-) mice showed neither LPS-induced sensitization nor LPS-induced tolerance to OGD, whereas both effects were present in slices from TNFR2(-/-) and WT mice. Cytokine secretion (TNFalpha and interleukin-6) during LPS exposure was decreased in TNFR1(-/-) slices and increased in TNFR2(-/-) as compared with WT slices. We conclude that LPS induces sensitization or tolerance to OGD depending on the time interval between exposure to LPS and OGD in murine hippocampal slice cultures. Both paradigms are dependent on signaling through TNFR1.

  10. Long-term brain slice culturing in a microfluidic platform

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi; Avaliani, N.; Tønnesen, J.;

    2011-01-01

    In this work, we present the development of a transparent poly(methyl methacrylate) (PMMA) based microfluidic culture system for handling long-term brain slice cultures independent of an incubator. The different stages of system development have been validated by culturing GFP producing brain...... brain slice culturing for 16 days....

  11. Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Casaccia-Bonnefil, P; Stelzer, A

    1993-01-01

    Loss of hippocampal interneurons has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainate. We investigated the relationship between KA induced epileptiform discharge and loss of interneurons in hippocampal slice cultures. Application of KA (1 micro......M) produced reversible epileptiform discharge without neurotoxicity. KA (5 microM), in contrast, produced irreversible epileptiform discharge and neurotoxicity, suggesting that the irreversible epileptiform discharge was required for the neuronal loss. Loss of CA3 pyramidal cells and parvalbumin...

  12. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.

    Directory of Open Access Journals (Sweden)

    Gerardo Mauleon

    Full Text Available The acute brain slice preparation is an excellent model for studying the details of how neurons and neuronal tissue respond to a variety of different physiological conditions. But open slice chambers ideal for electrophysiological and imaging access have not allowed the precise spatiotemporal control of oxygen in a way that might realistically model stroke conditions. To address this problem, we have developed a microfluidic add-on to a commercially available perfusion chamber that diffuses oxygen throughout a thin membrane and directly to the brain slice. A microchannel enables rapid and efficient control of oxygen and can be modified to allow different regions of the slice to experience different oxygen conditions. Using this novel device, we show that we can obtain a stable and homogeneous oxygen environment throughout the brain slice and rapidly alter the oxygen tension in a hippocampal slice. We also show that we can impose different oxygen tensions on different regions of the slice preparation and measure two independent responses, which is not easily obtainable with current techniques.

  13. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R;

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  14. Effects of changes in glucose concentration on synaptic plasticity in hippocampal slices

    NARCIS (Netherlands)

    Gispen, W.H.; Kamal, A.; Spoelstra, K.; Biessels, G.J.; Urban, I.J.A.

    1999-01-01

    The effects of a low or high concentration of glucose in the perfusion medium on synaptic activity and plasticity were studied in hippocampal slices from rats. Low-glucose medium depressed the field excitatory post-synaptic potentials (fEPSP) significantly, whereas high-glucose medium had little eff

  15. DIFFERENT EFFECTS OF MUSCARINIC AGONISTS IN RAT SUPERIOR CERVICAL-GANGLION AND HIPPOCAMPAL SLICES

    NARCIS (Netherlands)

    BODDEKE, HWGM

    1991-01-01

    In this study the effects of muscarinic antagonists and agonists on M1 muscarinic receptors in the isolated rat superior cervical ganglion and the rat hippocampal slice were investigated. Oxotremorine and APE but not pilocarpine, McN-A-343 or 4-Cl-McN-A-343 induced small M2 muscarinic

  16. Inhibition of spontaneous network activity in neonatal hippocampal slices by energy substrates is not correlated with intracellular acidification.

    Science.gov (United States)

    Mukhtarov, Marat; Ivanov, Anton; Zilberter, Yuri; Bregestovski, Piotr

    2011-01-01

    Several energy substrates complementary to glucose, including lactate, pyruvate and β-hydroxybutyrate, serve as a fuel for neurons. It was reported recently that these substrates can substantially modulate cortical excitability in neonatal slices. However, complementary energy substrates (CES) can also induce an intracellular acidification when added exogenously. Therefore, action of CES on the neuronal properties governing excitability in neonatal brain slices may be underlain by a change in the cell energy status or by intracellular acidification, or both. Here, we attempt to elucidate these possibilities in neonatal hippocampus by recording neuronal population activity and monitoring intracellular pH. We show that a spontaneous network activity pattern, giant depolarizing potentials (GDPs), characteristic for the neonatal hippocampal slices exposed to artificial cerebrospinal fluid, is strongly inhibited by CES and this effect is unlikely to be caused by a subtle intracellular acidification induced by these compounds. Indeed, a much stronger intracellular acidification in the HCO(3) -free solution inhibited neither the GDP frequency nor the GDP amplitude. Therefore, modulation of neuronal energy homeostasis is the most likely factor underlying the effect of lactate, pyruvate and β-hydroxybutyrate on network excitability in neonatal brain slices.

  17. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  18. Setting up alcohol-associated dementia models in vitro with primary-cultured hippocampal neuron and brain slice%采用海马原代神经元和离体脑片建立乙醇性痴呆体外模型的比较

    Institute of Scientific and Technical Information of China (English)

    刘勇; 曾玉娥; 杨海玉

    2014-01-01

    Objective To set up the different alcohol-associated dementia (AAD) models in vitro and provide methods for researching the mechanism of AAD.Methods Hippocampal neurons got from fetal rats were primary cultured for 6 days and identified.Then,the cells were treated with different doses of ethanol (25-100 mol/L) for 24 h.The cell viability was analyzed with MTT assay.The staining with Hoechst33342 was used to observe the cell apoptosis.In addition,hippocampi of newbom rats 7-10 days after birth were taken out and cut to 300 μm thickness of slices; the morphological changes of the brain slices were observed with HE staining at different time points after ethanol administration.Results Primary-cultured hippocampal neurons highly expressed neuron-specific enolase (NSE) and lowly expressed glial fibrillary acidic protein (GFAP).And the cell viability was significantly decreased by ethanol administration (50-100 mol/L,24 h) in a dose-dependent manner.Increased apoptosis cells were detected when cells were treated with 50 mol/L concentration of ethanol for 24 h.For hippocampal slices,acute ethanol administration (50 mol/L,30 min) induced significant cell apoptosis and chronic ethanol administration (50 mol/L,24 h) resulted in the serious damage of hippocampal morphology.Conclusions The models that primary-cultured hippocampal neuron apoptosis induced by chronic ethanol administration is suitable for researching the mechanism of AAD.Hippocampal slices are more sensitive for ethanol toxic effects and may be used for the research of acute alcohol toxicity.%目的 建立和比较不同的乙醇性痴呆(AAD)体外研究模型,为进一步探讨其发病机制提供方法学参考. 方法 取胎鼠海马进行原代神经元培养及鉴定,给予不同浓度的乙醇作用24 h,采用四甲基偶氮唑蓝(MTT)比色法检测细胞存活率以及Hoechst33342染色观察细胞凋亡状况.另外,取新生大鼠海马切取脑片进行离体培养,采用HE染色观察不同时间

  19. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures

    Science.gov (United States)

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2017-01-01

    Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h

  20. Preparation of organotypic hippocampal slice cultures for long-term live imaging.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method to establish organotypic slice cultures from mouse hippocampus, which can be maintained for several months. The cultures are based on the interface method, which does not require special equipment, is easy to execute and yields slice cultures that can be imaged repeatedly--from when they are isolated at postnatal day 6-9, and up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Monitoring of defined cellular and molecular components in the slices can be achieved by preparing slices from transgenic mice or by introducing transgenes through transfection or viral vectors. This protocol can be completed in 3 h.

  1. Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats.

    Science.gov (United States)

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi-Chameh, Homeira; Ghafouri, Samireh; Sheibani, Vahid; Mirnajafi-Zadeh, Javad

    2016-08-25

    Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. Therefore, the interaction of LFS and phenobarbital on GABAergic inhibitory post-synaptic currents (IPSCs) in kindled and control rats was investigated. Animals were kindled by electrical stimulation of basolateral amygdala in a semi rapid manner (12 stimulations/day). The effect of phenobarbital, LFS and phenobarbital+LFS was investigated on GABAA-mediated evoked and miniature IPSCs in the hippocampal brain slices in control and fully kindled animals. Phenobarbital and LFS had positive interaction on GABAergic currents. In vitro co-application of an ineffective pattern of LFS (100 pulses at afterdischarge threshold intensity) and a sub-threshold dose of phenobarbital (100μM) which had no significant effect on GABAergic currents alone, increased the amplitude and area under curve of GABAergic currents in CA1 pyramidal neurons of hippocampal slices significantly. Interestingly, the sub-threshold dose of phenobarbital potentiated the GABAergic currents when applied on the hippocampal slices of kindled animals which received LFS in vivo. Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics.

    Science.gov (United States)

    Cho, Seongeun; Wood, Andrew; Bowlby, Mark R

    2007-03-01

    Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.

  3. Microelectrode array recordings of excitability of low Mg2+-induced acute hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    Fan Yang; Xinwei Gong; Haiqing Gong; Puming Zhang; Peiji Liang; Qinchi LU

    2010-01-01

    Neuronal connections can be detected by neuronal network discharges in hippocampal neurons cultured on multi-electrodes.However,the multi-electrode-array(MEA)has not been widely used in hippocampal slice culture studies focused on epilepsy.The present study induced spontaneous synchronous epileptiform activity using low Mg2+artificial cerebrospinal fluid on acute hippocampal slices to record hippocampal discharges with MEA.Results showed that burst duration and average number of spikes in a burst were significantly greater in the CA3 compared with dentate gyrus and CA1 areas.In Schaffer cut-off group,CA1 area discharges disappeared,but synchronous discharges remained in the CA3 area.Moreover,synchronous discharge frequency in the Schaffer cut-off group was similar to control.However,burst duration and average number of spikes in a burst were significantly decreased compared with control(P < 0.05).Results demonstrated that highest neuronal excitability occurred in the CA3 area,and synchronous discharges induced by low Mg2+originated from the CA3 region.

  4. The Role of Monosialoganglioside GM1 in LTP-Induction in Rat Hippocampal Slices

    Institute of Scientific and Technical Information of China (English)

    李永新; 梅镇彤

    1994-01-01

    The effect of monosialoganglioside GM1 of different doses on the long-term potentiation (LTP) of synaptic transmission has been studied in the CA1 region of rat hippocampal slices, and the possible role that calcium ion and NMDA receptor play has also been investigated. The results reveal that larger magnitude of LTP is induced in hippocampal slices pre-incubated with GM1. The dose-response curve appears in diphase, and the largest magnitude of LTP has been obtained at the GM1 concentration of 50 mg/L in incubation ACSF. Moreover, the magnitude of LTP induced from the slices pre-incubated with GM1 at lower calcium ion concentration is similar to that obtained from the control slices at normal calcium ion concentration. Under higher calcium ion concentration, the enhancing effect of GM1 on LTP seems relatively feeble. After NMDA receptors were blocked, no enhancing effect of GM1 was observed. The mechanism of GM1 action on LTP is discussed.

  5. Long-term live imaging of neuronal circuits in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Gogolla, Nadine; Galimberti, Ivan; DePaola, Vincenzo; Caroni, Pico

    2006-01-01

    This protocol details a method for imaging organotypic slice cultures from the mouse hippocampus. The cultures are based on the interface method, which does not require special equipment, is easy to execute, and yields slice cultures that can be imaged repeatedly after they are isolated on postnatal day 6-9 and for up to 6 months in vitro. The preserved tissue architecture facilitates the analysis of defined hippocampal synapses, cells and entire projections. Time-lapse imaging is based on transgenes expressed in the mice, or on constructs introduced through transfection or viral vectors; it can reveal processes that develop over time periods ranging from seconds to months. Imaging can be repeated at least eight times without detectable morphological damage to neurons. Subsequent to imaging, the slices can be processed for immunocytochemistry or electron microscopy, to collect further information about the structures that have been imaged. This protocol can be completed in 35 min.

  6. Neuroprotection of Persea major extract against oxygen and glucose deprivation in hippocampal slices involves increased glutamate uptake and modulation of A1 and A2A adenosine receptors

    Directory of Open Access Journals (Sweden)

    Marielli Letícia Fedalto

    2013-10-01

    Full Text Available Ischemic stroke is characterised by a lack of oxygen and glucose in the brain, leading to excessive glutamate release and neuronal cell death. Adenosine is produced in response to ATP depletion and acts as an endogenous neuromodulator that reduces excitotoxicity. Persea major (Meins. L.E. Kopp (Lauraceae is a medical plant that is indigenous to South Brazil, and the rural population has used it medicinally due to its anti-inflammatory properties. The aim of this study was to evaluate the neuroprotective effect of Persea major methanolic extract against oxygen and glucose deprivation and re-oxygenation as well as to determine its underlying mechanism of action in hippocampal brain slices. Persea major methanolic extract (0.5 mg/ml has a neuroprotective effect on hippocampal slices when added before or during 15 min of oxygen and glucose deprivation or 2 h of re-oxygenation. Hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation showed significantly reduced glutamate uptake, and the addition of Persea major methanolic extract in the re-oxygenation period counteracted the reduction of glutamate uptake. The presence of A1 or A2A, but not A2B or A3 receptor antagonists, abolished the neuroprotective effect of Persea major methanolic extract. In conclusion, the neuroprotective effect of Persea majormethanolic extract involves augmentation of glutamate uptake and modulation of A1 and A2B adenosine receptors.

  7. Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures.

    Science.gov (United States)

    Fischer, Yacov; Wittner, Lucia; Freund, Tamas F; Gähwiler, Beat H

    2002-03-15

    Hippocampal activity in vivo is characterized by concurrent oscillations at theta (4-15 Hz) and gamma (20-80 Hz) frequencies. Here we show that cholinergic receptor activation (methacholine 10-20 nm) in hippocampal slice cultures induces an oscillatory mode of activity, in which the intrinsic network oscillator (located in the CA3 area) expresses simultaneous theta and gamma network oscillations. Pyramidal cells display synaptic theta oscillations, characterized by cycles consisting of population EPSP-IPSP sequences that are dominated by population IPSPs. These rhythmic IPSPs most probably result from theta-modulated spiking activity of several interneurons. At the same time, the majority of interneurons consistently display synaptic gamma oscillations. These oscillatory cycles consist of fast depolarizing rhythmic events that are likely to reflect excitatory input from CA3 pyramidal cells. Interneurons comprising this functional group were identified morphologically. They include four known types of interneurons (basket, O-LM, bistratified and str. lucidum-specific cells) and one new type of CA3 interneuron (multi-subfield cell). The oscillatory activity of these interneurons is only weakly correlated between neighbouring cells, and in about half of these (44 %) is modulated by depolarizing theta rhythmicity. The overall characteristics of acetylcholine-induced oscillations in slice cultures closely resemble the rhythmicity observed in hippocampal field and single cell recordings in vivo. Both rhythmicities depend on intrinsic synaptic interactions, and are expressed by different cell types. The fact that these oscillations persist in a network lacking extra-hippocampal connections emphasizes the importance of intrinsic mechanisms in determining this form of hippocampal activity.

  8. Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats

    Directory of Open Access Journals (Sweden)

    Enrico eCherubini

    2013-05-01

    Full Text Available Fluoxetine (Prozac, an antidepressant known to selectively inhibit serotonin reuptake, is widely used to treat mood disorders in women suffering from depression during pregnancy and postpartum period. Several lines of evidence suggest that this drug, which crosses the human placenta and is secreted into milk during lactation, exerts its action not only by interfering with serotoninergic but also with GABAergic transmission. GABA is known to play a crucial role in the construction of neuronal circuits early in postnatal development. The immature hippocampus is characterized by an early type of network activity, the so-called Giant Depolarizing Potentials (GDPs, generated by the synergistic action of glutamate and GABA, both depolarizing and excitatory. Here we tested the hypothesis that fluoxetine may interfere with GABAergic signaling during the first postnatal week, thus producing harmful effects on brain development. At micromolar concentrations fluoxetine severely depressed GDPs frequency (IC50 22 M in a reversible manner and independently of its action on serotonin reuptake. This effect was dependent on a reduced GABAergic (but not glutamatergic drive to principal cells most probably from parvalbumin-positive fast spiking neurons. Cholecystokinin-positive GABAergic interneurons were not involved since the effects of the drug persisted when cannabinoid receptors were occluded with WIN55,212-2, a CB1/CB2 receptor agonist. Fluoxetine effects on GABAergic transmission were associated with a reduced firing rate of both principal cells and interneurons further suggesting that changes in network excitability account for GDPs disruption. This may have critical consequences on the functional organization and stabilization of neuronal circuits early in postnatal development.

  9. The energy demand of fast neuronal network oscillations: insights from brain slice preparations

    Directory of Open Access Journals (Sweden)

    Oliver eKann

    2012-01-01

    Full Text Available Fast neuronal network oscillations in the gamma range (30-100 Hz in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.

  10. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been te...... tested successfully with brain slices and PC12 cells. The culture substrate can be modified using metal electrodes and/or nanostructures for conducting electrical measurements while culturing and for better mimicking the in vivo conditions.......In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been...

  11. Whole brain CT perfusion on a 320-slice CT scanner

    Directory of Open Access Journals (Sweden)

    Jai Jai Shiva Shankar

    2011-01-01

    Full Text Available Computed tomography perfusion (CTP has been criticized for limited brain coverage. This may result in inadequate coverage of the lesion, inadequate arterial input function, or omission of the lesion within the target perfusion volume. The availability of 320-slice CT scanners offers whole brain coverage. This minimizes the chances of misregistration of lesions regardless of location, and makes the selection of the arterial input function easy. We present different clinical scenarios in which whole brain CTP is especially useful.

  12. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Kristensen, B W; Noraberg, J; Zimmer, J

    2001-10-26

    The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for induced, concentration-dependent neuronal damage in hippocampal slice cultures. ATPA is in low concentrations a new selective agonist of the glutamate receptor subunit GluR5 confined to KA receptors and also in high concentrations an AMPA receptor agonist. The following rank order of estimated EC(50) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity was mediated primarily via AMPA receptors. Similar results were found for a high concentration of ATPA (30 microM). In low GluR5 selective concentrations (0.3-3 microM), ATPA did not induce an increase in PI uptake or a reduction in glutamic acid decarboxylase (GAD) activity of hippocampal interneurons. For KA, the excitotoxicity appeared to be mediated via both KA and AMPA receptors. NMDA receptors were not involved in AMPA-, ATPA- and KA-induced excitotoxicity, nor did NMDA-induced excitotoxicity require activation of AMPA and KA receptors. We conclude that hippocampal slice cultures constitute a feasible test system for evaluation of excitotoxic effects and mechanisms of new (ATPA) and classic (AMPA, KA and NMDA) glutamate receptor agonists. Comparison of concentration

  13. Induction of c-fos mRNA expression in an in vitro hippocampal slice model of adult rats after kainate but not gamma-aminobutyric acid or bicuculline treatment.

    Science.gov (United States)

    Massamiri, T; Khrestchatisky, M; Ben-Ari, Y

    1994-01-17

    Levels of gene expression following in vitro treatment of rat hippocampal slices with kainate, gamma-aminobutyric acid (GABA), or bicuculline were measured by the reverse transcription-coupled polymerase chain reaction method. Following a short-term exposure to kainate, c-fos gene expression was induced by 12-fold in the adult, but not the newborn, hippocampus. Under the same experimental conditions, zifl268 and brain-derived neurotrophic factor (BDNF) gene expression were unchanged. Our results also demonstrate a lack of induction of c-fos, zifl268 and BDNF after short-time treatment of either adult or newborn hippocampal slices with GABA or bicuculline. The relevance of the differential induction of gene expression in the adult and newborn in an in vitro hippocampal slice model as compared to previously described in vivo models is discussed.

  14. Rapid imaging of mammalian brain slices with a compact light sheet fluorescent microscope

    Science.gov (United States)

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2017-02-01

    Light sheet fluorescent microscopy is able to provide high acquisition speed and high contrast images, as well as the low photo-bleaching and photo-damage brought to the sample. Here we describe a compact setup design optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We report this prototype instrument is capable of rapid imaging wide area of the dendritic or axonal arbor of a dye-filled neuron in hippocampal slice. We also show several applications of this compact light sheet fluorescent microscope, to demonstrate that our approach offers a powerful functionality to the neuroscience community that is not achievable with traditional imaging methods.

  15. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    Science.gov (United States)

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  16. Propofol enhances the field excitatory postsynaptic potentials in CA1 hippocampal slices of young and aged mice

    Institute of Scientific and Technical Information of China (English)

    Yin Yiqing; William J Middleton; Carlos M.Florez; Peter L.Carlen; Hossam EI-Beheiry

    2014-01-01

    Background Increasing age was shown to decrease the requirements for propfol.However,the mechanisms of ageing-induced potentiation of anesthetic actions have not been clearly explored.The aim of this study is to compare the effects of propofol on the field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices of young and aging mice.Methods Brain slices were prepared from C57BL6 male young (2 months) and aging (>12 months) mice.The dendritic field excitatory postsynaptic potential was recorded from the CA1 stratum radiatum using patch clamp electrophysiological methods.A bipolar concentric stimulating electrode was placed along the Schaffer collateral for othodromic stimulation.The effects of clinically-relevant concentrations of propofol were studied in the young and ageing mouse tissues.Results Propofol application increased the orthodromically evoked fEPSP produced in slices taken from young and older animals.A striking feature in the I/O relationship was the decreased enhancement of the fEPSPs by propofol in slices from older mice.A clinically relevant concentration of propofol,10 μmol/L,showed more significant enhancement in amplitude and area under the curve (AUC) of fEPSP in young compared to tissues from older mice (amplitude:young (24.9±3.4)%,old (4.6±1.6)%; AUC young (30.6±5.4)%,old (2.1±1.7)%).There was no statistically significant difference between the paired-pulse facilitation (PPF) ratios calculated for the responses obtained in tissues from young mice.In slices from older mice,in the presence of 10 μmol/L propofol,PPF was decreased and returned to baseline after washout (baseline 1.21±0.01,propofol:1.16±0.01).Bicuculline (15 μmol/L) blocked the enhancement of propofol on fEPSP in tissues from young and old mice.Conclusion The fEPSP of slices from aging mice demonstrates diminished sensitivity to the enhancing actions of propofol.

  17. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Thomas F Rau

    Full Text Available Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD decreased the levels of free carnitines (FC and increased the acylcarnitine (AC: FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.

  18. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  19. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of P-glycoprotein and Multidrug resistance associated proteins.

    Directory of Open Access Journals (Sweden)

    Nora eSandow

    2015-02-01

    Full Text Available Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp and multidrug resistance associated proteins (MRPs expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs (carbamazepine, sodium valproate, phenytoin and two unspecific inhibitors of Pgp and MRPs (verapamil and probenecid on seizure-like events induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices were studied. Although in slice preparations the blood brain barrier is not functional, we found that seizure-like events predominantly persisted in the presence of anticonvulsant drugs (90% and also in the presence of verapamil and probenecid (86%. Following subsequent co-administration of antiepileptic drugs and drug transport inhibitors, seizure-like events continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30% or as suppression (7%, particularly by perfusion with carbamazepine in probenecid containing solutions (43%, 9%. Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7 % of patients. Patients whose tissue was completely or partially sensitive (65 % presented with higher seizure frequencies than those with resistant tissue (35 %. However, corresponding subgroups of patients don’t differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.

  20. Alteration in NMDA receptor subunit mRNA expression in vulnerable and resistant regions of in vitro ischemic rat hippocampal slices.

    Science.gov (United States)

    Small, D L; Poulter, M O; Buchan, A M; Morley, P

    1997-08-29

    Brain insults, including cerebral ischemia, can alter glutamate receptor subunit expression in vulnerable neurons. Understanding these post-ischemic changes in glutamate receptors could enhance our ability to identify specific, novel neuroprotective compounds. Reverse transcription-polymerase chain reaction (RT-PCR) amplification was used to quantify the altered expression of the N-methyl-D-aspartate (NMDA) NR2A, NR2B and NR2C subunits relative to one another in rat hippocampal slices in resistant and vulnerable regions following in vitro oxygen-glucose deprivation. Ninety minutes after re-oxygenation and return to 10 mM glucose, there was a significant increase in the expression of NR2C relative to NR2B and NR2A in the slice as a whole, as well as in the selectively vulnerable CA1 region and the resistant CA3 and dentate gyrus regions.

  1. The developmental expression of fluorescent proteins in organotypic hippocampal slice cultures from transgenic mice and its use in the determination of excitotoxic neurodegeneration

    DEFF Research Database (Denmark)

    Noraberg, Jens; Jensen, Carsten V; Bonde, Christian

    2007-01-01

    Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death...... in organotypic brain slice cultures, such as cellular uptake of propidium iodide (PI), loss of microtubule-associated protein 2 (MAP2), Fluoro-Jade (FJ) cell staining, and the release of cytosolic lactate dehydrogenase (LDH). An important supplement to these markers would be data on corresponding morphological...... subpopulations and astroglial cells; and b) examples of excitotoxic, glutamate receptor-induced degeneration of hippocampal CA1 pyramidal cells, with corresponding astroglial reactivity in such cultures. The slice cultures were set up according to standard techniques, by using one-week old pups from four...

  2. Ethanol impairs muscarinic receptor-induced neuritogenesis in rat hippocampal slices: Role of astrocytes and extracellular matrix proteins.

    Science.gov (United States)

    Giordano, Gennaro; Guizzetti, Marina; Dao, Khoi; Mattison, Hayley A; Costa, Lucio G

    2011-12-01

    In an in vitro co-culture system of astrocytes and neurons, stimulation of cholinergic muscarinic receptors in astrocytes had been shown to cause neuritogenesis in hippocampal neurons, and this effect was inhibited by ethanol. The present study sought to confirm these earlier findings in a more complex system, in vitro rat hippocampal slices in culture. Exposure of hippocampal slices to the cholinergic agonist carbachol (1mM for 24h) induced neurite outgrowth in hippocampal pyramidal neurons, which was mediated by activation of muscarinic M3 receptors. Specifically, carbachol induced a >4-fold increase in the length of the longest neurite, and a 4-fold increase in the length of minor neurites and in the number of branches. Co-incubation of carbachol with ethanol (50mM) resulted in significant inhibition of the effects induced by carbachol on all parameters measured. Neurite outgrowth in CNS neurons is dependent on various permissive factors that are produced and released by glial cells. In hippocampal slices carbachol increased the levels of two extracellular matrix protein, fibronectin and laminin-1, by 1.6-fold, as measured by Western blot. Co-incubation of carbachol with ethanol significantly inhibited these increases. Carbachol-induced increases in levels of extracellular matrix proteins were antagonized by a M3 muscarinic receptor antagonist. Furthermore, function-blocking fibronectin or laminin-1 antibodies antagonized the effect of carbachol on neurite outgrowth. These results indicate that in hippocampal slices stimulation of muscarinic M3 receptors induces neurite outgrowth, which is mediated by fibronectin and laminin-1, two extracellular matrix proteins released by astrocytes. By decreasing fibronectin and laminin levels ethanol prevents carbachol-induced neuritogenesis. These findings highlight the importance of glial-neuronal interactions as important targets in the developmental neurotoxicity of alcohol.

  3. Temperature- and concentration-dependence of kainate-induced y oscillation in rat hippocampal slices under submerged condition

    Institute of Scientific and Technical Information of China (English)

    Cheng-biao LU; Zhi-hua WANG; Yan-hong ZHOU; Martin VREUGDENHIL

    2012-01-01

    Aim:Fast neuronal network oscillation at the y frequency band (y oscillation:30-80 Hz) has been studied extensively in hippocampal slices under interface recording condition.The aim of this study is to establish a method for recording Y oscillation in submerged hippocampal slices that allows simultaneously monitoring Y oscillation and the oscillation-related intracellular events,such as intracellular Ca2+ concentration or mitochondrial membrane potentials.Methods:Horizontal hippocampal slices (thickness:300 pm) of adult rats were prepared and placed in a submerged or an interface chamber.Extracellular field recordings Were made in the CA3c pyramidal layer of the slices.Kainate,an AMPA/kainate receptor agonist,was applied via perfusion.Data analysis was performed off-line.Results:Addition of kainate (25-1000 nmol/L) induced Y oscillation in both the submerged and interface slices.Kainate increased the Y power in a concentration-dependent manner,but the duration of steady state oscillation was reduced at higher concentrations of kainate.Long-lasting Y oscillation was maintained at the concentrations of 100-300 nmol/L.Under submerged condition,Y oscillation was temperature-dependent,with the maximum power achieved at 29℃.The induction of Y oscillation under submerged condition also required a fast rate of perfusion (5-7 mL/min) and showed a fast dynamic during development and after the washout.Conclusion:The kainite-induced Y oscillation recorded in submerged rat hippocampal slices is useful for studying the intracellular events related to neuronal network activities and may represent a model to reveal the mechanisms underlying the normal neuronal synchronizations and diseased conditions.

  4. Effects of the alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampal slices.

    Science.gov (United States)

    Ameri, A

    1997-08-01

    Alkaloids of different Aconitum species are employed as analgesics in traditional Chinese folk medicine. The present study was designed in order to investigate the effects of the structurally related alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampus. Experiments were performed as extracellular recordings of stimulus evoked population spikes in rat hippocampal slices. 6-Benzoylheteratisine (0.01-10 microM) inhibited the ortho- and antidromic population spike as well as the field EPSP in a concentration- and frequency-dependent manner. Heteratisine (1-100 microM) was a less potent inhibitor. It exerted a depression of the orthodromic spike, but failed to affect the antidromic population spike. 6-Benzoylheteratisine (10 microM) diminished epileptiform activity induced by bicuculline. In hippocampal neurons, this compound reduced the peak amplitude of the sodium current. There was no effect of heteratisine on the sodium current in concentrations up to 100 microM. It is concluded that the frequency-dependent action of 6-benzoylheteratisine suggests an inhibition of neuronal activity which underlies epileptiform burst discharges. The predominant effect is a suppression of neuronal activity due to a blockade of sodium channels.

  5. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation.

    Science.gov (United States)

    Rolseth, Veslemøy; Rundén-Pran, Elise; Neurauter, Christine Gran; Yndestad, Arne; Luna, Luisa; Aukrust, Pål; Ottersen, Ole Petter; Bjørås, Magnar

    2008-06-01

    The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.

  6. Multi-walled carbon nanotube inhibits CA1 glutamatergic synaptic transmission in rat's hippocampal slices.

    Science.gov (United States)

    Chen, Ting; Yang, Jiajia; Zhang, Hui; Ren, Guogang; Yang, Zhuo; Zhang, Tao

    2014-09-17

    The purpose of the study was to investigate the neurotoxic effect of multi-walled carbon nanotubes (MWCNTs) on the properties of glutamatergic synaptic transmission in rat's hippocampal slices using whole-cell patch clamp technique. The amplitude and frequency of excitatory postsynaptic current (EPSC) were accessed on the hippocampal pyramidal neurons. The alterations of glutamatergic synaptic transmission in CA3-CA1 were examined by measuring both the amplitude of evoked excitatory postsynaptic current (eEPSC) and paired-pulse ratio (PPR). The data showed that the amplitude of either spontaneous excitatory postsynaptic current (sEPSC) or miniature excitatory postsynaptic current (mEPSC) was significantly inhibited by 1 μg/mL MWCNTs. However, it was found that there was a trend of different change on the frequency index. When 1 μg/mL MWCNTs was applied, there were a decreased frequency of mEPSC and an increased frequency of sEPSC, which might be due to the effect of action potential. Furthermore, the amplitudes of eEPSC at CA3-CA1 synapses were remarkably decreased. And the mean amplitude of AMPAR-mediated eEPSC was significantly reduced as well. Meanwhile, a majority of PPRs data were greater than one. There were no significant differences of PPRs between control and MWCNTs states, but an increased trend of paired-pulse facilitation was found. These results suggested that MWCNT markedly inhibited hippocampal CA1 glutamatergic synaptic transmission in vitro, which provided new insights into the MWCNT toxicology on CNS at cellular level.

  7. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.

    Science.gov (United States)

    Li, Chengzhang; Wang, Jiangang; Zhao, Jianhua; Wang, Yali; Liu, Zhihua; Guo, Fang Li; Wang, Xiao Fang; Vreugdenhil, Martin; Lu, Cheng Biao

    2016-09-01

    Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.

  8. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.

    Science.gov (United States)

    Ivanov, Anton I; Malkov, Anton E; Waseem, Tatsiana; Mukhtarov, Marat; Buldakova, Svetlana; Gubkina, Olena; Zilberter, Misha; Zilberter, Yuri

    2014-03-01

    Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pH(i), [Ca(2+)](i) or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices--instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes.

  9. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices.

    Science.gov (United States)

    Tattersall, J E; Scott, I R; Wood, S J; Nettell, J J; Bevir, M K; Wang, Z; Somasiri, N P; Chen, X

    2001-06-15

    Slices of rat hippocampus were exposed to 700 MHz continuous wave radiofrequency (RF) fields (25.2-71.0 V m(-1), 5-15 min exposure) in a stripline waveguide. At low field intensities, the predominant effect on the electrically evoked field potential in CA1 was a potentiation of the amplitude of the population spike by up to 20%, but higher intensity fields could produce either increases or decreases of up to 120 and 80%, respectively, in the amplitude of the population spike. To eliminate the possibility of RF-induced artefacts due to the metal stimulating electrode, the effect of RF exposure on spontaneous epileptiform activity induced in CA3 by 4-aminopyridine (50-100 microM) was investigated. Exposure to RF fields (50.0 V m(-1)) reduced or abolished epileptiform bursting in 36% of slices tested. The maximum field intensity used in these experiments, 71.0 V m(-1), was calculated to produce a specific absorption rate (SAR) of between 0.0016 and 0.0044 W kg(-1) in the slices. Measurements with a Luxtron fibreoptic probe confirmed that there was no detectable temperature change (+/- 0.1 degrees C) during a 15 min exposure to this field intensity. Furthermore, imposed temperature changes of up to 1 degrees C failed to mimic the effects of RF exposure. These results suggest that low-intensity RF fields can modulate the excitability of hippocampal tissue in vitro in the absence of gross thermal effects. The changes in excitability may be consistent with reported behavioural effects of RF fields.

  10. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.

    Science.gov (United States)

    Hochman, D W; Schwartzkroin, P A

    2000-01-01

    Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low-chloride (low-[Cl(-)](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. Treatment with low-[Cl(-)](o) medium led to cessation of spontaneous synchronized bursting in CA1 >/=5-10 min before its disappearance from CA3. During the time that CA3 continued to burst spontaneously but CA1 was silent, electrical stimulation of the Schaffer collaterals showed that hyperexcited CA1 synaptic responses were maintained. Paired intracellular recordings from CA1 pyramidal cells showed that during low-[Cl(-)](o) treatment, the timing of action potential discharges became desynchronized; desynchronization was identified with phase lags in firing times of action potentials between pairs of neurons as well as a with a broadening and diminution of the CA1 field amplitude. Continued exposure to low-[Cl(-)](o) medium increased the degree of the firing-time phase shifts between pairs of CA1 pyramidal cells until the epileptiform CA1 field potential was abolished completely. Intracellular recordings during 4-aminopyridine (4-AP) treatment showed that prolonged low-[Cl(-)](o) exposure did not diminish the frequency or amplitude of spontaneous postsynaptic potentials. CA3 antidromic responses to Schaffer collateral stimulation were not significantly affected by prolonged low-[Cl(-)](o) exposure. In contrast to CA1, paired intracellular recordings from CA3 pyramidal cells showed that chloride-cotransport blockade did not cause a significant desynchronization of action potential firing times in the

  11. Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Cho, Seongeun; Liu, Danni; Fairman, Denise; Li, Ping; Jenkins, Lorayne; McGonigle, Paul; Wood, Andrew

    2004-07-01

    Oxygen-glucose deprivation (OGD) induced neuron-specific cell death in organotypic hippocampal slice cultures. Neuronal death was first evident in the CA1 region 24 h after the injury as assessed by propidium iodide (PI) labeling, and continued to extend to the CA3/4 region up to 72 h. At 6 days post-OGD, PI labeling was weak and diffuse with no clear demarcation of pyknotic nuclei. To characterize biochemical changes produced by OGD, cellular efflux of three key amino acid neurotransmitters was evaluated. OGD elicited large increases in the release of GABA and aspartate (55- and 4.5-fold increase over basal, respectively), while there were no detectable changes in extracellular glutamate levels. In order to ascertain the existence of the synaptic pool of glutamate, sister cultures were treated with sodium azide. This evoked a strong increase in glutamate release, suggesting the intactness of the glutamate system. Further studies revealed a time-dependent activation of caspase 3 following OGD, shown by immunoblot analysis as well as by confocal laser scanning microscopy. While we did not observe the activation of caspases 1, 2, or 8 in our model, the activation of caspase 9 was evident, peaking at 12 h post-OGD. Despite no apparent increase in glutamate release by ischemic slices, treatment with a N-methyl-D-aspartate (NMDA) antagonist or an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist significantly reduced neuronal death. Furthermore, a pan-caspase inhibitor (zVAD-fmk), but not the caspase 3 inhibitor (DEVD-fmk), provided partial neuroprotection. Inhibition of a Ca(2+)-dependent cysteine protease, calpain, by MDL28170 also elicited partial neuroprotective effects.

  12. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  13. Presynaptic inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor.

    OpenAIRE

    Colmers, W. F.; Klapstein, G. J.; A. Fournier; St-Pierre, S.; Treherne, K. A.

    1991-01-01

    1. The action of analogues and C-terminal fragments of neuropeptide Y (NPY) was examined on excitatory synaptic transmission in area CA1 of the rat hippocampal slice in vitro, by use of intracellular and extracellular recordings, to determine by agonist profile the NPY receptor subtype mediating presynaptic inhibition. 2. Neither NPY, analogues nor fragments of NPY affected the passive or active properties of the post-synaptic CA1 pyramidal neurones, indicating their action is at a presynapti...

  14. Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures.

    Science.gov (United States)

    Jung, Yeon Joo; Suh, Eun Cheng; Lee, Kyung Eun

    2012-12-01

    Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.

  15. Administration of copper reduced the hyper-excitability of neurons in CA1 hippocampal slices from epileptic rats.

    Science.gov (United States)

    Leiva, Juan; Infante, Claudio

    2016-04-01

    Copper as a trace metal is involved in several neurodegenerative illnesses, such as Menkes, Wilson's, Alzheimer's, amyotrophic lateral sclerosis (ALS), and Creutzfeldt-Jakob. Electrophysiological evidence indicates that acute perfusion of copper can inhibit long-term synaptic potentiation in hippocampal slices. The objective of this work is to determine whether Cu perfusion can perturb synaptic transmission in hippocampal slices derived from pilocarpine treated epileptic rats. Field potential (FP) recordings of the CA1 neurons of rats with chronic epilepsy showed voltage and response duration decrease following copper sulfate perfusion. However, voltage and response duration were higher after removing copper by washing. The discharge frequency of the CA1 neurons of hippocampal slices from non-epileptic control rats was increased after acute perfusion of 10 μM of pilocarpine. This increase was blocked by administering copper sulphate 10 μM. Krebs-Ringer solution washing re-established the discharges, with a higher frequency than that provoked by pilocarpine perfusion. We discuss the blocking effect of copper and the synaptic hyper-excitability generated by its removal.

  16. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions.

    Science.gov (United States)

    Dal-Cim, Tharine; Ludka, Fabiana K; Martins, Wagner C; Reginato, Charlise; Parada, Esther; Egea, Javier; López, Manuela G; Tasca, Carla I

    2013-08-01

    Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 μM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti-inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol-3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin-sensitive G-protein-coupled signaling, blockade of adenosine A2A receptors (A2A R), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake.

  17. Nanoparticle Targeting to Neurons in a Rat Hippocampal Slice Culture Model

    Directory of Open Access Journals (Sweden)

    Ryan Walters

    2012-09-01

    Full Text Available We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots coated with PEG [poly(ethylene glycol]-appended DHLA (dihydrolipoic acid can bind AcWG(PalVKIKKP9GGH6 (Palm1 through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry, demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.

  18. Nanoparticle targeting to neurons in a rat hippocampal slice culture model

    Directory of Open Access Journals (Sweden)

    Richard P Kraig

    2012-10-01

    Full Text Available We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots coated with PEG [poly(ethylene glycol]-appended DHLA (dihydrolipoic acid can bind AcWG(PalVKIKKP9GGH6 (Palm1 through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry, demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.

  19. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented. ...

  20. 小鼠海马脑片和海马-内嗅皮层联合脑片癫痫样放电特性的比较研究%Comparative study of the characteristics of epileptiform discharges in the hippocampal slices and combined entorhinal cortex-hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    石叶军; 陆钦池; 宫新伟; 龚海庆; 张溥明; 梁培基

    2013-01-01

    Objective In order to explore the Mg 2+-free artificial cerebrospinal fluid ( ACSF ) induced different epileptiform discharge patterns in adult mouse hippocampal slices and combined entorhinal cortex -hippocampal slices in vitro.Methods Two brain slice models were prepared , and Mg2+-free-ACSF was used to induce epileptiform discharges , which were recorded by micro-electrode array ( MEA ) .The spatiotemporal characteristics of the discharge patterns were studied following successful induction of epileptiform discharges in the two slice models .Results Mg2+-free-ACSF induced interictal discharges in the hippocampal slice ,with frequency of (11.6 ±2.4)times/min,and lasted 149.0-202.6 ms.While in the combined entorhinal cortex-hippocampal slice,the discharge pattern was alternated between interictal and ictal discharges .The frequency of interictal discharges was (12.9 ±3.3) times/min,with duration of 181.3-223.7 ms.The frequency of ictal discharges was (0.26 ±0.07 ) times/min,with duration of 14.3-14.5 s.Conclusion Interictal as well as ictal discharges could be recorded in the combined entorhinal cortex-hippocampal slice network level .So the combined entorhinal cortex-hippocampal slice is an ideal model for epilepsy research .%目的探索离体条件下无镁人工脑脊液( ACSF )诱导的成年小鼠海马脑片和海马-内嗅皮层联合脑片的不同癫痫样放电模式。方法分别制备两种脑片模型,使用无镁ACSF诱导脑片产生癫痫样放电,并用多电极阵列记录脑片不同区域神经元的放电情况。在两种脑片模型上诱导出稳定的癫痫样放电后,分析不同类型癫痫样放电模式的时空特性。结果无镁ACSF诱导海马脑片产生间期放电,间期放电频率为(11.6±2.4)次/min,平均放电持续时间为149.0~202.6 ms。无镁ACSF诱导海马-内嗅皮层联合脑片产生间期和发作期放电交替出现的模式,间期放电的频率为(12.9±3.3)次/min,

  1. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures

    DEFF Research Database (Denmark)

    Montero, Maria; Rom Poulsen, Frantz; Noraberg, Jens;

    2007-01-01

    of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal...

  2. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers

    OpenAIRE

    Tamura Makoto; Tamura Naohiro; Ikeda Takamitsu; Koyama Ryuta; Ikegaya Yuji; Matsuki Norio; Yamada Maki K

    2009-01-01

    Abstract Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced a...

  3. A novel carbon fiber bundle microelectrode and modified brain slice chamber for recording long-term multiunit activity from brain slices.

    Science.gov (United States)

    Tcheng, T K; Gillette, M U

    1996-11-01

    The fabrication and characteristics of a novel multiunit recording electrode and modified brain slice chamber suitable for long-term recording from brain slices are described. The electrode consisted of an electrolyte-filled glass micropipette with a 20-50 microns thick wax-coated bundle of 5-micron diameter carbon fibers extending 2.5 cm from the tapered end and an AgCl-coated silver wire inserted into the open end and connected to a preamplifier. Both ends of the electrode were sealed with wax to prevent evaporation of the electrolyte. The brain slice was maintained over this extended period in an interface-type brain slice chamber modified to completely surround the slice with medium. Using this electrode, regular 24-h oscillations of spontaneous multiunit activity were recorded for 3 days from a single location in a 500 microns thick rat suprachiasmatic nucleus brain slice. Preliminary data suggest that this novel carbon fiber bundle electrode will be a favorable alternative to traditional metal electrodes for long-term recording of multiunit activity from brain slices.

  4. Slices

    KAUST Repository

    McCrae, James

    2011-01-01

    Minimalist object representations or shape-proxies that spark and inspire human perception of shape remain an incompletely understood, yet powerful aspect of visual communication. We explore the use of planar sections, i.e., the contours of intersection of planes with a 3D object, for creating shape abstractions, motivated by their popularity in art and engineering. We first perform a user study to show that humans do define consistent and similar planar section proxies for common objects. Interestingly, we observe a strong correlation between user-defined planes and geometric features of objects. Further we show that the problem of finding the minimum set of planes that capture a set of 3D geometric shape features is both NP-hard and not always the proxy a user would pick. Guided by the principles inferred from our user study, we present an algorithm that progressively selects planes to maximize feature coverage, which in turn influence the selection of subsequent planes. The algorithmic framework easily incorporates various shape features, while their relative importance values are computed and validated from the user study data. We use our algorithm to compute planar slices for various objects, validate their utility towards object abstraction using a second user study, and conclude showing the potential applications of the extracted planar slice shape proxies. © 2011 ACM.

  5. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation.

    Science.gov (United States)

    Vandresen-Filho, Samuel; Martins, Wagner C; Bertoldo, Daniela B; Mancini, Gianni; Herculano, Bruno A; de Bem, Andreza F; Tasca, Carla I

    2013-06-01

    Oxygen-glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.

  6. Dual effect of DMPP on the resting release of noradrenaline from rat hippocampal slices.

    Science.gov (United States)

    Kiss, J P; Windisch, K; Balla, A; Sershen, H; Lajtha, A

    1997-01-01

    The effect of the nicotinic receptor agonist dimethylphenylpiperazinium iodide (DMPP) on the resting release of [3H]noradrenaline from superfused hippocampal slices was studied in rat. Continuous administration of DMPP at a concentration range of 1-100 microM increased the [3H]noradrenaline release in a dose-dependent manner. The response to DMPP was characterized by an immediate steep increase (peak response) followed by a sudden decline to a lower level that was constant with time (tall response) and still was significantly higher than the spontaneous release. Further analysis revealed that the release of noradrenaline in response to DMPP consists of two components. While nicotinic receptor antagonists (mecamylamine 10 microM, pancuronium 10 microM, pipecuronium 10 microM), the nonselective Ca-antagonist Cd2+ (125 microM) and tetrodotoxin (TTX, 1 microM) completely abolished the peak response (phase I), they had no effect on the tall response (phase II). Ca(2+)-free medium containing 1 mM EGTA also blocked phase I but in contrast with other drugs enhanced phase II. The release during phase I is subject to presynaptic feedback modulation, since the alpha 2-adrenoceptor agonist xylazine (3 microM) inhibited the DMPP-evoked stimulation of [3H]noradrenaline release, that inhibition was antagonized by a selective alpha 2-adrenoceptor antagonist, (+/-)-[7,8-(methylenedioxy)-14-alpha-hydroxyalloberbane hydrochloride [(+/-)-CH-38083] (2 microM). (+/-)-CH-38083 (2 microM) alone significantly enhanced the DMPP-evoked increase of [3H]noradrenaline release. Phase II was not effected by alpha 2-adrenergic drugs. Whereas the noradrenaline uptake blockers despramine (DMI, 1-10 microM), nisoxetine (1-10 microM), and nomifensine (10 microM) inhibited both phases, nomifensine at a concentration of 1 microM selectively blocked only phase II. Our data indicate that DMPP has a dual effect on the hippocampal noradrenaline release: phase I is a transient, nicotinic receptor

  7. Profile analysis of hepatic porcine and murine brain tissue slices obtained with a vibratome.

    Science.gov (United States)

    Mattei, G; Cristiani, I; Magliaro, C; Ahluwalia, A

    2015-01-01

    This study is aimed at characterizing soft tissue slices using a vibratome. In particular, the effect of two sectioning parameters (i.e., step size and sectioning speed) on resultant slice thickness was investigated for fresh porcine liver as well as for paraformaldehyde-fixed (PFA-fixed) and fresh murine brain. A simple framework for embedding, sectioning and imaging the slices was established to derive their thickness, which was evaluated through a purposely developed graphical user interface. Sectioning speed and step size had little effect on the thickness of fresh liver slices. Conversely, the thickness of PFA-fixed murine brain slices was found to be dependent on the step size, but not on the sectioning speed. In view of these results, fresh brain tissue was sliced varying the step size only, which was found to have a significant effect on resultant slice thickness. Although precision-cut slices (i.e., with regular thickness) were obtained for all the tissues, slice accuracy (defined as the match between the nominal step size chosen and the actual slice thickness obtained) was found to increase with tissue stiffness from fresh liver to PFA-fixed brain. This quantitative investigation can be very helpful for establishing the most suitable slicing setup for a given tissue.

  8. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    Science.gov (United States)

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  9. Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels.

    Science.gov (United States)

    Montecinos-Oliva, C; Schuller, A; Parodi, J; Melo, F; Inestrosa, N C

    2014-01-01

    Tetrahydrohyperforin (IDN5706) is a semi-synthetic compound derived from hyperforin (IDN5522) and is the main active principle of St. John's Wort. IDN5706 has shown numerous beneficial effects when administered to wild-type and double transgenic (APPswe/PSEN1ΔE9) mice that model Alzheimer's disease. However, its mechanism of action is currently unknown. Toward this end, we analysed field excitatory postsynaptic potentials (fEPSPs) in mouse hippocampal slices incubated with IDN5706 and in the presence of the TRPC3/6/7 activator 1-oleoyl-2-acetyl-sn-glycerol (OAG), the TRPC channel blocker SKF96365, and neurotoxic amyloid β-protein (Aβ) oligomers. To study spatial memory, Morris water maze (MWM) behavioural tests were conducted on wild-type mice treated with IDN5706 and SKF96365. In silico studies were conducted to predict a potential pharmacophore. IDN5706 and OAG had a similar stimulating effect on fEPSPs, which was inhibited by SKF96365. IDN5706 protected from reduced fEPSPs induced by Aβ oligomers. IDN5706 improved spatial memory in wild-type mice, an effect that was counteracted by co-administration of SKF96365. Our in silico studies suggest strong pharmacophore similarity of IDN5706 and other reported TRPC6 activators (IDN5522, OAG and Hyp9). We propose that the effect of IDN5706 is mediated through activation of the TRPC3/6/7 channel subfamily. The unveiling of the drug's mechanism of action is a necessary step toward the clinical use of IDN5706 in Alzheimer's disease.

  10. Conditions sufficient for nonsynaptic epileptogenesis in the CA1 region of hippocampal slices.

    Science.gov (United States)

    Bikson, Marom; Baraban, Scott C; Durand, Dominique M

    2002-01-01

    Nonsynaptic mechanisms exert a powerful influence on seizure threshold. It is well-established that nonsynaptic epileptiform activity can be induced in hippocampal slices by reducing extracellular Ca(2+) concentration. We show here that nonsynaptic epileptiform activity can be readily induced in vitro in normal (2 mM) Ca(2+) levels. Those conditions sufficient for nonsynaptic epileptogenesis in the CA1 region were determined by pharmacologically mimicking the effects of Ca(2+) reduction in normal Ca(2+) levels. Increasing neuronal excitability, by removing extracellular Mg(2+) and increasing extracellular K(+) (6-15 mM), induced epileptiform activity that was suppressed by postsynaptic receptor antagonists [D-(-)-2-amino-5-phosphonopentanoic acid, picrotoxin, and 6,7-dinitroquinoxaline-2,3-dione] and was therefore synaptic in nature. Similarly, epileptiform activity induced when neuronal excitability was increased in the presence of K(Ca) antagonists (verruculogen, charybdotoxin, norepinephrine, tetraethylammonium salt, and Ba(2+)) was found to be synaptic in nature. Decreases in osmolarity also failed to induce nonsynaptic epileptiform activity in the CA1 region. However, increasing neuronal excitability (by removing extracellular Mg(2+) and increasing extracellular K(+)) in the presence of Cd(2+), a nonselective Ca(2+) channel antagonist, or veratridine, a persistent sodium conductance enhancer, induced spontaneous nonsynaptic epileptiform activity in vitro. Both novel models were characterized using intracellular and ion-selective electrodes. The results of this study suggest that reducing extracellular Ca(2+) facilitates bursting by increasing neuronal excitability and inhibiting Ca(2+) influx, which might, in turn, enhance a persistent sodium conductance. Furthermore, these data show that nonsynaptic mechanisms can contribute to epileptiform activity in normal Ca(2+) levels.

  11. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    Science.gov (United States)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  12. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  13. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    NARCIS (Netherlands)

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, BK; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (>= 5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effec

  14. Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice.

    Science.gov (United States)

    Kawamura, Masahito; Gachet, Christian; Inoue, Kazuhide; Kato, Fusao

    2004-12-01

    ATP is an important cell-to-cell signaling molecule mediating the interactions between astrocytes and neurons in the CNS. In the hippocampal slices, ATP suppresses excitatory transmission mostly through activation of adenosine A1 receptors, because the ectoenzyme activity for the extracellular breakdown of ATP to adenosine is high in slice preparations in contrast to culture environments. Because the hippocampus is also rich in the expression of P2 receptors activated specifically by ATP, we examined whether ATP modulates neuronal excitability in the acute slice preparations independently of adenosine receptors. Although ATP decreased the frequency of spontaneously occurring EPSCs in the CA3 pyramidal neurons through activation of adenosine A1 receptors, ATP concurrently increased the frequency of IPSCs in a manner dependent on action potential generation. This effect was mediated by P2Y1 receptors because (1) 2-methylthio-ATP (2meSATP) was the most potent agonist, (2) 2'-deoxy-N6-methyladenosine-3',5'-bisphosphate diammonium (MRS2179) abolished this effect, and (3) this increase in IPSC frequency was not observed in the transgenic mice lacking P2Y1 receptor proteins. Application of 2meSATP elicited MRS2179-sensitive time- and voltage-dependent inward currents in the interneurons, which depolarized the cell to firing threshold. Also, it increased [Ca2+]i in both astrocytes and interneurons, but, unlike the former effect, the latter was entirely dependent on Ca2+ entry. Thus, in hippocampal slices, in addition to activating A1 receptors of the excitatory terminals after being converted to adenosine, ATP activates P2Y1 receptors in the interneurons, which is linked to activation of unidentified excitatory conductance, through mechanisms distinct from those in the astrocytes.

  15. Ex Vivo Optogenetic Dissection of Fear Circuits in Brain Slices.

    Science.gov (United States)

    Bosch, Daniel; Asede, Douglas; Ehrlich, Ingrid

    2016-04-05

    Optogenetic approaches are now widely used to study the function of neural populations and circuits by combining targeted expression of light-activated proteins and subsequent manipulation of neural activity by light. Channelrhodopsins (ChRs) are light-gated cation-channels and when fused to a fluorescent protein their expression allows for visualization and concurrent activation of specific cell types and their axonal projections in defined areas of the brain. Via stereotactic injection of viral vectors, ChR fusion proteins can be constitutively or conditionally expressed in specific cells of a defined brain region, and their axonal projections can subsequently be studied anatomically and functionally via ex vivo optogenetic activation in brain slices. This is of particular importance when aiming to understand synaptic properties of connections that could not be addressed with conventional electrical stimulation approaches, or in identifying novel afferent and efferent connectivity that was previously poorly understood. Here, a few examples illustrate how this technique can be applied to investigate these questions to elucidating fear-related circuits in the amygdala. The amygdala is a key region for acquisition and expression of fear, and storage of fear and emotional memories. Many lines of evidence suggest that the medial prefrontal cortex (mPFC) participates in different aspects of fear acquisition and extinction, but its precise connectivity with the amygdala is just starting to be understood. First, it is shown how ex vivo optogenetic activation can be used to study aspects of synaptic communication between mPFC afferents and target cells in the basolateral amygdala (BLA). Furthermore, it is illustrated how this ex vivo optogenetic approach can be applied to assess novel connectivity patterns using a group of GABAergic neurons in the amygdala, the paracapsular intercalated cell cluster (mpITC), as an example.

  16. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis.

    Directory of Open Access Journals (Sweden)

    Edwin Bennink

    Full Text Available Although CT scanners generally allow dynamic acquisition of thin slices (1 mm, thick slice (≥5 mm reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction.From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT, and permeability-surface area product (PS were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF, and motion correction on the perfusion values was investigated.Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small.This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are used for clinical decision making.

  17. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B;

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD......) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD...... ischemia in gerbils in vivo and oxygen-glucose deprivation in mouse hippocampal slice cultures....

  18. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Blaabjerg, M; Kristensen, Bjarne Winther; Bonde, C;

    2001-01-01

    The potential toxic effects of the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and its interactions with the N-methyl-D-aspartate (NMDA) receptor were studied in hippocampal brain slice cultures, using densitometric measurements of the cellular....... The neurodegeneration induced by 2 mM ACPD was completely abolished by addition of 10 microM of the NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), while 20 microM of the 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainic acid receptor antagonist...... of metabotropic glutamate receptors with ACPD at concentrations of 2 mM or higher induces a distinct subfield-related and time and concentration dependent pattern of hippocampal degeneration, and that ACPD at subtoxic concentrations modulates NMDA-induced excitotoxicity through the mGluR5 receptor in a time...

  19. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    Science.gov (United States)

    2015-09-16

    anodal transcranial direct current stimulation in healthy adults of younger and older age. Front Aging Neurosci 6:146. CrossRef Medline Hoy KE...on cognition and performance. 15. SUBJECT TERMS brain stimulation; extracellular recording; hippocampus; long term potentiation; rat; tDCS 16...Prescribed by ANSI Std. Z39.18 Development /Plasticity/Repair Modulating Hippocampal Plasticity with In Vivo Brain Stimulation X Joyce G. Rohan,1,3

  20. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia.

    Science.gov (United States)

    Pohland, Martin; Glumm, Robert; Wiekhorst, Frank; Kiwit, Jürgen; Glumm, Jana

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.

  1. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia

    Science.gov (United States)

    Pohland, Martin; Glumm, Robert; Wiekhorst, Frank; Kiwit, Jürgen; Glumm, Jana

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.

  2. Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Kimelberg, Harold K; Zhou, Min

    2010-03-01

    Mammalian protoplasmic astrocytes are extensively coupled through gap junction channels but the biophysical properties of these channels under physiological and ischemic conditions in situ are not well defined. Using confocal morphometric analysis of biocytin-filled astrocytic syncytia in rat hippocampal CA1 stratum radiatum we found that each astrocyte directly couples, on average, to 11 other astrocytes with a mean interastrocytic distance of 45 microm. Voltage-independent and bidirectional transjunctional currents were always measured between directly coupled astrocyte pairs in dual voltage-clamp recordings, but never from astrocyte-NG2 glia or astrocyte-interneuron pairs. The electrical coupling ratio varied considerably among astrocytes in developing postnatal day 14 rats (P14, 0.5-12.4%, mean = 3.6%), but became more constant in young adult P21 rats (0.18-3.9%, mean = 1.6%), and the coupling ratio declined exponentially with increasing pair distance. Electrical coupling was not affected by short-term oxygen-glucose deprivation (OGD) treatment, but showed delayed inhibition in an acidic extracellular pH of 6.4. Combination of acidic pH (6.4) and OGD, a condition that better represents cerebral ischemia in vivo, accelerated the inhibition of electrical coupling. Our results show that, under physiological conditions, 20.7-24.2% of K(+) induced currents can travel from any astrocytic soma in CA1 stratum radiatum to the gap junctions of the nearest neighbor astrocytes, but this should be severely inhibited as a consequence of the OGD and acidosis seen in the ischemic brain.

  3. Cell surface area regulation in neurons in hippocampal slice cultures is resistant to oxygen-glucose deprivation

    Directory of Open Access Journals (Sweden)

    Natalya Shulyakova

    2010-09-01

    Full Text Available Natalya Shulyakova1,2, Jamie Fong2, Diana Diec2, Adrian Nahirny1,2, Linda R Mills1,21Department of Physiology, University of Toronto, Toronto, ON, Canada, M5T 2S8; 2Toronto Western Hospital Research Institute, University Health Network, 11-430, 399 Bathurst St, Toronto, ON, Canada, M5T 2S8Background: Neurons swell in response to a variety of insults. The capacity to recover, ie, to shrink, is critical for neuronal function and survival. Studies on dissociated neurons have shown that during swelling and shrinking, neurons reorganize their plasma membrane; as neurons swell, in response to hypo-osmotic media, the bilayer area increases. Upon restoration of normo-osmotic media, neurons shrink, forming transient invaginations of the plasma membrane known as vacuole-like dilations (VLDs, to accommodate the decrease in the bilayer.Methods: Here we used confocal microscopy to monitor neuronal swelling and shrinking in the three-dimensional (3D environment of post-natal rat hippocampal slice cultures. To label neurons, we used biolistic transfection, to introduce enhanced green fluorescent protein (eGFP targeted to the cytoplasm; and a membrane targeted GFP (lckGFP, targeted to the plasma membrane.Results: Neurons in slice cultures swelled and shrank in response to hypo-osmotic to normo-osmotic media changes. Oxygen-glucose deprivation (OGD caused sustained neuronal swelling; after reperfusion, some neurons recovered but in others, VLD recovery was stalled. OGD did not impair neuronal capacity to recover from a subsequent osmotic challenge.Conclusion: These results suggest cell surface area regulation (SAR is an intrinsic property of neurons, and that neuronal capacity for SAR may play an important role in the brain’s response to ischemic insults.Keywords: neurons, swelling, ischemia, cell surface area, hippocampal slice culture

  4. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available We have recently shown that p38MAP kinase (p38MAPK stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.

  5. How to record a million synaptic weights in a hippocampal slice.

    Directory of Open Access Journals (Sweden)

    Upinder S Bhalla

    2008-06-01

    Full Text Available A key step toward understanding the function of a brain circuit is to find its wiring diagram. New methods for optical stimulation and optical recording of neurons make it possible to map circuit connectivity on a very large scale. However, single synapses produce small responses that are difficult to measure on a large scale. Here I analyze how single synaptic responses may be detectable using relatively coarse readouts such as optical recording of somatic calcium. I model a network consisting of 10,000 input axons and 100 CA1 pyramidal neurons, each represented using 19 compartments with voltage-gated channels and calcium dynamics. As single synaptic inputs cannot produce a measurable somatic calcium response, I stimulate many inputs as a baseline to elicit somatic action potentials leading to a strong calcium signal. I compare statistics of responses with or without a single axonal input riding on this baseline. Through simulations I show that a single additional input shifts the distribution of the number of output action potentials. Stochastic resonance due to probabilistic synaptic release makes this shift easier to detect. With approximately 80 stimulus repetitions this approach can resolve up to 35% of individual activated synapses even in the presence of 20% recording noise. While the technique is applicable using conventional electrical stimulation and extracellular recording, optical methods promise much greater scaling, since the number of synapses scales as the product of the number of inputs and outputs. I extrapolate from current high-speed optical stimulation and recording methods, and show that this approach may scale up to the order of a million synapses in a single two-hour slice-recording experiment.

  6. How to record a million synaptic weights in a hippocampal slice.

    Science.gov (United States)

    Bhalla, Upinder S

    2008-06-20

    A key step toward understanding the function of a brain circuit is to find its wiring diagram. New methods for optical stimulation and optical recording of neurons make it possible to map circuit connectivity on a very large scale. However, single synapses produce small responses that are difficult to measure on a large scale. Here I analyze how single synaptic responses may be detectable using relatively coarse readouts such as optical recording of somatic calcium. I model a network consisting of 10,000 input axons and 100 CA1 pyramidal neurons, each represented using 19 compartments with voltage-gated channels and calcium dynamics. As single synaptic inputs cannot produce a measurable somatic calcium response, I stimulate many inputs as a baseline to elicit somatic action potentials leading to a strong calcium signal. I compare statistics of responses with or without a single axonal input riding on this baseline. Through simulations I show that a single additional input shifts the distribution of the number of output action potentials. Stochastic resonance due to probabilistic synaptic release makes this shift easier to detect. With approximately 80 stimulus repetitions this approach can resolve up to 35% of individual activated synapses even in the presence of 20% recording noise. While the technique is applicable using conventional electrical stimulation and extracellular recording, optical methods promise much greater scaling, since the number of synapses scales as the product of the number of inputs and outputs. I extrapolate from current high-speed optical stimulation and recording methods, and show that this approach may scale up to the order of a million synapses in a single two-hour slice-recording experiment.

  7. Optimized Protocol of Methanol Treatment for Immunofluorescent Staining in Fixed Brain Slices

    Science.gov (United States)

    Yuan, Feng; Cohen, Noam A.; Cohen, Akiva S.

    2017-01-01

    We optimized methanol treatment in paraformaldehyde-fixed slices for immunofluorescent staining of ependymal basal bodies in brain ventricles. As 100% methanol induced severe deformations to the slices (including rolling and folding over), we tried to decrease methanol concentration. We found that 33.3% to 75% methanol could result in ideal immunostaining of basal bodies without inducing obvious deformations. Instead of treating slices at −20°C (without proper cryoprotection measurements) as suggested in previous studies, we carried out methanol treatment at room temperature. Our modified protocol can not only raise immunostaining efficiency in tissue slices, it may also prevent potential freezing damages to the samples. PMID:26509907

  8. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-beta plaque formation in organotypic hippocampal slice cultures

    NARCIS (Netherlands)

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-beta (A beta) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to A beta plaque formation. We

  9. Optogenetic Evocation of Field Inhibitory Postsynaptic Potentials in Hippocampal Slices: A Simple and Reliable Approach for Studying Pharmacological Effects on GABAA and GABAB Receptor-Mediated Neurotransmission

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2014-01-01

    Full Text Available The GABAergic system is the main source of inhibition in the mammalian brain. Consequently, much effort is still made to develop new modulators of GABAergic synaptic transmission. In contrast to glutamatergic postsynaptic potentials (PSPs, accurate monitoring of GABA receptor-mediated PSPs (GABAR-PSPs and their pharmacological modulation in brain tissue invariably requires the use of intracellular recording techniques. However, these techniques are expensive, time- and labor-consuming, and, in case of the frequently employed whole-cell patch-clamp configuration, impact on intracellular ion concentrations, signaling cascades, and pH buffering systems. Here, we describe a novel approach to circumvent these drawbacks. In particular, we demonstrate in mouse hippocampal slices that selective optogenetic activation of interneurons leads to prominent field inhibitory GABAAR- and GABABR-PSPs in area CA1 which are easily and reliably detectable by a single extracellular recording electrode. The field PSPs exhibit typical temporal and pharmacological characteristics, display pronounced paired-pulse depression, and remain stable over many consecutive evocations. Additionally validating the methodological value of this approach, we further show that the neuroactive steroid 5-THDOC (5 µM shifts the inhibitory GABAAR-PSPs towards excitatory ones.

  10. Using laser confocal scanning microscope to study ischemia-hypoxia injury in rat brain slice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The level of lipid peroxidation and cellular necrosis in rat living brain slices during brain ischemia-hypoxia injury have been observed using a laser confocal scanning microscope (LCSM) with double labeling of fluorescent probes D-399 (2,7-dichlorofluorescin diacetate) and propidium iodide (PI).The hypoxia and/or reoxygenation injury in rat brain slices is markedly decreased by pretreatment with L-NG-nitro-arginine (L-NNA) and N-acetylcysteine (NAC),showing that the nitric oxide (NO) and other free radicals play an important role in brain ischemia-hypoxia injury.

  11. The effect of two lipophilic gamma-aminobutyric acid uptake blockers in CA1 of the rat hippocampal slice

    DEFF Research Database (Denmark)

    Rekling, J C; Jahnsen, H; Mosfeldt Laursen, A

    1990-01-01

    the blood. 2. We have investigated the effect of these two uptake inhibitors on the responses to exogenous GABA and on GABA-mediated inhibitory synaptic potentials in pyramidal neurones of the CA1 region in the rat hippocampal slice. 3. We found that both drugs increased the amplitude and duration...... of responses to exogenous GABA. Furthermore, the inhibitory synaptic potentials increased in amplitude. This increase was seen in both early and late phases of the synaptic potentials. We conclude that NO-05-0328 and NO-05-0329, at least in vitro, are more effective than older GABA uptake inhibitors...... such as nipecotic acid and they therefore deserve consideration for clinical use....

  12. Nitric oxide interacts with oxygen free radicals to evoke the release of adenosine and adenine nucleotides from rat hippocampal slices.

    Science.gov (United States)

    Broad, R M; Fallahi, N; Fredholm, B B

    2000-07-01

    The present study examined some possible mechanisms underlying the previously demonstrated release of adenosine by nitric oxide (NO) donors. Perfusion with the NO-donor S-nitroso-N-acetyl penicillamine (SNAP; 300 microM) led to a significant increase in the release of [3H]purines from both unstimulated and electrically stimulated hippocampal slices prelabeled with [3H]adenine. The NO-donor also evoked the release of endogenous ATP and ADP from unstimulated slices and, when combined with electrical stimulation, the release of ATP, AMP and adenosine. The SNAP-induced [3H]purine release was calcium-dependent, but not affected by the glutamate receptor antagonists MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]-cyclohepten-5,10-imine;100 nM) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; 10 microM). Zaprinast (5 microM), an inhibitor of the cyclic GMP-dependent phosphodiesterase and 8-Br-cyclic GMP (0.01-1 mM) failed to evoke the release of purines, whereas generation of oxygen free radicals by xanthine plus xanthine oxidase did evoke purine release. Coperfusion of SNAP with the free radical scavengers superoxide dismutase (SOD; 60 microg/ml) and catalase (50 microg/ml) reduced or eliminated the ability of the NO-donor to enhance [3H]purine release, but the poly (ADP-ribosyl) synthetase (PARS) inhibitor benzamide (500 microM) did not affect it. These data indicate that NO interacts with superoxide, likely forming peroxynitrite, which subsequently acts to release adenosine and adenine nucleotides from hippocampal tissue.

  13. Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide.

    Science.gov (United States)

    Keynes, Robert G; Duport, Sophie; Garthwaite, John

    2004-03-01

    Nitric oxide (NO) has been proposed to mediate neurodegeneration arising from NMDA receptor activity, but the issue remains controversial. The hypothesis was re-examined using organotypic slice cultures of rat hippocampus, with steps being taken to avoid known artefacts. The NO-cGMP signalling pathway was well preserved in such cultures. Brief exposure to NMDA resulted in a concentration-dependent delayed neuronal death that could be nullified by administration of the NMDA antagonist MK801 (10 microm) given postexposure. Two inhibitors of NO synthesis failed to protect the slices, despite fully blocking NMDA-induced cGMP accumulation. By comparing NMDA-induced cGMP accumulation with that produced by an NO donor, toxic NMDA concentrations were estimated to produce only physiological NO concentrations (2 nm). In studies of the vulnerability of the slices to exogenous NO, it was found that continuous exposure to up to 4.5 microm NO failed to affect ATP levels (measured after 6 h) or cause damage during 24 h, whereas treatment with the respiratory inhibitors myxothiazol or cyanide caused ATP depletion and complete cell death within 24 h. An NO concentration of 10 microm was required for ATP depletion and cell death, presumably through respiratory inhibition. It is concluded that sustained activity of neuronal NO synthase in intact hippocampal tissue can generate only low nanomolar NO concentrations, which are unlikely to be toxic. At the same time, the tissue is remarkably resistant to exogenous NO at up to 1000-fold higher concentrations. Together, the results seriously question the proposed role of NO in NMDA receptor-mediated excitotoxicity.

  14. Blocking brain-derived neurotrophic factor inhibits injury-induced hyperexcitability of hippocampal CA3 neurons.

    Science.gov (United States)

    Gill, Raminder; Chang, Philip K-Y; Prenosil, George A; Deane, Emily C; McKinney, Rebecca A

    2013-12-01

    Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.

  15. Three-dimensional electrode array for brain slice culture

    DEFF Research Database (Denmark)

    Vazquez Rodriguez, Patricia

    Multielektroder arrays (MEA) er rækker af elektroder mest i mikrometer størrelse, som er blevet brugt i stor omfang til at stimulere og måle elektrisk aktivitet fra neuronale netværker. Brug af disse for at analysere hjerne slices (hjerneskiver) kan give indsigt i interaktioner mellem neuroner...

  16. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices.

    Science.gov (United States)

    Patel, Jyoti C; Rice, Margaret E

    2013-01-01

    Brain dopamine pathways serve wide-ranging functions including the control of movement, reward, cognition, learning, and mood. Consequently, dysfunction of dopamine transmission has been implicated in clinical conditions such as Parkinson's disease, schizophrenia, addiction, and depression. Establishing factors that regulate dopamine release can provide novel insights into dopaminergic communication under normal conditions, as well as in animal models of disease in the brain. Here we describe methods for the study of somatodendritic and axonal dopamine release in brain slice preparations. Topics covered include preparation and calibration of carbon-fiber microelectrodes for use with fast-scan cyclic voltammetry, preparation of midbrain and forebrain slices, and procedures of eliciting and recording electrically evoked dopamine release from in vitro brain slices.

  17. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes

    DEFF Research Database (Denmark)

    Jahnsen, Henrik; Kristensen, Bjarne Winther; Thiébaud, P

    1999-01-01

    Fetal or early postnatal brain tissue can be cultured in viable and healthy condition for several weeks with development and preservation of the basic cellular and connective organization as so-called organotypic brain slice cultures. Here we demonstrate and describe how it is possible to establi...

  18. Binding of mescaline with subcellular fractions upon incubation of brain cortex slices with [14C] mescaline.

    Science.gov (United States)

    Datta, R K; Antopol, W; Ghosh, J J

    1977-01-01

    Incubation of brain cortex slices in the presence of glucose resulted in the permeation of about 65% of [14C] mescaline into slices. Of this, about one-third radioactivity was bound with nuclei, mitochondria, microsomes, and ribosomes. Dialysis of subcellular fractions did not markedly reduce the amounts of radioactivity bound to the fractions. The permeation into slices and the binding of mescaline to subcellular fractions were fairly time-dependent, but were inhibited by the presence of potassium cyanide, or by the absence of glucose and by heating to 80 degrees C for 1 min.

  19. Spatial performance in a complex maze is associated with persistent long-term potentiation enhancement in mouse hippocampal slices at early training stages.

    Science.gov (United States)

    Lange-Asschenfeldt, C; Lohmann, P; Riepe, M W

    2007-06-29

    Long-term potentiation (LTP) and long-term depression (LTD) are principal reflections of synaptic plasticity that have been implicated in learning and memory. We have previously shown that spatial learning in a newly validated complex maze is accompanied by depression of hippocampal CA1 synaptic activity in hippocampal slices of trained mice ("behavioral LTD"). In the present study, we investigated whether behavioral LTD is accompanied by alterations of subsequent LTP induced by high-frequency stimulation (HFS). Moreover, we were interested in the time course of such alterations in relation to training stage. Animals underwent 1, 2, and 8 days of spatial training in the complex maze, respectively. Hippocampal slices were taken 24 h after the last training session. We found a simultaneous decrease of basal synaptic response and increase of HFS induced LTP magnitude compared with slices of untrained animals. Synaptic plasticity was not influenced by repeated running wheel exercise in an additional control group without spatial learning. The mentioned alterations occurred already after day 2 of maze exploration parallel to the most pronounced improvement of behavioral performance but did not change thereafter until day 8 despite further learning progress. They were also found when animals were trained for 2 days and kept at rest for a subsequent 6 days. In conclusion, spatial learning may be reflected by distinct and persistent measurable alterations of synaptic plasticity in hippocampal CA1 neurons at early training stages.

  20. An aerator for brain slice experiments in individual cell culture plate wells.

    Science.gov (United States)

    Dorris, David M; Hauser, Caitlin A; Minnehan, Caitlin E; Meitzen, John

    2014-12-30

    Ex vivo acute living brain slices are a broadly employed and powerful experimental preparation. Most new technology regarding this tissue has involved the chamber used when performing electrophysiological experiments. Alternatively we instead focus on the creation of a simple, versatile aerator designed to allow maintenance and manipulation of acute brain slices and potentially other tissue in a multi-well cell culture plate. Here we present an easily manufactured aerator designed to fit into a 24-well cell culture plate. It features a nylon mesh and a single microhole to enable gas delivery without compromising tissue stability. The aerator is designed to be individually controlled, allowing both high throughput and single well experiments. The aerator was validated by testing material leach, dissolved oxygen delivery, brain slice viability and neuronal electrophysiology. Example experiments are also presented, including a test of whether β1-adrenergic receptor activation regulates gene expression in ex vivo dorsal striatum using qPCR. Key differences include enhanced control over gas delivery to individual wells containing brain slices, decreased necessary volume, a sample restraint to reduce movement artifacts, the potential to be sterilized, the avoidance of materials that absorb water and small biological molecules, minimal production costs, and increased experimental throughput. This new aerator is of high utility and will be useful for experiments involving brain slices and other potentially tissue samples in 24-well cell culture plates. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation

    Directory of Open Access Journals (Sweden)

    Biswas Saibal K

    2004-08-01

    Full Text Available Abstract Background The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis and ultimately cell death. Rubia cordifolia (RC, Fagonia cretica linn (FC and Tinospora cordifolia (TC have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. However, their mechanism of action was largely unknown. We therefore selected these herbs for the present study to test their neuroprotective ability and the associated mechanism in rat hippocampal slices subjected to oxygen-glucose deprivation (OGD. Methods Hippocampal Slices were subjected to OGD (oxygen glucose deprivation and divided into 3 groups: control, OGD and OGD + drug treated. Cytosolic Cu-Zn superoxide dismutase (Cu-Zn SOD, reduced glutathione (GSH, glutathione peroxidase (GPx, nitric oxide (NO was measured as nitrite (NO2 in the supernatant and protein assays were performed in the respective groups at various time intervals. EPR was used to establish the antioxidant effect of RC, FC and TC with respect to superoxide anion (O2.-, hydroxyl radicals (. OH, nitric oxide (NO radical and peroxynitrite anion (ONOO generated from pyrogallol, menadione, DETA-NO and Sin-1 respectively. RT-PCR was performed for the three groups for GCLC, iNOS, Cu-Zn SOD and GAPDH gene expression. Results All the three herbs were effective in elevating the GSH levels, expression of the gamma-glutamylcysteine ligase and Cu-Zn SOD genes. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as studied by electron paramagnetic resonance spectroscopy. In addition all the three herbs significantly diminished the expression of iNOS gene after 48 hours which plays a major role in neuronal injury during hypoxia/ischemia. Conclusions RC, FC and TC therefore attenuate oxidative stress mediated cell injury during OGD

  2. Hippocampal-Sparing Whole-Brain Radiotherapy for Lung Cancer.

    Science.gov (United States)

    Zhao, Ren; Kong, Wei; Shang, Jun; Zhe, Hong; Wang, Yan-Yang

    2017-03-01

    Brain metastases occur in 20% to 40% of lung cancer patients. Whole-brain radiotherapy (WBRT) has long been considered the treatment of choice for many patients with lung cancer, because of its wide availability, ease of delivery, and effectiveness in prolonging survival. However, WBRT is also associated with several side effects, such as decline in memory and other cognitive functions. There exists significant preclinical and clinical evidence that radiation-induced injury to the hippocampus correlates with neurocognitive decline of patients who receive WBRT. Technological advances in treatment planning and delivery facilitate the use of hippocampal-sparing (HS) WBRT as prophylactic cranial irradiation or the primary treatment modality for lung cancer patients with brain metastases. In this review, we provide a detailed and comprehensive discussion of the safety profile, techniques for hippocampus-sparing, and the clinical evidence of HS-WBRT for lung cancer patients.

  3. Protection of hippocampal slices against hypoxia/hypoglycemia injury by a Gynostemma pentaphyllum extract.

    Science.gov (United States)

    Schild, L; Roth, A; Keilhoff, G; Gardemann, A; Brödemann, R

    2009-08-01

    In transverse hippcampus slices a short period of hypoxia/hypoglycemia induced by perfusion with O(2)/glucose-free medium caused early loss and incomplete restoration of evoked field potentials to only 50% in the CA(1) region. We report about a study investigating the effect of an ethanolic Gynostemma pentaphyllum extract in this system. When given with reperfusion the extract completely protected the cells of the slices from functional injury. The extract also protected at the subcellular level isolated mitochondria which had been subjected to hypoxia/reoxygenation in combination with elevated extramitochondrial Ca(2+) concentration from functional injury. In isolated mitochondria the extract protected from Ca(2+)-induced opening of the mitochondrial permeability transition pore and reduced lipid peroxidation. Our data demonstrate that the ethanolic extract of Gynostemma pentaphyllum has a high potential to protect from ischemia/reperfusion injury. It should be beneficial as prophylactic nutrition supplement and during revascularization of arterial blood vessels from stroke and other ischemic events such as coronary occlusion.

  4. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging

    Science.gov (United States)

    Feinberg, David A.; Setsompop, Kawin

    2013-04-01

    The recent advancement of simultaneous multi-slice imaging using multiband excitation has dramatically reduced the scan time of the brain. The evolution of this parallel imaging technique began over a decade ago and through recent sequence improvements has reduced the acquisition time of multi-slice EPI by over ten fold. This technique has recently become extremely useful for (i) functional MRI studies improving the statistical definition of neuronal networks, and (ii) diffusion based fiber tractography to visualize structural connections in the human brain. Several applications and evaluations are underway which show promise for this family of fast imaging sequences.

  5. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices

    Institute of Scientific and Technical Information of China (English)

    Qing-shengXUE; Bu-weiYU; Ze-jianWANG; Hong-zhuanCHEN

    2004-01-01

    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incu-bated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD(P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited thedecrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400μmol/L) partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION; Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  6. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    ) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  7. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    ) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  8. Brief anoxia preconditioning and HIF prolyl-hydroxylase inhibition enhances neuronal resistance in organotypic hippocampal slices on model of ischemic damage.

    Science.gov (United States)

    Lushnikova, Iryna; Orlovsky, Maxim; Dosenko, Victor; Maistrenko, Anastasiia; Skibo, Galina

    2011-04-22

    It is well known that a brief anoxia or hypoxia episodes can render brain resistant to a subsequent ischemia. Recent investigations indicate that mechanisms of such stimulated endogenous neuroprotection are related to the family of hypoxia-inducible factors (HIF), however there are still little data available on the role of HIF family members in hippocampus-a brain structure, highly sensitive to oxygen deficiency. We have used the model of cultured hippocampal slices and single-cell quantitative RT-PCR to study HIF-1α and HIF-3α mRNA expression following triple 5-min mild anoxia, 30-min oxygen-glucose deprivation and their combination. We also tested the effects of HIF prolyl-hydroxylase inhibition with 2,4-pyridinedicarboxylic acid diethyl ester pre-treatment followed by a 30-min oxygen-glucose deprivation. It was found that neuronal damage induced by oxygen-glucose deprivation was accompanied by a significant decrease in both HIF-1α and HIF-3α mRNA levels in CA1 but not CA3 neurons. Anoxia preconditioning did not affect cell viability and HIF mRNA levels but applied before oxygen-glucose deprivation prevented neuronal damage and suppression of HIF-1α and HIF-3α mRNA expression. It was also found that effects of the prolyl-hydroxylase inhibitor were similar to anoxia preconditioning. These results suggest that anoxia preconditioning increases anti-ischemic neuronal resistance which to a certain extent correlates with the changes of HIF-1α and HIF-3α expression.

  9. Neuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Bae Hwan Lee

    2013-09-01

    Full Text Available Vitamin E, such as alpha-tocopherol (ATPH and alpha-tocotrienol (ATTN, is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM or ATTN (100 µM significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF fluorescence and levels of thiobarbiturate reactive substances (TBARS were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment.

  10. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  11. Mini-ruby is rapidly taken up by neurons and astrocytes in organotypic brain slices.

    Science.gov (United States)

    Ullrich, Celine; Humpel, Christian

    2011-10-01

    Cholinergic neurons are intensively studied, because they degenerate in Alzheimer's disease. Although neurotracer techniques are widely used to study axonal transport, guidance, regeneration or sprouting it is not clear if cholinergic neurons can be stained by tracer techniques and studied in brain slices. The aim of the present study was to evaluate the characteristics of the neurotracer Mini-ruby in organotypic brain slices of the basal nucleus of Meynert (nBM), focusing on cholinergic neurons. Mini-ruby is a biotinylated dextran amine and is taken up very fast by a variety of cells. When 2-week old nerve growth factor-incubated brain slices of the nBM were treated with Mini-ruby crystals for 1 h, only a few (2-3%) cholinergic neurons were clearly labeled as shown by co-localization with choline acetyltransferase. The staining was found in neuN-positive neurons and microtubule associated protein-2 (MAP-2)-positive nerve fibers. A very rapid dynamic change was observed in these labeled varicosities within seconds. However, Mini-ruby was taken up also by many glutamine synthethase-positive astrocytes. At the site of Mini-ruby application an intense CD11b-positive microglial staining was evident. In conclusion, neurons and astrocytes in organotypic brain slices can be labeled very fast with the fluorescent dye Mini-ruby which undergoes dynamic processes.

  12. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    Science.gov (United States)

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates.

  13. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    Science.gov (United States)

    2014-09-29

    the value of this experimental platform to investigate the single bubble cavitation- induced damage in a biological tissue is illustrated with an...Lei Wu, Malisa Sarntinoranont, Huikai Xie1. Refractive index measurement of acute rat brain tissue slices using optical coherence tomography, Optics...b-TBI, i.e. what is “broken”, in the brain during exposure to shock loading is currently unknown. While blast waves are well known to have negative

  14. Cytosolic NADH-NAD+ Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging

    Science.gov (United States)

    Mongeon, Rebecca; Venkatachalam, Veena

    2016-01-01

    Abstract Aim: Cytosolic NADH-NAD+ redox state is central to cellular metabolism and a valuable indicator of glucose and lactate metabolism in living cells. Here we sought to quantitatively determine NADH-NAD+ redox in live cells and brain tissue using a fluorescence lifetime imaging of the genetically-encoded single-fluorophore biosensor Peredox. Results: We show that Peredox exhibits a substantial change in its fluorescence lifetime over its sensing range of NADH-NAD+ ratio. This allows changes in cytosolic NADH redox to be visualized in living cells using a two-photon scanning microscope with fluorescence lifetime imaging capabilities (2p-FLIM), using time-correlated single photon counting. Innovation: Because the lifetime readout is absolutely calibrated (in nanoseconds) and is independent of sensor concentration, we demonstrate that quantitative assessment of NADH redox is possible using a single fluorophore biosensor. Conclusion: Imaging of the sensor in mouse hippocampal brain slices reveals that astrocytes are typically much more reduced (with higher NADH:NAD+ ratio) than neurons under basal conditions, consistent with the hypothesis that astrocytes are more glycolytic than neurons. Antioxid. Redox Signal. 25, 553–563. PMID:26857245

  15. Automatic planning on hippocampal avoidance whole-brain radiotherapy.

    Science.gov (United States)

    Wang, Shuo; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A; Zhou, Sumin

    2017-01-01

    Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle(3) Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle(3) Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle(3) Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D2% and D98% of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D100% and Dmax of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle(3) Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by

  16. Functional imaging of single synapses in brain slices.

    Science.gov (United States)

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  17. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    Science.gov (United States)

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  18. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...... differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......-culture, large numbers of tyrosine hydroxylase (TH)-immunoreactive, catecholaminergic cells could be found underneath individual striatal slices. Cell counting revealed that up to 25.3% (average 16.1%) of the total number of cells in these areas were TH-positive, contrasting a few TH-positive cells (

  19. β-amyloid, hippocampal atrophy and their relation to longitudinal brain change in cognitively normal individuals.

    Science.gov (United States)

    Fletcher, Evan; Villeneuve, Sylvia; Maillard, Pauline; Harvey, Danielle; Reed, Bruce; Jagust, William; DeCarli, Charles

    2016-04-01

    Recent literature has examined baseline hippocampal volume and extent of brain amyloidosis to test potential synergistic effects on worsening cognition and extent of brain atrophy. Use of hippocampal volume in prior studies was based on the notion that limbic circuit degeneration is an early manifestation of the Alzheimer's Disease (AD) pathophysiology. To clarify these interactions early in the AD process, we tested the effects of amyloid and baseline normalized hippocampal volume on longitudinal brain atrophy rates in a group of cognitively normal individuals. Results showed that the combination of elevated β-amyloid and baseline hippocampal atrophy is associated with increased rates specific to the limbic circuit and splenium. Importantly, this atrophy pattern emerged from a voxelwise analysis, corroborated by regression models over region of interests in native space. The results are broadly consistent with previous studies of the effects of amyloid and baseline hippocampal atrophy in normals, while pointing to accelerated atrophy of AD-vulnerable regions detectable at the preclinical stage.

  20. Pharmacological characterization of antiepileptic drugs and experimental analgesics on low magnesium-induced hyperexcitability in rat hippocampal slices.

    Science.gov (United States)

    Arias, Robert L; Bowlby, Mark R

    2005-06-21

    Perfusion of acute hippocampal slices with stimulatory buffers has long been known to induce rhythmic, large amplitude, synchronized spontaneous neuronal bursting in areas CA1 and CA3. The characteristics of this model of neuronal hyperexcitability were investigated in this study, particularly with respect to the activity of antiepileptic drugs and compounds representing novel mechanisms of analgesic action. Toward that end, low Mg(2+)/high K(+)-induced spontaneous activity was quantified by a virtual instrument designed for the digitization and analysis of bursting activity. Uninterrupted streams of extracellular field potentials were digitized and analyzed in 10-s sweeps, yielding four quantified parameters of neuronal hyperexcitability. Following characterization of the temporal stability of low Mg(2+)/high K(+)-induced hyperexcitability, compounds representing a diversity of functional mechanisms were tested for their effectiveness in reversing this activity. Of the four antiepileptic drugs tested in this model, only phenytoin proved ineffective, while valproate, gabapentin and carbamazepine varied in their potencies, with only the latter drug proving to be completely efficacious. In addition, three investigational compounds having analgesic potential were examined: ZD-7288, a blocker of HCN channels; EAA-090, an NMDA antagonist; and WAY-132983, a muscarinic agonist. Each of these compounds showed strong efficacy by completely blocking spontaneous bursting activity, along with potency greater than that of the antiepileptic drugs. These data indicate that pharmacological agents with varying mechanisms of action are able to block low Mg(2+)/high K(+)-induced hyperexcitability, and thus this model may represent a useful tool for identifying novel agents and mechanisms involved in epilepsy and neuropathic pain.

  1. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.

    Science.gov (United States)

    Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver

    2005-04-27

    Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the

  2. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert anti-inflammatory properties by modulating platelet aggregation and VEGF, COX-2 and VCAM gene expressions in rat hippocampal slices subjected to ischemic reperfusion injury.

    Directory of Open Access Journals (Sweden)

    A K Rawal

    2009-03-01

    Full Text Available Summary: The formation of cerebral edema and central nervous system (CNS inflammation are a result of cerebral ischemia. Pharmacological strategies to reverse or minimize acute ischemic brain injury include "antiplatelet" agents, anticoagulants, and thrombolytics. However, these therapies have either exhibited undesirable side effects or are not cost-effective for the common people. We report here the neuroprotective effects of three herbs Rubia cordifolia (RC, Fagonia cretica linn (FC and Tinospora cordifolia (TC as potent anti-inflammatory agents in view of their ability to downregulate the expressions of COX2 and VCAM genes and upregulate VEGF expression and inhibit platelet aggregation induced by multiple agonists in hypoxic-ischemic hippocampal slices. All the three herbs exhibited appreciable anti-inflammatory properties. Industrial relevance: The above work will lead to development of new anti-inflammatory drugs with less toxic preparations and has the potential to generate employment among people who will go farming of such medicinal plants.

  3. Human brain slices for epilepsy research: Pitfalls, solutions and future challenges.

    Science.gov (United States)

    Jones, Roland S G; da Silva, Anderson Brito; Whittaker, Roger G; Woodhall, Gavin L; Cunningham, Mark O

    2016-02-15

    Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2.

    Science.gov (United States)

    Strokin, M; Chechneva, O; Reymann, K G; Reiser, G

    2006-06-30

    Polyunsaturated fatty acids play an important role in the development of pathological states in brain after hypoxia/ischemia. Here, we investigated the role of docosahexaenoic acid (22:6n-3) in brain phospholipids for neuronal survival. We used organotypic cultures of rat brain hippocampal slices exposed to 40 min of oxygen-glucose deprivation, to study the consequences of experimental ischemia. In [14C]docosahexaenoic acid-labeled cultures, oxygen-glucose deprivation induced significant release of radioactive docosahexaenoic acid. This release could be blocked by the selective inhibitor of the Ca2+-independent phospholipase A2, 4-bromoenol lactone (10 microM), when it was added 30 min prior to oxygen-glucose deprivation. Addition of 4-bromoenol lactone at 30 min prior to oxygen-glucose deprivation markedly decreased the neuronal damage induced by oxygen-glucose deprivation. The protective effect was substantially higher in dentate gyrus than in CA1 and CA3 areas. Enrichment of the hippocampal tissue with docosahexaenoic acid by incubation with 10 microM docosahexaenoic acid for 24 h exerted the same neuroprotective effect, which was observed after treatment with 4-bromoenol lactone. In contrast to the 24 h-preincubation, simultaneous addition of docosahexaenoic acid with the onset of oxygen-glucose deprivation had no protective effect. This suggests that incorporation of docosahexaenoic acid into phospholipids is required for the protective effect observed. Then the possible involvement of arachidonic acid metabolism in docosahexaenoic acid-induced neuroprotection was tested. Inhibition of prostaglandin production by ibuprofen produced no change in neuroprotection after 24-h incubation of the hippocampal slices with docosahexaenoic acid. Simultaneous inhibition of Ca2+-independent and Ca2+-dependent phospholipases A2 by treatment with the general phospholipase A2 inhibitor methyl arachidonyl fluorophosphonate (3 microM, 30 min prior to oxygen-glucose deprivation

  5. GnRH neuron firing and response to GABA in vitro depend on acute brain slice thickness and orientation.

    Science.gov (United States)

    Constantin, Stephanie; Piet, Richard; Iremonger, Karl; Hwa Yeo, Shel; Clarkson, Jenny; Porteous, Robert; Herbison, Allan E

    2012-08-01

    The GnRH neurons exhibit long dendrites and project to the median eminence. The aim of the present study was to generate an acute brain slice preparation that enabled recordings to be undertaken from GnRH neurons maintaining the full extent of their dendrites or axons. A thick, horizontal brain slice was developed, in which it was possible to record from the horizontally oriented GnRH neurons located in the anterior hypothalamic area (AHA). In vivo studies showed that the majority of AHA GnRH neurons projected outside the blood-brain barrier and expressed c-Fos at the time of the GnRH surge. On-cell recordings compared AHA GnRH neurons in the horizontal slice (AHAh) with AHA and preoptic area (POA) GnRH neurons in coronal slices [POA coronal (POAc) and AHA coronal (AHAc), respectively]. AHAh GnRH neurons exhibited tighter burst firing compared with other slice orientations. Although α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excited GnRH neurons in all preparations, γ-aminobutyric acid (GABA) was excitatory in AHAc and POAc but inhibitory in AHAh slices. GABA(A) receptor postsynaptic currents were the same in AHAh and AHAc slices. Intriguingly, direct activation of GABA(A) or GABA(B) receptors respectively stimulated and inhibited GnRH neurons regardless of slice orientation. Subsequent experiments indicated that net GABA effects were determined by differences in the ratio of GABA(A) and GABA(B) receptor-mediated effects in "long" and "short" dendrites of GnRH neurons in the different slice orientations. These studies document a new brain slice preparation for recording from GnRH neurons with their extensive dendrites/axons and highlight the importance of GnRH neuron orientation relative to the angle of brain slicing in studying these neurons in vitro.

  6. Hippocampal-sparing whole-brain radiotherapy using Elekta equipment.

    Science.gov (United States)

    Nevelsky, Alexander; Ieumwananonthachai, Nantakan; Kaidar-Person, Orit; Bar-Deroma, Raquel; Nasrallah, Haitam; Ben-Yosef, Rahamim; Kuten, Abraham

    2013-05-06

    The purpose of this study was to evaluate the feasibility of hippocampal-sparing whole-brain radiotherapy (HS WBRT) using the Elekta Infinity linear accelerator and Monaco treatment planning system (TPS). Ten treatment plans were created for HS-WBRT to a dose of 30 Gy (10 fractions). RTOG 0933 recommendations were applied for treatment planning. Intensity-modulated radiotherapy (IMRT) plans for the Elekta Infinity linear accelerator were created using Monaco 3.1 TPS-based on a nine-field arrangement and step-and-shoot delivery method. Plan evaluation was performed using D2% and D98% for the whole-brain PTV (defined as whole brain excluding hippocampus avoidance region), D100% and maximum dose to the hippocampus, and maximum dose to optic nerves and chiasm. Homogeneity index (HI) defined as (D2%-D98%)/Dmedian was used to quantify dose homogeneity in the PTV. The whole-brain PTV D2% mean value was 37.28 Gy (range 36.95-37.49Gy), and D98% mean value was 25.37 Gy (range 25.40-25.89 Gy). The hippocampus D100% mean value was 8.37 Gy (range 7.48-8.97 Gy) and the hippocampus maximum dose mean value was 14.35 Gy (range 13.48-15.40 Gy). The maximum dose to optic nerves and optic chiasm for all patients did not exceed 37.50 Gy. HI mean value was 0.36 (range 0.34-0.37). Mean number of segments was 105 (range 88-122) and mean number of monitor units was 1724 (range 1622-1914). Gamma evaluation showed that all plans passed 3%, 3 mm criteria with more than 99% of the measured points. These results indicate that Elekta equipment (Elekta Infinity linac and Monaco TPS) can be used for HS WBRT planning according to compliance criteria defined by the RTOG 0933 protocol.

  7. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  8. Intersection-based registration of slice stacks to form 3D images of the human fetal brain

    DEFF Research Database (Denmark)

    Kim, Kio; Hansen, Mads Fogtmann; Habas, Piotr;

    2008-01-01

    Clinical fetal MR imaging of the brain commonly makes use of fast 2D acquisitions of multiple sets of approximately orthogonal 2D slices. We and others have previously proposed an iterative slice-to-volume registration process to recover a geometrically consistent 3D image. However, these approac...

  9. Fluorescence imaging of changes in intracellular chloride in living brain slices.

    Science.gov (United States)

    Inglefield, J R; Schwartz-Bloom, R D

    1999-06-01

    In brain slice preparations, chloride movements across the cell membrane of living cells are measured traditionally with 36Cl- tracer methods, Cl--selective microelectrodes, or whole-cell recording using patch clamp analysis. We have developed an alternative, noninvasive technique that uses the fluorescent Cl- ion indicator, 6-methoxy-N-ethylquinolinium iodide (MEQ), to study changes in intracellular Cl- by epifluorescence or UV laser scanning confocal microscopy. In brain slices taken from rodents younger than 22 days of age, excellent cellular loading is achieved with the membrane-permeable form of the dye, dihydro-MEQ. Subsequent intracellular oxidation of dihydro-MEQ to the Cl--sensitive MEQ traps the polar form of the dye inside the neurons. Because MEQ is a single-excitation and single-emission dye, changes in intracellular Cl- concentrations can be calibrated from the Stern-Volmer relationship, determined in separate experiments. Using MEQ as the fluorescent indicator for Cl-, Cl- flux through the gamma-aminobutyric acid (GABA)-gated Cl- channel (GABAA receptor) can be studied by dynamic video imaging and either nonconfocal (epifluorescence) or confocal microscopy in the acute brain slice preparation. Increases in intracellular Cl- quench MEQ fluorescence, thereby reflecting GABAA receptor activation. GABAA receptor functional activity can be measured in discrete cells located in neuroanatomically defined populations within areas such as the neocortex and hippocampus. Changes in intracellular Cl- can also be studied under various conditions such as oxygen/glucose deprivation ("in vitro ischemia") and excitotoxicity. In such cases, changes in cell volume may also occur due to the dependence of cell volume regulation on Na+, K+, and Cl- flux. Because changes in cell volume can affect optical fluorescence measurements, we assess cell volume changes in the brain slice using the fluorescent indicator calcein-AM. Determination of changes in MEQ fluorescence versus

  10. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores.

  11. Automatic brain cropping and atlas slice matching using a PCNN and a generalized invariant Hough transform

    Science.gov (United States)

    Swathanthira Kumar, M. M.; Sullivan, John M., Jr.

    2007-03-01

    Medical research is dominated by animal models, especially rats and mice. Within a species most laboratory subjects exhibit little variation in brain anatomy. This uniformity of features is used to crop regions of interest based upon a known, cropped brain atlas. For any study involving N subjects, image registration or alignment to an atlas is required to construct a composite result. A highly resolved stack of T2 weighted MRI anatomy images of a Sprague-Dawley rat was registered and cropped to a known segmented atlas. This registered MRI volume was used as the reference atlas. A Pulse Coupled Neural Network (PCNN) was used to separate brain tissue from surrounding structures, such as cranium and muscle. Each iteration of the PCNN produces binary images of increasing area as the intensity spectrum is increased. A rapid filtering algorithm is applied that breaks narrow passages connecting larger segmented areas. A Generalized Invariant Hough Transform is applied subsequently to each PCNN segmented area to identify which segmented reference slice it matches. This process is repeated for multiple slices within each subject. Since we have apriori knowledge of the image ordering and fields of view this information provides initial estimates for subsequent registration codes. This process of subject slice extraction to PCNN mask creations and GIHT matching with known atlas locations is fully automatic.

  12. The rostral migratory stream generates hippocampal CA1 pyramidal-like neurons in a novel organotypic slice co-culture model

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2015-10-01

    Full Text Available The mouse subventricular zone (SVZ generates large numbers of neuroblasts, which migrate in a distinct pathway, the rostral migratory stream (RMS, and replace specific interneurons in the olfactory bulb (OB. Here, we introduce an organotypic slice culture model that directly connects the RMS to the hippocampus as a new destination. RMS neuroblasts widely populate the hippocampus and undergo cellular differentiation. We demonstrate that RMS cells give rise to various neuronal subtypes and, surprisingly, to CA1 pyramidal neurons. Pyramidal neurons are typically generated before birth and are lost in various neurological disorders. Hence, this unique slice culture model enables us to investigate their postnatal genesis under defined in vitro conditions from the RMS, an unanticipated source for hippocampal pyramidal neurons.

  13. Interleukin-1beta exacerbates hypoxia-induced neuronal damage, but attenuates toxicity produced by simulated ischaemia and excitotoxicity in rat organotypic hippocampal slice cultures.

    Science.gov (United States)

    Pringle, A K; Niyadurupola, N; Johns, P; Anthony, D C; Iannotti, F

    2001-06-01

    Using organotypic hippocampal slice cultures we have investigated the actions of Interleukin-1 (IL-1) in a number of injury paradigms. Low concentrations of IL-1 potentiated hypoxia-induced neurodegeneration whilst high concentrations had no effect. In contrast, higher concentrations of IL-1 were strongly neuroprotective in models of combined oxygen/glucose deprivation and N-methyl-D-aspartate toxicity, but no potentiation was observed at low IL-1 concentrations. Both protective and toxic effects of IL-1 were fully antagonized by IL-1 receptor antagonist. These data demonstrate that the effects of IL-1 on neuronal injury are complex, and may be directly related to the injury paradigm studied.

  14. Effects of the pyrethroid insecticide, deltamethrin, on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice

    DEFF Research Database (Denmark)

    Rekling, J C; Theophilidis, G

    1995-01-01

    We have studied the action of deltamethrin on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice. Deltamethrin depolarized the hypoglossal motoneurons, increased the background synaptic noise and reduced the frequency and amplitude of current elicited action...

  15. Paired burst stimulation causes GABAA receptor-dependent spike firing facilitation in CA1 of rat hippocampal slices

    Directory of Open Access Journals (Sweden)

    Takashi eTominaga

    2016-01-01

    Full Text Available The theta oscillation (4–8 Hz is a pivotal form of oscillatory activity in the hippocampus that is intermittently concurrent with gamma (25–100 Hz burst events. In in vitro preparation, a stimulation protocol that mimics the theta oscillation, theta burst stimulation (TBS, is used to induce long-term potentiation. Thus, TBS is thought to have a distinct role in the neural network of the hippocampal slice preparation. However, the mechanisms that make TBS uniquely induce such neural circuit modifications are still unknown. Using electrophysiology and voltage-sensitive dye imaging (VSDI, we have found that TBS induces augmentation of spike firing. The augmentation was apparent in the first couple of brief burst stimulation (100Hz four pulses on a TBS-train in a presence of NMDA receptor blocker (APV 50 µM. In this study, we focused on the characterises of the NMDA independent augmentation caused by a pair of the brief burst stimulation (the first pair of the TBS; PBS. We found that PBS enhanced membrane potential responses on VSDI signal and intracellular recordings while it was absent in the current recording under whole-cell clamp condition. The enhancement of the response accompanied the augmentation of excitatory postsynaptic potential (EPSP to spike firing (E-S coupling. The paired burst facilitation (PBF reached a plateau when the number of the first burst stimulation (priming burst exceeds three. The interval between the bursts of 150 ms resulted in the maximum PBF. Gabazine (a GABAA receptor antagonist abolished PBF. The threshold for spike generation of the postsynaptic cells measured with a current injection to cells was not lowered by the priming burst of PBS. These results indicate that PBS activates the GABAergic system to cause short-term E-S augmentation without raising postsynaptic excitability. We propose that a GABAergic system of area CA1 of the hippocampus produce the short-term E-S plasticity that could cause exaggerated

  16. Optimizing patient positioning for intensity modulated radiation therapy in hippocampal-sparing whole brain radiation therapy.

    Science.gov (United States)

    Siglin, Joshua; Champ, Colin E; Vakhnenko, Yelena; Witek, Matthew E; Peng, Cheng; Zaorsky, Nicholas G; Harrison, Amy S; Shi, Wenyin

    2014-01-01

    Sparing the hippocampus during whole brain radiation therapy (WBRT) offers potential neurocognitive benefits. However, previously reported intensity modulated radiation therapy (IMRT) plans use multiple noncoplanar beams for treatment delivery. An optimized coplanar IMRT template for hippocampal-sparing WBRT would assist in clinical workflow and minimize resource utilization. In this study, we sought to determine the optimal patient position to facilitate coplanar treatment planning and delivery of hippocampal-sparing WBRT using IMRT. A variable angle, inclined board was utilized for patient positioning. An anthropomorphic phantom underwent computed tomography simulation at various head angles. The IMRT goals were designed to achieve target coverage of the brain while maintaining hippocampal dose-volume constraints designed to conform to the Radiation Therapy Oncology Group 0933 protocol. Optimal head angle was then verified using data from 8 patients comparing coplanar and noncoplanar WBRT IMRT plans. Hippocampal, hippocampal avoidance region, and whole brain mean volumes were 1.1 cm(3), 12.5 cm(3), and 1185.1 cm(3), respectively. The hippocampal avoidance region occupied 1.1% of the whole brain planning volume. For the 30-degree head angle, a 7-field coplanar IMRT plan was generated, sparing the hippocampus to a maximum dose of 14.7 Gy; D100% of the hippocampus was 7.4 Gy and mean hippocampal dose was 9.3 Gy. In comparison, for flat head positioning the hippocampal Dmax was 22.9 Gy with a D100% of 9.2 Gy and mean dose of 11.7 Gy. Target coverage and dose homogeneity was comparable with previously published noncoplanar IMRT plans. Compared with conventional supine positioning, an inclined head board at 30 degrees optimizes coplanar whole brain IMRT treatment planning. Clinically acceptable hippocampal-sparing WBRT dosimetry can be obtained using a simplified coplanar plan at a 30-degree head angle, thus obviating the need for complex and time consuming noncoplanar

  17. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Seshamani, Sharmishtaa; Kroenke, Christopher

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect...... to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction...... (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired...

  18. The effects of glucose, mannose, fructose and lactate on the preservation of neural activity in the hippocampal slices from the guinea pig.

    Science.gov (United States)

    Wada, H; Okada, Y; Uzuo, T; Nakamura, H

    1998-03-30

    Using hippocampal slices from guinea pigs, we investigated the effect of different concentrations of glucose and replacement of glucose with mannose, fructose and lactate on neural activity. As an index of neural activity, the population spikes (PS) were recorded in the granule cell layer of the dentate gyrus (DG) and the pyramidal cell layer of the CA3 area in the hippocampal slices. Lowering the concentration of glucose from 10 mM to 5, 3, 2, 1 and 0 mM caused a reduction in the PS amplitude. There were differences in the decay times of the PS evoked in these two regions. PS evoked in CA3 region decayed faster even at a concentration of 3 mM glucose at which PS in granule cell layer was well maintained. The decay time of the PS in the CA3 region in the presence of glucose up to a concentration of 3 mM was shorter than that evoked in the DG. After the replacement of glucose with mannose, fructose or lactate, the PS disappeared within 35 min and there were no significant differences between the decay times in the two regions of slices incubated in the same medium. ATP, creatine phosphate (CrP) and lactate levels in each slice were determined. To investigate whether mannose and fructose could be metabolized or not in the tissue slice, anaerobic production of lactate from glucose, mannose and fructose were measured during oxygen and glucose deprivation. Under anaerobic conditions for 60 min, the levels of high-energy phosphates decreased to 50% of the initial level and lactate was produced from glucose, mannose or fructose. However, there were significant differences in the rate of lactate production between the DG and CA3 areas during application of 3 mM glucose, 10 mM mannose and 10 mM fructose. These results indicate that mannose, fructose and lactate can be metabolized and are available for maintaining the levels of high-energy phosphates but not for neural activity in the tissue slices and that the presence of glucose is indispensable for the maintenance of

  19. Inhibition of diazepam and gamma-aminobutyric acid of depolarization-induced release of (/sup 14/C)cysteine sulfinate and (/sup 3/H)glutamate in rat hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Baba, A.; Okumura, S.; Mizuo, H.; Iwata, H.

    1983-01-01

    Effects of diazepam and gamma-aminobutyric acid-related compounds on the release of (/sup 14/C)cysteine sulfinate and (/sup 3/H)glutamate from preloaded hippocampal slices of rat brain were examined by a superfusion method. Diazepam markedly inhibited the release of cysteine sulfinate and glutamate evoked either by high K/sup +/ or veratridine without affecting that of other neurotransmitter candidates, e.g., gamma-aminobutyric acid, acetylcholine, noradrenaline, and dopamine; IC50 values for the release of cysteine sulfinate and glutamate were about 20 and 7 microM, respectively. gamma-Aminobutyric acid (1 to 10 microM) and muscimol (100 microM) significantly reduced high K+-stimulated release of glutamate. Bicuculline, which had no effect on the release at a concentration of 50 microM by itself, antagonized the inhibitor effects of diazepam and gamma-aminobutyric acid on glutamate release. Similar results were obtained with the release of cysteine sulfinate except that a high concentration (100 microM) of gamma-aminobutyric acid was required for the inhibition. These results indicate the modulation by gamma-aminobutyric acid innervation of the release of excitatory amino acids in rat hippocampal formation, and also suggest that some of the pharmacological effects of diazepam may be a consequence of inhibition of excitatory amino acid transmission.

  20. Minimum conditions for the induction of cortical spreading depression in brain slices

    Science.gov (United States)

    Tang, Yujie T.; Mendez, Jorge M.; Theriot, Jeremy J.; Sawant, Punam M.; López-Valdés, Héctor E.; Ju, Y. Sungtaek

    2014-01-01

    Cortical spreading depression (CSD) occurs during various forms of brain injury such as stroke, subarachnoid hemorrhage, and brain trauma, but it is also thought to be the mechanism of the migraine aura. It is therefore expected to occur over a range of conditions including the awake behaving state. Yet it is unclear how such a massive depolarization could occur under relatively benign conditions. Using a microfluidic device with focal stimulation capability in a mouse brain slice model, we varied extracellular potassium concentration as well as the area exposed to increased extracellular potassium to determine the minimum conditions necessary to elicit CSD. Importantly, we focused on potassium levels that are physiologically plausible (≤145 mM; the intracellular potassium concentration). We found a strong correlation between the threshold concentration and the slice area exposed to increased extracellular potassium: minimum area of exposure was needed with the highest potassium concentration, while larger areas were needed at lower concentrations. We also found that moderate elevations of extracellular potassium were able to elicit CSD in relatively small estimated tissue volumes that might be activated under noninjury conditions. Our results thus show that CSD may be inducible under the conditions that expected in migraine aura as well as those related to brain trauma. PMID:25122714

  1. Updating the Lamellar Hypothesis of Hippocampal Organization

    OpenAIRE

    Robert S Sloviter; Terje eLømo

    2012-01-01

    In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly i...

  2. Coculture system with an organotypic brain slice and 3D spheroid of carcinoma cells.

    Science.gov (United States)

    Chuang, Han-Ning; Lohaus, Raphaela; Hanisch, Uwe-Karsten; Binder, Claudia; Dehghani, Faramarz; Pukrop, Tobias

    2013-10-09

    Patients with cerebral metastasis of carcinomas have a poor prognosis. However, the process at the metastatic site has barely been investigated, in particular the role of the resident (stromal) cells. Studies in primary carcinomas demonstrate the influence of the microenvironment on metastasis, even on prognosis(1,2). Especially the tumor associated macrophages (TAM) support migration, invasion and proliferation(3). Interestingly, the major target sites of metastasis possess tissue-specific macrophages, such as Kupffer cells in the liver or microglia in the CNS. Moreover, the metastatic sites also possess other tissue-specific cells, like astrocytes. Recently, astrocytes were demonstrated to foster proliferation and persistence of cancer cells(4,5). Therefore, functions of these tissue-specific cell types seem to be very important in the process of brain metastasis(6,7). Despite these observations, however, up to now there is no suitable in vivo/in vitro model available to directly visualize glial reactions during cerebral metastasis formation, in particular by bright field microscopy. Recent in vivo live imaging of carcinoma cells demonstrated their cerebral colonization behavior(8). However, this method is very laborious, costly and technically complex. In addition, these kinds of animal experiments are restricted to small series and come with a substantial stress for the animals (by implantation of the glass plate, injection of tumor cells, repetitive anaesthesia and long-term fixation). Furthermore, in vivo imaging is thus far limited to the visualization of the carcinoma cells, whereas interactions with resident cells have not yet been illustrated. Finally, investigations of human carcinoma cells within immunocompetent animals are impossible(8). For these reasons, we established a coculture system consisting of an organotypic mouse brain slice and epithelial cells embedded in matrigel (3D cell sphere). The 3D carcinoma cell spheres were placed directly next to

  3. Global brain atrophy but not hippocampal atrophy is related to type 2 diabetes

    NARCIS (Netherlands)

    Wisse, L.E.; Bresser, J. de; Geerlings, M.I.; Reijmer, Y.D.; Portegies, M.L.; Brundel, M.; Kappelle, L.J.; Graaf, Y. van der; Biessels, G.J.; Kessels, R.P.C.

    2014-01-01

    AIMS: It has been suggested that in patients with type 2 diabetes mellitus (T2DM), brain atrophy is most pronounced in the hippocampus, but this has not been investigated systematically. The present pooled analysis of three studies examined if hippocampal atrophy is more prominent than global brain

  4. Oligodendrocyte transcription factor 1 mRNA and protein expression in organotypic rat brain slices

    Institute of Scientific and Technical Information of China (English)

    Hong Cui; Lijun Yang; Dezhuang Huang; Wandong Zhang; Weijuan Han; Yanqing Yao; Wenxing Jiang

    2010-01-01

    Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown.In this study, Olig-1 mRNA and protein expressions were analyzed by in situ hybridization and immunohistochemistry, to determine the expression profile of Olig-1 in rat brain slices exposed to hypoxia and ischemia. Brains were obtained from 2-day-old Sprague-Dawley rats, and sections were randomly assigned to control and hypoxia/ischemia groups. Hematoxylin-eosin staining revealed karyorrhexis and karyopyknosis in cells from the hypoxia/ischemia group. Under electron microscopy, mitochondria swelling and neuropil edema were observed in the hypoxia/ischemia group. Olig-1 mRNA and protein expressions were increased at 1 day after hypoxia and ischemia treatment. These results suggest that in situ hybridization and immunohistochemistry could be used simultaneously to detect mRNA and protein expression in brain slices.

  5. Investigations on Alterations of Hippocampal Circuit Function Following Mild Traumatic Brain Injury

    OpenAIRE

    2012-01-01

    Traumatic Brain Injury (TBI) afflicts more than 1.7 million people in the United States each year and even mild TBI can lead to persistent neurological impairments 1. Two pervasive and disabling symptoms experienced by TBI survivors, memory deficits and a reduction in seizure threshold, are thought to be mediated by TBI-induced hippocampal dysfunction 2,3. In order to demonstrate how altered hippocampal circuit function adversely affects behavior after TBI in mice, we employ lateral fluid per...

  6. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing

    Science.gov (United States)

    Neltner, Janna H.; Abner, Erin L.; Baker, Steven; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Hammack, Eleanor; Kukull, Walter A.; Brenowitz, Willa D.; Van Eldik, Linda J.

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin

  7. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  8. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.

    Science.gov (United States)

    Rundén-Pran, E; Tansø, R; Haug, F M; Ottersen, O P; Ring, A

    2005-01-01

    Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the

  9. Neural activity and the levels of high energy phosphates during deprivation of oxygen and/or glucose in hippocampal slices of immature and adult rats.

    Science.gov (United States)

    Nabetani, M; Okada, Y; Kawai, S; Nakamura, H

    1995-02-01

    To investigate the relationship between neural activity and cerebral energy metabolism during anoxia or ischemia in neural tissue of different ages, hippocampal slices were prepared from four-, seven- and 10-day-old and adult rats. For the index of the neural activity, the population spikes were recorded in the pyramidal cell layer of the CA3 area. ATP and phosphocreatine levels in the slices were measured during oxygen and/or glucose deprivation. After deprivation of both oxygen and glucose, population spikes of the slices from four, seven- and 10-day-old and adult rats ceased completely in 14.2, 11.8, 9.4 and 5.3 min, respectively. The level of ATP at the time of cessation of population spike in four-, seven- and 10-day-old and adult rats was 37.4, 30.2, 28.5 and 56.4% of the original concentrations. After deprivation of glucose only, the decay time of the population spikes of the slices from four-, seven- and 10-day-old and adult rats was 17.8, 14.5, 9.0 and 10.0 min and at the time of population spikes cessation the level of ATP was 99.8, 84.2, 79.3 and 49%, respectively. After deprivation of oxygen only, population spikes of the slices from four, seven- and 10-day old and adult rats ceased completely in 257, 283, 109 and 8.5 min, respectively. The level of ATP at the time of population spikes cessation was 50, 40, 36.6 and 94.4% of the initial values, respectively. These results indicate that the immature rat is extremely resistant to oxygen deprivation from a functional and a metabolic view, whereas in the adult rat, preservation of neural activity depends much on both oxygen and glucose. During glucose deprivation, population spikes of the slices of immature and mature rats ceased rapidly although the level of ATP is preserved at high levels. This suggests that glucose plays an important role in the preservation of neural activity in addition to its major function as an energy substrate especially in immature animals.

  10. Long-term, repeated dose in vitro neurotoxicity of the glutamate receptor antagonist L-AP3, demonstrated in rat hippocampal slice cultures by using continuous propidium iodide incubation

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Blaabjerg, Morten; Noraberg, Jens

    2007-01-01

    Most in vitro models are only used to assess short-term effects of test compounds. However, as demonstrated here, hippocampal slice cultures can be used for long-term studies. The test compound used was the metabotropic glutamate receptor antagonist, L(+)-2-amino-3-phosphonopropionic acid (L-AP3...

  11. Downregulation of CREB expression in Alzheimer's brain and in Aβ-treated rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Pham Serena

    2011-08-01

    Full Text Available Abstract Background Oxidative stress plays an important role in neuronal dysfunction and neuron loss in Alzheimer's brain. Previous studies have reported downregulation of CREB-mediated transcription by oxidative stress and Aβ. The promoter for CREB itself contains cyclic AMP response elements. Therefore, we examined the expression of CREB in the hippocampal neurons of Tg2576 mice, AD post-mortem brain and in cultured rat hippocampal neurons exposed to Aβ aggregates. Results Laser Capture Microdissection of hippocampal neurons from Tg2576 mouse brain revealed decreases in the mRNA levels of CREB and its target, BDNF. Immunohistochemical analysis of Tg2576 mouse brain showed decreases in CREB levels in hippocampus and cortex. Markers of oxidative stress were detected in transgenic mouse brain and decreased CREB staining was observed in regions showing abundance of astrocytes. There was also an inverse correlation between SDS-extracted Aβ and CREB protein levels in Alzheimer's post-mortem hippocampal samples. The levels of CREB-regulated BDNF and BIRC3, a caspase inhibitor, decreased and the active cleaved form of caspase-9, a marker for the intrinsic pathway of apoptosis, was elevated in these samples. Exposure of rat primary hippocampal neurons to Aβ fibrils decreased CREB promoter activity. Decrease in CREB mRNA levels in Aβ-treated neurons was reversed by the antioxidant, N-acetyl cysteine. Overexpression of CREB by adenoviral transduction led to significant protection against Aβ-induced neuronal apoptosis. Conclusions Our findings suggest that chronic downregulation of CREB-mediated transcription results in decrease of CREB content in the hippocampal neurons of AD brain which may contribute to exacerbation of disease progression.

  12. Hippocampal deep brain stimulation reverses physiological and behavioural deficits in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Shah, Amiksha; Asher, Amber; Lodge, Daniel J

    2013-07-01

    Subcortical dopamine system dysregulation has been suggested to underlie the positive symptoms of schizophrenia. Recent preclinical investigations and human imaging studies have proposed that the augmented dopamine system function observed in schizophrenia patients may be secondary to aberrant hippocampal activity. Thus, we posit that the hippocampus represents a novel therapeutic target for the treatment of schizophrenia. Here we provide evidence of the effectiveness of a unique approach aimed at decreasing hippocampal function in a rodent model of schizophrenia. Specifically, in a rodent model of schizophrenia, we demonstrate that ventral hippocampal (vHipp) deep brain stimulation (DBS) can normalize aberrant dopamine neuron activity and behaviours associated with positive symptoms. In addition, we provide evidence that this approach may also be effective in restoring deficits in cognitive function, often left unaltered by conventional antipsychotic medications. Therefore, we have provided initial preclinical evidence demonstrating the feasibility of hippocampal DBS as a potential novel approach for the treatment of schizophrenia.

  13. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-β (Aβ) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to Aβ plaque formation. We found that microglia ingested Aβ, thereby preventing plaque formation in OHSCs. Conversely, Aβ deposits formed rapidly in microglia-free wild-type slices. The capacity to prevent Aβ plaque formation was absent in forebrain microglia from young adult but not juvenile 5xFamilial Alzheimer's disease (FAD) mice. Since no loss of Aβ clearance capacity was observed in both wild-type and cerebellar microglia from 5xFAD animals, the high Aβ1-42 burden in the forebrain of 5xFAD animals likely underlies the exhaustion of microglial Aβ clearance capacity. These data may therefore explain why Aβ plaque formation has never been described in wild-type mice, and point to a beneficial role of microglia in AD pathology. We also describe a new method to study Aβ plaque formation in a cell culture setting.

  14. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices.

    Science.gov (United States)

    Ferris, Mark J; Calipari, Erin S; Yorgason, Jordan T; Jones, Sara R

    2013-05-15

    Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.

  15. Targeted enhancement of cortical-hippocampal brain networks and associative memory.

    Science.gov (United States)

    Wang, Jane X; Rogers, Lynn M; Gross, Evan Z; Ryals, Anthony J; Dokucu, Mehmet E; Brandstatt, Kelly L; Hermiller, Molly S; Voss, Joel L

    2014-08-29

    The influential notion that the hippocampus supports associative memory by interacting with functionally distinct and distributed brain regions has not been directly tested in humans. We therefore used targeted noninvasive electromagnetic stimulation to modulate human cortical-hippocampal networks and tested effects of this manipulation on memory. Multiple-session stimulation increased functional connectivity among distributed cortical-hippocampal network regions and concomitantly improved associative memory performance. These alterations involved localized long-term plasticity because increases were highly selective to the targeted brain regions, and enhancements of connectivity and associative memory persisted for ~24 hours after stimulation. Targeted cortical-hippocampal networks can thus be enhanced noninvasively, demonstrating their role in associative memory.

  16. Theta-burst stimulation of hippocampal slices induces network-level calcium oscillations and activates analogous gene transcription to spatial learning.

    Directory of Open Access Journals (Sweden)

    Graham K Sheridan

    Full Text Available Over four decades ago, it was discovered that high-frequency stimulation of the dentate gyrus induces long-term potentiation (LTP of synaptic transmission. LTP is believed to underlie how we process and code external stimuli before converting it to salient information that we store as 'memories'. It has been shown that rats performing spatial learning tasks display theta-frequency (3-12 Hz hippocampal neural activity. Moreover, administering theta-burst stimulation (TBS to hippocampal slices can induce LTP. TBS triggers a sustained rise in intracellular calcium [Ca2+]i in neurons leading to new protein synthesis important for LTP maintenance. In this study, we measured TBS-induced [Ca2+]i oscillations in thousands of cells at increasing distances from the source of stimulation. Following TBS, a calcium wave propagates radially with an average speed of 5.2 µm/s and triggers multiple and regular [Ca2+]i oscillations in the hippocampus. Interestingly, the number and frequency of [Ca2+]i fluctuations post-TBS increased with respect to distance from the electrode. During the post-tetanic phase, 18% of cells exhibited 3 peaks in [Ca2+]i with a frequency of 17 mHz, whereas 2.3% of cells distributed further from the electrode displayed 8 [Ca2+]i oscillations at 33 mHz. We suggest that these observed [Ca2+]i oscillations could lead to activation of transcription factors involved in synaptic plasticity. In particular, the transcription factor, NF-κB, has been implicated in memory formation and is up-regulated after LTP induction. We measured increased activation of NF-κB 30 min post-TBS in CA1 pyramidal cells and also observed similar temporal up-regulation of NF-κB levels in CA1 neurons following water maze training in rats. Therefore, TBS of hippocampal slice cultures in vitro can mimic the cell type-specific up-regulations in activated NF-κB following spatial learning in vivo. This indicates that TBS may induce similar transcriptional changes to

  17. Epileptiform synchronization and high-frequency oscillations in brain slices comprising piriform and entorhinal cortices.

    Science.gov (United States)

    Hamidi, S; Lévesque, M; Avoli, M

    2014-12-05

    We employed field potential recordings in extended in vitro brain slices form Sprague-Dawley rats containing the piriform and entorhinal cortices (PC and EC, respectively) to identify the characteristics of epileptiform discharges and concomitant high-frequency oscillations (HFOs, ripples: 80-200Hz, fast ripples: 250-500Hz) during bath application of 4-aminopyridine (4AP, 50μM). Ictal-like discharges occurred in PC and EC either synchronously or independently of each other; synchronous ictal discharges always emerged from a synchronous "fast" interictal background whereas asynchronous ictal discharges were preceded by a "slow" interictal event. In addition, asynchronous ictal discharges had longer duration and interval of occurrence than synchronous ictal discharges, and contained a higher proportion of ripples and fast ripples. Cutting the connections between PC and EC made synchronicity disappear and increased ictal discharges duration in the EC but failed in changing HFO occurrence in both areas. Finally, antagonizing ionotropic glutamatergic receptors abolished ictal activity in all experiments, increased the duration and rate of occurrence of interictal discharges occurring in PC-EC interconnected slices while it did not influence the slow asynchronous interictal discharges in both areas. Our results identify some novel in vitro interactions between olfactory (PC) and limbic (EC) structures that presumably contribute to in vivo ictogenesis as well.

  18. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures.

    Science.gov (United States)

    Bonde, C; Noraberg, J; Noer, H; Zimmer, J

    2005-01-01

    Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl

  19. Microcutting of living brain slices by a pulsed ultrafine water jet which allows simultaneous electrophysiological recordings (micromingotome).

    Science.gov (United States)

    Speckmann, E J; Köhling, R; Lücke, A; Straub, H; Wittkowski, W; Elger, C E; Wiemann, M; Bingmann, D

    1998-07-01

    Up to now microsurgical dissections in living nervous tissue (e.g. in slices or cell cultures) are performed either by micro-scalpels or by laser beams. As an alternative technique, a device for cutting with an ultrafine pulsed water jet was developed to allow precise, visually controled dissections in neuronal circuits even during electrophysiological recordings. Water is ejected by pressure (20-30 bar) from patch pipettes with tip diameters of 10-12 microm. By means of a piezo-element the pipette and the water jet are forced to oscillate vertically with a frequency of 200-400 Hz with an adjustable amplitude. These oscillations facilitate the transsection of neuronal connections even in thick slice preparations. Best results were obtained when the tip of the pipette was about 500 microm above the surface of the submerged slice tissue. This micromingotome offers the following advantages: (i) histological studies show that the water jet cleans the cutting surface, thus avoiding debris and its uncontrolable effects on cells underneath; (ii) the arrangement enables ongoing electrophysiological recordings from hippocampal slices during the cutting procedure and thus facilitates studies of the functions of neuronal connections; (iii) the device allows even disconnection in cultured nervous tissue overgrowing polyamid grids with 50 microm wide meshes.

  20. Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices.

    Science.gov (United States)

    Murakami, Shingo; Zhang, Tongsheng; Hirose, Akira; Okada, Yoshio C

    2002-10-01

    This study examined whether evoked magnetic fields and intra- and extracellular potentials from longitudinal CA3 slices of guinea-pig can be interpreted within a single theoretical framework that incorporates ligand- and voltage-sensitive conductances in the dendrites and soma of the pyramidal cells. The 1991 CA3 mathematical model of R. D. Traub is modified to take into account the asymmetric branching patterns of the apical and basal dendrites of the pyramidal cells. The revised model accounts for the magnitude and waveform of the bi- and triphasic magnetic fields evoked by somatic and apical stimulations, respectively, in the slice in the absence of fast inhibition (blocked by 0.1 mM picrotoxin). The revised model also accounts for selective effects of 4-aminopyridine (4-AP) and tetraethylammonium (TEA), which block the potassium channels of A and C type, respectively, on the slow wave of the magnetic fields. Furthermore, the model correctly predicts the laminar profiles of field potential as well as intracellular potentials in the pyramidal cells produced by two classes of cells - those directly activated and those indirectly (synaptically) activated by the applied external stimulus. The intracellular potentials in this validated model reveal that the spikes and slow waves of the magnetic fields are generated in or near the soma and apical dendrites, respectively. These results demonstrate that a single theoretical framework couched within the modern concepts of cellular physiology provides a unified account of magnetic fields outside the slice, extracellular potentials within the slice and intracellular potentials of the pyramidal cells for CA3.

  1. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    Science.gov (United States)

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  2. Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume.

    Science.gov (United States)

    Carballedo, Angela; Morris, Derek; Zill, Peter; Fahey, Ciara; Reinhold, Elena; Meisenzahl, Eva; Bondy, Brigitta; Gill, Michael; Möller, Hans-Jürgen; Frodl, Thomas

    2013-03-01

    The interaction between adverse life events during childhood and genetic factors is associated with a higher risk to develop major depressive disorder (MDD). One of the polymorphisms found to be associated with MDD is the Val66MET polymorphism of brain-derived neurotrophic factor (BDNF). The aim of our two-center study was to determine how the BDNF Val66Met polymorphism and childhood adversity affect the volumetric measures of the hippocampus in healthy individuals and people with MDD. In this two-center study, 62 adult patients with MDD and 71 healthy matched controls underwent high-resolution magnetic resonance imaging. We used manual tracing of the bilateral hippocampal structure with help of the software BRAINS2, assessed childhood adversity using the Childhood Trauma Questionnaire and genotyped Val66Met BDNF SNP (rs6265). MDD patients had smaller hippocampal volumes, both in the left and right hemispheres (F = 5.4, P = 0.022). We also found a significant interaction between BDNF allele and history of childhood adversity (F = 6.1, P = 0.015): Met allele carriers in our samples showed significantly smaller hippocampal volumes when they did have a history of childhood adversity, both in patients and controls. Our results highlight how relevant stress-gene interactions are for hippocampal volume reductions. Subjects exposed to early life adversity developed smaller hippocampal volumes when they carry the Met-allele of the BDNF polymorphism.

  3. Hippocampal formation: shedding light on the influence of sex and stress on the brain

    OpenAIRE

    2007-01-01

    The hippocampus is a malleable brain region that responds to external agents such as hormones and stressors. Investigations that began in our laboratories with the Golgi technique and an appreciation of hippocampal neuroanatomy at the light and electron microscopic levels have led us down a path that has uncovered unexpected structural plasticity in the adult brain along with unanticipated cellular and molecular mechanisms of this plasticity and of hormone mediation of these effects. This cha...

  4. Physiological Effects of Enriched Environment Exposure and LTP Induction in the Hippocampus In Vivo Do Not Transfer Faithfully to In Vitro Slices

    Science.gov (United States)

    Eckert, Michael J.; Abraham, Wickliffe C.

    2010-01-01

    A number of experimental paradigms use in vitro brain slices to test for changes in synaptic transmission and plasticity following a behavioral manipulation. For example, a number of previous studies have reported a variety of effects of environmental enrichment (EE) exposure on field potential responses in hippocampal slices, but in no study was…

  5. HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2011-08-01

    Full Text Available Abstract Background We have established that activation of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO mediates the switch from cytokine-induced sickness behavior to depressive-like behavior. Because human immunodeficiency virus type 1 (HIV-1 Tat protein causes depressive-like behavior in mice, we investigated its ability to activate IDO in organotypic hippocampal slice cultures (OHSCs derived from neonatal C57BL/6 mice. Methods Depressive-like behavior in C57BL/6J mice was assessed by the forced swim test. Expression of cytokines and IDO mRNA in OHSCs was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. p38 MAPK phosphorylation was analyzed by western blot. Results Intracerebroventricular (i.c.v. administration of Tat (40 ng induced depressive-like behavior in the absence of sickness. Addition of Tat (40 ng/slice to the medium of OHSCs induced IDO steady-state mRNA that peaked at 6 h. This effect was potentiated by pretreatment with IFNγ. Tat also induced the synthesis and release of TNFα and IL-6 protein in the supernatant of the slices and increased expression of the inducible isoform of nitric oxide synthase (iNOS and the serotonin transporter (SERT. Tat had no effect on endogenous synthesis of IFNγ. To explore the mechanisms of Tat-induced IDO expression, slices were pretreated with the p38 mitogen-activated protein kinase (MAPK inhibitor SB 202190 for 30 min before Tat treatment. SB 202190 significantly decreased IDO expression induced by Tat, and this effect was accompanied by a reduction of Tat-induced expression of TNFα, IL-6, iNOS and SERT. Conclusion These data establish that Tat induces IDO expression via an IFNγ-independent mechanism that depends upon activation of p38 MAPK. Targeting IDO itself or the p38 MAPK signaling pathway could provide a novel therapy for comorbid depressive disorders in HIV-1-infected patients.

  6. Properties of gamma-frequency oscillations initiated by propagating population bursts in retrohippocampal regions of rat brain slices.

    Science.gov (United States)

    Funahashi, M; Stewart, M

    1998-07-01

    1. In the hippocampal formation in vivo, brief periods of gamma-frequency activity follow population bursts called sharp waves. The approximately 200 Hz activity of the sharp wave itself may serve to enhance synaptic connections and the approximately 40 Hz gamma activity has been offered as a mechanism for solving the 'binding' problem. We describe epochs of gamma-frequency activity which follow population spikes evoked by low frequency repetitive extracellular stimuli in retrohippocampal neurons of horizontal rat brain slices. 2. gamma-Frequency activity recorded intracellularly from deep layer neurons of entorhinal cortex, presubiculum and parasubiculum consisted of one action potential correlated with each of the three to five gamma cycles recorded with a proximate field potential electrode. A minority of cells exhibited only sub-threshold gamma-frequency membrane potential oscillations (ranging from 5 to 10 mV). No cells fired more than one spike per gamma cycle under any conditions. 3. The range of synchrony varied from individual cells which showed gamma-frequency firing without corresponding oscillations in close field recordings to field potential recordings of oscillations which were well correlated across regions. The lead or lag between any two retrohippocampal regions was in the direction of the conduction delay for the primary population spike, but typically was less, and approached zero milliseconds for some cycles in most cells. The level of synchrony was stable for particular stimulating conditions (intensity, stimulation rate, stimulus location). 4. The duration of the period of gamma activity had the duration of a slow depolarizing potential which was mediated by NMDA receptor activation. NMDA receptor antagonists or low concentrations of AMPA receptor antagonists reduced the duration of, or completely abolished the slow potential, thereby eliminating the gamma portion of the evoked response. 5. gamma-Frequency firing was eliminated by the GABAA

  7. The contrasting effects of dendrotoxins and other potassium channel blockers in the CA1 and dentate gyrus regions of rat hippocampal slices

    OpenAIRE

    Southan, A P; Owen, D G

    1997-01-01

    The effects of potassium channel blocking compounds on synaptic transmission in the CA1 and dentate gyrus regions of the rat hippocampus were examined by means of simultaneous field potential recording techniques in brain slices.4-Aminopyridine (4-AP) enhanced the excitatory postsynaptic potential (e.p.s.p.) and induced multiple population spike responses in both regions. EC50 values were 6.7 μM in the CA1 (n=5) and 161.7 μM (n=5) in the dentate gyrus.Tetraethylammonium (TEA) increased the am...

  8. Development of a Modelling to Correlate Site and Diameter of Brain Metastases with Hippocampal Sparing Using Volumetric Modulated Arc Therapy

    Directory of Open Access Journals (Sweden)

    Silvia Chiesa

    2013-01-01

    Full Text Available Purpose. To correlate site and diameter of brain metastases with hippocampal sparing in patients treated by RapidArc (RA technique on whole brain with simultaneously integrated boost (SIB. Methods and Materials. An RA plan was calculated for brain metastases of 1-2-3 cm of diameter. The whole brain dose was 32.25 Gy (15 fractions, and SIB doses to brain metastases were 63 Gy (2 and 3 cm or 70.8 Gy (1 cm. Plans were optimized and evaluated for conformity, target coverage, prescription isodose to target volume, homogeneity index, and hippocampal sparing. Results. Fifteen brain lesions and RA plan were generated. Hippocampal volume was 4.09 cm3, and hippocampal avoidance volume was 17.50 cm3. Related to site of metastases, the mean hippocampal dose was 9.68 Gy2 for occipital lobe, 10.56 Gy2 for frontal lobe, 10.56 Gy2 for parietal lobe, 10.94 Gy2 for deep brain structures, and 40.44 Gy2 for temporal lobe. The mean hippocampal dose was 9.45 Gy2, 10.15 Gy2, and 11.70 Gy2 for diameter’s metastases of 1.2 and 3 cm, respectively, excluding results relative to temporal brain lesions. Conclusions. Location more than size of metastases can adversely influence the hippocampus sparing. Further investigation is necessary to meet definitive considerations.

  9. Mechanistic studies of antibody mediated clearance of tau aggregates using an ex vivo brain slice model

    Directory of Open Access Journals (Sweden)

    Pavan eKrishnamurthy

    2011-10-01

    Full Text Available Recent studies have shown that immunotherapy clears amyloid beta (A plaques and reduces A levels in mouse models of Alzheimer’s disease (AD, as well as in AD patients. Tangle pathology is also relevant for the neurodegeneration in AD, and our studies have shown that active immunization with an AD related phospho-tau peptide reduces aggregated tau within the brain and slows the progression of tauopathy-induced behavioural impairments. Thus, clearance of neurofibrillary tangles and/or their precursors may reduce synaptic and neuronal loss associated with AD and other tauopathies. So far the mechanisms involved in antibody-mediated clearance of tau pathology are yet to be elucidated. In this study we have used a mouse brain slice model to examine the uptake and localization of FITC labeled anti-tau antibodies. Confocal microscopy analysis showed that the FITC labelled anti-tau antibody co-stained with phosphorylated tau, had a perinuclear appearance and co-localised with markers of the endosomal/lysosomal pathway. Additionally, tau and FITC IgG were found together in an enriched lysosome fraction. In summary, antibody-mediated clearance of intracellular tau aggregates appears to occur via the lysosomal pathway.

  10. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair

    DEFF Research Database (Denmark)

    Noraberg, Jens; Poulsen, Frantz Rom; Blaabjerg, Morten

    2005-01-01

    ) and exposure to glutamate receptor agonists (excitotoxins) are reviewed. For epilepsia, focus is on induction of seizures with effects on neuronal loss, axonal sprouting and neurogenesis. For Alzheimer's disease, the review centers on the use of beta-amyloid (Abeta) in different models, while the section...

  11. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    Science.gov (United States)

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  12. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Tamura Makoto

    2009-01-01

    Full Text Available Abstract Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF, a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  13. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers.

    Science.gov (United States)

    Tamura, Makoto; Tamura, Naohiro; Ikeda, Takamitsu; Koyama, Ryuta; Ikegaya, Yuji; Matsuki, Norio; Yamada, Maki K

    2009-01-31

    Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  14. Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor.

    Science.gov (United States)

    Scharfman, Helen E; Mercurio, Thomas C; Goodman, Jeffrey H; Wilson, Marlene A; MacLusky, Neil J

    2003-12-17

    To test the hypothesis that induction of BDNF may contribute to changes in hippocampal excitability occurring during the female reproductive cycle, we examined the distribution of BDNF immunoreactivity and changes in CA1 and CA3 electrophysiology across the estrous cycle in rats. Hippocampal BDNF immunoreactivity increased on the day of proestrus as well as on the following morning (estrus), relative to metestrus or ovariectomized animals. Changes in immunoreactivity were clearest in mossy fiber axons of dentate gyrus granule cells, which contain the highest concentration of BDNF. Increased immunoreactivity was also apparent in the neuropil-containing dendrites of CA1 and CA3 neurons. Electrophysiological recordings in hippocampal slices showed robust cycle-dependent differences. Evoked responses of CA1 neurons to Schaffer collateral stimulation changed over the cycle, with larger maximum responses at both proestrus and estrus relative to metestrus. In area CA3, repetitive hilar stimuli frequently evoked multiple population spikes at proestrus and estrus but only rarely at other cycle stages, and never in slices of ovariectomized rats. Hyperexcitability in area CA3 at proestrus was blocked by exposure to the high-affinity neurotrophin receptor antagonist K252a, or an antagonist of the alpha7 nicotinic cholinergic receptor, whereas it was induced at metestrus by the addition of BDNF to hippocampal slices. These studies suggest that hippocampal BDNF levels change across the estrous cycle, accompanied by neurophysiological responses that resemble the effects of BDNF treatment. An estrogen-induced interaction of BDNF and alpha7 nicotinic receptors on mossy fibers seems responsible for estrous cycle changes in area CA3. Periovulatory changes in hippocampal function may, thus, involve estrogen-induced increases in BDNF expression.

  15. Effects of deprivation of oxygen or glucose on the neural activity in the guinea pig hippocampal slice--intracellular recording study of pyramidal neurons.

    Science.gov (United States)

    Takata, T; Okada, Y

    1995-06-12

    The block of synaptic transmission and neural activity during deprivation of oxygen or glucose has been simply attributed to the lack of energy due to the disorder of energy production. To clarify the interrelation between neural activity and energy metabolism during hypoxia or glucose deprivation, we studied the changes in ATP levels and electrical events of pyramidal neurons in the CA3 region and [Ca2+]i mobilization of the dendritic and cellular region of CA3 area, using guinea pig hippocampal slices. The studies of field potentials and intracellular recording from the pyramidal cell of CA3 area during hypoxia or glucose deprivation revealed that the cessation of synaptic activity and the depolarization of resting potential occurred earlier than during glucose deprivation while the increase of [Ca2+]i was slow during hypoxia but rapid during glucose deprivation although the ATP level of CA3 area was maintained at its original level for 20 min during both conditions. When glucose was replaced by lactate, ATP concentration was not reduced but the electrical activity decayed and [Ca2+]i increased with the similar time course as observed during lack of glucose, only. These results suggest that different mechanisms underlie the block of synaptic transmission in the CA3 pyramidal neurons during hypoxia and glucose deprivation and that lactate cannot substitute for glucose in the maintenance of neural activity.

  16. Characterisation of the effects of ATPA, a GLU(K5) receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices.

    Science.gov (United States)

    Clarke, V R J; Collingridge, G L

    2002-06-01

    Kainate receptors are involved in a variety of synaptic functions in the CNS including the regulation of excitatory synaptic transmission. Previously we described the depressant action of the GLU(K5) selective agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA) on synaptic transmission in the Schaffer collateral-commissural pathway of rat hippocampal slices. In the present study we report several new features of the actions of ATPA at this synapse. Firstly, the effectiveness of ATPA is developmentally regulated. Secondly, the effects of ATPA decline during prolonged or repeated applications. Thirdly, the effects of ATPA are not mediated indirectly via activation of GABA(A), GABA(B), muscarinic or adenosine A(1) receptors. Fourthly, elevating extracellular Ca(2+) from 2 to 4 mM antagonises the effects of ATPA. Some differences between the actions of ATPA and kainate on synaptic transmission in the Schaffer collateral-commissural pathway are also noted.

  17. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress

    Directory of Open Access Journals (Sweden)

    Avital eSchurr

    2012-01-01

    Full Text Available Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments a support the hypothesis that lactate, not pyruvate, is the end product of cerebral aerobic glycolysis; b indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; c suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH; d imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS to provide neuroprotection against ROS-induced neuronal damage.

  18. Differential mechanisms involved in the effect of nicotinic agonists DMPP and lobeline to release [3H]5-HT from rat hippocampal slices.

    Science.gov (United States)

    Lendvai, B; Sershen, H; Lajtha, A; Santha, E; Baranyi, M; Vizi, E S

    1996-01-01

    In the present study we investigated the effect of different nicotinic agonists (dimethylphenyl-piperazinium-iodide (DMPP), (-)nicotine, cytisine, (-)-lobeline, and (-)epibatidine) and antagonists (mecamylamine and dihydro-beta-erythroidine) on the release of [3H]5-HT from hippocampal slices. The nicotinic agonists DMPP and lobeline and electrical field stimulation, released [3H]5-HT from the hippocampus; other nicotinic agonists, such as (-)-nicotine, cytisine, and (-)-epibatidine had no effect. Unlike lobeline-induced release of [3H]5-HT, the effect of DMPP (10 and 40 microM) was antagonized by mecamylamine (20 and 10 microM). The effect of DMPP was [Ca2+]o-independent. In experiments carried out at 7 degrees C, i.e. the membrane carrier proteins are inhibited and the release by lobeline was abolished while the DMPP-induced release of 5-HT was rather potentiated. It is proposed that the effect of DMPP and lobeline, to enhance the release of [3H]5-HT from the hippocampus, was mediated by two different mechanisms. While DMPP-induced 5-HT release can be linked to a non-classical nAChR activation ([Ca2+]o-independence), the effect of lobeline was likely mediated by uptake carriers.

  19. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    Science.gov (United States)

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.

  20. Hippocampal Neurogenesis and the Brain Repair Response to Brief Stereotaxic Insertion of a Microneedle

    Directory of Open Access Journals (Sweden)

    Shijie Song

    2013-01-01

    Full Text Available We tested the hypothesis that transient microinjury to the brain elicits cellular and humoral responses that stimulate hippocampal neurogenesis. Brief stereotaxic insertion and removal of a microneedle into the right hippocampus resulted in (a significantly increased expression of granulocyte-colony stimulating factor (G-CSF, the chemokine MIP-1a, and the proinflammatory cytokine IL12p40; (b pronounced activation of microglia and astrocytes; and (c increase in hippocampal neurogenesis. This study describes immediate and early humoral and cellular mechanisms of the brain’s response to microinjury that will be useful for the investigation of potential neuroprotective and deleterious effects of deep brain stimulation in various neuropsychiatric disorders.

  1. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    OpenAIRE

    Magariños, A.M.; Li, C. J.; Toth, J. Gal; Bath, K.G.; Jing, D; Lee, F S; MCEWEN, B. S.

    2011-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the ...

  2. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions.

    Science.gov (United States)

    Botterill, J J; Nogovitsyn, N; Caruncho, H J; Kalynchuk, L E

    2017-02-01

    The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long-Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron-selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin-immunoreactive (-ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron-selective calretinin-ir cells in the dentate gyrus of hippocampal-kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67-cells in caudate-kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield-selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389-406, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons.

    Science.gov (United States)

    Magariños, A M; Li, C J; Gal Toth, J; Bath, K G; Jing, D; Lee, F S; McEwen, B S

    2011-03-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF(±) ) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF(±) mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF(±) mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling.

  4. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  5. Treatment of brain metastases of renal cell cancer with combined hypofractionated stereotactic radiotherapy and whole brain radiotherapy with hippocampal sparing.

    Science.gov (United States)

    Vrána, David; Študentová, Hana; Matzenauer, Marcel; Vlachová, Zuzana; Cwiertka, Karel; Gremlica, David; Kalita, Ondřej

    2016-06-01

    Renal cell cancer patients with brain metastatic disease generally have poor prognosis. Treatment options include surgery, radiotherapy, targeted therapy or best supportive care with respect to disease burden, patient preference and performance status. In the present case report the radiotherapy technique combining whole brain radiotherapy with hippocampal sparing (hippocampal avoidance whole brain radiotherapy HA-WBRT) and hypofractionated stereotactic radiotherapy (SRT) of the brain metastases is performed in a patient with metastatic renal cell carcinoma. HA-WBRT was administered to 30 Gy in 10 fractions with sparing of the hippocampal structures and SRT of 21 Gy in 3 fractions to brain metastases which has preceded the HA-WBRT. Two single arc volumetric modulated arc radiotherapy (VMAT) plans were prepared using Monaco planning software. The HA-WBRT treatment plan achieved the following results: D2=33.91 Gy, D98=25.20 Gy, D100=14.18 Gy, D50=31.26 Gy. The homogeneity index was calculated as a deduction of the minimum dose in 2% and 98% of the planning target volume (PTV), divided by the minimum dose in 50% of the PTV. The maximum dose to the hippocampus was 17.50 Gy and mean dose was 11.59 Gy. The following doses to organs at risk (OAR) were achieved: Right opticus Dmax, 31.96 Gy; left opticus Dmax, 30.96 Gy; chiasma D max, 32,76 Gy. The volume of PTV for stereotactic radiotherapy was 3,736 cm3, with coverage D100=20.95 Gy and with only 0.11% of the PTV being irradiated to dose below the prescribed dose. HA-WBRT with SRT represents a feasible technique for radiotherapy of brain metastatic disease, however this technique is considerably demanding on departmental equipment and staff time/experience.

  6. Inhibitory effect of morphine on excitatory synaptic transmission via presynaptic mechanism in rat SON neurons in brain slices

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-bin; HU San-jue; JU Gong

    2001-01-01

    To observe the effects of morphine on the excitatory postsynaptic currents (EPSCs) and miniature EPSCs (mEPSCs) in rat supraoptic nucleus (SON) neurons and to explore its synaptic mechanism. Methods: Using whole-cell voltage-clamp recording technique in the brain slices, the EPSCS and mEPSCs of rat SON neurons were recorded, respectively. Results: Morphine (20 μmol/L) decreased the frequency of EPSCs and mEPSCs (by 65% for EPSCS and by 45% for mEPSCs), and reduced the amplitude of EPSCs by 44% in all SON neurons, but the amplitude distribution ofmEPSCs was not affected. Conclusion: Morphine inhibits the excitatory transmissions via presynaptic mechanisms in SON neurons from rat brain slices.

  7. Oxygen-glucose deprivation promotes gliogenesis and microglia activation in organotypic hippocampal slice culture: involvement of metalloproteinases.

    Science.gov (United States)

    Ziemka-Nałęcz, Małgorzata; Stanaszek, Luiza; Zalewska, Teresa

    2013-01-01

    Organotypic hippocampal cultures are used as an alternative model for studying molecular mechanism(s) of neurogenesis after combined oxygen-glucose deprivation (OGD) mimicking ischemic conditions. The aim of the present work was to investigate the effect of OGD on stem/progenitor cells proliferation and/or differentiation in the hippocampus. Our attention was primarily focused on the relationship between neurogenesis-associated processes and activity of matrix metalloproteinases (MMPs). Cell proliferation was detected by using BrdU incorporation. Newly generated BrdU (+) cells were identified by labeling with specific cell markers. In order to check the activity and localization of MMPs we conducted in situ zymography in conjunction with immunohistochemistry. In our experimental conditions OGD-insult followed by 24 h of recovery caused the damage of neuronal cells in CA1. At 1 week cell death appears all over the hippocampus. We found that expected stimulation of endogenous neurogenesis fails as a source of compensation for the lost neurons in OGD-treated cultures. The modulation of culture microenvironment after ischemia favors the dominant proliferation of glial cells expressed by the enhancement of newly-generated oligodendrocyte progenitors. In addition, during our study we also detected some BrdU labeled nuclei encapsulated by GFAP positive processes. However, the majority of BrdU positive cells expressed microglial specific stain, particularly pronounced in CA1area. The OGD-promoted responses involved activation of metalloproteinases, which matches the progression of gliogenesis. On the other hand, the high activity of MMPs associated with microglial cells implicate their involvement in the mechanism participating in OGD-induced cell damage.

  8. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Mehrabian Shima

    2012-09-01

    Full Text Available Abstract Background This article reports a rare case of active neurosyphilis in a man with mild to moderate dementia and marked hippocampal atrophy, mimicking early onset Alzheimer’s disease. Few cases have so far described bilateral hippocampal atrophy mimicking Alzheimer’s disease in neurosyphilis. Case presentation The patient presented here is a 33 year old Bulgarian male, whose clinical features include progressive cognitive decline and behavioral changes over the last 18 months. Neuropsychological examination revealed mild to moderate dementia (Mini Mental State Examination score was 16/30 with impaired memory and attention, and executive dysfunction. Pyramidal, and extrapyramidal signs, as well as dysarthria and impairment in coordination, were documented. Brain magnetic resonance imaging showed cortical atrophy with noticeable bilateral hippocampal atrophy. The diagnosis of active neurosyphilis was based on positive results of the Venereal Disease Research Laboratory test/Treponema pallidum hemagglutination reactions in blood and cerebrospinal fluid samples. In addition, cerebrospinal fluid analysis showed pleocytosis and elevated protein levels. High-dose intravenous penicillin therapy was administered. At 6 month follow up, improvements were noted clinically, on neuropsychological examinations, and in cerebrospinal fluid samples. Conclusion This case underlines the importance of early diagnosis of neurosyphilis. The results suggest that neurosyphilis should be considered when magnetic resonance imaging results indicate mesiotemporal abnormalities and hippocampal atrophy. Neurosyphilis is a treatable condition which requires early aggressive antibiotic therapy.

  9. Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain.

    Science.gov (United States)

    Hong, Xiao-Ping; Chen, Tao; Yin, Ni-Na; Han, Yong-Ming; Yuan, Fang; Duan, Yan-Jun; Shen, Feng; Zhang, Yan-Hong; Chen, Ze-Bin

    2016-01-01

    Enhanced neurogenesis has been reported in the hippocampus of patients with Alzheimer's disease (AD), the most common neurodegenerative disorder characterized with amyloid-β (Aβ) aggregation, tau hyperphosphorylation, and progressive neuronal loss. Previously we reported that tau phosphorylation played an essential role in adult hippocampal neurogenesis, and activation of glycogen synthase kinase (GSK-3), a crucial tau kinase, could induce increased hippocampal neurogenesis. In the present study, we found that treatment of D-galactose rats with Puerarin could significantly improve behavioral performance and ameliorate the enhanced neurogenesis and microtubule-associated protein tau hyperphosphorylation in the hippocampus of D-galactose rat brains. FGF-2/GSK-3 signaling pathway might be involved in the effects of Puerarin on hippocampal neurogenesis and tau hyperphosphorylation. Our finding provides primary in vivo evidence that Puerarin can attenuate AD-like enhanced hippocampal neurogenesis and tau hyperphosphorylation. Our finding also suggests Puerarin can be served as a treatment for age-related neurodegenerative disorders, such as AD.

  10. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  11. Sensitivity of N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials and synaptic plasticity to TCN 201 and TCN 213 in rat hippocampal slices.

    Science.gov (United States)

    Izumi, Yukitoshi; Zorumski, Charles F

    2015-02-01

    Whereas ifenprodil has been used as a selective GluN1/GluN2B (NR1/NR2B, B-type) receptor antagonist to distinguish between GluN2B (NR2B) and GluN2A (NR2A)-containing N-methyl-d-aspartate receptors (NMDARs), TCN 201 (3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl]benzyl]benzenesulphonamide) and TCN 213 [N-(cyclohexylmethyl)-2-[{5-[(phenylmethyl)amino]-1,3,4-thiadiazol-2-yl}thio]acetamide] have been found to be selective GluN1/GluN2A (NR1/NR2A, A-type) antagonists. Based on the premise that A- and B-types are major synaptic NMDARs, we examined whether inhibition of NMDAR excitatory postsynaptic potentials (EPSPs) by the TCN compounds and ifenprodil are complementary. Contrary to this prediction, inhibition of NMDAR EPSPs by the TCN compounds and ifenprodil were largely overlapping in the CA1 region of hippocampal slices from 30-day-old rats. After partial inhibition by ifenprodil, TCN compounds produced little further suppression of NMDAR EPSPs. Similarly, after partial inhibition by TCN compounds ifenprodil failed to further suppress NMDAR EPSPs. However, low micromolar d-2-amino-5-phosphonovalerate, a competitive NMDAR antagonist, which alone only partially inhibits NMDAR EPSPs, markedly suppresses residual NMDAR responses in the presence of ifenprodil or the TCNs, suggesting that low 2-amino-5-phosphonovalerate antagonizes both ifenprodil- and TCN-insensitive synaptic NMDARs. These observations can be most readily interpreted if ifenprodil and TCNs act on a similar population of synaptic NMDARs. Recent lines of evidence suggest that the majority of hippocampal synaptic NMDARs are triheteromers. If so, modulation of GluN2A, and not just GluN2B NMDARs, could dampen long-term depression (LTD). Indeed, both TCNs, like ifenprodil, blocked LTD, suggesting the involvement of ifenprodil- and TCN-sensitive NMDARs in LTD induction. However, the TCNs plus ifenprodil failed to inhibit long-term potentiation (LTP), suggesting that neither ifenprodil- nor TCN

  12. The use of organotypic hippocampal slice cultures to evaluate protection by non-competitive NMDA receptor antagonists against excitotoxicity

    DEFF Research Database (Denmark)

    Ring, Avi; Tanso, Rita; Noraberg, Jens

    2010-01-01

    There is a wide interest in testing neuroprotectants which inhibit the neurodegeneration that results from excessive activation of brain NMDA receptors.  As an alternative to in vivo testing in animal models we demonstrate here the use of a complex in vitro model to compare the efficacy...... with in vivo tests in rodents . We conclude that the slice culture model provides valuable pre-clinical data and applying the model to screen neuroprotectants may significantly limit the use of in vivo tests in animals....... blockers that inhibit excitotoxic injury and their neuroprotective capacity have been extensively investigated in vivo in animal models. They have also been evaluated as potential countermeasure agents against organophosphate poisoning. Quantitative densitometric image analysis of propidium iodide uptake...

  13. Phase dependency of long-term potentiation induction during the intermittent bursts of carbachol-induced β oscillation in rat hippocampal slices.

    Science.gov (United States)

    Nishimura, Motoshi; Nakatsuka, Hiroki; Natsume, Kiyohisa

    2012-01-01

    The rodent hippocampus possesses theta (θ) and beta (β) rhythms, which occur intermittently as bursts. Both rhythms are related to spatial memory processing in a novel environment. θ rhythm is related to spatial memory encoding process. β rhythm is related to the match/mismatch process. In the match/mismatch process, rodent hippocampus detects a representation matching sensory inputs of the current place among the retrieved internal representations of places. Long-term synaptic potentiation (LTP) is induced in both processes. The cholinergic agent carbachol induces intermittent θ and β oscillations in in vitro slices similar to in vivo bursts. LTP is facilitated during the generation of θ oscillation, suggesting that the facilitation of LTP is dependent upon the phases of intermittent burst (burst phases) of the oscillation. However, whether this is the case for β oscillation has not yet been studied. In the present study, LTP-inducing θ-burst stimulation was administered at the different burst phases of carbachol-induced β oscillations (CIBO), and the synaptic changes were measured at CA3-CA3 pyramidal cell synapses (CA3 synapse) and at CA3-CA1 pyramidal cell synapses (CA1 synapse). At the CA3 synapse, the largest magnitude of LTP was induced at the late burst phases of CIBO. At the CA1 synapse, LTP was induced only at the late burst phases. Modulation of LTP was suppressed when CIBO was blocked by the application of atropine at both synapses. The results suggest that the bursts of hippocampal β rhythm can determine the optimal temporal period for completing with the match/mismatch process.

  14. Neuroprotection by JM-20 against oxygen-glucose deprivation in rat hippocampal slices: Involvement of the Akt/GSK-3β pathway.

    Science.gov (United States)

    Ramírez-Sánchez, Jeney; Simões Pires, Elisa Nicoloso; Nuñez-Figueredo, Yanier; Pardo-Andreu, Gilberto L; Fonseca-Fonseca, Luis Arturo; Ruiz-Reyes, Alberto; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O; Salbego, Christianne

    2015-11-01

    Cerebral ischemia is the third most common cause of death and a major cause of disability worldwide. Beyond a shortage of essential metabolites, ischemia triggers many interconnected pathophysiological events, including excitotoxicity, oxidative stress, inflammation and apoptosis. Here, we investigated the neuroprotective mechanisms of JM-20, a novel synthetic molecule, focusing on the phosphoinositide-3-kinase (PI3K)/Akt survival pathway and glial cell response as potential targets of JM-20. For this purpose, we used organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD) to achieve ischemic/reperfusion damage in vitro. Treatment with JM-20 at 0.1 and 10 μM reduced PI incorporation (indicative of cell death) after OGD. OGD decreased the phosphorylation of Akt (pro-survival) and GSK 3β (pro-apoptotic), resulting in respective inhibition and activation of these proteins. Treatment with JM20 prevented the reduced phosphorylation of these proteins after OGD, representing a shift from pro-apoptotic to pro-survival signaling. The OGD-induced activation of caspase-3 was also attenuated by JM-20 treatment at 10 μM. Moreover, in cultures treated with JM-20 and exposed to OGD conditioning, we observed a decrease in activated microglia, as well as a decrease in interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α release into the culture medium, while the level of the anti-inflammatory IL-10 increased. GFAP immunostaining and IB4 labeling showed that JM-20 treatment significantly augmented GFAP immunoreactivity after OGD, when compared with cultures exposed to OGD only, suggesting the activation of astroglial cells. Our results confirm that JM-20 has a strong neuroprotective effect against ischemic injury and suggest that the mechanisms involved in this effect may include the modulation of reactive astrogliosis, as well as neuroinflammation and the anti-apoptotic cell signaling pathway.

  15. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures.

    Science.gov (United States)

    Rundén-Pran, E; Haug, F M; Storm, J F; Ottersen, O P

    2002-01-01

    BK channels are voltage- and calcium-dependent potassium channels whose activation tends to reduce cellular excitability. In hippocampal pyramidal cells, BK channels repolarize somatic action potentials, and recent immunogold and electrophysiological analyses have revealed a presynaptic pool of BK channels that can regulate glutamate release. Agents that modulate BK channel activity would therefore be expected to affect cell excitability and neurotransmitter release also under pathological conditions. We have investigated the role of BK potassium channels in a model of ischemia-induced nerve cell degeneration. Organotypical slice cultures of rat hippocampus were exposed to oxygen and glucose deprivation (OGD), and cell death was assessed by the fluorescent dye propidium iodide. OGD induced cell death in the CA1 region and to a lesser extent in CA3. Treatment with the BK channel blockers, paxilline and iberiotoxin, during and after OGD induced increased cell death in CA1 and CA3. Both BK channel blockers also sensitized the relatively resistant granule cells in fascia dentata to OGD. The effect of paxilline and iberiotoxin was evident from 3 h after OGD, indicating a role of BK channels early in the post-ischemic phase or during OGD itself. The BK channel opener, NS1619, turned out to be gliotoxic, and this effect was not counteracted by paxilline and iberiotoxin. Our data show that blockade of BK channels aggravates OGD-induced cell damage and suggest that BK channels act as a kind of 'emergency brake' during and/or after ischemia. Accordingly, the BK channel is a potential molecular target for neuroprotective therapy in stroke.

  16. GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation.

    Science.gov (United States)

    Bonde, C; Sarup, A; Schousboe, A; Gegelashvili, G; Noraberg, J; Zimmer, J

    2003-01-01

    Besides its neurotrophic and neuroprotective effects on dopaminergic neurons and spinal motoneurons, glial cell line-derived neurotrophic factor (GDNF) has potent neuroprotective effects in cerebral ischemia. The protective effect has so far been related to reduced activation of N-methyl-D-aspartate receptors (NMDAr). This study tested the effects of GDNF on glutamate transporter expression, with the hypothesis that modulation of glutamate transporter activity would affect the outcome of cerebral ischemia. Organotypic hippocampal slice cultures, derived from 1-week-old rats, were treated with 100 ng/ml GDNF for either 2 or 5 days, followed by Western blot analysis of NMDAr subunit 1 (NR1) and two glutamate transporter subtypes, GLAST and GLT-1. After 5-day exposure to GDNF, expression of GLAST and GLT-1 was up-regulated to 169 and 181% of control values, respectively, whereas NR1 was down-regulated to 64% of control. However, despite these changes that potentially would support neuronal resistance to excitotoxicity, the long-term treatment with GDNF was found to aggravate the neuronal damage induced by oxygen-glucose deprivation (OGD). The increased cell death, assessed by propidium iodide (PI) uptake, occurred not only among the most susceptible CA1 pyramidal cells, but also in CA3 and fascia dentata. Given that glutamate transporters are able to release glutamate by reversed action during energy failure, it is suggested that the observed increase in OGD-induced cell death in the GDNF-pretreated cultures was caused by the build-up of excitotoxic concentrations of extracellular glutamate released through the glutamate transporters, which were up-regulated by GDNF. Although the extent and consequences of glutamate release via reversal of GLAST and GLT-1 transporters seem to vary in different energy failure models, the present findings should be taken into account in clinical trials of GDNF.

  17. Evaluation of Mitochondrial Function in the CNS of Rodent Models of Alzheimer's Disease - High Resolution Respirometry Applied to Acute Hippocampal Slices.

    Science.gov (United States)

    Dias, Candida; Barbosa, Rui M; Laranjinha, Joao; Ledo, Ana

    2014-10-01

    Alzheimer's disease (AD) is a multifactorial disease characterized by extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles. These hallmark alterations are preceded by synaptic deterioration, changes in neuromolecular plasticity phenomena, mitochondrial dysfunction, increase in oxidative damage to cellular constituents and decreased energy metabolism. The hippocampus is a structure of the temporal medial lobe implicated in specific forms of memory processes. It is also one of the first and most affected regions of the CNS in AD. Here we present a novel approach to the study if mitochondrial function/disfunction in 2 rodent models of AD: an acute rat model obtained by intracerebroventricular injection of the toxin streptozotocin (STZ) and a progressive triple transgenic mouse model (3TgAD) harboring PS1M146V, APPSwe, and tauP301L transgenes. Mitochondrial dysfunction has classically been assessed in such models by isolating mitochondria, synaptossoms or working with cell cultures. Anyone of these approaches destroys the intricate intercellular connectivity and cytoarchitecture of neuronal tissue. We used acute hippocampal slices obtained from the 2 models of AD and evaluated changes in mitochondrial function as a function of disease and/or age. Mitochondrial stress test were performed on the high resolution respirometry (Oroboros 2K Oxymeter). Upon analysis of oxygen consumption rates (OCR) we observed significant decreases in basal OCR, maximal respiratory capacity, ATP turnover and a tendency for decrease in sparing capacity in the STZ rat model compared to shame injected animals. Regarding the 3TgAD model we observed an age-dependent decrease in all parameters evaluated in the mitochondrial stress test, in both 3TgAD and NTg animals. However, although a tendency towards decreased OCR was observed when comparing 3TgAD and age-matched NTg animals, no statistically significant difference was observed. Copyright © 2014. Published by

  18. Inhibition of neuronal nitric oxide synthase potentiates the dimethylphenylpiperazinium-evoked carrier-mediated release of noradrenaline from rat hippocampal slices.

    Science.gov (United States)

    Kiss, J P; Sershen, H; Lajtha, A; Vizi, E S

    1996-09-06

    The effect of 7-nitroindazole (7-NI), an inhibitor of neuronal nitric oxide synthase (nNOS) on the dimethylphenylpiperazinium(DMPP)-evoked release of [3H]noradrenaline ([3H]NA) from rat hippocampal slices was studied. The effect of DMPP (20 microM) to increase the basal release of [3H]NA was significantly potentiated by 7-NI (40 microM). In our previous study we showed that the response to DMPP has two components, a nicotinic receptor-mediated, [Ca2+]-dependent exocytosis followed by a [Ca2+]-independent, uptake blocker-sensitive carrier-mediated release. To clarify which part of the response was affected by the inhibition of nNOS, we investigated the effect of 7-NI on the nicotine-evoked NA release (nicotine has only receptor-mediated effect) and on the DMPP-evoked NA release in Ca(2+)-free medium where the receptor-mediated component is abolished. Nicotine (100 microM) significantly increased the basal release of [3H]NA but this release was not affected, whereas in Ca(2+)-free medium the response to DMPP (20 microM) was still potentiated by 7-NI (40 microM). In the presence of the NA uptake blocker desipramine (10 microM) DMPP (20 microM) was unable to provoke NA release independently from the presence or absence of 7-NI (40 microM). Our data show that 7-NI influences the carrier-mediated component of DMPP-evoked [3H]NA release, which indicates that nitric oxide produced by nNOS may play a role in the regulation of the NA uptake carrier.

  19. Weak sinusoidal electric fields entrain spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations.

    Science.gov (United States)

    Maeda, Kazuma; Maruyama, Ryuichi; Nagae, Toru; Inoue, Masashi; Aonishi, Toru; Miyakawa, Hiroyoshi

    2015-01-01

    Neurons might interact via electric fields and this notion has been referred to as ephaptic interaction. It has been shown that various types of ion channels are distributed along the dendrites and are capable of supporting generation of dendritic spikes. We hypothesized that generation of dendritic spikes play important roles in the ephaptic interactions either by amplifying the impact of electric fields or by providing current source to generate electric fields. To test if dendritic activities can be modulated by electric fields, we developed a method to monitor local Ca-transients in the dendrites of a neuronal population in acute rat hippocampal slices by applying spinning-disk confocal microscopy and multi-cell dye loading technique. In a condition in which the dendrites of CA1 pyramidal neurons show spontaneous Ca-transients due to added 50 μM 4-aminopyridine to the bathing medium and adjusted extracellular potassium concentration, we examined the impact of sinusoidal electric fields on the Ca-transients. We have found that spontaneously occurring fast-Ca-transients in the tufts of the apical dendrites of CA1 pyramidal neurons can be blocked by applying 1 μM tetrodotoxin, and that the timing of the transients become entrained to sub-threshold 1-4 Hz electric fields with an intensity as weak as 0.84 mV/mm applied parallel to the somato-dendritic axis of the neurons. The extent of entrainment increases with intensity below 5 mV/mm, but does not increase further over the range of 5-20 mV/mm. These results suggest that population of pyramidal cells might be able to detect electric fields with biologically relevant intensity by modulating the timing of dendritic spikes.

  20. Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Hailer, Nils P; Vogt, Cornelia; Korf, Horst-Werner; Dehghani, Faramarz

    2005-05-01

    The effects of interleukin (IL)-1beta and IL-1 receptor antagonist (IL-1ra) on neurons and microglial cells were investigated in organotypic hippocampal slice cultures (OHSCs). OHSCs obtained from rats were excitotoxically lesioned after 6 days in vitro by application of N-methyl-D-aspartate (NMDA) and treated with IL-1beta (6 ng/mL) or IL-1ra (40, 100 or 500 ng/mL) for up to 10 days. OHSCs were then analysed by bright field microscopy after hematoxylin staining and confocal laser scanning microscopy after labeling of damaged neurons with propidium iodide (PI) and fluorescent staining of microglial cells. The specificity of PI labeling of damaged neurons was validated by triple staining with neuronal and glial markers and it was observed that PI accumulated in damaged neurons only but not in microglial cells or astrocytes. Treatment of unlesioned OHSCs with IL-1beta did not induce neuronal damage but caused an increase in the number of microglial cells. NMDA lesioning alone resulted in a massive increase in the number of microglial cells and degenerating neurons. Treatment of NMDA-lesioned OHSCs with IL-1beta exacerbated neuronal cell death and further enhanced microglial cell numbers. Treatment of NMDA-lesioned cultures with IL-1ra significantly attenuated NMDA-induced neuronal damage and reduced the number of microglial cells, whereas application of IL-1ra in unlesioned OHSCs did not induce significant changes in either cell population. Our findings indicate that: (i) IL-1beta directly affects the central nervous system and acts independently of infiltrating hematogenous cells; (ii) IL-1beta induces microglial activation but is not neurotoxic per se; (iii) IL-1beta enhances excitotoxic neuronal damage and microglial activation and (iv) IL-1ra, even when applied for only 4 h, reduces neuronal cell death and the number of microglial cells after excitotoxic damage.

  1. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Block, Benjamin; Davis, Lizeth J; Rodesch, Christopher; Casper, T Charles; Juul, Sandra E; Kesner, Raymond P; Lane, Robert H

    2014-02-15

    Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.

  2. Brain perfusion CT for acute stroke using a 256-slice CT: improvement of diagnostic information by large volume coverage

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, F. [Technical University, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Institut fuer Radiologie, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Muenchen (Germany); Muenzel, D.; Meier, R.; Rummeny, E.J.; Huber, A. [Technical University, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Poppert, H. [Technical University, Department of Neurology, Klinikum rechts der Isar, Munich (Germany)

    2011-09-15

    To compare a 256-slice CT with a simulated standard CT for brain CT perfusion (CTP). CTP was obtained in 51 patients using a 256-slice CT (128 detector rows, flying z-focus, 8-cm detector width, 80 kV, 120mAs, 20 measurements, 1 CT image/2.5 s). Signal-to-noise ratios (SNR) were compared in grey and white matter. Perfusion maps were evaluated for cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in hypoperfused areas and corresponding contralateral regions. Two reconstructed 10-mm slices for simulation of a standard CT (SDCT) were compared with the complete data sets (large-volume CT, LVCT). Adequate image quality was achieved in 50/51 cases. SNR were significantly different in grey and white matter. A perfusion deficit was present in 27 data sets. Differences between the hypoperfusions and the control regions were significant for MTT and CBF, but not for CBV. Three lesions were missed by SDCT but detected by LVCT; 24 lesions were covered incompletely by SDCT, and 6 by LVCT. 21 lesions were detected completely by LVCT, but none by SDCT. CTP imaging of the brain using an increased detector width can detect additional ischaemic lesions and cover most ischaemic lesions completely. (orig.)

  3. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.

    Science.gov (United States)

    Marty, S; Wehrlé, R; Sotelo, C

    2000-11-01

    Hippocampal interneurons inhibit pyramidal neurons through the release of the neurotransmitter GABA. Given the importance of this inhibition for the proper functioning of the hippocampus, the development of inhibitory synapses must be tightly regulated. In this study, the possibility that neuronal activity and neurotrophins regulate the density of GABAergic inhibitory synapses was investigated in organotypic slice cultures taken from postnatal day 7 rats. In hippocampal slices cultured for 13 d in the presence of the GABA(A) receptor antagonist bicuculline, the density of glutamic acid decarboxylase (GAD) 65-immunoreactive terminals was increased in the CA1 area when compared with control slices. Treatment with the glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione decreased the density of GAD65-immunoreactive terminals in the stratum oriens of CA1. These treatments had parallel effects on the density of GABA-immunoreactive processes. Electron microscopic analysis after postembedding immunogold labeling with antibodies against GABA indicated that bicuculline treatment increased the density of inhibitory but not excitatory synapses. Application of exogenous BDNF partly mimicked the stimulatory effect of bicuculline on GAD65-immunoreactive terminals. Finally, antibodies against BDNF, but not antibodies against nerve growth factor, decrease the density of GAD65-immunoreactive terminals in bicuculline-treated slices. Thus, neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation. This regulation of the density of inhibitory synapses could represent a feedback mechanism aimed at maintaining an appropriate level of activity in the developing hippocampal networks.

  4. Loss of entorhinal cortex and hippocampal volumes compared to whole brain volume in normal aging: the SMART-Medea study.

    Science.gov (United States)

    Knoops, Arnoud J G; Gerritsen, Lotte; van der Graaf, Yolanda; Mali, Willem P T M; Geerlings, Mirjam I

    2012-07-30

    In non-demented elderly age-related decline in hippocampal volume has often been observed, but it is not clear if this loss is disproportionate relative to other brain tissue. Few studies examined age-related volume loss of the entorhinal cortex. We investigated the association of age with hippocampal and entorhinal cortex (ERC) volumes in a large sample of middle-aged and older persons without dementia. Within the SMART-Medea study, cross-sectional analyses were performed in 453 non-demented subjects (mean age 62±9 years, 81% male) with a history of arterial disease. Hippocampal and ERC volumes were assessed by manual segmentation on three-dimensional fast field-echo sequence T1-weighted magnetic resonance images. Automated segmentation was used to quantify volumes of BV and ICV. Hippocampal and ERC volumes were divided by intracranial volume (ICV) as well as total brain volume (BV) to determine whether age-related differences were disproportionate relative to other brain tissue. Total crude hippocampal volume was 5.96±0.7 ml and total crude ERC volume was 0.34±0.06 ml. Linear regression analyses adjusted for sex showed that with increasing age, hippocampal volume divided by ICV decreased (B per year older=-0.01 ml; 95% CI -0.02 to -0.004). However, no age-related decline in hippocampal volume relative to BV was observed (B per year older=0.005 ml; 95% CI -0.002 to 0.01). No age-related decline in ERC volume relative to ICV or BV was observed. In this population of nondemented patients with a history of vascular disease no age-related decline in entorhinal cortex volume was observed and although hippocampal volume decreased with age, it was not disproportionate relative to total brain volume. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Clinical Features of Brain Metastases in Small Cell Lung Cancer: an Implication for Hippocampal Sparing Whole Brain Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Wen-Long Guo

    2017-02-01

    Full Text Available PURPOSE: To assess the clinical features and distribution of brain metastases (BMs of small cell lung cancer (SCLC in the hippocampal and perihippocampal region, with the purpose of exploring the viability of hippocampal-sparing whole-brain radiation therapy (HS-WBRT on reducing neurocognitive deficits. METHODS: This was a retrospective analysis of the clinical characteristics and patterns of BMs in patients with SCLC. Associations between the clinical characteristics and hippocampal metastases (HMs/perihippocampal metastases (PHMs were evaluated in univariate and multivariate regression analyses. RESULTS: A total of 1594 brain metastatic lesions were identified in 180 patients. Thirty-two (17.8% patients were diagnosed with BMs at the time of primary SCLC diagnosis. The median interval between diagnosis of primary SCLC and BMs was 9.3 months. There were 9 (5.0% and 22 (12.2% patients with HMs and PHMs (patients with BMs located in or within 5 mm around the hippocampus, respectively. In the univariate and multivariate analysis, the number of BMs was the risk factor for HMs and PHMs. Patients with BMs ≥ 5 had significantly higher risk of HMs (odds ratio [OR] 7.892, 95% confidence interval [CI] 1.469-42.404, P = .016, and patients with BMs ≥ 7 had significantly higher risk of PHMs (OR 5.162, 95% CI 2.017-13.213, P = .001. Patients with extracranial metastases are also associated with HMs. CONCLUSIONS: Our results indicate that patients with nonoligometastatic disease are significantly associated with HMs and PHMs. The incidence of PHMs may be acceptably low enough to perform HS-WBRT for SCLC. Our findings provide valuable clinical data to assess the benefit of HS-WBRT in SCLC patients with BMs.

  6. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons.

    Science.gov (United States)

    Murphy, D D; Cole, N B; Segal, M

    1998-09-15

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.

  7. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice.

    Science.gov (United States)

    Hao, Shuang; Tang, Bin; Wu, Zhenyu; Ure, Kerstin; Sun, Yaling; Tao, Huifang; Gao, Yan; Patel, Akash J; Curry, Daniel J; Samaco, Rodney C; Zoghbi, Huda Y; Tang, Jianrong

    2015-10-15

    Deep brain stimulation (DBS) has improved the prospects for many individuals with diseases affecting motor control, and recently it has shown promise for improving cognitive function as well. Several studies in individuals with Alzheimer disease and in amnesic rats have demonstrated that DBS targeted to the fimbria-fornix, the region that appears to regulate hippocampal activity, can mitigate defects in hippocampus-dependent memory. Despite these promising results, DBS has not been tested for its ability to improve cognition in any childhood intellectual disability disorder. Such disorders are a pressing concern: they affect as much as 3% of the population and involve hundreds of different genes. We proposed that stimulating the neural circuits that underlie learning and memory might provide a more promising route to treating these otherwise intractable disorders than seeking to adjust levels of one molecule at a time. We therefore studied the effects of forniceal DBS in a well-characterized mouse model of Rett syndrome (RTT), which is a leading cause of intellectual disability in females. Caused by mutations that impair the function of MeCP2 (ref. 6), RTT appears by the second year of life in humans, causing profound impairment in cognitive, motor and social skills, along with an array of neurological features. RTT mice, which reproduce the broad phenotype of this disorder, also show clear deficits in hippocampus-dependent learning and memory and hippocampal synaptic plasticity. Here we show that forniceal DBS in RTT mice rescues contextual fear memory as well as spatial learning and memory. In parallel, forniceal DBS restores in vivo hippocampal long-term potentiation and hippocampal neurogenesis. These results indicate that forniceal DBS might mitigate cognitive dysfunction in RTT.

  8. Involvement of the GABAergic septo-hippocampal pathway in brain stimulation reward.

    Directory of Open Access Journals (Sweden)

    Germán Vega-Flores

    Full Text Available The hippocampus is a structure related to several cognitive processes, but not very much is known about its putative involvement in positive reinforcement. In its turn, the septum has been related to instrumental brain stimulation reward (BSR by its electrical stimulation with trains of pulses. Although the anatomical relationships of the septo-hippocampal pathway are well established, the functional relationship between these structures during rewarding behaviors remains poorly understood. To explore hippocampal mechanisms involved in BSR, CA3-evoked field excitatory and inhibitory postsynaptic potentials (fEPSPs, fIPSPs were recorded in the CA1 area during BSR in alert behaving mice. The synaptic efficiency was determined from changes in fEPSP and fIPSP amplitudes across the learning of a BSR task. The successive BSR sessions evoked a progressive increase of the performance in inverse relationship with a decrease in the amplitude of fEPSPs, but not of fIPSPs. Additionally, we evaluated CA1 local field potentials (LFPs during a preference task, comparing 8-, 20-, and 100-Hz trains of septal BSR. We corroborate a clear preference for BSR at 100 Hz (in comparison with BSR at 20 Hz or 8 Hz, in parallel with an increase in the spectral power of the low theta band, and a decrease in the gamma. These results were replicated by intrahippocampal injections of a GABAB antagonist. Thus, the GABAergic septo-hippocampal pathway seems to carry information involved in the encoding of reward properties, where GABAB receptors seem to play a key role. With regard to the dorsal hippocampus, fEPSPs evoked at the CA3-CA1 synapse seem to reflect the BSR learning process, while hippocampal rhythmic activities are more related to reward properties.

  9. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  10. Streptozotocin Inhibits Electrophysiological Determinants of Excitatory and Inhibitory Synaptic Transmission in CA1 Pyramidal Neurons of Rat Hippocampal Slices: Reduction of These Effects by Edaravone

    Directory of Open Access Journals (Sweden)

    Ting Ju

    2016-12-01

    Full Text Available Background: Streptozotocin (STZ has served as an agent to generate an Alzheimer's disease (AD model in rats, while edaravone (EDA, a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs, AMPAR-mediated eEPSCs (eEPSCsAMPA, evoked inhibitory postsynaptic currents (eIPSCs, evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR, it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.

  11. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation of the...

  12. Clinical features of brain metastases in breast cancer: an implication for hippocampal-sparing whole-brain radiation therapy

    Directory of Open Access Journals (Sweden)

    Wu S

    2016-12-01

    Full Text Available San-Gang Wu,1,* Jia-Yuan Sun,2,* Qin Tong,3 Feng-Yan Li,2 Zhen-Yu He2 1Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, 2Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 3Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China *These authors contributed equally to this work Objective: The objectives of this study were to describe the distribution of brain metastases (BM in breast cancer patients and investigate the risk factors for perihippocampal metastases (PHM. Patients and methods: Retrospective analysis of the clinicopathological characteristics and patterns of BM was performed. Associations between clinicopathological characteristics and PHM (the hippocampus plus 5 mm margin were evaluated using logistic regression analyses. Results: A total of 1,356 brain metastatic lesions were identified in 192 patients. Patients with 1–3 BM, 4–9 BM, and ≥10 BM accounted for 63.0%, 18.8%, and 18.2%, respectively. There were only 7 (3.6% patients with hippocampal metastases (HM and 14 (7.3% patients with PHM. On logistic regression, the number of BM was an independent risk factor for PHM. Patients with ≥10 BM had a significantly higher risk of PHM compared with those with <10 BM. Breast cancer subtype (BCS was not associated with PHM. The number of BM was significantly correlated with various BCSs. Patients with hormone receptor (HR+/human epidermal growth factor receptor 2 (HER2+, HR-/HER2+, and HR-/HER2- subtypes had a higher probability of ≥10 BM, relative to patients with an HR+/HER2- subtype. Conclusion: Our study suggests that a low incidence of PHM may be acceptable to perform hippocampal-sparing whole-brain radiation therapy for breast cancer patients

  13. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Ericksen Mielle Borba

    2016-12-01

    Full Text Available Background/Aims: Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD pathology. Serum brain-derived neurotrophic factor (BDNF reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]. Methods: Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results: MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion: The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  14. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Science.gov (United States)

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Background/Aims Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Methods Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction. PMID:28101102

  15. Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain.

    Science.gov (United States)

    Gil-Mohapel, J; Titterness, A K; Patten, A R; Taylor, S; Ratzlaff, A; Ratzlaff, T; Helfer, J; Christie, B R

    2014-07-25

    Exposure to ethanol in utero is associated with a myriad of sequelae for the offspring. Some of these effects are morphological in nature and noticeable from birth, while others involve more subtle changes to the brain that only become apparent later in life when the individuals are challenged cognitively. One brain structure that shows both functional and structural deficits following prenatal ethanol exposure is the hippocampus. The hippocampus is composed of two interlocking gyri, the cornu ammonis (CA) and the dentate gyrus (DG), and they are differentially affected by prenatal ethanol exposure. The CA shows a more consistent loss in neuronal numbers, with different ethanol exposure paradigms, than the DG, which in contrast shows more pronounced and consistent deficits in synaptic plasticity. In this study we show that significant deficits in adult hippocampal neurogenesis are apparent in aged animals following prenatal ethanol exposure. Deficits in hippocampal neurogenesis were not apparent in younger animals. Surprisingly, even when ethanol exposure occurred in conjunction with maternal stress, deficits in neurogenesis did not occur at this young age, suggesting that the capacity for neurogenesis is highly conserved early in life. These findings are unique in that they demonstrate for the first time that deficits in neurogenesis associated with prenatal ethanol consumption appear later in life.

  16. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    Science.gov (United States)

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  17. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity.

    Science.gov (United States)

    Suri, D; Vaidya, V A

    2013-06-01

    Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.

  18. Protective effect of bone marrow-derived mesenchymal stem cells on dopaminergic neurons against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in rat brain slices

    Institute of Scientific and Technical Information of China (English)

    Lirong Jin; Zhen Hong; Chunjiu Zhong; Yang Wang

    2009-01-01

    BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson's disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage.DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using immunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006.MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China).METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode's balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days.MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase

  19. Stochastic fluctuations in gene expression in aging hippocampal neurons could be exacerbated by traumatic brain injury.

    Science.gov (United States)

    Shearer, Joseph; Boone, Deborah; Weisz, Harris; Jennings, Kristofer; Uchida, Tatsuo; Parsley, Margaret; DeWitt, Douglas; Prough, Donald; Hellmich, Helen

    2016-04-01

    Traumatic brain injury (TBI) is a risk factor for age-related dementia and development of neurodegenerative disorders such as Alzheimer's disease that are associated with cognitive decline. The exact mechanism for this risk is unknown but we hypothesized that TBI is exacerbating age-related changes in gene expression. Here, we present evidence in an animal model that experimental TBI increases age-related stochastic gene expression. We compared the variability in expression of several genes associated with cell survival or death, among three groups of laser capture microdissected hippocampal neurons from aging rat brains. TBI increased stochastic fluctuations in gene expression in both dying and surviving neurons compared to the naïve neurons. Increases in random, stochastic fluctuations in prosurvival or prodeath gene expression could potentially alter cell survival or cell death pathways in aging neurons after TBI which may lead to age-related cognitive decline.

  20. OLM interneurons are transiently recruited into field gamma oscillations evoked by brief kainate pressure ejections onto area CA1 in mice hippocampal slices.

    Science.gov (United States)

    Kipiani, E

    2009-02-01

    Oscillations (30-100 Hz) are correlated with the cognitive functions of the brain. In the hippocampus interactions between perisomatic and trilaminar interneurons with pyramidal cells are thought to underlie generation of field gamma oscillations. In area CA3 OLM interneurons receive synaptic input in gamma range but generate action potential (AP) output in theta band and are involved in theta oscillations synchronized along the longitudinal axis of the hippocampus. In slice preparations of CA3 area the spike timing of OLM cells could be modulated by carbachole induced gamma oscillations, although their firing rates are limited to theta frequency. Normally, OLM interneurons are somatostatin positive cells. In this study we tested whether parvalbumin (PV) containing OLM interneurons in area CA1 limit AP output during kainate pressure ejection also to theta frequency. We used focal short applications of kainate in area CA1 to induce filed gamma oscillations with an average frequency of about 44.7+/-4.4 Hz. The duration of field gamma was on average 8.9+/-3.5 s. During such oscillations CA1 PV positive OLM interneurons of mice hippocampus received excitatory synaptic input at gamma frequency. Moreover, their AP output was in gamma range as well. Thus, we show that beside the somatostatin containing OLM interneurons, which generate theta rhythm there are PV containing OLM cells, which could synchronize the distal dendrites of CA1 pyramidal cells to the field gamma oscillations.

  1. Does brain slices from pentylenetetrazole-kindled mice provide a more predictive screening model for antiepileptic drugs?

    Science.gov (United States)

    Hansen, Suzanne L; Sterjev, Zoran; Werngreen, Marie; Simonsen, Bodil J; Knudsen, Katrine E; Nielsen, Ane H; Pedersen, Mikael E; Badolo, Lassiana; Kristiansen, Uffe; Vestergaard, Henrik T

    2012-05-05

    The cortical wedge is a commonly applied model for in vitro screening of new antiepileptic drugs (AEDs) and has been extensively used in characterization of well-known AEDs. However, the predictive validity of this model as a screening model has been questioned as, e.g., carbamazepine has been reported to lack effect in this model. The neuroplastic changes induced in acute and chronic animal models of epilepsy are known to affect the pharmacological profile of AEDs in vivo. Hence, we investigated whether brain slices from pentylenetetrazole (PTZ)-kindled animals could provide a more predictive screening model for AEDs. To this end, we compared the in vitro and in vivo pharmacological profile of several selected AEDs (phenobarbital, phenytoin, tiagabine, fosphenytoin, valproate, and carbamazepine) along with citalopram using the PTZ-kindled model and brain slices from naïve, saline-injected and PTZ-kindled mice. Our data suggest that the use of slices from PTZ-kindled mice in the cortical wedge does not increase the predictive validity of the model as an in vitro screening model for AEDs. Traditionally, the incidence of certain seizure types is widely used as a measure to characterize drug action in animal models of epilepsy. In our study, the anticonvulsant effect of the AEDs was investigated in vivo using several observational parameters (i.e., incidence and duration of convulsions, latency to clonic convulsions, and severity of convulsions). We found that including the observational parameter "severity" offered important additional information about the drug profile that would otherwise be lost if only a single parameter as "incidence" was used.

  2. Normobaric hyperoxia stimulates superoxide and nitric oxide production in the caudal solitary complex of rat brain slices.

    Science.gov (United States)

    Ciarlone, Geoffrey E; Dean, Jay B

    2016-12-01

    Central CO2-chemosensitive neurons in the caudal solitary complex (cSC) are stimulated not only by hypercapnic acidosis, but by hyperoxia as well. While a cellular mechanism for the CO2 response has yet to be isolated, previous data show that a redox-sensitive mechanism underlies neuronal excitability to hyperoxia. However, it remains unknown how changes in Po2 affect the production of reactive oxygen and nitrogen species (RONS) in the cSC that can lead to increased cellular excitability and, with larger doses, to cellular dysfunction and death. To this end, we used fluorescence microscopy in real time to determine how normobaric hyperoxia increases the production of key RONS in the cSC. Because neurons in the region are CO2 sensitive, we also examined the potential effects of CO2 narcosis, used during euthanasia before brain slice harvesting, on RONS production. Our findings show that normobaric hyperoxia (0.4 → 0.95 atmospheres absolute O2) increases the fluorescence rates of fluorogenic dyes specific to both superoxide and nitric oxide. Interestingly, different results were seen for superoxide fluorescence when CO2 narcosis was used during euthanasia, suggesting long-lasting changes in superoxide production and/or antioxidant activity subsequent to CO2 narcosis before brain slicing. Further research needs to distinguish whether the increased levels of RONS reported here are merely increases in oxidative and nitrosative signaling or, alternatively, evidence of redox and nitrosative stress.

  3. A combined long-term recording system for single-unit activity and neurotransmitter efflux of a brain slice

    Science.gov (United States)

    Sheu, Y. H.; Young, M. S.

    1998-04-01

    A combined long-term measurement and recording system for neurotransmission research of brain slices is presented in this study. This system, based on the IBM PC or compatible computer, is capable of simultaneously measuring and recording both single-unit neural electropotential signals and the electrochemical signals of neurotransmitter efflux from the same neuron in a brain slice for long periods of time (time limited largely by hard disk capacity, 100 h or more not being unreasonable with contemporary hardware) using a single carbon microelectrode for both measurements. The combined long-term recording system uses a simple switching circuit to switch periodically the single microelectrode between two data acquisition subsystems, one for electrochemical data and one for electrophysiological data. The simple switching circuit separates the electrophysiological signals and electrochemical signals, overcoming the traditional interference problem caused by the two different measuring techniques. Software designed for the proposed system allows easy reconstruction of the full time course of the compressed measured data and easy, simultaneous display of both types of signals on the same time scale. On-line and recorded displays are available. Test results of a practical implementation of the proposed system verify that the combined long-term recording system meets actual requirements for electrophysiological and neurochemical research.

  4. Conductor compounds of phenylpentane in Mycoleptodonoides aitchisonii mycelium enhance the release of dopamine from rat brain striatum slices.

    Science.gov (United States)

    Okuyama, Satoshi; Sawasaki, Emi; Yokogoshi, Hidehiko

    2004-04-01

    Monoterpene compound is a major component of essential oils in various aromatic species. Previous reports about the monoterpene compound linalool and its effect on the brain neurotransmitters glutamic acid, GABA and acetylcholine, but not catecholamines, have been reported. In this study, we investigated the effect of linalool or conductor compounds of phenylpentane, including 1-phenyl-3-pentanol and 1-phenyl-3-pentanone, on dopamine release using rat striatal slices. The edible mushroom Mycoleptodonoides aitchisonii belongs to the Climacodontaceae family, and its cultivate medium or mycelium contains derivatives of the fragrant conductor compound, phenylpentane. Compared to basal levels, 2.5 microg linalool increased dopamine from striatal slices 3-fold. A 4-fold increase in dopamine release resulted from 2.5 microg 1-phenyl-3-pentanol administration, while a half dose of this compound induced a 2.5-fold increase. A greater than 2-fold increase resulted with 2.5 microg 1-phenyl-3-pentanone. These data indicate that striatum has sensitivity for these fragrant compounds and different releasing effects result with differ structures. These actions may affect other neurotransmitters and influence brain function.

  5. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice.

    Science.gov (United States)

    Han, Xiaodi; Tong, Jing; Zhang, Jun; Farahvar, Arash; Wang, Ernest; Yang, Jiankai; Samadani, Uzma; Smith, Douglas H; Huang, Jason H

    2011-06-01

    Previous animal and human studies have demonstrated that chronic treatment with several different antidepressants can stimulate neurogenesis, neural remodeling, and synaptic plasticity in the normal hippocampus. Imipramine is a commonly used tricyclic antidepressant (TCA). We employed a controlled cortical impact (CCI) mouse model of traumatic brain injury (TBI) to assess the effect of imipramine on neurogenesis and cognitive and motor function recovery after TBI. Mice were given daily imipramine injections for either 2 or 4 weeks after injury. Bromodeoxyuridine (BrdU) was administered 3-7 days post-brain injury to label the cells that proliferated as a result of the injury. We assessed the effects of imipramine on post-traumatic motor function using a beam-walk test and an assessment of cognitive function: the novel object recognition test (NOR). Histological analyses were performed at 2 and 4 weeks after CCI. Brain-injured mice treated with imipramine showed significantly improved cognitive function compared to a saline-treated group (pimipramine-treated and saline-treated mice. Histological examination revealed increased preservation of proliferation of Ki-67- and BrdU-positive cells in the hippocampal dentate gyrus (DG) at 2 and 4 weeks after TBI. Immunofluorescence double-labeling with BrdU and neuron-specific markers at 4 weeks after injury showed that most progenitors became neurons in the DG and astrocytes in the hilus. Notably, treatment with imipramine increased preservation of the total number of newly-generated neurons. Our findings provide direct evidence that imipramine treatment contributes to cognitive improvement after TBI, perhaps by enhanced hippocampal neurogenesis.

  6. Effects of estradiol on cognition and hippocampal pathology after lateral fluid percussion brain injury in female rats.

    Science.gov (United States)

    Lebesgue, Diane; LeBold, David G; Surles, Nathan O; Morales, Diego M; Etgen, Anne M; Zukin, R Suzanne; Saatman, Kathryn E

    2006-12-01

    Studies involving animal models of acute central nervous system (CNS) stroke and trauma strongly indicate that sex and/or hormonal status are important determinants of outcome after brain injury. The present study was undertaken to examine the ability of estradiol to protect hippocampal neurons from lateral fluid percussion brain injury. Sprague-Dawley female rats (211-285 g; n = 119) were ovariectomized, and a subset (n = 66) were implanted with 17beta-estradiol pellets to provide near physiological levels of estradiol. Animals were subjected to lateral fluid percussion brain injury or sham injury 1 week later. Activation of caspase-3 (n = 26) and TUNEL staining (n = 21) were assessed at 3 and 12 h after injury, respectively, in surviving control and estradiol-treated animals. Memory retention was examined using a Morris water maze test in a separate subset of animals (n = 43) at 8 days after injury. Activated caspase-3 and TUNEL staining were observed in the dentate hilus, granule cell layer, and CA3 regions in all injured rats, indicative of selective hippocampal cell apoptosis in the acute posttraumatic period. Estradiol did not significantly alter the number of hippocampal neurons exhibiting caspase-3 activity or TUNEL staining. Brain injury impaired cognitive ability, assessed at 1 week post-injury (p < 0.001). However, estradiol at physiological levels did not significantly alter injury-induced loss of memory. These data indicate that estradiol at physiological levels does not ameliorate trauma-induced hippocampal injury or cognitive deficits in ovariectomized female rats.

  7. Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor.

    Science.gov (United States)

    Qiao, X; Suri, C; Knusel, B; Noebels, J L

    2001-05-01

    Excess neuronal activity upregulates the expression of two neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in adult hippocampus. Nerve growth factor has been shown to contribute the induction of aberrant hippocampal mossy fiber sprouting in the inner molecular layer of the dentate gyrus, however the role of prolonged brain-derived neurotrophic factor exposure is uncertain. We examined the distribution and plasticity of mossy fibers in transgenic mice with developmental overexpression of brain-derived neurotrophic factor. Despite 2--3-fold elevated BDNF levels in the hippocampus sufficient to increase the intensity of neuropeptide Y immunoreactivity in interneurons, no visible changes in mossy fiber Timm staining patterns were observed in the inner molecular layer of adult mutant hippocampus compared to wild-type mice. In addition, no changes of the mRNA expression of two growth-associated proteins, GAP-43 and SCG-10 were found. These data suggest that early and persistent elevations of brain-derived neurotrophic factor in granule cells are not sufficient to elicit this pattern of axonal plasticity in the hippocampus.

  8. A precision 3D conformal treatment technique in rats: application to whole brain radiotherapy with hippocampal avoidance.

    Science.gov (United States)

    Yoon, Suk W; Cramer, Christina K; Miles, Devin A; Reinsvold, Michael H; Joo, Kyeung M; Kirsch, David G; Oldham, Mark

    2017-08-24

    To develop and validate 3D conformal hippocampal sparing whole-brain radiation therapy (HA-WBRT) for Wistar rats utilizing precision 3D printed immobilization and micro-blocks. This technique paves the way for future pre-clinical studies investigating brain treatments that reduce neurotoxicity. A novel pre-clinical treatment planning and delivery process was developed to enable precision 3D conformal treatment and hippocampal avoidance capability for the Xrad 225cx small animal irradiator. A range of conformal avoidance plans were evaluated consisting of equi-angularly spaced co-planar axial beams, with plans containing 2, 4, 7, and 8 fields. The hippocampal sparing and coverage of these plans were investigated through Monte Carlo dose calculation (SmART-Plan Xrad 225cx planning system). Treatment delivery was implemented through a novel process where hippocampal block shapes were computer-generated from an MRI rat atlas which was registered to on-board cone-beam-CT of the rat in treatment position. The blocks were 3D-printed with a tungsten-doped filament at lateral resolution of 80μm. Precision immobilization was achieved utilizing a 3D-printed support system which enabled angled positioning of the rat head in supine position and bite-block to improve coverage of the central diencephalon. Treatment delivery was verified on rodent-morphic Presage(®) 3D dosimeters optically scanned at 0.2mm isotropic resolution. Biological verification of hippocampal avoidance was performed with immunohistologic staining. All simulated plans spared the hippocampus while delivering high dose to the brain (22.5-26.2Gy mean dose to brain at mean hippocampal dose of 7Gy). No significant improvement in hippocampal sparing was observed by adding beams beyond 4 fields. Dosimetric sparing of hippocampal region of the 4-field plan was verified with the Presage(®) dosimeter (mean dose = 9.6Gy, D100% = 7.1Gy). Simulation and dosimeter match at distance-to-agreement of 2mm and dose

  9. Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype.

    Science.gov (United States)

    Guiard, Bruno P; David, Denis J P; Deltheil, Thierry; Chenu, Franck; Le Maître, Erwan; Renoir, Thibault; Leroux-Nicollet, Isabelle; Sokoloff, Pierre; Lanfumey, Laurence; Hamon, Michel; Andrews, Anne M; Hen, René; Gardier, Alain M

    2008-02-01

    Growing evidence supports the involvement of brain-derived neurotrophic factor (BDNF) in mood disorders and the mechanism of action of antidepressant drugs. However, the relationship between BDNF and serotonergic signalling is poorly understood. Heterozygous mutants BDNF +/- mice were utilized to investigate the influence of BDNF on the serotonin (5-HT) system and the activity of the serotonin transporter (SERT) in the hippocampus. The zero net flux method of quantitative microdialysis revealed that BDNF +/- heterozygous mice have increased basal extracellular 5-HT levels in the hippocampus and decreased 5-HT reuptake capacity. In keeping with these results, the selective serotonin reuptake inhibitor paroxetine failed to increase hippocampal extracellular 5-HT levels in BDNF +/- mice while it produced robust effects in wild-type littermates. Using in-vitro autoradiography and synaptosome techniques, we investigated the causes of attenuated 5-HT reuptake in BDNF +/- mice. A significant decrease in [3H]citalopram-binding-site density in the CA3 subregion of the ventral hippocampus and a significant reduction in [3H]5-HT uptake in hippocampal synaptosomes, revealed mainly a decrease in SERT function. However, 5-HT1A autoreceptors were not desensitized in BDNF +/- mice. These results provide evidence that constitutive reductions in BDNF modulate SERT function reuptake in the hippocampus.

  10. Comparison of bNOS and chat immunohistochemistry in the laterodorsal tegmentum (LDT) and the pedunculopontine tegmentum (PPT) of the mouse from brain slices prepared for electrophysiology

    DEFF Research Database (Denmark)

    Veleanu, Maxime; Axen, Tina E; Kristensen, Morten P

    2016-01-01

    maintains that antibody staining for enzymes involved in synthesis or transport, of acetylcholine would be a more definitive marker and hence, preferable. NEW METHOD: Colocalization of bNOS and CHAT in the LDT/PPT, and presence of parvalbumin (PV), was examined in non-ideally prepared mouse brain slices......BACKGROUND: Identification of cell phenotype from brain slices upon which in vitro electrophysiological recordings have been performed often relies on conducting post hoc immunohistochemistry on tissue that necessarily has not been ideally prepared for immunohistochemical procedures...

  11. Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons of stratum pyramidale of the CA1 region of rat hippocampal slices in vitro.

    Science.gov (United States)

    Lacaille, J C

    1991-11-01

    1. Because interneurons of stratum pyramidale partly mediate the feed-forward inhibition of pyramidal cells, intracellular postsynaptic potentials (PSPs) evoked by activation of afferent fibers were examined in 32 nonpyramidal cells of stratum pyramidale of the CA1 region of rat hippocampal slices. 2. Electrical stimulation of stratum radiatum at the CA1-CA3 border elicited, in interneurons, PSPs that were composed of four components: a fast excitatory postsynaptic potential (EPSP), an early inhibitory postsynaptic potential (IPSPA), a late IPSPB, and in some cells a delayed, slower EPSP. These synaptic potentials summated and elicited single action potentials in 57% of cells (17/30) and burst of action potentials (2-10) in the remaining 43%. 3. The fast EPSP was observed in all cells, and the mean stimulation intensity at its threshold was 53.4 microA. Its amplitude increased with membrane hyperpolarization, and it was associated with a 45.4% decrease in cellular input resistance. The fast EPSP always elicited an action potential at short latencies (3.6-6.4 ms poststimulation). It was reversibly reduced by 6-cyano-7-nitroquinoxaline-2,3- dione (CNQX), a blocker of non-N-methyl-D-aspartate (non-NMDA) excitatory amino acid receptors. 4. The IPSPA was observed in 28/32 cells, and the mean intensity of stimulation was 57.6 microA at its threshold. The mean latency of its peak amplitude was 17.4 ms. The mean equilibrium potential (Erev) was -72.8 mV, and it was associated with a 38.9% decrease in cellular input resistance. IPSPA was blocked by the GABAA antagonist bicuculline. 5. The IPSPB was seen in 29/32 cells, and the mean intensity of stimulation at its threshold was 80.3 microA. Its latency to peak was 130.6 ms, its Erev was -107.6 mV, and it was associated with a small (7.6%) decrease in cellular input resistance. IPSPB was blocked by the GABAB antagonist phaclofen. 6. In 11/32 cells a slower EPSP was also observed. Its mean latency to peak was 53.3 ms, and the

  12. Pharmacological antagonism of the actions of group II and III mGluR agonists in the lateral perforant path of rat hippocampal slices.

    Science.gov (United States)

    Bushell, T J; Jane, D E; Tse, H W; Watkins, J C; Garthwaite, J; Collingridge, G L

    1996-04-01

    1. An understanding of the physiological and pathological roles of metabotropic glutamate receptors (mGluRs) is currently hampered by the lack of selective antagonists. Standard extracellular recording techniques were used to investigate the activity of recently reported mGluR antagonists on agonist-induced depressions of synaptic transmission in the lateral perforant path of hippocampal slices obtained from 12-16 day-old rats. 2. The group III specific mGluR agonist, (S)-2-amino-4-phosphonobutanoate (L-AP4) depressed basal synaptic transmission in a reversible and dose-dependent manner. The mean (+/-s.e. mean) depression obtained with 100 microM L-AP4 (the maximum concentration tested) was 74 +/- 3% and the IC50 value was 3 +/- 1 microM (n = 5). 3. The selective group II mGluR agonists, (1S,3S)-1-aminocyclopentane-1, 3-dicarboxylate ((1S,3s)-ACPD) and (2S, 1'R, 2'R, 3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) also depressed basal synaptic transmission in a reversible and dose-dependent manner. The mean depression obtained with 200 microM (1S,3S)-ACPD was 83 +/- 8% and the IC50 value was 12 +/- 3 microM (n = 5). The mean depression obtained with 1 microM DCG-IV was 73 +/- 7% and the IC50 value was 88 +/- 15 nM (n = 4). 4. Synaptic depressions induced by the actions of 20 microM (1S,3S)-ACPD and 10 microM L-AP4 were antagonized by the mGluR antagonists (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG), (S)-2-methyl-2-amino-4-phosphonobutanoate (MAP4), (2S,1'S,2'S)-2-methyl-2(2'-carboxycyclopropyl)glycine (MCCG), (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG) and (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) (all tested at 500 microM). 5. (+)-MCPG was a weak antagonist of both L-AP4 and (1S,3S)-ACPD-induced depressions. MCCG was selective towards (1S,3S)-ACPD, but analysis of its effects were complicated by apparent partial agonist activity. MAP4 showed good selectivity for L-AP4-induced effects. 6

  13. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain.

    Science.gov (United States)

    Brady, D R; Mufson, E J

    1997-10-01

    The number and topographic distribution of immunocytochemically stained parvalbumin interneurons was determined in the hippocampal formation of control and Alzheimer's diseased brain. In control hippocampus, parvalbumin interneurons were aspiny and pleomorphic, with extensive dendritic arbors. In dentate gyrus, parvalbumin cells, as well as a dense plexus of fibers and puncta, were associated with the granule cell layer. A few cells also occupied the molecular layer. In strata oriens and pyramidale of CA1-CA3 subfields, parvalbumin neurons gave rise to dendrites that extended into adjacent strata. Densely stained puncta and beaded fibers occupied stratum pyramidale, with less dense staining in adjacent strata oriens and radiatum. Virtually no parvalbumin profiles were observed in stratum lacunosum-moleculare or the alveus. Numerous polymorphic parvalbumin neurons and a dense plexus of fibers and puncta characterized the deep layer of the subiculum and the lamina principalis externa of the presubiculum. In Alzheimer's diseased hippocampus, there was an approximate 60% decrease in the number of parvalbumin interneurons in the dentate gyrus/CA4 subfield (Pparvalbumin neurons did not statistically decline in subfields CA3, subiculum or presubiculum in Alzheimer's diseased brains relative to controls. Concurrent staining with Thioflavin-S histochemistry did not reveal degenerative changes within parvalbumin-stained profiles. These findings reveal that parvalbumin interneurons within specific hippocampal subfields are selectively vulnerable in Alzheimer's disease. This vulnerability may be related to their differential connectivity, e.g., those regions connectionally related to the cerebral cortex (dentate gyrus and CA1) are more vulnerable than those regions connectionally related to subcortical loci (subiculum and presubiculum).

  14. Hippocampal brain volume is associated with faster facial emotion identification in older adults: preliminary results

    Directory of Open Access Journals (Sweden)

    Sarah M Szymkowicz

    2016-08-01

    Full Text Available Fast correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging, this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analyses of covariance models with response time as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume. Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

  15. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results.

    Science.gov (United States)

    Szymkowicz, Sarah M; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

  16. Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention

    Science.gov (United States)

    Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan

    2015-01-01

    Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single

  17. S100b Counteracts Neurodegeneration of Rat Cholinergic Neurons in Brain Slices after Oxygen-Glucose Deprivation

    Directory of Open Access Journals (Sweden)

    Daniela Serbinek

    2010-01-01

    Full Text Available Alzheimer's disease is a severe chronic neurodegenerative disorder characterized by beta-amyloid plaques, tau pathology, cerebrovascular damage, inflammation, reactive gliosis, and cell death of cholinergic neurons. The aim of the present study is to test whether the glia-derived molecule S100b can counteract neurodegeneration of cholinergic neurons after oxygen-glucose deprivation (OGD in organotypic brain slices of basal nucleus of Meynert. Our data showed that 3 days of OGD induced a marked decrease of cholinergic neurons (60% of control, which could be counteracted by 50 μg/mL recombinant S100b. The effect was dose and time dependent. Application of nerve growth factor or fibroblast growth factor-2 was less protective. C-fos-like immunoreactivity was enhanced 3 hours after OGD indicating metabolic stress. We conclude that S100b is a potent neuroprotective factor for cholinergic neurons during ischemic events.

  18. Neuroprotection afforded by diazepam against oxygen/glucose deprivation-induced injury in rat cortical brain slices.

    Science.gov (United States)

    Ricci, Lorenzo; Valoti, Massimo; Sgaragli, Giampietro; Frosini, Maria

    2007-04-30

    The aim of the present investigation was to assess neuroprotection exerted by diazepam (0.1-25 microM) in rat cortical brain slices subjected to oxygen-glucose deprivation and reoxygenation. Neuronal injury and neuroprotection were assessed by measuring the release of glutamate and lactate dehydrogenase and tissue water content. Results demonstrate that diazepam exerted neuroprotective effects according to a "U-shaped", hormetic-like, concentration-response curve, with an efficacy window of 0.5-5 microM concentration. Flumazenil (20 microM) fully antagonised neuroprotection afforded by 5 microM diazepam. In conclusion, the hormetic response of diazepam should be taken into consideration when designing experiments aimed at assessing diazepam neuroprotection against ischemia/reoxygenation injury.

  19. Zinc chelation reduces traumatic brain injury-induced neurogenesis in the subgranular zone of the hippocampal dentate gyrus.

    Science.gov (United States)

    Choi, Bo Young; Kim, Jin Hee; Kim, Hyun Jung; Lee, Bo Eun; Kim, In Yeol; Sohn, Min; Suh, Sang Won

    2014-10-01

    Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal

  20. Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices.

    Science.gov (United States)

    Sarmad, Sarir; Alexander, Stephen P H; Barrett, David A; Marsden, Charles A; Kendall, David A

    2011-05-01

    The concentrations of the endocannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonylethanolamine (anandamide) were examined in rat brain cerebral cortex slices and surrounding medium. Basal concentrations of endocannabinoids were similar to those identified previously in rat brain, with anandamide content being much lower (19 pmol/g) than that of 2-AG (7300 pmol/g). In contrast, basal concentrations in the surrounding medium were proportionally much lower for 2-arachidonoylglycerol (16 pmol/mL) compared to anandamide (0.6 pmol/mL). Incubation of slices with glutamate receptor agonists, depolarizing concentrations of KCl, or ionomycin failed to alter tissue concentrations of endocannabinoids, while endocannabinoids in the medium were unaltered by elevated KCl. Cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester, an inhibitor of fatty acid amide hydrolase, significantly enhanced tissue concentrations of anandamide (and related N-acylethanolamines), without altering 2-AG, while evoking proportional elevations of anandamide in the medium. Removal of extracellular calcium ions failed to alter tissue concentrations of anandamide, but significantly reduced 2-AG in the tissue by 90% and levels in the medium to below the detection limit. Supplementation of the medium with 50 μM N-oleoylethanolamine only raised tissue concentrations of N-oleoylethanolamine in the presence of cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester and failed to alter either tissue or medium anandamide or 2-AG concentrations. These results highlight the ongoing turnover of endocannabinoids, and the importance of calcium ions in maintaining 2-AG concentrations in this tissue.

  1. A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.

    Science.gov (United States)

    Rösner, Jörg; Liotta, Agustin; Schmitz, Dietmar; Heinemann, Uwe; Kovács, Richard

    2013-01-30

    Nicotinamide- and flavine-adenine-dinucleotides (NAD(P)H and FADH₂) are electron carriers involved in cellular energy metabolism and in a multitude of enzymatic processes. As reduced NAD(P)H and oxidised FAD molecules are fluorescent, changes in tissue auto-fluorescence provide valuable information on the cellular redox state and energy metabolism. Since fluorescence excitation, by mercury arc lamps (HBO) is inherently coupled to photo-bleaching and photo-toxicity, microfluorimetric monitoring of energy metabolism might benefit from the replacement of HBO lamps by light emitting diodes (LEDs). Here we describe a LED-based custom-built setup for monitoring NAD(P)H and FAD fluorescence at the level of single cells (HEK293) and of brain slices. We compared NAD(P)H bleaching characteristics with two light sources (HBO lamp and LED) as well as sensitivity and signal to noise ratio of three different detector types (multi-pixel photon counter (MPPC), photomultiplier tube (PMT) and photodiode). LED excitation resulted in reduced photo-bleaching at the same fluorescence output in comparison to excitation with the HBO lamp. Transiently increasing LED power resulted in reversible bleaching of NAD(P)H fluorescence. Recovery kinetics were dependent on metabolic substrates indicating coupling of NAD(P)H fluorescence to metabolism. Electrical stimulation of brain slices induced biphasic redox changes, as indicated by NAD(P)H/FAD fluorescence transients. Increasing the gain of PMT and decreasing the LED power resulted in similar sensitivity as obtained with the MPPC and the photodiode, without worsening the signal to noise ratio. In conclusion, replacement of HBO lamp with LED might improve conventional PMT based microfluorimetry of tissue auto-fluorescence.

  2. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices.

    Science.gov (United States)

    Chazalviel, Laurent; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO2) = 1 atmospheres absolute (ATA) = 0.1 MPa) and HBO (pO2 = 2.5 ATA = 0.25 MPa) through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support) of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  3. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor.

    Science.gov (United States)

    Marty, S; Berninger, B; Carroll, P; Thoenen, H

    1996-03-01

    Gamma-Aminobutyric acid (GABA) switches from enhancing to repressing brain-derived neurotrophic factor (BDNF) mRNA synthesis during the maturation of hippocampal neurons in vitro. Interneurons do not produce BDNF themselves, but BDNF enhances their differentiation. Therefore, the question arose whether hippocampal interneurons regulate their phenotype by regulating BDNF expression and release from adjacent cells. The GABA(A) receptor agonist muscimol and BDNF increased the size and neuropeptide Y (NPY) immunoreactivity of hippocampal interneurons. However, GABAergic stimulation failed to increase NPY immunoreactivity in cultures from BDNF knockout embryos. At later developmental stages, when GABA represses BDNF synthesis, treatment with muscimol induced a decrease in cell size and NPY immunoreactivity of interneurons. Interneurons might thus control their phenotype through the regulation of BDNF synthesis in, and release from, their target neurons.

  4. VLSI implementation of a nonlinear neuronal model: a "neural prosthesis" to restore hippocampal trisynaptic dynamics.

    Science.gov (United States)

    Hsiao, Min-Chi; Chan, Chiu-Hsien; Srinivasan, Vijay; Ahuja, Ashish; Erinjippurath, Gopal; Zanos, Theodoros P; Gholmieh, Ghassan; Song, Dong; Wills, Jack D; LaCoss, Jeff; Courellis, Spiros; Tanguay, Armand R; Granacki, John J; Marmarelis, Vasilis Z; Berger, Theodore W

    2006-01-01

    We are developing a biomimetic electronic neural prosthesis to replace regions of the hippocampal brain area that have been damaged by disease or insult. We have used the hippocampal slice preparation as the first step in developing such a prosthesis. The major intrinsic circuitry of the hippocampus consists of an excitatory cascade involving the dentate gyrus (DG), CA3, and CA1 subregions; this trisynaptic circuit can be maintained in a transverse slice preparation. Our demonstration of a neural prosthesis for the hippocampal slice involves: (i) surgically removing CA3 function from the trisynaptic circuit by transecting CA3 axons, (ii) replacing biological CA3 function with a hardware VLSI (very large scale integration) model of the nonlinear dynamics of CA3, and (iii) through a specially designed multi-site electrode array, transmitting DG output to the hardware device, and routing the hardware device output to the synaptic inputs of the CA1 subregion, thus by-passing the damaged CA3. Field EPSPs were recorded from the CA1 dendritic zone in intact slices and "hybrid" DG-VLSI-CA1 slices. Results show excellent agreement between data from intact slices and transected slices with the hardware-substituted CA3: propagation of temporal patterns of activity from DG-->VLSI-->CA1 reproduces that observed experimentally in the biological DG-->CA3-->CA1 circuit.

  5. Electroacupuncture Improved Hippocampal Neurogenesis following Traumatic Brain Injury in Mice through Inhibition of TLR4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuqin Ye

    2017-01-01

    Full Text Available The protective role of electroacupuncture (EA treatment in diverse neurological diseases such as ischemic stroke is well acknowledged. However, whether and how EA act on hippocampal neurogenesis following traumatic brain injury (TBI remains poorly understood. This study aims to investigate the effect of EA on hippocampal neurogenesis and neurological functions, as well as its underlying association with toll-like receptor 4 (TLR4 signaling in TBI mice. BrdU/NeuN immunofluorescence was performed to label newborn neurons in the hippocampus after EA treatment. Water maze test and neurological severity score were used to evaluate neurological function posttrauma. The hippocampal level of TLR4 and downstream molecules and inflammatory cytokines were, respectively, detected by Western blot and enzyme-linked immunosorbent assay. EA enhanced hippocampal neurogenesis and inhibited TLR4 expression at 21, 28, and 35 days after TBI, but the beneficial effects of EA on posttraumatic neurogenesis and neurological functions were attenuated by lipopolysaccharide-induced TLR4 activation. In addition, EA exerted an inhibitory effect on both TLR4/Myd88/NF-κB and TLR4/TRIF/NF-κB pathways, as well as the inflammatory cytokine expression in the hippocampus following TBI. In conclusion, EA promoted hippocampal neurogenesis and neurological recovery through inhibition of TLR4 signaling pathway posttrauma, which may be a potential approach to improve the outcome of TBI.

  6. Cytoprotective effect of hydroxytyrosyl alkyl ether derivatives after oral administration to rats in a model of glucose-oxygen deprivation in brain slices.

    Science.gov (United States)

    Muñoz-Marín, Javier; De La Cruz, José Pedro; Guerrero, Ana; López-Leiva, Inmaculada; López-Villodres, Juan Antonio; Reyes, José Julio; Espartero, José Luis; Madrona, Andrés; Labajos, María Teresa; González-Correa, José Antonio

    2012-08-08

    This study was designed to determine whether the oral administration of hydroxytyrosol (HT) alkyl ether derivatives has a neuroprotective effect in rats. The animals were treated for 7 days with HT or ethyl, butyl, hexyl, octyl, and dodecyl HT ether. A method of in vitro hypoxia-reoxygenation in brain slices was used. Hexyl, octyl, and dodecyl HT derivatives reduced brain cell death (LDH efflux). Lipid peroxidation and nitrite concentrations were inhibited most by hexyl, octyl, and dodecyl derivatives. Concentrations of 3-nitrotyrosine were reduced by HT butyl, hexyl, octyl, and dodecyl ether derivatives. Interleukin-1β was significantly reduced in brain slices from rats treated with all HT ether derivatives. LDH efflux showed a linear correlation with brain concentrations of lipid peroxides, nitrites plus nitrates, and interleukin 1β. The reduction in oxidative and nitrosative stress and decreased production of pro-inflammatory interleukins may be the basis for the observed neuroprotective effects.

  7. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    Science.gov (United States)

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  8. A cross-sectional MRI study of brain regional atrophy and clinical characteristics of temporal lobe epilepsy with hippocampal sclerosis.

    LENUS (Irish Health Repository)

    2012-02-01

    PURPOSE: Applying a cross-sectional design, we set out to further characterize the significance of extrahippocampal brain atrophy in a large sample of \\'sporadic\\' mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS). By evaluating the influence of epilepsy chronicity on structural atrophy, this work represents an important step towards the characterization of MRI-based volumetric measurements as genetic endophenotypes for this condition. METHODS: Using an automated brain segmentation technique, MRI-based volume measurements of several brain regions were compared between 75 patients with \\'sporadic\\' MTLE+HS and 50 healthy controls. Applying linear regression models, we examined the relationship between structural atrophy and important clinical features of MTLE+HS, including disease duration, lifetime number of partial and generalized seizures, and history of initial precipitating insults (IPIs). RESULTS: Significant volume loss was detected in ipsilateral hippocampus, amygdala, thalamus, and cerebral white matter (WM). In addition, contralateral hippocampal and bilateral cerebellar grey matter (GM) volume loss was observed in left MTLE+HS patients. Hippocampal, amygdalar, and cerebral WM volume loss correlated with duration of epilepsy. This correlation was stronger in patients with prior IPIs history. Further, cerebral WM, cerebellar GM, and contralateral hippocampal volume loss correlated with lifetime number of generalized seizures. CONCLUSION: Our findings confirm that multiple brain regions beyond the hippocampus are involved in the pathogenesis of MTLE+HS. IPIs are an important factor influencing the rate of regional atrophy but our results also support a role for processes related to epilepsy chronicity. The consequence of epilepsy chronicity on candidate brain regions has important implications on their application as genetic endophenotypes.

  9. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    Science.gov (United States)

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  10. GABA, taurine and learning: release of amino acids from slices of chick brain following filial imprinting.

    Science.gov (United States)

    McCabe, B J; Horn, G; Kendrick, K M

    2001-01-01

    The intermediate and medial hyperstriatum ventrale (IMHV) is a forebrain region in the domestic chick that is a site of information storage for the learning process of imprinting. We enquired whether imprinting is associated with learning-related increases in calcium-dependent, potassium-stimulated release of neurotransmitter amino acids from the IMHV. Chicks were hatched and reared in darkness until 15-30 h after hatching. They then either remained in darkness or were trained for 2 h by exposure to an imprinting stimulus. One hour later, the chicks were given a preference test and a preference score was calculated from the results of this test, as a measure of imprinting. Chicks were killed 2 h after training. Slices from the left and right IMHV of trained and untrained chicks were superfused with Krebs' solution either with or without calcium and the superfusate assayed for arginine, aspartate, citrulline, GABA, glutamate, glycine and taurine using high-performance liquid chromatography. For calcium-containing superfusates from the left IMHV, preference score was significantly correlated with potassium-stimulated release of (i) GABA (r=0.51, 23 d.f., P=0.008) and (ii) taurine (r=0.77, 23 d.f., Pimprinting is associated with increases in releasable pools of GABA and taurine and/or membrane excitability in the left IMHV.

  11. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  12. Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Barker

    Full Text Available We present a new method for magnetization transfer (MT ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay and reference images (5-8 s delay for MT ratio (MTR imaging of the brain. The effects of varying flip angle and phase encoding (PE order were investigated experimentally in normal, healthy subjects. Values of up to ∼50% and ∼40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.

  13. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-10-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  14. Factors Associated with Changes in Brain Atrophy during a Three-Year Observation in Elderly Diabetic Patients: Effect of Renal Impairment on Hippocampal Atrophy

    Directory of Open Access Journals (Sweden)

    Takahiko Kawamura

    2016-02-01

    Full Text Available Background/Aims: We conducted a 3-year longitudinal study concerning factors associated with changes in brain atrophy in elderly diabetic patients. Methods: We evaluated hippocampal and global brain atrophy using automatic voxel-based morphometry of structural magnetic resonance images, 4 cognitive function tests, and cerebral small vessel disease (SVD in 66 diabetic patients. Results: During the 3-year follow-up, hippocampal and global brain atrophy advanced, and cognitive functions worsened. For changes in hippocampal atrophy, changes in estimated glomerular filtration rate (eGFR, albuminuria, and being an ApoE ε4 carrier were independent factors; change in the number of silent brain infarctions was an independent factor for changes in global brain atrophy. A significant association of changes in eGFR and albuminuria with hippocampal atrophy remained after adjusting for confounders including SVD. Both types of brain atrophy at baseline were significantly correlated with cognitive impairment at baseline and especially associated with changes in delayed word recall during the follow-up after adjusting for confounders. Conclusion: Changes in eGFR and albuminuria during follow-up were independent risk factors for hippocampal atrophy, which was associated with decline in delayed word recall, suggesting that management of chronic kidney disease may prevent the progression of hippocampal atrophy.

  15. A visual thalamocortical slice.

    Science.gov (United States)

    MacLean, Jason N; Fenstermaker, Vivian; Watson, Brendon O; Yuste, Rafael

    2006-02-01

    We describe a thalamocortical slice preparation in which connectivity between the mouse lateral geniculate nucleus (LGN) and primary visual cortex (V1) is preserved. Through DiI injections in fixed brains we traced and created a three-dimensional model of the mouse visual pathways. From this computer model we designed a slice preparation that contains a projection from LGN to V1. We prepared brain slices with these predicted coordinates and demonstrated anatomical LGN-V1 connectivity in these slices after LGN tracer injections. We also revealed functional LGN-V1 connectivity by stimulating LGN electrically and detecting responses in layer 4 of V1 using calcium imaging, field potential recordings and whole-cell recordings. We also identified layer-4 neurons that receive direct thalamocortical input. Finally, we compared cortical activity after LGN stimulation with spontaneous cortical activity and found significant overlap of the spatiotemporal dynamics generated by both types of events.

  16. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation

    Institute of Scientific and Technical Information of China (English)

    Hong Cui; Weijuan Han; Lijun Yang; Yanzhong Chang

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.

  17. The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity.

    Science.gov (United States)

    Soares, Ligia Mendes; Meyer, Erika; Milani, Humberto; Steinbusch, Harry W M; Prickaerts, Jos; de Oliveira, Rúbia M Weffort

    2017-02-01

    Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60-7550, a selective phosphodiesterase type 2 inhibitor (PDE2-I), presents memory-enhancing and anxiolytic-like properties. The behavioral effects of BAY 60-7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2-I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60-7550 were evaluated on neuronal nuclei (NeuN), caspase-9, cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus-dependent cognitive function and induced despair-like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase-9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60-7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60-7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.

  18. Presynaptically mediated effects of cholecystokinin-8 on the excitability of area postrema neurons in rat brain slices.

    Science.gov (United States)

    Sugeta, Shingo; Hirai, Yoshiyuki; Maezawa, Hitoshi; Inoue, Nobuo; Yamazaki, Yutaka; Funahashi, Makoto

    2015-08-27

    Cholecystokinin (CCK) is a well-known gut hormone that shows anorexigenic effects via action at peripheral and central receptors. CCK is also widely distributed throughout the mammalian brain and appears to function as a neurotransmitter and neuromodulator. The area postrema is one of the circumventricular organs, located on the dorsal surface of the medulla oblongata at the caudal end of the fourth ventricle. Blood vessels in the area postrema lack a blood brain barrier, offering specific central neural elements unique access to circulating substances. Immunohistochemical studies show CCK-A receptors in the area postrema, and we reported CCK-sensitive area postrema neurons. However, the receptive mechanism of CCK in area postrema neurons still remains unexplained. We investigated the responses of area postrema neurons to agonists and antagonists of CCK receptors using whole cell and perforated patch-clamp recordings in rat brain slices. The application of CCK-8 elicited excitatory responses, such as increases in the frequency of mEPSCs (miniature excitatory postsynaptic currents), a shift toward larger amplitude mEPSCs, and increases in the frequency of action potentials. These changes were found mostly in cells not displaying the hyperpolarization-activated cation current (Ih), except for small excitatory changes in a minority of Ih-positive neurons. Tonic inward currents or an inhibitory response to CCK-8 were never seen. Analysis of the amplitude of mEPSCs before and after the administration of CCK-8 indicated the responses mediated via the presynaptic receptors. The effect of CCK-8 was abolished in the presence of CNQX (AMPA type glutamate receptor antagonist). In the presence of lorglumide (a selective CCK-A receptor antagonist), CCK-8-induced excitatory responses were inhibited. No cells responded to the administration of non-sulfated CCK-8 (CCK-8NS, a selective CCK-B receptor agonist). We conclude that CCK-8 exerts its action via presynaptic CCK-A receptors

  19. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Tatiana Lauxen Peruzzolo

    2015-01-01

    Full Text Available Pediatric bipolar disorder (PBD is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder. We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm3, respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  20. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder.

    Science.gov (United States)

    Lauxen Peruzzolo, Tatiana; Anes, Mauricio; Kohmann, Andre de Moura; Souza, Ana Claudia Mércio Loredo; Rodrigues, Ramiro Borges; Brun, Juliana Basso; Peters, Roberta; de Aguiar, Bianca Wollenhaupt; Kapczinski, Flavio; Tramontina, Silzá; Rohde, Luis Augusto Paim; Zeni, Cristian Patrick

    2015-01-01

    Pediatric bipolar disorder (PBD) is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF) is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder). We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm(3), respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  1. Exercise in the Early Stage after Stroke Enhances Hippocampal Brain-Derived Neurotrophic Factor Expression and Memory Function Recovery.

    Science.gov (United States)

    Himi, Naoyuki; Takahashi, Hisashi; Okabe, Naohiko; Nakamura, Emi; Shiromoto, Takashi; Narita, Kazuhiko; Koga, Tomoshige; Miyamoto, Osamu

    2016-12-01

    Exercise in the early stage after stroke onset has been shown to facilitate the recovery from physical dysfunction. However, the mechanism of recovery has not been clarified. In this study, the effect of exercise on spatial memory function recovery in the early stage was shown, and the mechanism of recovery was discussed using a rat model of brain embolism. Intra-arterial microsphere (MS) injection induced small emboli in the rat brain. Treadmill exercise was started at 24 hours (early group) or 8 days (late group) after MS injection. The non-exercise (NE) and sham-operated groups were included as controls. Memory function was evaluated by the Morris water maze test, and hippocampal levels of brain-derived neurotrophic factor (BDNF) were measured by enzyme-linked immunosorbent assays. To further investigate the effect of BDNF on memory function, BDNF was continuously infused into the hippocampus via implantable osmotic pumps in the early or late stage after stroke. Memory function significantly improved only in the early group compared with the late and the NE groups, although hippocampal BDNF concentrations were temporarily elevated after exercise in both the early and the late groups. Rats infused with BDNF in the early stage exhibited significant memory function recovery; however, rats that received BDNF infusion in the late stage showed no improvement. Exercise elevates hippocampal BDNF levels in the early stage after cerebral embolism, and this event facilitates memory function recovery. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Microglial Kv1.3 Channels and P2Y12 Receptors Differentially Regulate Cytokine and Chemokine Release from Brain Slices of Young Adult and Aged Mice.

    Directory of Open Access Journals (Sweden)

    Nicoletta Charolidi

    Full Text Available Brain tissue damage following stroke or traumatic brain injury is accompanied by neuroinflammatory processes, while microglia play a central role in causing and regulating neuroinflammation via production of proinflammatory substances, including cytokines and chemokines. Here, we used brain slices, an established in situ brain injury model, from young adult and aged mice to investigate cytokine and chemokine production with particular focus on the role of microglia. Twenty four hours after slice preparation, higher concentrations of proinflammatory cytokines, i.e. TNF-α and IL-6, and chemokines, i.e. CCL2 and CXCL1, were released from brain slices of aged mice than from slices of young adult mice. However, maximal microglial stimulation with LPS for 24 h did not reveal age-dependent differences in the amounts of released cytokines and chemokines. Mechanisms underlying microglial cytokine and chemokine production appear to be similar in young adult and aged mice. Inhibition of microglial Kv1.3 channels with margatoxin reduced release of IL-6, but not release of CCL2 and CXCL1. In contrast, blockade of microglial P2Y12 receptors with PSB0739 inhibited release of CCL2 and CXCL1, whereas release of IL-6 remained unaffected. Cytokine and chemokine production was not reduced by inhibitors of Kir2.1 K+ channels or adenosine receptors. In summary, our data suggest that brain tissue damage-induced production of cytokines and chemokines is age-dependent, and differentially regulated by microglial Kv1.3 channels and P2Y12 receptors.

  3. Differential effects of exercise intensities in hippocampal BDNF, inflammatory cytokines and cell proliferation in rats during the postnatal brain development.

    Science.gov (United States)

    de Almeida, Alexandre Aparecido; Gomes da Silva, Sérgio; Fernandes, Jansen; Peixinho-Pena, Luiz Fernando; Scorza, Fulvio Alexandre; Cavalheiro, Esper Abrão; Arida, Ricardo Mario

    2013-10-11

    It has been established that low intensities of exercise produce beneficial effects for the brain, while high intensities can cause some neuronal damage (e.g. exacerbated inflammatory response and cell death). Although these effects are documented in the mature brain, the influence of exercise intensities in the developing brain has been poorly explored. To investigate the impact of exercise intensity in developing rats, we evaluated the hippocampal level of brain derived neurotrophic factor (BDNF), inflammatory cytokines (TNFα, IL6 and IL10) and the occurrence of hippocampal cell degeneration and proliferation at different stages of postnatal brain development of rats submitted to two physical exercise intensities. To this point, male rats were divided into different age groups: P21, P31, P41 and P51. Each age group was submitted to two exercise intensities (low and high) on a treadmill over 10 consecutive days, except the control rats. We verified that the density of proliferating cells was significantly higher in the dentate gyrus of rats submitted to low-intensity exercise from P21 to P30 compared with high-intensity exercise and control rats. A significant increase of proliferative cell density was found in rats submitted to high-intensity exercise from P31 to P40 when compared to low-intensity exercise and control rats. Elevated hippocampal levels of IL6 were detected in rats submitted to high-intensity exercise from P21 to P30 compared to control rats. From P41 to P50 period, higher levels of BDNF, TNFα and IL10 were found in the hippocampal formation of rats submitted to high-intensity exercise in relation to their control rats. Our data show that exercise-induced neuroplastic effects on BDNF levels and cellular proliferation in the hippocampal region are dependent on exercise intensity and developmental period. Thus, exercise intensity is an inflammation-inducing factor and exercise-induced inflammatory response during the postnatal brain development is

  4. Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices.

    Science.gov (United States)

    Meng, QingJia; Luchtman, Dirk W; El Bahh, Bouchaib; Zidichouski, Jeffrey A; Yang, Jun; Song, Cai

    2010-12-15

    Evidence suggests a link between Parkinson's disease and the dietary intake of omega (n)-3 and n-6 polyunsaturated fatty acids (PUFAs). Presently, we investigated whether an acute dose of parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) affects brain n-3 and n-6 PUFA content and expression of fatty acid metabolic enzymes cytosolic phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2) in brain slices from C57Bl/6 mice. Furthermore, we investigated whether feeding a diet of n-3 PUFA ethyl-eicosapentaenoate (E-EPA) to these mice can attenuate the MPP(+) induced changes in brain PUFA content and expression of cPLA2 and COX-2, and attenuate MPP(+) induced changes in neurotransmitters and metabolites and apoptotic markers, bax, bcl-2 and caspase-3. MPP(+) increased brain content of n-6 PUFAs linoleic acid and arachidonic acid, and increased the mRNA expression of cPLA2. MPP(+) also depleted striatal dopamine levels and increased dopamine turnover, and depleted noradrenaline levels in the frontal cortex. The neurotoxin induced increases in bax, bcl-2 and caspase-3 mRNA expression that approached significance. E-EPA by itself increased brain n-3 content, including EPA and docosapentaenoic acid (C22:5, n-3), and increased cortical dopamine. More importantly, E-EPA attenuated the MPP(+) induced increase in n-6 fatty acids content, partially attenuated the striatal dopaminergic turnover, and prevented the increases of pro-apoptotic bax and caspase-3 mRNAs. In conclusion, increases in n-6 PUFAs in the acute stage of exposure to parkinsonian neurotoxins may promote pro-inflammatory conditions. EPA may provide modest beneficial effects in Parkinson's disease, but further investigation is warranted.

  5. 肌肽对大鼠脑片缺氧缺糖/再灌损伤的保护作用%Neuroprotective of carnosine on oxygen-glucose deprivation/reperfusion induced injury in rat brain slices

    Institute of Scientific and Technical Information of China (English)

    方超; 李晴; 鲁美丽; 黄国兴; 杨菁

    2015-01-01

    目的:在离体脑片缺氧缺糖/再灌损伤模型上,评价肌肽对脑组织的保护作用。方法肌肽预处理后,用缺氧缺糖/再灌(oxygen glucose deprivation/reperfusion,OGD/RP)来制备大鼠离体脑片损伤模型。以2,3,5-三苯基氯化四氮唑(2,3,5-triphenyl tetrazolium chloride,TTC)染色法检测脑片活性;HPLC法检测海马脑片中ATP、ADP、AMP含量;荧光法检测脑组织活性氧( reactive oxygen species,ROS)。结果与对照组相比,缺氧缺糖/再灌损伤可以明显损伤大鼠海马脑片,TTC染色颜色变浅,A490 nm明显下降, ATP和ADP含量明显降低,而AMP含量明显升高,ROS明显升高,差异均具有统计学意义(P<0.01)。与模型组相比,缺氧缺糖/再灌损伤前预先加入1000、200、40μg/mL肌肽预处理15 min可显著抑制缺氧缺糖/再灌引起的损伤,TTC染色颜色加深,A490 nm明显升高,ATP、ADP、AMP含量升高,ROS含量降低,差异均具有统计学意义( P<0.01)。结论肌肽可减轻缺氧缺糖/再灌导致的损伤,其机制可能与其改善脑组织能量代谢,增强抗氧化能力有关。%Objective To investigate effect of carnosine on oxygen glucose deprivation/reperfusion ( OGD/RP) induced injury in rat brain slices. Methods Injury of brain slices was determined by TTC methods.The contents of ATP, ADP and AMP were determined by high performance liquid chromatography.Reactive Oxygen species ( ROS) were determined by fluorescence methods.Results Compared with control group, rat hippocampal slices were significantly damaged by OGD/RP, indicated by light color and decreased A490 nm value of TTC staining.Meanwhile the contents of ATP and ADP were significantly decreased, and the content of AMP and ROS were significantly increased, the difference between two group was significant ( P<0.01).Pre-incubation with Carnosine (1000, 200, 40 μg/mL) significantly inhibited the

  6. Hippocampal neurogenesis levels predict WATERMAZE search strategies in the aging brain.

    Directory of Open Access Journals (Sweden)

    Joana Gil-Mohapel

    Full Text Available The hippocampus plays a crucial role in the formation of spatial memories, and it is thought that adult hippocampal neurogenesis may participate in this form of learning. To better elucidate the relationship between neurogenesis and spatial learning, we examined both across the entire life span of mice. We found that cell proliferation, neuronal differentiation, and neurogenesis significantly decrease with age, and that there is an abrupt reduction in these processes early on, between 1.5-3 months of age. After this, the neurogenic capacity continues to decline steadily. The initial abrupt decline in adult neurogenesis was paralleled by a significant reduction in Morris Water Maze performance, however overall learning and memory remained constant thereafter. Further analysis of the search strategies employed revealed that reductions in neurogenesis in the aging brain were strongly correlated with the adoption of spatially imprecise search strategies. Overall, performance measures of learning and memory in the Morris Water Maze were maintained at relatively constant levels in aging animals due to an increase in the use of spatially imprecise search strategies.

  7. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  8. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-05-12

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.

  9. Antioxidant effects of 1,4-dihydropyridine and nitroso aryl derivatives on the Fe+3/ascorbate-stimulated lipid peroxidation in rat brain slices.

    Science.gov (United States)

    Díaz-Araya, G; Godoy, L; Naranjo, L; Squella, J A; Letelier, M E; Núñez-Vergara, L J

    1998-09-01

    1. Lipid peroxidation in rat brain slices was induced by Fe+3/ascorbate. 2. Brain lipid peroxidation, as measured by malondialdehyde formation, was inhibited by all the tested nitro aryl 1,4-dihydropyridine derivatives over a wide range of concentrations. The time-course antioxidant effects of the most representative agents were assessed. On the basis of both time-course and IC50 experiments the tentative order of antioxidant activity on rat brain slices could be: nicardipine>nisoldipine> (R,S/S,R)-furnidipine > (R,R/S,S)-furnidipine>nitrendipine>nimodipine> nifedipine. 3. 1,4-Dihydropyridine derivatives that lack of a nitro group in the molecule (isradipine, amlodipine) also inhibited lipid peroxidation in rat brain slices but at higher concentrations than that of nitro-substituted derivatives. 4. All the tested nitroso aryl derivatives [2,6-dimethyl-4-(2-nitrosophenyl)-3,5-pyridinedicar. boxylic acid dimethyl ester (NTP), nitrosotoluene, nitrosobenzene] were more potent inhibitors of lipid peroxidation than were the parent nitro compounds. In conclusion, on the basis of the IC50 values determined, the rank order of antioxidant potency for these derivatives can be established as: ortho-nitrosotoluene>NTP>nitrosobenzene.

  10. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Tamar ePashut

    2014-06-01

    Full Text Available Although transcranial magnetic stimulation (TMS is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.

  11. Mathematical Identification of a Neuronal Network Consisting of GABA and DA in Striatal Slices of the Rat Brain

    Directory of Open Access Journals (Sweden)

    L. Ramrath

    2009-01-01

    Full Text Available High frequency stimulation (HFS has been used to treat various neurological and psychiatric diseases. Although further disorders are under investigation to extend the clinical application of HFS, the complex effect of HFS within a neuronal network is still unknown. Thus, it would be desirable to find a theoretical model that allows an estimation of the expected effect of applied HFS. Based on the neurochemical analysis of effects of the γ-aminobutyric acid (GABAA receptor antagonist bicuculline, the D2-like receptor antagonist sulpiride and the D1-like receptor antagonist SCH-23390 on HFS evoked GABA and dopamine (DA release from striatal slices of the rat brain, a mathematical network model is proposed including the neurotransmitters GABA, DA and glutamate (GLU. The model reflects inhibitory and excitatory interactions of the neurotransmitters outflow in the presence of HFS. Under the assumption of linear interactions and static measurements, the model is expressed analytically. Numerical identification of inhibition and excitation is performed on a basis of real outflow levels of GABA and DA in the rat striatum. Results validate the nature of the proposed model. Therefore, this leads to an analytical model of the interactions within distinct neural network components of the rat striatum.

  12. Investigating the synchronization of hippocampal neural network in response to acute nicotine exposure

    Directory of Open Access Journals (Sweden)

    Akay Metin

    2010-07-01

    Full Text Available Abstract Previous studies suggested that γ oscillations in the brain are associated with higher order cognitive function including selective visual attention, motor task planning, sensory perception, working memory and dreaming REM sleep. These oscillations are mainly observed in cortical regions and also occur in neocortical and subcortical areas and the hippocampus. In this paper, we investigate the influence of acute exposure to nicotine on the complexity of hippocampal γ oscillations. Using the approximate entropy method, the influence of acute nicotine exposure on the hippocampal γ oscillations was investigated. The hippocampal γ oscillations have been generated in response to the 100 Hz stimulus and isolated using the visual inspection and spectral analysis method. Our central hypothesis is that acute exposure to nicotine significantly reduces the complexity of hippocampal γ oscillations. We used brain-slice recordings and the approximate entropy method to test this hypothesis. The approximate entropy (complexity values of the hippocampal γ oscillations are estimated from the 14 hippocampal slices. Our results show that it takes at least 100 msec to see any hippocampal activities in response to the 100 Hz stimulus. These patterns noticeably changed after 100 msec until 300 msec after the stimulus Finally, they were less prominent after 300 msec. We have analyzed the isolated hippocampal γ oscillations (between 150 and 250 msec after the stimulus using the approximate entropy (ApEn method. Our results showed that the ApEn (complexity values of hippocampal γ oscillations during nicotine exposure were reduced compared to those of hippocampal γ oscillations during control, and washout. This reduction was much more significant in response to acute nicotine exposure (p

  13. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Pei-Cheng Shih

    Full Text Available Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed, low-intensity exercise (Low-Ex, or high-intensity exercise (High-Ex group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF, synapsin-I, postsynaptic density protein 95 (PSD-95, and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be

  14. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases. Local tumour control and survival

    Energy Technology Data Exchange (ETDEWEB)

    Oehlke, Oliver; Wucherpfennig, David; Prokic, Vesna [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); Fels, Franziska [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); St. Josefs Hospital, Department of Radiation Oncology, Offenburg (Germany); Frings, Lars [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); University Hospital Freiburg, Department of Geriatrics and Gerontology, Freiburg (Germany); University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Egger, Karl [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Weyerbrock, Astrid [University Medical Center Freiburg, Department of Neurosurgery, Freiburg (Germany); Nieder, Carsten [Nordland Hospital, Department of Oncology and Palliative Medicine, Bodoe (Norway); University of Tromsoe, Institute of Clinical Medicine, Faculty of Health Sciences, Tromsoe (Norway); Grosu, Anca-Ligia [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); German Cancer Consortium (DKTK), Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2015-01-16

    Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) for multiple brain metastases may prevent treatment-related cognitive decline, compared to standard WBRT. Additionally, simultaneous integrated boost (SIB) on individual metastases may further improve the outcome. Here, we present initial data concerning local tumour control (LTC), intracranial progression-free survival (PFS), overall survival (OS), toxicity and safety for this new irradiation technique. Twenty patients, enrolled between 2011 and 2013, were treated with HA-WBRT (30 Gy in 12 fractions, D{sub 98} {sub %} to hippocampus ≤ 9 Gy) and a SIB (51 Gy) on multiple (2-13) metastases using a volumetric modulated arc therapy (VMAT) approach based on 2-4 arcs. Metastases were evaluated bidimensionally along the two largest diameters in contrast-enhanced three-dimensional T1-weighed MRI. Median follow-up was 40 weeks. The median time to progression of boosted metastases has not been reached yet, corresponding to a LTC rate of 73 %. Median intracranial PFS was 40 weeks, corresponding to a 1-year PFS of 45.3 %. Median OS was 71.5 weeks, corresponding to a 1-year OS of 60 %. No obvious acute or late toxicities grade > 2 (NCI CTCAE v4.03) were observed. D{sub mean} to the bilateral hippocampi was 6.585 Gy ± 0.847 (α/β = 2 Gy). Two patients developed a new metastasis in the area of hippocampal avoidance. HA-WBRT (simultaneous integrated protection, SIP) with SIB to metastases is a safe and tolerable regime that shows favorable LTC for patients with multiple brain metastases, while it has the potential to minimize the side-effect of cognitive deterioration. (orig.) [German] Die Hippocampus-schonende Ganzhirnbestrahlung (HS-GHB) kann im Vergleich zur Standard-GHB die Verschlechterung der neurokognitiven Funktion verhindern. Zusaetzlich vermag ein simultan integrierter Boost (SIB) auf die Metastasen die Prognose der betroffenen Patienten weiter zu verbessern. In dieser Studie praesentieren wir erste Ergebnisse

  15. Effect of. cap alpha. -,. beta. -adrenergic receptor agonists and antagonists of the efflux of /sup 22/Na and uptake of /sup 42/K by rat brain cortical slices

    Energy Technology Data Exchange (ETDEWEB)

    Phillis, J.W.; Wu, P.H.; Thierry, D.L.

    1982-03-18

    The effects of norepinephrine on ion fluxes in rat brain cortical slices have now been ascertained. /sup 22/Na efflux and /sup 42/K influx are enhanced by norepinephrine. The increase in ion fluxes can be blocked by ouabain, phentolamine and propranolol, suggesting that the catecholamine activates a membrane sodium pump by a receptor-mediated step. The facilitation of /sup 22/Na efflux is stereospecific as demonstrated by the very weak action of D-norepinephrine at 10/sup -5/ M concentration. Various ..cap alpha..-adrenergic and ..beta..-adrenergic receptor agonists, including oxymetazoline, naphazoline, clonidine, tramazoline, methoxamine, phenylephrine, L-isoproterenol and methoxyphenamine are potent stimulants of the sodium pump as demonstrated by their enhancement of ion fluxes in rat brain cortical slices. The results are consistent with the hypothesis that norepinephrine hyperpolarizes central neurons by activating an ouabain-sensitive, receptor-mediated sodium pump.

  16. The size of non-hippocampal brain regions varies by season and sex in Richardson's ground squirrel.

    Science.gov (United States)

    Keeley, R J; Burger, D K; Saucier, D M; Iwaniuk, A N

    2015-03-19

    Sex- and season-specific modulation of hippocampal size and function is observed across multiple species, including rodents. Other non-hippocampal-dependent behaviors exhibit season and sex differences, and whether the associated brain regions exhibit similar variation with sex and season remains to be fully characterized. As such, we examined the brains of wild-caught Richardson's ground squirrels (RGS; Urocitellus richardsonii) for seasonal (breeding, non-breeding) and sex differences in the volumes of specific brain areas, including: total brain volume, corpus callosum (CC), anterior commissure (AC), medial prefrontal cortex (mPFC), total neocortex (NC), entorhinal cortex (EC), and superior colliculus (SC). Analyses of variance and covariance revealed significant interactions between season and sex for almost all areas studied, primarily resulting from females captured during the breeding season exhibiting larger volumes than females captured during the non-breeding season. This was observed for volumes of the AC, mPFC, NC, EC, and SC. Where simple main effects of season were observed for males (the NC and the SC), the volume advantage favoured males captured during the NBr season. Only two simple main effects of sex were observed: males captured in the non-breeding season had significantly larger total brain volume than females captured in the non-breeding season, and females captured during the breeding season had larger volumes of the mPFC and EC than males captured in the breeding season. These results indicate that females have more pronounced seasonal differences in brain and brain region sizes. The extent to which seasonal differences in brain region volumes vary with behaviour is unclear, but our data do suggest that seasonal plasticity is not limited to the hippocampus and that RGS is a useful mammalian species for understanding seasonal plasticity in an ecologically relevant context.

  17. Whole-brain CT perfusion and CT angiography assessment of Moyamoya disease before and after surgical revascularization: preliminary study with 256-slice CT.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available BACKGROUND/AIMS: The 256-slice CT enables the entire brain to be scanned in a single examination. We evaluated the application of 256-slice whole-brain CT perfusion (CTP in determining graft patency as well as investigating cerebral hemodynamic changes in Moyamoya disease before and after surgical revascularization. METHODS: Thirty-nine cases of Moyamoya disease were evaluated before and after surgical revascularization with 256-slice CT. Whole-brain perfusion images and dynamic 3D CT angiographic images generated from perfusion source data were obtained in all patients. Cerebral blood flow (CBF, cerebral blood volume (CBV, time to peak (TTP and mean transit time (MTT of one hemisphere in the region of middle cerebral artery (MCA distribution and contralateral mirroring areas were measured. Relative CTP values (rCBF, rCBV, rTTP, rMTT were also obtained. Differences in pre- and post- operation perfusion CT values were assessed with paired t test or matched-pairs signed-ranks test. RESULTS: Preoperative CBF, MTT and TTP of potential surgical side were significantly different from those of contralateral side (P<0.01 for all. All graft patencies were displayed using the 3D-CTA images. Postoperative CBF, rCBF and rCBV values of surgical side in the region of MCA were significantly higher than those before operation (P<0.01 for all. Postoperative MTT, TTP, rMTT and rTTP values of the surgical side in the region of MCA were significantly lower than those before operation (P<0.05 for all. CONCLUSION: The 256-slice whole-brain CTP can be used to evaluate cerebral hemodynamic changes in Moyamoya disease before and after surgery and the 3D-CTA is useful for assessing the abnormalities of intracranial arteries and graft patencies.

  18. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    Science.gov (United States)

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  19. Use of confocal microscopy in the study of ischemia-induced hippocampal neuronal damage

    Directory of Open Access Journals (Sweden)

    Radenović Lidija

    2008-01-01

    Full Text Available The present study was undertaken to reveal by means of confocal laser microscopy the cytoarchitecture of hippocampal CA3 neurons in Mongolian gerbils before and after cerebral ischemia of different duration. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. On the 4th, 14th and 28th day after reperfusion, neuronal damage was examined by laser scanning confocal microscopy in the CA3 region of hippocampus (30 μm slices. Slices were stained with fluorescent Nissl staining and fluorescent membrane tracer DiI. Increased duration of cerebral ischemia resulted in a progressive loss of hippocampal CA3 neurons. Four days after the ischemic insult, neuronal damage in the hippocampal CA3 region was mild but visible. On the 28th day after reperfusion, neuronal damage in the observed brain structure was most severe. These results demonstrate the temporal profile of neuronal damage after an ischemic insult as observed using confocal microscopy.

  20. The Appetite-Inducing Peptide, Ghrelin, Induces Intracellular Store-Mediated Rises in Calcium in Addiction and Arousal-Related Laterodorsal Tegmental Neurons in Mouse Brain Slices

    DEFF Research Database (Denmark)

    Hauberg, Katrine; Kohlmeier, Kristi Anne

    2015-01-01

    Ghrelin, a gut and brain peptide, has recently been shown to be involved in motivated behavior and regulation of the sleep and wakefulness cycle. The laterodorsal tegmental nucleus (LDT) is involved in appetitive behavior and control of the arousal state of an organism, and accordingly, behavioral...... this peptide has been shown in other cell types to lead to rises in calcium via release of calcium from intracellular stores. To determine whether ghrelin induced intracellular calcium rises in mouse LDT neurons, we conducted calcium imaging studies in LDT brain slices loaded with the calcium binding dye, Fura...

  1. Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method.

    Science.gov (United States)

    Pan, Geng; Li, Yue; Geng, Hong-Yan; Yang, Jian-Ming; Li, Ke-Xin; Li, Xiao-Ming

    2015-04-01

    Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions.

  2. Comparison of bNOS and chat immunohistochemistry in the laterodorsal tegmentum (LDT) and the pedunculopontine tegmentum (PPT) of the mouse from brain slices prepared for electrophysiology.

    Science.gov (United States)

    Veleanu, Maxime; Axen, Tina E; Kristensen, Morten P; Kohlmeier, Kristi A

    2016-04-01

    Identification of cell phenotype from brain slices upon which in vitro electrophysiological recordings have been performed often relies on conducting post hoc immunohistochemistry on tissue that necessarily has not been ideally prepared for immunohistochemical procedures. In such studies, antibody labeling against neuronal nitric oxide synthase (bNOS) has been used to identify cholinergic neurons of the laterodorsal tegmental nucleus (LDT) and the pedunculopontine tegmental nuclei (PPT), two brainstem nuclei importantly involved in arousal. However, a widespread perception maintains that antibody staining for enzymes involved in synthesis or transport, of acetylcholine would be a more definitive marker and hence, preferable. Colocalization of bNOS and CHAT in the LDT/PPT, and presence of parvalbumin (PV), was examined in non-ideally prepared mouse brain slices using currently available antibodies. Using fluorescent-based immunohistochemistry in LDT/PPT slices prepared for in vitro recordings, a near 100% colocalization of bNOS and CHAT was observed. We confirm in the mouse, findings of near 100% colocalization of bNOS and CHAT in the LDT/PPT, and we expand upon data from rat studies using optimally prepared tissue, that for dendritic visualization, bNOS staining exceeded the quality of CHAT staining for visualization of a higher degree of detail of fine processes. PV is not highly present in the mouse LDT/PPT. CHAT and bNOS are equally useful target proteins for immunofluorescent identification of cholinergic LDT/PPT cells in mouse brain slices prepared for in vitro recordings, however, antibody targeting of bNOS allows for a superior appreciation of structural detail. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  4. Effects of isoflurane and sevoflurane postconditioning and changes in JNK1/2 pathway activity on rat brain slices subjected to oxygen and glucose deprivation in vitro

    Institute of Scientific and Technical Information of China (English)

    Sheng Wang; Zhigang Dai; Xiwei Dong; Suxiang Guo; Yang Liu; Shan Jiang; Zhiping Wang

    2011-01-01

    Recent research shows that the JNK1/2 signaling pathway plays a neuroprotective role against ischemia-reperfusion injury by cross-talk with other pathways. The present study investigated the effects of isoflurane and sevoflurane postconditioning on JNK1/2 pathway activity and neuronal cell viability after oxygen and glucose deprivation injury in hippocampal slices in vitro. Techniques used included population spike analysis, propidium iodide fluorescent staining, western blot assay, and the use of JNK1/2-specific pharmacological tools such as anisomycin (agonist) and SP600125 (inhibitor). We found that both isoflurane and sevoflurane inhibited JNK pathway activity and had neuroprotective effects against oxygen and glucose deprivation injury in slices of rat hippocampus in vitro. Postconditioning with volatile anesthetics exerted neuroprotective effects on nerve cells and preserved the function of the CA1 region by inhibiting JNK1/2 phosphorylation. This suppression of JNK1/2 activity could underlie the observed synergistic neuroprotective effect produced by volatile anesthetic postconditioning.

  5. Treatment planning and 3D dose verification of whole brain radiation therapy with hippocampal avoidance in rats

    Science.gov (United States)

    Yoon, S. W.; Miles, D.; Cramer, C.; Reinsvold, M.; Kirsch, D.; Oldham, M.

    2017-05-01

    Despite increasing use of stereotactic radiosurgery, whole brain radiotherapy (WBRT) continues to have a therapeutic role in a selected subset of patients. Selectively avoiding the hippocampus during such treatment (HA-WBRT) emerged as a strategy to reduce the cognitive morbidity associated with WBRT and gave rise to a recently published the phase II trial (RTOG 0933) and now multiple ongoing clinical trials. While conceptually hippocampal avoidance is supported by pre-clinical evidence showing that the hippocampus plays a vital role in memory, there is minimal pre-clinic data showing that selectively avoiding the hippocampus will reduce radiation-induced cognitive decline. Largely the lack of pre-clinical evidence can be attributed to the technical hurdles associated with delivering precise conformal treatment the rat brain. In this work we develop a novel conformal HA-WBRT technique for Wistar rats, utilizing a 225kVp micro-irradiator with precise 3D-printed radiation blocks designed to spare hippocampus while delivering whole brain dose. The technique was verified on rodent-morphic Presage® 3D dosimeters created from micro-CT scans of Wistar rats with Duke Large Field-of-View Optical Scanner (DLOS) at 1mm isotropic voxel resolution. A 4-field box with parallel opposed AP-PA and two lateral opposed fields was explored with conformal hippocampal sparing aided by 3D-printed radiation blocks. The measured DVH aligned reasonably well with that calculated from SmART Plan Monte Carlo simulations with simulated blocks for 4-field HA-WBRT with both demonstrating hippocampal sparing of 20% volume receiving less than 30% the prescription dose.

  6. Repetitive noxious neonatal stimuli increases dentate gyrus cell proliferation and hippocampal brain-derived neurotrophic factor levels.

    Science.gov (United States)

    Malheiros, J M; Lima, M; Avanzi, R D T; Gomes da Silva, S; Suchecki, D; Guinsburg, R; Covolan, L

    2014-04-01

    Neonatal noxious stimulation has been proposed to model pain triggered by diagnostic/therapeutic invasive procedures in premature infants. Previous studies have shown that hippocampal neurogenesis rate and the behavioral repertoire of adult rats may be altered by neonatal noxious stimuli. The purpose of this study was to evaluate whether noxious stimulation during neonatal period alters the nociceptive response and dentate gyrus neurogenesis when compared to rats subjected to a single noxious stimulus in late infancy. Plasma corticosterone and hippocampal brain-derived neurotrophic factor (BDNF) levels were measured. Neurogenesis in the dentate gyrus was evaluated in adolescent rats (postnatal day 40; P40) exposed twice to intra-plantar injections of Complete Freund's adjuvant (CFA) on P1 and P21 (group P1P21) or P8 and P21 (P8P21) or exposed once on P21 (pubertal). On P21, one subset of animals received 5-bromo-2'-deoxyuridine (BrdU) and was euthanized on P40 for identification of proliferating cells in the dentate gyrus. Another subset was sampled for thermal response or plasma corticosterone measurement and hippocampal BDNF levels. Proliferative cell rate in dentate gyrus was the highest in all re-exposed groups (P dentate granule cells in the hippocampus may have a role in the long-term behavioral responses to neonatal nociceptive stimulation. Noxious stimulation in the neonatal period results in sex-dependent neurogenic response. Copyright © 2013 Wiley Periodicals, Inc.

  7. Neocortical-hippocampal dynamics of working memory in healthy and diseased brain states based on functional connectivity

    Directory of Open Access Journals (Sweden)

    Pablo eCampo

    2012-03-01

    Full Text Available Working memory is the ability to transiently maintain and manipulate internal representations beyond its external availability to the senses. This process is thought to support high level cognitive abilities and been shown to be strongly predictive of individual intelligence and reasoning abilities. While early models of working memory have relied on a modular perspective of brain functioning, more recent evidence suggests that cognitive functions emerge from the interactions of multiple brain regions to generate large-scale networks. Here we will review the current research on functional connectivity of working memory processes to highlight the critical role played by neural interactions in healthy and pathological brain states. Recent findings demonstrate that working memory abilities are not determined solely by local brain activity, but also rely on the functional coupling of neocortical-hippocampal regions to support working memory processes. Although the hippocampus has long been held to be important for long-term declarative memory, recent evidence suggests that the hippocampus may also be necessary to coordinate disparate cortical regions supporting the periodic reactivation of internal representations in working memory. Furthermore, recent brain imaging studies using connectivity measures, have shown that changes in cortico-limbic interactions can be useful to characterize working memory impairments observed in different neuropathological conditions. Recent advances in electrophysiological and neuroimaging techniques to model network activity has led to important insights into how neocortical and hippocampal regions support working memory processes and how disruptions along this network can lead to the memory impairments commonly reported in many neuropathological populations.

  8. Architectural slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java.......Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... of architectural prototyping since experiments with full systems are complex and expensive and thus architectural learn- ing is hindered. In this paper, we propose a novel technique for harvest- ing architectural prototypes from existing systems, \\architectural slic- ing", based on dynamic program slicing. Given...

  9. Slice Sampling

    CERN Document Server

    Neal, R M

    2000-01-01

    Markov chain sampling methods that automatically adapt to characteristics of the distribution being sampled can be constructed by exploiting the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with uniform sampling from the horizontal `slice' defined by the current vertical position, or more generally, with some update that leaves the uniform distribution over this slice invariant. Variations on such `slice sampling' methods are easily implemented for univariate distributions, and can be used to sample from a multivariate distribution by updating each variable in turn. This approach is often easier to implement than Gibbs sampling, and more efficient than simple Metropolis updates, due to the ability of slice sampling to adaptively choose the magnitude of changes made. It is therefore attractive f...

  10. Architectural Slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java.......Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... of architectural prototyping since experiments with full systems are complex and expensive and thus architectural learn- ing is hindered. In this paper, we propose a novel technique for harvest- ing architectural prototypes from existing systems, \\architectural slic- ing", based on dynamic program slicing. Given...

  11. Oxygen glucose deprivation causes mitochondrial dysfunction in cultivated rat hippocampal slices: protective effects of CsA, its immunosuppressive congener [D-Ser](8)CsA, the novel non-immunosuppressive cyclosporin derivative Cs9, and the NMDA receptor antagonist MK 801.

    Science.gov (United States)

    Trumbeckaite, Sonata; Gizatullina, Zemfira; Arandarcikaite, Odeta; Röhnert, Peter; Vielhaber, Stefan; Malesevic, Miroslav; Fischer, Gunter; Seppet, Enn; Striggow, Frank; Gellerich, Frank Norbert

    2013-09-01

    We have introduced a sensitive method for studying oxygen/glucose deprivation (OGD)-induced mitochondrial alterations in homogenates of organotypic hippocampal slice cultures (slices) by high-resolution respirometry. Using this approach, we tested the neuroprotective potential of the novel non-immunosuppressive cyclosporin (CsA) derivative Cs9 in comparison with CsA, the immunosuppressive CsA analog [D-Ser](8)CsA, and MK 801, a N-methyl-d-aspartate (NMDA) receptor antagonist. OGD/reperfusion reduced the glutamate/malate dependent (and protein-related) state 3 respiration to 30% of its value under control conditions. All of the above drugs reversed this effect, with an increase to >88% of the value for control slices not exposed to OGD. We conclude that Cs9, [D-Ser](8)CsA, and MK 801, despite their different modes of action, protect mitochondria from OGD-induced damage.

  12. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  13. 钾通道阻断剂4-氨基吡啶诱导海马CA1锥体神经元钙瞬变%Calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine in acute hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    苏涛; 丛文东; 廖卫平

    2011-01-01

    Objective To investigate the calcium transient of CA1 pyramidal neurons induced by potassium blocker 4-aminopyridine (4-AP) in acute hippocampal slices to explore the relation between potassium channel function and calcium transient, and their mechanism. Methods Fluorescent probe was employed to mark the hippocampai neurons in acute brain slices of rats; confocal microscopy was used to perform calcium imaging to observe the influences of different concentrations of 4-AP and perfusate with/without calcium on calcium transient of CA1 pyramidal neurons. Results The response of [Ca2+]I to lower concentration of 4-AP (<15 mmol/L) was in a dose-dependent manner (r2=0.910, P=0.000); the higher the concentration of 4-AP (20-80 mmol/L), the lower the peak level of calcium transient. The latency and amplitude of calcium transient induced by 4-AP were obviously reduced when the extracellular condition was switched to an absence of calcium, which was significantly different as compared with that with calcium (P<0.05). Conclusion Blockade of potassium channels with 4-AP can increase [Ca2+]I in the hippocampal pyramidal neurons of acute slices. The increase of [Ca2+]1 to 4-AP could be ascribe to calcium release from intracellular stores and calcium influx from extracellular matrix.%目的 研究4-氨基吡啶(4-AP)诱导的急性脑片海马CA1锥体神经元钙瞬变现象,探讨钾通道功能与钙瞬变的关系及可能机制.方法 荧光探针标记正常大鼠急性脑片海马神经元.共聚焦显微镜技术进行钙成像,观察不同浓度4-AP及细胞灌流液条件对神经元钙瞬变的影响.结果 低浓度(<15 mmol/L)4-AP诱导的钙瞬变峰值与剂量呈线性相关(r2=0.910,P=0.000),高浓度(20~80 mmol/L)4-AP诱导的钙瞬变峰值随浓度增高而下降.在无钙灌流液条件下,4-AP诱导的钙瞬变峰值水平下降,达峰时间延长,与含钙灌流液比较差异有统计学意义(P<0.05).结论 4-AP可诱导急性脑片海马CA1锥体神经

  14. Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats.

    Science.gov (United States)

    Greisen, Mia H; Altar, C Anthony; Bolwig, Tom G; Whitehead, Richard; Wörtwein, Gitta

    2005-03-15

    Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.

  15. Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism Differentially Predicts Hippocampal Function in Medication-Free Patients with Schizophrenia

    Science.gov (United States)

    Eisenberg, Daniel Paul; Ianni, Angela M.; Wei, Shau-Ming; Kohn, Philip D.; Kolachana, Bhaskar; Apud, José; Weinberger, Daniel R.; Berman, Karen F.

    2012-01-01

    A Val66Met single nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene impairs activity-dependent BDNF release in cultured hippocampal neurons and predicts impaired memory and exaggerated basal hippocampal activity in healthy humans. Several clinical genetic association studies, along with multi-modal evidence for hippocampal dysfunction in schizophrenia indirectly suggest a relationship between schizophrenia and genetically-determined BDNF function in the hippocampus. To directly test this hypothesized relationship, we studied 47 medication-free patients with schizophrenia or schizoaffective disorder and 74 healthy comparison individuals with genotyping for the Val66Met SNP and [15O]H2O positron emission tomography (PET) to measure resting and working memory-related hippocampal regional cerebral blood flow (rCBF). In patients, harboring a Met allele was associated with significantly less hippocampal rCBF. This finding was opposite to the genotype effect seen in healthy participants, resulting in a significant diagnosis-by-genotype interaction. Exploratory analyses of interregional resting rCBF covariation revealed a specific and significant diagnosis-by-genotype interaction effect on hippocampal-prefrontal coupling. A diagnosis-by-genotype interaction was also found for working-memory related hippocampal rCBF change, which was uniquely attenuated in Met allele-carrying patients. Thus, both task-independent and task-dependent hippocampal neurophysiology accommodates a Met allelic background differently in patients with schizophrenia than in control subjects. Potentially consistent with the hypothesis that cellular sequelae of the BDNF Val66Met SNP interface with aspects of schizophrenic hippocampal and frontotemporal dysfunction, these results warrant future investigation to understand the contributions of unique patient trait or state variables to these robust interactions. PMID:23319002

  16. Hippocampal Neurogenesis and Ageing

    OpenAIRE

    Couillard-Després, Sébastien

    2012-01-01

    Although significant inconsistencies remain to be clarified, a role for neurogenesis in hippocampal functions, such as cognition, has been suggested by several reports. Yet, investigation in various species of mammals, including humans, revealed that rates of hippocampal neurogenesis are steadily declining with age. The very low levels of hippocampal neurogenesis persisting in the aged brain have been suspected to underlie the cognitive deficits observed in elderly. However, current evidence ...

  17. Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures

    OpenAIRE

    Jung, Yeon Joo; Suh, Eun Cheng; Lee, Kyung Eun

    2012-01-01

    Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemic...

  18. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target.

    Science.gov (United States)

    Nelson, Peter T; Jicha, Gregory A; Wang, Wang-Xia; Ighodaro, Eseosa; Artiushin, Sergey; Nichols, Colin G; Fardo, David W

    2015-11-01

    The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.

  19. Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices.

    Science.gov (United States)

    Glanowska, Katarzyna M; Venton, B Jill; Moenter, Suzanne M

    2012-10-17

    Pulsatile gonadotropin-releasing hormone (GnRH) release is critical for the central regulation of fertility. There is no method allowing real-time GnRH detection in brain slices. We developed fast-scan cyclic voltammetry (FSCV) using carbon-fiber microelectrodes (CFME) to detect GnRH release and validated it using a biologically relevant system. FSCV parameters (holding potential, switching potential, and scan rate) were determined for stable GnRH detection in vitro, then optimized for GnRH detection in mouse brain slices. Placement of CFMEs in the median eminence (ME) near GnRH terminals allowed detection of both KCl-evoked and spontaneous GnRH release. GnRH release was also detected from GnRH fibers passing near GnRH soma and near fiber-fiber appositions in the preoptic area. No GnRH signal was detected from CFMEs in the ME of hpg mice, which lack GnRH, or in regions not containing GnRH neurons in wild-type mice; application of exogenous GnRH produced a signal similar to that observed for spontaneous/evoked endogenous GnRH release. Using an established mouse model that produces diurnal variations in GnRH neuron activity, we demonstrated corresponding changes in spontaneous GnRH release in the median eminence. These results validate FSCV to detect GnRH in brain slices and provide new information on the sites and amounts of GnRH release, providing insight into its neuromodulatory functions.

  20. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Directory of Open Access Journals (Sweden)

    Anna E. Blanken

    2017-01-01

    Full Text Available Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD and 7 cognitively normal (NC subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ, tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP.

  1. EFFECTS OF GLUTAMATE ON SODIUM CHANNEL IN ACUTELY DISSOCIATED HIPPOCAMPAL CA1 PYRAMIDAL NEURONS OF RATS

    Institute of Scientific and Technical Information of China (English)

    高宾丽; 伍国锋; 杨艳; 刘智飞; 曾晓荣

    2011-01-01

    Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibitio...

  2. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert

    2003-01-01

    irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21...

  3. GTP effects in rat brain slices support the non-interconvertability of M/sub 1/ and M/sub 2/ muscarinic acetylcholine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.G. Jr.; Horvath, E.; Traber, J.; Van Rooijen, L.A.A.

    1988-01-01

    GTP (guanosine-5'-triphosphate) markedly reduced high-affinity /sup 3/H-oxotremorine-M binding to M/sub 2/ receptors on brain slices in autoradiographic experiments while /sup 3/H-pirenzepine binding to M/sub 1/ receptors was largely unaffected. The distribution of M/sub 1/ receptors so labelled was also not altered by GTP to include former M/sub 2/-rich regions, thus indicating that GTP could not, by itself, interconvert high agonist-affinity M/sub 2/ receptors to M/sub 1/ receptors. 18 references, 1 figure.

  4. Effects of the blood components on the AMPA and NMDA synaptic responses in brain slices in the onset of hemorrhagic stroke.

    Science.gov (United States)

    Mokrushin, Anatoly A; Pavlinova, Larisa I

    2013-12-01

    Blood-borne events play a major role in post bleeding disturbances of the neuronal network. However, very little is known about the early effects of blood plasma, leucocytes, and the red blood cells on the AMPA and NMDA-mediated synaptic responses in the onset of experimental intracranial hemorrhage (ICH). In this study, we used the technique of on-line monitoring of electrophysiological parameters referred to synaptic activity in piriform cortex of SHR rat slice. We exposed the olfactory cortex slices to diluted autologous blood or its components and compared with effects of ferric chloride. Whole blood exerted a total inhibition of synaptic activity in piriform cortex within first 5 min. Dilution of blood induced prolonged epileptic synaptic activation of NMDA receptors. Blood plasma and fraction of leucocytes induced hyperactivation of neurons transforming to epileptiform discharges. Fraction of red blood cells acted biphasic, an initial sharp activity of AMPA- and NMDA-mediated receptors replaced by a following total depression. Our slice-based models of experimental stroke revealed the mechanism of the earliest pathophysiologic events occur in brain tissue during bleeding that may be relevant to the human ICH.

  5. Anti-inflammatory efficacy of dexamethasone and Nrf2 activators in the CNS using brain slices as a model of acute injury.

    Science.gov (United States)

    Graber, David J; Hickey, William F; Stommel, Elijah W; Harris, Brent T

    2012-03-01

    Limiting excessive production of inflammatory mediators is an effective therapeutic strategy for many diseases. It's also a promising remedy for neurodegenerative diseases and central nervous system (CNS) injuries. Glucocorticoids are valuable anti-inflammatory agents, but their use is constrained by adverse side-effects. Activators of NF-E2-related factor-2 (Nrf2) signaling represent an attractive anti-inflammatory alternative. In this study, dexamethasone, a synthetic glucocorticoid, and several molecular activators of Nrf2 were evaluated for efficacy in slices of cerebral cortex derived from adult SJL/J mice. Cortical explants increased expression of IL-1β and TNF-α mRNAs in culture within 5 h of sectioning. This expression was inhibited with dexamethasone in the explant medium or injected systemically in mice before sectioning. Semi-synthetic triterpenoid (SST) derivatives, potent activators of the Nrf2 pathway, demonstrated fast-acting anti-inflammatory activity in microglia cultures, but not in the cortical slice system. Quercetin, luteolin, and dimethyl fumarate were also evaluated as molecular activators of Nrf2. While expression of inflammatory mediators in microglia cultures was inhibited, these compounds did not demonstrate anti-inflammatory efficacy in cortical slices. In conclusion, brain slices were amenable to pharmacological modification as demonstrated by anti-inflammatory activity with dexamethasone. The utilization of Nrf2 activators to limit inflammatory mediators within the CNS requires further investigation. Inactivity in CNS tissue, however, suggests their safe use without neurological side-effects in treating non-CNS disorders. Short-term CNS explants may provide a more accurate model of in vivo conditions than microglia cultures since the complex tissue microenvironment is maintained.

  6. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  7. Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal rats after prenatal exposure to propylthiouracil (PTU).

    Science.gov (United States)

    Chakraborty, Goutam; Magagna-Poveda, Alejandra; Parratt, Carolyn; Umans, Jason G; MacLusky, Neil J; Scharfman, Helen E

    2012-03-01

    Thyroid hormone is critical for central nervous system development. Fetal hypothyroidism leads to reduced cognitive performance in offspring as well as other effects on neural development in both humans and experimental animals. The nature of these impairments suggests that thyroid hormone may exert its effects via dysregulation of the neurotrophin brain-derived neurotrophic factor (BDNF), which is critical to normal development of the central nervous system and has been implicated in neurodevelopmental disorders. The only evidence of BDNF dysregulation in early development, however, comes from experimental models in which severe prenatal hypothyroidism occurred. By contrast, milder prenatal hypothyroidism has been shown to alter BDNF levels and BDNF-dependent functions only much later in life. We hypothesized that mild experimental prenatal hypothyroidism might lead to dysregulation of BDNF in the early postnatal period. BDNF levels were measured by ELISA at 3 or 7 d after birth in different regions of the brains of rats exposed to propylthiouracil (PTU) in the drinking water. The dose of PTU that was used induced mild maternal thyroid hormone insufficiency. Pups, but not the parents, exhibited alterations in tissue BDNF levels. Hippocampal BDNF levels were reduced at both d 3 and 7, but no significant reductions were observed in either the cerebellum or brain stem. Unexpectedly, more males than females were born to PTU-treated dams, suggesting an effect of PTU on sex determination. These results support the hypothesis that reduced hippocampal BDNF levels during early development may contribute to the adverse neurodevelopmental effects of mild thyroid hormone insufficiency during pregnancy.

  8. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P

    2005-01-01

    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects...... of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol....... By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed...

  9. Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains.

    Science.gov (United States)

    Iritani, Shuji; Niizato, Kazuhiro; Nawa, Hiroyuki; Ikeda, Kenji; Emson, Piers C

    2003-08-01

    Recently, the pathogenesis of schizophrenia has been investigated from the perspective of neurodevelopmental dysfunction theory. On the other hand, it has been indicated that neurotrophic factors, such as nerve growth factors, brain-derived neurotrophic factor (BDNF), and neurotrophin-3, are significantly involved in the development and functional differences of central nervous system (CNS). Some reports proposed that the dysfunction of these factors could explain the pathogenesis of schizophrenia possibly. In this study, the authors investigated immunohistochemically the distribution and/or morphology of BDNF and TrkB, its peculiar receptor, in the hippocampal formation of schizophrenic brain. As a result, BDNF-positive pyramidal cells in the CA2 and neurons in the CA3 and the field of the CA4 were intensely stained compared to those of normal control. Staining of TrkB-positive neurons showed a signet-ring like shape in the hippocampus of normal control brains. Such figures were not observed on staining of those neurons from schizophrenic brains. In the control cases, TrkB-immunopositive varicose fibers were frequently seen. Those observed differences between schizophrenic and normal cases may indicate the existence of dysfunction of BDNF and TrkB in schizophrenic brain, and this dysfunction may be one of the factors involved in the pathogenesis of schizophrenia.

  10. Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection.

    Science.gov (United States)

    Fang, Huaifang; Pajski, Megan L; Ross, Ashley E; Venton, B Jill

    2013-01-01

    Methods to determine neurochemical concentrations in small samples of tissue are needed to map interactions among neurotransmitters. In particular, correlating physiological measurements of neurotransmitter release and the tissue content in a small region would be valuable. HPLC is the standard method for tissue content analysis but it requires microliter samples and the detector often varies by the class of compound being quantified; thus detecting molecules from different classes can be difficult. In this paper, we develop capillary electrophoresis with fast-scan cyclic voltammetry detection (CE-FSCV) for analysis of dopamine, serotonin, and adenosine content in tissue punches from rat brain slices. Using field-amplified sample stacking, the limit of detection was 5 nM for dopamine, 10 nM for serotonin, and 50 nM for adenosine. Neurotransmitters could be measured from a tissue punch as small as 7 µg (7 nL) of tissue, three orders of magnitude smaller than a typical HPLC sample. Tissue content analysis of punches in successive slices through the striatum revealed higher dopamine but lower adenosine content in the anterior striatum. Stimulated dopamine release was measured in a brain slice, then a tissue punch collected from the recording region. Dopamine content and release had a correlation coefficient of 0.71, which indicates much of the variance in stimulated release is due to variance in tissue content. CE-FSCV should facilitate measurements of tissue content in nanoliter samples, leading to a better understanding of how diseases or drugs affect dopamine, serotonin, and adenosine content.

  11. Acute and Long-Term Effects of Noise Exposure on the Neuronal Spontaneous Activity in Cochlear Nucleus and Inferior Colliculus Brain Slices

    Directory of Open Access Journals (Sweden)

    Moritz Gröschel

    2014-01-01

    Full Text Available Noise exposure leads to an immediate hearing loss and is followed by a long-lasting permanent threshold shift, accompanied by changes of cellular properties within the central auditory pathway. Electrophysiological recordings have demonstrated an upregulation of spontaneous neuronal activity. It is still discussed if the observed effects are related to changes of peripheral input or evoked within the central auditory system. The present study should describe the intrinsic temporal patterns of single-unit activity upon noise-induced hearing loss of the dorsal and ventral cochlear nucleus (DCN and VCN and the inferior colliculus (IC in adult mouse brain slices. Recordings showed a slight, but significant, elevation in spontaneous firing rates in DCN and VCN immediately after noise trauma, whereas no differences were found in IC. One week postexposure, neuronal responses remained unchanged compared to controls. At 14 days after noise trauma, intrinsic long-term hyperactivity in brain slices of the DCN and the IC was detected for the first time. Therefore, increase in spontaneous activity seems to develop within the period of two weeks, but not before day 7. The results give insight into the complex temporal neurophysiological alterations after noise trauma, leading to a better understanding of central mechanisms in noise-induced hearing loss.

  12. Acute and long-term effects of noise exposure on the neuronal spontaneous activity in cochlear nucleus and inferior colliculus brain slices.

    Science.gov (United States)

    Gröschel, Moritz; Ryll, Jana; Götze, Romy; Ernst, Arne; Basta, Dietmar

    2014-01-01

    Noise exposure leads to an immediate hearing loss and is followed by a long-lasting permanent threshold shift, accompanied by changes of cellular properties within the central auditory pathway. Electrophysiological recordings have demonstrated an upregulation of spontaneous neuronal activity. It is still discussed if the observed effects are related to changes of peripheral input or evoked within the central auditory system. The present study should describe the intrinsic temporal patterns of single-unit activity upon noise-induced hearing loss of the dorsal and ventral cochlear nucleus (DCN and VCN) and the inferior colliculus (IC) in adult mouse brain slices. Recordings showed a slight, but significant, elevation in spontaneous firing rates in DCN and VCN immediately after noise trauma, whereas no differences were found in IC. One week postexposure, neuronal responses remained unchanged compared to controls. At 14 days after noise trauma, intrinsic long-term hyperactivity in brain slices of the DCN and the IC was detected for the first time. Therefore, increase in spontaneous activity seems to develop within the period of two weeks, but not before day 7. The results give insight into the complex temporal neurophysiological alterations after noise trauma, leading to a better understanding of central mechanisms in noise-induced hearing loss.

  13. Waxholm Space atlas of the rat brain hippocampal region: three-dimensional delineations based on magnetic resonance and diffusion tensor imaging.

    Science.gov (United States)

    Kjonigsen, Lisa J; Lillehaug, Sveinung; Bjaalie, Jan G; Witter, Menno P; Leergaard, Trygve B

    2015-03-01

    Atlases of the rat brain are widely used as reference for orientation, planning of experiments, and as tools for assigning location to experimental data. Improved quality and use of magnetic resonance imaging (MRI) and other tomographical imaging techniques in rats have allowed the development of new three-dimensional (3-D) volumetric brain atlas templates. The rat hippocampal region is a commonly used model for basic research on memory and learning, and for preclinical investigations of brain disease. The region features a complex anatomical organization with multiple subdivisions that can be identified on the basis of specific cytoarchitectonic or chemoarchitectonic criteria. We here investigate the extent to which it is possible to identify boundaries of divisions of the hippocampal region on the basis of high-resolution MRI contrast. We present the boundaries of 13 divisions, identified and delineated based on multiple types of image contrast observed in the recently published Waxholm Space MRI/DTI template for the Sprague Dawley rat brain (Papp et al., Neuroimage 97:374-386, 2014). The new detailed delineations of the hippocampal formation and parahippocampal region (Waxholm Space atlas of the Sprague Dawley rat brain, v2.0) are shared via the INCF Software Center (http://software.incf.org/), where also the MRI/DTI reference template is available. The present update of the Waxholm Space atlas of the rat brain is intended to facilitate interpretation, analysis, and integration of experimental data from this anatomically complex region.

  14. Long-term GnRH-induced gonadotropin secretion in a novel hypothalamo-pituitary slice culture from tilapia brain.

    Science.gov (United States)

    Bloch, Corinne L; Kedar, Noa; Golan, Matan; Gutnick, Michael J; Fleidervish, Ilya A; Levavi-Sivan, Berta

    2014-10-01

    Organotypic cultures, prepared from hypothalamo-pituitary slices of tilapia, were developed to enable long-term study of secretory cells in the pituitary of a teleost. Values of membrane potential at rest were similar to those recorded from acute slices, and cells presented similar spontaneous spikes and spikelets. Some cells also exhibited slow spontaneous oscillations in membrane potential, which may be network-driven. Long-term (6days) continuous exposure to GnRH induced increases in LH and FSH secretion. FSH levels reached the highest levels after 24h of exposure to GnRH, and the highest secretion of LH was observed in days 4 and 5 of the experiment. Since slices were viable for several weeks in culture, maintaining the original cytoarchitecture, electrical membrane properties and the ability to secrete hormones in response to exogenous GnRH, this technique is ideal for studying the mechanisms regulating cell-to-cell communication under conditions resembling the in vivo tissue organization.

  15. A glass capillary microelectrode based on capillarity and its application to the detection of L-glutamate release from mouse brain slices.

    Science.gov (United States)

    Nakajima, Kumiko; Yamagiwa, Takashi; Hirano, Ayumi; Sugawara, Masao

    2003-01-01

    A new glass capillary microelectrode for L-glutamate is described using pulled glass capillaries (tip size, approximately 12.5 microm) with a very small volume (approximately 2 microl) of inner solution containing glutamate oxidase (GluOx) and ascorbate oxidase. The operation of the electrode is based on capillary action that samples L-glutamate into the inner solution. The enzyme reaction by GluOx generates hydrogen peroxide that is detected at an Os-gel-HRP polymer modified Pt electrode in a three-electrode configuration. The amperometric response behavior of the electrode was characterized in terms of the capillarity, response time, sensitivity and selectivity for measurements of L-glutamate. The currents at 0 V vs. Ag/AgCl increased linearly with the L-glutamate concentration from 10 to 150 microM for in vitro and in situ calibrations. The response was highly selective to L-glutamate over ascorbate, dopamine, serotonin and other amino acids. The detection of L-glutamate in the extracellular fluids of different regions of mouse hippocampal slices under stimulation of KCl was demonstrated.

  16. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Science.gov (United States)

    Flores-Martínez, Ernesto

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain. PMID:28127312

  17. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Bender, Edward [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Tomé, Wolfgang A., E-mail: wtome@montefiore.org [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States)

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  18. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  19. Hippocampal development at gestation weeks 23 to 36. An ultrasound study on preterm neonates

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, Dragan; Raininko, Raili [Uppsala University, Department of Radiology, University Hospital, Uppsala (Sweden); Ewald, Uwe [Uppsala University, Department of Women' s and Children' s Health, Uppsala (Sweden)

    2010-06-15

    During fetal development, the hippocampal structures fold around the hippocampal sulcus into the temporal lobe. According to the literature, this inversion should be completed at gestation week (GW) 21. Thereafter, the hippocampal shape should resemble the adult shape. However, incomplete hippocampal inversion (IHI) is found in 19% of the common population. The aim of this study was to study fetal hippocampal development by examining neonates born preterm. We analyzed cranial ultrasound examinations, performed as a part of the routine assessment of all preterm infants, over a 3-year period and excluded the infants with brain pathology. The final material consisted of 158 children born <35 GW. A rounded form (the ratio between the horizontal and vertical diameters of the hippocampal body {<=}1) in coronal slices was considered the sign of IHI. The age at examination was 23-24 GW in 24 neonates, 25-28 GW in 70 neonates, and 29-36 GW in 64 neonates. IHI was found in 50%, 24%, and 14%, respectively. The difference between the neonates <25 GW and {>=}25 GW was statistically highly significant (p < 0.001). The frequency of bilateral IHI was highest in the youngest age group. In the other groups, the left-sided IHI was the most common. In about 50% of the neonates, hippocampal inversion is not completed up to GW 24; but from 25 GW onwards, the frequency and laterality of IHI is similar to that in the adult population. (orig.)

  20. Hippocampal dose from stereotactic radiosurgery for 4 to 10 brain metastases: Risk factors, feasibility of dose reduction via re-optimization, and patient outcomes.

    Science.gov (United States)

    Birer, Samuel R; Olson, Adam C; Adamson, Justus; Hood, Rodney; Susen, Matthew; Kim, Grace; Salama, Joseph K; Kirkpatrick, John P

    2017-07-28

    This study aimed to report hippocampal dose from single-fraction stereotactic radiosurgery (SRS) for 4 to 10 brain metastases and determine feasibility of hippocampal-sparing SRS. Patients with 4 to 10 brain metastases receiving single-isocenter, multi-target single-fraction SRS were identified. Hippocampi were contoured using the Radiation Therapy Oncology Group (RTOG) 0933 atlas. RTOG 0933 dose constraints were converted to a biologically effective dose using an alpha/beta of 2 (D100 421 cGy, Dmax 665 cGy). Number of metastases, total target volume, prescribed dose, and distance of nearest metastasis (dmin) were analyzed as risk factors for exceeding hippocampal constraints. If hippocampi exceeded constraints, the SRS plan was re-optimized. Key dosimetric parameters were compared between original and re-optimized plans. To determine if a single target can exceed constraints, all targets but the closest metastasis were removed from the plan, and dosimetry was compared. Forty plans were identified. Fifteen hippocampi (19%) exceeded constraints in 12 SRS plans. Hippocampal sparing was achieved in 10 of 12 replanned cases (83%). Risk factors associated with exceeding hippocampal constraints were decreasing dmin (24.0 vs 8.0 mm, p = 0.002; odds ratio [OR] 1.14, 95% confidence interval [CI] 1.04 to 1.26) and total target volume (5.46 cm(3)vs 1.98 cm(3), p = 0.03; OR 1.14, 95% CI 1.00 to 1.32). There was no difference in exceeding constraints for 4 to 5 vs 6 to 10 metastases (27% vs 21%, p = 0.409) or prescribed dose (18 Gy, p = 0.58). For re-optimized plans, there were no significant differences in planning target volume (PTV) coverage (99.6% vs 99.0%, p = 0.17) or conformality index (1.47 vs 1.4, p = 0.78). Six (50%) plans exceeded constraints with a single target. A substantial minority of hippocampi receive high radiation dose from SRS for 4 to 10 brain metastases. Decreasing distance of the closest metastasis and total target volume

  1. Effect of pre-ischaemic conditioning on hypoxic depolarization of dopamine efflux in the rat caudate brain slice measured in real-time with fast cyclic voltammetry.

    Science.gov (United States)

    Davidson, Colin; Coomber, Ben; Gibson, Claire L; Young, Andrew M J

    2011-10-01

    Fast cyclic voltammetry can be used to measure dopamine release after oxygen and glucose deprivation (OGD) induced anoxic depolarization in vitro. Here we measure dopamine efflux with 1s time resolution, which is appropriate to measure OGD-evoked dopamine efflux accurately. In the present study, we examined whether OGD-evoked dopamine efflux could be used to show pre-ischaemic conditioning in the rat caudate brain slice. Caudate slices were exposed to 0, 2, or 10 min OGD pre-ischaemic conditioning, then 60 min later exposed to a second OGD event of 15 min duration. We measured the OGD-evoked dopamine efflux using fast cyclic voltammetry and in some experiments caudate dopamine and DOPAC tissue levels were measured using HPLC and 20 μm cryostat sections were Nissl stained to indicate neuronal loss. We found that 10 but not 2 min OGD pre-ischaemic conditioning resulted in a longer time to onset of OGD-evoked dopamine efflux on the main OGD event (475 ± 31 and 287 ± 30 s for 10 Vs 0 min pre-ischaemic conditioning respectively). Further, 10 min OGD pre-ischaemic conditioning resulted in less dopamine efflux on the second OGD event (4.23 ± 1.12 and 8.14 ± 0.82 μM for 10 Vs 0 min pre-ischaemic conditioning respectively), despite these slices having similar tissue dopamine content and DOPAC/DA ratio, and the rate of dopamine release was slower in the main OGD event (21 ± 5 and 74 ± 8 nM/s for 10 Vs 0 min pre-ischaemic conditioning respectively). These data suggest that 10 min OGD pre-ischaemic conditioning can evoke tolerance to a second OGD event and that voltammetric recording of OGD-evoked dopamine efflux is a useful model of pre-ischaemic conditioning in neuronal tissue.

  2. SDF-1α和CXCR4在低氧缺糖海马脑片中的表达变化%Expressional changes of SDF-1α and CXCR4 proteins in oxygen-glucose deprivation hippocampal organotypic slice culture of rat

    Institute of Scientific and Technical Information of China (English)

    王玉兰; 徐红; 李爱娜

    2011-01-01

    To investigate expressional changes of SDF-1 α and CXCR4 proteins in oxygen-glucose dep-rivation( OGD ) hippocampal slice. Methods Western blot and immunohistochemistry analyses were used to detect SDF-1 α and CXCR4 proteins expression in hippocampal slice of HOTC group and OGD group. Results Immunohistochemistry showed that the SDF-1 α and CXCR4 proteins were expressed in hippocampal slice both HOTC group and OGD group, its hyalomitome was stained, and the CXCR4 protein expression was detected in the axon hillock of pyramidal cells. Western blot results showed that the expressions of SDF-1 α and CXCR4 proteins increased after OGD, and the expression of SDF-1 a proteins had significantly increased( P <0. 01 ). Conclusion The expressional changes of SDF-1 α and CXCR4 proteins indicate that SDF-1 a is associated with the OGD of hippocampal slice.%目的 研究海马脑片低氧缺糖损伤后SDF-1α和CXCR4蛋白的表达变化情况.方法 运用脑片培养技术建立低氧缺糖海马脑片模型,用免疫组化法和Western blot法检测SDF-1α和CXCR4的表达变化.结果 低氧缺糖损伤前后海马脑片中均可见SDF-1α和CXCR4表达的阳性细胞,其胞膜和胞质呈棕黄色着色,其中部分轴丘可见CXCR4阳性蛋白表达.Western blot发现,损伤后在分子量为11 ku和43 ku处分别检测到SDF-1α、CXCR4阳性条带;与正常对照组相比,OGD组SDF-1α和CXCR4表达均增加,其中SDF-1α表达增加差异有统计学意义(P<0.01).结论 海马脑片缺氧缺糖损伤后SDF-1α蛋白表达增加,提示SDF-1α可能与海马脑片低氧缺糖损伤密切相关.

  3. Updating the lamellar hypothesis of hippocampal organization

    Directory of Open Access Journals (Sweden)

    Robert S Sloviter

    2012-12-01

    Full Text Available In 1971, Andersen and colleagues proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a trisynaptic circuit lying within transverse hippocampal slices or lamellae [Andersen, Bliss, and Skrede. 1971. Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222-238]. In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the lamellar distribution of dentate granule cell axons (the mossy fibers, which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly lamellar mossy fiber pathway. The existence of pathways with translamellar distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis [Amaral and Witter. 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571-591]. We suggest that the functional implications of longitudinally-projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar

  4. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice.

    Science.gov (United States)

    Kikuchihara, Yoh; Abe, Hajime; Tanaka, Takeshi; Kato, Mizuho; Wang, Liyun; Ikarashi, Yoshiaki; Yoshida, Toshinori; Shibutani, Makoto

    2015-05-04

    We previously found persistent aberration of hippocampal adult neurogenesis, along with brain manganese (Mn) accumulation, in mouse offspring after developmental exposure to 800-ppm dietary Mn. Reduction of parvalbumin (Pvalb)(+) γ-aminobutyric acid (GABA)-ergic interneurons in the hilus of the dentate gyrus along with promoter region hypermethylation are thought to be responsible for this aberrant neurogenesis. The present study was conducted to examine the relationship between the induction of aberrant neurogenesis and brain Mn accumulation after oral Mn exposure as well as the responsible mechanism in young adult animals. We used two groups of mice with 28- or 56-day exposure periods to oral MnCl2·xH2O at 800 ppm as Mn, a dose sufficient to lead to aberrant neurogenesis after developmental exposure. A third group of mice received intravenous injections of Mn at 5-mg/kg body weight once weekly for 28 days. The 28-day oral Mn exposure did not cause aberrations in neurogenesis. In contrast, 56-day oral exposure caused aberrations in neurogenesis suggestive of reductions in type 2b and type 3 progenitor cells and immature granule cells in the dentate subgranular zone. Brain Mn accumulation in 56-day exposed cases, as well as in directly Mn-injected cases occurred in parallel with reduction of Pvalb(+) GABAergic interneurons in the dentate hilus, suggesting that this may be responsible for aberrant neurogenesis. For reduction of Pvalb(+) interneurons, suppression of brain-derived neurotrophic factor-mediated signaling of mature granule cells may occur via suppression of c-Fos-mediated neuronal plasticity due to direct Mn-toxicity rather than promoter region hypermethylation of Pvalb.

  5. Reproducibility of perfusion CT derived CBV and rCBV measurements with different slice thickness in patients with brain neoplasms%脑瘤灌注CT不同层厚CBV与rCBV测量的可重复性研究

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To assess inter-and intraobserver reproducibility for measuring perfusion CT derived cerebral blood volume(CBV)and relative cerebral blood volume(rCBV)with different slice thickness in patients with brain neoplasms.Methods: Three independent observers who were blinded to the histopathologic diagnosis performed perfusion derived CBV and rCBV measurements with 5 mm and 10 mm slice thickness in 52 patients with various cerebral neoplasms.The results of the measurements with different slice thickness were compared.Calculation of coefficient of variation(CV), and relative paired difference of the measurements were used to determine the levels of inter-and intraobserver reproducibility.Results: The differences of CBV and rCBV measurements between different slice thickness groups were statistically significant(P<0.05)respectively in observer 2, and were not significant in the other two observers(P>0.05).For the same slice thickness, both the difference of CBV and rCBV measurements among the three observers were not statistically significant.Interobserver CV and relative paired difference of the measurements with 10 mm slice thickness group were slightly lower than those of 5 mm slice thickness group.Interobserver CV and relative paired difference of CBV group were slightly lower than those of rCBV group.The intraobserver differences of CBV and rCBV in 10 mm slice thickness group were statistically significant for observer 2 respectively.No other intraobserver differences of measurements were statistically significant.CV and relative paired difference of intraobserver CBV and rCBV measurements for observer 2 were significantly higher than for the other two observers.Conclusion: High reproducibility of CBV and rCBV measurements was acquired with the two different slice thickness.Suitable training may be helpful to maintain a high level of consistency for measurements.

  6. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat.

    Science.gov (United States)

    Jia, Feng; Yin, Yu Hua; Gao, Guo Yi; Wang, Yu; Cen, Lian; Jiang, Ji-Yao

    2014-07-01

    The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1-5 and 11-15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury.

  7. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.

    Science.gov (United States)

    Blaya, Meghan O; Tsoulfas, Pantelis; Bramlett, Helen M; Dietrich, W Dalton

    2015-02-01

    Transplantation of neural progenitor cells (NPCs) may be a potential treatment strategy for traumatic brain injury (TBI) due to their intrinsic advantages, including the secretion of neurotrophins. Neurotrophins are critical for neuronal survival and repair, but their clinical use is limited. In this study, we hypothesized that pericontusional transplantation of NPCs genetically modified to secrete a synthetic, human multineurotrophin (MNTS1) would overcome some of the limitations of traditional neurotrophin therapy. MNTS1 is a multifunctional neurotrophin that binds all three tropomyosin-related kinase (Trk) receptors, recapitulating the prosurvival activity of 3 endogenous mature neurotrophins. NPCs obtained from rat fetuses at E15 were transduced with lentiviral vectors containing MNTS1 and GFP constructs (MNTS1-NPCs) or fluorescent constructs alone (control GFP-NPCs). Adult rats received fluid percussion-induced TBI or sham surgery. Animals were transplanted 1week later with control GFP-NPCs, MNTS1-NPCs, or injected with saline (vehicle). At five weeks, animals were evaluated for hippocampal-dependent spatial memory. Six weeks post-surgery, we observed significant survival and neuronal differentiation of MNTS1-NPCs and injury-activated tropism toward contused regions. NPCs displayed processes that extended into several remote structures, including the hippocampus and contralateral cortex. Both GFP- and MNTS1-NPCs conferred significant preservation of pericontusional host tissues and enhanced hippocampal neurogenesis. NPC transplantation improved spatial memory capacity on the Morris water maze (MWM) task. Transplant recipients exhibited escape latencies approximately half that of injured vehicle controls. While we observed greater transplant survival and neuronal differentiation of MNTS1-NPCs, our collective findings suggest that MNTS1 may be superfluous in terms of preserving the cytoarchitecture and rescuing behavioral deficits given the lack of significant

  8. Acute hypercapnic hyperoxia stimulates reactive species production in the caudal solitary complex of rat brain slices but does not induce oxidative stress.

    Science.gov (United States)

    Ciarlone, Geoffrey E; Dean, Jay B

    2016-12-01

    Central CO2 chemoreceptive neurons in the caudal solitary complex (cSC) are stimulated by hyperoxia via a free radical mechanism. Hyperoxia has been shown to increase superoxide and nitric oxide in the cSC, but it remains unknown how changes in Pco2 during hyperoxia affect the production of O2-dependent reactive oxygen and nitrogen species (RONS) downstream that can lead to increased levels of oxidative and nitrosative stress, cellular excitability, and, potentially, dysfunction. We used real-time fluorescence microscopy in rat brain slices to determine how hyperoxia and hypercapnic acidosis (HA) modulate one another in the production of key RONS, as well as colorimetric assays to measure levels of oxidized and nitrated lipids and proteins. We also examined the effects of CO2 narcosis and hypoxia before euthanasia and brain slice harvesting, as these neurons are CO2 sensitive and hypothesized to employ CO2/H(+) mechanisms that exacerbate RONS production and potentially oxidative stress. Our findings show that hyperoxia ± HA increases the production of peroxynitrite and its derivatives, whereas increases in Fenton chemistry are most prominent during hyperoxia + HA. Using CO2 narcosis before euthanasia modulates cellular sensitivity to HA postmortem and enhances the magnitude of the peroxynitrite pathway, but blunts the activity of Fenton chemistry. Overall, hyperoxia and HA do not result in increased production of markers of oxidative and nitrosative stress as expected. We postulate this is due to antioxidant and proteosomal removal of damaged lipids and proteins to maintain cell viability and avoid death during protracted hyperoxia.

  9. A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream

    DEFF Research Database (Denmark)

    Tanvig, Mette; Blaabjerg, Morten; Andersen, Rikke K

    2009-01-01

    The rostral migratory stream (RMS) is the main pathway by which newly born subventricular zone (SVZ) cells reach the olfactory bulb (OB) in rodents. This migration has been well studied in vivo, but an organotypic in vitro model would facilitate more experimental investigations. Here we introduce...... a slice culture preparation of the rat forebrain including en suite the rostral part of the lateral ventricle, the RMS and the OB. The preparation was validated with regard to endogenous cell proliferation and migration by tracking bromodeoxyuridine (BrdU)-labelled cells in newly established and 3 and 6...... week old cultures. For testing the migratory abilities of exogenous precursor cells, rat SVZ neurospheres and human neural (HNS1 cells) and mesenchymal (hMSC-TERT) stem cell lines were micrografted to the rostral SVZ of 1 and 7 day old cultures. Two weeks later graft derivatives were identified...

  10. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic; S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); V.M. Strike (Vanessa); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole A.); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker; D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn; Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (M.); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cock); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpi

  11. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija|info:eu-repo/dai/nl/34549072X; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P|info:eu-repo/dai/nl/286852071; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R|info:eu-repo/dai/nl/344497569; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M|info:eu-repo/dai/nl/304811432; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke|info:eu-repo/dai/nl/250566370; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E Hulshoff|info:eu-repo/dai/nl/142348228; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S|info:eu-repo/dai/nl/073778532; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M|info:eu-repo/dai/nl/271562161; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hi

  12. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic; S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); V.M. Strike (Vanessa); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole A.); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker; D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn; Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (M.); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cock); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpi

  13. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  14. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Deborah R Boone

    Full Text Available Cognitive deficits in survivors of traumatic brain injury (TBI are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive or surviving (Fluoro-Jade-negative pyramidal neurons obtained by laser capture microdissection (LCM. In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.

  15. Aging brain microenvironment decreases hippocampal neurogenesis through Wnt‐mediated survivin signaling

    National Research Council Canada - National Science Library

    Miranda, Carlos J; Braun, Lyndsey; Jiang, Yuying; Hester, Mark E; Zhang, Ling; Riolo, Matthew; Wang, Haijuan; Rao, Meghan; Altura, Rachel A; Kaspar, Brian K

    2012-01-01

    ...‐talk is modified in the aging brain, leading to decreased proliferation of NPCs. Furthermore, we show that astrocytes regulate the NPC cell cycle by acting on the expression levels of survivin, a known mitotic regulator...

  16. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Directory of Open Access Journals (Sweden)

    Ernesto Flores-Martínez

    2017-01-01

    Full Text Available Alterations in prefrontal cortex (PFC function and abnormalities in its interactions with other brain areas (i.e., the hippocampus have been related to Alzheimer Disease (AD. Considering that these malfunctions correlate with the increase in the brain’s amyloid beta (Aβ peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  17. 吗啡后处理诱导小鼠海马脑片氧糖剥夺/再灌注耐受和对cPKCβⅡ/γ膜转位的影响%Effects of cPKCβⅡ/γ membrane translocation ischemic/hypoxic tolerance induced by morphine postconditioning in hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    胡海立; 杨静; 纪方; 李天佐; 李俊发

    2011-01-01

    Objective To determine whether or not morphine postconditioning can induce ischemic/hypoxic tolerance in neurons subjected to reperfusion injury after oxygen-glucose deprivation (OGD). Methods Hippocampal slices of 400 μm thickness were prepared from healthy adult male BALB/c mice. The slices were incubated in oxygen-saturated ACSF without or with calcium, then were subjected to OGD for 20 min. After recovery, the samples were immersed in oxygenated artificial fluid for 2 hours in the presence or absence of morphine postconditioning at 3 μmol/L during the first 5-60 min. The assessment of slices injury was performed by a determination of the intensity of slice stain incubated with TTC (2% 2, 3, 5-triphenyltetrazolium chloride) and the leakage rate of LDH also evaluated. At the designated periods during incubation, some slices were immersed into liquid nitrogen for a later analysis of Western blot. The frozen slices were homogenized, sonicated and centrifuged to separate soluble and particulate proteins. 10% SDS-PAGE Western blot was used to identify the changes of membrane-specific translocation of cPKCβⅡ/γ. Results After reperfusion, the cell survival significantly decreased with the elongation of OGD (51.4%). The release rate of LDH (184.05%) significantly increased simultaneously. In hippocampal slices postconditioned with morphine for 20-60 min, the release rate of LDH (136%, 142%, 144%) significantly decreased as compared with the group OGD. In the hippocampal slices postconditioned with morphine for 10-30 min, the cell survival rate (64.9%, 69.9%, 63.5%) significantly increased as compared with reperfusion alone. cPKCγ of particulate fraction increased versus the control. And there was a corresponding decrease of cytosolic fraction. Morphine postconditioning significantly inhibited the cPKCγ isoform-specific membrane translocation. It declined from 136% in the group OGD to 123%, 118%, 114% in the group morphine 20-60 min. c

  18. Exercise partly reverses the effect of maternal separation on hippocampal proteins in 6-hydroxydopamine-lesioned rat brain.

    Science.gov (United States)

    Dimatelis, J J; Hendricks, S; Hsieh, J; Vlok, N M; Bugarith, K; Daniels, W M U; Russell, V A

    2013-01-01

    Animals subjected to maternal separation stress during the early stages of development display behavioural, endocrine and growth factor abnormalities that mirror the clinical findings in anxiety/depression. In addition, maternal separation has been shown to exacerbate the behavioural deficits induced by 6-hydroxydopamine (6-OHDA) in a rat model of Parkinson's disease. In contrast, voluntary exercise reduced the detrimental effects of 6-OHDA in the rat model. The beneficial effects of exercise appeared to be largely due to compensation in the non-lesioned hemisphere. The aim of the present study was to investigate whether voluntary exercise for 3 weeks could reverse the effects of maternal separation in rats challenged with the neurotoxin 6-OHDA infused into the medial forebrain bundle after 1 week of exercise, at postnatal day 60. The rats were killed 2 weeks later, at postnatal day 74. Their brains were dissected and the hippocampus rapidly removed for proteomic analysis by isobaric tagging (iTRAQ) and quantification of peptides by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Maternal separation upregulated hippocampal proteins functionally involved in energy metabolism (nucleoside diphosphate kinase B, enolase and triosephosphate isomerase) and synaptic plasticity (α-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere. Exercise reversed many of these changes by downregulating the levels of hippocampal proteins functionally associated with energy metabolism (nucleoside diphosphate kinase B, enolase and triosephosphate isomerase) and synaptic plasticity (α-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere of rats subjected to maternal separation. Exercise and maternal separation therefore appeared to have opposing effects on the hippocampus in the non-lesioned hemisphere of the rat brain. Exercise seemed partly to reverse the

  19. The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy

    Directory of Open Access Journals (Sweden)

    Kuronen Mervi

    2005-04-01

    Full Text Available Abstract Background The neuronal ceroid lipofuscinoses (NCLs are a group of inherited neurodegenerative disorders characterized by accumulation of autofluorescent material in many tissues, especially in neurons. Mutations in the CLN8 gene, encoding an endoplasmic reticulum (ER transmembrane protein of unknown function, underlie NCL phenotypes in humans and mice. The human phenotype is characterized by epilepsy, progressive psychomotor deterioration and visual loss, while motor neuron degeneration (mnd mice with a Cln8 mutation show progressive motor neuron dysfunction and retinal degeneration. Results We investigated spatial and temporal expression of Cln8 messenger ribonucleic acid (mRNA using in situ hybridization, reverse transcriptase polymerase chain reaction (RT-PCR and northern blotting. Cln8 is ubiquitously expressed at low levels in embryonic and adult tissues. In prenatal embryos Cln8 is most prominently expressed in the developing gastrointestinal tract, dorsal root ganglia (DRG and brain. In postnatal brain the highest expression is in the cortex and hippocampus. Expression of Cln8 mRNA in the central nervous system (CNS was also analyzed in the hippocampal electrical kindling model of epilepsy, in which Cln8 expression was rapidly up-regulated in hippocampal pyramidal and granular neurons. Conclusion Expression of Cln8 in the developing and mature brain suggests roles for Cln8 in maturation, differentiation and supporting the survival of different neuronal populations. The relevance of Cln8 up-regulation in hippocampal neurons of kindled mice should be further explored.

  20. nNOS expression of hippocampal neurons in aged rats after brain ischemia/reperfusion and its role in DND development

    Institute of Scientific and Technical Information of China (English)

    杨传红; 赖晃文; 詹纯列; 肖育华; 郑文岭

    2002-01-01

    To study the role of neuronal nitric oxide synthase (nNOS) in aged rats' hippocampal delayed neuronal death (DND) following brain ischemia. Methods: Models of incomplete brain ischemia were induced by clipping common carotid artery. A total of 46 aged SD rats were divided into 8 groups: normal control group ( Group A, n = 5 ), sham-operation group ( Group B, n = 5), reperfusion 1, 6, 12, 24, 48, and 96 hours groups after brain ischemia for 30 minutes ( Group C, D,E, F, G, and H, n = 6/group). The expression of nNOS was examined by immunohistochemistry and neuronal ultrastructural changes were observed by the transmission electron microscopy (TEM) at different time points after reperfusion. Results: Immunohistochemistry showed that nNOS expression in the hippocampal neurons was high in Group E, iow expression in Group D, moderate expression in Group F and G. There was nearly no expression of nNOS in Group A, B, C, and H. UItrastructure of hippocampal neurons was damaged more severely in reperfusion over 24 hours groups. Conclusions: Nitric oxide (NO) may be one of the important factors in inducing DND after ischemia/reperfusion.

  1. A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor.

    Science.gov (United States)

    Wu, A; Molteni, R; Ying, Z; Gomez-Pinilla, F

    2003-01-01

    We have conducted studies to determine the potential of dietary factors to affect the capacity of the brain to compensate for insult. Rats were fed with a high-fat sucrose (HFS) diet, a popularly consumed diet in industrialized western societies, for 4 weeks before a mild fluid percussion injury (FPI) or sham surgery was performed. FPI impaired spatial learning capacity in the Morris water maze, and these effects were aggravated by previous exposure of the rats to the action of the HFS diet. Learning performance decreased according to levels of brain-derived neurotrophic factor (BDNF) in individual rats, such that rats with the worst learning efficacy showed the lowest levels of BDNF in the hippocampus. BDNF immunohistochemistry localized the decreases in BDNF to the CA3 and dentate gyrus of the hippocampal formation. BDNF has a strong effect on synaptic plasticity via the action of synapsin I and cAMP-response element-binding protein (CREB), therefore, we assessed changes in synapsin I and CREB in conjunction with BDNF. Levels of synapsin I and CREB decreased in relation to decreases in BDNF levels. The combination of FPI and the HFS diet had more dramatic effects on the active state (phosphorylated) of synapsin I and CREB. There were no signs of neurodegeneration in the hippocampus of any rat group assessed with Fluoro-Jade B staining. The results suggest that FPI and diet impose a risk factor to the molecular machinery in charge of maintaining neuronal function under homeostatic and challenging situations.

  2. Effects of aspirin plus alpha-tocopherol on brain slices damage after hypoxia-reoxygenation in rats with type 1-like diabetes mellitus.

    Science.gov (United States)

    González-Correa, J A; Arrebola, M M; Cansino, A L; Muñoz-Marín, J; Guerrero, A; Sánchez de la Cuesta, F; De la Cruz, J P

    2006-06-12

    Diabetes mellitus is a risk factor for cerebrovascular ischemic disease. Aspirin (acetylsalicylic acid) is the most widely used drug for the secondary prevention of thrombotic phenomena. It has been also recently demonstrated that alpha-tocopherol influenced in vitro the antiplatelet effect of aspirin. The aim of the present study is to evaluate the effects aspirin plus alpha-tocopherol on cerebral oxidative stress, prostaglandin production and the nitric oxide pathway in a model of hypoxia-reoxygenation in rat brain slices. Our results show an imbalance in brain oxidative status (reflected mainly as the increase in lipid peroxides) as a result of diabetes itself rather than a failure of the glutathione-based antioxidant system. Moreover, our results also show a higher concentration of prostaglandins in the brain of diabetic animals and a higher nitric oxide concentration, mainly through a high iNOS activity. After 180 min of post-hypoxia reoxygenation, LDH activity was 40.6% higher in animals with diabetes, in comparison to non-diabetic animals. The increase of the LDH efflux observed in non-treated rats was reduced by 31.2% with aspirin, by 34.7% with alpha-tocopherol and by 69.8% with the association aspirin-alpha-tocopherol. The accumulation of prostaglandin E2 observed in diabetic non-treated rats was reduced statistically after the treatment with aspirin (34.2% inhibition), alpha-tocopherol (19.3% inhibition) or the association aspirin-alpha-tocopherol (54.4% inhibition). Nitric oxide production after 180 min reoxygenation was significantly reduced in aspirin (36.4%), alpha-tocopherol (22.7%) and aspirin-alpha-tocopherol (77.8%) treated rats with respect to diabetic non-treated animals; this was related mainly with a reduction in iNOS activity. The association between aspirin and alpha tocopherol could protects against brain ischemic-reperfusion damage with a better profile than aspirin alone.

  3. Novel human ABCC9/SUR2 brain-expressed transcripts and an eQTL relevant to hippocampal sclerosis of aging.

    Science.gov (United States)

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Wei, Angela; Dimayuga, James; Huang, Qingwei; Ighodaro, Eseosa; Artiushin, Sergey; Fardo, David W

    2015-09-01

    ABCC9 genetic polymorphisms are associated with increased risk for various human diseases including hippocampal sclerosis of aging. The main goals of this study were 1 > to detect the ABCC9 variants and define the specific 3' untranslated region (3'UTR) for each variant in human brain, and 2 > to determine whether a polymorphism (rs704180) associated with risk for hippocampal sclerosis of aging pathology is also associated with variation in ABCC9 transcript expression and/or splicing. Rapid amplification of ABCC9 cDNA ends (3'RACE) provided evidence of novel 3' UTR portions of ABCC9 in human brain. In silico and experimental studies were performed focusing on the single nucleotide polymorphism, rs704180. Analyses from multiple databases, focusing on rs704180 only, indicated that this risk allele is a local expression quantitative trait locus (eQTL). Analyses of RNA from human brains showed increased ABCC9 transcript levels in individuals with the risk genotype, corresponding with enrichment for a shorter 3' UTR which may be more stable than variants with the longer 3' UTR. MicroRNA transfection experiments yielded results compatible with the hypothesis that miR-30c causes down-regulation of SUR2 transcripts with the longer 3' UTR. Thus we report evidence of complex ABCC9 genetic regulation in brain, which may be of direct relevance to human disease. ABCC9 gene variants are associated with increased risk for hippocampal sclerosis of aging (HS-Aging--a prevalent brain disease with symptoms that mimic Alzheimer's disease). We describe novel ABCC9 variants in human brain, corresponding to altered 3'UTR length, which could lead to targeting by miR-30c. We also determined that the HS-Aging risk mutation is associated with variation in ABCC9 transcript expression.

  4. Time-lapse Confocal Imaging of Migrating Neurons in Organotypic Slice Culture of Embryonic Mouse Brain Using In Utero Electroporation.

    Science.gov (United States)

    Wiegreffe, Christoph; Feldmann, Svenja; Gaessler, Simeon; Britsch, Stefan

    2017-07-25

    In utero electroporation is a rapid and powerful approach to study the process of radial migration in the cerebral cortex of developing mouse embryos. It has helped to describe the different steps of radial migration and characterize the molecular mechanisms controlling this process. To directly and dynamically analyze migrating neurons they have to be traced over time. This protocol describes a workflow that combines in utero electroporation with organotypic slice culture and time-lapse confocal imaging, which allows for a direct examination and dynamic analysis of radially migrating cortical neurons. Furthermore, detailed characterization of migrating neurons, such as migration speed, speed profiles, as well as radial orientation changes, is possible. The method can easily be adapted to perform functional analyses of genes of interest in radially migrating cortical neurons by loss and gain of function as well as rescue experiments. Time-lapse imaging of migrating neurons is a state-of-the-art technique that once established is a potent tool to study the development of the cerebral cortex in mouse models of neuronal migration disorders.

  5. Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro.

    Science.gov (United States)

    Paré, D; deCurtis, M; Llinás, R

    1992-05-01

    This article introduces a new experimental paradigm for the study of temporal lobe epilepsy. This approach utilizes the isolated guinea pig brain in vitro preparation, which generates a pattern of hypersynchronous neuronal activity similar to the peculiar 8-30 Hz rhythm characterizing stereoelectroencephalographic hippocampal recordings in human temporal lobe epilepsy. The present report describes an attempt to identify the functional events underlying the epileptiform activities observed in this preparation. Rhythmic epileptiform discharges (EDs), here defined as population spikes (PSs) recorded from somata or dendritic layers, were induced in the hippocampal formation of the isolated guinea pig brain maintained in vitro by tetanic stimulation of the entorhinal cortex (EC). Two patterns of EDs were distinguished by performing simultaneous field potential recordings along the dentate gyrus (DG), EC, CA1, and CA3. During stage 1, the first self-sustained EDs were isolated PSs occurring at a frequency of 2-3 Hz at all levels of the entorhinal-hippocampal loop, the only exception being the DG, where no signs of synchronized neuronal discharge could be found. Over the next 30-50 sec, the temporal organization of these EDs changed dramatically. During stage 2, at all levels of the entorhinal-hippocampal loop, EDs occurred in 0.3-0.5 sec trains of 16-25 Hz population spikes interrupted by 0.7-1.3 sec silent periods. The transition between stages 1 and 2 coincided with the occurrence of population spikes in the DG. Laminar analyses and multiple simultaneous field potential recordings revealed that the trains of EDs observed in stage 2 resulted from the repetitive, sequential activation of the hippocampal-entorhinal loop. In the transverse axis, the earliest event usually occurred in the CA3 region. Thereafter, population spikes occurred sequentially in the CA1 region, EC, DG, and back to the CA3 region. Intracellular recordings confirmed that the EDs recorded

  6. Effects of ginsenoside on brain-derived neurotrophic factor and tyrosine kinase B mRNA expression in the hippocampal formation of aged rats

    Institute of Scientific and Technical Information of China (English)

    Hong Lai; Wensu Liu; Zhaosheng Li; Haihua Zhao; Yongli Lü

    2008-01-01

    BACKGROUND:There are a limited number of studies involving the effects of ginsenosides,the active component of ginseng,on expression of hippocampal TrkB mRNA in aged rats.OBJECTIVE:To observe expression of brain-derived neurotrophic factor(BDNF) and tyrosine kinase B (TrkB)mRNA in the hippocampal formation of aged rats,as well as changes after ginsenoside administrated.DESIGN,TIME AND SETTING:A randomized,controlled experiment was performed at the Department of Anatomy,College of Basic Medical Sciences,China Medical University in March 2005.MATERIALS:A total of 39 female,Wistar rats were randomly divided into 3 groups (n=13 each):young (3-5 months old),aged(27 months old),and ginsenoside group(received 25mg/kg/d ginsenoside in the drinking water between 17 and 27 months of age).METHODS:Following anesthesia,the rats were exsanguinated and perfused transcardially with chilled,heparinized,0.9% saline.The brains were removed and post-fixed in 40 g/L paraformaldehyde/phosphate buffer for 20 minutes,and further incubated in 30% sucrose/phosphate buffer overnight.MAIN OUTCOME MEASURES:In situ hybridization,immunohistochemistry,and image analysis were used to investigate expression of BDNF and Trk(B mRNA in the hippocampal formation.RESULTS:The expression levels of BDNF in the hippocampal CA3 and CA1 of aged rats was significantly less than the young group(t=2.879,1.814,1.984,P<0.05).BDNF expression was significantly greater in the dentate gyrus of the ginsenoside group,compared with the aging group(t=1.943,P<0.01).The expression of TrkB mRNA in the hippocampal CA3,CA1,and dentate gyrus of aged rats was less than the young group(t=3.540,3.629,17.905,P<0.01).TrkB mRNA expression in the CA3 region and dentate gyrus of the ginsenoside group was significantly greater compared with the aging group(t=1.293,3.386,P<0.05.0.01).CONCLUSION:BDNF and TrkB mRNA expression in the hippocampal formation were reduced in the aged group.However,ginsenosides can increase BDNF and TrkB m

  7. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane

    The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings...

  8. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor.

    Science.gov (United States)

    Rendeiro, Catarina; Vauzour, David; Rattray, Marcus; Waffo-Téguo, Pierre; Mérillon, Jean Michel; Butler, Laurie T; Williams, Claire M; Spencer, Jeremy P E

    2013-01-01

    Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, pmemory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

  9. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Catarina Rendeiro

    Full Text Available Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w, results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively, to a similar extent to that following blueberry supplementation (p = 0.002. These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01, suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

  10. Brain-derived neurotrophic factor Val66Met polymorphism and hippocampal activation during episodic encoding and retrieval tasks

    Science.gov (United States)

    Dennis, Nancy A.; Cabeza, Roberto; Need, Anna C.; Waters-Metenier, Sheena; Goldstein, David B.; LaBar, Kevin S.

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin which has been shown to regulate cell survival and proliferation, as well as synaptic growth and hippocampal long-term potentiation. A naturally occurring single nucleotide polymorphism in the human BDNF gene (val66met) has been associated with altered intercellular trafficking and regulated secretion of BDNF in met compared to val carriers. Additionally, previous studies have found a relationship between the BDNF val66met genotype and functional activity in the hippocampus during episodic and working memory tasks in healthy young adults. Specifically, studies have found that met carriers exhibit both poorer performance and reduced neural activity within the medial temporal lobe (MTL) when performing episodic memory tasks. However, these studies have not been well replicated and have not considered the role of behavioral differences in the interpretation of neural differences. The current study sought to control for cognitive performance in investigating the role of the BDNF val66met genotype on neural activity associated with episodic memory. Across item and relational memory tests, met carriers exhibited increased MTL activation during both encoding and retrieval stages, compared to non-carriers. The results suggest that met carriers are able to recruit MTL activity to support successful memory processes, and reductions in cognitive performance observed in prior studies are not a ubiquitous effect associated with variants of the BDNF val66met genotype. PMID:20865733

  11. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.

    Science.gov (United States)

    Clarke, G; Grenham, S; Scully, P; Fitzgerald, P; Moloney, R D; Shanahan, F; Dinan, T G; Cryan, J F

    2013-06-01

    Bacterial colonisation of the intestine has a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Regulation of the microbiome-gut-brain axis is essential for maintaining homeostasis, including that of the CNS. However, there is a paucity of data pertaining to the influence of microbiome on the serotonergic system. Germ-free (GF) animals represent an effective preclinical tool to investigate such phenomena. Here we show that male GF animals have a significant elevation in the hippocampal concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, its main metabolite, compared with conventionally colonised control animals. Moreover, this alteration is sex specific in contrast with the immunological and neuroendocrine effects which are evident in both sexes. Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which the microbiota can influence CNS serotonergic neurotransmission. Interestingly, colonisation of the GF animals post weaning is insufficient to reverse the CNS neurochemical consequences in adulthood of an absent microbiota in early life despite the peripheral availability of tryptophan being restored to baseline values. In addition, reduced anxiety in GF animals is also normalised following restoration of the intestinal microbiota. These results demonstrate that CNS neurotransmission can be profoundly disturbed by the absence of a normal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.

  12. The inflammatory molecules IL-1β and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Angela eChiavegato

    2014-06-01

    Full Text Available Epilepsy is a neurological disorder characterized by a hyperexcitable brain tissue and unpredictable seizures, i.e., aberrant firing discharges in large neuronal populations. It is well established that proinflammatory cytokines, in addition to their canonical involvement in the immune response, have a crucial role in the mechanism of seizure generation. The purpose of the present study was to investigate the role of interleukin-1β (IL-1β and high mobility group B1 (HMGB1 in the generation of seizure-like discharges using two models of focal epilepsy in a rat entorhinal cortex slice preparation. Seizure like-discharges were evoked by either slice perfusion with low Mg2+ and picrotoxin or with a double NMDA local stimulation in the presence of the proconvulsant 4-amino-pyridine. The effects of IL-1β or HMGB1 were evaluated by monitoring seizure discharge generation through laser scanning microscope imaging of Ca2+ signals from neurons and astrocytes. In the picrotoxin model, we revealed that both cytokines increased the mean frequency of spontaneous ictal-like discharges, whereas only IL-1β reduced the latency and prolonged the duration of the first ictal-like event. In the second model, a single NMDA pulse, per se ineffective, became successful when it was performed after IL-β or HMGB1 local applications. These findings demonstrate that both IL-1β and HMGB1 can rapidly lower focal ictal event threshold and strengthen the possibility that targeting these inflammatory pathways may represent an effective therapeutic strategy to prevent seizures.

  13. Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons.

    Science.gov (United States)

    Fernandes, Catarina C; Pinto-Duarte, António; Ribeiro, Joaquim Alexandre; Sebastião, Ana M

    2008-05-21

    Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory and constitute a significant therapeutic target for many neurodegenerative, neurological, and psychiatric disorders. Here, we report that brain-derived neurotrophic factor (BDNF) (1-100 ng/ml), a member of the neurotrophin gene family, rapidly decreases alpha7 nicotinic acetylcholine receptor responses in interneurons of the hippocampal CA1 stratum radiatum. Such effect is dependent on the activation of the TrkB receptor and involves the actin cytoskeleton; noteworthy, it is compromised when the extracellular levels of the endogenous neuromodulator adenosine are reduced with adenosine deaminase (1 U/ml) or when adenosine A(2A) receptors are blocked with SCH 58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine) (100 nm). The intracellular application of U73122 (1-[6[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (5 mum), a broad-spectrum inhibitor of phospholipase C, or GF 109203X (bisindolylmaleimide I) (2 mum), a general inhibitor of protein kinase C isoforms, blocks BDNF-induced inhibition of alpha7 nicotinic acetylcholine receptor function. Moreover, in conditions of simultaneous intracellular dialysis of the fast Ca(2+) chelator BAPTA (10 mm) and removal of extracellular Ca(2+) ions, the inhibitory action of BDNF is further prevented. The present findings disclose a novel target for rapid actions of BDNF that might play important roles on synaptic transmission and plasticity in the brain.

  14. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior.

    Science.gov (United States)

    Potter, Michelle C; Elmer, Greg I; Bergeron, Richard; Albuquerque, Edson X; Guidetti, Paolo; Wu, Hui-Qiu; Schwarcz, Robert

    2010-07-01

    At endogenous brain concentrations, the astrocyte-derived metabolite kynurenic acid (KYNA) antagonizes the alpha 7 nicotinic acetylcholine receptor and, possibly, the glycine co-agonist site of the NMDA receptor. The functions of these two receptors, which are intimately involved in synaptic plasticity and cognitive processes, may, therefore, be enhanced by reductions in brain KYNA levels. This concept was tested in mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of brain KYNA. At 21 days of age, KAT II knock-out mice had reduced hippocampal KYNA levels (-71%) and showed significantly increased performance in three cognitive paradigms that rely in part on the integrity of hippocampal function, namely object exploration and recognition, passive avoidance, and spatial discrimination. Moreover, compared with wild-type controls, hippocampal slices from KAT II-deficient mice showed a significant increase in the amplitude of long-term potentiation in vitro. These functional changes were accompanied by reduced extracellular KYNA (-66%) and increased extracellular glutamate (+51%) concentrations, measured by hippocampal microdialysis in vivo. Taken together, a picture emerges in which a reduction in the astrocytic formation of KYNA increases glutamatergic tone in the hippocampus and enhances cognitive abilities and synaptic plasticity. Our studies raise the prospect that interventions aimed specifically at reducing KYNA formation in the brain may constitute a promising molecular strategy for cognitive improvement in health and disease.

  15. Inflammasome-IL-1β signaling mediates ethanol inhibition of hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Fulton eCrews

    2012-05-01

    Full Text Available AbstractRegulation of hippocampal neurogenesis is poorly understood, but appears to contribute to mood and cognition. Ethanol and neuroinflammation are known to reduce neurogenesis. We have found that ethanol induces neuroinflammation supporting the hypothesis that ethanol induction of neuroinflammation contributes to ethanol inhibition of neurogenesis. To identify the key proinflammatory molecule that may be responsible for ethanol-impaired neurogenesis we used an ex vivo model of organotypic hippocampal-entorhinal cortex (HEC brain slice cultures. Here, we demonstrated a key role of proinflammatory cytokine IL-1β signaling in mediating ethanol inhibition of neurogenesis. Ethanol inhibition of neurogenesis was reversed by neutralizing antibody to IL-1β or blockade of the IL-1β receptor with antagonist IL-1RIa. Ethanol-impaired neurogenesis is associated with strong induction of IL-1β and inflammasome proteins NALP1 and NALP3 in both neurons and astrocytes. Blockade of IL-1β synthesis with inflammasome inhibitors Parthenolide and Bay11708 significantly reversed ethanol inhibited neurogenesis. Furthermore, we also found that IL-1β and inflammasome proteins NALP1 and NALP3 are increased in hippocampal neurons and astrocytes in postmortem alcoholic human brain. Together, these novel findings demonstrate that targeting inflammasome-IL-1β signaling can normalize ethanol-impaired hippocampal neurogenesis, which may have therapeutic implications for treatment of cognitive impairment associated with hippocampal dysfunction in alcoholics.

  16. c-fos modulates brain-derived neurotrophic factor mRNA expression in mouse hippocampal CA3 and dentate gyrus neurons.

    Science.gov (United States)

    Dong, Mei; Wu, Yongfei; Fan, Yunxia; Xu, Ming; Zhang, Jianhua

    2006-05-29

    Excess neuronal excitation by glutamate induces neuron cell death, which may contribute to the pathogenesis of acute brain injuries and neurodegenerative diseases. Our previous studies using a mouse with hippocampal c-fos gene deletion showed that c-fos regulates neuronal excitability and excitotoxicity. Moreover, a delayed induction of brain-derived neurotrophic factor (BDNF) protein expression in response to kainic acid (KA) treatment was found in c-fos mutant mice compared to wildtype controls, suggesting that c-fos is important in the temporal control of BDNF induction. To further investigate mechanisms of in vivo regulation of c-fos on BDNF expression, we studied the expression of BDNF mRNA and its colocalization with c-Fos protein in the hippocampal formation in the presence and absence of KA. By in situ hybridization, we observed that the c-fos mutant and wildtype mice exhibited similar basal expression of BDNF in the absence of KA. In contrast, the KA-induced BDNF mRNA levels were significantly different in wildtype and c-fos mutant mice in CA3 and dentate gyrus regions. Our findings indicate that c-fos regulates expression of BDNF in distinct neuron populations of the hippocampal formation in vivo.

  17. Various ketogenic diets can differently support brain resistance against experimentally evoked seizures and seizure-induced elemental anomalies of hippocampal formation.

    Science.gov (United States)

    Chwiej, J; Patulska, A; Skoczen, A; Matusiak, K; Janeczko, K; Ciarach, M; Simon, R; Setkowicz, Z

    2017-07-01

    In this paper the influence of two different ketogenic diets (KDs) on the seizure-evoked elemental anomalies of hippocampal formation was examined. To achieve this purpose normal and pilocarpine treated rats previously fed with one of the two high fat and carbohydrate restricted diets were compared with animals on standard laboratory diet. The ketogenic ratios of the examined KDs were equal to 5:1 (KD1) and 9:1 (KD2). KD1 and standard diet fed animals presented similar patterns of seizure-evoked elemental changes in hippocampal formation. Also the analysis of behavioral data recorded after pilocarpine injection did not show any significant differences in intensity and duration of seizures between KD1 and standard diet fed animals. Higher ketogenic ratio KD2 introduced in the normal hippocampal formation prolonged changes in the accumulation of P, K, Zn and Ca. Despite this, both the intensity and duration of seizures were significantly reduced in rats fed with KD2 which suggests that its saving action on the nerve tissue may protect brain from seizure propagation. Also seizure-evoked elemental anomalies in KD2 animals were different than those observed for rats both on KD1 and standard diets. The comparison of seizure experiencing and normal rats on KD2, did not show any statistically significant differences in elemental composition of CA1 and H hippocampal areas whilst in CA3 area only Zn level changed as a result of seizures. DG was the area mostly affected by seizures in KD2 fed rats but areal densities of all examined elements increased in this hippocampal region. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Quantitative evaluation of benign meningioma and hemangiopericytoma with peritumoral brain edema by 64-slice CT perfusion imaging

    Institute of Scientific and Technical Information of China (English)

    REN Guang; CHEN Shuang; WANG Yin; ZHU Rui-jiang; GENG Dao-ying; FENG Xiao-yuan

    2010-01-01

    Background Hemangiopericytomas (HPCs) have a relentless tendency for local recurrence and metastases,differentiating between benign meningiomas and HPCs before surgery is important for both treatment planning and the prognosis appraisal.The purpose of this study was to evaluate the correlations between CT perfusion parameters and microvessel density (MVD) in extra-axial tumors and the possible role of CT perfusion imaging in preoperatively differentiating benign meningiomas and HPCs.Methods Seventeen patients with benign meningiomas and peritumoral edema, 12 patients with HPCs and peritumoral edema underwent 64-slice CT perfusion imaging pre-operation.Perfusion was calculated using the Patlak method.The quantitative parameters, include cerebral blood volume (CBV), permeability surface (PS) of parenchyma, peritumoral edema among benign meningiomas and HPCs were compared respectively.CBV and PS in parenchyma, peritumoral edema of benign meningiomas and HPCs were also compared to that of the contrallateral normal white matter respectively.The correlations between CBV, PS of tumoral parenchyma and MVD were examined.Results The value of CBV and PS in parenchyma of HPCs were significantly higher than that of benign meningiomas (P<0.05), while the values of CBV and PS in peritumoral edema of benign meningiomas and HPCs were not significantly different (P >0.05).MVD in parenchyma of HPCs were significantly higher than that of benign meningiomas (P<0.05).There were positive correlations between CBV and MVD (r=0.648, P<0.05), PS and MVD (r=0.541, P<0.05) respectively.Furthermore, the value of CBV and PS in parenchyma of benign meningiomas and HPCs were significantly higher than that of contrallateral normal white matter (P<0.05), the value of CBV in peritumoral edema of benign meningiomas and HPCs were significantly lower than that of contrallateral normal white matter (P<0.05), while the value of PS in peritumoral edema of benign meningiomas and HPCs were not

  19. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts.

    Science.gov (United States)

    Todd, Nick; Moeller, Steen; Auerbach, Edward J; Yacoub, Essa; Flandin, Guillaume; Weiskopf, Nikolaus

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies that require high-resolution whole-brain coverage have long scan times that are primarily driven by the large number of thin slices acquired. Two-dimensional multiband echo-planar imaging (EPI) sequences accelerate the data acquisition along the slice direction and therefore represent an attractive approach to such studies by improving the temporal resolution without sacrificing spatial resolution. In this work, a 2D multiband EPI sequence was optimized for 1.5mm isotropic whole-brain acquisitions at 3T with 10 healthy volunteers imaged while performing simultaneous visual and motor tasks. The performance of the sequence was evaluated in terms of BOLD sensitivity and false-positive activation at multiband (MB) factors of 1, 2, 4, and 6, combined with in-plane GRAPPA acceleration of 2× (GRAPPA 2), and the two reconstruction approaches of Slice-GRAPPA and Split Slice-GRAPPA. Sensitivity results demonstrate significant gains in temporal signal-to-noise ratio (tSNR) and t-score statistics for MB 2, 4, and 6 compared to MB 1. The MB factor for optimal sensitivity varied depending on anatomical location and reconstruction method. When using Slice-GRAPPA reconstruction, evidence of false-positive activation due to signal leakage between simultaneously excited slices was seen in one instance, 35 instances, and 70 instances over the ten volunteers for the respective accelerations of MB 2×GRAPPA 2, MB 4×GRAPPA 2, and MB 6×GRAPPA 2. The use of Split Slice-GRAPPA reconstruction suppressed the prevalence of false positives significantly, to 1 instance, 5 instances, and 5 instances for the same respective acceleration factors. Imaging protocols using an acceleration factor of MB 2×GRAPPA 2 can be confidently used for high-resolution whole-brain imaging to improve BOLD sensitivity with very low probability for false-positive activation due to slice leakage. Imaging protocols using higher acceleration factors (MB 3 or MB 4

  20. Effective connectivity of hippocampal neural network and its alteration in Mg2+-free epilepsy model.

    Science.gov (United States)

    Gong, Xin-Wei; Li, Jing-Bo; Lu, Qin-Chi; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-01-01

    Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.

  1. 3D surface analysis of hippocampal microvasculature in the irradiated brain.

    Science.gov (United States)

    Craver, Brianna M; Acharya, Munjal M; Allen, Barrett D; Benke, Sarah N; Hultgren, Nan W; Baulch, Janet E; Limoli, Charles L

    2016-06-01

    Cranial irradiation used to control CNS malignancies can also disrupt the vasculature and impair neurotransmission and cognition. Here we describe two distinct methodologies for quantifying early and late radiation injury in CNS microvasculature. Intravascular fluorescently labeled lectin was used to visualize microvessels in the brain of the irradiated mouse 2 days post exposure and RECA-1 immunostaining was similarly used to visualize microvessels in the brain of the irradiated rat 1-month post exposure. Confocal microscopy, image deconvolution and 3-dimensional rendering methods were used to define vascular structure in a ∼4 × 10(7) μm(3) defined region of the brain. Quantitative analysis of these 3D images revealed that irradiation caused significant short- and long-term reductions in capillary density, diameter and volume. In mice, irradiation reduced mean vessel volume from 2,250 to 1,470 μm(3) and mean vessel diameter from 5.0 to 4.5 μm, resulting in significant reductions of 34% and 10%, in the hippocampus respectively. The number of vessel branch points and area was also found to also drop significantly in mice 2 days after irradiation. For rats, immunostaining revealed a significant, three-fold drop in capillary density 1 month after exposure compared to controls. Such radiation-induced disruption of the CNS microvasculature may be contributory if not causal to any number of neurocognitive side effects that manifest in cancer patients following cranial radiotherapy. This study demonstrates the utility of two distinct methodologies for quantifying these important adverse effects of radiotherapy. Environ. Mol. Mutagen. 57:341-349, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye, E-mail: dryetian@hotmail.com

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  3. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway.

    Science.gov (United States)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague-Dawley rats received a single dose of 20Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF-pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF-pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.

  4. Ketamine prevents lidocaine-caused neurotoxicity in the CA3 hippocampal and basolateral amygdala regions of the brain in adult rats.

    Science.gov (United States)

    Lopez-Galindo, Gabriel Eduardo; Cano-Europa, Edgar; Ortiz-Butron, Rocio

    2008-01-01

    Our objective was to prove whether blocking the action of glutamate on N-methyl-D: -aspartate (NMDA) receptors could prevent the neuronal damage caused by the acute administration of lidocaine. Twenty male 2-month-old Wistar rats were randomly assigned to the following groups (n = 5 in each group): groups I and II received 0.9% saline i.p., and groups III and IV received 100 mg x kg(-1) of ketamine i.p. Thirty minutes later, groups I and III were again dosed with 0.9% saline i.p., and groups II and IV received 60 mg x kg(-1) of lidocaine i.p. During treatment, the rectal temperature of the animals was monitored and maintained at 37.5 +/- 0.5 degrees C. Ten days after administration of the agents, all rats were transcardially perfused, under pentobarbital anesthesia, with 10% formaldehyde. Their brains were removed and were embedded in paraffin. Coronal cuts of 7 microm were obtained from -2.3 to -3.8 mm from the bregma. Each brain section was stained with cresyl violet-eosin. The number of normal and abnormal pyramidal neurons in the CA3 hippocampal region and the number of large and medium neurons in the basolateral amygdala within an area of 10 000 microm2 were evaluated. We found that lidocaine significantly reduced the number of normal neurons in both the CA3 hippocampal region (F (3,16) = 225.8; P lidocaine-induced damage in the CA3 hippocampal region and the basolateral amygdala. These results demonstrate the participation of NMDA-receptor activation by lidocaine in the CA3 hippocampal and basolateral amygdala regions as a neurotoxic mechanism.

  5. Early and sustained increase in the expression of hippocampal IGF-1, but not EPO, in a developmental rodent model of traumatic brain injury.

    Science.gov (United States)

    Schober, Michelle E; Block, Benjamin; Beachy, Joanna C; Statler, Kimberly D; Giza, Christopher C; Lane, Robert H

    2010-11-01

    Pediatric traumatic brain injury (pTBI) is the leading cause of traumatic death and disability in children in the United States. Impaired learning and memory in these young survivors imposes a heavy toll on society. In adult TBI (aTBI) models, cognitive outcome improved after administration of erythropoietin (EPO) or insulin-like growth factor-1 (IGF-1). Little is known about the production of these agents in the hippocampus, a brain region critical for learning and memory, after pTBI. Our objective was to describe hippocampal expression of EPO and IGF-1, together with their receptors (EPOR and IGF-1R, respectively), over time after pTBI in 17-day-old rats. We used the controlled cortical impact (CCI) model and measured hippocampal mRNA levels of EPO, IGF-1, EPOR, IGF-1R, and markers of caspase-dependent apoptosis (bcl2, bax, and p53) at post-injury days (PID) 1, 2, 3, 7, and 14. CCI rats performed poorly on Morris water maze testing of spatial working memory, a hippocampally-based cognitive function. Apoptotic markers were present early and persisted for the duration of the study. EPO in our pTBI model increased much later (PID7) than in aTBI models (12 h), while EPOR and IGF-1 increased at PID1 and PID2, respectively, similar to data from aTBI models. Our data indicate that EPO expression showed a delayed upregulation post-pTBI, while EPOR increased early. We speculate that administration of EPO in the first 1-2 days after pTBI would increase hippocampal neuronal survival and function.

  6. Involvement of striatal lipid peroxidation and inhibition of calcium influx into brain slices in neurobehavioral alterations in a rat model of short-term oral exposure to manganese.

    Science.gov (United States)

    Avila, Daiana Silva; Gubert, Priscila; Fachinetto, Roselei; Wagner, Caroline; Aschner, Michael; Rocha, João Batista Teixeira; Soares, Félix Alexandre Antunes

    2008-11-01

    Manganese is an essential element for biological systems, nevertheless occupational exposure to high levels of Mn can lead to neurodegenerative disorder, characterized by excessive Mn accumulation, especially in astrocytes of basal ganglia and symptoms closely resembling idiopathic Parkinson's disease (PD). The purpose of this study was to evaluate behavioral and biochemical alterations in adult rats exposed for 30 days to 10 and 25mg/mL of MnCl(2) in their drinking water. MnCl(2) intoxicated rats showed impaired locomotor activity in comparison to control animals. Furthermore, lipid peroxidation were increased, delta-aminolevulinate dehydratase (delta-ALA-D, an enzyme sensitive to pro-oxidant situations) activity was inhibited and (45)Ca(2+) influx into striatal slices was decreased in rats exposed to 25mg/mL of Mn, indicating that this brain region was markedly affected by short-term Mn exposure. In contrast, Mn exposure was not associated with characteristic extrapyramidal effects and did not modify protein oxidation, suggesting that the striatal damage represents early stages of Mn-induced damage. In addition, treatment with Mn was associated with reduced body weight gain, but there were no discernible alterations in liver and kidney function. In conclusion, Mn caused increased oxidative stress and decreased (45)Ca(2+) influx into the striatum, which are likely linked to impaired locomotor activity, but not with the occurrence of orofacial dyskinesia.

  7. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    Science.gov (United States)

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  8. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Christian Bonansco

    2016-01-01

    Full Text Available Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  9. Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice

    Directory of Open Access Journals (Sweden)

    June Zhou

    2017-09-01

    Full Text Available Traumatic brain injury (TBI causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group underwent sham or unilateral controlled cortical impact (CCI injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1 mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK 1, pyruvate kinase, and pyruvate dehydrogenase (PDH] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2 capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3 astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4 HK2 (an isoform of hexokinase expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific

  10. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    Science.gov (United States)

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Stimulant mechanisms of cathinones - effects of mephedrone and other cathinones on basal and electrically evoked dopamine efflux in rat accumbens brain slices.

    Science.gov (United States)

    Opacka-Juffry, Jolanta; Pinnell, Thomas; Patel, Nisha; Bevan, Melissa; Meintel, Meghan; Davidson, Colin

    2014-10-01

    Mephedrone, an erstwhile "legal high", and some non-abused cathinones (ethcathinone, diethylpropion and bupropion) were tested for stimulant effects in vitro, through assessing their abilities to increase basal and electrically evoked dopamine efflux in rat accumbens brain slices, and compared with cocaine and amphetamine. We also tested mephedrone against cocaine in a dopamine transporter binding study. Dopamine efflux was electrically evoked and recorded using voltammetry in the rat accumbens core. We constructed concentration response curves for these cathinones for effects on basal dopamine levels; peak efflux after local electrical stimulation and the time-constant of the dopamine decay phase, an index of dopamine reuptake. We also examined competition between mephedrone or cocaine and [(125)I]RTI121 at the dopamine transporter. Mephedrone was less potent than cocaine at displacing [(125)I]RTI121. Mephedrone and amphetamine increased basal levels of dopamine in the absence of electrical stimulation. Cocaine, bupropion, diethylpropion and ethcathinone all increased the peak dopamine efflux after electrical stimulation and slowed dopamine reuptake. Cocaine was more potent than bupropion and ethcathinone, while diethylpropion was least potent. Notably, cocaine had the fastest onset of action. These data suggest that, with respect to dopamine efflux, mephedrone is more similar to amphetamine than cocaine. These findings also show that cocaine was more potent than bupropion and ethcathinone while diethylpropion was least potent. Mephedrone's binding to the dopamine transporter is consistent with stimulant effects but its potency was lower than that of cocaine. These findings confirm and further characterize stimulant properties of mephedrone and other cathinones in adolescent rat brain.

  12. Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures.

    Science.gov (United States)

    Feiner, John R; Bickler, Philip E; Estrada, Sergio; Donohoe, Paul H; Fahlman, Christian S; Schuyler, Jennifer A

    2005-01-01

    The neuroprotective potency of anesthetics such as propofol compared to mild hypothermia remains undefined. Therefore, we determined whether propofol at two clinically relevant concentrations is as effective as mild hypothermia in preventing delayed neuron death in hippocampal slice cultures (HSC). Survival of neurons was assessed 2 and 3 days after 1 h oxygen and glucose deprivation (OGD) either at 37 degrees C (with or without 10 or 100 microM propofol) or at an average temperature of 35 degrees C during OGD (mild hypothermia). Cell death in CA1, CA3, and dentate neurons in each slice was measured with propidium iodide fluorescence. Mild hypothermia eliminated death in CA1, CA3, and dentate neurons but propofol protected dentate neurons only at a concentration of 10 microM; the more ischemia vulnerable CA1 and CA3 neurons were not protected by either 10 microM or 100 microM propofol. In slice cultures, the toxicity of 100 muM N-methyl-D-aspartate (NMDA), 500 microM glutamate, and 20 microM alpha-amino-5-methyl-4-isoxazole propionic acid (AMPA) was not reduced by 100 microM propofol. Because propofol neuroprotection may involve gamma-aminobutyric acid (GABA)-mediated indirect inhibition of glutamate receptors (GluRs), the effects of propofol on GluR activity (calcium influx induced by GluR agonists) were studied in CA1 neurons in HSC, in isolated CA1 neurons, and in cortical brain slices. Propofol (100 and 200 microM, approximate burst suppression concentrations) decreased glutamate-mediated [Ca2+]i increases (Delta[Ca2+]i) responses by 25%-35% in isolated CA1 neurons and reduced glutamate and NMDA Delta[Ca2+]i in acute and cultured hippocampal slices by 35%-50%. In both CA1 neurons and cortical slices, blocking GABAA receptors with picrotoxin reduced the inhibition of GluRs substantially. We conclude that mild hypothermia, but not propofol, protects CA1 and CA3 neurons in hippocampal slice cultures subjected to oxygen and glucose deprivation. Propofol was not

  13. Hippocampal Excitability Increases during the Estrous Cycle in the Rat: A Potential Role for Brain-Derived Neurotrophic Factor

    OpenAIRE

    SCHARFMAN, HELEN E.; Mercurio, Thomas C.; Goodman, Jeffrey H.; Wilson, Marlene A.; MacLusky, Neil J.

    2003-01-01

    To test the hypothesis that induction of BDNF may contribute to changes in hippocampal excitability occurring during the female reproductive cycle, we examined the distribution of BDNF immunoreactivity and changes in CA1 and CA3 electrophysiology across the estrous cycle in rats. Hippocampal BDNF immunoreactivity increased on the day of proestrus as well as on the following morning (estrus), relative to metestrus or ovariectomized animals. Changes in immunoreactivity were clearest in mossy fi...

  14. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.

    Science.gov (United States)

    Morris, P G; Feeney, J; Cox, D W; Bachelard, H S

    1985-05-01

    The technique of 31P saturation-transfer n.m.r. was used to determine the forward and the reverse rate constants of creatine phosphotransferase in superfused guinea-pig cerebral tissues in vitro. The calculated forward rate constant of 0.22 +/- 0.03s-1 compared well with a previously reported value for rat brain in vivo [Shoubridge, Briggs & Radda (1982) FEBS Lett. 140, 288-292]. The reverse rate constant was found to be 0.55 +/- 0.10s-1. 3. By using concentrations of ATP and phosphocreatine estimated previously for this superfused preparation [Cox, Morris, Feeney & Bachelard (1983) Biochem. J. 212, 365-370], forward and reverse flux rates were calculated to be 0.68 and 0.72 mumol X s-1 X g-1 respectively. The concordance of forward and reverse fluxes contrasts with the situation observed in vitro in other tissues, and suggests that the creatine phosphotransferase reaction is at equilibrium under the conditions used here. 4. Lowering the concentration of glucose in the superfusing medium from 10mM to 0.5mM had no significant effect on phosphocreatine concentration or on the forward (ATP-generating) flux through creatine phosphotransferase. The results indicate that a normal phosphocreatine content in the presence of lowered glucose availability is reflected by an unchanged turnover rate.

  15. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    Directory of Open Access Journals (Sweden)

    Juan Andrés Orellana

    2015-04-01

    Full Text Available Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  16. Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain.

    Science.gov (United States)

    Guo, Chuang; Wang, Pu; Zhong, Man-Li; Wang, Tao; Huang, Xue-Shi; Li, Jia-Yi; Wang, Zhan-You

    2013-01-01

    Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer's disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.

  17. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for brain metastases: a dosimetric volumetric-modulated arc therapy study.

    Science.gov (United States)

    Giaj Levra, Niccolò; Sicignano, Gianluisa; Fiorentino, Alba; Fersino, Sergio; Ricchetti, Francesco; Mazzola, Rosario; Naccarato, Stefania; Ruggieri, Ruggero; Alongi, Filippo

    2016-01-01

    To develop a feasible volumetric modulated arc therapy (VMAT) treatment in whole brain radiotherapy (WBRT) with a simultaneous integrated boost (SIB) and hippocampal (HP) sparing in 1-5 brain metastases (BMs). Ten patients with 20 BMs received a WBRT prescription of 20 Gy, SIB dose on BMs of 40 Gy/5 fractions. PTVWBRT was generated from brain minus BMs-PTVs (PTVSIB) and planning organ at risk volume to HP. All plans were evaluated in: homogeneity index (HI), target coverage (TC), maximum dose to prescription dose ratio (MDPD), prescription isodose to target volume ratio (PITV) and paddick conformity index (CI). We also evaluate D100%, mean and maximum doses to HP. Planning objectives were for PTVWBRT, D2% = 25 Gy with acceptable deviation of 26.7 Gy and D98% ≥ 16.7 Gy; for PTVSIB D95% ≥ 38 Gy; for HP, D100% = 6 Gy with acceptable deviation of 6.7 Gy, Dmax = 10.7 Gy with acceptable deviation of 11.3 Gy, a mean dose of 8 Gy. Mean number of BMs was 2 (range 1-5). Mean values for BMs were volume of PTVSIB = 5.1 ± 4.9 cc, dose to 95% of PTVSIB 39.3 ± 0.9 Gy, HI 0.083 ± 0.03, TC 0.96 ± 0.24, CI 0.78 ± 0.17. Mean MDPD was 1.06 ± 0.02 and PITV 0.96 ± 0.24. For WBRT, mean target volume was (13.46 ± 2)*10(2) cc, mean dose to 90% of PTVWBRT 19.8 ± 0.2 Gy, mean HI 0.42 ± 0.12 and TC 0.78 ± 0.11. Mean and maximum HP doses were 7.7 ± 0.3 Gy and 10.5 ± 0.5 Gy. Mean dose to 100% of HP volume (D100%) was 6.7 ± 0.3 Gy. WBRT plus SIB with HP avoidance with VMAT was feasible. All dosimetric parameters were satisfied for PTVWBRT and PTVSIB.

  18. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury.

    Science.gov (United States)

    Carlson, Shaun W; Madathil, Sindhu K; Sama, Diana M; Gao, Xiang; Chen, Jinhui; Saatman, Kathryn E

    2014-08-01

    Traumatic brain injury (TBI) is associated with neuronal damage or neuronal death in the hippocampus, a region critical for cognitive function. Immature neurons within the hippocampal neurogenic niche are particularly susceptible to TBI. Therapeutic strategies that protect immature hippocampal neurons or enhance posttraumatic neurogenesis may be advantageous for promoting functional recovery after TBI. Insulin-like growth factor-1 (IGF-1) promotes neurogenesis in the adult brain, but its effects on neurogenesis after TBI are unknown. We used an astrocyte-specific conditional IGF-1-overexpressing mouse model to supplement IGF-1 in regions of neuronal damage and reactive astrocytosis after controlled cortical impact injury. Although early loss of immature neurons was not significantly attenuated, overexpression of IGF-1 resulted in a marked increase in immature neuron density in the subgranular zone at 10 days after injury. This delayed increase seemed to be driven by enhanced neuron differentiation rather than by increased cellular proliferation. In wild-type mice, dendrites of immature neurons exhibited significant decreases in total length and number of bifurcations at 10 days after injury versus neurons in sham-injured mice. In contrast, the morphology of immature neuron dendrites in brain-injured IGF-1-overexpressing mice was equivalent to that in sham controls. These data provide compelling evidence that IGF-1 promotes neurogenesis after TBI.

  19. Moderate Hypothermia Significantly Decreases Hippocampal Cell Death Involving Autophagy Pathway after Moderate Traumatic Brain Injury.

    Science.gov (United States)

    Jin, Yichao; Lin, Yingying; Feng, Jun-feng; Jia, Feng; Gao, Guo-yi; Jiang, Ji-yao

    2015-07-15

    Here, we evaluated changes in autophagy after post-traumatic brain injury (TBI) followed by moderate hypothermia in rats. Adult male Sprague-Dawley rats were randomly divided into four groups: sham injury with normothermia group (37 °C); sham injury with hypothermia group (32 °C); TBI with normothermia group (TNG; 37 °C); and TBI with hypothermia group (THG; 32 °C). Injury was induced by a fluid percussion TBI device. Moderate hypothermia (32 °C) was achieved by partial immersion in a water bath (0 °C) under general anesthesia for 4 h. All rats were killed at 24 h after fluid percussion TBI. The ipsilateral hippocampus in all rats was analyzed with hematoxylin and eosin staining; terminal deoxynucleoitidyl transferase-mediated nick end labeling staining was used to determine cell death in ipsilateral hippocampus. Immunohistochemistry and western blotting of microtubule-associated protein light chain 3 (LC3), Beclin-1, as well as transmission electron microscopy performed to assess changes in autophagy. At 24 h after TBI, the cell death index was 27.90 ± 2.36% in TNG and 14.90 ± 1.52% in THG. Expression level of LC3 and Beclin-1 were significantly increased after TBI and were further up-regulated after post-TBI hypothermia. Further, ultrastructural observations showed that there was a marked increase of autophagosomes and autolysosomes in ipsilateral hippocampus after post-TBI hypothermia. Our data demonstrated that moderate hypothermia significantly attenuated cell death and increased autophagy in ipsilateral hippocampus after fluid percussion TBI. In conclusion, autophagy pathway may participate in the neuroprotective effect of post-TBI hypothermia.

  20. Voltage-sensitive dye recording from axons, dendrites and dendritic spines of individual neurons in brain slices.

    Science.gov (United States)

    Popovic, Marko; Gao, Xin; Zecevic, Dejan

    2012-11-29

    Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique - optical recording of membrane potential transients with organic voltage-sensitive dyes (V(m)-imaging) - characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes (2). Many aspects of the initial technology have been continuously improved over several decades (3, 5, 11). Additionally, previous work documented two essential characteristics of V(m)-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; (10, 14, 16)). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible (4, 7). Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable

  1. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury.

    Science.gov (United States)

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-11-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  2. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lei Cao; Xiaohua Bie; Su Huo; Jubao Du; Lin Liu; Weiqun Song

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  3. Empathy in hippocampal amnesia.

    Science.gov (United States)

    Beadle, J N; Tranel, D; Cohen, N J; Duff, M C

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy.

  4. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance

    Science.gov (United States)

    Heppner, Kristy M.; Baquero, Arian F.; True, Cadence; Grove, Kevin L.

    2017-01-01

    Abstract Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9–39), in ad libitum–fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding. PMID:28144621

  5. Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus.

    Science.gov (United States)

    Scharfman, H E; Goodman, J H; Sollas, A L

    1999-07-01

    This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.

  6. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance.

    Science.gov (United States)

    Heppner, Kristy M; Baquero, Arian F; Bennett, Camdin M; Lindsley, Sarah R; Kirigiti, Melissa A; Bennett, Baylin; Bosch, Martha A; Mercer, Aaron J; Rønnekleiv, Oline K; True, Cadence; Grove, Kevin L; Smith, M Susan

    2017-01-01

    Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.

  7. Effective range of electrical stimulation in brain silica preparation; No slice hyohon ni okeru denki shigeki koka han`i no kento

    Energy Technology Data Exchange (ETDEWEB)

    Takimori, T.; Ogawa, T.; Nishida, M. [Akita University, Akita (Japan)

    1997-08-20

    In order to examine the confines of electrical stimulation in layer 2/3 of visual cortex in the brain slice preparation, we estimated the effective range of the stimulation based on the excitatory postsynaptic potential (EPSP) evoked in layer V neuron which receives input from layer 2/3. For this purpose, we recorded and compared EPSPs amplitudes evoked by stimulations at directly over site of recording electrode and lateral site in layer 2/3. Since the EPSP increased linearly with stimulus intensity before the saturation, it was considered that the EPSP correlates with the number of projecting neurons in area directly excited with the stimulation. Then we formed the region model by which we can get the ratios between the neuron numbers in areas excited by different sites stimulations against the stimulus effective ranges. And in the stimulus intensity for action potential threshold of layer 5 neuron, we evaluated the effective range for the relative values of EPSPs to be produced with the stimulations of 250{mu}m lateral site and directory over site. In the model, the ratio increased monotonically with the effective range and in the case of 250{mu}m for the effective range, the ratio between those EPSPs was less than the value in the model. These results led the conclusion that the effective range of the intensity for layer 5 neuron to generate the output is confined within 250{mu}m from directly over site, that is, within layer 2/3. 7 refs., 11 figs., 1 tab.

  8. Thick Slice and Thin Slice Teaching Evaluations

    Science.gov (United States)

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  9. Post-traumatic administration of the p53 inactivator pifithrin-α oxygen analogue reduces hippocampal neuronal loss and improves cognitive deficits after experimental traumatic brain injury.

    Science.gov (United States)

    Yang, Ling-Yu; Greig, Nigel H; Huang, Ya-Ni; Hsieh, Tsung-Hsun; Tweedie, David; Yu, Qian-Sheng; Hoffer, Barry J; Luo, Yu; Kao, Yu-Chieh; Wang, Jia-Yi

    2016-12-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Neuronal apoptosis in the hippocampus has been detected after TBI. The hippocampal dysfunction may result in cognitive deficits in learning, memory, and spatial information processing. Our previous studies demonstrated that a p53 inhibitor, pifithrin-α oxygen analogue (PFT-α (O)), significantly reduced cortical cell death, which is substantial following controlled cortical impact (CCI) TBI, and improved neurological functional outcomes via anti-apoptotic mechanisms. In the present study, we examined the effect of PFT-α (O) on CCI TBI-induced hippocampal cellular pathophysiology in light of this brain region's role in memory. To investigate whether p53-dependent apoptosis plays a role in hippocampal neuronal loss and associated cognitive deficits and to define underlying mechanisms, SD rats were subjected to experimental CCI TBI followed by the administration of PFT-α or PFT-α (O) (2mg/kg, i.v.) or vehicle at 5h after TBI. Magnetic resonance imaging (MRI) scans were acquired at 24h and 7days post-injury to assess evolving structural hippocampal damage. Fluoro-Jade C was used to stain hippocampal sub-regions, including CA1 and dentate gyrus (DG), for cellular degeneration. Neurological functions, including motor and recognition memory, were assessed by behavioral tests at 7days post injury. p53, p53 upregulated modulator of apoptosis (PUMA), 4-hydroxynonenal (4-HNE), cyclooxygenase-IV (COX IV), annexin V and NeuN were visualized by double immunofluorescence staining with cell-specific markers. Levels of mRNA encoding for caspase-3, p53, PUMA, Bcl-2, Bcl-2-associated X protein (BAX) and superoxide dismutase (SOD) were measured by RT-qPCR. Our results showed that post-injury administration of PFT-α and, particularly, PFT-α (O) at 5h dramatically reduced injury volumes in the ipsilateral hippocampus, improved motor outcomes, and ameliorated cognitive deficits at 7days after TBI, as

  10. Serotonin Depletion Does not Modify the Short-Term Brain Hypometabolism and Hippocampal Neurodegeneration Induced by the Lithium-Pilocarpine Model of Status Epilepticus in Rats.

    Science.gov (United States)

    García-García, Luis; Shiha, Ahmed Anis; Bascuñana, Pablo; de Cristóbal, Javier; Fernández de la Rosa, Rubén; Delgado, Mercedes; Pozo, Miguel A

    2016-05-01

    It has been reported that fluoxetine, a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor, has neuroprotective properties in the lithium-pilocarpine model of status epilepticus (SE) in rats. The aim of the present study was to investigate the effect of 5-HT depletion by short-term administration of p-chlorophenylalanine (PCPA), a specific tryptophan hydroxylase inhibitor, on the brain hypometabolism and neurodegeneration induced in the acute phase of this SE model. Our results show that 5-HT depletion did modify neither the brain basal metabolic activity nor the lithium-pilocarpine-induced hypometabolism when evaluated 3 days after the insult. In addition, hippocampal neurodegeneration and astrogliosis triggered by lithium-pilocarpine were not exacerbated by PCPA treatment. These findings point out that in the early latent phase of epileptogenesis, non-5-HT-mediated actions may contribute, at least in some extent, to the neuroprotective effects of fluoxetine in this model of SE.

  11. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling.

    Directory of Open Access Journals (Sweden)

    Francesca Boscia

    Full Text Available The glial cell line-derived neurotrophic factor (GDNF is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1 hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2 identity of GDNF-responsive hippocampal cells, (3 transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.

  12. The role of reactive oxygen species in the neuroprotective effect of sevoflurane preconditioning against oxygen-glucose deprivation injury in rat hippocampal slices%活性氧在七氟醚预处理减轻大鼠海马脑片氧糖缺失损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    王志萍; 张永华; 江山; 夏鹏; 曾因明

    2008-01-01

    目的 评价活性氧(ROS)在七氟醚预处理减轻大鼠海马脑片氧糖缺失损伤中的作用.方法 雄性SD大鼠,体重80~100 g,断头处死,剥离海马,符合标准的40片海马脑片随机分为4组(n=10):氧糖缺失组(OGD组)、4%七氟醚预处理组(Sevo组)、ROS清除剂组(MPG组)和4%七氟醚预处理+ROS清除剂组(SM组),采用脑片灌流及电生理技术,细胞外记录海马CAI区缺氧期间和复氧1 h期间的顺向群锋电位(OPS);采用2,3,5-三苯基氯化四氮唑(TYC)染色定量比色法分析脑片损伤程度.结果 与OGD组相比,Sevo组OPS消失时间缩短,OPS恢复程度、OPS恢复率均升高,组织损伤百分率降低(P<0.01);与Sevo组相比,MPG组和SM组OPS消失时间缩短,OPS恢复程度、OPS恢复率降低,组织损伤百分率升高(Phippocampal slices.Methods Male SD rats weighing 80-100 g were anesthetized with ether and decapitated. The hippicampi were removed and sngittaUy sliced (400 μm thick) and placed in artificial CSF aerated with 95% O2-5% CO2 Forty hippocampal slices were randomly divided into 4 groups (n=10 each) : group I OGD; group ⅡSevo-P; group ⅢROS scavenger (MPG) and group Ⅳ Sevo-P + MPG. Electrophysiolngical technique was used to record the amplitude of orthodromic population spike (OPS) in the stratum pyramidale of CAI region during OGD and 1 h reoxygenation. TIC staining was used to determine the degree of tissue injury. Results The amplitude of OPS was rapidly abolished during hypoxia and the degree and rate of recovery of OPS were low after 1 h reoxygenation in OGD group (group Ⅰ). In Sevo-P group (group Ⅱ) the time from the start of OGD to complete

  13. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  14. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  15. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol.

    Science.gov (United States)

    Gul, Zulfiye; Demircan, Celaleddin; Bagdas, Deniz; Buyukuysal, Rifat Levent

    2016-08-01

    The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices.

  16. A novel role for PHT1 in the disposition of l-histidine in brain: In vitro slice and in vivo pharmacokinetic studies in wildtype and Pht1 null mice.

    Science.gov (United States)

    Wang, Xiao-Xing; Hu, Yongjun; Keep, Richard F; Toyama-Sorimachi, Noriko; Smith, David E

    2017-01-15

    PHT1 (SLC15A4) is responsible for translocating l-histidine (l-His), di/tripeptides and peptide-like drugs across biological membranes. Previous studies have indicated that PHT1 is located in brain parenchyma, however, its role and significance in brain along with effect on the biodistribution of substrates is unknown. In this study, adult gender-matched Pht1-competent (wildtype) and Pht1-deficient (null) mice were used to investigate the effect of PHT1 on l-His brain disposition via in vitro slice and in vivo pharmacokinetic approaches. We also evaluated the serum clinical chemistry and expression levels of select transporters and enzymes in the two genotypes. No significant differences were observed between genotypes in serum chemistry, body weight, viability and fertility. PCR analyses indicated that Pept2 had a compensatory up-regulation in Pht1 null mice (about 2-fold) as compared to wildtype animals, which was consistent in different brain regions and confirmed by immunoblots. The uptake of l-His was reduced in brain slices by 50% during PHT1 ablation. The l-amino acid transporters accounted for 30% of the uptake, and passive (other) pathways for 20% of the uptake. During the in vivo pharmacokinetic studies, plasma concentration-time profiles of l-His were comparable between the two genotypes after intravenous administration. Still, biodistribution studies revealed that, when sampled 5min after dosing, l-His values were 28-48% lower in Pht1 null mice, as compared to wildtype animals, in brain parenchyma but not cerebrospinal fluid. These findings suggest that PHT1 may play an important role in histidine transport in brain, and resultant effects on histidine/histamine homeostasis and neuropeptide regulation.

  17. Activating Devel