WorldWideScience

Sample records for hippocampal acetylcholine release

  1. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    Science.gov (United States)

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  2. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo

    NARCIS (Netherlands)

    Moor, E; de Boer, P; Westerink, B.H.C.

    1998-01-01

    In the present study, the regulation of acetylcholine release from the ventral hippocampus by gamma-aminobutyric acid (GABA) was investigated in vivo. GABA receptor agonists and antagonists were administered locally in the medial septum and the adjacent vertical limb of the diagonal band of Broca,

  3. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    Directory of Open Access Journals (Sweden)

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  4. The effect of ketamine on intraspinal acetylcholine release

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Goldkuhl, Renée Röstlinger; Nylund, Anders

    2006-01-01

    The general anaesthetic ketamine affects the central cholinergic system in several manners, but its effect on spinal acetylcholine release, which may be an important transmitter in spinal antinociception, is unknown. This study aimed to investigate the effect of ketamine on spinal acetylcholine...... increased the acetylcholine release in high concentrations (100 microM to 10 mM). The results indicate that spinal nicotinic receptors are important for the ketamine-induced acetylcholine release, and that the effect is partly mediated at the spinal level....

  5. Decreased acetylcholine release delays the consolidation of object recognition memory.

    Science.gov (United States)

    De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S

    2013-02-01

    Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors.

    Science.gov (United States)

    Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali

    2016-08-01

    The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory.

  7. Non-quantal acetylcholine release at mouse neuromuscular junction: effects of elevated quantal release and aconitine.

    Science.gov (United States)

    Yu, S P; Van der Kloot, W

    1990-09-04

    The rate of non-quantal acetylcholine (ACh) release was estimated at the mouse neuromuscular junction by observing the effect of (+)-tubocurarine on endplate membrane potential or current in preparations pretreated with an irreversible anti-acetylcholinesterase (anti-AChE). Voltage clamping was an effective method for measuring non-quantal release. Non-quantal release was markedly inhibited by 10 microM aconitine. Non-quantal release was not significantly increased by 10 microM dihyroouabain (DHO). (It has been reported that ouabain increases the leak). Non-quantal release was roughly doubled following exposure to hypertonic solution or to elevated K(+)-solution. This is in accord with the hypothesis that the leak is by way of ACh transporters incorporated into the terminal membrane following exocytosis, but other interpretations remain to be tested.

  8. Intravenously administered lidocaine in therapeutic doses increases the intraspinal release of acetylcholine in rats

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban

    2002-01-01

    The local anesthetic lidocaine suppresses different pain conditions when administered systemically. Part of the antinociceptive effect appears to be mediated via receptor mechanisms. We have previously shown that muscarinic and nicotinic agonists that produce antinociception increase the intraspi......The local anesthetic lidocaine suppresses different pain conditions when administered systemically. Part of the antinociceptive effect appears to be mediated via receptor mechanisms. We have previously shown that muscarinic and nicotinic agonists that produce antinociception increase...... the intraspinal release of acetylcholine. In the present study it was hypothesized that systemically administered lidocaine is acting through the same mechanisms as cholinergic agonists and affects the intraspinal release of acetylcholine. Microdialysis probes were placed in anesthetized rats for sampling...... of acetylcholine. Ten and 30 mg/kg lidocaine injected intravenously significantly increased the intraspinal release of acetylcholine. The effect of lidocaine could be reduced by pretreatment with intraspinally administered atropine or mecamylamine. Our results suggest that the antinociceptive effect produced...

  9. Calcium-dependent (/sup 3/H)acetylcholine release and muscarinic autoreceptors in rat cortical synaptosomes during development

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M.; Caviglia, A.; Paudice, P.; Raiteri, M.

    1983-05-01

    A number of presynaptic cholinergic parameters (high affinity (/sup 3/H)choline uptake, (/sup 3/H)acetylcholine synthesis, (/sup 3/H)acetylcholine release, and autoinhibition of (/sup 3/H)acetylcholine release mediated by muscarinic autoreceptors) were comparatively analyzed in rat brain cortex synaptosomes during postnatal development. These various functions showed a differential time course during development. At 10 days of age the release of (/sup 3/H)acetylcholine evoked by 15 mM KCl from superfused synaptosomes was Ca/sup 2 +/-dependent but insensitive to the inhibitory action of extrasynaptosomal acetylcholine. The muscarinic autoreceptors regulating acetylcholine release were clearly detectable only at 14 days, indicating that their appearance may represent a criterion of synaptic maturation more valuable than the onset of a Ca/sup 2 +/-dependent release.

  10. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.

    Directory of Open Access Journals (Sweden)

    Elisabet Jerlhag

    Full Text Available Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg to the dopaminergic cells of the ventral tegmental area (VTA and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.. Ghrelin receptors (GHS-R1A are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.

  11. Iontophoretic release of acetylcholine, noradrenaline, 5-hydroxytryptamine and D-lysergic acid diethylamide from micropipettes

    Science.gov (United States)

    Bradley, P. B.; Candy, J. M.

    1970-01-01

    1. The in vitro iontophoretic release of tritium-labelled acetylcholine and 5-hydroxytryptamine from large and small micropipettes and noradrenaline and D-lysergic acid diethylamide from small micropipettes was determined by liquid scintillation counting. 2. The release was directly proportional to the electrical charge passed in the range normally used in the iontophoretic study of these compounds. The transport numbers obtained for the large micropipettes were approximately double those with the small micropipettes. A very low transport number was found for D-lysergic acid diethylamide. 3. The spontaneous leakage was small and did not vary appreciably with time. 4. The iontophoretic release of acetylcholine in vitro agreed with the in vitro measurements. 5. The brain-stem tissue concentration of D-lysergic acid diethylamide after intravenous injection into intact and decerebrate cats was determined. PMID:5492892

  12. Septal and hippocampal glutamate receptors modulate the output of acetylcholine in hippocampus : A microdialysis study

    NARCIS (Netherlands)

    Moor, E; Auth, F; DeBoer, P; Westerink, BHC

    In the present study, glutamate receptor agonists and antagonists were administered by retrograde microdialysis into either the medial septum/vertical limb of the diagonal band-(MS/vDB), or hippocampus, and the output of acetylcholine (ACh) was measured in the hippocampus by using intracerebral

  13. Amperometric detection of single vesicle acetylcholine release events from an artificial cell.

    Science.gov (United States)

    Keighron, Jacqueline D; Wigström, Joakim; Kurczy, Michael E; Bergman, Jenny; Wang, Yuanmo; Cans, Ann-Sofie

    2015-01-21

    Acetylcholine is a highly abundant nonelectroactive neurotransmitter in the mammalian central nervous system. Neurochemical release occurs on the millisecond time scale, requiring a fast, sensitive sensor such as an enzymatic amperometric electrode. Typically, the enzyme used for enzymatic electrochemical sensors is applied in excess to maximize signal. Here, in addition to sensitivity, we have also sought to maximize temporal resolution, by designing a sensor that is sensitive enough to work at near monolayer enzyme coverage. Reducing the enzyme layer thickness increases sensor temporal resolution by decreasing the distance and reducing the diffusion time for the enzyme product to travel to the sensor surface for detection. In this instance, the sensor consists of electrodeposited gold nanoparticle modified carbon fiber microelectrodes (CFMEs). Enzymes often are sensitive to curvature upon surface adsorption; thus, it was important to deposit discrete nanoparticles to maintain enzyme activity while depositing as much gold as possible to maximize enzyme coverage. To further enhance sensitivity, the enzymes acetylcholinesterase (AChE) and choline oxidase (ChO) were immobilized onto the gold nanoparticles at the previously determined optimal ratio (1:10 AChE/ChO) for most efficient sequential enzymatic activity. This optimization approach has enabled the rapid detection to temporally resolve single vesicle acetylcholine release from an artificial cell. The sensor described is a significant advancement in that it allows for the recording of acetylcholine release on the order of the time scale for neurochemical release in secretory cells.

  14. Inhibition by halothane of potassium-stimulated acetylcholine release from rat cortical slices.

    Science.gov (United States)

    Griffiths, R.; Greiff, J. M.; Haycock, J.; Elton, C. D.; Rowbotham, D. J.; Norman, R. I.

    1995-01-01

    1. Cholinergic neurones in the basal forebrain are linked to cortical activation and arousal. 2. The present study was designed to examine the hypothesis that clinically relevant doses of halothane (0.1 to 5%) would significantly reduce depolarization-evoked acetylcholine (ACh) release from rat cortical slices. 3. ACh release was measured from rat cortical slices by a chemiluminescent technique. 4. Depolarization-evoked ACh release was inhibited significantly by halothane with an IC50 of 0.38%. This value equates to 0.3 MAC (the minimum alveolar concentration at which no movement occurs to a standard surgical stimulus in 50% of subjects) for the rat. 5. The potent effect of halothane on ACh release suggests that this mechanism may be a target for the action of volatile anaesthetic agents. This in vitro effect on ACh release is consistent with effects of halothane reported in vivo. PMID:8564265

  15. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  16. Impaired acetylcholine release from the myenteric plexus of Trichinella-infected rats

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.M.; Blennerhassett, P.A.; Blennerhassett, M.G.; Vermillion, D.L. (McMaster Univ., Hamilton, Ontario (Canada))

    1989-12-01

    We examined the release of acetylcholine (ACh) from jejunal longitudinal muscle-myenteric plexus preparations in noninfected control rats and in rats infected 6, 23, or 40 days previously with Trichinella spiralis. ACh release was assessed by preincubating the tissue with ({sup 3}H)choline and measuring the evoked release of tritium. The uptake of {sup 3}H was significantly less in tissue from T. spiralis-infected rats compared with control. In tissues from either infected or control animals, electrical field stimulation (30 V, 0.5 ms, 10 Hz for 1 min), or veratridine (6-30 microM) induced {sup 3}H release that was tetrodotoxin sensitive. Depolarization by KCl (25-75 mM) also caused {sup 3}H release, but this was only partially reduced by tetrodotoxin. Radiochromatographic analysis indicated evoked release of {sup 3}H to be almost entirely ({sup 3}H)ACh. In rats infected 6 days previously with T. spiralis, ({sup 3}H)ACh release induced by KCl, veratridine, and field stimulation were decreased at least 80%. The suppression of ({sup 3}H)ACh release induced by veratridine or KCl was fully reversible after 40 days postinfection, but field-stimulated responses remained approximately 50% of control values. These results indicate that T. spiralis infection in the rat is accompanied by a reversible suppression of ACh release from the longitudinal muscle-myenteric plexus of the jejunum.

  17. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  18. Cholinergic mechanisms in canine narcolepsy--II. Acetylcholine release in the pontine reticular formation is enhanced during cataplexy.

    Science.gov (United States)

    Reid, M S; Siegel, J M; Dement, W C; Mignot, E

    1994-04-01

    Cataplexy in the narcoleptic canine has been shown to increase after local administration of carbachol into the pontine reticular formation. Rapid eye movement sleep has also been shown to increase after local administration of carbachol in the pontine reticular formation, and furthermore, acetylcholine release in the pontine tegmentum was found to increase during rapid eye movement sleep in rats. Therefore, in the present study we have investigated acetylcholine release in the pontine reticular formation during cataplexy in narcoleptic canines. Extracellular acetylcholine levels were measured in the pontine reticular formation of freely moving narcoleptic and control Doberman pinschers using in vivo microdialysis probes. Cataplexy was induced by the Food-Elicited Cataplexy Test and monitored using recordings of electroencephalogram, electrooculogram and electromyogram. Basal levels of acetylcholine in the microdialysis perfusates were approximately 0.5 pmol/10 min in both control and narcoleptic canines. Local perfusion with tetrodotoxin (10(-5) M) or artificial cerebrospinal fluid without Ca2+ produced a decrease, while intravenous injections of physostigmine (0.05 mg/kg) produced an increase in acetylcholine levels, indicating that the levels of acetylcholine levels measured are derived from neuronal release. During cataplexy induced by the Food-Elicited Cataplexy Test, acetylcholine levels increased by approximately 50% after four consecutive tests in narcoleptic canines, but did not change after four consecutive tests in control canines. Motor activity and feeding behavior, similar to that occurring during a Food-Elicited Cataplexy Test, had no effect on acetylcholine levels in the narcoleptic canines.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Enhanced nicotinic acetylcholine receptor-mediated [3H]norepinephrine release from neonatal rat hypothalamus.

    Science.gov (United States)

    O'Leary, K T; Leslie, F M

    2006-01-01

    Nicotinic acetylcholine receptor (nAChR)-evoked release of norepinephrine (NE) has been demonstrated in a number of brain regions that receive sole noradrenergic innervation from the locus coeruleus (LC). Many of these structures display enhanced nicotine-stimulated NE release in the neonate. We have examined the hypothalamus in order to determine if this region, which receives NE projections from both the LC and medullary catecholaminergic nuclei, also demonstrates maturational changes in nAChR-mediated NE release. Quantification of radiolabeled-NE release from rat hypothalamus slices by a maximally effective dose of nicotine revealed a peak response during the first postnatal week. This was followed by a decrease at postnatal day (P) 14, and a second peak at P21. Thereafter, release was equivalent to that observed at P14. Comparison of the pharmacological properties of nAChRs mediating NE release in neonatal (P7) and mature hypothalamus suggested involvement of different nAChR subtypes at the two ages. Using the selective toxin, DSP-4, nAChR-mediated NE release in the neonatal hypothalamus was shown to be from LC terminals. Our findings demonstrate an early sensitivity of hypothalamic LC terminals to nAChR regulation that may be associated with development of systems controlling critical homeostatic functions such as stress, feeding and cardiovascular regulation.

  20. Effect of neostigmine on the hippocampal noradrenaline release : role of cholinergic receptors

    NARCIS (Netherlands)

    Kiss, JP; Vizi, ES; Westerink, BHC

    1999-01-01

    THE effect of the cholinesterase inhibitor neostigmine on hippocampal noradrenaline (NA) release was studied using in vivo microdialysis. Local application of neostigmine significantly increased the release of NA. The effect was potentiated by coperfusion of the nicotinic antagonist mecamylamine but

  1. Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ.

    Science.gov (United States)

    Meunier, F M

    1984-01-01

    The membrane potential of purely cholinergic synaptosomes isolated from Torpedo electric organ was monitored with fluorescent carbocyanine dyes. An increased fluorescence was associated with depolarization and a quenching with hyperpolarization. Fluorescence data provided evidence that Torpedo synaptosomes have a membrane potential mainly driven by a K+ diffusion potential and a membrane potential of about -50 mV could be estimated after calibration of fluorescence signals with ionophore antibiotics. The release of acetylcholine (ACh) from Torpedo synaptosomes was monitored continuously by measuring the light emitted by a chemiluminescent method (Israël & Lesbats, 1981 a). Using fluorescence data, the release of ACh was expressed as a function of membrane potential. The relationship between presynaptic potential and transmitter release as determined by biochemical methods at cholinergic nerve endings showed striking similarities to that observed at the squid giant synapse. Several substances were also tested with regard to their depolarizing and releasing properties and it was found that the toxin isolated from the venom of the annelid Glycera convoluta, which induced a large increase in quantal release of transmitter (Manaranche, Thieffry, & Israël, 1980) promoted a depolarization of Torpedo synaptosomes in addition to ACh release. PMID:6207289

  2. Ryanodine-, IP3- and NAADP-dependent calcium stores control acetylcholine release.

    Science.gov (United States)

    Chameau, P; Van de Vrede, Y; Fossier, P; Baux, G

    2001-11-01

    Injections of inositol trisphosphate (IP3) or nicotinamide adenine dinucleotide phosphate (NAADP) into the presynaptic neurone of an identified cholinergic synapse in the buccal ganglion of Aplysia californica increased the amplitude of the inhibitory postsynaptic current evoked by a presynaptic action potential. This suggests that Ca2+ release from various Ca2+ stores can modulate acetylcholine (ACh) release. Specific blockade of the calcium-induced calcium release (CICR) mechanism with ryanodine, or of IP3-induced calcium release with heparin, abolished the effects of IP3, but not the effects of NAADP, suggesting the presence of an intracellular Ca2+ pool independent of those containing ryanodine receptors (RyR) or IP3 receptors. To reinforce electrophysiological observations, intracellular [Ca2+]i changes were measured using the fluorescent dye rhod-2. Injections of cyclic ADP-ribose (an activator of RyR), IP3 or NAADP into the presynaptic neurone induced transient increases in the free intracellular Ca2+ concentration. RyR- and IP3-induced increases were prevented by application of respective selective antagonists but not NAADP-induced increases. Our results show that RyR-dependent, IP3-dependent, and NAADP-dependent Ca2+ stores are present in the same presynaptic terminal but are differently involved in the regulation of the presynaptic Ca2+ concentration that triggers transmitter release.

  3. Acetylcholine-induced inhibition of presynaptic calcium signals and transmitter release in the frog neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Eduard Khaziev

    2016-12-01

    Full Text Available Acetylcholine (ACh, released from axonal terminals of motor neurones in neuromuscular junctions regulates the efficacy of neurotransmission through activation of presynaptic nicotinic and muscarinic autoreceptors. Receptor-mediated presynaptic regulation could reflect either direct action on exocytotic machinery or modulation of Ca2+ entry and resulting intra-terminal Ca2+ dynamics. We have measured free intra-terminal cytosolic Ca2+ ([Ca2+]i using Oregon-Green 488 microfluorimetry, in parallel with voltage-clamp recordings of spontaneous (mEPC and evoked (EPC postsynaptic currents in post-junctional skeletal muscle fibre. Activation of presynaptic muscarinic and nicotinic receptors with exogenous acetylcholine and its non-hydrolized analogue carbachol reduced amplitude of the intra-terminal [Ca2+]i transients and decreased quantal content (calculated by dividing the area under EPC curve by the area under mEPC curve. Pharmacological analysis revealed the role of muscarinic receptors of M2 subtype as well as d-tubocurarine-sensitive nicotinic receptor in presynaptic modulation of [Ca2+]i transients. Modulation of synaptic transmission efficacy by ACh receptors was completely eliminated by pharmacological inhibition of N-type Ca2+ channels. We conclude that ACh receptor-mediated reduction of Ca2+ entry into the nerve terminal through N-type Ca2+ channels represents one of possible mechanism of presynaptic modulation in frog neuromuscular junction.

  4. Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban

    2002-01-01

    /kg). Spinal microdialysis probes were placed intraspinally at approximately the C2-C5 spinal level for sampling of acetylcholine and dialysis delivery of atropine (0.1, 1, 10 nM). Additionally, the tail-flick behaviour was tested on conscious rats injected intraperitoneally with saline, atropine (10, 100...... muscarinic agonists and antagonists modify nociceptive threshold by affecting intraspinal release of acetylcholine (ACh). Catheters were inserted into the femoral vein in rats maintained on isoflurane anaesthesia for administration of oxotremorine (10-300 microg/kg) and atropine (0.1, 10, 5000 microg...... and 5000 microg/kg), or subcutaneously with oxotremorine (30, 100, 300 microg/kg). Subcutaneous administration of oxotremorine (30, 100, 300 microg/kg) significantly increased the tail-flick latency. These doses of oxotremorine dose-dependently increased the intraspinal release of acetylcholine...

  5. Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors.

    Science.gov (United States)

    Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A

    2017-11-15

    Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivoSIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is

  6. Differential Acetylcholine Release in the Prefrontal Cortex and Hippocampus During Pavlovian Trace and Delay Conditioning

    Science.gov (United States)

    Flesher, M. Melissa; Butt, Allen E.; Kinney-Hurd, Brandee L.

    2011-01-01

    Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning. PMID:21514394

  7. Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2012-12-01

    Full Text Available Abstract Background β-amyloid (Aβ accumulation is described as a hallmark of Alzheimer’s disease (AD. Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs, which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. Results GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE, a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. Conclusion These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.

  8. Hippocampal α7 nicotinic acetylcholine receptor levels in patients with schizophrenia, bipolar disorder, or major depressive disorder

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Weyn, Annelies; Mikkelsen, Jens D

    2011-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is involved in cognitive function and synaptic plasticity. Consequently, changes in α7 nAChR function have been implicated in a variety of mental disorders, especially schizophrenia. However, there is little knowledge regarding the levels of the α7 n...

  9. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone.

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    A subset of corticotropin-releasing hormone (CRH) neurons was previously identified in the hippocampus with unknown function. Here we demonstrate that hippocampal CRH neurons represent a novel subtype of interneurons in the hippocampus, exhibiting unique morphology, electrophysiological properties, molecular markers, and connectivity. This subset of hippocampal CRH neurons in the mouse reside in the CA1 pyramidal cell layer and tract tracing studies using AAV-Flex-ChR2-tdTomato reveal dense back-projections of these neurons onto principal neurons in the CA3 region of the hippocampus. These hippocampal CRH neurons express both GABA and GAD67 and using in vitro optogenetic techniques, we demonstrate that these neurons make functional connections and release GABA onto CA3 principal neurons. The location, morphology, and importantly the functional connectivity of these neurons demonstrate that hippocampal CRH neurons represent a unique subtype of hippocampal interneurons. The connectivity of these neurons has significant implications for hippocampal function. © 2015 Wiley Periodicals, Inc.

  10. Task- and Treatment Length–Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats

    Science.gov (United States)

    Pehrson, Alan L.; Hillhouse, Todd M.; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H.; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine’s ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine’s effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine’s pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine’s moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine′s cognitive effects, which are observed under chronic dosing conditions in patients with MDD. PMID:27402279

  11. Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats.

    Science.gov (United States)

    Pehrson, Alan L; Hillhouse, Todd M; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel; Sanchez, Connie

    2016-09-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD. Copyright © 2016 The Author(s).

  12. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  13. Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses

    Directory of Open Access Journals (Sweden)

    Armando eRomani

    2013-01-01

    Full Text Available The role of amyloid-beta (Aβ in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz. Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.

  14. The Effect of Vitamin D Treatment On Nerve Growth Factor (NGF) Release From Hippocampal Neurons.

    Science.gov (United States)

    Gezen-Ak, Duygu; Dursun, Erdinç; Yilmazer, Selma

    2014-06-01

    Vitamin D, the main function of which is thought to be the maintenance of calcium and phosphate homeostasis and bone structure, has been shown in recent studies to have important roles in brain development as well. A certain vitamin D receptor (VDR) gene haplotype was reported, for the first time by our group, to increase the risk of developing Alzheimer's disease. Our studies also showed that vitamin D prevents beta amyloid-induced calcium elevation and toxicity that target nerve growth factor (NGF) release in cortical neurons; beta amyloid suppresses VDR expression and the disruption of vitamin D-VDR pathway mimics beta amyloid-induced neurodegeneration. In this study, our aim was to investigate the effects of vitamin D on the NGF release from hippocampal neurons. Primary hippocampal neuron cultures that were prepared from 18-day-old Sprague-Dawley rat embryos were treated with vitamin D for 48 hours. The alteration in the NGF release was determined with ELISA. Cytotoxicity tests were also performed for all groups. The NGF release in vitamin D-treated group was significantly higher than in untreated control group. The protective effect of vitamin D against cytotoxicity was also observed. Our results indicated that vitamin D regulates the release of NGF, a very important molecule for neuronal survival of hippocampal neurons as well as cortical neurons.

  15. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    Science.gov (United States)

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores.

  16. Alterations in acetylcholine, PGE2 and IL6 release from urothelial cells following treatment with pyocyanin and lipopolysaccharide.

    Science.gov (United States)

    McDermott, C; Chess-Williams, R; Mills, K A; Kang, S H; Farr, S E; Grant, G D; Perkins, A V; Davey, A K; Anoopkumar-Dukie, S

    2013-09-01

    The effects of pseudomonal virulence factor pyocyanin, and LPS from Pseudomonas aeruginosa and Escherichia coli on urothelial mediator release and cytokine production were examined. RT4 urothelial cells were treated with pyocyanin (1-100 μM) or LPS (1-100 ng/mL) for 24-h. Effects were measured in terms of changes in cell viability, basal and stretch-induced acetylcholine (Ach) and PGE2 release, and inflammatory cytokines (IL-6 and IL-12) production. Twenty-four hour pyocyanin (100 μM) treatment significantly decreased urothelial cell viability, while stretch-induced Ach release response was inhibited. E. coli LPS (100 ng/mL) produced a similar response with an additional significant increase in basal Ach release. All three virulence factors significantly increased urothelial PGE2 release; under basal release for pyocyanin (100 μM), stretch-induced release for pseudomonal LPS (≥ 10 ng/mL) and both basal and stimulated release for E. coli LPS (≥ 10 ng/mL). IL-6 and IL-12 were not detected in control samples, however 24h treatment with pyocyanin (100 μM) or LPS (100 ng/mL) resulted in IL-6 release from urothelial cells. The changes in urothelial Ach and PGE2, and release of inflammatory cytokine IL-6 induced by exposure to the bacterial virulence factors may play a role in the symptoms of pain and urinary urgency experienced with urinary tract infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mechanisms involved in nicotinic acetylcholine receptor-induced neurotransmitter release from sympathetic nerve terminals in the mouse vas deferens.

    Directory of Open Access Journals (Sweden)

    Damian J Williams

    Full Text Available Prejunctional nicotinic acetylcholine receptors (nAChRs amplify postganglionic sympathetic neurotransmission, and there are indications that intraterminal Ca(2+ stores might be involved. However, the mechanisms by which nAChR activation stimulates neurotransmitter release at such junctions is unknown. Rapid local delivery (picospritzing of the nAChR agonist epibatidine was combined with intracellular sharp microelectrode recording to monitor spontaneous and field-stimulation-evoked neurotransmitter release from sympathetic nerve terminals in the mouse isolated vas deferens. Locally applied epibatidine (1 µM produced 'epibatidine-induced depolarisations' (EIDs that were similar in shape to spontaneous excitatory junction potentials (SEJPs and were abolished by nonselective nAChR antagonists and the purinergic desensitizing agonist α,β-methylene ATP. The amplitude distribution of EIDs was only slightly shifted towards lower amplitudes by the selective α7 nAChR antagonists α-bungarotoxin and methyllcaconitine, the voltage-gated Na(+ channel blocker tetrodotoxin or by blocking voltage-gated Ca(2+ channels with Cd(2+. Lowering the extracellular Ca(2+ concentration reduced the frequency of EIDs by 69%, but more surprisingly, the Ca(2+-induced Ca(2+ release blocker ryanodine greatly decreased the amplitude (by 41% and the frequency of EIDs by 36%. Ryanodine had no effect on electrically-evoked neurotransmitter release, paired-pulse facilitation, SEJP frequency, SEJP amplitude or SEJP amplitude distribution. These results show that activation of non-α7 nAChRs on sympathetic postganglionic nerve terminals induces high-amplitude junctional potentials that are argued to represent multipacketed neurotransmitter release synchronized by intraterminal Ca(2+-induced Ca(2+ release, triggered by Ca(2+ influx directly through the nAChR. This nAChR-induced neurotransmitter release can be targeted pharmacologically without affecting spontaneous or electrically

  18. D2‐dopamine receptor‐mediated inhibition of intracellular Ca2+ mobilization and release of acetylcholine from guinea‐pig neostriatal slices

    National Research Council Canada - National Science Library

    Fujiwara, Hiroshi; Kato, Noriko; Shuntoh, Hisato; Tanaka, Chikako

    1987-01-01

    ... (a laevorotatory enantiomer of LY‐141865: N‐propyl tricyclic pyrazole) at 10 −6 m inhibited electrical stimulation‐and high K + ‐evoked release of [ 3 H]‐acetylcholine ([ 3 H]‐ACh) to 47.7 ± 6.0% and 54.1 ± 5.0...

  19. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine.

    Science.gov (United States)

    Stahl, Stephen M

    2015-10-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. 5HT3 receptor antagonism is one of these actions, and this leads to increased release of norepinephrine (NE), acetylcholine (ACh), and serotonin (5HT) within various brain circuits.

  20. Effects of thyroxine and donepezil on hippocampal acetylcholine content, acetylcholinesterase activity, synaptotagmin-1 and SNAP-25 expression in hypothyroid adult rats

    Science.gov (United States)

    WANG, FEN; ZENG, XIANZHONG; ZHU, YANGBO; NING, DAN; LIU, JUNXIA; LIU, CHUNLEI; JIA, XUEMEI; ZHU, DEFA

    2015-01-01

    A growing number of studies have revealed that neurocognitive impairment, induced by adult-onset hypothyroidism, may not be fully restored by traditional hormone substitution therapies, including thyroxine (T4). The present study has investigated the effect of T4 and donepezil (DON; an acetylcholinesterase (AChE) inhibitor) treatment on the hypothyroidism-induced alterations of acetylcholine (ACh) content and AChE activity. Furthermore, we examined synaptotagmin-1 (syt-1) and SNAP-25 expression in the hippocampus of adult rats. Adding 0.05% propylthiouracil to their drinking water for five weeks induced hypothyroidism in the rat models. From the fourth week, the rats were treated with T4, DON or a combination of both. Concentration of ACh and the activity of AChE was determined colorimetrically. The results demonstrated that hypothyroidism induced a significant decrease of Ach content and AChE activity (by 17 and 34%, respectively), which were restored to control values by T4 administration. DON treatment also restored Ach to the normal level. Protein levels of syt-1 and SNAP-25 were determined by immunohistochemistry. The results demonstrated that syt-1 was expressed at significantly lower levels in hypothyroid rats, while SNAP-25 levels were notably higher compared with the controls. Two-week treatment with T4 alone failed to normalize the expression levels of these two proteins, while co-administration of T4 and DON was able to induce this effect. These data suggested that the thyroid hormone, T4, may have a direct effect on the metabolism of hippocampal ACh in adult rats, and that the DON treatment may facilitate the recovery of synaptic protein impairments induced by hypothyroidism. PMID:25371181

  1. Activation of the dorsal hippocampal nicotinic acetylcholine receptors improves tamoxifen-induced memory retrieval impairment in adult female rats.

    Science.gov (United States)

    Tajik, Azam; Rezayof, Ameneh; Ghasemzadeh, Zahra; Sardari, Maryam

    2016-07-07

    Tamoxifen (TAM), a selective estrogen receptor modulator, has frequently been used in the treatment of breast cancer. In view of the fact that cognitive deficits in women who receive adjuvant chemotherapy for breast cancer is a common health problem, using female animal models for investigating the cognitive effects of TAM administration may improve our knowledge of TAM therapy. Therefore, the present study assessed the role of dorsal hippocampal cholinergic nicotinic receptors (nAChRs) in the effect of TAM administration on memory retrieval in ovariectomized (OVX) and non-OVX female rats using a passive avoidance learning task. Our results showed that pre-test administration of TAM (2-6mg/kg) impaired memory retrieval. Pre-test intra-CA1 microinjection of nicotine (0.3-0.5μg/rat) reversed TAM-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (0.1-0.3μg/rat) plus 2mg/kg (an ineffective dose) of TAM impaired memory retrieval. Pre-test intra-CA1 microinjection of the same doses of nicotine and mecamylamine by themselves had no effect on memory retrieval. In OVX rats, the administration of TAM (6mg/kg) produced memory impairment but pre-test intra-CA1 microinjection of nicotine (0.5μg/rat) had no effect on TAM response. Moreover, the administration of an ineffective dose of TAM (2mg/kg) had no effect on memory retrieval in OVX rats, while pre-test intra-CA1 microinjection of mecamylamine (0.3μg/rat) impaired memory retrieval. Taken together, it can be concluded that the impairing effect of TAM on memory formation may be modulated by nAChRs of the CA1 regions. It seems that memory impairment may be considered as an important side effect of TAM. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Nicotine increases stress-induced serotonin release by stimulating nicotinic acetylcholine receptor in rat striatum.

    Science.gov (United States)

    Takahashi, H; Takada, Y; Nagai, N; Urano, T; Takada, A

    1998-03-01

    We used a microdialysis technique to analyze the effects of footshock stress on the release of serotonin (5-hydroxytryptamine: 5-HT) in the striatum or prefrontal cortex (PFC) in rats that were pretreated with nicotine. Neither nicotine administration alone nor stress application alone changed 5-HT release. During stress application, however, both chronic nicotine administration and local infusion of nicotine to the striatum significantly increased 5-HT release in the striatum, though not in the PFC. These increases in 5-HT release were eradicated by a local infusion of mecamylamine. Release of 5-HT increased in the striatum during stress application when nicotine was injected to the striatum, while nicotinic injection to the dorsal raphe nucleus did not increase 5-HT release in the striatum. The present study demonstrates that nicotine induced a release of 5-HT upon stress application by stimulating presynaptic nicotinic receptors in the striatum.

  3. A comparison of chemiluminescent and radioenzymatic methods for the measurement of acetylcholine released from a rat phrenic nerve-hemidiaphragm preparation.

    Science.gov (United States)

    Ehler, K W; Hoops, E A; Storella, R J; Bierkamper, G G

    1986-11-01

    A chemiluminescent assay coupled to a periodide extraction method is described for the measurement of acetylcholine release from the vascular perfused rat phrenic nerve-hemidiaphragm preparation. A direct comparison of the chemiluminescent assay with an established radioenzymatic assay for acetylcholine demonstrates that the two assays are quantitatively equivalent and yield similar limits of sensitivity of approximately 2 pmol, and that the periodide extraction/chemiluminescent assay method is more consistent than the tetraphenylboron extraction/radioenzymatic assay method. Additionally, cholinergic drug interference with the chemiluminescent assay is minimal. The absence of radioactivity and the reduced cost of the chemiluminescent assay make it an attractive alternative to the radioenzymatic assay.

  4. Fluoxetine Alleviates Behavioral Depression while Decreasing Acetylcholine Release in the Nucleus Accumbens Shell

    Science.gov (United States)

    Chau, David T; Rada, Pedro V; Kim, Kay; Kosloff, Rebecca A; Hoebel, Bartley G

    2011-01-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have demonstrated the ability to alleviate behavioral depression in the forced swim test; however, the sites and mechanisms of their actions remain to be further elucidated. Previous studies have suggested that behavioral depression in the swim test is mediated in part by acetylcholine (ACh) stimulating the cholinergic M1 receptors in the nucleus accumbens (NAc) shell. The current study tested whether acute, local, and chronic, subcutaneous fluoxetine treatments increase escape motivation during the swim test while simultaneously lowering extracellular ACh in the NAc shell. Experiment 1: Fluoxetine (1.0 mM) infused unilaterally in the NAc shell for 40 min reduced extracellular ACh while simultaneously increasing swimming time. Experiment 2: Fluoxetine (0.2, 0.5, and 0.75 mM) infused bilaterally in the NAc shell on day 3 dose-dependently decreased immobility and increased the total escape attempts (swimming and climbing) compared with Ringer given on day 2. Experiment 3: Fluoxetine (0.5 mM) infused bilaterally in the NAc for 40 min did not affect activities in an open field. Experiment 4: Chronic systemic fluoxetine treatment decreased immobility scores and increased total escape attempt scores compared with control saline treatment. In all, 14 days after the initial swim test, basal extracellular ACh in the shell was still elevated in the saline-treated group, but not in the fluoxetine-treated group. In summary, these data suggest that one of the potential mechanisms by which fluoxetine alleviates behavioral depression in the forced swim test may be to suppress cholinergic activities in the NAc shell. PMID:21525864

  5. Non-quantal release of acetylcholine in rat atrial myocardium is inhibited by noradrenaline.

    Science.gov (United States)

    Borodinova, Anastasia A; Abramochkin, Denis V; Sukhova, Galina S

    2013-12-01

    In the mammalian myocardium, ACh, which is the main neurotransmitter of cardiac parasympathetic postganglionic fibres, can be released via both quantal (vesicular) and non-quantal (non-vesicular) mechanisms of secretion. Non-quantal release is continuous and independent of vagus activity and exocytosis of ACh-containing vesicles. During the incubation of myocardium in the presence of acetylcholinesterase (AChE) inhibitors, non-quantal ACh release leads to accumulation of ACh in the myocardium and cholinergic effects, which are proportional to the intensity of non-quantal secretion. The aim of the present study was to reveal whether non-quantal release of ACh can be modulated by another major cardioregulator, noradrenaline, or whether it represents uncontrolled leakage of ACh from cholinergic fibres. Cholinergic changes of electrical activity induced by the AChE inhibitor paraoxon (5 × 10(-6) M) in isolated rat right atrial preparations were determined by means of a standard microlectrode technique and used as a measure of the intensity of non-quantal release. Noradrenaline (10(-7) and 10(-6) M) substantially suppressed, but did not abolish, effects of paraoxon via stimulation of α-adrenoceptors, because all experiments were conducted in the presence of the β-blocker propranolol (5 × 10(-6) M). A blocker of ganglionic transmission, hexamethonium bromide (10(-4) M), failed to alter the inhibitory effect of noradrenaline, indicating that only non-quantal ACh release is suppressed by this neurotransmitter. The effects of noradrenaline could be reduced by the α2-antagonist yohimbine (10(-6) M). However, both the α1-agonist phenylephrine (10(-6) M) and the α2-agonist clonidine (10(-6) M) significantly inhibited the cholinergic effects of paraoxon, indicating the possible involvement of both α-adrenoceptor subtypes in mediation of the adrenergic inhibition of non-quantal ACh release. Thus, cardiac non-quantal ACh release can be negatively regulated by

  6. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    Science.gov (United States)

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  7. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  8. D2-dopamine receptor-mediated inhibition of intracellular Ca2+ mobilization and release of acetylcholine from guinea-pig neostriatal slices.

    OpenAIRE

    Fujiwara, H.; Kato, N; Shuntoh, H; Tanaka, C

    1987-01-01

    The effect of dopamine receptor activation on electrically- or high K+ (30 mM)-evoked neurotransmitter release and rise in intracellular Ca2+ concentration was investigated using slices of guinea-pig neostriatum. A specific D2-dopamine receptor agonist, LY-171555 (a laevorotatory enantiomer of LY-141865: N-propyl tricyclic pyrazole) at 10(-6) M inhibited electrical stimulation- and high K+-evoked release of [3H]-acetylcholine ([3H]-ACh) to 47.7 +/- 6.0% and 54.1 +/- 5.0% of control, respectiv...

  9. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  10. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA1...... hippocampal tissue. In intact CA1 hippocampal tissue, glutamate increased sixfold during ischemia; in the CA3-lesioned CA1 region, however, glutamate only increased 1.4-fold during ischemia. To assess the neurotoxic potential of the ischemia-induced release of glutamate, we injected the same concentration...... of glutamate into the CA1 region as is released during ischemia in normal, CA3-lesioned, and ischemic CA1 tissue. We found that this particular concentration of glutamate was sufficient to destroy CA1 pyramids in the vicinity of the injection site in intact and CA3-lesioned CA1 tissue when administered during...

  11. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels

    2013-01-01

    (BFCD) in 3 months old male Tg2576 mice to co-express cholinergic degeneration with Aβ overexpression as these characteristics constitutes key hallmarks of AD. At 9 months, SAP lesioned Tg2576 mice were cognitively impaired in two spatial paradigms addressing working memory and mid to long-term memory...

  12. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus.

    Science.gov (United States)

    Hescham, Sarah; Jahanshahi, Ali; Schweimer, Judith V; Mitchell, Stephen N; Carter, Guy; Blokland, Arjan; Sharp, Trevor; Temel, Yasin

    2016-11-01

    Deep brain stimulation (DBS) of the fornix has gained interest as a potential therapy for advanced treatment-resistant dementia, yet the mechanism of action remains widely unknown. Previously, we have reported beneficial memory effects of fornix DBS in a scopolamine-induced rat model of dementia, which is dependent on various brain structures including hippocampus. To elucidate mechanisms of action of fornix DBS with regard to memory restoration, we performed c-Fos immunohistochemistry in the hippocampus. We found that fornix DBS induced a selective activation of cells in the CA1 and CA3 subfields of the dorsal hippocampus. In addition, hippocampal neurotransmitter levels were measured using microdialysis before, during and after 60 min of fornix DBS in a next experiment. We observed a substantial increase in the levels of extracellular hippocampal acetylcholine, which peaked 20 min after stimulus onset. Interestingly, hippocampal glutamate levels did not change compared to baseline. Therefore, our findings provide first experimental evidence that fornix DBS activates the hippocampus and induces the release of acetylcholine in this region.

  13. VPAC1 and VPAC2 receptor activation on GABA release from hippocampal nerve terminals involve several different signalling pathways.

    Science.gov (United States)

    Cunha-Reis, Diana; Ribeiro, Joaquim Alexandre; de Almeida, Rodrigo F M; Sebastião, Ana M

    2017-12-01

    Vasoactive intestinal peptide (VIP) is an important modulator of hippocampal synaptic transmission that influences both GABAergic synaptic transmission and glutamatergic cell excitability through activation of VPAC1 and VPAC2 receptors. Presynaptic enhancement of GABA release contributes to VIP modulation of hippocampal synaptic transmission. We investigated which VIP receptors and coupled transduction pathways were involved in VIP enhancement of K+ -evoked [3 H]-GABA release from isolated nerve terminals of rat hippocampus. VIP enhancement of [3 H]-GABA release was potentiated in the presence of the VPAC1 receptor antagonist PG 97-269 but converted into an inhibition in the presence of the VPAC2 receptor antagonist PG 99-465, suggesting that activation of VPAC1 receptors inhibits and activation of VPAC2 receptors enhances, GABA release. A VPAC1 receptor agonist inhibited exocytotic voltage-gated calcium channel (VGCC)-dependent [3 H]-GABA release through activation of protein Gi/o , an effect also dependent on PKC activity. A VPAC2 receptor agonist enhanced both exocytotic VGCC-dependent release through protein Gs -dependent, PKA-dependent and PKC-dependent mechanisms and GABA transporter 1-mediated [3 H]-GABA release through a Gs protein-dependent and PKC-dependent mechanism. Our results show that VPAC1 and VPAC2 VIP receptors have opposing actions on GABA release from hippocampal nerve terminals through activation of different transduction pathways. As VPAC1 and VPAC2 receptors are located in different layers of Ammon's horn, our results suggest that these VIP receptors underlie different modulation of synaptic transmission to pyramidal cell dendrites and cell bodies, with important consequences for their possible therapeutic application in the treatment of epilepsy. © 2017 The British Pharmacological Society.

  14. Mice with selective elimination of striatal acetylcholine release are lean, show altered energy homeostasis and changed sleep/wake cycle.

    Science.gov (United States)

    Guzman, Monica S; De Jaeger, Xavier; Drangova, Maria; Prado, Marco A M; Gros, Robert; Prado, Vania F

    2013-03-01

    Cholinergic neurons are known to regulate striatal circuits; however, striatal-dependent physiological outcomes influenced by acetylcholine (ACh) are still poorly under;?>stood. Here, we used vesicular acetylcholine transporter (VAChT)(D2-Cre-flox/flox) mice, in which we selectively ablated the vesicular acetylcholine transporter in the striatum to dissect the specific roles of striatal ACh in metabolic homeostasis. We report that VAChT(D) (2-Cre-flox/flox) mice are lean at a young age and maintain this lean phenotype with time. The reduced body weight observed in these mutant mice is not attributable to reduced food intake or to a decrease in growth rate. In addition, changed activity could not completely explain the lean phenotype, as only young VAChT(D) (2-Cre-flox/flox) mice showed increased physical activity. Interestingly, VAChT(D) (2-Cre-flox/flox) mice show several metabolic changes, including increased plasma levels of insulin and leptin. They also show increased periods of wakefulness when compared with littermate controls. Taken together, our data suggest that striatal ACh has an important role in the modulation of metabolism and highlight the importance of striatum cholinergic tone in the regulation of energy expenditure. These new insights on how cholinergic neurons influence homeostasis open new avenues for the search of drug targets to treat obesity. © 2012 International Society for Neurochemistry.

  15. Detection of basal acetylcholine release in the microdialysis of rat frontal cortex by high-performance liquid chromatography using a horseradish peroxidase-osmium redox polymer electrode with pre-enzyme reactor.

    Science.gov (United States)

    Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O

    1996-06-28

    To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.

  16. Benzodiazepine receptor agonists cause drug-specific and state-specific alterations in EEG power and acetylcholine release in rat pontine reticular formation.

    Science.gov (United States)

    Hambrecht-Wiedbusch, Viviane S; Gauthier, Elizabeth A; Baghdoyan, Helen A; Lydic, Ralph

    2010-07-01

    Benzodiazepine (BDZ) and non-benzodiazepine (NBDZ) hypnotics enhance GABAergic transmission and are widely used for the treatment of insomnia. In the pontine reticular formation (PRF), GABA inhibits rapid eye movement (REM) sleep and acetylcholine (ACh) release. No previous studies have characterized the effects of BDZ and NBDZ hypnotics on ACh release in the PRF. This study tested 2 hypotheses: (1) that microdialysis delivery of zolpidem, eszopiclone, and diazepam to rat PRF alters ACh release in PRF and electroencephalographic (EEG) delta power and (2) that intravenous (i.v.) administration of eszopiclone to non-anesthetized rat alters ACh release in the PRF, sleep, and EEG delta power. A within- and between-groups experimental design. University of Michigan. Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 57). In vivo microdialysis of the PRF in rats anesthetized with isoflurane was used to derive the concentration-response effects of zolpidem, eszopiclone, and diazepam on ACh release. Chronically instrumented rats were used to quantify the effects of eszopiclone (3 mg/kg, i.v.) on ACh release in the PRF, sleep-wake states, and cortical EEG power. ACh release was significantly increased by microdialysis delivery to the PRF of zolpidem and eszopiclone but not diazepam. EEG delta power was increased by zolpidem and diazepam but not by eszopiclone administered to the PRF. Eszopiclone (i.v.) decreased ACh release in the PRF of both anesthetized and non-anesthetized rats. Eszopiclone (i.v.) prevented REM sleep and increased EEG delta power. The concentration-response data provide the first functional evidence that multiple GABA(A) receptor subtypes are present in rat PRF. Intravenously administered eszopiclone prevented REM sleep, decreased ACh release in the PRF, and increased EEG delta power. The effects of eszopiclone are consistent with evidence that ACh release in the PRF is lower during NREM sleep than during REM sleep, and with data showing that cholinergic

  17. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  18. Sleep and memory problems: acetylcholine in some neurodegenerative diseases, use of an extended-release formulation of galantamine

    Directory of Open Access Journals (Sweden)

    I V Litvinenko

    2012-01-01

    Full Text Available The paper reviews the literature dedicated to an association between sleep and memory problems and acetylcholine (AC levels. Moderate impairments of circadian rhythms can develop with aging; however, these changes become quite significant in dementia, which impairs the sleep-wake cycle. Low AC levels during slow-wave sleep are critical for declarative (verbal memory consolidation. An abnormal nocturnal reduction in cholinergic activity can worsen memory problems and provoke sleep deterioration. The results of the studies suggest that the type of an AC esterase inhibitor and the time of its administration are important for the development of these problems. Galantamine ensures high daytime concentrations of AC and its low nighttime levels, which enables the tone of cholinergic system to be maximally approaches physiological circadian rhythms. This may be essential to the improvement of sleep and memory in patients with dementia.

  19. Characterization of the muscarinic receptor subtype(s) mediating contraction of the guinea-pig lung strip and inhibition of acetylcholine release in the guinea-pig trachea with the selective muscarinic receptor antagonist tripitramine

    NARCIS (Netherlands)

    Roffel, A.F; Davids, J.H; Elzinga, C.R S; Wolf, D; Zaagsma, Hans; Kilbinger, H

    1 The muscarinic receptor subtypes mediating contraction of the guinea-pig lung strip and inhibition of the release of acetylcholine from cholinergic vagus nerve endings in the guinea-pig trachea in vitro have previously been characterized as M-2-like, i.e. having antagonist affinity profiles that

  20. A role for cGMP during tetanus toxin blockade of acetylcholine release in the rat pheochromocytoma (PC12) cell line.

    Science.gov (United States)

    Sandberg, K; Berry, C J; Eugster, E; Rogers, T B

    1989-11-01

    In order to identify the specific molecular mechanisms involved in neurosecretion, we investigated the mechanism of action of tetanus toxin, a potent presynaptic neurotoxin, in the rat adrenal pheochromocytoma PC12 cell line. It has recently been reported that tetanus toxin is a potent inhibitor of the release of depolarization-evoked 3H-acetylcholine (ACh) from nerve growth factor-differentiated PC12 cells (Sandberg et al., 1989a). In PC12 cells, as in many neural tissue preparations, cGMP accumulation in intact cells increased 6- to 17-fold when stimulated with veratridine (200 microM), carbachol (1 mM), Ba2+ (2 mM), or K+ (30 mM). Preincubation of the cells with tetanus toxin inhibits this accumulation by greater than 95%. The toxin dose-inhibition curves for 3H-ACh release and cGMP accumulation are similar, with half-maximal doses of tetanus toxin seen at approximately 5 nM. The time courses for the development of the effects of tetanus on 3H-ACh release and on cGMP accumulation were also similar. Protocols which elevated intracellular cGMP levels reversed the action of the toxin. For example, evoked ACh release was restored in intoxicated PC12 cells by a 15 min exposure to 100 microM 8-bromo-cGMP. The half-maximal dose was observed at 50 microM nucleotide. Examination of the nucleotide specificity revealed that only cyclic guanine analogs were effective in reversing the effects of tetanus toxin. These results suggested that the inhibition of depolarization-evoked cGMP accumulation is causally related to the action of tetanus toxin on neurosecretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals.

    Science.gov (United States)

    Wang, Su-Jane; Lin, Tzu-Yu; Lu, Cheng-Wei; Huang, Wei-Jan

    2008-12-01

    We examined the effects of osthole and imperatorin, two active compounds of Cnidium monnieri (L.) Cusson, on the release of glutamate from rat hippocampal synaptosomes and investigated the possible mechanism. The results showed that osthole or imperatorin significantly facilitated 4-aminopridine (4-AP)-evoked glutamate release in a concentration-dependent manner. The facilitatory action of osthole or imperatorin was blocked by the vesicular transporter inhibitor bafilomycin A1, not by the glutamate transporter inhibitor l-transpyrrolidine-2,4-dicarboxylic acid (l-trans-PDC), indicating that the release facilitation by osthole or imperatorin results from a enhancement of vesicular exocytosis and not from an increase of Ca(2+)-independent efflux via glutamate transporter. Examination of the effect of osthole and imperatorin on cytosolic [Ca(2+)] revealed that the facilitation of glutamate release could be attributed to an increase in voltage-dependent Ca(2+) influx. Consistent with this, omega-conotoxin MVIIC, a wide-spectrum blocker of the N- and P/Q-type Ca(2+) channels, significantly suppressed the osthole or imperatorin-mediated facilitation of glutamate release, but intracellular Ca(2+) release inhibitor dantrolene had no effect. Osthole or imperatorin did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization; thus, the facilitation of 4-AP-evoked Ca(2+) influx and glutamate release produced by osthole or imperatorin was not due to it decreasing synaptosomal excitability. In addition, osthole or imperatorin-mediated inhibition of 4-AP-evoked release was prevented by protein kinase C (PKC) inhibitors. Furthermore, osthole or imperatorin increased 4-AP-induced phosphorylation of PKC. Together, these results suggest that osthole or imperatorin effects a facilitation of glutamate release from nerve terminals by positively modulating N-and P/Q-type Ca(2+) channel activation through a signaling cascade involving PKC.

  2. Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice

    Directory of Open Access Journals (Sweden)

    Flóra Gölöncsér

    2017-10-01

    Full Text Available Serotonergic and glutamatergic neurons of median raphe region (MRR play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7 are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 μM, whereas the selective 5-HT1A agonist buspirone (0.1 μM was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 μM, and AZ-10606120 (0.1 μM. Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the

  3. D2-dopamine receptor-mediated inhibition of intracellular Ca2+ mobilization and release of acetylcholine from guinea-pig neostriatal slices.

    Science.gov (United States)

    Fujiwara, H; Kato, N; Shuntoh, H; Tanaka, C

    1987-06-01

    The effect of dopamine receptor activation on electrically- or high K+ (30 mM)-evoked neurotransmitter release and rise in intracellular Ca2+ concentration was investigated using slices of guinea-pig neostriatum. A specific D2-dopamine receptor agonist, LY-171555 (a laevorotatory enantiomer of LY-141865: N-propyl tricyclic pyrazole) at 10(-6) M inhibited electrical stimulation- and high K+-evoked release of [3H]-acetylcholine ([3H]-ACh) to 47.7 +/- 6.0% and 54.1 +/- 5.0% of control, respectively. The maximal inhibition by LY-171555 at 10(-5) M was 54.8 +/- 5.1% reduction of the control. The half-maximal effective concentration (EC50) of LY-171555 for the inhibition of [3H]-ACh release was 2.3 X 10(-7) M. A specific D2-dopamine receptor antagonist, (-)-sulpiride (10(-7) M) reversed the inhibition of [3H]-ACh release induced by LY-171555. A specific D1-dopamine receptor agonist, SK&F 38393 (2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-benzazepine) (10(-5) M) had no effect on the release of [3H]-ACh. LY-171555 (10(-6) M) also inhibited the high K+-evoked endogenous glutamate release, by 47% of control. This inhibitory effect was reversed by (-)-sulpiride (10(-7) M). We used a fluorescent, highly selective Ca2+ indicator, 'quin 2' to measure intracellular free Ca2+ concentrations ([Ca2+]i). Electrical stimulation of slices preloaded with quin 2 led to an elevation of relative fluorescence intensity and this response was reduced by the removal of Ca2+ from the bathing medium. These results indicate that the enhanced elevation in fluorescence intensity in the quin 2-loaded slices reflects the increase of intracellular free Ca2+ concentration, [Ca2+]i. The mixed D1- and D2-receptor agonist, apomorphine and LY-171555 inhibited the increase of [Ca2+]i induced by electrical stimulation or high K+ medium, in a concentration-dependent manner, while SK&F 38393 did not affect the increase of [Ca2+]i. The maximal inhibitory effect of LY-171555 at 3 X 10(-5) M was 35 +/- 3

  4. Acetylcholine receptor antibody

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  5. Effects of neostigmine and atropine on basal and handling-induced acetylcholine output from ventral hippocampus

    NARCIS (Netherlands)

    Moor, E; Schirm, Eric; Jacsó, J; Westerink, B.H.C.

    The involvement of muscarinic autoreceptors in the regulation of hippocampal acetylcholine levels during acetylcholinesterase inhibition was examined by perfusing the acetylcholinesterase inhibitor neostigmine bromide(10, 100 or 1000 nM) alone and in the presence of the muscarinic receptor

  6. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro.

    Science.gov (United States)

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven

    2015-08-05

    Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal

  7. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    Science.gov (United States)

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  8. Effects of ethylenediamine--a putative GABA-releasing agent--on rat hippocampal slices and neocortical activity in vivo.

    Science.gov (United States)

    Stone, Trevor W; Lui, Caleb; Addae, Jonas I

    2011-01-15

    The simple diamine diaminoethane (ethylenediamine, EDA) has been shown to activate GABA receptors in the central and peripheral nervous systems, partly by a direct action and partly by releasing endogenous GABA. These effects have been shown to be produced by the complexation of EDA with bicarbonate to form a carbamate. The present work has compared EDA, GABA and β-alanine responses in rat CA1 neurons using extracellular and intracellular recordings, as well as neocortical evoked potentials in vivo. Superfusion of GABA onto hippocampal slices produced depolarisation and a decrease of field epsps, both effects fading rapidly, but showing sensitivity to blockade by bicuculline. EDA produced an initial hyperpolarisation and increase of extracellular field epsp size with no fade and only partial sensitivity to bicuculline, with subsequent depolarisation, while β-alanine produces a much larger underlying hyperpolarisation and increase in fepsps, followed by depolarisation and inhibition of fepsps. The responses to β-alanine, but not GABA or EDA, were blocked by strychnine. In vivo experiments, recording somatosensory evoked potentials, confirmed that EDA produced an initial increase followed by depression, and that this effect was not fully blocked by bicuculline. Overall the results indicate that EDA has actions in addition to the activation of GABA receptors. These actions are not attributable to activation of β-alanine-sensitive glycine receptors, but may involve the activation of sites sensitive to adipic acid, which is structurally equivalent to the dicarbamate of EDA. The results emphasise the complex pharmacology of simple amines in bicarbonate-containing solutions. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Phencyclidine (PCP)-like inhibition of N-methyl-D-aspartate-evoked striatal acetylcholine release, /sup 3/H-TCP binding and synaptosomal dopamine uptake by metaphit, a proposed PCP receptor acylator

    Energy Technology Data Exchange (ETDEWEB)

    Snell, L.D.; Johnson, K.M.; Yi, S.J.; Lessor, R.A.; Rice, K.C.; Jacobson, A.E.

    1987-12-14

    The phencyclidine (PCP) receptor acylator, metaphit, has been reported to act as a PCP antagonist. Recent electrophysiological and behavioral assessments of metaphit action have revealed, however, that this compound can also act as a PCP-like agonist. The present study examined the effects of metaphit on the inhibition of N-methyl-D-aspartate (NMDA)-induced /sup 3/H-acetylcholine (ACh) release, /sup 3/H-TCP binding and synaptosomal /sup 3/H-dopamine (DA) uptake in the rat striatum. Preincubation of striatal slices for 10 min in the presence of metaphit, followed by a prolonged washout, produced a concentration-dependent inhibition of the ACh release evoked by 300 ..mu..M NMDA. At high concentrations, preincubation with PCP also resulted in inhibition of this measure. However, this could be reduced by extending the washout period, a procedure which had no effect on the inhibition produced by metaphit. At 10..mu..M, metaphit resulted in a 53% reduction in NMDA-evoked ACh release while PCP had no effect under identical conditions. Preincubation of slices in 10 ..mu..M PCP and metaphit reduced the metaphit inhibition by 62%. The effects of PCP and metaphit, alone or in combination, on NMDA-induced ACh release were paralleled by a loss of /sup 3/H-TCP binding sites in striatal tissue incubated under identical conditions suggesting that metaphit exerts long-lasting agonist-like actions on PCP receptors coupled to NMDA receptors. 27 references, 3 figures, 1 table.

  10. Neuromuscular paralysis by the basic phospholipase A2subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage.

    Science.gov (United States)

    Cavalcante, Walter L G; Noronha-Matos, José B; Timóteo, Maria A; Fontes, Marcos R M; Gallacci, Márcia; Correia-de-Sá, Paulo

    2017-11-01

    Crotoxin (CTX), a heterodimeric phospholipase A 2 (PLA 2 ) neurotoxin from Crotalus durissus terrificus snake venom, promotes irreversible blockade of neuromuscular transmission. Indirect electrophysiological evidence suggests that CTX exerts a primary inhibitory action on transmitter exocytosis, yet contribution of a postsynaptic action of the toxin resulting from nicotinic receptor desensitization cannot be excluded. Here, we examined the blocking effect of CTX on nerve-evoked transmitter release measured directly using radioisotope neurochemistry and video microscopy with the FM4-64 fluorescent dye. Experiments were conducted using mice phrenic-diaphragm preparations. Real-time fluorescence video microscopy and liquid scintillation spectrometry techniques were used to detect transmitter exocytosis and nerve-evoked [ 3 H]-acetylcholine ([ 3 H]ACh) release, respectively. Nerve-evoked myographic recordings were also carried out for comparison purposes. Both CTX (5μg/mL) and its basic PLA 2 subunit (CB, 20μg/mL) had biphasic effects on nerve-evoked transmitter exocytosis characterized by a transient initial facilitation followed by a sustained decay. CTX and CB reduced nerve-evoked [ 3 H]ACh release by 60% and 69%, respectively, but only the heterodimer, CTX, decreased the amplitude of nerve-evoked muscle twitches. Data show that CTX exerts a presynaptic inhibitory action on ACh release that is highly dependent on its intrinsic PLA 2 activity. Given the high safety margin of the neuromuscular transmission, one may argue that the presynaptic block caused by the toxin is not enough to produce muscle paralysis unless a concurrent postsynaptic inhibitory action is also exerted by the CTX heterodimer. Copyright © 2017. Published by Elsevier Inc.

  11. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng [Department of Pharmacology, University of Cambridge (United Kingdom); Johnson, Hong W.; Schell, Michael J. [Department of Pharmacology, Uniformed Services University, Bethesda (United States); Lord, Rebecca L. [Department of Biology, University of York (United Kingdom); Chawla, Sangeeta, E-mail: sangeeta.chawla@york.ac.uk [Department of Pharmacology, University of Cambridge (United Kingdom); Department of Biology, University of York (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited

  12. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats

    DEFF Research Database (Denmark)

    Bortz, D M; Upton, B A; Mikkelsen, J D

    2016-01-01

    such studies have been performed in vitro. Here we test the hypothesis that PAMs’ potentiation of glutamate release in prefrontal cortex depends upon the level of endogenous cholinergic activity. NMDA stimulation of the nucleus accumbens shell (0.05–0.30 μg in 0.5 μL) increased extracellular choline (0.87 ± 0.......15 – 1.73 ± 0.31 μM) and glutamate (0.15 μg, 3.79 ± 0.87 μM) in medial prefrontal cortex, and the glutamate release was prevented by local infusions of MLA (6.75 μg, 0.19 ± 0.06 μM). The lower dose (1 mg/kg) of AVL3288 (type I) potentiated the glutamate release to a greater degree after the high dose...

  13. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice.

    Science.gov (United States)

    Siegel, Jessica A; Park, Byung S; Raber, Jacob

    2011-10-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  14. Electromagnetic field effect or simply stress? Effects of UMTS exposure on hippocampal longterm plasticity in the context of procedure related hormone release.

    Directory of Open Access Journals (Sweden)

    Nora Prochnow

    Full Text Available Harmful effects of electromagnetic fields (EMF on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF signals of the Universal Mobile Telecommunications System (UMTS to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH and on hippocampal derived synaptic long-term plasticity (LTP and depression (LTD as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg. The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg cannot be excluded.

  15. Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release

    Science.gov (United States)

    Ladage, Kerstin; Krause-Finkeldey, Dorothee; El Ouardi, Abdessamad; Bitz, Andreas; Streckert, Joachim; Hansen, Volkert; Dermietzel, Rolf

    2011-01-01

    Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded. PMID:21573218

  16. Characterization of nicotinic receptors involved in the release of noradrenaline from the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Vizi, E.S. [Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest (Hungary); Lajtha, A. [Center of Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY (United States); Balla, A. [Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest (Hungary); Sershen, H. [Center of Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY (United States)

    1997-01-06

    The pharmacological features of putative nicotinic acetylcholine receptor sites involved in the release of [{sup 3}H]noradrenaline were assessed in rat hippocampus. The effect of nicotinic agonists to induce [{sup 3}H]noradrenaline release was examined in superfused slices. The nicotinic agonists (-)-epibatidine, (+)-anatoxin-a, dimethylphenylpiperazinium, (-)-nicotine and (-)-lobeline released [{sup 3}H]noradrenaline. The dose-response curves to nicotinic agonists were bell shaped, and indicated that their functional efficacies and potency vary across agonists. Maximal efficacy was seen with dimethylphenylpiperazinium and lobeline (E{sub max} values two to three times higher than other agonists). The rank order of potency for the agonists to release [{sup 3}H]noradrenaline was (-)-epibatidine (+)-anatoxin-a dimethylphenylpiperazinium cytisine nicotine (-)-lobeline. The nicotinic acetylcholine receptor antagonists [n-bungarotoxin (+)-tubocurarine hexamethonium>>{alpha}-bungarotoxin=dihydro-{beta}-erythroidine] and tetrodotoxin antagonized the effect of dimethylphenylpiperazinium to release [{sup 3}H]noradrenaline. The results, based on these pharmacological profiles, suggest the possible involvement of nicotinic acetylcholine receptor {alpha}3 and {beta}2 nicotinic acetylcholine receptor subunits in the control of [{sup 3}H]noradrenaline release from hippocampal slices. The absence of effect of {alpha}-bungarotoxin and {alpha}-conotoxin-IMI excludes the possible involvement of nicotinic acetylcholine receptors containing the {alpha}7 subunit. The release of [{sup 3}H]noradrenaline by dimethylphenylpiperazinium was Ca{sup 2+} dependent. Nifedipine failed to prevent the dimethylphenylpiperazinium-induced release of [{sup 3}H]noradrenaline, but Cd{sup 2+}, {omega}-conotoxin and Ca{sup 2+}-free conditions significantly reduced the dimethylphenylpiperazinium-induced release, suggesting that N-type voltage-sensitive Ca{sup 2+} channels are involved in the nicotinic

  17. a2* Nicotinic Acetylcholine Receptors Influence Hippocampus-Dependent Learning and Memory in Adolescent Mice

    Science.gov (United States)

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim

    2017-01-01

    The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…

  18. Novel acetylcholine and carbamoylcholine analogues

    DEFF Research Database (Denmark)

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Christensen, Jeppe K.

    2008-01-01

    A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity for this ...

  19. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, R.; De Tejada, S.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. (Boston Univ. Medical Center, MA (USA))

    1988-03-01

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with ({sup 3}H)choline accumulated ({sup 3}H)choline and synthesized ({sup 3}H)acethylcholine in an concentration-dependent manner. ({sup 3}H)Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of ({sup 3}H)acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum.

  20. Tissue-specific effects of acetylcholine in the canine heart

    DEFF Research Database (Denmark)

    Callø, Kirstine; Goodrow, Robert; Olesen, Søren-Peter

    2013-01-01

    INTRODUCTION: Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current (IK,ACh). The effect of ACh in ventricle is still debated. We compare the effect of ACh on ac...

  1. Influence of acetylcholine on binding of 4-[{sup 125}i]iododexetimide to muscarinic brain receptors

    Energy Technology Data Exchange (ETDEWEB)

    Weckesser, Matthias E-mail: m.weckesser@fz-juelich.de; Fixmann, Anton; Holschbach, Marcus; Mueller-Gaertner, Hans-W

    1998-11-01

    The distribution of nicotinic and muscarinic cholinergic receptors in the human brain in vivo has been successfully characterized using radiolabeled tracers and emission tomography. The effect of acetylcholine release into the synaptic cleft on receptor binding of these tracers has not yet been investigated. The present study examined the influence of acetylcholine on binding of 4-[{sup 125}I]iododexetimide to muscarinic cholinergic receptors of porcine brain synaptosomes in vitro. 4-Iododexetimide is a subtype-unspecific muscarinic receptor antagonist with high affinity. Acetylcholine competed with 4-[{sup 125}I]iododexetimide in a dose-dependent manner. A concentration of 500 {mu}M acetylcholine inhibited 50% of total specific 4-[{sup 125}I]iododexetimide binding to synaptosomes when both substances were given simultaneously. An 800 {mu}M acetylcholine solution reduced total specific 4-[{sup 125}I]iododexetimide binding by about 35%, when acetylcholine was given 60 min after incubation of synaptosomes with 4-[{sup 125}I]iododexetimide. Variations in the synaptic acetylcholine concentration might influence muscarinic cholinergic receptor imaging in vivo using 4-[{sup 123}I]iododexetimide. Conversely, 4-[{sup 123}I]iododexetimide might be an appropriate molecule to investigate alterations of acetylcholine release into the synaptic cleft in vivo using single photon emission computed tomography.

  2. Impulsive behavior and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  3. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Acetylcholine : Future research and perspectives

    NARCIS (Netherlands)

    Van der Zee, E. A.; Platt, B.; Riedel, G.

    2011-01-01

    Ever since the initial description of chemical transmission in the early part of the 20th century and the identification of acetylcholine (ACh) as the first such transmitter, interests grew to define the multiple facets of its functions. This multitude is only partially covered here, but even in the

  5. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    Science.gov (United States)

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  6. Cyclic nucleotides of canine antral smooth muscle. Effects of acetylcholine, catecholamines and gastrin.

    Science.gov (United States)

    Baur, S; Grant, B; Wooton, J

    1981-01-07

    1. The effects of acetylcholine, catecholamines and gastrin on the intracellular content of cyclic AMP and cyclic GMP in antral circular muscle have been determined. 2. Acetylcholine results in a significant but transient increase in intracellular cyclic GMP. 3. Isoproterenol and norepinephrine increase intracellular cyclic AMP. Based on half-maximal effective doses, isoproterenol is 2.7-times more effective than norepinephrine. The increase in intracellular cyclic AMP by both agents is inhibited by propranolol but not phentolamine, indicating that both agents act on the muscle cell by a beta-receptor-coupled mechanism. 4. Gastrin has no demonstrable effect on either cyclic AMP or cyclic GMP. This suggests that while gastrin and acetylcholine can produce a like myoelectric response in the muscle cell, the action of gastrin is mediated by a separate receptor, presumably on the muscle cell, and not by a release of acetylcholine.

  7. α7 Nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer's mouse model.

    Directory of Open Access Journals (Sweden)

    Tiina Maria Pirttimaki

    Full Text Available It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ, the toxic trigger for Alzheimer's disease (AD, interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs. Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT. The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline.

  8. Acetylcholine and memory: a long, complex and chaotic but still living relationship.

    Science.gov (United States)

    Micheau, Jacques; Marighetto, Aline

    2011-08-10

    Even though "procholinergic" drugs are almost the sole kind of treatments currently used as cognitive enhancers in patients with Alzheimer's disease, the role of acetylcholine (ACh) in learning and memory is still poorly understood. In this short review, we focus on the septo-hippocampal cholinergic system and try to demonstrate that understanding ACh-memory relationships requires taking into account two characteristics of memory function. First, this function is polymorphic and relies on multiple neural systems. It appears that hippocampal ACh may not only modulate specific computational function of the hippocampus but also contributes to the functional coordination of multiple memory systems in a task-dependent manner. Second, memorization implies different phases which are differentially regulated by ACh. Namely, several lines of evidence suggest a "biphasic" involvement with hippocampal ACh facilitating memory encoding but hampering memory consolidation and retrieval, and low hippocampal ACh promoting consolidation of declarative memory. By spotting major determinants of memory modulation by hippocampal ACh, we hope that the present non exhaustive review will help to improve our understanding of the complexity of ACh-memory relationships. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor ?4 via activating calpain-2

    OpenAIRE

    Yaling Yin; Yali Wang; Di Gao; Jinwang Ye; Xin Wang; Lin Fang; Dongqin Wu; Guilin Pi; Chengbiao Lu; Xin-Wen Zhou; Ying Yang; Jian-Zhi Wang

    2016-01-01

    Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer?s disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of ?4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains...

  10. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    Science.gov (United States)

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    Science.gov (United States)

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Decomposition of acetylcholine with ethylene formation in vitro. Possible free radical mechanism of acetylcholine action.

    Science.gov (United States)

    Kurchii, V M; Kurchii, B A

    2000-01-01

    Experiments were designed to investigate the effect of different buffered solutions, Fenton reagent and hydrogen peroxide on acetylcholine decomposition with ethylene formation. The data of the present study suggests that acetylcholine is decomposed in vitro to form ethylene by interacting with the free radicals or in the Hofmann's splitting reaction. It is found that free radicals are required for the fast decomposition of acetylcholine to form ethylene. A general mechanism to explain the rapid biological effects that can be influenced by the free radicals was proposed. We have concluded that endogenous metabolic free radicals can be involved in the decomposition of acetylcholine as well in the biological activation of formed ethylene in vivo.

  13. TC299423, a Novel Agonist for Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Teagan R. Wall

    2017-09-01

    Full Text Available (E-5-(Pyrimidin-5-yl-1,2,3,4,7,8-hexahydroazocine (TC299423 is a novel agonist for nicotinic acetylcholine receptors (nAChRs. We examined its efficacy, affinity, and potency for α6β2∗ (α6β2-containing, α4β2∗, and α3β4∗ nAChRs, using [125I]-epibatidine binding, whole-cell patch-clamp recordings, synaptosomal 86Rb+ efflux, [3H]-dopamine release, and [3H]-acetylcholine release. TC299423 displayed an EC50 of 30–60 nM for α6β2∗ nAChRs in patch-clamp recordings and [3H]-dopamine release assays. Its potency for α6β2∗ in these assays was 2.5-fold greater than that for α4β2∗, and much greater than that for α3β4∗-mediated [3H]-acetylcholine release. We observed no major off-target binding on 70 diverse molecular targets. TC299423 was bioavailable after intraperitoneal or oral administration. Locomotor assays, measured with gain-of-function, mutant α6 (α6L9′S nAChR mice, show that TC299423 elicits α6β2∗ nAChR-mediated responses at low doses. Conditioned place preference assays show that low-dose TC299423 also produces significant reward in α6L9′S mice, and modest reward in WT mice, through a mechanism that probably involves α6(non-α4β2∗ nAChRs. However, TC299423 did not suppress nicotine self-administration in rats, indicating that it did not block nicotine reinforcement in the dosage range that was tested. In a hot-plate test, TC299423 evoked antinociceptive responses in mice similar to those of nicotine. TC299423 and nicotine similarly inhibited mouse marble burying as a measure of anxiolytic effects. Taken together, our data suggest that TC299423 will be a useful small-molecule agonist for future in vitro and in vivo studies of nAChR function and physiology.

  14. Bupropion-induced inhibition of α7 nicotinic acetylcholine receptors expressed in heterologous cells and neurons from dorsal raphe nucleus and hippocampus.

    Science.gov (United States)

    Vázquez-Gómez, Elizabeth; Arias, Hugo R; Feuerbach, Dominik; Miranda-Morales, Marcela; Mihailescu, Stefan; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof; García-Colunga, Jesús

    2014-10-05

    The pharmacological activity of bupropion was compared between α7 nicotinic acetylcholine receptors expressed in heterologous cells and hippocampal and dorsal raphe nucleus neurons. The inhibitory activity of bupropion was studied on GH3-α7 cells by Ca2+ influx, as well as on neurons from the dorsal raphe nucleus and interneurons from the stratum radiatum of the hippocampal CA1 region by using a whole-cell voltage-clamp technique. In addition, the interaction of bupropion with the α7 nicotinic acetylcholine receptor was determined by [3H]imipramine competition binding assays and molecular docking. The fast component of acetylcholine- and choline-induced currents from both brain regions was inhibited by methyllycaconitine, indicating the participation of α7-containing nicotinic acetylcholine receptors. Choline-induced currents in hippocampal interneurons were partially inhibited by 10 µM bupropion, a concentration that could be reached in the brain during clinical administration. Additionally, both agonist-induced currents were reversibly inhibited by bupropion at concentrations that coincide with its inhibitory potency (IC50=54 µM) and binding affinity (Ki=63 µM) for α7 nicotinic acetylcholine receptors from heterologous cells. The [3H]imipramine competition binding and molecular docking results support a luminal location for the bupropion binding site(s). This study may help to understand the mechanisms of actions of bupropion at neuronal and molecular levels related with its therapeutic actions on depression and for smoking cessation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement.

    Science.gov (United States)

    Huang, Mei; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-11-01

    Blonanserin is a novel atypical antipsychotic drug (APD), which, unlike most atypical APDs, has a slightly higher affinity for dopamine (DA) D2 than serotonin (5-HT)2A receptors, and is an antagonist at both, as well as at D3 receptors. The effects of atypical APDs to enhance rodent cortical, hippocampal, limbic, and dorsal striatal (dSTR) DA and acetylcholine (ACh) release, contribute to their ability to improve novel object recognition (NOR) in rodents treated with sub-chronic (sc) phencyclidine (PCP) and cognitive impairment associated with schizophrenia (CIAS). Here we determined the ability of blonanserin, the D3 antagonist NGB 2904, and the typical APD, haloperidol, a D2 antagonist, to enhance neurotransmitter efflux in the medial prefrontal cortex (mPFC) and dSTR of mice, and to ameliorate the scPCP-induced deficit in NOR in rats. Blonanserin, 10mg/kg, i.p., increased DA, norepinephrine (NE), and ACh efflux in mPFC and dSTR. NGB 2904, 3mg/kg, increased DA and ACh, but not NE, efflux in mPFC, and DA, but not ACh, efflux in dSTR. Haloperidol increased DA and NE efflux in dSTR only. The selective D3 agonist PD 128907 partially blocked the blonanserin-induced cortical ACh, DA, NE and striatal DA efflux. NGB 2904, 3mg/kg, like blonanserin, 1mg/kg, and the combination of sub-effective doses of NGB 2904 and blonanserin (both 0.3mg/kg), ameliorated the scPCP-induced NOR deficit in rats. These results suggest that D3 receptor blockade may contribute to the ability of blonanserin to increase cortical DA and ACh efflux, as well as to restore NOR and improve CIAS. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  17. Dysfunctional Presynaptic M2 Receptors in the Presence of Chronically High Acetylcholine Levels: Data from the PRiMA Knockout Mouse.

    Directory of Open Access Journals (Sweden)

    Franziska Mohr

    Full Text Available The muscarinic M2 receptor (M2R acts as a negative feedback regulator in central cholinergic systems. Activation of the M2 receptor limits acetylcholine (ACh release, especially when ACh levels are increased because acetylcholinesterase (AChE activity is acutely inhibited. Chronically high ACh levels in the extracellular space, however, were reported to down-regulate M2R to various degrees. In the present study, we used the PRiMA knockout mouse which develops severely reduced AChE activity postnatally to investigate ACh release, and we used microdialysis to investigate whether the function of M2R to reduce ACh release in vivo was impaired in adult PRiMA knockout mice. We first show that striatal and hippocampal ACh levels, while strongly increased, still respond to AChE inhibitors. Infusion or injection of oxotremorine, a muscarinic M2 agonist, reduced ACh levels in wild-type mice but did not significantly affect ACh levels in PRiMA knockout mice or in wild-type mice in which ACh levels were artificially increased by infusion of neostigmine. Scopolamine, a muscarinic antagonist, increased ACh levels in wild-type mice receiving neostigmine, but not in wild-type mice or in PRiMA knockout mice. These results demonstrate that M2R are dysfunctional and do not affect ACh levels in PRiMA knockout mice, likely because of down-regulation and/or loss of receptor-effector coupling. Remarkably, this loss of function does not affect cognitive functions in PRiMA knockout mice. Our results are discussed in the context of AChE inhibitor therapy as used in dementia.

  18. The Ghosts of Acetylcholine : Structure- activity relationships of ...

    African Journals Online (AJOL)

    Adele

    . This presentation attempts to see the structure of acetylcholine in all muscle relaxants that are clinically useful. It begins with the structure of acetylcholine itself , then progresses to suxamethonium and incorporates all nondepolarising agents.

  19. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...... surrogate and homology modeling template for the nAChRs, the conformation of this loop is controlled by the ligand present in the binding pocket. As part of the development of a protocol for unbiased docking to the nAChRs, we here present the results of docking of ligands with known binding modes to an ACh...

  20. Empathy in hippocampal amnesia.

    Science.gov (United States)

    Beadle, J N; Tranel, D; Cohen, N J; Duff, M C

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy.

  1. Parazoanthoxanthin A blocks Torpedo nicotinic acetylcholine receptors.

    Science.gov (United States)

    Rozman, Klara Bulc; Araoz, Romulo; Sepcić, Kristina; Molgo, Jordi; Suput, Dusan

    2010-09-06

    Nicotinic acetylcholine receptors are implicated in different nervous system-related disorders, and their modulation could improve existing therapy of these diseases. Parazoanthoxanthin A (ParaA) is a fluorescent pigment of the group of zoanthoxanthins. Since it is a potent acetylcholinesterase inhibitor, it may also bind to nicotinic acetylcholine receptors (nAChRs). For this reason its effect on Torpedo nAChR (alpha1(2)betagammadelta) transplanted to Xenopus laevis oocytes was evaluated, using the voltage-clamp technique. ParaA dose-dependently reduced the acetylcholine-induced currents. This effect was fully reversible only at lower concentrations. ParaA also reduced the Hill coefficient and the time to peak current, indicating a channel blocking mode of action. On the other hand, the combined effect of ParaA and d-tubocurarine (d-TC) on acetylcholine-induced currents exhibited only partial additivity, assuming a competitive mode of action of ParaA on nAChR. These results indicate a dual mode of action of ParaA on the Torpedo AChR. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    Science.gov (United States)

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya (Stanford-MED); (Kyoto); (Gakushuin); (Kyushu)

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  4. Growth hormone rescues hippocampal synaptic function after sleep deprivation

    Science.gov (United States)

    Kim, Eunyoung; Bertolotti, Don; Green, Todd L.

    2010-01-01

    Sleep is required for, and sleep loss impairs, normal hippocampal synaptic N-methyl-d-aspartate (NMDA) glutamate receptor function and expression, hippocampal NMDA receptor-dependent synaptic plasticity, and hippocampal-dependent memory function. Although sleep is essential, the signals linking sleep to hippocampal function are not known. One potential signal is growth hormone. Growth hormone is released during sleep, and its release is suppressed during sleep deprivation. If growth hormone links sleep to hippocampal function, then restoration of growth hormone during sleep deprivation should prevent adverse consequences of sleep loss. To test this hypothesis, we examined rat hippocampus for spontaneous excitatory synaptic currents in CA1 pyramidal neurons, long-term potentiation in area CA1, and NMDA receptor subunit proteins in synaptic membranes. Three days of sleep deprivation caused a significant reduction in NMDA receptor-mediated synaptic currents compared with control treatments. When rats were injected with growth hormone once per day during sleep deprivation, the loss of NMDA receptor-mediated synaptic currents was prevented. Growth hormone injections also prevented the impairment of long-term potentiation that normally follows sleep deprivation. In addition, sleep deprivation led to a selective loss of NMDA receptor 2B (NR2B) from hippocampal synaptic membranes, but normal NR2B expression was restored by growth hormone injection. Our results identify growth hormone as a critical mediator linking sleep to normal synaptic function of the hippocampus. PMID:20237303

  5. An allosteric enhancer of M(4) muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

    DEFF Research Database (Denmark)

    Nielsen, Ditte Dencker; Weikop, Pia; Sørensen, Gunnar

    2012-01-01

    The mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M(4) acetylcholine receptor subtype is centrally involved in the regulation of dopamine release in striatal areas. Consequently, striatal M(4) receptors could...... be a novel target for modulating psychostimulant effects of cocaine....

  6. Empathy in hippocampal amnesia

    Directory of Open Access Journals (Sweden)

    Janelle N Beadle

    2013-03-01

    Full Text Available The scientific investigation of empathy has become a cornerstone in the field of social cognition. Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. Scientific investigations of empathy have focused on characterizing its cognitive and neural substrates, pointing to a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate. While the hippocampus has rarely been the focus of empathy research, we propose that there are compelling reasons to inquire about the contribution of the hippocampus to social cognition. We propose that the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity make it well-suited to meet the demands of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female with focal, bilateral hippocampal (HC damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. In response to the empathy inductions, unlike healthy comparison participants, hippocampal patients reported no increase in empathy ratings or prosocial behavior from the control condition. Taken together, these results provide preliminary evidence for a role of hippocampal declarative memory in empathy.

  7. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory.

    Science.gov (United States)

    Giovannini, Maria Grazia; Lana, Daniele; Pepeu, Giancarlo

    2015-03-01

    The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating

  8. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  9. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-d-aspartic acid receptor activity

    OpenAIRE

    Levine, Eric S; Crozier, Robert A.; Black, Ira B.; Plummer, Mark R.

    1998-01-01

    Neurotrophins (NTs) have recently been found to regulate synaptic transmission in the hippocampus. Whole-cell and single-channel recordings from cultured hippocampal neurons revealed a mechanism responsible for enhanced synaptic strength. Specifically, brain-derived neurotrophic factor augmented glutamate-evoked, but not acetylcholine-evoked, currents 3-fold and increased N-methyl-d-aspartic acid (NMDA) receptor open probability. Activation of trkB NT receptors was critical, as glutamate curr...

  10. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette

    2016-01-01

    -resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine binding proteins (AChBPs) that despite low overall sequence identity display high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce...... relative binding affinities of ligands at nAChRs. Over the past decade, AChBPs have been used extensively as models for nAChRs and have aided the understanding of drug receptor interactions at nAChRs significantly. This article is protected by copyright. All rights reserved....

  11. Effects of ultrasound-combined microbubbles on hippocampal AchE fibers in rats.

    Science.gov (United States)

    Gong, Zi-Li; Luo, Chun-Mei; Wu, Sheng-Zheng; Ran, Hong; Zhu, Jie; Zheng, Jian

    2014-05-01

    To investigate the protective effect of ultrasound-combined microbubbles on hippocampal acetylcholinesterase (AchE) fibers in rats. According to random digits table, 60 SD rats were divided into two groups, marrow stromal cells (MSCs) intracranial transplantation group and MSCs intracranial transplantation + ultrasonic microbubbles group. Marrow stromal cells were cultivated and isolated in vitro; 12 weeks after transplantation, spatial learning and memorizing abilities of rats were assessed by Morris water maze; AchE staining method was used to observe changes in density and appearance of AchE staining positive fibers in hippocampal CA1 region. There was a significant increase in spatial learning and memorizing abilities of rats in MSCs intracranial transplantation + ultrasonic microbubbles group. Hippocampal AchE staining suggested an increase in the density of AchE staining positive fibers in MSCs intracranial transplantation group; the fibers were regular, intact and dense. Density of hippocampal AchE positive fibers was negatively correlated with the escape latent period and was positively correlated with percentage of the time needed to cross each platform quadrant. Better promotion of spatial learning and memorizing abilities of rats in MSCs intracranial transplantation + ultrasonic microbubbles group may be related with the protective effect of ultrasound-combined microbubbles on hippocampal acetylcholine fibers. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  12. Hippocampal MR volumetry

    Science.gov (United States)

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  13. Acetylcholine facilitates recovery of episodic memory after brain damage.

    Science.gov (United States)

    Croxson, Paula L; Browning, Philip G F; Gaffan, David; Baxter, Mark G

    2012-10-03

    Episodic memory depends on a network of interconnected brain structures including the inferior temporal cortex, hippocampus, fornix, and mammillary bodies. We have previously shown that a moderate episodic memory impairment in monkeys with transection of the fornix is exacerbated by prior depletion of acetylcholine from inferotemporal cortex, despite the fact that depletion of acetylcholine from inferotemporal cortex on its own has no effect on episodic memory. Here we show that this effect occurs because inferotemporal acetylcholine facilitates recovery of function following structural damage within the neural circuit for episodic memory. Episodic memory impairment caused by lesions of the mammillary bodies, like fornix transection, was exacerbated by prior removal of temporal cortical acetylcholine. However, removing temporal cortical acetylcholine after the lesion of the fornix or mammillary bodies did not increase the severity of the impairment. This lesion order effect suggests that acetylcholine within the inferior temporal cortex ordinarily facilitates functional recovery after structural lesions that impair episodic memory. In the absence of acetylcholine innervation to inferotemporal cortex, this recovery is impaired and the amnesia caused by the structural lesion is more severe. These results suggest that humans with loss of cortical acetylcholine function, for example in Alzheimer's disease, may be less able to adapt to memory impairments caused by structural neuronal damage to areas in the network important for episodic memory.

  14. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    Science.gov (United States)

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  15. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  16. Moxibustion upregulates hippocampal progranulin expression

    Directory of Open Access Journals (Sweden)

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  17. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...... in diseases such as schizophrenia and Alzheimer's disease. Furthermore, α7 nAChR agonists and allosteric modulators differentially alter expression and functionality of the α7 nAChR with repeated administration, which suggests that there may be fundamentally different outcomes of long-term administration...... with these different types of compounds. Finally, we describe the special case of Aβ1-42 binding to the α7 nAChR, which may pose a unique challenge to drug development of α7 nAChR-specific ligands for Alzheimer's disease. Hopefully, a greater knowledge of the many factors influencing α7 nAChR function as well...

  18. Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine

    Directory of Open Access Journals (Sweden)

    Abagyan Ruben

    2002-01-01

    Full Text Available Abstract Background Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs could present improved pharmacology and toxicity profile. Results Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity. Conclusion The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles.

  19. Complement selectively elicits glutamate release from nerve endings in different regions of mammal central nervous system.

    Science.gov (United States)

    Merega, Elisa; Di Prisco, Silvia; Lanfranco, Massimiliano; Severi, Paolo; Pittaluga, Anna

    2014-05-01

    Our study was aimed at investigating whether complement, a complex of soluble and membrane-associated serum proteins, could, in addition to its well-documented post-synaptic activity, also pre-synaptically affect the release of classic neurotransmitters in central nervous system (CNS). Complement (dilution 1 : 10 to 1 : 10000) elicited the release of preloaded [(3) H]-d-aspartate ([(3) H]d-ASP) and endogenous glutamate from mouse cortical synaptosomes in a dilution-dependent manner. It also evoked [(3) H]d-ASP release from mouse hippocampal, cerebellar, and spinal cord synaptosomes, as well as from rat and human cortical nerve endings, but left unaltered the release of GABA, [(3) H]noradrenaline or [(3) H]acetylcholine. Lowering external Na(+) (from 140 to 40 mM) or Ca(2+) (from 1.2 to 0.1 mM) ions prevented the 1 : 300 complement-evoked [(3) H]d-ASP release from mouse cortical synaptosomes. Complement-induced releasing effect was unaltered in synaptosomes entrapped with the Ca(2+) ions chelator 1,2-bis-(2-aminophenoxy) ethane-N,N,N',N', tetra-acetic acid or with pertussis toxin. Nifedipine,/ω-conotoxin GVIA/ω-conotoxin MVIIC mixture as well as the vesicular ATPase blocker bafilomycin A1 were also inefficacious. The excitatory amino acid transporter blocker DL-threo-ß-benzyloxyaspartic acid, on the contrary, reduced the complement-evoked releasing effect in a concentration-dependent manner. We concluded that complement-induced releasing activity is restricted to glutamatergic nerve endings, where it was accounted for by carrier-mediated release. Our observations afford new insights into the molecular events accounting for immune and CNS crosstalk. We investigated whether complement, a complex of soluble and membrane-associated serum proteins, could pre-synaptically affect the release of classic neurotransmitters in the central nervous system (CNS). Our data provide evidence that complement-induced releasing activity is restricted to glutamatergic nerve endings

  20. Updating stored memory requires adult hippocampal neurogenesis

    OpenAIRE

    Suárez-Pereira, Irene; Carrión, Ángel M

    2015-01-01

    Adult hippocampal neurogenesis appears to influence hippocampal functions, such as memory formation for example. While adult hippocampal neurogenesis is known to be involved in hippocampal-dependent learning and consolidation processes, the role of such immature neurons in memory reconsolidation, a process involved in the modification of stored memories, remains unclear. Here, using a novel fast X-ray ablation protocol to deplete neurogenic cells, we have found that adult hippocampal neurogen...

  1. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Update on Hippocampal Sclerosis.

    Science.gov (United States)

    Dutra, Juliana R; Cortés, Etty P; Vonsattel, Jean Paul G

    2015-10-01

    The diagnostic hallmarks of hippocampal sclerosis (HS) are severe volume loss of the hippocampus, severe neuronal loss, and reactive gliosis involving primarily two especially vulnerable fields, CA1 and the subiculum. Occasionally, HS may be the only neuropathological change detected in older individuals with dementia and is known as pure HS. In the majority of cases, HS occurs in the setting of other degenerative changes, usually Alzheimer's disease (AD). In these cases, it is classified as combined HS. Although a clinical profile for HS has been identified, its similarities with AD make the diagnosis during life quite challenging; thus, the diagnosis is often made postmortem. The pathogenesis of HS is not completely understood, but the strong association with transactive response DNA-binding protein 43 (TDP-43), in approximately 90%, and the recent discovery of genetic risk factors are important contributions to a better understanding of the disease process.

  3. The interaction of l-cysteine/H2S pathway and muscarinic acetylcholine receptors (mAChRs) in mouse corpus cavernosum.

    Science.gov (United States)

    Aydinoglu, Fatma; Dalkir, Fatma Tugce; Demirbag, Hatice Oruc; Ogulener, Nuran

    2017-11-01

    The aim of this study was to investigate the possible interaction of l-cysteine/H2S pathway and muscarinic acetylcholine receptors (mAChRs) in the mouse corpus cavernosum (CC). l-cysteine (endogenous H2S substrate; 10-6-10-3 M), sodium hydrogen sulfide (NaHS; exogenous H2S; 10-6-10-3 M) and acetylcholine (10-9-10-4 M) produced concentration-dependent relaxation in isolated mouse CC tissues. Relaxations to endogenous and exogenous H2S were reduced by non-selective mAChR antagonist atropine (5 × 10-5 M), selective M1 mAChR antagonist pirenzepine (5 × 10-5 M) and selective M3 mAChR antagonist 4-DAMP (10-7 M) but not by selective M2 mAChR antagonist AF-DX 116 (10-6 M). Also, acetylcholine-induced relaxations were reduced by atropine, pirenzepine, 4-DAMP and AF-DX 116, confirming the selective effects of mAChR antagonists. Furthermore, acetylcholine-induced relaxations were attenuated by cystathionine-gamma-lyase (CSE) inhibitor d,l-propargylglycine (PAG, 10-2 M) and cystathionine-β-synthase inhibitor (CBS) aminooxyacetic acid (AOAA, 10-3 M). l-nitroarginine, nitric oxide synthase inhibitor, augmented the inhibitory effects of mAChR antagonists and H2S enzyme inhibitors on acetylcholine-induced relaxations. In addition, the existence and localization of CSE, CBS and 3-MST were demonstrated in mouse CC. Furthermore, tissue acetylcholine release was significantly increased by l-cysteine but not by exogenous H2S. The increase in acetylcholine level was completely inhibited by AOAA and PAG. These results suggest that M1 and M3 mAChRs contributes to relaxant effect mediated by endogenous H2S but at same time l-cysteine triggers acetylcholine release from cavernosal tissue. Also, the role of NO in the interaction of l-cysteine/H2S pathway and muscarinic acetylcholine receptors (mAChRs) could not be excluded. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Food restriction reduces neurogenesis in the avian hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Barbara-Anne Robertson

    Full Text Available The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the

  5. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis.

    Science.gov (United States)

    Perkins, Amy E; Fadel, Jim R; Kelly, Sandra J

    2015-05-01

    Fetal alcohol spectrum disorders (FASD) are characterized by damage to multiple brain regions, including the hippocampus, which is involved in learning and memory. The acetylcholine neurotransmitter system provides major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intubation to male rat pups (postnatal day [PD] 2-10; ethanol-treated [ET]). Controls received a sham intubation (IC) or no treatment (NC). Acetylcholine efflux was measured using in vivo microdialysis (PD 32-35). ET animals were not different at baseline, but had decreased K(+)/Ca(2+)-induced acetylcholine efflux compared to NC animals and an enhanced acetylcholine response to galantamine (acetylcholinesterase inhibitor; 2.0 mg/kg) compared to both control groups. A separate cohort of animals was tested in the context pre-exposure facilitation effect task (CPFE; PD 30-32) following postnatal alcohol exposure and administration of galantamine (2.0 mg/kg; PD 11-30). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Using immunohistochemistry, we found that neither alcohol exposure nor behavioral testing significantly altered the density of vesicular acetylcholine transporter or alpha7 nicotinic acetylcholine receptor in the ventral hippocampus (CA1). In the medial septum, the average number of choline acetyltransferase (ChAT+) cells was increased in ET animals that displayed the context-shock association; there were no changes in IC and NC animals that learned the context-shock association or in any animals that were in the control task that entailed no learning. Taken together, these results indicate that the hippocampal acetylcholine system is significantly disrupted under conditions of pharmacological manipulations (e.g., galantamine) in alcohol-exposed animals. Furthermore, ChAT was up‑regulated in ET animals that learned the CPFE, which may account for their ability

  6. Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats.

    Science.gov (United States)

    Acquas, Elio; Tanda, Gianluigi; Di Chiara, Gaetano

    2002-08-01

    The effects of caffeine on extracellular dopamine and acetylcholine have been studied in freely moving rats implanted with concentric microdialysis probes in the nucleus accumbens shell and core and in the medial prefrontal cortex. Intravenous administration of caffeine (0.25, 0.5, 1.0, 2.5 and 5.0 mg/kg) dose-dependently increased dopamine and acetylcholine dialysate concentrations in the medial prefrontal cortex, while it did not affect dialysate dopamine in the shell and core of the nucleus accumbens. Intraperitoneal administration of caffeine (1.5, 3, 10, 30 mg/kg) also failed to affect DA in the shell and core of the nucleus accumbens. Such effects were duplicated by intravenous administration of DPCPX, a selective antagonist of adenosine A1 receptors, and of SCH 58261, an antagonist of A2a receptors. The effect of caffeine on prefrontal dopamine and acetylcholine transmission was also studied in rats chronically administered with caffeine (25 mg/kg, twice a day for seven days). At the end of this treatment rats became tolerant to the locomotor stimulating effects of a dose of 1 and 2.5 mg/kg i.v. of caffeine; these doses, however, still increased dialysate acetylcholine but did not affect dopamine in the prefrontal cortex. Therefore, in rats made tolerant to the locomotor stimulant effects of caffeine, tolerance developed to the dopamine stimulant but not to the acetylcholine stimulant effect of caffeine in the prefrontal cortex. The lack of acute stimulation of dopamine release in the nucleus accumbens shell by caffeine is relevant to the issue of its addictive properties and of the role of DA in drug- and substance-addiction. On the other hand, the dissociation between tolerance to the locomotor effects of caffeine and stimulation of acetylcholine release in the prefrontal cortex suggests that this effect might be correlated to the arousing effects of caffeine as distinct from its locomotor stimulant properties.

  7. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  8. Beta amyloid differently modulate nicotinic and muscarinic receptor subtypes which regulate in vitro and in vivo the release of glycine in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Stefania eZappettini

    2012-07-01

    Full Text Available Using both in vitro (hippocampal synaptosomes in superfusion and in vivo (microdialysis approaches we investigated whether and to what extent β amyloid peptide 1-40 (Aβ 1-40 interferes with the cholinergic modulation of the release of glycine (GLY in the rat hippocampus. The nicotine-evoked overflow of endogenous GLY in hippocampal synaptosomes in superfusion was significantly inhibited by Aβ 1-40 (10 nM while increasing the concentration to 100 nM the inhibitory effect did not further increase. Both the Choline (Ch (α7 agonist; 1 mM and the 5-Iodo-A-85380 dihydrochloride (5IA85380, α4β2 agonist; 10 nM-evoked GLY overflow were inhibited by Aβ1-40 at 100 nM but not at 10nM concentrations. The KCl evoked [3H]GLY and [3H]Acetylcholine (ACh overflow were strongly inhibited in presence of oxotremorine; however this inhibitory muscarinic effect was not affected by Aβ1-40. The effects of Aβ1-40 on the administration of nicotine, veratridine, 5IA85380 and PHA 543613 hydrochloride (PHA543613 (a selective agonist of α7 subtypes on hippocampal endogenous GLY release in vivo were also studied. Aβ 1-40 significantly reduced (at 10 μM but not at 1 μM the nicotine evoked in vivo release of GLY. Aβ 1-40 (at 10 μM but not at 1 μM significantly inhibited the PHA543613 (1 mM-elicited GLY overflow while was ineffective on the GLY overflow evoked by 5IA85380 (1 mM. Aβ 40-1 (10 μM did not produce any inhibitory effect on nicotine evoked GLY overflow both in the in vitro and in vivo experiments. Our results indicate that a the cholinergic modulation of the release of GLY occurs by the activation of both α7 and α4β2 nicotinic ACh receptors (nAChRs as well as by the activation of inhibitory muscarinic ACh receptors (mAChRs and b Aβ 1-40 can modulate cholinergic evoked GLY release exclusively through the interaction with α7 and the α4β2 nAChR nicotinic receptors but not through mAChR subtypes.

  9. Endocannabinoids mediate muscarinic acetylcholine receptor-dependent long-term depression in the adult medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Henry Giles Stratten Martin

    2015-12-01

    Full Text Available Cholinergic inputs into the prefrontal cortex (PFC are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light – electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling.

  10. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); V.M. Strike (Vanessa); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  11. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  12. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2.

    Science.gov (United States)

    Yin, Yaling; Wang, Yali; Gao, Di; Ye, Jinwang; Wang, Xin; Fang, Lin; Wu, Dongqin; Pi, Guilin; Lu, Chengbiao; Zhou, Xin-Wen; Yang, Ying; Wang, Jian-Zhi

    2016-06-09

    Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer's disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments.

  13. Novel genetic loci associated with hippocampal volume.

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H.H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  14. Origins of an intrinsic hippocampal EEG pattern.

    Directory of Open Access Journals (Sweden)

    Christopher S Rex

    2009-11-01

    Full Text Available Sharp waves (SPWs are irregular waves that originate in field CA3 and spread throughout the hippocampus when animals are alert but immobile or as a component of the sleep EEG. The work described here used rat hippocampal slices to investigate the factors that initiate SPWs and govern their frequency. Acute transection of the mossy fibers reduced the amplitude but not the frequency of SPWs, suggesting that activity in the dentate gyrus may enhance, but is not essential for, the CA3 waves. However, selective destruction of the granule cells and mossy fibers by in vivo colchicine injections profoundly depressed SPW frequency. Reducing mossy fiber release with an mGluR2 receptor agonist or enhancing it with forskolin respectively depressed or increased the incidence of SPWs. Collectively, these results indicate that SPWs can be triggered by constitutive release from the mossy fibers. The waves were not followed by large after-hyperpolarizing potentials and their frequency was not strongly affected by blockers of various slow potassium channels. Antagonists of GABA-B mediated IPSCs also had little effect on incidence. It appears from these results that the spacing of SPWs is not dictated by slow potentials. However, modeling work suggests that the frequency and variance of large mEPSCs from the mossy boutons can account for the temporal distribution of the waves. Together, these results indicate that constitutive release from the mossy fiber terminal boutons regulates the incidence of SPWs and their contribution to information processing in hippocampus.

  15. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse.

    Science.gov (United States)

    Provensi, Gustavo; Costa, Alessia; Passani, M Beatrice; Blandina, Patrizio

    2016-10-01

    Histaminergic H3 receptors (H3R) antagonists enhance cognition in preclinical models and modulate neurotransmission, in particular acetylcholine (ACh) release in the cortex and hippocampus, two brain areas involved in memory processing. The cognitive deficits seen in aging and Alzheimer's disease have been associated with brain cholinergic deficits. Donepezil is one of the acetylcholinesterase (AChE) inhibitor approved for use across the full spectrum of these cognitive disorders. We addressed the question if H3R antagonists and donepezil require an intact histamine neuronal system to exert their procognitive effects. The effect of the H3R antagonist ABT-239 and donepezil were evaluated in the object recognition test (ORT), and on the level of glycogen synthase kinase 3 beta (GSK-3β) phosphorylation in normal and histamine-depleted mice. Systemic administration of ABT-239 or donepezil ameliorated the cognitive performance in the ORT. However, these compounds were ineffective in either genetically (histidine decarboxylase knock-out, HDC-KO) or pharmacologically, by means of intracerebroventricular (i.c.v.) injections of the HDC irreversible inhibitor a-fluoromethylhistidine (a-FMHis), histamine-deficient mice. Western blot analysis revealed that ABT-239 or donepezil systemic treatments increased GSK-3β phosphorylation in cortical and hippocampal homogenates of normal, but not of histamine-depleted mice. Furthermore, administration of the PI3K inhibitor LY294002 that blocks GSK-3β phosphorylation, prevented the procognitive effects of both drugs in normal mice. Our results indicate that both donepezil and ABT-239 require the integrity of the brain histaminergic system to exert their procognitive effects and strongly suggest that impairments of PI3K/AKT/GSK-3β intracellular pathway activation is responsible for the inefficacy of both drugs in histamine-deficient animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Remembering preservation in hippocampal amnesia

    Science.gov (United States)

    Clark, Ian A.; Maguire, Eleanor A.

    2017-01-01

    The lesion-deficit model dominates neuropsychology. This is unsurprising given powerful demonstrations that focal brain lesions can affect specific aspects of cognition. Nowhere is this more evident than in patients with bilateral hippocampal damage. In the last sixty years the amnesia and other impairments exhibited by these patients have helped to delineate the functions of the hippocampus and shape the field of memory. We do not question the value of this approach. However, less prominent are the cognitive processes that remain intact following hippocampal lesions. Here, we collate the piecemeal reports of preservation of function following focal bilateral hippocampal damage, highlighting a wealth of information often veiled by the field’s focus on deficits. We consider how a systematic understanding of what is preserved as well as what is lost could add an important layer of precision to models of memory and the hippocampus. PMID:26361051

  17. Acetylcholine chloride 1% usage for intraoperative cataract surgery miosis

    Directory of Open Access Journals (Sweden)

    Fernando Macei Drudi

    Full Text Available Abstract Objective: To test the efficacy of Acetylcholine chloride use in obtaining intraoperative miosis on phacoemulsification cataract surgery. Methods: Patients with cataract diagnosis and elected for surgical phacoemulsification procedure were selected. All patients underwent conventional phacoemulsification procedure performed by a single surgeon and all patients had 0.2 ml of Acetylcholine chloride 1% irrigated in the anterior chamber at the end of the surgery. The pupillary diameter was measured immediately before the beginning of surgery, immediately before and two minutes after the use of acetylcholine chloride 1%. Results: A total of 30 eyes from 30 patients were included in the study. 18 were female, and mean age was of 69.5 years with a 7.2y standard deviation on the population study. The mean pupillary diameter immediately before the beginning of surgery was 7.5 mm with a standard deviation of 0.56 mm; the mean pupillary diameter immediately before the acetylcholine chloride 1% use (after the intraocular lens im-plantation was 7.1 mm with a standard deviation of 0.57 mm. The mean pupillary diameter two minutes after the use of acetylcholine chloride 1% in the anterior chamber was 3.4 mm with standard deviation of 0.66 mm. The mean maximum action time of ACH chloride 1% was 64 seconds, with a standard deviation of 8 seconds. The mean intraocular pressure on the first postoperative day was 19.1 mmHg with a standard deviation of 2.45 mmHg. Conclusion: We conclude that acetylcholine chloride 1% is an important drug to obtaining intraoperative miosis in cataract surgery.

  18. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications

    DEFF Research Database (Denmark)

    Risveden, Klas; Dick, Kimberly A; Bhand, Sunil

    2010-01-01

    A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on SiN(x)-covered w......A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on Si...

  19. Nicotine Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice by Activating α7 Nicotinic Acetylcholine Receptor on Mast Cells.

    Science.gov (United States)

    Wang, Chen; Chen, Han; Zhu, Wei; Xu, Yinchuan; Liu, Mingfei; Zhu, Lianlian; Yang, Fan; Zhang, Ling; Liu, Xianbao; Zhong, Zhiwei; Zhao, Jing; Jiang, Jun; Xiang, Meixiang; Yu, Hong; Hu, Xinyang; Lu, Hong; Wang, Jian'an

    2017-01-01

    Cigarette smoking is an independent risk factor for atherosclerosis. Nicotine, the addictive component of cigarettes, induces mast cell (MC) release and contributes to atherogenesis. The purpose of this study was to determine whether nicotine accelerates atherosclerosis through MC-mediated mechanisms and whether MC stabilizer prevents this pathological process. Nicotine administration increased the size of atherosclerotic lesions in apolipoprotein E-deficient (Apoe-/-) mice fed a fat-enriched diet. This was accompanied by enhanced intraplaque macrophage content and lipid deposition but reduced collagen and smooth muscle cell contents. MC deficiency in Apoe-/- mice (Apoe-/-KitW-sh/W-sh) diminished nicotine-induced atherosclerosis. Nicotine activated bone marrow-derived MCs in vitro, which was inhibited by a MC stabilizer disodium cromoglycate or a nonselective nicotinic acetylcholine receptor blocker mecamylamine. Further investigation revealed that α7 nicotinic acetylcholine receptor was a target for nicotine activation in MCs. Nicotine did not change atherosclerotic lesion size of Apoe-/-KitW-sh/W-sh mice reconstituted with MCs from Apoe-/-α7nAChR-/- animals. Activation of α7 nicotinic acetylcholine receptor on MCs is a mechanism by which nicotine enhances atherosclerosis. © 2016 American Heart Association, Inc.

  20. Hippocampal Abnormalities and Seizure Recurrence

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-08-01

    Full Text Available Hippocampal volumetry and T2 relaxometry were performed on 84 consecutive patients (adolescents and adults with partial epilepsy submitted to antiepileptic drug (AED withdrawal after at least 2 years of seizure control, in a study at State University of Campinas-UNICAMP, Brazil.

  1. Hippocampal Sclerosis: Causes and Prevention.

    Science.gov (United States)

    Walker, Matthew Charles

    2015-06-01

    Hippocampal sclerosis is the commonest cause of drug-resistant epilepsy in adults, and is associated with alterations to structures and networks beyond the hippocampus.In addition to being a cause of epilepsy, the hippocampus is vulnerable to damage from seizure activity. In particular, prolonged seizures (status epilepticus) can result in hippocampal sclerosis. The hippocampus is also vulnerable to other insults including traumatic brain injury, and inflammation. Hippocampal sclerosis can occur in association with other brain lesions; the prevailing view is that it is probably a secondary consequence. In such instances, successful surgical treatment usually involves the resection of both the lesion and the involved hippocampus. Experimental data have pointed to numerous neuroprotective strategies to prevent hippocampal sclerosis. Initial neuroprotective strategies aimed at glutamate receptors may be effective, but later, metabolic pathways, apoptosis, reactive oxygen species, and inflammation are involved, perhaps necessitating the use of interventions aimed at multiple targets. Some of the therapies that we use to treat status epilepticus may neuroprotect. However, prevention of neuronal death does not necessarily prevent the later development of epilepsy or cognitive deficits. Perhaps, the most important intervention is the early, aggressive treatment of seizure activity, and the prevention of prolonged seizures. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Acetylcholine receptors in the retinas of the α7 nicotinic acetylcholine receptor knockout mouse.

    Science.gov (United States)

    Smith, Marci L; Souza, Fred G Oliveira; Bruce, Kady S; Strang, Christianne E; Morley, Barbara J; Keyser, Kent T

    2014-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer's disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse. To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes. In the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype transcripts in the α7 nAChR KO

  3. Insect nicotinic acetylcholine receptors (nAChRs): Important amino ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... neonicotinoid insecticides affinity remarkably, but showed little effects on insect nAChRs normal function. Key words: Nicotinic acetylcholine receptor, neonicotinoid insecticides, selectivity, resistance. INTRODUCTION. Most commercially important insecticides are neurotoxins that act on ion channels, ...

  4. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    NARCIS (Netherlands)

    de Kloet, S.F.; Mansvelder, H.D.; de Vries, T.J.

    2015-01-01

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are

  5. Insect nicotinic acetylcholine receptors (nAChRs): Important amino ...

    African Journals Online (AJOL)

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems. The great abundance of nAChRs within the insect central nervous system has led to the development of insecticides targeting these receptors, such as ...

  6. Measurement of anti- acetylcholine receptor auto-antibodies in ...

    African Journals Online (AJOL)

    myasthenia gravis. K. J. Steenkamp, W. Duim, M. s. Myer,. S. C. K. Malfeld, R. Anderson. Two different acetylcholine receptor (AChR) preparations derived from amputated human muscle (AChRAMP) and from the human rhabdomyosarcoma cell line TE671 (AChRTE67,) were compared in radio-immunoprecipitation assays ...

  7. Functional partial agonism at cloned human muscarinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Ebert, B; Brann, M R

    1996-01-01

    of maximal response, depending on the molar ratio of agonist and antagonist used. Using recombinant human muscarinic acetylcholine receptors (m1 and m5) and the functional assay, receptor selection and amplification technology (R-SAT), we have now shown that co-administration of the full agonist, carbachol...

  8. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Science.gov (United States)

    Bedore, Jake; Martyn, Amanda C; Li, Anson K C; Dolinar, Eric A; McDonald, Ian S; Coupland, Stuart G; Prado, Vania F; Prado, Marco A; Hill, Kathleen A

    2015-01-01

    Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  9. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  10. Differential role of ventral tegmental area acetylcholine and N-Methyl-D-Aspartate receptors in cocaine-seeking

    Science.gov (United States)

    Solecki, Wojciech; Wickham, Robert J.; Behrens, Shay; Wang, Jie; Zwerling, Blake; Mason, Graeme F.; Addy, Nii A.

    2013-01-01

    Exposure to drug-associated cues evokes drug-seeking behavior and is regarded as a major cause of relapse. Cues evoke burst firing of ventral tegmental area (VTA) dopamine (DA) neurons and phasic DA release in the nucleus accumbens (NAc). Cholinergic and glutamatergic input to the VTA is suggested to gate phasic DA activity. However, the role of VTA cholinergic and glutamatergic receptors in regulating phasic dopamine release and cue-induced drug-seeking in cocaine experienced subjects is not known. In male Sprague-Dawley rats, we found that VTA inactivation strongly inhibited, while VTA stimulation promoted, cocaine-seeking behavior during early withdrawal. Blockade of phasic activated D1 receptors in the NAc core also strongly inhibited cue-induced cocaine-seeking - suggesting an important role of phasic DA activity in the VTA to NAc core circuit. Next, we examined the role of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) in regulating both NAc core phasic DA release and cue-induced cocaine-seeking. In cocaine naïve subjects, VTA infusion of the nicotinic acetylcholine receptor (AChR) antagonist mecamylamine, the muscarinic AChR antagonist scopolamine, or the NMDAR antagonist AP-5, led to robust attenuation of phasic DA release in the NAc core. During early cocaine withdrawal, VTA infusion of AP-5 had limited effects on NAc phasic DA release and cue-induced cocaine-seeking while VTA infusion of mecamylamine or scopolamine robustly inhibited both phasic DA release and cocaine-seeking. The results demonstrate that VTA AChRs, but not NMDARs, strongly regulate cue-induced cocaine-seeking and phasic DA release during early cocaine withdrawal. PMID:23850572

  11. The Choline Acetyltransferase (CHAT) Gene is Associated with Parahippocampal and Hippocampal Structure and Short-term Memory Span.

    Science.gov (United States)

    Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Lin, Chongde

    2018-01-15

    The CHAT gene encodes choline acetyltransferase, which is an enzyme responsible for the biosynthesis of the neurotransmitter acetylcholine in the brain. This study collected structural MRI, genetic, and behavioral data from 324 healthy Chinese adults, and examined the associations between CHAT genetic variants, parahippocampal and hippocampal structure, and short-term memory span. After controlling for intracranial volume, sex, and age, CHAT SNP rs12246528 had the strongest association with parahippocampal structure, with the A allele being linked to smaller volume, surface area, and thickness. SNP rs1917814 had the strongest association with hippocampal volume, with the T allele being linked to larger hippocampal volume. After controlling for sex and age, CHAT rs3729496 had the strongest association with memory span, with the T allele being associated with a greater memory span. Finally, the left parahippocampal gyrus surface area was positively associated with memory span. This study provides the first evidence for the involvement of the CHAT gene in parahippocampal and hippocampal structures and memory span in healthy Chinese adults. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  13. SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S-I; Yoo, C-H [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul (Korea, Republic of); Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul (Korea, Republic of); Song, K-H; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul (Korea, Republic of); Woo, D-C [Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Nicotine exerts its effects through the activation of nicotinic acetylcholine receptors (nAChRs). Varenicline, a smoking cessation aid, is a partial agonist acting at the α4β2 nAChRs. Although nicotine and varenicline contribute to the reward system at the same time, the influence of the substances on hippocampal neurochemical changes has not been investigated yet. We therefore studied the effects of repeated nicotine exposure and varenicline administration on hippocampus of rats by using in vivo proton magnetic resonance spectroscopy (1H MRS) at 9.4T. Methods: Male Wistar rats (n = 11; mean body weight, 304.9 ± 9.9 g) were divided into 3 groups: control rats (control, n = 3); nicotine-induced rats (nicotine, n = 4); and nicotine- and varenicline-induced rats (varenicline, n = 4). Acquisition of in vivo MRS was conducted by using 9.4 T Agilent Scanner. The linear combination of model spectra (LCModel, version 6.3, Stephen W. Provencher) fitting software was used to quantify the metabolites in the frequency domain, using the basis metabolites. Results: In this study, the results show the tendency of increased Glu level in nicotine group than in the control and varenicline groups. Moreover, GSH and NAA levels tended to decrease in the nicotine group in comparison with those in the control and varenicline groups. Conclusion: These findings indicate that the hippocampus is integrally linked to the brain reward sensitization involved in addiction and glutamate release through mobilization of intracellular calcium stores. Further, oxidative stress and toxicity of nicotine on brain would cause the decline of GSH and NAA. In conclusion, we found that varenicline effectively inhibits the reward cycle.

  14. Altered acetylcholine metabolism of brain in uremia: role of secondary hyperparathyroidism.

    Science.gov (United States)

    Smogorzewski, Miroslaw J; Massry, Shaul G

    2008-01-01

    Cholinergic system and its neurotransmitter, acetylcholine (ACh), play a major role in both behavior and motor function of the nervous system. Cholinergic neurons synthesize ACh from choline and acetyl-CoA by choline acetyltransferase in the nerve ending. The release of ACh in response to nerve impulses is dependent on the intracellular calcium ([Ca2+]i) concentration and its gradient. The regulation of a synthesis of ACh after depolarization and ACh release is controlled by mass-action effect on choline acetyltransferase equilibrium. Behavioral and motor changes in uremia may be due in part to derangements in ACh metabolism and such possible abnormalities may be related to the state of secondary hyperparathyroidism of chronic renal failure (CRF). We studied ACh and choline content, choline release, choline kinase activity in brain synaptosomes of CRF with and without secondary hyperparathyroidism and in CRF rats treated with verapamil which normalize [Ca2+]i in brain synaptosomes of CRF rats. The content of ACh of brain synaptosomes increased progressively with the duration of CRF from 3 to 6 weeks. ACh and choline release as well as choline uptake were significantly higher in CRF rats at all time intervals studied. Choline content and the activity of choline kinase of brain synaptosomes were deceased after 3 weeks of CRF and were significantly lower than in synaptosomes of normal. Normalization of ACh and choline content as well as ACh release and the activity of choline kinase by parathyroidectomy or treatment with verapamil but these maneuvers did not prevent the rise in choline uptake and choline release. Resting levels of cytosolic calcium of brain synaptosomes in rats with CRF were significantly higher (437 +/- 9 nM) as compared to normal rats (345 +/- 9 nM). This rise in [Ca2+]i was prevented either by parathyroidectomy prior induction of CRF or by treatment of CRF rats with calcium channel blocker verapamil.

  15. Mixed neurotransmission in the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Agnieszka eMuenster-Wandowski

    2013-11-01

    Full Text Available The hippocampal mossy fibers (MFs, the axons of the granule cells of the dentate gyrus, innervate mossy cells and interneurons in the hilus on its way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient expression of the machinery for the synthesis and release of GABA in the glutamatergic granule cells. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data is consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.

  16. Hippocampal GABA transporter distribution in patients with temporal lobe epilepsy and hippocampal sclerosis

    NARCIS (Netherlands)

    Schijns, O.; Karaca, U.; Andrade, P.; Nijs, L. de; Kusters, B.; Peeters, A.; Dings, J.; Pannek, H.; Ebner, A.; Rijkers, K.; Hoogland, G.

    2015-01-01

    PURPOSE: To determine hippocampal expression of neuronal GABA-transporter (GAT-1) and glial GABA-transporter (GAT-3) in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS). METHODS: Hippocampal sections were immunohistochemically stained for GABA-transporter 1 and

  17. Hippocampal GABA transporter distribution in patients with temporal lobe epilepsy and hippocampal sclerosis.

    Science.gov (United States)

    Schijns, Olaf; Karaca, Ümit; Andrade, Pablo; de Nijs, Laurence; Küsters, Benno; Peeters, Andrea; Dings, Jim; Pannek, Heinz; Ebner, Alois; Rijkers, Kim; Hoogland, Govert

    2015-10-01

    To determine hippocampal expression of neuronal GABA-transporter (GAT-1) and glial GABA-transporter (GAT-3) in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS). Hippocampal sections were immunohistochemically stained for GABA-transporter 1 and GABA-transporter-3, followed by quantification of the immunoreactivity in the hilus by optical density measurements. GABA-transporter 3 positive hilar cells were counted and GABA-transporter protein expression in sections that included all hippocampal subfields was quantified by Western blot. The hilar GABA-transporter 1 expression of patients with severe hippocampal sclerosis was about 7% lower compared to that in the mild hippocampal sclerosis/control group (psclerosis group than in the mild hippocampal sclerosis/control group (non-significant). Also, severe hippocampal sclerosis samples contained 34% less (non-significant) GABA-transporter 3 positive cells compared to that of controls. Protein expression as assessed by Western blot showed that GABA-transporter 1 was equally expressed in mild and severe hippocampal sclerosis samples, whereas GABA-transporter 3 was reduced by about 62% in severe hippocampal sclerosis samples (psclerosis. Implications for the use of GABAergic antiepileptic therapies in hippocampal sclerosis vs non-hippocampal sclerosis patients remain to be studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quantifying the behavioural relevance of hippocampal neurogenesis

    National Research Council Canada - National Science Library

    Lazic, Stanley E; Fuss, Johannes; Gass, Peter

    2014-01-01

    .... A systematic review of the literature was conducted and the data reanalysed using causal mediation analysis, which can estimate the behavioural contribution of new hippocampal neurons separately...

  19. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen T., Jesper; Arvaniti, Maria

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus......, and their demonstrated role in processes underlying cognition such as synaptic facilitation, and theta and gamma wave activity. Historically, activity at these receptors is facilitated in AD by use of drugs that increase the levels of their endogenous agonist acetylcholine, and more recently nAChR selective ligands have...... interactions to modify nAChR function adds a new level of complexity to cholinergic signaling in the brain that may be specifically altered in AD. It is currently not known to what degree current nAChR ligands affect these interactions, and it is possible that the difference in the clinical effect of n...

  20. Mechanisms of Action of Anticholinesterases and Oximes on Acetylcholine Receptors

    Science.gov (United States)

    1988-07-23

    psychotropic, antipsychotic, opiate, antidepressant, antibiotic, antiviral, and antiarrhythmic S drugs . Molec. Pharmacol. 22:72-81 (1982). 25. Kohanski, R.A...physostigmine as a pretreatment drug for protection of rats from organosphate poisoning. Fund. Appl. Tox. 6:566-77 (1986). 8. Seifert, S.A. and M.E...Eldefrawi. Affinity of myasthenia drugs to acetylcholinesterase and acetylcholine receptor. Biochem. Med. 10:258-265 (1974). 9. Carpenter, D.O., L.A

  1. Activation and allosteric modulation of a muscarinic acetylcholine receptor

    OpenAIRE

    Kruse, Andrew C.; Ring, Aaron M.; Manglik, Aashish; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Hübner, Harald; Pardon, Els; Valant, Celine; Sexton, Patrick M.; Christopoulos, Arthur; Felder, Christian C.; Gmeiner, Peter; Steyaert, Jan; Weis, William I.

    2013-01-01

    Despite recent advances in crystallography of G protein-coupled receptors (GPCRs), little is known about the mechanism of their activation process, as only the β2 adrenergic receptor (β2AR) and rhodopsin have been crystallized in fully active conformations. Here, we report the structure of an agonist-bound, active state of the human M2 muscarinic acetylcholine receptor stabilized by a G-protein mimetic camelid antibody fragment isolated by conformational selection using yeast surface display....

  2. Novel candidate genes associated with hippocampal oscillations.

    NARCIS (Netherlands)

    Jansen, R.; Timmerman, J.; Loos, M.; Spijker, S.; van Ooyen, A.; Brussaard, A.B.; Mansvelder, H.D.; Smit, A.B.; de Gunst, M.; Linkenkaer-Hansen, K.

    2011-01-01

    The hippocampus is critical for a wide range of emotional and cognitive behaviors. Here, we performed the first genome-wide search for genes influencing hippocampal oscillations. We measured local field potentials (LFPs) using 64-channel multi-electrode arrays in acute hippocampal slices of 29 BXD

  3. Phospholipase C activity affinity purifies with the Torpedo nicotinic acetylcholine receptor.

    Science.gov (United States)

    Labriola, Jonathan M; daCosta, Corrie J B; Wang, Shuzhi; Figeys, Daniel; Smith, Jeffrey C; Sturgeon, R Michel; Baenziger, John E

    2010-04-02

    Nicotinic acetylcholine receptors mediate fast synaptic transmission by fluxing ions across the membrane in response to neurotransmitter binding. We show here that during affinity purification of the nicotinic acetylcholine receptor from Torpedo, phosphatidic acid, but not other anionic or zwitterionic phospholipids, is hydrolyzed to diacylglycerol. The phospholipase C activity elutes with the acetylcholine receptor and is inhibited by a lipid phosphate phosphohydrolase inhibitor, sodium vanadate, but not a phosphatidate phosphohydrolase inhibitor, N-ethylmaleimide. Further, the hydrolysis product of phosphatidic acid, diacylglycerol, enhances the functional capabilities of the acetylcholine receptor in the presence of anionic lipids. We conclude that a phospholipase C activity, which appears to be specific for phosphatidic acid, is associated with the nicotinic acetylcholine receptor. The acetylcholine receptor may directly or indirectly influence lipid metabolism in a manner that enhances its own function.

  4. Secretion of goblet cell serine proteinase, ingobsin, is stimulated by vasoactive intestinal polypeptide and acetylcholine

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1987-01-01

    Ingobsin is localized to the intestinal goblet cells in the rat and in man. In the present study, we investigated the effect of vasoactive intestinal polypeptide (VIP) and acetylcholine on the secretion of ingobsin from the proximal duodenum. Intravenous infusion of VIP or acetylcholine increased...... the concentration of ingobsin in duodenal secretion, while the concentration in the duodenum was unchanged. Simultaneous infusion of VIP and acetylcholine increased the concentration of ingobsin in duodenal secretion and decreased the concentration of ingobsin in the duodenum. This study demonstrates that secretion...... of ingobsin from the proximal duodenum is exocrine and can be stimulated by VIP and acetylcholine....

  5. Back to the future: Rational maps for exploring acetylcholine receptor space and time.

    Science.gov (United States)

    Tessier, Christian J G; Emlaw, Johnathon R; Cao, Zhuo Qian; Pérez-Areales, F Javier; Salameh, Jean-Paul J; Prinston, Jethro E; McNulty, Melissa S; daCosta, Corrie J B

    2017-11-01

    Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition.

    Science.gov (United States)

    Basu, Jayeeta; Zaremba, Jeffrey D; Cheung, Stephanie K; Hitti, Frederick L; Zemelman, Boris V; Losonczy, Attila; Siegelbaum, Steven A

    2016-01-08

    The cortico-hippocampal circuit is critical for storage of associational memories. Most studies have focused on the role in memory storage of the excitatory projections from entorhinal cortex to hippocampus. However, entorhinal cortex also sends inhibitory projections, whose role in memory storage and cortico-hippocampal activity remains largely unexplored. We found that these long-range inhibitory projections enhance the specificity of contextual and object memory encoding. At the circuit level, these γ-aminobutyric acid (GABA)-releasing projections target hippocampal inhibitory neurons and thus act as a disinhibitory gate that transiently promotes the excitation of hippocampal CA1 pyramidal neurons by suppressing feedforward inhibition. This enhances the ability of CA1 pyramidal neurons to fire synaptically evoked dendritic spikes and to generate a temporally precise form of heterosynaptic plasticity. Long-range inhibition from entorhinal cortex may thus increase the precision of hippocampal-based long-term memory associations by assessing the salience of mnemonormation to the immediate sensory input. Copyright © 2016, American Association for the Advancement of Science.

  7. Nucleus accumbens core acetylcholine is preferentially activated during acquisition of drug- vs food-reinforced behavior.

    Science.gov (United States)

    Crespo, Jose A; Stöckl, Petra; Zorn, Katja; Saria, Alois; Zernig, Gerald

    2008-12-01

    Acquisition of drug-reinforced behavior is accompanied by a systematic increase of release of the neurotransmitter acetylcholine (ACh) rather than dopamine, the expected prime reward neurotransmitter candidate, in the nucleus accumbens core (AcbC), with activation of both muscarinic and nicotinic ACh receptors in the AcbC by ACh volume transmission being necessary for the drug conditioning. The present findings suggest that the AcbC ACh system is preferentially activated by drug reinforcers, because (1) acquisition of food-reinforced behavior was not paralleled by activation of ACh release in the AcbC whereas acquisition of morphine-reinforced behavior, like that of cocaine or remifentanil (tested previously), was, and because (2) local intra-AcbC administration of muscarinic or nicotinic ACh receptor antagonists (atropine or mecamylamine, respectively) did not block the acquisition of food-reinforced behavior whereas acquisition of drug-reinforced behavior had been blocked. Interestingly, the speed with which a drug of abuse distributed into the AcbC and was eliminated from the AcbC determined the size of the AcbC ACh signal, with the temporally more sharply delineated drug stimulus producing a more pronounced AcbC ACh signal. The present findings suggest that muscarinic and nicotinic ACh receptors in the AcbC are preferentially involved during reward conditioning for drugs of abuse vs sweetened condensed milk as a food reinforcer.

  8. Acetylcholine synthesis and possible functions during sea urchin development

    Directory of Open Access Journals (Sweden)

    C Angelini

    2009-06-01

    Full Text Available Cholinergic neurotransmitter system molecules were found to play a role during fertilisation and early cell cycles of a large number of invertebrate and vertebrate organisms. In this study, we investigated the presence and possible function of choline acetyltransferase (ChAT, the biosynthetic enzyme of acetylcholine in gametes of the sea urchin, Paracentrotus lividus, through localisation and functional studies. ChAT-like molecules were detected in oocytes, mature eggs and zygotes with indirect immunofluorescence methods. Positive immunoreactivity was found in the ovarian egg cytoplasm and surface as well as at the zygote surface. This suggests the eggs' capacity to autonomously synthesise acetylcholine (ACh, the signal molecule of the cholinergic system. Acetylcholinesterase (AChE, the lytic enzyme of acetylcholine was also found in ovarian eggs, with a similar distribution; however, it disappeared after fertilisation. Ultrastructural ChAT localisation in sperms, which was carried out with the immuno-gold method, showed immunoreactivity in the acrosome of unreacted sperms and at the head surface of reacted sperms. In order to verify a functional role of ACh during fertilization and sea urchin development, in vivo experiments were performed. Exposure of the eggs before fertilisation to 1 mM ACh + 1 ?M eserine caused an incomplete membrane depolarisation and consequently enhanced polyspermy, while lower concentrations of ACh caused developmental anomalies. The exposure of zygotes to 0,045 AChE Units/mL of sea water caused developmental anomalies as well, in 50% of the embryos. Altogether, these findings and other previously obtained results, suggest that the cholinergic system may subserve two different tasks during development, according to which particular type of ACh receptor is active during each temporal window. The first function, taking place in the course of fertilisation is a result of autonomously synthesised ACh in sperms, while the

  9. Novel genetic loci associated with hippocampal volume

    Science.gov (United States)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J.; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G. M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Craen, Anton J. M.; De Geus, Eco J. C.; De Jager, Philip L.; De Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack Jr, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; Van Haren, Neeltje E. M.; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; Van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness. PMID:28098162

  10. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  11. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx...

  12. Structures of acetylcholine picrate and methoxycarbonylcholine picrate hemihydrate

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Grønborg, L; Jensen, B

    1988-01-01

    Acetylcholine picrate, C7H16NO2+.C6H2N3-O7-, Mr = 374.3, orthorhombic, Pbca, at 105 K: a = 18.799 (4), b = 7.726 (2), c = 22.878 (4) A, V = 3323 (2) A3, Z = 8, Dm(295 K, flotation) = 1.44, D chi(105 K) = 1.496 Mg m-3, mu(Mo K alpha) = 0.120 mm-1, F(000) = 1568, m.p. (hot-stage microscope) 381-382...

  13. Nicotinic acetylcholine receptors: specific antibodies and functions in humoral immunity

    Directory of Open Access Journals (Sweden)

    M. V. Skok,

    2013-12-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ligand-gated ion channels initially discovered in muscles and neurons and further found in many non-excitable cells. The present review summarizes the results of studies performed in the Department of Molecular Immunology during the last decade and concerning the structure and functions of nAChRs in B lymphocytes and in mitochondria, as well as the role of nAChR-specific antibodies in the develop­ment of neurodegenerative disorders like Alzheimer disease.

  14. Hippocampal subfield volumes in mood disorders.

    Science.gov (United States)

    Cao, B; Passos, I C; Mwangi, B; Amaral-Silva, H; Tannous, J; Wu, M-J; Zunta-Soares, G B; Soares, J C

    2017-09-01

    Volume reduction and shape abnormality of the hippocampus have been associated with mood disorders. However, the hippocampus is not a uniform structure and consists of several subfields, such as the cornu ammonis (CA) subfields CA1-4, the dentate gyrus (DG) including a granule cell layer (GCL) and a molecular layer (ML) that continuously crosses adjacent subiculum (Sub) and CA fields. It is known that cellular and molecular mechanisms associated with mood disorders may be localized to specific hippocampal subfields. Thus, it is necessary to investigate the link between the in vivo hippocampal subfield volumes and specific mood disorders, such as bipolar disorder (BD) and major depressive disorder (MDD). In the present study, we used a state-of-the-art hippocampal segmentation approach, and we found that patients with BD had reduced volumes of hippocampal subfields, specifically in the left CA4, GCL, ML and both sides of the hippocampal tail, compared with healthy subjects and patients with MDD. The volume reduction was especially severe in patients with bipolar I disorder (BD-I). We also demonstrated that hippocampal subfield volume reduction was associated with the progression of the illness. For patients with BD-I, the volumes of the right CA1, ML and Sub decreased as the illness duration increased, and the volumes of both sides of the CA2/3, CA4 and hippocampal tail had negative correlations with the number of manic episodes. These results indicated that among the mood disorders the hippocampal subfields were more affected in BD-I compared with BD-II and MDD, and manic episodes had focused progressive effect on the CA2/3 and CA4 and hippocampal tail.

  15. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons.

    Science.gov (United States)

    Albayram, Önder; Passlick, Stefan; Bilkei-Gorzo, Andras; Zimmer, Andreas; Steinhäuser, Christian

    2016-04-01

    A subset of hippocampal GABAergic neurons, which are cholecystokinin-positive, highly express cannabinoid type 1 (CB1) receptors. Activation of these receptors inhibits GABA release and thereby limits inhibitory control. While genetic deletion of CB1 receptors from GABAergic neurons led to behavioural alterations and neuroinflammatory reactions, it remained unclear whether these changes in the knockout animals were a direct consequence of the enhanced transmitter release or reflected developmental deficits. The hippocampus is vital for the generation of spatial, declarative and working memory. Here, we addressed the question how CB1 receptors in GABAergic neurons influence hippocampal function. Patch clamp and field potential recordings in mice devoid of CB1 receptors in GABAergic neurons revealed an enhanced frequency and faster kinetics of spontaneous inhibitory postsynaptic currents in CA1 pyramidal neurons while tonic inhibition, paired-pulse facilitation and long-term potentiation in the hippocampus were not affected. Evaluation of cognitive functions demonstrated impaired acquisition of spatial memory and deficits in novel object recognition and partner recognition in the knockout mice, while working memory and spatial memory remained intact. The density of GABAergic neurons was also similar in knockout mice and their littermates, which argues against global deficits in hippocampal development. Together, these results suggest that CB1 receptors in GABAergic neurons influence specific aspects of neuronal excitability and hippocampal learning.

  16. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    Science.gov (United States)

    Orellana, Juan A; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J; Stehberg, Jimmy; Sáez, Juan C

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  17. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    Science.gov (United States)

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  18. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  19. Change in desensitization of cat muscle acetylcholine receptor caused by coexpression of Torpedo acetylcholine receptor subunits in Xenopus oocytes.

    OpenAIRE

    Sumikawa, K; Miledi, R

    1989-01-01

    Cat muscle acetylcholine receptors (AcChoR) expressed in Xenopus oocytes desensitized more slowly than Torpedo electric organ AcChoRs, also expressed in oocytes. To examine the bases for the different degrees of desensitization, cat-Torpedo AcChoR hybrids were formed by injecting oocytes with cat denervated muscle mRNA mixed with a large excess of cloned Torpedo AcChoR subunit mRNAs. Hybrid AcChoRs formed by coinjection of cat muscle mRNA with the Torpedo beta or delta subunit mRNAs desensiti...

  20. Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations

    DEFF Research Database (Denmark)

    de la Fuente Revenga, M; Balle, Thomas; Jensen, Anders A.

    2015-01-01

    Exploration of small selective ligands for the nicotinic acetylcholine receptors (nAChRs) based on acetylcholine (ACh) has led to the development of potent agonists with clear preference for the α4β2 nAChR, the most prevalent nAChR subtype in the central nervous system. In this work we present th...

  1. Effects of antihistamines on the function of human α7-nicotinic acetylcholine receptors.

    Science.gov (United States)

    Sadek, Bassem; Khanian, Seyedeh Soha; Ashoor, Abrar; Prytkova, Tatiana; Ghattas, Mohammad A; Atatreh, Noor; Nurulain, Syed M; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Oz, Murat

    2015-01-05

    Effects of the histamine H₁ receptor (H1R) antagonists (antihistamines), promethazine (PMZ), orphenadrine (ORP), chlorpheniramine (CLP), pyrilamine (PYR), diphenhydramine (DPH), citerizine (CTZ), and triprolidine (TRP) on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes were investigated. Antihistamines inhibited the α7-nicotinic acetylcholine receptor in the order PYR>CLP>TRP>PMZ>ORP≥DPH≥CTZ. Among the antihistamines, PYR showed the highest reversible inhibition of acetylcholine (100 µM)-induced responses with IC₅₀ of 6.2 µM. PYR-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. Specific binding of [¹²⁵I] α-bungarotoxin, a selective antagonist for α7-nicotinic acetylcholine receptor, was not changed in the presence of PYR suggesting a non-competitive inhibition of nicotinic receptors. In line with functional experiments, docking studies indicated that PYR can potentially bind allosterically with the α7 transmembrane domain. Our results indicate that the H₂-H₄ receptor antagonists tested in this study (10 µM) showed negligible inhibition of α7-nicotinic acetylcholine receptors. On the other hand, H₁ receptor antagonists inhibited the function of human α7-nicotinic acetylcholine receptor, with varying potencies. These results emphasize the importance of α7-nicotinic acetylcholine receptor for future pharmacological/toxicological profiling. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fluorescent agonists for the Torpedo nicotinic acetylcholine receptor.

    Science.gov (United States)

    Krieger, Florian; Mourot, Alexandre; Araoz, Romulo; Kotzyba-Hibert, Florence; Molgó, Jordi; Bamberg, Ernst; Goeldner, Maurice

    2008-05-05

    We have synthesized a series of fluorescent acylcholine derivatives carrying different linkers that vary in length and structure and connect the acylcholine unit to the environment-sensitive fluorophores 7-(diethylamino)coumarin-3-carbonyl (DEAC) or N-(7-nitrobenz-2-oxa-1,3-diazol-yl) (NBD). The pharmacological properties of the fluorescent analogues were investigated on heterologously expressed nicotinic acetylcholine receptor (nAChR) from Torpedo californica and on oocytes transplanted with nAChR-rich Torpedo marmorata membranes. Agonist action strongly depends on the length and the structure of the linker. One particular analogue, DEAC-Gly-C6-choline, showed partial agonist behavior with about half of the maximum response of acetylcholine, which is at least 20 times higher than those observed with previously described fluorescent dansyl- and NBD-acylcholine analogues. Binding of DEAC-Gly-C6-choline to Torpedo nAChR induces a strong enhancement of fluorescence intensity. Association and displacement kinetic experiments revealed dissociation constants of 0.5 nM for the alphadelta-binding site and 15.0 nM for the alphagamma-binding site. Both the pharmacological and the spectroscopic properties of this agonist show great promise for characterizing the allosteric mechanism behind the function of the Torpedo nAChR, as well as for drug-screening studies.

  3. Effects of acetylcholine on neuronal properties in entorhinal cortex

    Directory of Open Access Journals (Sweden)

    James G Heys

    2012-07-01

    Full Text Available The entorhinal cortex receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB. To understand how cholinergic neurotransmission can modulate behavior, research has been directed towards identification of the specific cellular mechanisms in entorhinal cortex that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in entorhinal cortex that may underlie functions such as working memory, spatial processing and episodic memory. In particular, the study of stellate cells in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in entorhinal cortex that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in entorhinal cortex. Finally, the local circuits of entorhinal cortex demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of entorhinal cortex to underlie the functional role of acetylcholine in memory.

  4. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals. Copyright © 2014 the American Physiological Society.

  5. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    Science.gov (United States)

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    Science.gov (United States)

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  7. Morphological Variations of Hippocampal Formation in Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Hospital Sao Paulo and other centers in Brazil compared the hippocampal formation (HF morphology of healthy asymptomatic individuals (n=30 with that of patients with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS(n=68, of patients with malformations of cortical development (MCD(n=34, and of patients with morphological HF variations without other structural signs (pure MVHF(n=12.

  8. Temporal lobe epilepsy, depression, and hippocampal volume.

    Science.gov (United States)

    Shamim, Sadat; Hasler, Gregor; Liew, Clarissa; Sato, Susumu; Theodore, William H

    2009-05-01

    To evaluate the relationship between hippocampal volume loss, depression, and epilepsy. There is a significantly increased incidence of depression and suicide in patients with epilepsy. Both epilepsy and depression are associated with reduced hippocampal volumes, but it is uncertain whether patients with both conditions have greater atrophy than those with epilepsy alone. Previous studies used depression measures strongly weighted to current state, and did not necessarily assess the influence of chronic major depressive disorder ("trait"), which could have a greater impact on hippocampal volume. Fifty-five epilepsy patients with complex partial seizures (CPS) confirmed by electroencephalography (EEG) had three-dimensional (3D)-spoiled gradient recall (SPGR) acquisition magnetic resonance imaging (MRI) scans for hippocampal volumetric analysis. Depression screening was performed with the Beck Depression Inventory (BDI, 51 patients) and with the structured clinical inventory for DSM-IV (SCID, 34 patients). For the BDI, a score above 10 was considered mild to moderate, above 20 moderate to severe, and above 30 severe depression. MRI and clinical analysis were performed blinded to other data. Statistical analysis was performed with Systat using Student's t test and analysis of variance (ANOVA). There was a significant interaction between depression detected on SCID, side of focus, and left hippocampal volume. Patients with a diagnosis of depression and a right temporal seizure focus had significantly lower left hippocampal volume. A similar trend for an effect of depression on right hippocampal volume in patients with a right temporal focus did not reach statistical significance. Our results suggest that patients with right temporal lobe epilepsy and depression have hippocampal atrophy that cannot be explained by epilepsy alone.

  9. Hippocampal synaptic plasticity, spatial memory and anxiety

    OpenAIRE

    Bannerman, David M.; Sprengel, Rolf; Sanderson, David J.; McHugh, Stephen B.; Rawlins, J. Nicholas P.; Monyer, Hannah; Seeburg, Peter H.

    2014-01-01

    Recent studies using transgenic mice lacking NMDA receptors in the hippocampus challenge the long-standing hypothesis that hippocampal long-term potentiation-like mechanisms underlie the encoding and storage of associative long-term spatial memories. However, it may not be the synaptic plasticity-dependent memory hypothesis that is wrong; instead, it may be the role of the hippocampus that needs to be re-examined. We present an account of hippocampal function that explains its role in both me...

  10. Cavernous angioma associated with ipsilateral hippocampal sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Okujava, M. [Institute of Radiology and Interventional Diagnostics, Tbilisi (Georgia); Ebner, A.; Schmitt, J.; Woermann, F.G. [Bethel Epilepsy Centre, Mara Hospital, Bielefeld (Germany)

    2002-07-01

    We report two cases with extratemporal cavernous angioma (CA) and coexisting ipsilateral hippocampal sclerosis. Classically dual pathology is defined as the association of hippocampal sclerosis with an extrahippocampal lesion. Subtle changes in hippocampus might be overlooked in the presence of an unequivocal extrahippocampal abnormality. Seizure outcome after epilepsy surgery in cases with dual pathology is less favourable if only one of the lesions is removed. Dual pathology must always be considered in diagnostic imaging of patients with intractable epilepsy and CA. (orig.)

  11. Opposing Actions of Chronic[Deta][superscript 9] Tetrahydrocannabinol and Cannabinoid Antagonists on Hippocampal Long-Term Potentiation

    Science.gov (United States)

    Hoffman, Alexander F.; Oz, Murat; Yang, Ruiqin; Lichtman, Aron H.; Lupica, Carl R.

    2007-01-01

    Memory deficits produced by marijuana arise partly via interaction of the psychoactive component, [Deta][superscript 9]-tetrahydrocannabinol ([Deta][superscript 9]-THC), with cannabinoid receptors in the hippocampus. Although cannabinoids acutely reduce glutamate release and block hippocampal long-term potentiation (LTP), a potential substrate for…

  12. Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind

    Science.gov (United States)

    Hsieh, Jenny; Eisch, Amelia J.

    2010-01-01

    In mature, differentiated neurons in the central nervous system (CNS), epigenetic mechanisms – including DNA methylation, histone modification, and regulatory noncoding RNAs – play critical roles in encoding experience and environmental stimuli into stable, behaviorally-meaningful changes in gene expression. For example, epigenetic changes in mature hippocampal neurons have been implicated in learning and memory and in a variety of neuropsychiatric disorders, including depression. With all the recent (and warranted) attention given to epigenetic modifications in mature neurons, it is easy to forget that epigenetic mechanisms were initially described for their ability to promote differentiation and drive cell fate in embryonic and early postnatal development, including neurogenesis. Given the discovery of ongoing neurogenesis in the adult brain and the intriguing links among adult hippocampal neurogenesis, hippocampal function, and neuropsychiatric disorders, it is timely to complement the ongoing discussions on the role of epigenetics in mature neurons with a review on what is currently known about the role of epigenetics in adult hippocampal neurogenesis. The process of adult hippocampal neurogenesis is complex, with neural stem cells (NSCs) giving rise to fate-restricted progenitors and eventually mature dentate gyrus granule cells. Notably, neurogenesis occurs within an increasingly well-defined “neurogenic niche”, where mature cellular elements like vasculature, astrocytes, and neurons release signals that can dynamically regulate neurogenesis. Here we review the evidence that key stages and aspects of adult neurogenesis are driven by epigenetic mechanisms. We discuss the intrinsic changes occurring within NSCs and their progeny that are critical for neurogenesis. We also discuss how extrinsic changes occurring in cellular components in the niche can result in altered neurogenesis. Finally we describe the potential relevance of epigenetics for

  13. Functional imaging of hippocampal dysfunction among persons with Alzheimer’s disease: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    David B Arciniegas

    2010-11-01

    Full Text Available David B Arciniegas1,2, Jason R Tregellas1,3, Donald C Rojas1, Burlleen Hewitt1, C Alan Anderson1,2,41Neurobehavioral Disorders Program, Department of Psychiatry, 2Behavioral Neurology Section, University of Colorado Denver, Aurora, CO, USA; 3Research Service, 4Neurology Service, Denver Veterans Affairs Medical Denver, Denver, CO, USAAbstract: Cholinergic deficits are an early and functionally significant manifestation of Alzheimer’s disease (AD. These deficits contribute to impairment of hippocampally mediated information processing, including declarative memory impairments and abnormal auditory sensory gating. A functional imaging technique that facilitates identification of changes in cholinergically dependent hippocampal information processing would be of considerable use in the study and clinical evaluation of persons with this condition. Techniques that interrogate hippocampal function passively, ie, in a manner requiring no cognitive effort or novel task learning during the neuroimaging procedure, would also be especially useful in this cognitively impaired population. The functional magnetic resonance imaging sensory gating paradigm developed at the University of Colorado, CO, USA, is a functional neuroimaging technique that possesses both of these characteristics. We developed a demonstration project using this paradigm in which we passively interrogated hippocampal function in two subjects with probable AD of mild severity. Imaging data were quick and easy in these subjects and served usefully as an initial demonstration of the feasibility of using this neuroimaging method in this population. Preliminary analyses of the data obtained from these subjects identified abnormal blood oxygen level-dependent responses when compared with four healthy comparators, and the pattern of these responses was consistent with impaired function of the auditory sensory gating network. The strengths and limitations of this neuroimaging paradigm and the

  14. Luteolin Inhibits Microglia and Alters Hippocampal-Dependent Spatial Working Memory in Aged Mice123

    OpenAIRE

    Jang, Saebyeol; Dilger, Ryan N.; Johnson, Rodney W.

    2010-01-01

    A dysregulated overexpression of inflammatory mediators by microglia may facilitate cognitive aging and neurodegeneration. Considerable evidence suggests the flavonoid luteolin has antiinflammatory effects, but its ability to inhibit microglia, reduce inflammatory mediators, and improve hippocampal-dependent learning and memory in aged mice is unknown. In initial studies, pretreatment of BV-2 microglia with luteolin inhibited the induction of inflammatory genes and the release of inflammatory...

  15. Ethanol decreases agrin-induced acetylcholine receptor clustering in C2C12 myotube culture.

    Science.gov (United States)

    Owen, David B; Chamberlain, Kevin T; Shishido, Sonia; Grow, Wade A

    2010-03-01

    We investigated the effect of ethanol on skeletal muscle development using C2C12 cell culture. The ethanol concentrations of 10mM, 25mM, and 100mM, were tested because plasma samples of alcohol-dependent individuals fall within this range. We assessed two specific events in skeletal muscle development, the fusion of myoblasts to form myotubes and the acetylcholine receptor (AChR) clustering associated with neuromuscular synapse formation. We report that ethanol does not effect myotube formation or the viability of myoblasts or myotubes in C2C12 cell culture. However, ethanol does effect AChR clustering on C2C12 myotubes. As motor neurons approach skeletal muscle during development, agrin is released by motor neurons and induces AChR clustering on muscle fibers. In our experiments, agrin was applied to cell cultures during the period when myoblasts fuse to form myotubes. In cell cultures exposed to ethanol during myotube formation, agrin-induced AChR clustering was decreased compared to untreated cultures. In cell cultures exposed to ethanol during myoblast proliferation, with ethanol removed during myotube formation, agrin-induced AChR clustering was unaffected. We conclude that exposure to a physiologically relevant concentration of ethanol during the specific period of myotube formation decreases agrin-induced AChR clustering. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Segregation of lipids near acetylcholine-receptor channels imaged by cryo-EM

    Directory of Open Access Journals (Sweden)

    Nigel Unwin

    2017-07-01

    Full Text Available Rapid communication at the chemical synapse depends on the action of ion channels residing in the postsynaptic membrane. The channels open transiently upon the binding of a neurotransmitter released from the presynaptic nerve terminal, eliciting an electrical response. Membrane lipids also play a vital but poorly understood role in this process of synaptic transmission. The present study examines the lipid distribution around nicotinic acetylcholine (ACh receptors in tubular vesicles made from postsynaptic membranes of the Torpedo ray, taking advantage of the recent advances in cryo-EM. A segregated distribution of lipid molecules is found in the outer leaflet of the bilayer. Apparent cholesterol-rich patches are located in specific annular regions next to the transmembrane helices and also in a more extended `microdomain' between the apposed δ subunits of neighbouring receptors. The particular lipid distribution can be interpreted straightforwardly in relation to the gating movements revealed by an earlier time-resolved cryo-EM study, in which the membranes were exposed briefly to ACh. The results suggest that in addition to stabilizing the protein, cholesterol may play a mechanical role by conferring local rigidity to the membrane so that there is productive coupling between the extracellular and membrane domains, leading to opening of the channel.

  17. Acetylcholine Encodes Long-Lasting Presynaptic Plasticity at Glutamatergic Synapses in the Dorsal Striatum after Repeated Amphetamine Exposure

    Science.gov (United States)

    Wang, Wengang; Darvas, Martin; Storey, Granville P.; Bamford, Ian J.; Gibbs, Jeffrey T.; Palmiter, Richard D.

    2013-01-01

    Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence. PMID:23785153

  18. Targeting nicotinic acetylcholine receptor to treat smoking-related periodontitis.

    Science.gov (United States)

    Liu, Ying-Feng; Ge, Xin; Wen, Ling-Ying; Wang, Xiao-Jing

    2011-02-01

    Tobacco smoking is considered to be one of the major risk factors for periodontitis. Nicotine, the major component in tobacco smoke, has been considered playing an important role in tobacco-related morbidity by acting through the nicotinic acetylcholine receptors (nAChRs) expressed by non-neuronal cells. Recently studies found that nAChRs could be expressed on oral gingival and periodontal tissues. We hypothesize that nicotine may act on periodontal tissues directly and specifically through nAChRs to affect periodontitis activity, and that nicotine-induced periodontitis could be prevented by tissue-selective nAChR inhibitors targeting periodontal nAChRs. Thus, periodontal nAChRs may provide to be novel molecular targets to treat smoking-related periodontitis, effectively blocking of periodontal nAChRs may offer an optimistic outlook for the therapy of smoking- related periodontitis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    Science.gov (United States)

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. Copyright © 2015. Published by Elsevier Inc.

  20. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors.

    Science.gov (United States)

    Galindo-Charles, Luis; Hernandez-Lopez, Salvador; Galarraga, Elvira; Tapia, Dagoberto; Bargas, José; Garduño, Julieta; Frías-Dominguez, Carmen; Drucker-Colin, René; Mihailescu, Stefan

    2008-08-01

    Very few neurons in the telencephalon have been shown to express functional postsynaptic nicotinic acetylcholine receptors (nAChRs), among them, the noradrenergic and dopaminergic neurons. However, there is no evidence for postsynaptic nAChRs on serotonergic neurons. In this study, we asked if functional nAChRs are present in serotonergic (5-HT) and nonserotonergic (non-5-HT) neurons of the dorsal raphe nucleus (DRN). In rat midbrain slices, field stimulation at the tegmental pedunculopontine (PPT) nucleus evoked postsynaptic currents (eEPSCs) with different components in DRN neurons. After blocking the glutamatergic and GABAergic components, the remaining eEPSCs were blocked by mecamylamine and reduced by either the selective alpha7 nAChR antagonist methyllycaconitine (MLA) or the selective alpha4beta2 nAChR antagonist dihydro-beta-eritroidine (DHbetaE). Simultaneous addition of MLA and DHbetaE blocked all eEPSCs. Integrity of the PPT-DRN pathway was assessed by both anterograde biocytin tracing and antidromic stimulation from the DRN. Inward currents evoked by the direct application of acetylcholine (ACh), in the presence of atropine and tetrodotoxin, consisted of two kinetically different currents: one was blocked by MLA and the other by DHbetaE; in both 5-HT and non-5-HT DR neurons. Analysis of spontaneous (sEPSCs) and evoked (eEPSCs) synaptic events led to the conclusion that nAChRs were located at the postsynaptic membrane. The possible implications of these newly described nAChRs in various physiological processes and behavioral events, such as the wake-sleep cycle, are discussed.

  1. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K. (Stanford); (NIH); (D.E. Shaw); (Hanyang); (UTSMC)

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  2. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (5...... represents a compound displaying the synergistic effect of α7 nAChR agonism combined with partial 5-HT reuptake inhibition previously described. The addition of α7 nAChR agonism to classical monoamine-based mechanisms may represent a novel option for the improved treatment of major depression....

  3. Hippocampal testosterone relates to reference memory performance and synaptic plasticity in male rats

    Directory of Open Access Journals (Sweden)

    Kristina eSchulz

    2010-12-01

    Full Text Available Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the natural endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behaviour, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to reference memory performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP of the field excitatory postsynaptic potential (fEPSP was prolonged in untrained rats, both the fEPSP- and the population spike amplitude-LTP was impaired in trained rats. Behavioural performance was unaffected, but correlations of hippocampal field potentials with behaviour were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance.

  4. Retroviral-mediated gene transfer of the porcine choline acetyltransferase: a model to study the synthesis and secretion of acetylcholine in mammalian cells.

    Science.gov (United States)

    Xi, X G; Horellou, P; Leroy, C; Mallet, J

    1993-05-01

    We have constructed a recombinant retrovirus that expresses choline acetyltransferase (ChAT) by placing the porcine enzyme cDNA under the control of the 5' long terminal repeat of the retroviral vector pMMuLV. Using retrovirus-mediated gene transfer, we have expressed ChAT in astroglial (STR-SVLT) and neuroendocrine (RIN) cell lines. Both genetically modified cell types synthesize acetylcholine (ACh). ACh is also present in the culture medium at a low concentration relative to that found in the modified cells. This result suggests that the synthesized ACh is retained within the cells and released by these two cell types. Release of ACh is not increased in the presence of the calcium ionophore A23187 or by depolarizing concentrations of potassium in either STR-SVLT or in RIN cells. The implications of these studies for understanding ACh release mechanisms are discussed.

  5. Development of hippocampal functional connectivity during childhood.

    Science.gov (United States)

    Blankenship, Sarah L; Redcay, Elizabeth; Dougherty, Lea R; Riggins, Tracy

    2017-01-01

    The hippocampus is a medial temporal lobe structure involved in memory, spatial navigation, and regulation of stress responses, making it a structure critical to daily functioning. However, little is known about the functional development of the hippocampus during childhood due to methodological challenges of acquiring neuroimaging data in young participants. This is a critical gap given evidence that hippocampally-mediated behaviors (e.g., episodic memory) undergo rapid and important changes during childhood. To address this gap, the present investigation collected resting-state fMRI scans in 97, 4- to 10-year-old children. Whole brain seed-based analyses of anterior, posterior, and whole hippocampal connectivity were performed to identify regions demonstrating stable (i.e., age-controlled) connectivity profiles as well as age-related differences in connectivity. Results reveal that the hippocampus is a highly connected structure of the brain and that most of the major components of the adult network are evident during childhood, including both unique and overlapping connectivity between anterior and posterior regions. Despite widespread age-controlled connectivity, the strength of hippocampal connectivity with regions of lateral temporal lobes and the anterior cingulate increased throughout the studied age range. These findings have implications for future investigations of the development of hippocampally-mediated behaviors and methodological applications for the appropriateness of whole versus segmented hippocampal seeds in connectivity analyses. Hum Brain Mapp 38:182-201, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Multisensory control of hippocampal spatiotemporal selectivity.

    Science.gov (United States)

    Ravassard, Pascal; Kees, Ashley; Willers, Bernard; Ho, David; Aharoni, Daniel A; Cushman, Jesse; Aghajan, Zahra M; Mehta, Mayank R

    2013-06-14

    The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.

  7. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label.

    Science.gov (United States)

    Middleton, R E; Cohen, J B

    1991-07-16

    The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sites on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]nicotine binds at equilibrium with Keq = 0.6 microM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the alpha- and gamma-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the alpha-subunit was labeled via both agonist sites but the gamma-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Within the alpha-subunit, 93% of the labeling was contained within a 20-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Ser-173. Sequence analysis of this peptide indicated that approximately 80% of the incorporation was into Tyr-198, approximately 13% was into Cys-192, and approximately 7% was into Tyr-190. Chymotryptic digestion of the alpha-subunit confirmed that Tyr-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radio-sequencing strategy employing omicron-phthalaldehyde, since the efficiency of photolabeling was low (approximately 1.0%) and the labeled chymotryptic peptide was not isolated in sufficient quantity to be identified by mass. [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.

  8. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse

    Directory of Open Access Journals (Sweden)

    Koepsell Hermann

    2006-04-01

    Full Text Available Abstract Background It has been proposed that serotonin (5-HT-mediated constriction of the murine trachea is largely dependent on acetylcholine (ACh released from the epithelium. We recently demonstrated that ACh can be released from non-neuronal cells by corticosteroid-sensitive polyspecific organic cation transporters (OCTs, which are also expressed by airway epithelial cells. Hence, the hypothesis emerged that 5-HT evokes bronchoconstriction by inducing release of ACh from epithelial cells via OCTs. Methods We tested this hypothesis by analysing bronchoconstriction in precision-cut murine lung slices using OCT and muscarinic ACh receptor knockout mouse strains. Epithelial ACh content was measured by HPLC, and the tissue distribution of OCT isoforms was determined by immunohistochemistry. Results Epithelial ACh content was significantly higher in OCT1/2 double-knockout mice (42 ± 10 % of the content of the epithelium-denuded trachea, n = 9 than in wild-type mice (16.8 ± 3.6 %, n = 11. In wild-type mice, 5-HT (1 μM caused a bronchoconstriction that slightly exceeded that evoked by muscarine (1 μM in intact bronchi but amounted to only 66% of the response to muscarine after epithelium removal. 5-HT-induced bronchoconstriction was undiminished in M2/M3 muscarinic ACh receptor double-knockout mice which were entirely unresponsive to muscarine. Corticosterone (1 μM significantly reduced 5-HT-induced bronchoconstriction in wild-type and OCT1/2 double-knockout mice, but not in OCT3 knockout mice. This effect persisted after removal of the bronchial epithelium. Immunohistochemistry localized OCT3 to the bronchial smooth muscle. Conclusion The doubling of airway epithelial ACh content in OCT1/2-/- mice is consistent with the concept that OCT1 and/or 2 mediate ACh release from the respiratory epithelium. This effect, however, does not contribute to 5-HT-induced constriction of murine intrapulmonary bronchi. Instead, this activity involves 1 a non

  9. Childhood maltreatment modifies the relationship of depression with hippocampal volume

    NARCIS (Netherlands)

    Gerritsen, L.; van Velzen, L.; Schmaal, L.; van der Graaf, Y.; van der Wee, N.; van Tol, M.J.; Penninx, B.W.J.H.; Geerlings, M.

    2015-01-01

    Childhood maltreatment (CM) may modify the relationship between major depressive disorder (MDD) and hippocampal volume reduction. To disentangle the impact of MDD and CM on hippocampal volume we investigated the association between MDD and hippocampal volume in persons with and without a history of

  10. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  11. Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts.

    Science.gov (United States)

    Sato, Tsuyoshi; Abe, Takahiro; Chida, Dai; Nakamoto, Norimichi; Hori, Naoko; Kokabu, Shoichiro; Sakata, Yasuaki; Tomaru, Yasuhisa; Iwata, Takanori; Usui, Michihiko; Aiko, Katsuya; Yoda, Tetsuya

    2010-02-19

    Recent studies have indicated that acetylcholine (ACh) plays a vital role in various tissues, while the role of ACh in bone metabolism remains unclear. Here we demonstrated that ACh induced cell proliferation and reduced alkaline phosphatase (ALP) activity via nicotinic (nAChRs) and muscarinic acetylcholine receptors (mAChRs) in osteoblasts. We detected mRNA expression of several nAChRs and mAChRs. Furthermore, we showed that cholinergic components were up-regulated and subunits/subtypes of acetylcholine receptors altered during osteoblast differentiation. To our knowledge, this is the first report demonstrating that osteoblasts express specific acetylcholine receptors and cholinergic components and that ACh plays a possible role in regulating the proliferation and differentiation of osteoblasts. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  12. Safety evaluation of routine intracoronary acetylcholine infusion in patients undergoing a first diagnostic coronary angiogram

    NARCIS (Netherlands)

    Tio, RA; Monnink, SHJ; Amoroso, G; Jessurun, GAJ; Veeger, N; Volkers, C; Hautvast, R; Tan, ES; van Gilst, WH; van Boven, AJ

    Background: Recent findings imply prognostic significance of intracoronary acetylcholine infusion for endothelial function testing. We evaluated whether routine use of this test in coronary angiography patients is safe. Methods: Patients undergoing a first diagnostic coronary angiography were

  13. Alpha-nicotinic acetylcholine receptor and tobacco smoke exposure : Effects on bronchial hyperresponsiveness in children

    NARCIS (Netherlands)

    Torjussen, Tale M.; Carlsen, Karin C. Lodrup; Munthe-Kaas, Monica C.; Mowinckel, Petter; Carlsen, Kai-Hakon; Helms, Peter J.; Gerritsen, Jorrit; Whyte, Moira K.; Lenney, Warren; Undlien, Dag E.; Shianna, Kevin V.; Zhu, Guohua; Pillai, Sreekumar G.

    Background: The CHRNA 3 and 5 genes on chromosome 15 encode the alpha subunits of the nicotinic acetylcholine receptor, mediating airway cholinergic activity. Polymorphisms are associated with cigarette smoking, chronic obstructive pulmonary disease, and lung cancer. Aims: To determine possible

  14. Stress, depression and hippocampal damage

    Indian Academy of Sciences (India)

    Amongst the prime targets of stress in the brain is the hippocampus, which has high receptor levels for corticoster- oids that are released during stress (McEwen 1999). Over the years evidence has built up that stress leads to damage of the hippocampus. Initial reports from Uno et al (1989) indicated that primates exposed to ...

  15. The Role of Nicotinic Acetylcholine Receptors in the Medial Prefrontal Cortex and Hippocampus in Trace Fear Conditioning

    Science.gov (United States)

    Raybuck, J. D.; Gould, T. J.

    2010-01-01

    Acute nicotine enhances multiple types of learning including trace fear conditioning but the underlying neural substrates of these effects are not well understood. Trace fear conditioning critically involves the medial prefrontal cortex and hippocampus, which both express nicotinic acetylcholine receptors (nAChRs). Therefore, nicotine could act in either or both areas to enhance trace fear conditioning. To identify the underlying neural areas and nAChR subtypes, we examined the effects of infusion of nicotine, or nicotinic antagonists dihydro-beta-erythroidine (DHβE: high-affinity nAChRs) or methyllycaconitine (MLA: low-affinity nAChRs) into the dorsal hippocampus, ventral hippocampus, and medial prefrontal cortex (mPFC) on trace and contextual fear conditioning. We found that the effects of nicotine on trace and contextual fear conditioning vary by brain region and nAChR subtype. The dorsal hippocampus was involved in the effects of nicotine on both trace and contextual fear conditioning but each task was sensitive to different doses of nicotine. Additionally, dorsal hippocampal infusion of the antagonist DHβE produced deficits in trace but not contextual fear conditioning. Nicotine infusion into the ventral hippocampus produced deficits in both trace and contextual fear conditioning. In the mPFC, nicotine enhanced trace but not contextual fear conditioning. Interestingly, infusion of the antagonists MLA or DHβE in the mPFC also enhanced trace fear conditioning. These findings suggest that nicotine acts on different substrates to enhance trace versus contextual fear conditioning, and that nicotine-induced desensitization of nAChRs in the mPFC may contribute to the effects of nicotine on trace fear conditioning. PMID:20727979

  16. Adult hippocampal neurogenesis and cognitive aging

    Directory of Open Access Journals (Sweden)

    Román Darío Moreno Fernández

    2013-12-01

    Full Text Available Aging is a normal developmental process associated with neurobiological changes leading to cognitive alterations with preserved, impaired, and enhanced functions. Evidence from animal and human studies is reviewed to explore the potential role of hippocampal plasticity on age-related cognitive changes with special attention to adult hippocampal neurogenesis. Results from lesion and stimulation strategies, as well as correlation data, support either a direct or modulatory role for adult newborn neurons in cognition at advanced ages. Further research on this topic may help to develop new treatments and to improve the quality of life of older people.

  17. 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis.

    Science.gov (United States)

    Coan, A C; Kubota, B; Bergo, F P G; Campos, B M; Cendes, F

    2014-01-01

    In mesial temporal lobe epilepsy, MR imaging quantification of hippocampal volume and T2 signal can improve the sensitivity for detecting hippocampal sclerosis. However, the current contributions of these analyses for the diagnosis of hippocampal sclerosis in 3T MRI are not clear. Our aim was to compare visual analysis, volumetry, and signal quantification of the hippocampus for detecting hippocampal sclerosis in 3T MRI. Two hundred three patients with mesial temporal lobe epilepsy defined by clinical and electroencephalogram criteria had 3T MRI visually analyzed by imaging epilepsy experts. As a second step, we performed automatic quantification of hippocampal volumes with FreeSurfer and T2 relaxometry with an in-house software. MRI of 79 healthy controls was used for comparison. Visual analysis classified 125 patients (62%) as having signs of hippocampal sclerosis and 78 (38%) as having normal MRI findings. Automatic volumetry detected atrophy in 119 (95%) patients with visually detected hippocampal sclerosis and in 10 (13%) with visually normal MR imaging findings. Relaxometry analysis detected hyperintense T2 signal in 103 (82%) patients with visually detected hippocampal sclerosis and in 15 (19%) with visually normal MR imaging findings. Considered together, volumetry plus relaxometry detected signs of hippocampal sclerosis in all except 1 (99%) patient with visually detected hippocampal sclerosis and in 22 (28%) with visually normal MR imaging findings. In 3T MRI visually inspected by experts, quantification of hippocampal volume and signal can increase the detection of hippocampal sclerosis in 28% of patients with mesial temporal lobe epilepsy.

  18. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors.

    Science.gov (United States)

    Talani, Giuseppe; Licheri, Valentina; Biggio, Francesca; Locci, Valentina; Mostallino, Maria Cristina; Secci, Pietro Paolo; Melis, Valentina; Dazzi, Laura; Carta, Gianfranca; Banni, Sebastiano; Biggio, Giovanni; Sanna, Enrico

    2016-04-01

    The endogenous endocannabinoid system has a crucial role in regulating appetite and feeding behavior in mammals, as well as working memory and reward mechanisms. In order to elucidate the possible role of cannabinoid type-1 receptors (CB1Rs) in the regulation of hippocampal plasticity in animals exposed to food restriction (FR), we limited the availability of food to a 2-h daily period for 3 weeks in Sprague-Dawley rats. FR rats showed a higher long-term potentiation at hippocampal CA1 excitatory synapses with a parallel increase in glutamate release when compared with animals fed ad libitum. FR rats showed a significant increase in the long-term spatial memory determined by Barnes maze. FR was also associated with a decreased inhibitory effect of the CB1R agonist win55,212-2 on glutamatergic field excitatory postsynaptic potentials, together with a decrease in hippocampal CB1R protein expression. In addition, hippocampal brain-derived neurotrophic factor protein levels and mushroom dendritic spine density were significantly enhanced in FR rats. Altogether, our data suggest that alterations of hippocampal CB1R expression and function in FR rats are associated with dendritic spine remodeling and functional potentiation of CA1 excitatory synapses, and these findings are consistent with increasing evidence supporting the idea that FR may improve cognitive functions.

  19. Huntingtin acts non cell-autonomously on hippocampal neurogenesis and controls anxiety-related behaviors in adult mouse.

    Directory of Open Access Journals (Sweden)

    Patrick Pla

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative disease, characterized by motor defects and psychiatric symptoms, including mood disorders such as anxiety and depression. HD is caused by an abnormal polyglutamine (polyQ expansion in the huntingtin (HTT protein. The development and analysis of various mouse models that express pathogenic polyQ-HTT revealed a link between mutant HTT and the development of anxio-depressive behaviors and various hippocampal neurogenesis defects. However, it is unclear whether such phenotype is linked to alteration of HTT wild-type function in adults. Here, we report the analysis of a new mouse model in which HTT is inducibly deleted from adult mature cortical and hippocampal neurons using the CreER(T2/Lox system. These mice present defects in both the survival and the dendritic arborization of hippocampal newborn neurons. Our data suggest that these non-cell autonomous effects are linked to defects in both BDNF transport and release upon HTT silencing in hippocampal neurons, and in BDNF/TrkB signaling. The controlled deletion of HTT also had anxiogenic-like effects. Our results implicate endogenous wild-type HTT in adult hippocampal neurogenesis and in the control of mood disorders.

  20. Hippocampal cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    Directory of Open Access Journals (Sweden)

    Feng eYi

    2015-03-01

    Full Text Available Release of acetylcholine (ACh in the hippocampus (HC occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlapping with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-Rosa and ChAT-tauGFP mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  1. Electrically evoked GABA release in rat hippocampus CA1 region and its changes during kindling epileptogenesis.

    NARCIS (Netherlands)

    Ghijsen, W.E.J.M.; Zuiderwijk, M.; Lopes da Silva, F.H.

    2007-01-01

    Previous findings on changes in K(+)-induced GABA release from hippocampal slices during kindling epileptogenesis were reinvestigated using physiological electrical stimulation. For that purpose, a procedure was developed enabling neurochemical monitoring of GABA release locally in the CA1 region of

  2. Effect of Repeated Electroacupuncture Intervention on Hippocampal ERK and p38MAPK Signaling in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Jun-ying Wang

    2015-01-01

    Full Text Available Results of our past studies showed that hippocampal muscarinic acetylcholine receptor (mAChR-1 mRNA and differentially expressed proteins participating in MAPK signaling were involved in electroacupuncture (EA induced cumulative analgesia in neuropathic pain rats, but the underlying intracellular mechanism remains unknown. The present study was designed to observe the effect of EA stimulation (EAS on hippocampal extracellular signal-regulated kinases (ERK and p38 MAPK signaling in rats with chronic constrictive injury (CCI of the sciatic nerve, so as to reveal its related intracellular targets in pain relief. After CCI, the thermal pain thresholds of the affected hind were significantly decreased compared with the control group (P<0.05. Following one and two weeks’ EAS of ST 36-GB34, the pain thresholds were significantly upregulated (P<0.05, and the effect of EA2W was remarkably superior to that of EA2D and EA1W (P<0.05. Correspondingly, CCI-induced decreased expression levels of Ras, c-Raf, ERK1 and p-ERK1/2 proteins, and p38 MAPK mRNA and p-p38MAPK protein in the hippocampus tissues were reversed by EA2W (P<0.05. The above mentioned results indicated that EA2W induced cumulative analgesic effect may be closely associated with its function in removing neuropathic pain induced suppression of intracellular ERK and p38MAPK signaling in the hippocampus.

  3. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    Science.gov (United States)

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  4. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Abrar Ashoor

    Full Text Available Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+-dependent Cl(- channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+ chelator BAPTA and perfusion with Ca(2+-free bathing solution containing Ba(2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  5. Wnt proteins regulate acetylcholine receptor clustering in muscle cells.

    Science.gov (United States)

    Zhang, Bin; Liang, Chuan; Bates, Ryan; Yin, Yiming; Xiong, Wen-Cheng; Mei, Lin

    2012-02-06

    The neuromuscular junction (NMJ) is a cholinergic synapse that rapidly conveys signals from motoneurons to muscle cells and exhibits a high degree of subcellular specialization characteristic of chemical synapses. NMJ formation requires agrin and its coreceptors LRP4 and MuSK. Increasing evidence indicates that Wnt signaling regulates NMJ formation in Drosophila, C. elegans and zebrafish. In the study we systematically studied the effect of all 19 different Wnts in mammals on acetylcholine receptor (AChR) cluster formation. We identified five Wnts (Wnt9a, Wnt9b, Wnt10b, Wnt11, and Wnt16) that are able to stimulate AChR clustering, of which Wnt9a and Wnt11 are expressed abundantly in developing muscles. Using Wnt9a and Wnt11 as example, we demonstrated that Wnt induction of AChR clusters was dose-dependent and non-additive to that of agrin, suggesting that Wnts may act via similar pathways to induce AChR clusters. We provide evidence that Wnt9a and Wnt11 bind directly to the extracellular domain of MuSK, to induce MuSK dimerization and subsequent tyrosine phosphorylation of the kinase. In addition, Wnt-induced AChR clustering requires LRP4. These results identify Wnts as new players in AChR cluster formation, which act in a manner that requires both MuSK and LRP4, revealing a novel function of LRP4.

  6. Wnt proteins regulate acetylcholine receptor clustering in muscle cells

    Directory of Open Access Journals (Sweden)

    Zhang Bin

    2012-02-01

    Full Text Available Abstract Background The neuromuscular junction (NMJ is a cholinergic synapse that rapidly conveys signals from motoneurons to muscle cells and exhibits a high degree of subcellular specialization characteristic of chemical synapses. NMJ formation requires agrin and its coreceptors LRP4 and MuSK. Increasing evidence indicates that Wnt signaling regulates NMJ formation in Drosophila, C. elegans and zebrafish. Results In the study we systematically studied the effect of all 19 different Wnts in mammals on acetylcholine receptor (AChR cluster formation. We identified five Wnts (Wnt9a, Wnt9b, Wnt10b, Wnt11, and Wnt16 that are able to stimulate AChR clustering, of which Wnt9a and Wnt11 are expressed abundantly in developing muscles. Using Wnt9a and Wnt11 as example, we demonstrated that Wnt induction of AChR clusters was dose-dependent and non-additive to that of agrin, suggesting that Wnts may act via similar pathways to induce AChR clusters. We provide evidence that Wnt9a and Wnt11 bind directly to the extracellular domain of MuSK, to induce MuSK dimerization and subsequent tyrosine phosphorylation of the kinase. In addition, Wnt-induced AChR clustering requires LRP4. Conclusions These results identify Wnts as new players in AChR cluster formation, which act in a manner that requires both MuSK and LRP4, revealing a novel function of LRP4.

  7. Sodium nitrate decreases agrin-induced acetylcholine receptor clustering.

    Science.gov (United States)

    Jarosz, Jess; White, Cullen; Grow, Wade A

    2016-05-01

    Humans are exposed to nitrate predominantly through diet with peak plasma concentrations within an hour after ingestion, but additional exposure is obtained from the environment, and minimally through de novo synthesis. Higher nitrate consumption has been associated with methemoglobinemia, spontaneous abortions, atherosclerosis, myocardial ischemia, septic and distressed lung, inflammatory bowel disease, amyotrophic lateral sclerosis, and neural tube defects. However, skeletal muscle development has not been examined. C2C12 skeletal muscle cell cultures were maintained, myoblasts were fused into myotubes, and then cultures were exposed to motor neuron derived agrin to enhance acetylcholine receptor (AChR) clustering. Untreated cultures were compared with cultures exposed to sodium nitrate at concentrations ranging from 10 ng/mL-100 μg/mL. The results reported here demonstrate that 1 μg/mL sodium nitrate was sufficient to decrease the frequency of agrin-induced AChR clustering without affecting myotube formation. In addition, concentrations of sodium nitrate of 1 μg/mL or 100 μg/mL decreased gene expression of the myogenic transcription factor myogenin and AChR in correlation with the agrin-induced AChR clustering data. These results reveal that sodium nitrate decreases the frequency of agrin-induced AChR clustering by a mechanism that includes myogenin and AChR gene expression. As a consequence sodium nitrate may pose a risk for skeletal muscle development and subsequent neuromuscular synapse formation in humans.

  8. Transmembrane topology of the acetylcholine receptor examined in reconstituted vesicles

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, P.D.

    1987-01-01

    Each of the five acetylcholine receptor (AChR) subunits, ..cap alpha../sub 2/..beta..-..gamma..delta, is believed to have the same number of transmembrane crossing and to share the same general folding pattern. AChR isolated from the electric organ of electric fish is predominantly dimeric. We have used this bridge as a marker for the C-terminus of the delta subunit, and presumably that of the other subunits in addition. The disulfide's accessibility to hydrophilic reductants, principally glutathione (GSH), was tested in a reconstituted vesicle system. The reduction of the delta-delta desulfide, as evidenced by the transition of AChrR dimers to monomers, was quantitatively monitored on velocity sedimentation sucrose gradients. Alternatively, the reduction of delta/sub 2/ to delta was followed by employing non-reducing SDS-PAGE. Reductants such as GSH were able to access the bridge in intact right-side-out vesicles. No acceleration of this process was evident when the vesicles were disrupted by freeze-thaw or by detergents. Control experiments which determined the rate of reduction of entrapped diphtheria toxin, or that of /sup 3/H-GSH efflux, demonstrated that intact reconstituted vesicles provide an adequate permeability barrier to GSH access of their intravesicular space.

  9. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis.

    Science.gov (United States)

    Sallam, Amal; Mira, Amira; Ashour, Ahmed; Shimizu, Kuniyoshi

    2016-09-15

    Salvia officinalis is a traditionally used herb with a wide range of medicinal applications. Many phytoconstituents have been isolated from S. officinalis, mainly phenolic diterpenes, which possess many biological activities. This study aimed to evaluate the ability of the phenolic diterpenes of S. officinalis to inhibit acetylcholine esterase (AChE) as well as their ability to inhibit melanin biosynthesis in B16 melanoma cells. The phenolic diterpenes isolated from the aerial parts of S. officinalis were tested for their effect on melanin biosynthesis in B16 melanoma cell lines. They were also tested for their ability to inhibit AChE using Ellman's method. Moreover, a molecular docking experiment was used to investigate the binding affinity of the isolated phenolic diterpenes to the amino acid residues at the active sites of AChE. Seven phenolic diterpenes-sageone, 12-methylcarnosol, carnosol, 7b-methoxyrosmanol, 7a-methoxyrosmanol, isorosmanol and epirosmanol-were isolated from the methanolic extract of the aerial parts of S. officinalis. Isorosmanol showed a melanin-inhibiting activity as potent as that of arbutin. Compounds 7a-methoxyrosmanol and isorosmanol inhibited AChE activity by 50% and 65%, respectively, at a concentration of 500 µM. The results suggest that isorosmanol is a promising natural compound for further studies on development of new medications which might be useful in ageing disorders such as the declining of cognitive functions and hyperpigmentation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...

  11. Stress, hippocampal neurogenesis and cognition: functional correlations

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.A.

    2016-01-01

    The brain of many species including humans, harbors stem cells that continue to generate new neurons up into adulthood. This form of structural plasticity occurs in a limited number of brain regions, i.e. the subventricular zone and the hippocampal dentate gyrus and is regulated by environmental and

  12. Glucocorticoid receptor knockdown and adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Hooijdonk, Leonarda Wilhelmina Antonia van

    2010-01-01

    The research in this thesis is aimed at the elucidation of the role of the glucocorticoid receptor (GR) in hippocampal neuroplasticity and functioning. To achieve this, we have developed a novel method to specifically knockdown GR in a discrete cell population of the mouse brain. In this thesis I

  13. Hippocampal atrophy in subcortical vascular dementia

    NARCIS (Netherlands)

    van de Pol, L.A.; Gertz, H.J.; Scheltens, P.; Wolf, H

    2011-01-01

    Background and Purpose: New research criteria for subcortical vascular dementia (SVaD) have been suggested to define a more homogeneous subgroup of vascular dementia. Hippocampal (Hc) atrophy is a hallmark of Alzheimer's disease (AD), but it also occurs in other dementia disorders including vascular

  14. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    Science.gov (United States)

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  15. Hippocampal theta frequency shifts and operant behaviour

    NARCIS (Netherlands)

    Lopes da Silva, F.H.; Kamp, A.

    1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and

  16. Resveratrol: A Potential Hippocampal Plasticity Enhancer

    Directory of Open Access Journals (Sweden)

    Gisele Pereira Dias

    2016-01-01

    Full Text Available The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis (AHN, can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by “nutraceutical” agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries, as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions.

  17. Hippocampal gamma oscillations increase with memory load

    NARCIS (Netherlands)

    Van Vugt, Marieke K.; Schulze-Bonhage, Andreas; Litt, Brian; Brandt, Armin; Kahana, Michael J.

    2010-01-01

    Although the hippocampus plays a crucial role in encoding and retrieval of contextually mediated episodic memories, considerable controversy surrounds the role of the hippocampus in short-term or working memory. To examine both hippocampal and neocortical contributions to working memory function, we

  18. Klotho regulates CA1 hippocampal synaptic plasticity.

    Science.gov (United States)

    Li, Qin; Vo, Hai T; Wang, Jing; Fox-Quick, Stephanie; Dobrunz, Lynn E; King, Gwendalyn D

    2017-04-07

    Global klotho overexpression extends lifespan while global klotho-deficiency shortens it. As well, klotho protein manipulations inversely regulate cognitive function. Mice without klotho develop rapid onset cognitive impairment before they are 2months old. Meanwhile, adult mice overexpressing klotho show enhanced cognitive function, particularly in hippocampal-dependent tasks. The cognitive enhancing effects of klotho extend to humans with a klotho polymorphism that increases circulating klotho and executive function. To affect cognitive function, klotho could act in or on the synapse to modulate synaptic transmission or plasticity. However, it is not yet known if klotho is located at synapses, and little is known about its effects on synaptic function. To test this, we fractionated hippocampi and detected klotho expression in both pre and post-synaptic compartments. We find that loss of klotho enhances both pre and post-synaptic measures of CA1 hippocampal synaptic plasticity at 5weeks of age. However, a rapid loss of synaptic enhancement occurs such that by 7weeks, when mice are cognitively impaired, there is no difference from wild-type controls. Klotho overexpressing mice show no early life effects on synaptic plasticity, but decreased CA1 hippocampal long-term potentiation was measured at 6months of age. Together these data suggest that klotho affects cognition, at least in part, by regulating hippocampal synaptic plasticity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex.

    Science.gov (United States)

    Di Liberto, Valentina; Frinchi, Monica; Verdi, Vincenzo; Vitale, Angela; Plescia, Fulvio; Cannizzaro, Carla; Massenti, Maria F; Belluardo, Natale; Mudò, Giuseppa

    2017-02-01

    In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.

  20. Alexa Fluor 546-ArIB[V11L;V16A]is a potent ligand for selectively labeling α7 nicotinic acetylcholine receptors

    Science.gov (United States)

    Hone, Arik J.; Whiteaker, Paul; Mohn, Jesse L.; Jacob, Michele H.; McIntosh, J. Michael

    2010-01-01

    The α7* nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the vertebrate nervous system and implicated in neuropsychiatric disorders that compromise thought and cognition. In this report, we demonstrate that the recently developed fluorescent ligand Cy3-ArIB[V11L;V16A] labels α7 nAChRs in cultured hippocampal neurons. However, photobleaching of this ligand during long image acquisition times prompted us to develop a new derivative. In photostability studies, this new ligand, Alexa Fluor 546-ArIB[V11L;V16A], was significantly more resistant to bleaching than the Cy3 derivative. The classic α7 ligand α-bungarotoxin binds to α1* and α9* nAChRs. In contrast, Alexa Fluor 546-ArIB[V11L;V16A] potently (IC50 1.8 nM) and selectively blocked α7 nAChRs but not α1* or α9* nAChRs expressed in Xenopus oocytes. Selectivity was further confirmed by competition binding studies of native nAChRs in rat brain membranes. The fluorescence properties of Alexa Fluor 546-ArIB[V11L;V16A] were assessed using human embryonic kidney-293 cells stably transfected with nAChRs; labeling was observed on cells expressing α7 but not cells expressing α3β2, α3β4, or α4β2 nAChRs. Further imaging studies demonstrate that Alexa Fluor 546-ArIB[V11L;V16A] labels hippocampal neurons from wild type mice but not from nAChR α7 subunit-null mice. Thus, Alexa Fluor 546-ArIB[V11L;V16A] represents a potent and selective ligand for imaging α7 nAChRs. PMID:20492354

  1. Alexa Fluor 546-ArIB[V11L;V16A] is a potent ligand for selectively labeling alpha 7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Hone, Arik J; Whiteaker, Paul; Mohn, Jesse L; Jacob, Michele H; McIntosh, J Michael

    2010-08-01

    The alpha7* (*denotes the possible presence of additional subunits) nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the vertebrate nervous system and implicated in neuropsychiatric disorders that compromise thought and cognition. In this report, we demonstrate that the recently developed fluorescent ligand Cy3-ArIB[V11L;V16A] labels alpha7 nAChRs in cultured hippocampal neurons. However, photobleaching of this ligand during long image acquisition times prompted us to develop a new derivative. In photostability studies, this new ligand, Alexa Fluor 546-ArIB[V11L;V16A], was significantly more resistant to bleaching than the Cy3 derivative. The classic alpha7 ligand alpha-bungarotoxin binds to alpha1* and alpha9* nAChRs. In contrast, Alexa Fluor 546-ArIB[V11L;V16A] potently (IC(50) 1.8 nM) and selectively blocked alpha7 nAChRs but not alpha1* or alpha9* nAChRs expressed in Xenopus oocytes. Selectivity was further confirmed by competition binding studies of native nAChRs in rat brain membranes. The fluorescence properties of Alexa Fluor 546-ArIB[V11L;V16A] were assessed using human embryonic kidney-293 cells stably transfected with nAChRs; labeling was observed on cells expressing alpha7 but not cells expressing alpha3beta2, alpha3beta4, or alpha4beta2 nAChRs. Further imaging studies demonstrate that Alexa Fluor 546-ArIB[V11L;V16A] labels hippocampal neurons from wild-type mice but not from nAChR alpha7 subunit-null mice. Thus, Alexa Fluor 546-ArIB[V11L;V16A] represents a potent and selective ligand for imaging alpha7 nAChRs.

  2. The α7 nicotinic acetylcholine receptor: A mediator of pathogenesis and therapeutic target in autism spectrum disorders and Down syndrome.

    Science.gov (United States)

    Deutsch, Stephen I; Burket, Jessica A; Urbano, Maria R; Benson, Andrew D

    2015-10-15

    Currently, there are no medications that target core deficits of social communication and restrictive, repetitive patterns of behavior in persons with autism spectrum disorders (ASDs). Adults with Down syndrome (DS) display a progressive worsening of adaptive functioning, which is associated with Alzheimer's disease (AD)-like histopathological changes in brain. Similar to persons with ASDs, there are no effective medication strategies to prevent or retard the progressive worsening of adaptive functions in adults with DS. Data suggest that the α7-subunit containing nicotinic acetylcholine receptor (α7nAChR) is implicated in the pathophysiology and serves as a promising therapeutic target of these disorders. In DS, production of the amyloidogenic Aβ1-42 peptide is increased and binds to the α7nAChR or the lipid milieu associated with this receptor, causing a cascade that results in cytotoxicity and deposition of amyloid plaques. Independently of their ability to inhibit the complexing of Aβ1-42 with the α7nAChR, α7nAChR agonists and positive allosteric modulators (PAMs) also possess procognitive and neuroprotective effects in relevant in vivo and in vitro models. The procognitive and neuroprotective effects of α7nAChR agonist interventions may be due, at least in part, to stimulation of the PI3K/Akt signaling cascade, cross-talk with the Wnt/β-catenin signaling cascade and both transcriptional and non-transcriptional effects of β-catenin, and effects of transiently increased intraneuronal concentrations of Ca(2+) on metabolism and the membrane potential. Importantly, α7nAChR PAMs are particularly attractive medication candidates because they lack intrinsic efficacy and act only when and where endogenous acetylcholine is released or choline is generated. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Detrimental effect of fast neutrons on cultured immature rat hippocampal cells: relative biological effectiveness of in vitro cell death indices.

    Science.gov (United States)

    Yang, M; Kim, J S; Son, Y; Kim, J; Kim, J Y; Kim, S H; Kim, J C; Shin, T; Moon, C

    2011-09-01

    This in vitro study compared the detrimental effect and relative biological effectiveness (RBE) of high-linear energy transfer (LET) fast neutrons on rat immature hippocampal cultured cells with those of low-LET γ rays. Immature hippocampal cells were exposed to fast neutrons or γ rays. Cytotoxicity and cell viability were analyzed using a lactate dehydrogenase (LDH)-release assay and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, respectively. The cytotoxicity and cell viability with fast neutrons or γ rays varied in a dose-dependent pattern. In the LDH release and MTT assay indices, the RBEs of fast neutrons were approximately 2.35 and 2.42, respectively. Fast neutrons markedly induced apoptotic changes in immature hippocampal cells with increased expression of active caspase-3 and cleaved poly(ADP-ribose) polymerase. Increased cytotoxicity and decreased cell viability in immature hippocampal cells were seen in a dose-dependent pattern after fast-neutron and γ irradiation. Fast neutrons have a higher RBE for cell death indices than γ rays.

  4. Developmental adaptation of central nervous system to extremely high acetylcholine levels.

    Directory of Open Access Journals (Sweden)

    Vladimir Farar

    Full Text Available Acetylcholinesterase (AChE is a key enzyme in termination of fast cholinergic transmission. In brain, acetylcholine (ACh is produced by cholinergic neurons and released in extracellular space where it is cleaved by AChE anchored by protein PRiMA. Recently, we showed that the lack of AChE in brain of PRiMA knock-out (KO mouse increased ACh levels 200-300 times. The PRiMA KO mice adapt nearly completely by the reduction of muscarinic receptor (MR density. Here we investigated changes in MR density, AChE, butyrylcholinesterase (BChE activity in brain in order to determine developmental period responsible for such adaptation. Brains were studied at embryonal day 18.5 and postnatal days (pd 0, 9, 30, 120, and 425. We found that the AChE activity in PRiMA KO mice remained very low at all studied ages while in wild type (WT mice it gradually increased till pd120. BChE activity in WT mice gradually decreased until pd9 and then increased by pd120, it continually decreased in KO mice till pd30 and remained unchanged thereafter. MR number increased in WT mice till pd120 and then became stable. Similarly, MR increased in PRiMA KO mice till pd30 and then remained stable, but the maximal level reached is approximately 50% of WT mice. Therefore, we provide the evidence that adaptive changes in MR happen up to pd30. This is new phenomenon that could contribute to the explanation of survival and nearly unchanged phenotype of PRiMA KO mice.

  5. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    Science.gov (United States)

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F.; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  6. Revisiting the Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission

    Directory of Open Access Journals (Sweden)

    Yu-Yin Huang

    2016-07-01

    Full Text Available Lamotrigine (LTG is generally considered as a voltage-gated sodium (Nav channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN channel enhancer and can increase the excitability of GABAergic interneurons (INs. Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs, powerfully inhibit granule cells (GCs in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using whole-cell recording in rat hippocampal slices, we investigated the net LTG effect on BC output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the paired-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1 area, we found that LTG markedly inhibits both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs without significant hyperpolarization-activated current (Ih enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity.

  7. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  8. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  9. [Autoantibodies detected in acetylcholine receptor antibody-negative myasthenia gravis].

    Science.gov (United States)

    Ohta, Rie; Motomura, Masakatsu

    2014-03-01

    Myasthenia gravis (MG) is caused by the failure of neuromuscular transmission mediated by pathogenic autoantibodies (Abs) against the acetylcholine receptor (AChR), muscle-specific receptor tyrosine kinase (MuSK), and unknown autoantibodies. The seropositivity rates for routine AChR binding Ab and MuSK Ab in MG are 85% and a few % for MG patients in Japan, respectively. The autoimmune target in the remaining patients is unknown. In 2001, Hoch et al. reported that a proportion of AChR-Ab-negative MG patients had serum IgG antibodies against MuSK, shedding new light on the pathogenesis of the disease. This idea has been recently supported by many clinical studies, including neonatal myasthenic syndrome and animal model studies. In 2011, autoantibodies against low-density lipoprotein receptor-related protein 4(Lrp4) were identified in Japanese MG patients and, thereafter, have been reported in Germany and the USA. We developed a simple technique termed Gaussia luciferase immunoprecipitation for detecting antibodies to Lrp4. As a result, nine generalized MG patients out of 300 lacking AChR Ab were found to be positive for Lrp4 antibodies. Thymoma was not observed in any of these patients. These antibodies inhibit the binding of Lrp4 to its ligand and are predominantly of the IgG1 subclass. In other reports of Lrp4 ab, Lrp4 ab-positive sera inhibited the agrin-induced aggregation of AChRs in cultured myotubes, suggesting a pathogenic role regarding the dysfunction of the neuromuscular endplate. These results indicate that Lrp4 is the third autoantigen in patients with MG, and anti-Lrp4 autoantibodies may be pathogenic. Further studies including neuromuscular junction biopsy are needed to clarify the pathomechanism of Lrp4 ab-positive MG.

  10. Acetylcholine receptors in dementia and mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Osama; Kendziorra, Kai [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Wolf, Henrike; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Brust, Peter [Institute of Interdisciplinary Isotope Research, Leipzig (Germany)

    2008-03-15

    To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer's disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[{sup 18}F]F-A-85380, which is supposed to be specific for {alpha}4{beta}2 nicotinic acetylcholine receptors (nAChRs). We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD. Both patients with AD and MCI showed significant reductions in {alpha}4{beta}2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in {alpha}4{beta}2 nAChRs occurs during early symptomatic stages of AD. The {alpha}4{beta}2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the {alpha}4{beta}2 nAChR status. Together, our results provide evidence for the potential of 2-[{sup 18}]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[{sup 18}F]F-A-85380, we developed the new {alpha}4{beta}2 nAChR-specific radioligands (+)- and (-)-[{sup 18}F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (-)-[{sup 18}F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (-)-[{sup 18}F]NCFHEB should be a suitable radioligand for larger clinical investigations. (orig.)

  11. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    Science.gov (United States)

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-06-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [125I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α7 nACh receptor indicated that thujone suppressed choline induced Ca2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sérgio M Pinto

    Full Text Available The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  13. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    Science.gov (United States)

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-05

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2013-04-01

    Full Text Available Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.

  15. The Effects of Acute and Chronic Ethanol Exposure on Presynaptic and Postsynaptic GABAA Receptor Function in Cultured Cortical and Hippocampal Neurons

    Science.gov (United States)

    Fleming, Rebekah L.; Manis, Paul B.; Morrow, A. Leslie

    2009-01-01

    Decades after ethanol was first described as a GABA mimetic, the precise mechanisms that produce the acute effects of ethanol and the physiological adaptations that underlie ethanol tolerance and dependence remain unclear. While a substantial body of evidence suggests that ethanol acts on GABAergic neurotransmission to enhance inhibition in the CNS, the precise mechanisms underlying the physiological effects of both acute and chronic ethanol exposure are still under investigation. We have used in vitro ethanol exposure followed by recording of miniature inhibitory postsynaptic currents (mIPSCs) to determine whether acute or chronic ethanol exposure directly alters synaptic GABAA receptor function or GABA release in cultured cortical and hippocampal neurons. Acute ethanol exposure slightly increased the duration of mIPSCs in hippocampal neurons but did not alter mIPSC kinetics in cortical neurons. Acute ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. One day of chronic ethanol exposure produced a transient decrease in mIPSC duration in cortical neurons but did not alter mIPSC kinetics in hippocampal neurons. Chronic ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. Chronic ethanol exposure also did not produce substantial cross-tolerance to a benzodiazepine in either hippocampal or cortical neurons. The results suggest that ethanol exposure in vitro has limited effects on synaptic GABAAR function and action-potential independent GABA release in cultured neurons and suggests that ethanol exposure in cultured cortical and hippocampal neurons may not reproduce all of the effects that occur in vivo and in acute brain slices. PMID:20004338

  16. Early detection of Alzheimer's disease using MRI hippocampal texture

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Igel, Christian; Hansen, Naja Liv

    2016-01-01

    Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocam......Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change...... in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently...

  17. Hippocampal sclerosis and chronic epilepsy following posterior reversible encephalopathy syndrome.

    Science.gov (United States)

    Kapina, Viktoria; Vargas, Maria-Isabel; Wohlrab, Gabriele; Vulliemoz, Serge; Fluss, Joel; Seeck, Margitta

    2013-12-01

    Chronic epilepsy has rarely been reported after posterior reversible encephalopathy syndrome (PRES) and the association with hippocampal sclerosis has been suggested only once before. We report the case of a girl admitted at the age of 8 years with idiopathic nephrotic syndrome. On the second day of admission, she presented with focal complex seizures and cerebral MRI showed posterior encephalopathy and no hippocampal sclerosis. MRI after one month confirmed the diagnosis of PRES. The seizures recurred and the girl developed pharmacoresistant epilepsy and was admitted to our hospital for further investigation. Cerebral MRI three years after the diagnosis of PRES showed hippocampal sclerosis which was not present on the initial MRI. We conclude that there is a triggering role of PRES in the development of hippocampal sclerosis. Hippocampal sclerosis may have resulted from seizure-associated damage, alternatively, hypertensive encephalopathy may have led to hippocampal damage via a vascular mechanism.

  18. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments......This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... showed that shape information can predict future onset of dementia in this dataset with an accuracy of 70%. By incorporating both shape and volume information into the classifier, the accuracy increased to 74%....

  19. Inhibition shapes the organization of hippocampal representations.

    Science.gov (United States)

    McKenzie, Sam

    2017-09-16

    Hippocampal neurons become tuned to stimuli that predict behaviorally salient outcomes. This plasticity suggests that memory formation depends upon shifts in how different anatomical inputs can drive hippocampal activity. Here, I present evidence that inhibitory neurons can provide such a mechanism for learning-related changes in the tuning of pyramidal cells. Inhibitory currents arriving on the dendrites of pyramidal cells determine whether an excitatory input can drive action potential output. Specificity and plasticity of this dendritic modulation allows for precise, modifiable changes in how afferent inputs are integrated, a process that defines a neuron's receptive field. In addition, feedback inhibition plays a fundamental role in biasing which excitatory neurons may be co-active. By defining the rules of synchrony and the rules of input integration, interneurons likely play an important role in the organization of memory representation within the hippocampus. © 2017 Wiley Periodicals, Inc.

  20. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy

    Directory of Open Access Journals (Sweden)

    Eleni Paizanis

    2007-01-01

    Full Text Available There is a growing body of evidence that neural stem cells reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone, where it is controlled by several trophic factors and neuroactive molecules. Neurogenesis is involved in processes such as learning and memory and accumulating evidence implicates hippocampal neurogenesis in the physiopathology of depression. We herein review experimental and clinical data demonstrating that stress and antidepressant treatments affect neurogenesis in opposite direction in rodents. In particular, the stimulation of hippocampal neurogenesis by all types of antidepressant drugs supports the view that neuroplastic phenomena are involved in the physiopathology of depression and underlie—at least partly—antidepressant therapy.

  1. A Compressed Sensing Perspective of Hippocampal Function

    Directory of Open Access Journals (Sweden)

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  2. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  3. Taurine increases hippocampal neurogenesis in aging mice.

    Science.gov (United States)

    Gebara, Elias; Udry, Florian; Sultan, Sébastien; Toni, Nicolas

    2015-05-01

    Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging. Copyright © 2015. Published by Elsevier B.V.

  4. Sirt6 alters adult hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Eitan Okun

    Full Text Available Sirtuins are pleiotropic NAD+ dependent histone deacetylases involved in metabolism, DNA damage repair, inflammation and stress resistance. SIRT6, a member of the sirtuin family, regulates the process of normal aging and increases the lifespan of male mice over-expressing Sirt6 by 15%. Neurogenesis, the formation of new neurons within the hippocampus of adult mammals, involves several complex stages including stem cell proliferation, differentiation, migration and network integration. During aging, the number of newly generated neurons continuously declines, and this is correlated with a decline in neuronal plasticity and cognitive behavior. In this study we investigated the involvement of SIRT6 in adult hippocampal neurogenesis. Mice over-expressing Sirt6 exhibit increased numbers of young neurons and decreased numbers of mature neurons, without affecting glial differentiation. This implies of an involvement of SIRT6 in neuronal differentiation and maturation within the hippocampus. This work adds to the expanding body of knowledge on the regulatory mechanisms underlying adult hippocampal neurogenesis, and describes novel roles for SIRT6 as a regulator of cell fate during adult hippocampal neurogenesis.

  5. Tuberous sclerosis complex coexistent with hippocampal sclerosis.

    Science.gov (United States)

    Lang, Min; Prayson, Richard A

    2016-02-01

    Tuberous sclerosis and hippocampal sclerosis are both well-defined entities associated with medically intractable epilepsy. To our knowledge, there has been only one prior case of these two pathologies being co-existent. We report a 7-month-old boy who presented with intractable seizures at 2 months of age. MRI studies showed diffuse volume loss in the brain with bilateral, multiple cortical tubers and subcortical migration abnormalities. Subependymal nodules were noted without subependymal giant cell astrocytoma. Genetic testing revealed TSC2 and PRD gene deletions. Histopathology of the hippocampus showed CA1 sclerosis marked by loss of neurons in the CA1 region. Sections from the temporal, parietal and occipital lobes showed multiple cortical tubers characterized by cortical architectural disorganization, gliosis, calcifications and increased number of large balloon cells. Focal white matter balloon cells and spongiform changes were also present. The patient underwent resection of the right fronto-parietal lobe and a subsequent resection of the right temporal, parietal and occipital lobes. The patient is free of seizures on anti-epileptic medication 69 months after surgery. Although hippocampal sclerosis is well documented to be associated with coexistent focal cortical dysplasia, the specific co-existence of cortical tubers and hippocampal sclerosis appears to be rare. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Captivity reduces hippocampal volume but not survival of new cells in a food-storing bird.

    Science.gov (United States)

    Tarr, Bernard A; Rabinowitz, Jeremy S; Ali Imtiaz, Mubdiul; DeVoogd, Timothy J

    2009-12-01

    In many naturalistic studies of the hippocampus wild animals are held in captivity. To test if captivity itself affects hippocampal integrity, adult black-capped chickadees (Poecile atricapilla) were caught in the fall, injected with bromodeoxyuridine to mark neurogenesis, and alternately released to the wild or held in captivity. The wild birds were recaptured after 4-6 weeks and perfused simultaneously with their captive counterparts. The hippocampus of captive birds was 23% smaller than wild birds, with no hemispheric differences in volume within groups. Between groups there was no statistically significant difference in the size of the telencephalon, or in the number and density of surviving new cells. Proximate causes of the reduced hippocampal volume could include stress, lack of exercise, diminished social interaction, or limited caching opportunity-a hippocampal-dependent activity. The results suggest the avian hippocampus-a structure essential for rapid, complex relational and spatial learning-is both plastic and sensitive, much as in mammals, including humans.

  7. Captivity Reduces Hippocampal Volume but not Survival of New Cells in a Food-Storing Bird

    Science.gov (United States)

    Rabinowitz, Jeremy S.; Ali Imtiaz, Mubdiul; DeVoogd, Timothy J.

    2010-01-01

    In many naturalistic studies of the hippocampus wild animals are held in captivity. To see if captivity itself affects hippocampal structure, adult black-capped chickadees (Poecile atricapilla) were caught in the fall, injected with bromodeoxyuridine to mark neurogenesis and alternately released back to the wild or held in captivity for 4–6 weeks. Wild birds were recaptured and perfused simultaneously with their captive counterparts. The hippocampus of the captive birds was 23% smaller than the wild birds, with no hemispheric differences in volume within groups. There was no statistically significant difference in the size of the telencephalon between groups, or in the number and density of surviving new cells. Proximate causes of the hippocampal volume change could include stress, lack of exercise, diminished social interaction or limited caching opportunity; a hippocampal-dependent activity. The results suggest the avian hippocampus - a structure essential for rapid, complex relational and spatial learning - is both plastic and sensitive, much as is the case in mammals, including humans. PMID:19813245

  8. Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway.

    Science.gov (United States)

    Lee, Sang Hun; Lutz, David; Mossalam, Mohanad; Bolshakov, Vadim Y; Frotscher, Michael; Shen, Jie

    2017-06-15

    Presenilins play a major role in the pathogenesis of Alzheimer's disease, in which the hippocampus is particularly vulnerable. Previous studies of Presenilin function in the synapse, however, focused exclusively on the hippocampal Schaffer collateral (SC) pathway. Whether Presenilins play similar or distinct roles in other hippocampal synapses is unknown. To investigate the role of Presenilins at mossy fiber (MF) synapses we performed field and whole-cell electrophysiological recordings and Ca 2+ imaging using acute hippocampal slices of postnatal forebrain-restricted Presenilin conditional double knockout (PS cDKO) and control mice at 2 months of age. We also performed quantitative electron microscopy (EM) analysis to determine whether mitochondrial content is affected at presynaptic MF boutons of PS cDKO mice. We further conducted behavioral analysis to assess spatial learning and memory of PS cDKO and control mice at 2 months in the Morris water maze. We found that long-term potentiation and short-term plasticity, such as paired-pulse and frequency facilitation, are impaired at MF synapses of PS cDKO mice. Moreover, post-tetanic potentiation (PTP), another form of short-term plasticity, is also impaired at MF synapses of PS cDKO mice. Furthermore, blockade of mitochondrial Ca 2+ efflux mimics and occludes the PTP deficits at MF synapses of PS cDKO mice, suggesting that mitochondrial Ca 2+ homeostasis is impaired in the absence of PS. Quantitative EM analysis showed normal number and area of mitochondria at presynaptic MF boutons of PS cDKO mice, indicating unchanged mitochondrial content. Ca 2+ imaging of dentate gyrus granule neurons further revealed that cytosolic Ca 2+ increases induced by tetanic stimulation are reduced in PS cDKO granule neurons in acute hippocampal slices, and that inhibition of mitochondrial Ca 2+ release during high frequency stimulation mimics and occludes the Ca 2+ defects observed in PS cDKO neurons. Consistent with synaptic

  9. Amiodarone reduces depolarization-evoked glutamate release from hippocampual synaptosomes

    Directory of Open Access Journals (Sweden)

    Chia Yu Chang

    2017-03-01

    Full Text Available Decreased brain glutamate level has emerged as a new therapeutic approach for epilepsy. This study investigated the effect and mechanism of amiodarone, an anti-arrhythmic drug with antiepileptic activity, on glutamate release in the rat hippocampus. In a synaptosomal preparation, amiodarone reduced 4-aminopyridine-evoked Ca2+-dependent glutamate release and cytosolic Ca2+ concentration elevation. Amiodarone did not affect the 4-aminopyridine-evoked depolarization of the synaptosomal membrane potential or the Na+ channel activator veratridine-evoked glutamate release, indicating that the amiodarone-mediated inhibition of glutamate release is not caused by a decrease in synaptosomal excitability. The inhibitory effect of amiodarone on 4-aminopyridine-evoked glutamate release was markedly decreased in synaptosomes pretreated with the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker ω-conotoxin MVIIC, the calmodulin antagonists W7 and calmidazolium, or the protein kinase A inhibitors H89 and KT5720. However, the intracellular Ca2+-release inhibitors dantrolene and CGP37157 had no effect on the amiodarone-mediated inhibition of glutamate release. Furthermore, amiodarone reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that amiodarone reduces Ca2+ influx through N- and P/Q-type Ca2+ channels, subsequently reducing the Ca2+-calmodulin/protein kinase A cascade to inhibit the evoked glutamate release from rat hippocampal nerve terminals.

  10. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  11. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells

    Directory of Open Access Journals (Sweden)

    Caroline Fasano

    2017-05-01

    Full Text Available Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT and the atypical type III vesicular glutamate transporter (VGLUT3; therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer’s collaterals – CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

  12. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells.

    Science.gov (United States)

    Fasano, Caroline; Rocchetti, Jill; Pietrajtis, Katarzyna; Zander, Johannes-Friedrich; Manseau, Frédéric; Sakae, Diana Y; Marcus-Sells, Maya; Ramet, Lauriane; Morel, Lydie J; Carrel, Damien; Dumas, Sylvie; Bolte, Susanne; Bernard, Véronique; Vigneault, Erika; Goutagny, Romain; Ahnert-Hilger, Gudrun; Giros, Bruno; Daumas, Stéphanie; Williams, Sylvain; El Mestikawy, Salah

    2017-01-01

    Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer's collaterals - CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

  13. Quantifying the Behavioural Relevance of Hippocampal Neurogenesis: e113855

    National Research Council Canada - National Science Library

    Stanley E Lazic; Johannes Fuss; Peter Gass

    2014-01-01

    .... A systematic review of the literature was conducted and the data reanalysed using causal mediation analysis, which can estimate the behavioural contribution of new hippocampal neurons separately...

  14. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells

    Directory of Open Access Journals (Sweden)

    L.F.S. Sampaio

    2005-04-01

    Full Text Available The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5, while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM blocked the response to acetylcholine (3.0 nM-2.0 µM only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.

  15. Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons.

    Science.gov (United States)

    Zhang, Shuzhuo; Jin, Yuelei; Liu, Xiaoyan; Yang, Lujia; Ge, Zhi juan; Wang, Hui; Li, Jin; Zheng, Jianquan

    2014-09-25

    Methamphetamine (METH) is a psychostimulant drug. Abuse of METH produces long-term behavioral changes including behavioral, sensitization, tolerance, and dependence. It induces neurotoxic effects in several areas of the brain via enhancing dopamine (DA) level abnormally, which may cause a secondary release of glutamate (GLU). However, repeated administration of METH still increases release of GLU even when dopamine content in tissue is significantly depleted. It implies that some other mechanisms are likely to involve in METH-induced GLU release. The goal of this study was to observe METH affected glutamatergic synaptic transmission in rat primary cultured hippocampal neurons and to explore the mechanism of METH modulated GLU release. Using whole-cell patch-clamp recordings, we found that METH (0.1-50.0μM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs). However, METH decreased the frequency of sEPSCs and mEPSCs at high concentration of 100μM. The postsynaptic NMDA receptor currents and P/Q-type calcium channel were not affected by the use of METH (10,100μM). METH did not present visible effect on N-type Ca(2+) channel current at the concentration lower than 50.0μM, but it was inhibited by use of METH at a 100μM. The effect of METH on glutamatergic synaptic transmission was not revered by pretreated with DA receptor antagonist SCH23390. These results suggest that METH directly modulated presynaptic GLU release at a different concentration, while dopaminergic system was not involved in METH modulated release of GLU in rat primary cultured hippocampal neurons. Copyright © 2014. Published by Elsevier B.V.

  16. Covalent attachment of antagonists to the a7 nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides

    DEFF Research Database (Denmark)

    Ambrus, Joseph I; Halliday, Jill I; Kanizaj, Nicholas

    2012-01-01

    The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR).......The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR)....

  17. Modulation of acetylcholine receptor channel by a polar component isolated from toxic Ostreopsis lenticularis extracts.

    Science.gov (United States)

    Escalona De Motta, G; Mercado, J A; Tosteson, T R; González, I; Lasalde, J A

    1992-01-01

    Methanol extracts obtained from O. lenticularis clones are toxic to mice and inhibit acetylcholine-induced contractions in frog skeletal muscle. Chromatographic fractionation of extracts produced two major fractions with different retention times. Single channel recordings in myocyte membrane patches exposed to more polar fraction showed the appearance of acetylcholine-activated channels whose mean current amplitude was nearly half that of the controls. Channel open times under control and experimental conditions were similar. Thus, this dinoflagellate fraction reduces the ionic conductance of nicotinic receptor channels without altering their lifetime.

  18. Chronic early life lead (Pb2+) exposure alters presynaptic vesicle pools in hippocampal synapses.

    Science.gov (United States)

    Guariglia, Sara Rose; Stansfield, Kirstie H; McGlothan, Jennifer; Guilarte, Tomas R

    2016-11-02

    Lead (Pb2+) exposure has been shown to impair presynaptic neurotransmitter release in both in vivo and in vitro model systems. The mechanism by which Pb2+ impairs neurotransmitter release has not been fully elucidated. In previous work, we have shown that Pb2+ exposure inhibits vesicular release and reduces the number of fast-releasing sites in cultured hippocampal neurons. We have also shown that Pb2+ exposure inhibits vesicular release and alters the distribution of presynaptic vesicles in Shaffer Collateral - CA1 synapses of rodents chronically exposed to Pb2+ during development. In the present study, we used transmission electron microscopy to examine presynaptic vesicle pools in Mossy Fiber-CA3 synapses and in Perforant Path-Dentate Gyrus synapses of rats to determine if in vivo Pb2+ exposure altered presynaptic vesicle distribution in these hippocampal regions. Data were analyzed using T-test for each experimental endpoint. We found that Pb2+ exposure significantly reduced the number of vesicles in the readily releasable pool and recycling pool in Mossy Fiber-CA3 terminals. In both Mossy Fiber-CA3 terminals and in Perforant Path-Dentate Gyrus terminals, Pb2+ exposure significantly increased vesicle nearest neighbor distance in all vesicular pools (Rapidly Releasable, Recycling and Resting). We also found a reduction in the size of the postsynaptic densities of CA3 dendrites in the Pb2+ exposed group. In our previous work, we have demonstrated that Pb2+ exposure impairs vesicular release in Shaffer Collateral - CA1 terminals of the hippocampus and that the number of docked vesicles in the presynaptic active zone was reduced. Our current data shows that Pb2+ exposure reduces the number of vesicles that are in proximity to release sites in Mossy Fiber- CA3 terminals. Furthermore, Pb2+ exposure causes presynaptic vesicles to be further from one another, in both Mossy Fiber- CA3 terminals and in Perforant Pathway - Dentate Gyrus terminals, which may interfere with

  19. Amino acids of the Torpedo marmorata acetylcholine receptor. cap alpha. subunit labeled by a photoaffinity ligand for the acetylcholine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, M.; Giraudat, J.; Kotzyba-Hibert, F.; Goeldner, M.; Hirth, C.; Chang, J.Y.; Lazure, C.; Chretien, M.; Changeux, J.P.

    1988-04-05

    The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent (/sup 3/H)-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The ..cap alpha..-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the ..cap alpha..-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment ..cap alpha.. 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the ..cap alpha..-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the ..cap alpha..-chain that assign the amino-terminal segment ..cap alpha.. 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified (/sup 3/H)DDF-labeled resides, which are conserved in muscle and neuronal ..cap alpha..-chains but not in the other subunits, may be directly involved in agonist binding.

  20. Protein release from hippocampus in vitro.

    Science.gov (United States)

    Hesse, G W; Hofstein, R; Shashoua, V E

    1984-07-02

    Physiologically viable slices of rat hippocampus in vitro continuously release protein into the superfusion medium at a rate of about 2 micrograms/mg tissue/h. Assays of a cytoplasmic marker enzyme (lactate dehydrogenase) indicate that this material is not the result of cell lysis. Pulse-chase experiments using [3H]valine indicate that a substantial fraction of the newly synthesized proteins eventually appear in the incubation medium (18.7% +/- 3% of the total TCA precipitable radioactivity during a 6-h superfusion) and that the releasable protein pool has an apparent half-life of about 4 h. Simultaneous labeling of newly synthetized proteins with [3H]fucose and [14C]valine showed a 3-fold higher ratio of [3H]fucose to [14C]valine in the released protein fraction compared to the soluble cytoplasmic protein and to the crude membrane protein fraction, suggesting that the soluble released proteins are more highly glycosylated than the proteins retained in the tissue. Electrophoretic migration patterns on SDS-polyacrylamide gels with both labeled and unlabeled proteins show differences between the released proteins and the soluble cytoplasmic proteins of the tissue. Several molecular weights between 14 kdalton and 86 kdalton appear to be characteristic of the released protein fraction. These results suggest that a distinct group of proteins and glycoproteins exists in hippocampal tissue which is destined to be selectively released into the extracellular space.

  1. The Modulation of Hippocampal Theta Rhythm by the Vestibular System.

    Science.gov (United States)

    Aitken, Phillip; Zheng, Yiwen; Smith, Paul F

    2017-11-22

    The vestibular system is a sensory system that has evolved over millions of years to detect acceleration of the head, both rotational and translational, in three dimensions. One of its most important functions is to stabilize gaze during unexpected head movement; however, it is also important in the control of posture and autonomic reflexes. Theta rhythm is a 3-12 Hz oscillating EEG signal that is intimately linked to self-motion and is also known to be important in learning and memory. Many studies over the last two decades have shown that selective activation of the vestibular system, either using natural rotational or translational stimulation, or electrical stimulation of the peripheral vestibular system, can induce and modulate theta activity. Furthermore, inactivation of the vestibular system has been shown to significantly reduce theta in freely moving animals, which may be linked to its impairment of place cell function as well as spatial learning and memory. The pathways through which vestibular information modulate theta rhythm remain debatable. However, vestibular responses have been found in the pedunculopontine tegmental nucleus (PPTg) and activation of the vestibular system causes an increase in acetylcholine release into the hippocampus, probably from the medial septum. Therefore, a pathway from the vestibular nucleus complex and/or cerebellum to the PPTg, supramammillary nucleus, posterior hypothalamic nucleus and the septum, to the hippocampus, is likely. The modulation of theta by the vestibular system may have implications for vestibular effects on cognitive function and the contribution of vestibular impairment to the risk of dementia. Copyright © 2017, Journal of Neurophysiology.

  2. Nicotinic acetylcholine receptor gene expression is altered in burn patients.

    Science.gov (United States)

    Osta, Walid A; El-Osta, Mohamed A; Pezhman, Eric A; Raad, Robert A; Ferguson, Kris; McKelvey, George M; Marsh, Harold M; White, Michael; Perov, Samuel

    2010-05-01

    Burn patients have been observed to be more susceptible to the hyperkalemic effect of the depolarizing muscle relaxant succinylcholine. Changes in nicotinic acetylcholine receptor (nAChR) subunit composition may alter electrophysiologic, pharmacologic, and metabolic characteristics of the receptor inducing hyperkalemia on exposure to succinylcholine. No studies have been performed that show the upregulation and/or alteration of nAChR subunit composition in human burn patients. The scarcity of studies performed on humans with burn injury is mainly attributable to the technical and ethical difficulties in obtaining muscle biopsies at different time frames of illness in these acutely injured patients. nAChRs are expressed in oral keratinocytes and are upregulated or altered in smokers. However, no studies have addressed the expression of nAChRs in the oral mucosa of burn patients. Buccal mucosal scrapings were collected from 9 burn patients and 6 control nonburn surgical intensive care unit patients. For burn and control patients, tissues were collected upon presentation (time: 0 hour) and at time points 12, 24, and 48 hours, 1 week, and 2 weeks. Gene expression of the nAChR subunits alpha1, alpha7, gamma, and epsilon were performed using real-time reverse transcriptase polymerase chain reaction. alpha7 and gamma nAChR genes were significantly upregulated in burn patients, whereas alpha1 and epsilon nAChR genes were minimally affected, showing no significant changes over time. Over the 2 weeks of measurement, an upregulation of the alpha7 and gamma genes occurred in both burn and control patients; however, the proportion of alpha7 and gamma subunit increases was significantly higher in burn patients than in control surgical intensive care unit patients. The relationship between the thermal injury and the observed alteration in gene expression suggests a possible cause/effect relationship. This effect was observed at a site not affected by the burn injury and in

  3. Renin release

    DEFF Research Database (Denmark)

    Schweda, Frank; Friis, Ulla; Wagner, Charlotte

    2007-01-01

    The aspartyl-protease renin is the key regulator of the renin-angiotensin-aldosterone system, which is critically involved in salt, volume, and blood pressure homeostasis of the body. Renin is mainly produced and released into circulation by the so-called juxtaglomerular epithelioid cells, located...

  4. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids

    Science.gov (United States)

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4–8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75–90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content

  5. Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral.

    Science.gov (United States)

    Barnes, J; Boyes, R G; Lewis, E B; Schott, J M; Frost, C; Scahill, R I; Fox, N C

    2007-11-01

    We describe a method of automatically calculating hippocampal atrophy rates on T1-weighted MR images without manual delineation of hippocampi. This method was applied to a group of Alzheimer's disease (AD) (n=36) and control (n=19) subjects and compared with manual methods (manual segmentation of baseline and repeat-image hippocampi) and semi-automated methods (manual segmentation of baseline hippocampi only). In controls, mean (S.D.) atrophy rates for manual, semi-automated, and automated methods were 18.1 (53.5), 15.3 (50.2) and 11.3 (50.4) mm3 loss per year, respectively. In AD patients these rates were 174.6 (106.5) 159.4 (101.2) and 172.1 (123.1) mm3 loss per year, respectively. The automated method was a significant predictor of disease (p=0.001) and gave similar group discrimination compared with both semi-automated and manual methods. The automated hippocampal analysis in this small study took approximately 20 min per hippocampal pair on a 3.4 GHz Intel Xeon server, whereas manual delineation of each hippocampal pair took approximately 90 min of operator-intensive labour. This method may be useful diagnostically or in studies where analysis of many scans may be required.

  6. BDNF val(66)met affects hippocampal volume and emotion-related hippocampal memory activity

    NARCIS (Netherlands)

    Molendijk, M. L.; van Tol, M-J; Penninx, B. W. J. H.; van der Wee, N. J. A.; Aleman, A.; Veltman, D. J.; Spinhoven, P.; Elzinga, B. M.

    The val(66)met polymorphism on the BDNF gene has been reported to explain individual differences in hippocampal volume and memory-related activity. These findings, however, have not been replicated consistently and no studies to date controlled for the potentially confounding impact of early life

  7. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  8. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    Science.gov (United States)

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  9. hippocampal slow rhythms in ongoing behaviour and during

    African Journals Online (AJOL)

    1971-02-06

    Feb 6, 1971 ... HIPPOCAMPAL SLOW RHYTHMS IN ONGOING BEHAVIOUR AND DURING CLASSICAL. CONDITIONING*. R. C. ALBINO AND K. CAIGER, Psychology Department, University of Natal, Durban. Experiments on the relationships between hippocampal slow (or theta) rhythms and phases of approach ...

  10. Effortful Retrieval Reduces Hippocampal Activity and Impairs Incidental Encoding

    OpenAIRE

    Reas, Emilie T.; Brewer, James B.

    2013-01-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in e...

  11. Development of hippocampal subfield volumes from 4 to 22 years

    OpenAIRE

    Krogsrud, Stine Kleppe; Tamnes, Christian Krog; Fjell, Anders Martin; Amlien, Inge; Grydeland, Håkon; Sulutvedt, Unni; Due-Tønnessen, Paulina; Bjørnerud, Atle; Sølsnes, Anne Elisabeth; Håberg, Asta; Skranes, Jon Sverre; Walhovd, Kristine B

    2014-01-01

    The hippocampus supports several important cognitive functions known to undergo substantial development during childhood and adolescence, for example, encoding and consolidation of vivid personal memories. However, diverging developmental effects on hippocampal volume have been observed across studies. It is possible that the inconsistent findings may attribute to varying developmental processes and functions related to different hippocampal subregions. Most studies to date have measured glob...

  12. The Neuropsychology of Down Syndrome: Evidence for Hippocampal Dysfunction.

    Science.gov (United States)

    Pennington, Bruce F.; Moon, Jennifer; Edgin, Jamie; Stedron, Jennifer; Nadel, Lynn

    2003-01-01

    Tested prefrontal and hippocampal functions in school-aged individuals with Down syndrome (DS) compared functions with those of typically developing children individually matched on mental age. Found that hippocampal and prefrontal composite scores contributed unique variance to the prediction of mental age and adaptive behavior. Noted a…

  13. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Directory of Open Access Journals (Sweden)

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  14. Acetylcholine-producing T cells in the intestine regulate antimicrobial peptide expression and microbial diversity

    NARCIS (Netherlands)

    Dhawan, Shobhit; de Palma, Giada; Willemze, Rose A.; Hilbers, Francisca W.; Verseijden, Caroline; Luyer, Misha D.; Nuding, Sabine; Wehkamp, Jan; Souwer, Yuri; de Jong, Esther C.; Seppen, J.; van den Wijngaard, René M.; Wehner, Sven; Verdu, Elena; Bercik, Premek; de Jonge, Wouter J.

    2016-01-01

    The cholinergic anti-inflammatory pathway reduces systemic tumor necrosis factor (TNF) via acetylcholine-producing memory T cells in the spleen. These choline acetyltransferase (ChAT)-expressing T cells are also found in the intestine, where their function is unclear. We aimed to characterize these

  15. Cholinergic and GABAergic neurons in the rat medial septum express muscarinic acetylcholine receptors

    NARCIS (Netherlands)

    Zee, E.A. van der; Luiten, P.G.M.

    1994-01-01

    This study describes the cellular distribution of muscarinic acetylcholine receptors (mAChRs) in the medial septum (MS), employing the monoclonal antibody M35 raised against purified mAChR-protein, mAChR-positive neurons are found throughout the MS, but are predominantly located in the midline area

  16. Immunocytochemical localization of muscarinic acetylcholine receptors in the rat endocrine pancreas

    NARCIS (Netherlands)

    Zee, E.A. van der; Buwalda, B.; Strubbe, J.H.; Strosberg, A.D.; Luiten, P.G.M.

    Immunocytochemical application of the antimuscarinic acetylcholine receptor antibody M35 to pancreas tissue revealed the target areas for the parasympathetic nervous system. Immunoreactivity in the endocrine pancreas was much higher than that in the exocrine part. Moreover, the endocrine cells at

  17. Septohippocampal Acetylcholine: Involved in but not Necessary for Learning and Memory?

    OpenAIRE

    Parent, Marise B.; Mark G Baxter

    2004-01-01

    The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective ablation of cholinergic septohippocampal ...

  18. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods

    DEFF Research Database (Denmark)

    Collin, Caitlin Alexis; Hauser, Frank; Gonzalez de Valdivia, Ernesto I

    2013-01-01

    ). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M...... by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547-551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB......Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5...

  19. Design, synthesis and biological evaluation of Erythrina alkaloid analogues as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Crestey, François; Jensen, Anders A.; Borch, Morten

    2013-01-01

    The synthesis of a new series of Erythrina alkaloid analogues and their pharmacological characterization at various nicotine acetylcholine receptor (nAChR) subtypes are described. The compounds were designed to be simplified analogues of aromatic erythrinanes with the aim of obtaining subtype-sel...

  20. Muscarinic Acetylcholine Receptors Act in Synergy to Facilitate Learning and Memory

    Science.gov (United States)

    Leaderbrand, Katherine; Chen, Helen J.; Corcoran, Kevin A.; Guedea, Anita L.; Jovasevic, Vladimir; Wess, Jurgen; Radulovic, Jelena

    2016-01-01

    Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on…

  1. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis...

  2. Bradykinin or acetylcholine as vasodilators to test endothelial venous function in healthy subjects

    Directory of Open Access Journals (Sweden)

    Eneida R. Rabelo

    2008-01-01

    Full Text Available INTRODUCTION: The evaluation of endothelial function has been performed in the arterial bed, but recently evaluation within the venous system has also been explored. Endothelial function studies employ different drugs that act as endothelium-dependent vasodilatory response inductors. OBJECTIVES: The aim of this study is to compare the endothelium-dependent venous vasodilator response mediated by either acetylcholine or bradykinin in healthy volunteers. METHODS AND RESULTS: Changes in vein diameter after phenylephrine-induced venoconstriction were measured to compare venodilation induced by acetylcholine or bradykinin (linear variable differential transformer dorsal hand vein technique. We studied 23 healthy volunteers; 31% were male, and the subject had a mean age of 33 ± 8 years and a mean body mass index of 23 ± 2 kg/m². The maximum endothelium-dependent venodilation was similar for both drugs (p = 0.13, as well as the mean responses for each dose of both drugs (r = 0.96. The maximum responses to acetylcholine and bradykinin also had good agreement. CONCLUSION: There were no differences between acetylcholine and bradykinin as venodilators in this endothelial venous function investigation.

  3. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine alpha4beta2 receptors

    DEFF Research Database (Denmark)

    Rohde, Line Aagot Hede; Ahring, Philip Kiær; Jensen, Marianne Lerbech

    2012-01-01

    . Using binding experiments, electrophysiology and X-ray crystallography we have investigated a consecutive series of five prototypical pyridine-containing agonists derived from 1-(pyridin-3-yl)-1,4-diazepane. A correlation between binding affinities at a4ß2 and the acetylcholine binding protein from...

  4. COLOCALIZATION OF MUSCARINIC ACETYLCHOLINE-RECEPTORS AND PROTEIN KINASE-C-GAMMA IN RAT PARIETAL CORTEX

    NARCIS (Netherlands)

    VANDERZEE, EA; STROSBERG, AD; BOHUS, B; LUITEN, PGM

    The present investigation analyzes the cellular distribution of muscarinic acetylcholine receptors (mAChRs) and the gamma isoform of protein kinase C (PKC) in the rat parietal cortex employing the monoclonal antibodies M35 and 36G9, respectively. Muscarinic cholinoceptive neurons were most present

  5. Coexistence of Muscarinic Acetylcholine Receptors and Somatostatin in Nonpyramidal Neurons of the Rat Dorsal Hippocampus

    NARCIS (Netherlands)

    Zee, E.A. van der; Benoit, R.; Strosberg, A.D.; Luiten, P.G.M.

    This study describes the colocalization of muscarinic acetylcholine receptors (mAChRs) and the neuropeptide somatostatin (SOM) in nonpyramidal neurons of the rat dorsal hippocampus. SOM and mAChRs were identified by immunocytochemistry employing antibody S309 and M35, respectively. Half of the

  6. USAGE OF NEW INFORMATION TECHNOLOGIES FOR AUTOMATIZATION OF ACETYLCHOLINE CONTENT MEASURING BY BIOLOGICAL METHOD

    Directory of Open Access Journals (Sweden)

    V. Ye. Pelykh

    2012-12-01

    Full Text Available A new method of acetylcholine content in tissues measuring by biological method, allowing greatly decrease amount of factors that influence test accuracy, as well as time spent by automatization of greater part of test with using of new information technologies.

  7. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Directory of Open Access Journals (Sweden)

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  8. Nicotinic Acetylcholine Receptor Variants Are Related to Smoking Habits, but Not Directly to COPD

    NARCIS (Netherlands)

    Budulac, Simona E.; Vonk, Judith M.; Postma, Dirkje S.; Siedlinski, Mateusz; Timens, Wim; Boezen, Marike H

    2012-01-01

    Genome-wide association studies identified single nucleotide polymorphisms (SNPs) in the nicotinic acetylcholine receptors (nAChRs) cluster as a risk factor for nicotine dependency and COPD. We investigated whether SNPs in the nAChR cluster are associated with smoking habits and lung function

  9. Exocrine secretion of epidermal growth factor from Brunner's glands. Stimulation by VIP and acetylcholine

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1983-01-01

    Brunner's glands of the duodenum are innervated by cholinergic and VIP-ergic nerves, and the glands have been shown to contain epidermal growth factor (EGF). In this study the effect of VIP and acetylcholine (Ach) on secretion of EGF from Brunner's glands was investigated in the rat. Intravenous...

  10. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    DEFF Research Database (Denmark)

    Case, R M; Conigrave, A D; Novak, I

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate.2. During perfusion with solutions containing acetylcholine, the gland secretes vigor...

  11. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...

  12. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    Science.gov (United States)

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  13. Dopamine inhibits mitochondrial motility in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Sigeng Chen

    2008-07-01

    Full Text Available The trafficking of mitochondria within neurons is a highly regulated process. In an earlier study, we found that serotonin (5-HT, acting through the 5-HT1A receptor subtype, promotes axonal transport of mitochondria in cultured hippocampal neurons by increasing Akt activity, and consequently decreasing glycogen synthase kinase (GSK3beta activity. This finding suggests a critical role for neuromodulators in the regulation of mitochondrial trafficking in neurons. In the present study, we investigate the effects of a second important neuromodulator, dopamine, on mitochondrial transport in hippocampal neurons.Here, we show that dopamine, like 5-HT, regulates mitochondrial motility in cultured hippocampal neurons through the Akt-GSK3beta signaling cascade. But, in contrast to the stimulatory effect of 5-HT, administration of exogenous dopamine or bromocriptine, a dopamine 2 receptor (D2R agonist, caused an inhibition of mitochondrial movement. Moreover, pretreatment with bromocriptine blocked the stimulatory effect of 5-HT on mitochondrial movement. Conversely, in cells pretreated with 5-HT, no further increases in movement were observed after administration of haloperidol, a D2R antagonist. In contrast to the effect of the D2R agonist, addition of SKF38393, a dopamine 1 receptor (D1R agonist, promoted mitochondrial transport, indicating that the inhibitory effect of dopamine was actually the net summation of opposing influences of the two receptor subtypes. The most pronounced effect of dopamine signals was on mitochondria that were already moving directionally. Western blot analysis revealed that treatment with either a D2R agonist or a D1R antagonist decreased Akt activity, and conversely, treatment with either a D2R antagonist or a D1R agonist increased Akt activity.Our observations strongly suggest a role for both dopamine and 5-HT in regulating mitochondrial movement, and indicate that the integrated effects of these two neuromodulators may be

  14. Hippocampal “Time Cells”: Time versus Path Integration

    Science.gov (United States)

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  15. Associations among parenting experiences during childhood and adolescence, hypothalamus-pituitary-adrenal axis hypoactivity, and hippocampal gray matter volume reduction in young adults.

    Science.gov (United States)

    Narita, Kosuke; Fujihara, Kazuyuki; Takei, Yuichi; Suda, Masashi; Aoyama, Yoshiyuki; Uehara, Toru; Majima, Takehiko; Kosaka, Hirotaka; Amanuma, Makoto; Fukuda, Masato; Mikuni, Masahiko

    2012-09-01

    Recent human studies have indicated that adverse parenting experiences during childhood and adolescence are associated with adulthood hypothalamus-pituitary-adrenal (HPA) axis hypoactivity. Chronic HPA axis hypoactivity inhibits hippocampal gray matter (GM) development, as shown by animal studies. However, associations among adverse parenting experiences during childhood and adolescence, HPA axis activity, and brain development, particularly hippocampal development, are insufficiently investigated in humans. In this voxel-based structural magnetic resonance imaging study, using a cross-sectional design, we examined the associations among the scores of parental bonding instrument (PBI; a self-report scale to rate the attitudes of parents during the first 16 years), cortisol response determined by the dexamethasone/corticotropin-releasing hormone test, and regional or total hippocampal GM volume in forty healthy young adults with the following features: aged between 18 and 35 years, no cortisol hypersecretion in response to the dexamethasone test, no history of traumatic events, or no past or current conditions of significant medical illness or neuropsychiatric disorders. As a result, parental overprotection scores significantly negatively correlated with cortisol response. Additionally, a significant positive association was found between cortisol response and total or regional hippocampal GM volume. No significant association was observed between PBI scores and total or regional hippocampal GM volume. In conclusion, statistical associations were found between parental overprotection during childhood and adolescence and adulthood HPA axis hypoactivity, and between HPA axis hypoactivity and hippocampal GM volume reduction in healthy young adults, but no significant relationship was observed between any PBI scores and adulthood hippocampal GM volume. Copyright © 2011 Wiley Periodicals, Inc.

  16. [Effects of sleep deprivation in hippocampal neurogenesis].

    Science.gov (United States)

    López-Virgen, Verónica; Zárate-López, David; Adirsch, Fabián L; Collas-Aguilar, Jorge; González-Pérez, Óscar

    2015-01-01

    Adult neurogenesis in the dentate gyrus (DG) in the hippocampus is a process that involves proliferation, differentiation, maturation, migration, and integration of young neurons in the granular layer of DG. These newborn neurons mature in three to four weeks and incorporate into neural circuits in the hippocampus. There, these new neurons play a role in cognitive functions, such as acquisition and retention of memory, which are consolidated during sleep period. In this review, we describe recent findings that associate sleep deprivation with changes in hippocampal neurogenesis and cognitive processes. In addition, we describe possible mechanisms implicated in this deterioration such as circadian rhythm, melatonin receptors, and growth factors.

  17. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter

  18. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Thomas B Duguet

    2016-07-01

    Full Text Available Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the

  19. Topical Non-Iontophoretic Application of Acetylcholine and Nitroglycerin via a Translucent Patch: A New Means for Assessing Microvascular Reactivity

    Science.gov (United States)

    Schonberger, Robert B.; Worden, William S.; Shahmohammadi, Kaveh; Menn, Kirsten; Silverman, Tyler J.; Stout, Robert G.; Shelley, Kirk H.; Silverman, David G.

    2007-01-01

    Objective: Assessments of endothelial cell function with acetylcholine have typically used systemic, regional intra-arterial, or iontophoretic delivery of drug. Each of these techniques induces systemic and/or local changes that compromise their safety or effectiveness. Using translucent drug preparations applied under laser Doppler flowmetry (LDF) probes, we tested whether local vasodilation can be induced with non-iontophoretic transdermal delivery of acetylcholine and how such dilation would compare to the dilation achieved with topical nitroglycerin in healthy volunteers. Methods: Ten subjects without known vascular disease were recruited for LDF monitoring at sites of drug application for this preliminary investigation. Topical acetylcholine chloride, nitroglycerin, and placebo were applied via translucent patches to the forehead directly below LDF probes. Results: LDF readings increased by 406 percent (245 percent to 566 percent) and 36 percent (26 percent to 46 percent), respectively, at the acetylcholine and placebo sites (p = .005 by Wilcoxon Signed Rank Test (WSRT) for acetylcholine vs. placebo); and they increased by 365 percent (179 percent to 550 percent) at the nitroglycerin site (p = .005 by WSRT for nitroglycerin vs. placebo; p = .6 vs. acetylcholine). Conclusion: Transdermal delivery of acetylcholine can induce significant local vasodilatory responses comparable to those achieved with nitroglycerin without requiring iontophoresis. The means of transdermal delivery and monitoring described herein may constitute a new minimally invasive way to interrogate the microvasculature and thereby assess the microcirculatory changes induced by various disorders and therapeutic interventions. PMID:17876370

  20. Less means more: The magnitude of synaptic plasticity along the hippocampal dorso-ventral axis is inversely related to the expression levels of plasticity-related neurotransmitter receptors.

    Science.gov (United States)

    Dubovyk, Valentyna; Manahan-Vaughan, Denise

    2018-02-01

    The dorsoventral axis of the hippocampus exhibits functional differentiations with regard to (spatial Vs emotional) learning and information retention (rapid encoding Vs long-term storage), as well as its sensitivity to neuromodulation and information received from extrahippocampal structures. The mechanisms that underlie these differentiations remain unclear. Here, we explored neurotransmitter receptor expression along the dorsoventral hippocampal axis and compared hippocampal synaptic plasticity in the CA1 region of the dorsal (DH), intermediate (IH) and ventral hippocampi (VH). We observed a very distinct gradient of expression of the N-methyl-D-aspartate receptor GluN2B subunit in the Stratum radiatum (DH IH > VH). Neurotransmitter release probability was lowest in DH. Surprisingly, identical afferent stimulation conditions resulted in hippocampal synaptic plasticity that was the most robust in the DH, compared with IH and VH. These data suggest that differences in hippocampal information processing and synaptic plasticity along the dorsoventral axis may relate to specific differences in the expression of plasticity-related neurotransmitter receptors. This gradient may support the fine-tuning and specificity of hippocampal synaptic encoding. © 2017 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  1. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    Science.gov (United States)

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Seizure Freedom After Limited Hippocampal Radiofrequency Thermocoagulation.

    Science.gov (United States)

    Li, Han-Tao; Lee, Ching-Yi; Lim, Siew-Na; Chang, Chun-Wei; Lee, Shih-Tseng; Wu, Tony

    2016-12-01

    Surgical interventions are often used for freedom from seizure in patients with drug-resistant mesial temporal lobe epilepsy. A patient with seizure foci in the left mesiotemporal region underwent limited-size stereotactic radiofrequency thermocoagulation (RF-TC) over the left hippocampus. A 37-year-old woman with febrile convulsion in her childhood was admitted to our neurologic department with complex partial seizure with secondary generalization. Electroencephalography showed epileptogenic focus mainly from the left mesiotemporal region, and magnetic resonance imaging confirmed a left hippocampal atrophy. Because of failure to control seizure after use of several antiepileptic drugs, drug-resistant mesial temporal lobe epilepsy was diagnosed. RF-TC was done in the left hippocampus. Unique features of our technique include intraoperative electroencephalography recordings directly from electrodes on the left hippocampus, an aura sensation provoked during the low-temperature test thermocoagulation, and therapeutic thermocoagulation performed via a Radionics radiofrequency lead. In the 16-week period following the surgery, the patient experienced no seizure attacks and no significant postoperative adverse effects or memory impairments. Compared with other reports using RF-TC, our case demonstrates a 1-step minimally invasive surgery that reduces hippocampal volume loss, shortens the length of hospital stay, decreases the occurrence of postoperative infection, and achieves good outcomes for epilepsy control. Favorable seizure control was achieved with minimally invasive RF-TC. Further use of this technique is warranted in cases of drug-resistant mesial temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Plasticity of the hippocampal place cell representation.

    Science.gov (United States)

    Jeffery, Kathryn J; Hayman, Robin

    2004-01-01

    The role of the hippocampus in the representation of 'place' has been attributed to the place cells, whose spatially localised firing suggests their participation in forming a cognitive map of the environment. That this map is necessary for spatial memory formation is indicated by the propensity of almost all navigational tasks to be disrupted by hippocampal damage. The hippocampus has also long been implicated in the formation of episodic memories, and the unusually plastic nature of hippocampal synapses testifies to its probable mnemonic role. Arguably, the place cell representation should, if it is to support spatial learning, be modifiable according to known principles of synaptic reorganization. The present article reviews evidence that the place cell representation is indeed plastic, and that its plasticity depends on the same neurobiological mechanisms known to underlie experimentally induced synaptic plasticity. Inferences are drawn regarding the architecture of the spatial representation and the principles by which it is modified. Spatial learning is promising to be the first kind of memory which is completely understood at all levels, from molecular through circuitry to behaviour and beyond.

  4. Stochastic resonance in hippocampal CA1 neurons

    Science.gov (United States)

    Stacey, William Charles

    Stochastic Resonance (SR) is a phenomenon observed in nonlinear systems whereby the introduction of noise enhances the detection of a subthreshold signal for a certain range of noise intensity. Many central neurons, such as hippocampal CAI cells, are good candidates for SR due to their function of signal detection in a noisy environment, but the role of SR in the CNS is unclear. Physiological levels of noise are able to improve signal detection through SR, as found in simulated CAI neurons and in vitro rat hippocampal slices. Further investigation, utilizing a novel method of in vitro noise modulation, shows that endogenous noise sources can generate SR activity. These results suggest SR may provide a means for the hippocampus to modulate detection of specific inputs through endogenous noise sources. The role of noise in signal detection for a network of CAI cells is tested with a network simulation. The network shows improved detection as the number of cells and coupling increase for noise with low variance. One cell receiving the signal cannot recruit the remaining cells unless the network is very active and tuned by the coupling and noise. Periodic oscillations at high noise amplitudes corrupt all outputs. These oscillations develop into synchronized, periodic bursts as a function of both noise and coupling. These findings are relevant for the analysis of the role of physiological noise in signal processing in the brain and in the synchronization of neural activity as in epilepsy.

  5. Can Molecular Hippocampal Alterations Explain Behavioral ...

    Science.gov (United States)

    Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined genotypical outcomes in adult male and female offspring of rats exposed to variable stress during pregnancy. Dams (n=15/treatment) were subjected to several non-chemical stressors including intermittent noise, light, crowding, restraint, and altered circadian lighting, from gestational day (GD) 13 to 20. Tail blood was drawn on GD 12, 16 and 20 to verify a stress response. Corticosterone levels were not different between the stressed and non-stressed dams on GD12 but was significantly increased in stressed dams on GD 16 and 20 compared to controls. Dams gave birth on GD22 (postnatal day or PND 0). Several behavioral tests were used to assess the cognitive and behavioral phenotype of the offspring from PND 49 through 86, including the Morris water maze and novel object recognition. Male and female stressed offspring showed reduced reversal learning on the Morris water maze and stressed females did not show a significant preference for the novel object (57 ± 8%) while control females did (71 ± 3%). This indicates altered cognition in prenatally stressed offspring. On PND 91-92, offspring were necropsied and hippocampal tissue was collected. Genotypic outcomes of prenatal stress w

  6. Epigenetics, estradiol, and hippocampal memory consolidation

    Science.gov (United States)

    Frick, Karyn M.

    2013-01-01

    Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the etiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that regulation of these epigenetic processes by modulatory factors such as environmental enrichment, stress, and hormones substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-estradiol (E2) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and aging. This review will provide a brief overview of the literature on epigenetics and memory, describe in detail our findings demonstrating that epigenetic alterations regulate E2-induced memory enhancement in female mice, and discuss future directions for research on the epigenetic regulation of E2-induced memory enhancement. PMID:24028406

  7. Effect of galantamine on the human α7 neuronal nicotinic acetylcholine receptor, the Torpedo nicotinic acetylcholine receptor and spontaneous cholinergic synaptic activity

    Science.gov (United States)

    Texidó, Laura; Ros, Esteve; Martín-Satué, Mireia; López, Susana; Aleu, Jordi; Marsal, Jordi; Solsona, Carles

    2005-01-01

    Various types of anticholinesterasic agents have been used to improve the daily activities of Alzheimer's disease patients. It was recently demonstrated that Galantamine, described as a molecule with anticholinesterasic properties, is also an allosteric enhancer of human α4β2 neuronal nicotinic receptor activity. We explored its effect on the human α7 neuronal nicotinic acetylcholine receptor (nAChR) expressed in Xenopus oocytes. Galantamine, at a concentration of 0.1 μM, increased the amplitude of acetylcholine (ACh)-induced ion currents in the human α7 nAChR expressed in Xenopus oocytes, but caused inhibition at higher concentrations. The maximum effect of galantamine, an increase of 22% in the amplitude of ACh-induced currents, was observed at a concentration of 250 μM Ach. The same enhancing effect was obtained in oocytes transplanted with Torpedo nicotinic acetylcholine receptor (AChR) isolated from the electric organ, but in this case the optimal concentration of galantamine was 1 μM. In this case, the maximum effect of galantamine, an increase of 35% in the amplitude of ACh-induced currents, occurred at a concentration of 50 μM ACh. Galantamine affects not only the activity of post-synaptic receptors but also the activity of nerve terminals. At a concentration of 1 μM, quantal spontaneous events, recorded in a cholinergic synapse, increased their amplitude, an effect which was independent of the anticholinesterasic activity associated with this compound. The anticholinesterasic effect was recorded in preparations treated with a galantamine concentration of 10 μM. In conclusion, our results show that galantamine enhances human α7 neuronal nicotinic ACh receptor activity. It also enhances muscular AChRs and the size of spontaneous cholinergic synaptic events. However, only a very narrow range of galantamine concentrations can be used for enhancing effects. PMID:15834443

  8. Cortisol, Cytokines, and Hippocampal Volume in the Elderly

    Directory of Open Access Journals (Sweden)

    Keith Daniel Sudheimer

    2014-07-01

    Full Text Available Separate bodies of literature report that elevated pro-inflammatory cytokines and cortisol negatively affect hippocampal structure and cognitive functioning, particularly in older adults. Although interactions between cytokines and cortisol occur through a variety of known mechanisms, few studies consider how their interactions affect brain structure. In this preliminary study, we assess the impact of interactions between circulating levels of IL-1Beta, IL-6, IL-8, IL-10, IL-12, TNF-alpha, and waking cortisol on hippocampal volume. Twenty-eight community-dwelling older adults underwent blood draws for quantification of circulating cytokines and saliva collections to quantify the cortisol awakening response. Hippocampal volume measurements were made using structural magnetic resonance imaging. Elevated levels of waking cortisol in conjunction with higher concentrations of IL-6 and TNF-alpha were associated with smaller hippocampal volumes. In addition, independent of cortisol, higher levels of IL-1beta and TNF-alpha were also associated with smaller hippocampal volumes. These data provide preliminary evidence that higher cortisol, in conjunction with higher IL-6 and TNF-alpha, are associated with smaller hippocampal volume in older adults. We suggest that the dynamic balance between the hypothalamic-pituitary adrenal axis and inflammation processes may explain hippocampal volume reductions in older adults better than either set of measures do in isolation.

  9. Acupuncture reversed hippocampal mitochondrial dysfunction in vascular dementia rats.

    Science.gov (United States)

    Li, Hui; Liu, Yi; Lin, Li-Ting; Wang, Xue-Rui; Du, Si-Qi; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Liu, Cun-Zhi

    2016-01-01

    Hippocampal mitochondrial dysfunction due to oxidative stress has been considered to play a major role in the pathogenesis of vascular dementia (VD). Previous studies suggested that acupuncture could improve cerebral hypoperfusion-induced cognitive impairments. However, whether hippocampal mitochondria are associated with this cognitive improvement remains unclear. In this study, an animal model of VD was established via bilateral common carotid arteries occlusion (BCCAO) to investigate the alterations of cognitive ability and hippocampal mitochondrial function. BCCAO rats showed impairments in hippocampal mitochondrial function, overproduction of reactive oxygen species (ROS) and learning and memory deficits. After two-week acupuncture treatment, BCCAO-induced spatial learning and memory impairments as shown in Morris water maze were ameliorated. Hippocampal mitochondrial respiratory complex enzymes (complex I, II, IV) activities and cytochrome c oxidase IV expression significantly increased, which might contribute to the reduction of hippocampal ROS generation. In addition, acupuncture significantly improve mitochondrial bioenergy parameters such as mitochondrial respiratory control rate and membrane potential not PDH A1 expression. Placebo-acupuncture did not produce similar therapeutic effects. These findings suggested that acupuncture reversed BCCAO-induced hippocampal mitochondrial dysfunction, which might contribute to its prevention on cognitive deficits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New Treatments for Drug-Resistant Epilepsy that Target Presynaptic Transmitter Release

    Science.gov (United States)

    2013-05-01

    Live cell imaging of mossy fiber boutons in acute hippocampal slices was done by bulk loading a group of granule cells and their axons with Alexa...whether post- SE leads to functional differences in transmitter release from excitatory mossy fiber boutons we utilized two-photon live cell imaging in

  11. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H

    1993-01-01

    that directs expression of E. coli beta-galactosidase (beta-gal), were microapplied into stratum pyramidale or stratum granulosum of slice cultures. Twenty-four hours later, a cluster of transduced cells expressing beta-gal was observed at the microapplication site. Gene transfer by microapplication was both...... effective and rapid. The titer of the HSVlac stocks was determined on NIH3T3 cells. Eighty-three percent of the beta-gal forming units successfully transduced beta-gal after microapplication to slice cultures. beta-Gal expression was detected as rapidly as 4 h after transduction into cultures of fibroblasts...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  12. Schizophrenia polygenic risk score predicts mnemonic hippocampal activity.

    Science.gov (United States)

    Chen, Qiang; Ursini, Gianluca; Romer, Adrienne L; Knodt, Annchen R; Mezeivtch, Karleigh; Xiao, Ena; Pergola, Giulio; Blasi, Giuseppe; Straub, Richard E; Callicott, Joseph H; Berman, Karen F; Hariri, Ahmad R; Bertolino, Alessandro; Mattay, Venkata S; Weinberger, Daniel R

    2018-02-03

    The use of polygenic risk scores has become a practical translational approach to investigating the complex genetic architecture of schizophrenia, but the link between polygenic risk scores and pathophysiological components of this disorder has been the subject of limited research. We investigated in healthy volunteers whether schizophrenia polygenic risk score predicts hippocampal activity during simple memory encoding, which has been proposed as a risk-associated intermediate phenotype of schizophrenia. We analysed the relationship between polygenic risk scores and hippocampal activity in a discovery sample of 191 unrelated healthy volunteers from the USA and in two independent replication samples of 76 and 137 healthy unrelated participants from Europe and the USA, respectively. Polygenic risk scores for each individual were calculated as the sum of the imputation probability of reference alleles weighted by the natural log of odds ratio from the recent schizophrenia genome-wide association study. We examined hippocampal activity during simple memory encoding of novel visual stimuli assessed using blood oxygen level-dependent functional MRI. Polygenic risk scores were significantly associated with hippocampal activity in the discovery sample [P = 0.016, family-wise error (FWE) corrected within Anatomical Automatic Labeling (AAL) bilateral hippocampal-parahippocampal mask] and in both replication samples (P = 0.033, FWE corrected within AAL right posterior hippocampal-parahippocampal mask in Bari sample, and P = 0.002 uncorrected in the Duke Neurogenetics Study sample). The relationship between polygenic risk scores and hippocampal activity was consistently negative, i.e. lower hippocampal activity in individuals with higher polygenic risk scores, consistent with previous studies reporting decreased hippocampal-parahippocampal activity during declarative memory tasks in patients with schizophrenia and in their healthy siblings. Polygenic risk scores accounted for

  13. Discovery of novel N-substituted oxindoles as selective m1 and m4 muscarinic acetylcholine receptors partial agonists.

    Science.gov (United States)

    Sumiyoshi, Takaaki; Enomoto, Takeshi; Takai, Kentaro; Takahashi, Yoko; Konishi, Yasuko; Uruno, Yoshiharu; Tojo, Kengo; Suwa, Atsushi; Matsuda, Harumi; Nakako, Tomokazu; Sakai, Mutsuko; Kitamura, Atsushi; Uematsu, Yasuaki; Kiyoshi, Akihiko

    2013-02-14

    Activation of the M1 and M4 muscarinic acetylcholine receptors is thought to play an important role in improving the symptoms of schizophrenia. However, discovery of selective agonists for these receptors has been a challenge, considering the high sequence homology and conservation of the orthosteric acetylcholine binding site among muscarinic acetylcholine receptor subtypes. We report in this study the discovery of novel N-substituted oxindoles as potent muscarinic acetylcholine receptor partial agonists selective for M1 and M4 over M2, M3, and M5. Among these oxindoles, compound 1 showed high selectivity for the M1 and M4 receptors with remarkable penetration into the central nervous system. Compound 1 reversed methamphetamine- and apomorphine-induced psychosis-like behaviors with low potency to extrapyramidical and peripheral side effects.

  14. Biological activity of sym-triazines with acetylcholine-like substitutions as multitarget modulators of Alzheimer's disease

    National Research Council Canada - National Science Library

    Veloso, Anthony J; Chow, Ari M; Dhar, Devjani; Tang, Derek W F; Ganesh, Hashwin V S; Mikhaylichenko, Svetlana; Brown, Ian R; Kerman, Kagan

    2013-01-01

    The bioactivities of two novel compounds (TAE-1 and TAE-2) that contain a sym-triazine scaffold with acetylcholine-like substitutions are examined as promising candidate agents against Alzheimer's disease...

  15. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  16. Task- and Treatment Length?Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats

    OpenAIRE

    Pehrson, Alan L.; Hillhouse, Todd M.; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H.; M?rk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel; Sanchez, Connie

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying...

  17. Angiotensin II-acetylcholine noncovalent complexes analyzed with MALDI-ion mobility-TOF MS.

    Science.gov (United States)

    Woods, Amina S; Fuhrer, Katrin; Gonin, Marc; Egan, Tom; Ugarov, Michael; Gillig, Kent J; Schultz, J Albert

    2003-03-01

    Matrix-assisted laser desorption ionization-ion mobility-orthogonal time-of-flight mass spectrometry (MALDI-IM oTOF MS) is a new technique that allows laser desorbed ion to be preseparated on the basis of their shape prior to mas analysis. Using this instrument, we tested the postulate that addition of a quaternary ammonium compound such as acetylcholine to the model phosphorylated peptide angio tensin II would enhance its detection by MALDI in two ways. First of all, the acetylcholine-peptide complex could ionize more efficiently than the bare phosphopeptide. Furthermore the ion mobility could separate the complex ion on the basis of its charge/volume from isobaric interferences, which would otherwise limit detection sensitivity.

  18. Functional Characterization of CCHamide and Muscarinic Acetylcholine Receptor Signalling in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Ren, Guilin Robin

    G-protein coupled receptors (GPCRs) constitute a large and ancient superfamily of membraneproteins responsible for the transduction of extracellular signals to the inside of the cells. In thisPh.D. thesis, Drosophila melanogaster (Dm) was used as a model organism to investigate a numberof topics...... is a newly discovered insect peptide hormone. The function of this novel peptide hasnot been well characterised. In this Ph.D. thesis, I identified CCHamide-2 peptides in endocrinecells of the gut and neurones of the brain of larvae and endocrine cells of the gut of adultDrosophila. Behavioural assays...... little is known about muscarinic acetylcholine receptorsignalling in insects. In this study, I found that two types of mAChRs occur in D. melanogaster, onecoupling to Gq (A-type) and the other to Gi (B-type). Both A- and B-type Dm-mAChRs can beactivated by acetylcholine (ACh), but the classical...

  19. Interleukin-17 inhibits Adult Hippocampal Neurogenesis

    Science.gov (United States)

    Liu, Qiang; Xin, Wei; He, Ping; Turner, Dharshaun; Yin, Junxiang; Gan, Yan; Shi, Fu-Dong; Wu, Jie

    2014-01-01

    Interleukin 17(A) (IL-17) is a potent pro-inflammatory cytokine that acts as a central regulator of inflammatory response within the brain, but its physiological roles under non-inflammatory conditions remain elusive. Here we report that endogenous IL-17 ablates neurogenesis in the adult dentate gyrus (DG) of hippocampus. Genetic deletion of IL-17 increased the number of adult-born neurons in the DG. Further, we found that IL-17 deletion altered cytokine network, facilitated basal excitatory synaptic transmission, enhanced intrinsic neuronal excitability, and increased expression of proneuronal genes in neuronal progenitor cells (NPCs). Our findings suggest a profound role of IL-17 in the negative regulation of adult hippocampal neurogenesis under physiology conditions. PMID:25523081

  20. Tau protein and adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Almudena eFuster-Matanzo

    2012-07-01

    Full Text Available Tau protein is a microtubule associated protein found in the axonal compartment that stabilizes neuronal microtubules under normal physiological conditions. Tau metabolism has attracted much attention because of its role in neurodegenerative disorders called tauopathies, mainly Alzheimer disease. Here, we review recent findings suggesting that axonal outgrowth in subgranular zone during adult hippocampal neurogenesis requires a dynamic microtubule network and tau protein facilitates to maintain that dynamic cytoskeleton. Those functions are carried out in part by tau isoform with only three microtubule-binding domains (without exon 10 and by presence of hypherphosphorylated tau forms. Thus, tau is a good marker and a valuable tool to study new axons in adult neurogenesis.

  1. Fast synaptic subcortical control of hippocampal circuits.

    Science.gov (United States)

    Varga, Viktor; Losonczy, Attila; Zemelman, Boris V; Borhegyi, Zsolt; Nyiri, Gábor; Domonkos, Andor; Hangya, Balázs; Holderith, Noémi; Magee, Jeffrey C; Freund, Tamás F

    2009-10-16

    Cortical information processing is under state-dependent control of subcortical neuromodulatory systems. Although this modulatory effect is thought to be mediated mainly by slow nonsynaptic metabotropic receptors, other mechanisms, such as direct synaptic transmission, are possible. Yet, it is currently unknown if any such form of subcortical control exists. Here, we present direct evidence of a strong, spatiotemporally precise excitatory input from an ascending neuromodulatory center. Selective stimulation of serotonergic median raphe neurons produced a rapid activation of hippocampal interneurons. At the network level, this subcortical drive was manifested as a pattern of effective disynaptic GABAergic inhibition that spread throughout the circuit. This form of subcortical network regulation should be incorporated into current concepts of normal and pathological cortical function.

  2. Spatial relational memory requires hippocampal adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    David Dupret

    Full Text Available The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.

  3. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-05-01

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  4. Uptake of /sup 3/H-choline and synthesis of /sup 3/H-acetylcholine by human penile corpus cavernosum

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, R.; Saenz de Tejada, I.; Azadzoi, K.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A.

    1986-03-05

    The neuroeffectors which relax penile smooth muscle and lead to erection are unknown; physiological studies of human corpus cavernosum, in vitro, have suggested a significant role of cholinergic neurotransmission. To further characterize the importance of cholinergic nerves, biopsies of human corpus cavernosum were obtained at the time of penile prosthesis implantation. Tissues were incubated in /sup 3/H-choline (10/sup -5/M, 80 Ci/mmol) in oxygenated physiological salt solution at 37/sup 0/C, pH 7.4 for 1 hour. Radiolabelled compounds were extracted with perchloric acid (0.4 M) and acetylcholine and choline were separated by HPLC; /sup 14/C-acetylcholine was used as internal standard. /sup 3/H-choline was accumulated by the tissues (20 +/- 1.9 fmol/mg), and /sup 3/H-acetylcholine was synthesized (4.0 +/- 1.1 fmol/mg). In control experiments, heating of the tissue blocked synthesis of /sup 3/H-acetylcholine. Inhibition of high affinity choline transport by hemicholinium-3 (10/sup -5/M) diminished tissue accumulation of /sup 3/H-choline and significantly reduced the synthesis of /sup 3/H-acetylcholine (0.5 +/ 0.2 fmol/mg, p < 0.05). These results provide direct evidence of neuronal accumulation of choline and enzymatic conversion to acetylcholine in human corpus cavernosum. Taken together with the physiological studies, it can be concluded that cholinergic neurotransmission in human corpus cavernosum plays a role in penile erection.

  5. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    extrahippocampal afferents. Various excitatory and inhibitory afferent and efferent synapses of the hippocampal CCK basket cells express serotoninergic, cholinergic, cannabinoid, and benzodiazepine sensitive receptors, all contributing to their functional plasticity. We explored whether CCK basket cells...

  6. Extent of hippocampal atrophy predicts degree of deficit in recall.

    Science.gov (United States)

    Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-13

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.

  7. Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects

    Science.gov (United States)

    Geil, Chelsea R.; Hayes, Dayna M.; McClain, Justin A.; Liput, Daniel J.; Marshall, S. Alex; Chen, Kevin Y.; Nixon, Kimberly

    2014-01-01

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche. PMID:24842804

  8. Rhinal-hippocampal EEG coherence is reduced during human sleep.

    NARCIS (Netherlands)

    Fell, J.; Staedtgen, M.; Burr, W.; Kockelmann, E.; Helmstaedter, C.; Schaller, C.; Elger, C.E.; Fernandez, G.S.E.

    2003-01-01

    The deficiency of declarative memory compared with waking state is an often overlooked characteristic of sleep. Here, we investigated whether rhinal-hippocampal coherence, an electrophysiological correlate of declarative memory formation, is significantly altered during sleep as compared with waking

  9. Differential response of hippocampal subregions to stress and learning

    National Research Council Canada - National Science Library

    Hawley, Darby F; Morch, Kristin; Christie, Brian R; Leasure, J Leigh

    2012-01-01

    .... In a prior study of chronic unpredictable stress (CUS) in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the...

  10. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    National Research Council Canada - National Science Library

    Rohan, Joyce G; Carhuatanta, Kim A; McInturf, Shawn M; Miklasevich, Molly K; Jankord, Ryan

    2015-01-01

    .... However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings...

  11. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system

    Directory of Open Access Journals (Sweden)

    Susanne Zibek

    2010-11-01

    Full Text Available Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses.In an experimental setup micro-droplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution travelled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively.Numerical modelling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 µm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 µM acetylcholine independent of pore size were determined.

  12. Multiple inhibitory actions of lidocaine on Torpedo nicotinic acetylcholine receptors transplanted to Xenopus oocytes.

    Science.gov (United States)

    Alberola-Die, Armando; Martinez-Pinna, Juan; González-Ros, José Manuel; Ivorra, Isabel; Morales, Andrés

    2011-06-01

    Lidocaine is a local anaesthetic that blocks sodium channels, but also inhibits several ligand-gated ion-channels. The aim of this work was to unravel the mechanisms by which lidocaine blocks Torpedo nicotinic receptors transplanted to Xenopus oocytes. Acetylcholine-elicited currents were reversibly blocked by lidocaine, in a concentration dependent manner. At doses lower than the IC(50) , lidocaine blocked nicotinic receptors only at negative potentials, indicating an open-channel blockade; the binding site within the channel was at about 30% of the way through the electrical field across the membrane. In the presence of higher lidocaine doses, nicotinic receptors were blocked both at positive and negative potentials, acetylcholine dose-response curve shifted to the right and lidocaine pre-application, before its co-application with acetylcholine, enhanced the current inhibition, indicating all together that lidocaine also blocked resting receptors; besides, it increased the current decay rate. When lidocaine, at low doses, was co-applied with 2-(triethylammonio)-N-(2,6-dimethylphenyl) acetamide bromide, edrophonium or 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide, which are quaternary-ammonium molecules that also blocked nicotinic receptors, there was an additive inhibitory effect, indicating that these molecules bound to different sites within the channel pore. These results prove that lidocaine blocks nicotinic receptors by several independent mechanisms and evidence the diverse and complex modulation of this receptor by structurally related molecules. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  13. Kinetics of agonist-induced intrinsic fluorescence changes in the Torpedo acetylcholine receptor.

    Science.gov (United States)

    Kawai, Hideki; Raftery, Michael A

    2010-05-01

    The nicotinic acetylcholine receptor from Torpedo electric organs is a ligand-gated ion channel that undergoes conformational transitions for activation and/or desensitization. Earlier work suggested that intrinsic fluorescence changes of the receptor monitors kinetic transitions toward the high-affinity, desensitized state. Here, using highly purified membrane preparations to minimize contaminating fluorescence, we examined kinetic mechanisms of the receptor as monitored by its intrinsic fluorescence. Fluorescence changes were specific to the receptor as they were blocked by alpha-bungarotoxin and were induced by agonists, but not by the antagonist hexamethonium. Acetylcholine, carbamylcholine and suberyldicholine showed only one kinetic phase with relatively fast rates (t(1/2) = 0.2-1.2 s). Effective dissociation constants were at least an order of magnitude higher than the high affinity, equilibrium binding constants for these agonists. A semirigid agonist isoarecolone-methiodide, whose activation constant was approximately 3-fold lower than acetylcholine, induced an additional slow phase (t(1/2) = 4.5-9 s) with apparent rates that increased and then decreased in a concentration dependent manner, revealing a branched mechanism for conformational transitions. We propose that the intrinsic fluorescence changes of the receptor describe a process(es) toward a fast desensitization state prior to the formation of the high affinity state.

  14. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  15. Molecular environment of the phencyclidine binding site in the nicotinic acetylcholine receptor membrane

    Energy Technology Data Exchange (ETDEWEB)

    Palma, A.L.; Wang, H.H. (Department of Biology, University of California, Santa Cruz (United States))

    1991-06-01

    Phencyclidine is a highly specific noncompetitive inhibitor of the nicotinic acetylcholine receptor. In a novel approach to study this site, a spin-labeled analogue of phencyclidine, 4-phenyl-4-(1-piperidinyl)-2,2,6,6-tetramethylpiperidinoxyl (PPT) was synthesized. The binding of PPT inhibits 86Rb flux (IC50 = 6.6 microM), and (3H)phencyclidine binding to both resting and desensitized acetylcholine receptor (IC50 = 17 microM and 0.22 microM, respectively). From an indirect Hill plot of the inhibition of (3H)phencyclidine binding by PPT, a Hill coefficient of approximately one was obtained in the presence of carbamylcholine and 0.8 in alpha-bungarotoxin-treated preparations. Taken together, these results indicate that PPT mimics phencyclidine in its ability to bind to the noncompetitive inhibitor site and is functionally active in blocking ion flux across the acetylcholine receptor channel. Analysis of the electron spin resonance signal of the bound PPT suggests that the environment surrounding the probe within the ion channel is hydrophobic, with a hydrophobicity parameter of 1.09. A dielectric constant for the binding site was estimated to be in the range of 2-3 units.

  16. The role of electrostatic interactions in governing anesthetic action on the torpedo nicotinic acetylcholine receptor.

    Science.gov (United States)

    Raines, Douglas E; Claycomb, Robert J

    2002-08-01

    Isoflurane and normal alkanols reduce the apparent agonist dissociation constant (Kd) of the nicotinic acetylcholine receptor (nAChR) at clinically relevant concentrations, whereas cyclopropane and butane do not. This suggests that electrostatic (hydrogen bonding and/or dipolar) interactions modulate anesthetic potency in this model receptor system. To further define the nature of these interactions, we quantified the potencies with which a heterologous group of general anesthetics reduces the nAChR's apparent Kd for acetylcholine. We assessed the importance that an anesthetic's molecular volume, ability to donate a hydrogen bond (hydrogen bond acidity), ability to accept a hydrogen bond (hydrogen bond basicity), and dipole moment play in determining aqueous potency. We found that aqueous anesthetic potency increases with molecular volume and decreases with hydrogen bond basicity but is unaffected by dipole moment and hydrogen bond acidity. These results suggest that anesthetics reduce the apparent agonist Kd of the nAChR by binding to a site that has a dipolarity and ability to accept hydrogen bonds that are similar to those of water, but a hydrogen bond-donating capacity that is less. Anesthetics representing a wide range of chemical classes reduce the apparent agonist dissociation constant of the Torpedo nicotinic acetylcholine receptor with aqueous potencies that are governed by their molecular volumes and hydrogen bond basicities. However, neither their hydrogen bond acidities nor dipole moments influence aqueous potency.

  17. Identifying genetic variants for heart rate variability in the acetylcholine pathway.

    Directory of Open Access Journals (Sweden)

    Harriëtte Riese

    Full Text Available Heart rate variability is an important risk factor for cardiovascular disease and all-cause mortality. The acetylcholine pathway plays a key role in explaining heart rate variability in humans. We assessed whether 443 genotyped and imputed common genetic variants in eight key genes (CHAT, SLC18A3, SLC5A7, CHRNB4, CHRNA3, CHRNA, CHRM2 and ACHE of the acetylcholine pathway were associated with variation in an established measure of heart rate variability reflecting parasympathetic control of the heart rhythm, the root mean square of successive differences (RMSSD of normal RR intervals. The association was studied in a two stage design in individuals of European descent. First, analyses were performed in a discovery sample of four cohorts (n = 3429, discovery stage. Second, findings were replicated in three independent cohorts (n = 3311, replication stage, and finally the two stages were combined in a meta-analysis (n = 6740. RMSSD data were obtained under resting conditions. After correction for multiple testing, none of the SNPs showed an association with RMSSD. In conclusion, no common genetic variants for heart rate variability were identified in the largest and most comprehensive candidate gene study on the acetylcholine pathway to date. Future gene finding efforts for RMSSD may want to focus on hypothesis free approaches such as the genome-wide association study.

  18. Fermented Sipjeondaebo-tang Alleviates Memory Deficits and Loss of Hippocampal Neurogenesis in Scopolamine-induced Amnesia in Mice.

    Science.gov (United States)

    Park, Hee Ra; Lee, Heeeun; Park, Hwayong; Cho, Won-Kyung; Ma, Jin Yeul

    2016-03-04

    We investigated the anti-amnesic effects of SJ and fermented SJ (FSJ) on scopolamine (SCO)-induced amnesia mouse model. Mice were orally co-treated with SJ or FSJ (125, 250, and 500 mg/kg) and SCO (1 mg/kg), which was injected intraperitoneally for 14 days. SCO decreased the step-through latency and prolonged latency time to find the hidden platform in the passive avoidance test and Morris water maze test, respectively, and both SCO effects were ameliorated by FSJ treatment. FSJ was discovered to promote hippocampal neurogenesis during SCO treatment by increasing proliferation and survival of BrdU-positive cells, immature/mature neurons. In the hippocampus of SCO, oxidative stress and the activity of acetylcholinesterase were elevated, whereas the levels of acetylcholine and choline acetyltransferase were diminished; however, all of these alterations were attenuated by FSJ-treatment. The alterations in brain-derived neurotrophic factor, phosphorylated cAMP response element-binding protein, and phosphorylated Akt that occurred following SCO treatment were protected by FSJ administration. Therefore, our findings are the first to suggest that FSJ may be a promising therapeutic drug for the treatment of amnesia and aging-related or neurodegenerative disease-related memory impairment. Furthermore, the molecular mechanism by which FSJ exerts its effects may involve modulation of the cholinergic system and BDNF/CREB/Akt pathway.

  19. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus.

    Science.gov (United States)

    Pousti, Farideh; Ahmadi, Ramesh; Mirahmadi, Fatemeh; Hosseinmardi, Narges; Rohampour, Kambiz

    2018-01-01

    Recent studies have suggested the involvement of some metabolic hormones in memory formation and synaptic plasticity. Insulin dysfunction is known as an essential process in the pathogenesis of sporadic Alzheimer's disease (AD). In this study we examined whether adiponectin (ADN), as an insulin-sensitizing adipokine, could affect hippocampal synaptic plasticity. Field potential recordings were performed on intracerebroventricular (icv) cannulated urethane anesthetized rats. After baseline recording from dentate gyrus (DG) and 10min prior to high/low frequency stimulation (HFS/LFS), 10μl icv ADN (600nm) were injected. The slope of field excitatory postsynaptic potentials (fEPSP) and the amplitude of population spikes (PS) were recorded in response to perforanth path (PP) stimulation. Paired pulse stimuli and ADN injection without any stimulation protocols were also evaluated. Application of ADN before HFS increased PS amplitude recorded in DG significantly (P≤0.05) in comparison to HFS only group. ADN suppressed the potency of LFS to induce long-term depression (LTD), causing a significant difference between fEPSP slope (P≤0.05) and PS amplitude (P≤0.01) between ADN+LFS and ADN group. Paired pulse stimuli applied at 20ms intervals showed more paired pulse facilitation (PPF), when applied after ADN (P≤0.05). ADN induced a chemical long-term potentiation (LTP) in which fEPSP slope and PS amplitude increased significantly (P≤0.01 and P≤0.05, respectively). It is concluded that ADN is able to potentiate the HFS-induced LTP and suppress LFS-induced LTD. ADN caused a chemical LTP, when applied without any tetanic protocol. ADN may enhance the presynaptic release probability. Copyright © 2017. Published by Elsevier B.V.

  20. Differential expression of alpha-synuclein in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Katsutoshi Taguchi

    Full Text Available α-Synuclein is the major pathological component of synucleinopathies including Parkinson's disease and dementia with Lewy bodies. Recent studies have demonstrated that α-synuclein also plays important roles in the release of synaptic vesicles and synaptic membrane recycling in healthy neurons. However, the precise relationship between the pathogenicity and physiological functions of α-synuclein remains to be elucidated. To address this issue, we investigated the subcellular localization of α-synuclein in normal and pathological conditions using primary mouse hippocampal neuronal cultures. While some neurons expressed high levels of α-synuclein in presynaptic boutons and cell bodies, other neurons either did not or only very weakly expressed the protein. These α-synuclein-negative cells were identified as inhibitory neurons by immunostaining with specific antibodies against glutamic acid decarboxylase (GAD, parvalbumin, and somatostatin. In contrast, α-synuclein-positive synapses were colocalized with the excitatory synapse marker vesicular glutamate transporter-1. This expression profile of α-synuclein was conserved in the hippocampus in vivo. In addition, we found that while presynaptic α-synuclein colocalizes with synapsin, a marker of presynaptic vesicles, it is not essential for activity-dependent membrane recycling induced by high potassium treatment. Exogenous supply of preformed fibrils generated by recombinant α-synuclein was shown to promote the formation of Lewy body (LB -like intracellular aggregates involving endogenous α-synuclein. GAD-positive neurons did not form LB-like aggregates following treatment with preformed fibrils, however, exogenous expression of human α-synuclein allowed intracellular aggregate formation in these cells. These results suggest the presence of a different mechanism for regulation of the expression of α-synuclein between excitatory and inhibitory neurons. Furthermore, α-synuclein expression

  1. Amphetamine withdrawal differentially affects hippocampal and peripheral corticosterone levels in response to stress.

    Science.gov (United States)

    Bray, Brenna; Scholl, Jamie L; Tu, Wenyu; Watt, Michael J; Renner, Kenneth J; Forster, Gina L

    2016-08-01

    Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses. Adult male rats received amphetamine (2.5mg/kg, ip) or saline for 14 days followed by 2 weeks of withdrawal. Contrary to our prediction, microdialysis samples from freely-moving rats revealed that restraint stress-induced corticosterone levels in the ventral hippocampus are enhanced by amphetamine withdrawal relative to controls. In separate groups of rats, plasma corticosterone levels increased immediately after 20min of restraint and decreased to below stress-naïve levels after 1h, indicating negative feedback regulation of corticosterone following stress. However, plasma corticosterone responses were similar in amphetamine-withdrawn and control rats. Neither amphetamine nor stress exposure significantly altered protein expression or enzyme activity of the steroidogenic enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD1) or hexose-6-phosphate dehydrogenase (H6PD) in the ventral hippocampus. Our findings demonstrate for the first time that amphetamine withdrawal potentiates stress-induced corticosterone in the ventral hippocampus, which may contribute to increased behavioral stress sensitivity previously observed during amphetamine withdrawal. However, this is not mediated by either changes in plasma corticosterone or hippocampal steroidogenic enzymes. Establishing enhanced ventral hippocampal corticosterone as a direct cause of greater stress sensitivity may identify the glucocorticoid system as a novel target for treating behavioral symptoms of amphetamine withdrawal. Copyright © 2016 Elsevier B

  2. Le Projet hippocampe devient un important protagoniste de la ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le Projet hippocampe devient un important protagoniste de la conservation de la faune marine. 29 octobre 2012. Image. Stephen Dale. Des effets durables. Pour certains, le Projet hippocampe est un organisme qui a mobilisé des collectivités de pêcheurs pauvres des Philippines pour créer des dizaines d'aires protégées ...

  3. Damage of hippocampal neurons in rats with chronic alcoholism

    OpenAIRE

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons i...

  4. Sleep-stage correlates of hippocampal electroencephalogram in primates.

    Directory of Open Access Journals (Sweden)

    Ryoi Tamura

    Full Text Available It has been demonstrated in the rodent hippocampus that rhythmic slow activity (theta predominantly occurs during rapid eye movement (REM sleep, while sharp waves and associated ripples occur mainly during non-REM sleep. However, evidence is lacking for correlates of sleep stages with electroencephalogram (EEG in the hippocampus of monkeys. In the present study, we recorded hippocampal EEG from the dentate gyrus in monkeys overnight under conditions of polysomnographical monitoring. As result, the hippocampal EEG changed in a manner similar to that of the surface EEG: during wakefulness, the hippocampal EEG showed fast, desynchronized waves, which were partly replaced with slower waves of intermediate amplitudes during the shallow stages of non-REM sleep. During the deep stages of non-REM sleep, continuous, slower oscillations (0.5-8 Hz with high amplitudes were predominant. During REM sleep, the hippocampal EEG again showed fast, desynchronized waves similar to those found during wakefulness. These results indicate that in the monkey, hippocampal rhythmic slow activity rarely occurs during REM sleep, which is in clear contrast to that of rodents. In addition, the increase in the slower oscillations of hippocampal EEG during non-REM sleep, which resembled that of the surface EEG, may at least partly reflect cortical inputs to the dentate gyrus during this behavioral state.

  5. Religious factors and hippocampal atrophy in late life.

    Directory of Open Access Journals (Sweden)

    Amy D Owen

    2011-03-01

    Full Text Available Despite a growing interest in the ways spiritual beliefs and practices are reflected in brain activity, there have been relatively few studies using neuroimaging data to assess potential relationships between religious factors and structural neuroanatomy. This study examined prospective relationships between religious factors and hippocampal volume change using high-resolution MRI data of a sample of 268 older adults. Religious factors assessed included life-changing religious experiences, spiritual practices, and religious group membership. Hippocampal volumes were analyzed using the GRID program, which is based on a manual point-counting method and allows for semi-automated determination of region of interest volumes. Significantly greater hippocampal atrophy was observed for participants reporting a life-changing religious experience. Significantly greater hippocampal atrophy was also observed from baseline to final assessment among born-again Protestants, Catholics, and those with no religious affiliation, compared with Protestants not identifying as born-again. These associations were not explained by psychosocial or demographic factors, or baseline cerebral volume. Hippocampal volume has been linked to clinical outcomes, such as depression, dementia, and Alzheimer's Disease. The findings of this study indicate that hippocampal atrophy in late life may be uniquely influenced by certain types of religious factors.

  6. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 (PLA2s are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which

  7. Muscarinic acetylcholine receptors are expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque.

    Science.gov (United States)

    Disney, Anita A; Alasady, Hussein A; Reynolds, John H

    2014-05-01

    In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulation by acetylcholine (ACh) is a candidate mechanism for aspects of attention and in the primary visual cortex (V1) of the macaque, receptors for ACh (AChRs) are strongly expressed by inhibitory neurons. In particular, most PV neurons in macaque V1 express m1 muscarinic AChRs and exogenously applied ACh can cause the release of γ-aminobutyric acid. In contrast, few PV neurons in rat V1 express m1 AChRs. While this could be a species difference, it has also been argued that macaque V1 is anatomically unique when compared with other cortical areas in macaques. The aim of this study was to better understand the extent to which V1 offers a suitable model circuit for cholinergic anatomy in the macaque occipital lobe, and to explore cholinergic modulation as a biological basis for the changes in circuit behavior seen with attention. We compared expression of m1 AChRs by PV neurons between area V1 and the middle temporal visual area (MT) in macaque monkeys using dual-immunofluorescence confocal microscopy. We find that, as in V1, most PV neurons in MT express m1 AChRs but, unlike in V1, it appears that so do most excitatory neurons. This provides support for V1 as a model of cholinergic modulation of inhibition in macaque visual cortex, but not of cholinergic modulation of visual cortical circuits in general. We also propose that ACh acting via m1 AChRs is a candidate underlying mechanism for the strong effects of attention on narrow-spiking neurons observed in behaving animals.

  8. An allosteric enhancer of M4 muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

    Science.gov (United States)

    Dencker, Ditte; Weikop, Pia; Sørensen, Gunnar; Woldbye, David P. D.; Wörtwein, Gitta; Wess, Jürgen; Fink-Jensen, Anders

    2014-01-01

    Rationale The mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M4 acetylcholine receptor subtype is centrally involved in regulation of dopamine release in striatal areas. Consequently, striatal M4 receptors could be a novel target for modulating psychostimulant effects of cocaine. Objectives For the first time, we here addressed this issue by investigating the effects of a novel selective positive allosteric modulator of M4 receptors, VU0152100, on cocaine-induced behavioral and neurochemical effects in mice. Methods To investigate the effect of VU0152100 on the acute reinforcing effects of cocaine, we use an acute-cocaine self-administration model. We used in vivo microdialysis to investigate whether the effects of VU0152100 in the behavioral studies were mediated via effects on dopaminergic neurotransmission. In addition the effect of VU0152100 on cocaine-induced hyperactivity and rotarod performance was evaluated. Results We found that VU0152100 caused a prominent reduction in cocaine self-administration, cocaine-induced hyperlocomotion, and cocaine-induced striatal dopamine increase, without affecting motor performance. Consistent with these effects of VU0152100 being mediated via M4 receptors, its inhibitory effects on cocaine-induced increases in striatal dopamine were abolished in M4 receptor knockout mice. Furthermore, selective deletion of the M4 receptor gene in dopamine D1 receptor-expressing neurons resulted in a partial reduction of the VU0152100 effect, indicating that VU0152100 partly regulates dopaminergic neurotransmission via M4 receptors co-localized with D1 receptors. Conclusions These results show that positive allosteric modulators of the M4 receptor deserve attention as agents in the future treatment of cocaine abuse. PMID:22648127

  9. A multi-enzyme microreactor-based online electrochemical system for selective and continuous monitoring of acetylcholine.

    Science.gov (United States)

    Lin, Yuqing; Yu, Ping; Mao, Lanqun

    2015-06-07

    This study demonstrates an online electrochemical system (OECS) for selective and continuous measurements of acetylcholine (ACh) through efficiently integrating in vivo microdialysis, a multi-enzyme microreactor and an electrochemical detector. A multi-enzyme microreactor was prepared first by co-immobilizing two kinds of enzymes, i.e. choline oxidase (ChOx) and catalase (Cat), onto magnetite nanoparticles and then confining the as-formed nanoparticles into a fused-silica capillary with the assistance of an external magnet. The multi-enzyme microreactor was settled between an in vivo microdialysis sampling system and an electrochemical detector to suppress the interference from choline toward ACh detection. Selective detection of ACh was accomplished using the electrochemical detector with ACh esterase (AChE) and ChOx as the recognition units for ACh and Prussian blue (PB) as the electrocatalyst for the reduction of hydrogen peroxide (H2O2). The current recorded with the OECS was linear with the concentration of ACh (I/nA = -3.90CACh/μM + 1.21, γ = 0.998) within a concentration range of 5 μM to 100 μM. The detection limit, based on a signal-to-noise ratio of 3, was calculated to be 1 μM. Interference investigation demonstrates that the OECS did not produce an observable current response toward physiological levels of common electroactive species, such as ascorbic acid (AA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and uric acid (UA). The high selectivity and the good linearity in combination with the high stability may enable the OECS developed here as a potential system for continuous monitoring of cerebral ACh release in some physiological and pathological processes.

  10. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events

    OpenAIRE

    Xia, Xiaofeng; Lessmann, Volkmar; Martin, Thomas F. J.

    2008-01-01

    Evoked neuropeptide secretion in the central nervous system occurs slowly, but the basis for slow release is not fully understood. Whereas exocytosis of single synaptic vesicles in neurons and of dense-core vesicles (DCVs) in endocrine cells have been directly visualized, single DCV exocytic events in neurons of the central nervous system have not been previously studied. We imaged DCV exocytosis in primary cultured hippocampal neurons using fluorescent propeptide carg...

  11. Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development

    Directory of Open Access Journals (Sweden)

    Daniel G. McHail

    2015-04-01

    Full Text Available Metaplasticity refers to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Numerous forms of developmental metaplasticity are observed at Schaffer collateral synapses in the rat hippocampus at the end of the third postnatal week. Emergence of spatial learning and memory at this developmental stage suggests possible involvement of metaplasticity in the final maturation of the hippocampus. Three distinct metaplastic phenomena are apparent. (1 As transmitter release probability increases with increasing age, presynaptic potentiation is reduced. (2 Alterations in the composition and channel conductance properties of AMPARs facilitate the induction of postsynaptic potentiation with increasing age. (3 Low frequency stimulation inhibits subsequent induction of potentiation in animals older but not younger than 3 weeks of age. Thus, many forms of plasticity expressed at SC-CA1 synapses are different in rats younger and older than 3 weeks of age, illustrating the complex orchestration of physiological modifications that underlie the maturation of hippocampal excitatory synaptic transmission. This review paper describes three late postnatal modifications to synaptic plasticity induction in the hippocampus and attempts to relate these metaplastic changes to developmental alterations in hippocampal network activity and the maturation of contextual learning.

  12. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    Science.gov (United States)

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  13. MADP, a salidroside analog, protects hippocampal neurons from glutamate induced apoptosis.

    Science.gov (United States)

    Xian, Hua; Zhao, Jing; Zheng, Yuan; Wang, Meihong; Huang, Jun; Wu, Bingxin; Sun, Cheng; Yang, Yumin

    2014-05-08

    To investigate the anti-apoptotic effect of MADP, an analog of salidroside, against glutamate induced apoptosis in the cultured rat hippocampal neurons. Cytotoxicity was determined by the MTT method and lactate dehydrogenase release to the medium. Cell apoptosis was evaluated by Hoechst 33342 staining, TUNEL assay and flow cytometric analysis. Western blotting was applied for detecting protein levels of cellular signaling molecules. Our results showed that glutamate exposure significantly induces cell apoptosis, whereas the pretreatment of salidroside or MADP remarkably improves cell viability. Most importantly, the anti-apoptotic effect of MADP against glutamate insult is superior to salidroside. To explore the involved mechanisms, we measured some pro-apoptotic and anti-apoptotic protein levels, and several cell survival signaling pathways were analyzed as well. No visible alterations in Bcl-2 and Bax protein levels were observed by MADP or salidroside. Akt and JNK phosphorylation was robustly stimulated by MADP in the glutamate-treated neurons. Salidroside treatment results in a slight activation in Akt, while no significant alteration in JNK activity was observed. MADP exhibits higher capacity to attenuate glutamate induced cell apoptosis in the cultured rat hippocampal neurons, suggesting that MADP might be a better candidate than salidroside for developing novel drugs treating neuron loss associated disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress

    Science.gov (United States)

    María Magariños, Ana; McEwen, Bruce S.

    2000-09-01

    We report that 9 d of uncontrolled experimental diabetes induced by streptozotocin (STZ) in rats is an endogenous chronic stressor that produces retraction and simplification of apical dendrites of hippocampal CA3 pyramidal neurons, an effect also observed in nondiabetic rats after 21 d of repeated restraint stress or chronic corticosterone (Cort) treatment. Diabetes also induces morphological changes in the presynaptic mossy fiber terminals (MFT) that form excitatory synaptic contacts with the proximal CA3 apical dendrites. One effect, synaptic vesicle depletion, occurs in diabetes as well as after repeated stress and Cort treatment. However, diabetes produced other MFT structural changes that differ qualitatively and quantitatively from other treatments. Furthermore, whereas 7 d of repeated stress was insufficient to produce dendritic or synaptic remodeling in nondiabetic rats, it potentiated both dendritic atrophy and MFT synaptic vesicle depletion in STZ rats. These changes occurred in concert with adrenal hypertrophy and elevated basal Cort release as well as hypersensitivity and defective shutoff of Cort secretion after stress. Thus, as an endogenous stressor, STZ diabetes not only accelerates the effects of exogenous stress to alter hippocampal morphology; it also produces structural changes that overlap only partially with those produced by stress and Cort in the nondiabetic state.

  15. Folic Acid Protects Against Glutamate-Induced Excitotoxicity in Hippocampal Slices Through a Mechanism that Implicates Inhibition of GSK-3β and iNOS.

    Science.gov (United States)

    Budni, Josiane; Molz, Simone; Dal-Cim, Tharine; Martín-de-Saavedra, Maria Dolores; Egea, Javier; Lopéz, Manuela G; Tasca, Carla Ines; Rodrigues, Ana Lúcia Severo

    2017-02-10

    Folic acid (folate) is a vitamin of the B-complex group crucial for neurological function. Considering that excitotoxicity and cell death induced by glutamate are involved in many disorders, the potential protective effect of folic acid on glutamate-induced cell damage in rat hippocampal slices and the possible intracellular signaling pathway involved in such effect were investigated. The treatment of hippocampal slices with folic acid (100 μM) significantly abrogated glutamate (1 mM)-induced reduction of cell viability measured by MTT reduction assay and inhibited glutamate-induced D-[(3)H]-aspartate release. To investigate the putative intracellular signaling pathways implicated in the protective effect of folic acid, we used a PI3K inhibitor, LY294002, which abolished the protective effects of folic acid against glutamate-induced cell damage and D-[(3)H] aspartate release. Moreover, hippocampal slices incubated with folic acid alone for 30 min presented increased phosphorylation of GSK-3β at Ser9, indicating an inhibition of the activity of this enzyme. Furthermore, folic acid in the presence of glutamate insult in hippocampal slices maintained for an additional period of 6 h in fresh culture medium without glutamate and/or folic acid induced phosphorylation of GSK-3β and β-catenin expression. In addition, glutamate-treated hippocampal slices showed increased iNOS expression that was reversed by folic acid. In conclusion, the results of this study show that the protective effect of folic acid against glutamate-induced excitotoxicity may involve the modulation of PI3K/GSK-3β/β-catenin pathway and iNOS inhibition.

  16. Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons

    Science.gov (United States)

    Huang, Wendy C.; Xiao, Shaohua; Huang, Fen; Harfe, Brian D.; Jan, Yuh Nung; Jan, Lily Yeh

    2012-01-01

    SUMMARY Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation. Here we report a novel mechanism for modulating hippocampal neuronal signaling that involves calcium-activated chloride channels (CaCCs). We present the first evidence that CaCCs reside in hippocampal neurons and are in close proximity of calcium channels and NMDA receptors to shorten action potential duration, dampen excitatory synaptic potentials, impede temporal summation, and raise the threshold for action potential generation by synaptic potential. Having recently identified TMEM16A and TMEM16B as CaCCs, we further show that TMEM16B but not TMEM16A is important for hippocampal CaCC, laying the groundwork for deciphering the dynamic CaCC modulation of neuronal signaling in neurons important for learning and memory. PMID:22500639

  17. Tat-HSP22 inhibits oxidative stress-induced hippocampal neuronal cell death by regulation of the mitochondrial pathway.

    Science.gov (United States)

    Jo, Hyo Sang; Kim, Dae Won; Shin, Min Jea; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Yeo, Hyeon Ji; Sohn, Eun Jeong; Son, Ora; Cho, Sung-Woo; Kim, Duk-Soo; Yu, Yeon Hee; Lee, Keun Wook; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2017-01-04

    Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.

  18. The active zone protein family ELKS supports Ca2+ influx at nerve terminals of inhibitory hippocampal neurons.

    Science.gov (United States)

    Liu, Changliang; Bickford, Lydia S; Held, Richard G; Nyitrai, Hajnalka; Südhof, Thomas C; Kaeser, Pascal S

    2014-09-10

    In a presynaptic nerve terminal, synaptic vesicle exocytosis is restricted to specialized sites called active zones. At these sites, neurotransmitter release is determined by the number of releasable vesicles and their probability of release. Proteins at the active zone set these parameters by controlling the presynaptic Ca(2+) signal, and through docking and priming of synaptic vesicles. Vertebrate ELKS proteins are enriched at presynaptic active zones, but their functions are not well understood. ELKS proteins are produced by two genes in vertebrates, and each gene contributes ∼50% to total brain ELKS. We generated knock-out mice for ELKS1 and found that its constitutive removal causes lethality. To bypass lethality, and to circumvent redundancy between ELKS1 and ELKS2 in synaptic transmission, we used a conditional genetic approach to remove both genes in cultured hippocampal neurons after synapses are established. Simultaneous removal of ELKS1 and ELKS2 resulted in a 50% decrease of neurotransmitter release at inhibitory synapses, paralleled by a reduction in release probability. Removal of ELKS did not affect synapse numbers or their electron microscopic appearance. Using Ca(2+) imaging, we found that loss of ELKS caused a 30% reduction in single action potential-triggered Ca(2+) influx in inhibitory nerve terminals, consistent with the deficits in synaptic transmission and release probability. Unlike deletion of the active zone proteins RIM, RIM-BP, or bruchpilot, ELKS removal did not lead to a measurable reduction in presynaptic Ca(2+) channel levels. Our results reveal that ELKS is required for normal Ca(2+) influx at nerve terminals of inhibitory hippocampal neurons. Copyright © 2014 the authors 0270-6474/14/3412289-15$15.00/0.

  19. Amiodarone reduces depolarization-evoked glutamate release from hippocampual synaptosomes.

    Science.gov (United States)

    Chang, Chia Yu; Hung, Chi Feng; Huang, Shu Kuei; Kuo, Jinn Rung; Wang, Su Jane

    2017-03-01

    Decreased brain glutamate level has emerged as a new therapeutic approach for epilepsy. This study investigated the effect and mechanism of amiodarone, an anti-arrhythmic drug with antiepileptic activity, on glutamate release in the rat hippocampus. In a synaptosomal preparation, amiodarone reduced 4-aminopyridine-evoked Ca2+-dependent glutamate release and cytosolic Ca2+ concentration elevation. Amiodarone did not affect the 4-aminopyridine-evoked depolarization of the synaptosomal membrane potential or the Na+ channel activator veratridine-evoked glutamate release, indicating that the amiodarone-mediated inhibition of glutamate release is not caused by a decrease in synaptosomal excitability. The inhibitory effect of amiodarone on 4-aminopyridine-evoked glutamate release was markedly decreased in synaptosomes pretreated with the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, the calmodulin antagonists W7 and calmidazolium, or the protein kinase A inhibitors H89 and KT5720. However, the intracellular Ca2+-release inhibitors dantrolene and CGP37157 had no effect on the amiodarone-mediated inhibition of glutamate release. Furthermore, amiodarone reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that amiodarone reduces Ca2+ influx through N- and P/Q-type Ca2+ channels, subsequently reducing the Ca2+-calmodulin/protein kinase A cascade to inhibit the evoked glutamate release from rat hippocampal nerve terminals. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. Functional heterogeneity at dopamine release sites.

    Science.gov (United States)

    Daniel, James A; Galbraith, Sally; Iacovitti, Lorraine; Abdipranoto, Andrea; Vissel, Bryce

    2009-11-18

    Although drugs used to treat several neurological diseases are presumed to target synapses that secrete dopamine (DA), relatively little is known about synaptic vesicle (SV) release mechanisms at single DA synapses. We found that the relative probability of release (Pr) varied between individual DA synapses. Furthermore, DA terminals generally exhibited lower Pr than glutamatergic hippocampal (Hpc) terminals, suggesting that DA release is less reliable than the release of glutamate. Our mathematical model of fluorescence loss shows that Pr is regulated by two independent and heterogeneous elements. First, the size of the recycling SV pool regulates Pr. Second, Pr is also independently regulated by additional factors, which are reflected in the time constant of FM 1-43 destaining, tau. We found that the observed difference in Pr between Hpc and DA neurons results because the recycling SV pool is smaller in DA neurons than in Hpc neurons. However, tau does not vary between these two neuron populations. We also identified a population of functional nonsynaptic boutons in DA axons, which are not associated with a postsynaptic element and which are not functionally different from boutons that formed conventional synapses. Our work provides a new approach to the study of SV exocytosis in DA neurons and shows that synaptic terminals of DA neurons are functionally heterogeneous and differ from excitatory terminals in terms of Pr.

  1. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    Science.gov (United States)

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD

  2. Release of galanin from isolated perfused porcine adrenal glands

    DEFF Research Database (Denmark)

    Holst, J J; Ehrhart-Bornstein, M; Messell, T

    1991-01-01

    We found a high concentration of galanin in extracts of porcine adrenal glands (114 pmol/g). By immunohistochemistry, galanin was localized to groups of medullary cells previously shown to produce norepinephrine. To study mechanisms for the release of galanin, we developed the following in vitro...... model: isolated perfused porcine adrenals with intact splanchnic nerve supply. When the nerves were electrically stimulated, epinephrine and norepinephrine secretion increased 276- and 291-fold, respectively, and galanin release increased up to 1,300-fold. Acetylcholine at 10(-6) M stimulated galanin...... in anesthetized pigs increased the concentration of galanin in the caval vein but not in arterial plasma. It is concluded that galanin, coreleased with catecholamines from the adrenal glands, may have endocrine functions but that galanin may also have local regulatory functions in the adrenals....

  3. Synthesis of selective agonists for the α7 nicotinic acetylcholine receptor with in situ click-chemistry on acetylcholine-binding protein templates.

    Science.gov (United States)

    Yamauchi, John G; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Akos; Fotsing, Joseph R; Ho, Kwok-Yiu; Talley, Todd T; Sharpless, K Barry; Fokin, Valery V; Taylor, Palmer

    2012-10-01

    The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels.

  4. Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice.

    Science.gov (United States)

    Kalmbach, Abigail; Waters, Jack

    2014-01-01

    Release of acetylcholine (ACh) in neocortex is important for learning, memory and attention tasks. The primary source of ACh in neocortex is axons ascending from the basal forebrain. Release of ACh from these axons evokes changes in the cortical local field potential (LFP), including a decline in low-frequency spectral power that is often referred to as desynchronization of the LFP and is thought to result from the activation of muscarinic ACh receptors. Using channelrhodopsin-2, we selectively stimulated the axons of only cholinergic basal forebrain neurons in primary somatosensory cortex of the urethane-anesthetized mouse while monitoring the LFP. Cholinergic stimulation caused desynchronization and two brief increases in higher-frequency power at stimulus onset and offset. Desynchronization (1-6 Hz) was localized, extending ≤ 1 mm from the edge of stimulation, and consisted of both nicotinic and muscarinic receptor-mediated components that were inhibited by mecamylamine and atropine, respectively. Hence we have identified a nicotinic receptor-mediated component to desynchronization. The increase in higher-frequency power (>10 Hz) at stimulus onset was also mediated by activation of nicotinic and muscarinic receptors. However, the increase in higher-frequency power (10-20 Hz) at stimulus offset was evoked by activation of muscarinic receptors and inhibited by activation of nicotinic receptors. We conclude that the activation of nicotinic and muscarinic ACh receptors in neocortex exerts several effects that are reflected in distinct frequency bands of the cortical LFP in urethane-anesthetized mice.

  5. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats.

    Science.gov (United States)

    Zhou, Jian; Liu, Zhao; Yu, Jia; Han, Xin; Fan, Songhua; Shao, Weihua; Chen, Jianjun; Qiao, Rui; Xie, Peng

    2015-09-12

    While stressful events are recognized as an important cause of major depressive disorder, some individuals exposed to life stressors maintain normal psychological functioning. The molecular mechanism(s) underlying this phenomenon remain unclear. Abnormal transmission and plasticity of hippocampal synapses have been implied to play a key role in the pathoetiology of major depressive disorder. A chronic mild stress protocol was applied to separate susceptible and unsusceptible rat subpopulations. Proteomic analysis using an isobaric tag for relative and absolute quantitation coupled with tandem mass spectrometry was performed to identify differential proteins in enriched hippocampal synaptic junction preparations. A total of 4318 proteins were quantified, and 89 membrane proteins were present in differential amounts. Of these, SynaptomeDB identified 81 (91%) having a synapse-specific localization. The unbiased profiles identified several candidate proteins within the synaptic junction that may be associated with stress vulnerability or insusceptibility. Subsequent functional categorization revealed that protein systems particularly involved in membrane trafficking at the synaptic active zone exhibited a positive strain as potential molecular adaptations in the unsusceptible rats. Moreover, through STRING and immunoblotting analysis, membrane-associated GTP-bound Rab3a and Munc18-1 appear to coregulate syntaxin-1/SNAP25/VAMP2 assembly at the hippocampal presynaptic active zone of unsusceptible rats, facilitating SNARE-mediated membrane fusion and neurotransmitter release, and may be part of a stress-protection mechanism in actively maintaining an emotional homeostasis. The present results support the concept that there is a range of potential protein adaptations in the hippocampal synaptic active zone of unsusceptible rats, revealing new investigative targets that may contribute to a better understanding of stress insusceptibility. © The Author 2015. Published by

  6. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  7. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  8. Quantifying the Behavioural Relevance of Hippocampal Neurogenesis

    Science.gov (United States)

    Lazic, Stanley E.; Fuss, Johannes; Gass, Peter

    2014-01-01

    Few studies that examine the neurogenesis–behaviour relationship formally establish covariation between neurogenesis and behaviour or rule out competing explanations. The behavioural relevance of neurogenesis might therefore be overestimated if other mechanisms account for some, or even all, of the experimental effects. A systematic review of the literature was conducted and the data reanalysed using causal mediation analysis, which can estimate the behavioural contribution of new hippocampal neurons separately from other mechanisms that might be operating. Results from eleven eligible individual studies were then combined in a meta-analysis to increase precision (representing data from 215 animals) and showed that neurogenesis made a negligible contribution to behaviour (standarised effect  = 0.15; 95% CI  = −0.04 to 0.34; p = 0.128); other mechanisms accounted for the majority of experimental effects (standardised effect  = 1.06; 95% CI  = 0.74 to 1.38; p = 1.7×10−11). PMID:25426717

  9. Hippocampal volume in early onset depression

    Directory of Open Access Journals (Sweden)

    MacMaster Frank P

    2004-01-01

    Full Text Available Abstract Background Abnormalities in limbic structures have been implicated in major depressive disorder (MDD. Although MDD is as common in adolescence as in adulthood, few studies have examined youth near illness onset in order to determine the possible influence of atypical development on the pathophysiology of this disorder. Methods Hippocampal volumes were measured in 17 MDD subjects (age = 16.67 ± 1.83 years [mean ± SD]; range = 13 – 18 years and 17 age- and sex-matched healthy controls (16.23 ± 1.61 years [mean ± SD]; 13 – 18 years using magnetic resonance imaging (MRI. Results An analysis of covariance revealed a significant difference between MDD and control subjects (F = 8.66, df = 1, 29, P = 0.006. This was more strongly localized to the left hippocampus (P = 0.001 than the right hippocampus (P = 0.047. Conclusions Our findings provide new evidence of abnormalities in the hippocampus in early onset depression. However, our results should be considered preliminary given the small sample size studied.

  10. Hippocampal CA1 Ripples as Inhibitory Transients.

    Directory of Open Access Journals (Sweden)

    Paola Malerba

    2016-04-01

    Full Text Available Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.

  11. Juvenile Hippocampal CA2 Region Expresses Aggrecan

    Directory of Open Access Journals (Sweden)

    Asako Noguchi

    2017-05-01

    Full Text Available Perineuronal nets (PNNs are distributed primarily around inhibitory interneurons in the hippocampus, such as parvalbumin-positive interneurons. PNNs are also present around excitatory neurons in some brain regions and prevent plasticity in these neurons. A recent study demonstrated that PNNs also exist around mouse hippocampal pyramidal cells, which are the principle type of excitatory neurons, in the CA2 subregion and modulate the excitability and plasticity of these neurons. However, the development of PNNs in the CA2 region during postnatal maturation was not fully investigated. This study found that a main component of PNNs, aggrecan, existed in the pyramidal cell layer of the putative CA2 subarea prior to the appearance of the CA2 region, which was defined by the CA2 marker protein regulator of G protein signaling 14 (RGS14. We also found that aggrecan immunoreactivity was more evident in the anterior sections of the CA2 area than the posterior sections, which suggests that the function of CA2 PNNs varies along the anterior-posterior axis.

  12. Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Palmfeldt, Johan; Christiansen, Sofie

    2012-01-01

    Susceptibility to stress plays a crucial role in the development of psychiatric disorders such as unipolar depression and post-traumatic stress disorder. In the present study the chronic mild stress rat model of depression was used to reveal stress-susceptible and stress-resilient rats. Large......-scale proteomics was used to map hippocampal protein alterations in different stress states. Membrane proteins were successfully captured by two-phase separation and peptide based proteomics. Using iTRAQ labeling coupled with mass spectrometry, more than 2000 proteins were quantified and 73 proteins were found...... to be differentially expressed. Stress susceptibility was associated with increased expression of a sodium-channel protein (SCN9A) currently investigated as a potential antidepressant target. Differential protein profiling also indicated stress susceptibility to be associated with deficits in synaptic vesicle release...

  13. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Siripong Palee

    2016-06-01

    Full Text Available Background/Aims: Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2 treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Methods: Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. Results: H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker and mecamylamine (a nicotinic acetylcholine receptor blocker significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. Conclusion: ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors.

  14. Oscillatory Brain States and Learning: Impact of Hippocampal Theta-Contingent Training

    National Research Council Canada - National Science Library

    Matthew A. Seager; Lynn D. Johnson; Elizabeth S. Chabot; Yukiko Asaka; Stephen D. Berry

    2002-01-01

    .... When studying rabbits in this paradigm, we observed a dramatic modification of learning rate by conducting training during episodes of either hippocampal theta or hippocampal non-theta activity...

  15. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms.

    Science.gov (United States)

    Piao, M-H; Liu, Y; Wang, Y-S; Qiu, J-P; Feng, C-S

    2013-10-01

    Volatile anesthetic isoflurane contributes to postoperative cognitive dysfunction and inhibition of long-term potentiation (LTP), a synaptic model of learning and memory, but the mechanisms are uncertain. Central neuronal α4β2 subtype nicotinic acetylcholine receptors (nAChRs) are involved in the induction of LTP in the hippocampus. Isoflurane inhibits α4β2 nAChRs at concentrations lower than those used for anesthesia. Therefore, we hypothesized that isoflurane-inhibited LTP induction of hippocampal CA1 neurons via α4β2 nAChRs subtype inhibition. Transverse hippocampal slices (400μm thick) were obtained from male rats (6-8 weeks old). Population spikes were evoked using extracellular electrodes by electrical stimulation of the Schaffer collateral-commissural pathway of rat hippocampal slices. LTP was induced using high frequency stimulation (HFS; 100Hz, 1s). Clinically relevant concentrations (0.125-0.5mM) of isoflurane with or without nicotine (nAChRs agonist), mecamylamine (nAChRs antagonist), 3-[2(S)-2-azetidinylmethoxy] pyridine (A85380) and epibatidine (α4β2 nAChRs agonist), dihydro β erythroidine (DHβE) (α4β2 nAChRs antagonist) were added to the perfusion solution 20min before HFS to test their effects on LTP by HFS respectively. A brief HFS induced stable LTP in rat hippocampal slices, but LTP was significantly inhibited in the presence of isoflurane at concentrations of 0.125-0.5mM. The inhibitive effect of isoflurane on LTP was not only reversible and could be prevented by nAChRs agonist nicotine and α4β2 nAChRs agonist A85380 and epibatidine, but also mimicked and potentiated by nAChRs antagonist mecamylamine and α4β2 nAChRs antagonist DHβE. Inhibition of α4β2 nAChRs subtype of hippocampus participates in isoflurane-mediated LTP inhibition. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  16. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  17. Hippocampal and amygdalar volumes in dissociative identity disorder.

    Science.gov (United States)

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J; Bremner, J Douglas

    2006-04-01

    Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects.

  18. Qualitative and Quantitative Hippocampal MRI Assessments in Intractable Epilepsy

    Directory of Open Access Journals (Sweden)

    Paramdeep Singh

    2013-01-01

    Full Text Available Aims. To acquire normative data of hippocampal volumes and T2 relaxation times, to evaluate and compare qualitative and quantitative assessments in evaluating hippocampi in patients with different durations of intractable epilepsy, and to propose an imaging protocol based on performance of these techniques. Methods. MRI analysis was done in 50 nonepileptic controls and 30 patients with intractable epilepsy on 1.5T scanner. Visual assessment and hippocampal volumetry were done on oblique coronal IR/T2W and T1W MP-RAGE images, respectively. T2 relaxation times were measured using 16-echo Carr-Purcell-Meiboom-Gill sequence. Volumetric data was normalized for variation in head size between individuals. Patients were divided into temporal ( and extratemporal ( groups based on clinical and EEG localization. Results. In controls, right hippocampal volume was slightly more than the left with no effect of age or gender. In TLE patients, hippocampal volumetry provided maximum concordance with EEG. Visual assessment of unilateral pathology concurred well with measured quantitative values but poorly in cases with bilateral pathologies. There were no significant differences of mean values between extratemporal group and controls group. Quantitative techniques detected mild abnormalities, undetected on visual assessment. Conclusions. Quantitative techniques are more sensitive to diagnose bilateral and mild unilateral hippocampal abnormalities.

  19. Reducing central serotonin in adulthood promotes hippocampal neurogenesis.

    Science.gov (United States)

    Song, Ning-Ning; Jia, Yun-Fang; Zhang, Lei; Zhang, Qiong; Huang, Ying; Liu, Xiao-Zhen; Hu, Ling; Lan, Wei; Chen, Ling; Lesch, Klaus-Peter; Chen, Xiaoyan; Xu, Lin; Ding, Yu-Qiang

    2016-02-03

    Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreER(T2) mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.

  20. Effortful retrieval reduces hippocampal activity and impairs incidental encoding.

    Science.gov (United States)

    Reas, Emilie T; Brewer, James B

    2013-05-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in encoding, this study examines the influence of retrieval effort on encoding performance and the interactive effects of encoding and retrieval on hippocampal and neocortical activity. Functional magnetic resonance imaging was conducted while subjects performed a word recognition task with incidental picture encoding. Both lower memory strength and increased search duration were associated with encoding failure and reduced hippocampal and default network activity. Activity in the anterior hippocampus tracked encoding, which was more strongly deactivated when incidental encoding was unsuccessful. These findings highlight potential contributions from background encoding processes to hippocampal activations during neuroimaging studies of episodic memory retrieval. Copyright © 2013 Wiley Periodicals, Inc.

  1. Remote semantic memory is impoverished in hippocampal amnesia.

    Science.gov (United States)

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Memory reconsolidation mediates the updating of hippocampal memory content

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  3. Hippocampal functional connectivity and episodic memory in early childhood

    Directory of Open Access Journals (Sweden)

    Tracy Riggins

    2016-06-01

    Full Text Available Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n = 40. Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4 regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability.

  4. Hippocampal functional connectivity and episodic memory in early childhood

    Science.gov (United States)

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L.; Redcay, Elizabeth

    2016-01-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4-and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. PMID:26900967

  5. High expression of muscarinic acetylcholine receptor 3 predicts poor prognosis in patients with pancreatic ductal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Zhang L

    2016-10-01

    Full Text Available Lingfu Zhang,1 Dianrong Xiu,1 Jun Zhan,2,3 Xiaokun He,3 Limei Guo,4,5 Jilian Wang,1 Ming Tao,1 Wei Fu,1 Hongquan Zhang2,3 1Department of General Surgery, Peking University Third Hospital, 2Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, 3Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, 4Department of Pathology, Peking University Health Science Center, 5Department of Pathology, Peking University Third Hospital, Beijing, People’s Republic of China Aims: Recent studies showed that muscarinic acetylcholine receptor 3 (M3, as a muscarinic acetylcholine receptor family member that plays an important role in normal physiological function, is engaged in cancer progression. However, the role of M3 in pancreatic ductal adenocarcinoma (PDAC is not known. The aim of this study is to investigate the expression and prognostic value of M3 in patients with PDAC.Materials and methods: The localization and expression of M3 in PDAC were examined by immunohistochemistry. VAChT was employed to detect parasympathetic nerve fibers in the corresponding M3 PDAC tissues. The correlation between M3 expression and patients’ survival was assessed by Kaplan–Meier analysis.Results: M3 was discovered predominantly localized in the cell cytoplasm and expressed in all specimens of PDAC patients. Significant correlation was noted between increased M3 intensity and high grade of PDAC (P<0.01, more lymph node metastasis (P<0.01 as well as shorter patient overall survival (P<0.01. Morphologically, cells with high M3 expression were more frequently located at the invasive tumor front/tumor budding cells, metastatic lymph nodes and parasympathetic nerve fibers.Conclusion: High expression of M3 is a prognostic marker for PDAC. Keywords: PDAC, muscarinic acetylcholine receptor 3, M3, tumor budding, parasympathetic nerve fiber, prognosis

  6. Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes.

    Science.gov (United States)

    Sen, S; Gülce, A; Gülce, H

    2004-05-15

    A simple method of enzyme immobilization was investigated, which is useful for development of enzyme electrodes based on polyvinylferrocenium perchlorate coated Pt electrode surface. Enzymes were incorporated into the polymer matrix via ion exchange process by immersing polyvinylferrocenium perchlorate coated Pt electrode in enzyme solution for several times. Choline and acetylcholine enzyme electrodes were developed by co-immobilizing choline oxidase and acetylcholinesterase in polyvinylferrocenium perchlorate matrix coated on a Pt electrode surface. The amperometric responses of the enzyme electrodes were measured at +0.70 V versus SCE, which was due to the electrooxidation of enzymatically produced H2O2. The effects of the thickness of the polymeric film, pH, temperature, substrate and enzyme concentrations on the response of the enzyme electrode were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. The steady-state current of these enzyme electrodes were reproducible within +/-5.0% of the relative error. Response time was found to be 30-50s and upper limit of the linear working portions was found to be 1.2mM choline and acetylcholine concentrations in which produced detectable currents were 1.0 x 10(-6)M substrate concentrations. The apparent Michaelis-Menten constant and the activation energy of this immobilized enzyme system were found to be 1.74 mM acetylcholine and 14.9 kJ mol(-1), respectively. The effects of interferents and stability of the enzyme electrodes were also investigated.

  7. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring.

    Science.gov (United States)

    Maturana, Carola J; Aguirre, Adam; Sáez, Juan C

    2017-05-01

    Exposure to high levels of glucocorticoids (GCs) during early life induces long-lasting neuroinflammation. GCs induce rapid degranulation of mast cells, which release proinflammatory molecules promoting activation of microglia and astrocytes. The possible involvement of oligodendrocytes, however, remains poorly understood. It was studied whether high GC levels during gestation activates the inflammasome in hippocampal oligodendrocytes of mouse offspring. Oligodendrocytes of control pups showed expression of inflammasome components (NLRP3, ACS, and caspase-1) and their levels were increased by prenatal administration of dexamethasone (DEX), a synthetic GC. These cells also showed high levels of IL-1β and TNF-α, revealing activation of the inflammasome. Moreover, they showed increased levels of the P2X 7 receptor and pannexin1, which are associated to inflammasome activation. However, levels of connexins either were not affected (Cx29) or reduced (Cx32 and Cx47). Nonetheless, the functional states of pannexin1 and connexin hemichannels were elevated and directly associated to functional P2X 7 receptors. As observed in DEX-treated brain slices, hemichannel activity first increased in hippocampal mast cells and later in microglia and macroglia. DEX-induced oligodendrocyte hemichannel activity was mimicked by urocortin-II, which is a corticotropin-releasing hormone receptor (CRHR) agonist. Response to DEX and urocortin-II was inhibited by antalarmin (a CRHR blocker) or by mast cells or microglia inhibitors. The increase in hemichannel activity persisted for several weeks after birth and cross-fostering with a control mother did not reverse this condition. It is proposed that activation of the oligodendrocyte inflammasome might be relevant in demyelinating diseases associated with early life exposure to high GC levels. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 625-642, 2017. © 2016 Wiley Periodicals, Inc.

  8. The role of presynaptic dynamics in processing of natural spike trains in hippocampal synapses.

    Science.gov (United States)

    Kandaswamy, Umasankar; Deng, Pan-Yue; Stevens, Charles F; Klyachko, Vitaly A

    2010-11-24

    Short-term plasticity (STP) represents a key neuronal mechanism of information processing. In excitatory hippocampal synapses, STP serves as a high-pass filter optimized for the transmission of information-carrying place-field discharges. This STP filter enables synapses to perform a highly nonlinear, switch-like operation permitting the passage and amplification of signals with place-field-like characteristics. Because of the complexity of interactions among STP processes, the synaptic mechanisms underlying this filtering paradigm remain poorly understood. Here, we describe a simple mechanistic model of STP, derived in large part from basic principles of synaptic function, that reproduces this highly nonlinear synaptic behavior. The model, formulated in terms of release probability, considers the interactions between calcium-dependent forms of presynaptic enhancement and their impact on vesicle pool dynamics, which is described using a two-pool model of vesicle recruitment. By considering the interdependency between release probability and various forms of STP, the model attempts to provide a realistic coupling among major presynaptic processes. The model parameters are first determined using synaptic dynamics during constant-frequency stimulation. The model then accurately reproduces all major characteristics of the synaptic filtering paradigm during natural stimulus patterns without free parameters. An elimination approach is then used to identify the contribution of each STP component to synaptic dynamics. Based on this analysis, the model predicts strong calcium dependence of synaptic filtering properties, which is verified experimentally in rat hippocampal slices. This simple model may thus offer a useful framework to further investigate the role of STP in neural computations.

  9. [[sup 3]H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Latli, B.; Casida, J.E. (California Univ., Berkeley, CA (United States). Dept. of Entomological Sciences)

    1992-08-01

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [[sup 3]H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB[sup 2]H[sub 4] (in model studies) or NaB[sup 3]H[sub 4] in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [[sup 2]H[sub 2

  10. Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors.

    Science.gov (United States)

    Charvet, Claude L; Robertson, Alan P; Cabaret, Jacques; Martin, Richard J; Neveu, Cédric

    2012-06-01

    Acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels involved in the neurotransmission of both vertebrates and invertebrates. A number of anthelmintic compounds like levamisole and pyrantel target the AChRs of nematodes producing spastic paralysis of the worms. The muscle AChRs of nematode parasites fall into three pharmacological classes that are preferentially activated by the cholinergic agonists levamisole (L-type), nicotine (N-type) and bephenium (B-type), respectively. Despite a number of studies of the B-type AChR in parasitic species, this receptor remains to be characterized at the molecular level. Recently, we have reconstituted and functionally characterized two distinct L-AChR subtypes of the gastro-intestinal parasitic nematode Haemonchus contortus in the Xenopus laevis oocyte expression system by providing the cRNAs encoding the receptor subunits and three ancillary proteins (Boulin et al. in Br J Pharmacol 164(5):1421-1432, 2011). In the present study, the effect of the bephenium drug on Hco-L-AChR1 and Hco-L-AChR2 subtypes was examined using the two-microelectrode voltage-clamp technique. We demonstrate that bephenium selectively activates the Hco-L-AChR1 subtype made of Hco-UNC-29.1, Hco-UNC-38, Hco-UNC-63, Hco-ACR-8 subunits that is more sensitive to levamisole than acetylcholine. Removing the Hco-ACR-8 subunit produced the Hco-L-AChR2 subtype that is more sensitive to pyrantel than acetylcholine and partially activated by levamisole, but which was bephenium-insensitive indicating that the bephenium-binding site involves Hco-ACR-8. Attempts were made to modify the subunit stoichiometry of the Hco-L-AChR1 subtype by injecting five fold more cRNA of individual subunits. Increased Hco-unc-29.1 cRNA produced no functional receptor. Increasing Hco-unc-63, Hco-unc-38 or Hco-acr-8 cRNAs did not affect the pharmacological characteristics of Hco-L-AChR1 but reduced the currents elicited by acetylcholine and the other agonists. Here, we

  11. Molecular mechanisms of acetylcholine receptor-lipid interactions: from model membranes to human biology.

    Science.gov (United States)

    Baenziger, John E; daCosta, Corrie J B

    2013-03-01

    Lipids are potent modulators of the Torpedo nicotinic acetylcholine receptor. Lipids influence nicotinic receptor function by allosteric mechanisms, stabilizing varying proportions of pre-existing resting, open, desensitized, and uncoupled conformations. Recent structures reveal that lipids could alter function by modulating transmembrane α-helix/α-helix packing, which in turn could alter the conformation of the allosteric interface that links the agonist-binding and transmembrane pore domains-this interface is essential in the coupling of agonist binding to channel gating. We discuss potential mechanisms by which lipids stabilize different conformational states in the context of the hypothesis that lipid-nicotinic receptor interactions modulate receptor function at biological synapses.

  12. INFLUENCE OF ANTIBIOTICS ON THE MECHANICAL RESPONSES OF GUINEA-PIG ILEUM TO ACETYLCHOLINE AND HISTAMINE

    Directory of Open Access Journals (Sweden)

    Petroianu Andy

    1998-01-01

    Full Text Available The side effects of antibiotics have been extensively described during the last decades, however, their role on digestive motility must be better investigated. Following a line of research, the influence of penicillin, chloranfenicol tetracycline and gentamicine on longitudinal smooth muscle responses to acetylcholine and histamine were studied on guinea-pig ileum. There were no differences between the responses before and after the addition of each antibiotic. Further investigations must be performed in order to find a possible influence of antibiotics on digestive motility.

  13. Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain

    DEFF Research Database (Denmark)

    Wu, Jie; Liu, Qiang; Tang, Pei

    2016-01-01

    The α7 nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the brain, where it maintains various neuronal functions including (but not limited to) learning and memory. In addition, the protein expression levels of α7 nAChRs are altered in various brain disorders. The classic rule...... governing α7 nAChR assembly in the mammalian brain was that it was assembled from five α7 subunits to form a homomeric receptor pentamer. However, emerging evidence demonstrates the presence of heteromeric α7 nAChRs in heterologously expressed systems and naturally in brain neurons, where α7 subunits are co...

  14. Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors

    Science.gov (United States)

    Charvet, Claude L.; Robertson, Alan P.; Cabaret, Jacques; Martin, Richard J.; Neveu, Cédric

    2012-01-01

    Acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels involved in the neurotransmission of both vertebrates and invertebrates. A number of anthelmintic compounds like levamisole and pyrantel target the AChRs of nematodes producing spastic paralysis of the worms. The muscle AChRs of nematode parasites fall into three pharmacological classes that are preferentially activated by the cholinergic agonists levamisole (L-type), nicotine (N-type) and bephenium (B-type), respectively. Despite a number of studies of the B-type AChR in parasitic species, this receptor remains to be characterized at the molecular level. Recently, we have reconstituted and functionally characterized two distinct L-AChR subtypes of the gastro-intestinal parasitic nematode Haemonchus contortus in the Xenopus laevis oocyte expression system by providing the cRNAs encoding the receptor subunits and three ancillary proteins (Boulin et al. in Br J Pharmacol 164(5):1421–1432, 2011). In the present study, the effect of the bephenium drug on Hco-L-AChR1 and Hco-L-AChR2 subtypes was examined using the two microelectrode voltage-clamp technique. We demonstrate that bephenium selectively activates the Hco-L-AChR1 subtype made of Hco-UNC-29.1, Hco-UNC-38, Hco-UNC-63, Hco-ACR-8 subunits that is more sensitive to levamisole than acetylcholine. Removing the Hco-ACR-8 subunit produced the Hco-L-AChR2 subtype that is more sensitive to pyrantel than acetylcholine and partially activated by levamisole, but which was bephenium-insensitive indicating that the bephenium-binding site involves Hco-ACR-8. Attempts were made to modify the subunit stoichiometry of the Hco-L-AChR1 subtype by injecting five fold more cRNA of individual subunits. Increased Hco-unc-29.1 cRNA produced no functional receptor. Increasing Hco-unc-63, Hco-unc-38 or Hco-acr-8 cRNAs did not affect the pharmacological characteristics of Hco-L-AChR1 but reduced the currents elicited by acetylcholine and the other agonists. Here

  15. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system.

    Science.gov (United States)

    Weinstein, Leon Islas; Revuelta, Alberto; Pando, Rogelio Hernandez

    2015-09-01

    Recent studies suggest that catecholamines (CAs) and acetylcholine (ACh) play essential roles in the crosstalk between microbes and the immune system. Host cholinergic afferent fibers sense pathogen-associated molecular patterns and trigger efferent cholinergic and catecholaminergic pathways that alter immune cell proliferation, differentiation, and cytokine production. On the other hand, microbes have the ability to produce and degrade ACh and also regulate autogenous functions in response to CAs. Understanding the role played by these neurotransmitters in host-microbe interactions may provide valuable information for the development of novel therapies. © 2015 New York Academy of Sciences.

  16. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory

    OpenAIRE

    Pearson-Leary, Jiah; McNay, Ewan C.

    2016-01-01

    The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be invo...

  17. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally...... late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume....

  18. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Ning-Ning Song

    2017-06-01

    Full Text Available The central serotonin (5-HT system is the main target of selective serotonin reuptake inhibitors (SSRIs, the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1 mice with altered central 5-HT levels from embryonic stages, (2 mice with deletion of 5-HT receptors from embryonic stages, and (3 mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.

  19. The interesting interplay between interneurons and adult hippocampal neurogenesis

    Science.gov (United States)

    Masiulis, Irene; Yun, Sanghee; Eisch, Amelia J.

    2013-01-01

    Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis. PMID:21956642

  20. Role of adult neurogenesis in hippocampal-cortical memory consolidation

    Science.gov (United States)

    2014-01-01

    Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281

  1. Reversal of theta rhythm flow through intact hippocampal circuits.

    Science.gov (United States)

    Jackson, Jesse; Amilhon, Bénédicte; Goutagny, Romain; Bott, Jean-Bastien; Manseau, Frédéric; Kortleven, Christian; Bressler, Steven L; Williams, Sylvain

    2014-10-01

    Activity flow through the hippocampus is thought to arise exclusively from unidirectional excitatory synaptic signaling from CA3 to CA1 to the subiculum. Theta rhythms are important for hippocampal synchronization during episodic memory processing; thus, it is assumed that theta rhythms follow these excitatory feedforward circuits. To the contrary, we found that theta rhythms generated in the rat subiculum flowed backward to actively modulate spike timing and local network rhythms in CA1 and CA3. This reversed signaling involved GABAergic mechanisms. However, when hippocampal circuits were physically limited to a lamellar slab, CA3 outputs synchronized CA1 and the subiculum using excitatory mechanisms, as predicted by classic hippocampal models. Finally, analysis of in vivo recordings revealed that this reversed theta flow was most prominent during REM sleep. These data demonstrate that communication between CA3, CA1 and the subiculum is not exclusively unidirectional or excitatory and that reversed inhibitory theta signaling also contributes to intrahippocampal synchrony.

  2. News/Press Releases

    Data.gov (United States)

    Office of Personnel Management — A press release, news release, media release, press statement is written communication directed at members of the news media for the purpose of announcing programs...

  3. Cholinergic modulation of the hippocampal region and memory function.

    Science.gov (United States)

    Haam, Juhee; Yakel, Jerrel L

    2017-08-01

    Acetylcholine (ACh) plays an important role in memory function and has been implicated in aging-related dementia, in which the impairment of hippocampus-dependent learning strongly manifests. Cholinergic neurons densely innervate the hippocampus, mediating the formation of episodic as well as semantic memory. Here, we will review recent findings on acetylcholine's modulation of memory function, with a particular focus on hippocampus-dependent learning, and the circuits involved. In addition, we will discuss the complexity of ACh actions in memory function to better understand the physiological role of ACh in memory. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  4. Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation.

    Science.gov (United States)

    Keinath, Alex T; Julian, Joshua B; Epstein, Russell A; Muzzio, Isabel A

    2017-02-06

    When a navigator's internal sense of direction is disrupted, she must rely on external cues to regain her bearings, a process termed spatial reorientation. Extensive research has demonstrated that the geometric shape of the environment exerts powerful control over reorientation behavior, but the neural and cognitive mechanisms underlying this phenomenon are not well understood. Whereas some theories claim that geometry controls behavior through an allocentric mechanism potentially tied to the hippocampus, others postulate that disoriented navigators reach their goals by using an egocentric view-matching strategy. To resolve this debate, we characterized hippocampal representations during reorientation. We first recorded from CA1 cells as disoriented mice foraged in chambers of various shapes. We found that the alignment of the recovered hippocampal map was determined by the geometry of the chamber, but not by nongeometric cues, even when these cues could be used to disambiguate geometric ambiguities. We then recorded hippocampal activity as disoriented mice performed a classical goal-directed spatial memory task in a rectangular chamber. Again, we found that the recovered hippocampal map aligned solely to the chamber geometry. Critically, we also found a strong correspondence between the hippocampal map alignment and the animal's behavior, making it possible to predict the search location of the animal from neural responses on a trial-by-trial basis. Together, these results demonstrate that spatial reorientation involves the alignment of the hippocampal map to local geometry. We hypothesize that geometry may be an especially salient cue for reorientation because it is an inherently stable aspect of the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The effects of vestibular lesions on hippocampal function in rats.

    Science.gov (United States)

    Smith, Paul F; Horii, Arata; Russell, Noah; Bilkey, David K; Zheng, Yiwen; Liu, Ping; Kerr, D Steve; Darlington, Cynthia L

    2005-04-01

    Interest in interaction between the vestibular system and the hippocampus was stimulated by evidence that peripheral vestibular lesions could impair performance in learning and memory tasks requiring spatial information processing. By the 1990s, electrophysiological data were emerging that the brainstem vestibular nucleus complex (VNC) and the hippocampus were connected polysynaptically and that hippocampal place cells could respond to vestibular stimulation. The aim of this review is to summarise and critically evaluate research published in the last 5 years that has seen major progress in understanding the effects of vestibular damage on the hippocampus. In addition to new behavioural studies demonstrating that animals with vestibular lesions exhibit impairments in spatial memory tasks, electrophysiological studies have confirmed long-latency, polysynaptic pathways between the VNC and the hippocampus. Peripheral vestibular lesions have been shown to cause long-term changes in place cell function, hippocampal EEG activity and even CA1 field potentials in brain slices maintained in vitro. During the same period, neurochemical investigations have shown that some hippocampal subregions exhibit long-term changes in the expression of neuronal nitric oxide synthase, arginase I and II, and the NR1 and NR2A N-methyl-D-aspartate (NMDA) receptor subunits following peripheral vestibular damage. Despite the progress, a number of important issues remain to be resolved, such as the possible contribution of auditory damage associated with vestibular lesions, to the hippocampal effects observed. Furthermore, although these studies demonstrate that damage to the vestibular system does have a long-term impact on the electrophysiological and neurochemical function of the hippocampus, they do not indicate precisely how vestibular information might be used in hippocampal functions such as developing spatial representations of the environment. Understanding this will require detailed

  7. Roles of hippocampal subfields in verbal and visual episodic memory.

    Science.gov (United States)

    Zammit, Andrea R; Ezzati, Ali; Zimmerman, Molly E; Lipton, Richard B; Lipton, Michael L; Katz, Mindy J

    2017-01-15

    Selective hippocampal (HC) subfield atrophy has been reported in older adults with mild cognitive impairment and Alzheimer's disease. The goal of this study was to investigate the associations between the volume of hippocampal subfields and visual and verbal episodic memory in cognitively normal older adults. This study was conducted on a subset of 133 participants from the Einstein Aging Study (EAS), a community-based study of non-demented older adults systematically recruited from the Bronx, N.Y. All participants completed comprehensive EAS neuropsychological assessment. Visual episodic memory was assessed using the Complex Figure Delayed Recall subtest from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Verbal episodic memory was assessed using Delayed Recall from the Free and Cued Selective Reminding Test (FCSRT). All participants underwent 3T MRI brain scanning with subsequent automatic measurement of the hemispheric hippocampal subfield volumes (CA1, CA2-CA3, CA4-dente gyrus, presubiculum, and subiculum). We used linear regressions to model the association between hippocampal subfield volumes and visual and verbal episodic memory tests while adjusting for age, sex, education, and total intracranial volume. Participants had a mean age of 78.9 (SD=5.1) and 60.2% were female. Total hippocampal volume was associated with Complex Figure Delayed Recall (β=0.31, p=0.001) and FCSRT Delayed Recall (β=0.27, p=0.007); subiculum volume was associated with Complex Figure Delayed Recall (β=0.27, p=0.002) and FCSRT Delayed Recall (β=0.24, p=0.010); CA1 was associated with Complex Figure Delayed Recall (β=0.26, pmemory. Our results suggest that hippocampal subfields have sensitive roles in the process of visual and verbal episodic memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting

    Science.gov (United States)

    Yau, Suk-yu; Li, Ang; So, Kwok-Fai

    2015-01-01

    Adult hippocampal neurogenesis is a process involving the continuous generation of newborn neurons in the hippocampus of adult animals. Mounting evidence has suggested that hippocampal neurogenesis contributes to some forms of hippocampus-dependent learning and memory; however, the detailed mechanism concerning how this small number of newborn neurons could affect learning and memory remains unclear. In this review, we discuss the relationship between adult-born neurons and learning and memory, with a highlight on recently discovered potential roles of neurogenesis in pattern separation and forgetting. PMID:26380120

  9. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder

    DEFF Research Database (Denmark)

    Ahdidan, Jamila; Foldager, Leslie; Rosenberg, Raben

    2013-01-01

    Objective: The main aim of the present study was to replicate a previous finding in major depressive disorder (MDD) of association between reduced hippocampal volume and the long variant of the di- and triallelic serotonin transporter polymorphism in SLC6A4 on chromosome 17q11.2. Secondarily, we...... that we aimed to replicate, and no significant associations with the serotonin transporter polymorphism were found. Conclusions: The present quantitative and morphometric MRI study was not able to replicate the previous finding of association between reduced hippocampal volume in depressed patients...... and the serotonin transporter polymorphism....

  10. Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor

    NARCIS (Netherlands)

    Kasheverov, I.E.; Zhmak, M.N.; Fish, A.; Rucktooa, P.; Khruschov, A.Y.; Osipov, A.V.; Ziganshin, R.H.; D'Hoedt, D.; Bertrand, D.; Sixma, T.K.; Smit, A.B.; Tsetlin, V.I.

    2009-01-01

    α-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. α-Conotoxins blocking muscle-type or α7 nAChRs compete with α-bungarotoxin. However, α-conotoxin ImII, a close homolog of the α7

  11. Crystal Structures of the M1 and M4 Muscarinic Acetylcholine Receptors

    Science.gov (United States)

    Thal, David M.; Sun, Bingfa; Feng, Dan; Nawaratne, Vindhya; Leach, Katie; Felder, Christian C.; Bures, Mark G.; Evans, David A.; Weis, William I.; Bachhawat, Priti; Kobilka, Tong Sun; Sexton, Patrick M.; Kobilka, Brian K.; Christopoulos, Arthur

    2016-01-01

    Summary Muscarinic M1–M5 acetylcholine receptors are G protein-coupled receptors (GPCRs) that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here, we report the first crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures to each other, as well as the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains. PMID:26958838

  12. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Obregon, A.; Lansman, J.B.

    1995-12-31

    Single-channel activity was recorded from cell-attached patches on skeletal muscle cells isolated from wild-type mice and from mice carrying the dy or mdx mutations. Spontaneous openings of the nicotinic acetylcholine receptor channel (nAChR) were detected in virtually all recordings from either 4v/dy or dyl + myotubes. but only infrequently from wild-type or mdx myotubes. Spontaneous openings were also present in most recordings from undifferentiated myoblasts from all of the mouse strains studied. The biophysical properties of the spontaneous activity were similar to those of the embryonic form of the nAChR in the presence of acetylcholine (ACh). Examination of the single-channel currents evoked by low concentrations of ACh showed a reduced sensitivity to the agonist in the dystrophic dy and mdx myotubes. but not in wild- type myotubes. The results suggest that alterations in nAChR function are associated with the pathogenesis of muscular dystrophy in the dy mouse.

  13. Regulation of neuronal excitability by release of proteins from glial cells

    Science.gov (United States)

    Igelhorst, Birte A.; Niederkinkhaus, Vanessa; Karus, Claudia; Lange, Maren D.; Dietzel, Irmgard D.

    2015-01-01

    Effects of glial cells on electrical isolation and shaping of synaptic transmission between neurons have been extensively studied. Here we present evidence that the release of proteins from astrocytes as well as microglia may regulate voltage-activated Na+ currents in neurons, thereby increasing excitability and speed of transmission in neurons kept at distance from each other by specialized glial cells. As a first example, we show that basic fibroblast growth factor and neurotrophin-3, which are released from astrocytes by exposure to thyroid hormone, influence each other to enhance Na+ current density in cultured hippocampal neurons. As a second example, we show that the presence of microglia in hippocampal cultures can upregulate Na+ current density. The effect can be boosted by lipopolysaccharides, bacterial membrane-derived stimulators of microglial activation. Comparable effects are induced by the exposure of neuron-enriched hippocampal cultures to tumour necrosis factor-α, which is released from stimulated microglia. Taken together, our findings suggest that release of proteins from various types of glial cells can alter neuronal excitability over a time course of several days. This explains changes in neuronal excitability occurring in states of thyroid hormone imbalance and possibly also in seizures triggered by infectious diseases. PMID:26009773

  14. Chronic fluoxetine administration enhances synaptic plasticity and increases functional dynamics in hippocampal CA3-CA1 synapses.

    Science.gov (United States)

    Popova, Dina; Castrén, Eero; Taira, Tomi

    2017-11-01

    Recent studies demonstrate that chronic administration of the widely used antidepressant fluoxetine (FLX) promotes neurogenesis, synaptogenesis and synaptic plasticity in the adult hippocampus, cortex and amygdala. However, the mechanisms underlying these effects and how are they related to the clinical antidepressant efficacy are still poorly understood. We show here that chronic FLX administration decreases hippocampus-associated neophobia in naïve mice. In parallel, electrophysiological recordings in hippocampal CA3-CA1 circuitry revealed that the FLX treatment resulted in increased short- and long-term plasticity likely attributed to changes in presynaptic function. These changes were accompanied by enhancement in the expression of proteins related to vesicular trafficking and release, namely synaptophysin, synaptotagmin 1, MUNC 18 and syntaxin 1. Thus, chronic FLX administration is associated with enhanced synaptic dynamics atypical of mature CA1 synapses, elevated hippocampal plasticity, improved hippocampus-dependent behavior as well as altered expression of synaptic proteins regulating neurotransmitter trafficking and release. The results support the idea that antidepressants can promote neuronal plasticity and show that they can increase the functional dynamic range and information processing in synaptic circuitries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  16. The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model.

    Science.gov (United States)

    Lee, Hyun-Yong; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Won-Yong; Lee, Seung-Bae; Choi, Yung-Hyun; Son, Chang-Gue

    2017-08-10

    Chronic stress contributes to the development of brain disorders, such as neurodegenerative and psychiatric diseases. Oxidative damage is well known as a causative factor for pathogenic process in brain tissues. The aim of this study is to evaluate the neuroprotective effect of a 30% ethanol extract of Aquilariae Lignum (ALE) in repeated stress-induced hippocampal oxidative injury. Fifty BALB/c male mice (12 weeks old) were randomly divided into five groups (n = 10). For 11 consecutive days, each group was orally administered with distilled water, ALE (20 or 80 mg/kg) or N-acetylcysteine (NAC; 100 mg/kg), and then all mice (except unstressed group) were subjected to restraint stress for 6 h. On the final day, brain tissues and sera were isolated, and stress hormones and hippocampal oxidative alterations were examined. We also treated lipopolysaccharide (LPS, 1 μg/mL)-stimulated BV2 microglial cells with ALE (1 and 5 μg/mL) or NAC (10 μM) to investigate the pharmacological mechanism. Restraint stress considerably increased the serum levels of corticosterone and adrenaline and the hippocampal levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). ALE administration significantly attenuated the above abnormalities. ALE also significantly normalized the stress-induced activation of astrocytes and microglial cells in the hippocampus as well as the elevation of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). The in vitro assay outcome supplemented ALE could dramatically block NF-κB activation in microglia. The anti-oxidative stress effects of ALE were supported by the results of antioxidant components, 4-hydroxynonenal (4-HNE), NADPH oxidase 2 (NOX2), inducible nitric oxide synthase (iNOS) and NFE2L2 (Nrf2) in the hippocampal tissues. We firstly demonstrated the neuroprotective potentials of A. Lignum against hippocampal oxidative injury in repeated restraint stress

  17. Photoperiod is associated with hippocampal volume in a large community sample.

    Science.gov (United States)

    Miller, Megan A; Leckie, Regina L; Donofry, Shannon D; Gianaros, Peter J; Erickson, Kirk I; Manuck, Stephen B; Roecklein, Kathryn A

    2015-04-01

    Although animal research has demonstrated seasonal changes in hippocampal volume, reflecting seasonal neuroplasticity, seasonal differences in human hippocampal volume have yet to be documented. Hippocampal volume has also been linked to depressed mood, a seasonally varying phenotype. Therefore, we hypothesized that seasonal differences in day-length (i.e., photoperiod) would predict differences in hippocampal volume, and that this association would be linked to low mood. Healthy participants aged 30-54 (M=43; SD=7.32) from the University of Pittsburgh Adult Health and Behavior II project (n=404; 53% female) were scanned in a 3T MRI scanner. Hippocampal volumes were determined using an automated segmentation algorithm using FreeSurfer. A mediation model tested whether hippocampal volume mediated the relationship between photoperiod and mood. Secondary analyses included seasonally fluctuating variables (i.e., sleep and physical activity) which have been shown to influence hippocampal volume. Shorter photoperiods were significantly associated with higher BDI scores (R(2)=0.01, β=-0.12, P=0.02) and smaller hippocampal volumes (R(2)=0.40, β=0.08, P=0.04). However, due to the lack of an association between hippocampal volume and Beck Depression Inventory scores in the current sample, the mediation hypothesis was not supported. This study is the first to demonstrate an association between season and hippocampal volume. These data offer preliminary evidence that human hippocampal plasticity could be associated with photoperiod and indicates a need for longitudinal studies. © 2014 Wiley Periodicals, Inc.

  18. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    DEFF Research Database (Denmark)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices...... prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U-(13)C]glucose or [1,2-(13)C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent...... to incubation, slices were extracted and extracts analyzed for (13)C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation...

  19. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Augustinack, Jean C.; Nguyen, Khoa

    2015-01-01

    an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available......Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion...... level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise...

  20. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    2010-11-01

    Full Text Available The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the entire pyramidal neuron and occasionally

  1. Input from the medial septum regulates adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Van der Borght, Karin; Mulder, Jan; Keijser, Jan N; Eggen, Bart J L; Luiten, Paul G.M.; Van der Zee, Eddy A; Keijser, Johannes

    2005-01-01

    Neural progenitors in the subgranular zone of the hippocampal formation form a continuously proliferating cell population, generating new granule neurons throughout adult life. Between 10 days and 1 month after their formation, many of the newly generated cells die. The present study investigated

  2. Preservation of hippocampal neuron numbers in aged rhesus monkeys

    NARCIS (Netherlands)

    Keuker, J.I.H.; Luiten, P.G.M.; Fuchs, E.

    2003-01-01

    To investigate whether or not aging of nonhuman primates is accompanied by a region-specific neuron loss in the hippocampal formation, we used the optical fractionator technique to obtain stereological estimates of unilateral neuron numbers of the hippocampi of eight young (0-4 years) and five aged

  3. Hippocampal declarative memory supports gesture production: Evidence from amnesia.

    Science.gov (United States)

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C

    2016-12-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action - supported by motor areas of the brain - is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  5. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    Science.gov (United States)

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  6. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  7. The effect of estrogen synthesis inhibition on hippocampal memory.

    Science.gov (United States)

    Bayer, Janine; Rune, Gabriele; Schultz, Heidrun; Tobia, Michael J; Mebes, Imke; Katzler, Olaf; Sommer, Tobias

    2015-06-01

    17-Beta-estradiol (E2) facilitates long term-potentiation (LTP) and increases spine synapse density in hippocampal neurons of ovariectomized rodents. Consistent with these beneficial effects on the cellular level, E2 improves hippocampus-dependent memory. A prominent approach to study E2 effects in rodents is the inhibition of its synthesis by letrozole, which reduces LTPs and spine synapse density. In the current longitudinal functional magnetic resonance imaging (fMRI) study, we translated this approach to humans and compared the impact of E2 synthesis inhibition on memory performance and hippocampal activity in post-menopausal women taking letrozole (n = 21) to controls (n = 24). In particular, we employed various behavioral memory paradigms that allow the disentanglement of hippocampus-dependent and -independent memory. Consistent with the literature on rodents, E2 synthesis inhibition specifically impaired hippocampus-dependent memory, however, this did not apply to the same degree to all of the employed paradigms. On the neuronal level, E2 depletion tended to decrease hippocampal activity during encoding, whereas it increased activity in the anterior cingulate and the dorsolateral prefrontal cortex. We thus infer that the inhibition of E2 synthesis specifically impairs hippocampal functioning in humans, whereas the increased prefrontal activity presumably reflects a compensatory mechanism, which is already known from studies on cognitive aging and Alzheimer's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    Science.gov (United States)

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  9. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    Science.gov (United States)

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  10. HIPPOCAMPAL SCLEROSIS IN EPILEPSY AND CHILDHOOD FEBRILE SEIZURES

    NARCIS (Netherlands)

    KUKS, JBM; COOK, MJ; FISH, DR; STEVENS, JM; SHORVON, SD

    1993-01-01

    The connection between hippocampal sclerosis and childhood febrile seizures (CFS) is a contentious issue in the study of epilepsy. We investigated 107 patients with drug-resistant epilepsy by high-resolution volumetric magnetic resonance imaging (MRI). 20 had a history of CFS, 45 had focal (26) or

  11. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    Science.gov (United States)

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Inhibition of hippocampal synaptic transmission by impairment of Ral function

    DEFF Research Database (Denmark)

    Owe-Larsson, Björn; Chaves-Olarte, Esteban; Chauhan, Ashok

    2005-01-01

    Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ra...

  13. Depression may be associated with hippocampal volume changes ...

    African Journals Online (AJOL)

    Adele

    Depression may be associated with hippocampal volume changes and HPA axis dysfunction: Is treatment to remission the answer? ume loss in depression include hyperactivity of the hypothalamic- pituitary-adrenal (HPA) axis and associated glucocorticoid neurotox- icity, decreased levels of brain-derived neurotrophic ...

  14. Hippocampal synaptic plasticity in mice devoid of cellular prion protein.

    Science.gov (United States)

    Maglio, Laura E; Perez, Mariela F; Martins, Vilma R; Brentani, Ricardo R; Ramirez, Oscar A

    2004-11-24

    The cellular prion protein plays a role in the etiology of transmissible and inherited spongiform encephalopathies. However, the physiological role of the cellular prion protein is still under debate. Results regarding the synaptic transmission using the same strain of animals where the cellular prion protein gene was ablated are controversial, and need further investigation. In this work, we have studied the hippocampal synaptic transmission in mice devoid of normal cellular prion protein, and have shown that these animals present an increased excitability in this area by the lower threshold (20 Hz) to generate long-term potentiation (LTP) in hippocampal dentate gyrus when compared to wild-type animals. The mice devoid of normal cellular prion protein are also more sensitive to the blocking effects of dizocilpine and 2-amino-5-phosphonopentanoic acid on the hippocampal long-term potentiation generation. In situ hydridization experiments demonstrated overexpression of the mRNAs for the N-methyl-D-aspartate (NMDA) receptor NR2A and NR2B subunits in mice devoid of normal cellular prion protein. Therefore, our results indicate that these animals have an increased hippocampal synaptic plasticity which can be explained by a facilitated glutamatergic transmission. The higher expression of specific N-methyl-d-aspartate receptor subunits may account for these effects.

  15. Remodeling of Hippocampal Synapses After Hippocampus-Dependent Associative Learning

    NARCIS (Netherlands)

    Geinisman, Yuri; Disterhoft, John F.; Gundersen, Hans Jørgen G.; McEchron, Matthew D.; Persina, Inna S.; Power, John M.; Zee, Eddy A. van der; West, Mark J.

    2000-01-01

    The aim of this study was to determine whether hippocampus-dependent associative learning involves changes in the number and/or structure of hippocampal synapses. A behavioral paradigm of trace eyeblink conditioning was used. Young adult rabbits were given daily 80 trial sessions to a criterion of

  16. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.

    Science.gov (United States)

    Kim, Ah Hyun; Chun, Hye Jeong; Lee, Seulah; Kim, Hyung Sik; Lee, Jaewon

    2017-08-01

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hippocampal Area CA1 and Remote Memory in Rats

    Science.gov (United States)

    Ocampo, Amber C.; Squire, Larry R.; Clark, Robert E.

    2017-01-01

    Hippocampal lesions often produce temporally graded retrograde amnesia (TGRA), whereby recent memory is impaired more than remote memory. This finding has provided support for the process of systems consolidation. However, temporally graded memory impairment has not been observed with the watermaze task, and the findings have been inconsistent…

  18. Sleep restriction by forced activity reduces hippocampal cell proliferation

    NARCIS (Netherlands)

    Roman, Viktor; Van der Borght, K; Leemburg, SA; Van der Zee, EA; Meerlo, P

    2005-01-01

    Mounting evidence suggests that sleep loss negatively affects learning and memory processes through disruption of hippocampal function. In the present study, we examined whether sleep loss alters the generation, differentiation, and survival of new cells in the dentate gyrus. Rats were sleep

  19. Hippocampal-cortical interaction during periods of subcortical silence.

    Science.gov (United States)

    Logothetis, N K; Eschenko, O; Murayama, Y; Augath, M; Steudel, T; Evrard, H C; Besserve, M; Oeltermann, A

    2012-11-22

    Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

  20. Adult hippocampal neurogenesis in natural populations of mammals.

    Science.gov (United States)

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Hippocampal long term memory: effect of the cholinergic system on local protein synthesis.

    Science.gov (United States)

    Lana, Daniele; Cerbai, Francesca; Di Russo, Jacopo; Boscaro, Francesca; Giannetti, Ambra; Petkova-Kirova, Polina; Pugliese, Anna Maria; Giovannini, Maria Grazia

    2013-11-01

    The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5

  2. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    Science.gov (United States)

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Chemical release module facility

    Science.gov (United States)

    Reasoner, D. L.

    1980-01-01

    The chemical release module provides the capability to conduct: (1) thermite based metal vapor releases; (2) pressurized gas releases; (3) dispersed liquid releases; (4) shaped charge releases from ejected submodules; and (5) diagnostic measurements with pi supplied instruments. It also provides a basic R-F and electrical system for: (1) receiving and executing commands; (2) telemetering housekeeping data; (3) tracking; (4) monitoring housekeeping and control units; and (5) ultrasafe disarming and control monitoring.

  4. Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis.

    Science.gov (United States)

    Wang, Xin; Bao, Haibo; Sun, Huahua; Zhang, Yixi; Fang, Jichao; Liu, Qinghong; Liu, Zewen

    2015-08-01

    Nicotinic acetylcholine receptors (nAChRs) are major neurotransmitter receptors and targets of neonicotinoid insecticides in the insect nervous system. The full function of nAChRs is often dependent on associated proteins, such as chaperones, regulators and modulators. Here, three Lynx (Ly-6/neurotoxin) proteins, Loc-lynx1, Loc-lynx2 and Loc-lynx3, were identified in the locust, Locusta migratoria manilensis. Co-expression with Lynx resulted in a dramatic increase in agonist-evoked macroscopic currents on nAChRs Locα1/β2 and Locα2/β2 in Xenopus oocytes, but no changes in agonist sensitivity. Loc-lynx1 and Loc-lynx3 only modulated nAChRs Locα1/β2 while Loc-lynx2 modulated Locα2/β2 specifically. Meanwhile, Loc-lynx1 induced a more significant increase in currents evoked by imidacloprid and epibatidine than Loc-lynx3, and the effects of Loc-lynx1 on imidacloprid and epibatidine were significantly higher than those on acetylcholine. Among three lynx proteins, only Loc-lynx1 significantly increased [(3) H]epibatidine binding on Locα1/β2. The results indicated that Loc-lynx1 had different modulation patterns in nAChRs compared to Loc-lynx2 and Loc-lynx3. Taken together, these findings indicated that three Lynx proteins were nAChR modulators and had selective activities in different nAChRs. Lynx proteins might display their selectivities from three aspects: nAChR subtypes, various agonists and different modulation patterns. Insect Lynx (Ly-6/neurotoxin) proteins act as the allosteric modulators on insect nicotinic acetylcholine receptors (nAChRs), the important targets of insecticides. We found that insect lynx proteins showed their selectivities from at least three aspects: nAChR subtypes, various agonists and different modulation patterns. © 2015 International Society for Neurochemistry.

  5. New water-soluble polyanionic dendrimers and binding to acetylcholine in water by means of contact ion-pairing interactions.

    Science.gov (United States)

    Ornelas, Cátia; Boisselier, Elodie; Martinez, Victor; Pianet, Isabelle; Ruiz Aranzaes, Jaime; Astruc, Didier

    2007-12-21

    A new water-soluble polyanionic dendrimer containing 81 benzoate termini (diameter: 11+/-1 nm from DOSY NMR spectroscopy) has been synthesized; it interacts with acetylcholine cations in water-soluble assemblies in which each carboxylate terminus reversibly forms contact ion pairs and aggregates at the tether termini, as shown by 1H NMR spectroscopy.

  6. Amperometric determination of acetylcholine-A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode.

    Science.gov (United States)

    Chauhan, Nidhi; Pundir, C S

    2014-11-15

    An amperometric acetylcholine biosensor was constructed by co-immobilizing covalently, a mixture of acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of chitosan (CHIT)/gold-coated ferric oxide nanoparticles (Fe@AuNPs) electrodeposited onto surface of a Au electrode and using it as a working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through potentiostat. The biosensor is based on electrochemical measurement of H2O2 generated from oxidation of choline by immobilized ChO, which in turn is produced from hydrolysis of acetylcholine by immobilized AChE. The biosensor exhibited optimum response within 3s at +0.2V, pH 7.0 and 30°C. The enzyme electrode had a linear working range of 0.005-400 µM, with a detection limit of 0.005 µM for acetylcholine. The biosensor measured plasma acetylcholine in apparently healthy and persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances but lost 50% of its initial activity after its 100 uses over a period of 3 months, when stored at 4°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    Science.gov (United States)

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  8. Nicotinic acetylcholine receptor polymorphism, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases: a cohort study

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Bojesen, Stig E; Tybjærg-Hansen, Anne

    2011-01-01

    We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population....

  9. Inflammation decreases the level of alpha7 nicotinic acetylcholine receptors in the brain mitochondria and makes them more susceptible to apoptosis induction.

    Science.gov (United States)

    Lykhmus, Olena; Gergalova, Galyna; Zouridakis, Marios; Tzartos, Socrates; Komisarenko, Sergiy; Skok, Maryna

    2015-11-01

    α7 nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating inflammatory reactions, as well as the cell viability. They are expressed in both the plasma membrane and mitochondria of eukaryotic cells. Previously we found that neuroinflammation resulted in the decrease of α7 nAChR density in the brain of mice and was accompanied by accumulation of amyloid-beta (Aβ) peptides and memory impairment. In the present paper, it is shown that inflammation induced by either regular bacterial lipopolysaccharide (LPS) injections or immunizations with α7 nAChR extracellular domain (1-208) affected also the brain cell mitochondria. Using various modifications of sandwich ELISA, we observed the decrease of α7 nAChRs and accumulation of Aβ(1-40) and Aβ(1-42) in mitochondria of immunized or LPS-treated mice compared to control ones. Mitochondria of treated mice responded with cytochrome c release to lower Ca(2+) concentrations than mitochondria of control mice and were less sensitive to its attenuation with α7 nAChR agonist PNU282987. It is concluded that inflammation decreases α7 nAChR expression in both mitochondria and cell plasma membrane and makes mitochondria more susceptible to apoptosis induction. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Epidermal Growth Factor Receptor Transactivation Is Required for Mitogen-Activated Protein Kinase Activation by Muscarinic Acetylcholine Receptors in HaCaT Keratinocytes

    Directory of Open Access Journals (Sweden)

    Wymke Ockenga

    2014-11-01

    Full Text Available Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR, which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation.

  11. Hippocampal sleep features: relations to human memory function.

    Science.gov (United States)

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  12. Unconjugated bilirubin exposure impairs hippocampal long-term synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Fang-Yu Chang

    Full Text Available BACKGROUND: Jaundice is one of the most common problems encountered in newborn infants, due to immaturity of hepatic conjugation and transport processes for bilirubin. Although the majority of neonatal jaundice is benign, some neonates with severe hyperbilirubinemia develop bilirubin encephalopathy or kernicterus. Accumulation of unconjugated bilirubin (UCB in selected brain regions may result in temporary or permanent impairments of auditory, motor, or cognitive function; however, the molecular mechanisms by which UCB elicits such neurotoxicity are still poorly understood. The present study is undertaken to investigate whether prolonged exposure of rat organotypic hippocampal slice cultures to UCB alters the induction of long-term synaptic plasticity. METHODOLOGY/PRINCIPAL FINDINGS: Using electrophysiological recording techniques, we find that exposure of hippocampal slice cultures to clinically relevant concentrations of UCB for 24 or 48 h results in an impairment of CA1 long-term potentiation (LTP and long-term depression (LTD induction in a time- and concentration-dependent manner. Hippocampal slice cultures stimulated with UCB show no changes in the secretion profiles of the pro-inflammatory cytokines, interleukin-1beta and tumor necrosis factor-alpha, or the propidium ioide uptake. UCB treatment produced a significant decrease in the levels of NR1, NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA receptors through a calpain-mediated proteolytic cleavage mechanism. Pretreatment of the hippocampal slice cultures with NMDA receptor antagonist or calpain inhibitors effectively prevented the UCB-induced impairment of LTP and LTD. CONCLUSION/SIGNIFICANCE: Our results indicate that the proteolytic cleavage of NMDA receptor subunits by calpain may play a critical role in mediating the UCB-induced impairment of long-term synaptic plasticity in the hippocampus. These observations provide new insights into the molecular mechanisms underlying UCB

  13. Hippocampal sleep features: relations to human memory function

    Directory of Open Access Journals (Sweden)

    Michele eFerrara

    2012-04-01

    Full Text Available The recent spread of intracranial EEG recordings techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific pattern of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, NREM sleep in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep

  14. Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal.

    Science.gov (United States)

    Shen, Guofu; Van Sickle, Bradley J; Tietz, Elizabeth I

    2010-08-01

    Benzodiazepine withdrawal anxiety is associated with potentiation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) currents in hippocampal CA1 pyramidal neurons attributable to increased synaptic incorporation of GluA1-containing AMPARs. The contribution of calcium/calmodulin-dependent protein kinase II (CaMKII) to enhanced glutamatergic synaptic strength during withdrawal from 1-week oral flurazepam (FZP) administration was further examined in hippocampal slices. As earlier reported, AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, along with increased single-channel conductance in neurons from 2-day rats, estimated by non-stationary noise analysis. Input-output curve slope was increased without a change in paired-pulse facilitation, suggesting increased AMPAR postsynaptic efficacy rather than altered glutamate release. The increased mEPSC amplitude and AMPAR conductance were related to CaMKII activity, as intracellular inclusion of CaMKIINtide or autocamtide-2-related inhibitory peptide, but not scrambled peptide, prevented both AMPAR amplitude and conductance changes. mEPSC inhibition by 1-naphthyl acetyl spermine and the negative shift in rectification index at both withdrawal time points were consistent with functional incorporation of GluA2-lacking AMPARs. GluA1 but not GluA2 or GluA3 levels were increased in immunoblots of postsynaptic density (PSD)-enriched subcellular fractions of CA1 minislices from 1-day FZP-withdrawn rats, when mEPSC amplitude, but not conductance, was increased. Both GluA1 expression levels and CaMKII alpha-mediated GluA1 Ser(831) phosphorylation were increased in PSD-subfractions from 2-day FZP-withdrawn rats. As phospho-Thr(286)CaMKII alpha was unchanged, CaMKII alpha may be activated through an alternative signaling pathway. Synaptic insertion and subsequent CaMKII alpha-mediated Ser(831) phosphorylation of GluA1 homomers

  15. Hippocampal EEG and behaviour in dog. III. Hippocampal EEG correlates of stimulus-response tasks and of sexual behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    A dog was trained to perform a spatial sound discrimination. The hippocampal EEG correlates and the movement correlates of correct trials were compared with those of incorrect trials and of ‘pressings in between’. Correct and wrong responses on a place learning task were compared both with

  16. Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice.

    Science.gov (United States)

    Drexel, Meinrad; Romanov, Roman A; Wood, James; Weger, Stefan; Heilbronn, Regine; Wulff, Peer; Tasan, Ramon O; Harkany, Tibor; Sperk, Günther

    2017-08-23

    Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present

  17. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus.

    Science.gov (United States)

    Wang, Shi; Pan, De-Xi; Wang, Dan; Wan, Peng; Qiu, De-Lai; Jin, Qing-Hua

    2014-09-01

    The hippocampus is a key structure for learning and memory in mammals, and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. Despite a number of studies indicating that nitric oxide (NO) is involved in the formation and maintenance of LTP as a retrograde messenger, few studies have used neurotransmitter release as a visual indicator in awake animals to explore the role of NO in learning-dependent long-term enhancement of synaptic efficiency. Therefore, in the present study, the effects of l-NMMA (a NO synthase inhibitor) and SNP (a NO donor) on extracellular glutamate (Glu) concentrations and amplitudes of field excitatory postsynaptic potential (fEPSP) were measured in the hippocampal dentate gyrus (DG) region during the acquisition and extinction of active-avoidance behavior in freely-moving conscious rats. In the control group, the extracellular concentration of Glu in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to baseline levels following extinction training. In the experimental group, the change in Glu concentration was significantly reduced by local microinjection of l-NMMA, as was the acquisition of the active-avoidance behavior. In contrast, the change in Glu concentration was significantly enhanced by SNP, and the acquisition of the active-avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in extracellular Glu were accompanied by corresponding changes in fEPSP amplitude and active-avoidance behavior. Our results suggest that NO in the hippocampal DG facilitates active avoidance learning via enhancements of glutamate levels and synaptic efficiency in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    AChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major...... preclinical evaluation of alpha(7) nAChR activation. It is therefore important to consider the translational power of the animal models used before entering into a clinical evaluation of the pro-cognitive effects of alpha(7) nAChR activation.......Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n...

  19. Acetylcholine-related proteins in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia

    DEFF Research Database (Denmark)

    Damm, Morten Matthiesen Bach; Jensen, Thorbjørn Søren Rønn; Mahmood, Badar

    2017-01-01

    The pathogenesis of colorectal neoplasia (CRN) has been associated with altered non-neuronal acetylcholine (ACh) metabolism. The aim of this study was to characterize expression, function, and cellular location of ACh-related proteins in biopsies obtained from endoscopic normal-appearing sigmoid...... colon in patients with and without CRN. Messenger-RNA (mRNA) levels of 17 ACh-related proteins were quantified by rt-qPCR. Functional responses to ACh, measured as electrogenic transepithelial short circuit current (SCC), were recorded using the Ussing chamber technique. Finally, cellular localization...... of choline transporter-like proteins (CTLs) and butyryl-cholinesterase enzyme (BChE) was determined by immunohistochemistry. mRNA expression of CTL1 and CTL4 was increased in patients with CRN (P = 0.002 and P = 0.04, respectively). In functional experiments, baseline SCC was increased in CRN patients. ACh...

  20. Angiotensin II–Acetylcholine Noncovalent Complexes Analyzed With MALDI–Ion Mobility–TOF MS

    Science.gov (United States)

    Woods, Amina S.; Fuhrer, Katrin; Gonin, Marc; Egan, Tom; Ugarov, Michael; Gillig, Kent J.; Schultz, J. Albert

    2003-01-01

    Matrix-assisted laser desorption ionization–ion mobility–orthogonal time-of-flight mass spectrometry (MALDI-IM-oTOF MS) is a new technique that allows laser desorbed ions to be preseparated on the basis of their shape prior to mass analysis. Using this instrument, we tested the postulate that addition of a quaternary ammonium compound such as acetylcholine to the model phosphorylated peptide angiotensin II would enhance its detection by MALDI in two ways. First of all, the acetylcholine–peptide complex could ionize more efficiently than the bare phosphopeptide. Furthermore, the ion mobility could separate the complex ion on the basis of its charge/volume from isobaric interferences, which would otherwise limit detection sensitivity. PMID:12901606

  1. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n......AChR and the cognitive effects of alpha(7) nAChR activation, focusing on the translational aspects in the development of these drugs. The functional properties and anatomical localization of the alpha(7) nAChR makes it well suited to modulate cognitive function. Accordingly, systemic administration of alpha(7) n......AChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major...

  2. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Shrish Chandra; Gupta, Rajendra

    2007-05-30

    The animal neurotransmitter acetylcholine (ACh) induces rooting and promotes secondary root formation in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby), cultured in vitro on Murashige and Skoog's medium. The roots originate from the midrib of leaf explants and resemble taproot. ACh at 10(-5) M was found to be the optimum over a wide range of effective concentrations between 10(-7) and 10(-3) M. The breakdown products, choline and acetate were ineffective even at 10(-3) M concentration. ACh appears to have a natural role in tomato rhizogenesis because exogenous application of neostigmine, an inhibitor of ACh hydrolysis, could mimic the effect of ACh. Neostigmine, if applied in combination with ACh, potentiated the ACh effect.

  3. A quantitative structure–activity relationship study of tetrabutylphosphonium bromide analogs as muscarinic acetylcholine receptors agonists

    Directory of Open Access Journals (Sweden)

    MEHDI NEKOEI

    2011-08-01

    Full Text Available Quantitative structure–activity relationship (QSAR of tetrabutyl­phosphonium bromide (TBPB analogs as muscarinic acetylcholine receptors (mAChRs agonists was studied. A suitable set of molecular descriptors was calculated and stepwise multiple linear regression (SW-MLR was employed to select those descriptors that resulted in the best fitted models. A MLR model with three selected descriptors was obtained. Furthermore, the MLR model was va­lidated using the leave-one-out (LOO and leave-group-out (LGO cross-vali­dation, and the Y-randomization test. This model, with high statistical signifi­cance (R2train = 0.982, F = 388.715, Q2LOO = 0.973, Q2LGO = 0.977 and R2test = 0.986 could predict the activity of the molecules with a percentage predic­tion error lower than 5 %.

  4. Indomethacin induces rat uterine contractions in vitro and alters reactivity to calcium and acetylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, J.L.; Nesbitt, D.; Gaspar, M.J.; Ellis, L.C.

    1976-01-01

    The initial contractions of uteri in vitro from castrated, estrogen-treated rats were markedly diminished following replacement with fresh bathing medium. Indomethacin and aspirin (10/sup -5/ to 10/sup -4/M) strongly stimulated such quiescent preparations and reduced their subsequent responsiveness to Ca/sup + +/. Reintroducing the initial bathing medium (which contained prostaglandin-like material), or adding prostaglandin F/sub 2//sub alpha/ to the fresh medium, initiated uterine contractions and restored responsiveness to calcium ion. Injections of indomethacin into castrated, estrogen-treated rats reduced initial in vitro uterine motility, abolished production of prostaglandin-like compounds, and prevented either indomethacin, aspirin, or Ca/sup + +/ from stimulating uterine contractions. Uterine responsiveness to acetylcholine in vitro was significantly reduced in rats pretreated with indomethacin.

  5. Expression of nicotinic acetylcholine receptors on human B-lymphoma cells

    Directory of Open Access Journals (Sweden)

    Skok M. V.

    2009-12-01

    Full Text Available Aim. To find a correla