WorldWideScience

Sample records for hinged ankle-foot orthoses

  1. Use of and Satisfaction with Ankle Foot Orthoses

    NARCIS (Netherlands)

    Joost van Hoof; Eveline Wouters; Yvonne van Zaalen; F.C. Holtkamp; M.J. Verkerk

    2015-01-01

    Objective: The aim of this study was to obtain insight in specific elements influencing the use, non-use, satisfaction, and dissatisfaction of ankle foot orthoses (AFOs) and the presence of underexposed problems with respect to AFOs. Methods: A questionnaire was composed to obtain information from

  2. Use of and satisfaction with ankle foot orthoses

    NARCIS (Netherlands)

    Holtkamp, F.C.; Wouters, E.J.M.; van Hoof, J.; van Zaalen, Y.; Verkerk, M.

    2015-01-01

    Objective: The aim of this study was to obtain insight in specific elements influencing the use, non-use, satisfaction, and dissatisfaction of ankle foot orthoses (AFOs) and the presence of underexposed problems with respect to AFOs. Methods: A questionnaire was composed to obtain information from

  3. Effects of ankle foot orthoses on body functions and activities in people with floppy paretic ankle muscles : a systematic review

    NARCIS (Netherlands)

    Wilk, van der Dymphy; Dijkstra, Pieter Ubele; Postema, Klaas; Verkerke, Gijsbertus Jacob; Hijmans, Juha Markus

    2015-01-01

    Background: People with floppy ankle muscles paresis use ankle foot orthoses to improve their walking ability. Ankle foot orthoses also limit ankle range of motion thereby introducing additional problems. Insight in effects of ankle foot orthoses on body functions and activities in people with

  4. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy

    NARCIS (Netherlands)

    Brehm, M.A.; Harlaar, J.; Schwartz, M.

    2008-01-01

    Objective: To determine the effect of ankle-foot orthoses on walking efficiency and gait in a heterogeneous group of children with cerebral palsy, using barefoot walking as the control condition. Design: A retrospective study. Methods: Barefoot and ankle-foot orthosis data for 172 children with

  5. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness

    NARCIS (Netherlands)

    Ploeger, Hilde E.; Bus, Sicco A.; Brehm, Merel-Anne; Nollet, Frans

    2014-01-01

    In polio survivors with calf muscle weakness, dorsiflexion-restricting ankle-foot orthoses (DR-AFOs) aim to improve gait in order to reduce walking-related problems such as instability or increased energy cost. However, evidence on the efficacy of DR-AFOs in polio survivors is lacking. We

  6. Patient specific ankle-foot orthoses using rapid prototyping.

    Science.gov (United States)

    Mavroidis, Constantinos; Ranky, Richard G; Sivak, Mark L; Patritti, Benjamin L; DiPisa, Joseph; Caddle, Alyssa; Gilhooly, Kara; Govoni, Lauren; Sivak, Seth; Lancia, Michael; Drillio, Robert; Bonato, Paolo

    2011-01-12

    Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  7. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  8. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients

    NARCIS (Netherlands)

    Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A. M.; Harlaar, Jaap; Nollet, Frans

    2007-01-01

    Objective: To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. Design: A prospective uncontrolled study with a multiple

  9. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work

    NARCIS (Netherlands)

    Bregman, D.J.J.; Harlaar, J.; Meskers, C.G.M.; de Groot, V.

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the

  10. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    Science.gov (United States)

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  11. Studies examining the efficacy of ankle foot orthoses should report activity level and mechanical evidence.

    Science.gov (United States)

    Harlaar, Jaap; Brehm, Merel; Becher, Jules G; Bregman, Daan J J; Buurke, Jaap; Holtkamp, Fred; De Groot, Vincent; Nollet, Frans

    2010-09-01

    Ankle Foot Orthoses (AFOs) to promote walking ability are a common treatment in patients with neurological or muscular diseases. However, guidelines on the prescription of AFOs are currently based on a low level of evidence regarding their efficacy. Recent studies aiming to demonstrate the efficacy of wearing an AFO in respect to walking ability are not always conclusive. In this paper it is argued to recognize two levels of evidence related to the ICF levels. Activity level evidence expresses the gain in walking ability for the patient, while mechanical evidence expresses the correct functioning of the AFO. Used in combination for the purpose of evaluating the efficacy of orthotic treatment, a conjunct improvement at both levels reinforces the treatment algorithm that is used. Conversely, conflicting outcomes will challenge current treatment algorithms and the supposed working mechanism of the AFO. A treatment algorithm must use relevant information as an input, derived from measurements with a high precision. Its result will be a specific AFO that matches the patient's needs, specified by the mechanical characterization of the AFO footwear combination. It is concluded that research on the efficacy of AFOs should use parameters from two levels of evidence, to prove the efficacy of a treatment algorithm, i.e., how to prescribe a well-matched AFO.

  12. Visualisation to enhance biomechanical tuning of ankle-foot orthoses (AFOs in stroke: study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Carse Bruce

    2011-12-01

    Full Text Available Abstract Background There are a number of gaps in the evidence base for the use of ankle-foot orthoses for stroke patients. Three dimensional motion analysis offers an ideal method for objectively obtaining biomechanical gait data from stroke patients, however there are a number of major barriers to its use in routine clinical practice. One significant problem is the way in which the biomechanical data generated by these systems is presented. Through the careful design of bespoke biomechanical visualisation software it may be possible to present such data in novel ways to improve clinical decision making, track progress and increase patient understanding in the context of ankle-foot orthosis tuning. Methods A single-blind randomised controlled trial will be used to compare the use of biomechanical visualisation software in ankle-foot orthosis tuning against standard care (tuning using observation alone. Participants (n = 70 will have experienced a recent hemiplegia (1-12 months and will be identified by their care team as being suitable candidates for a rigid ankle-foot orthosis. The primary outcome measure will be walking velocity. Secondary outcome measures include; lower limb joint kinematics (thigh and shank global orientations & kinetics (knee and hip flexion/extension moments, ground reaction force FZ2 peak magnitude, step length, symmetry ratio based on step length, Modified Ashworth Scale, Modified Rivermead Mobility Index and EuroQol (EQ-5D. Additional qualitative measures will also be taken from participants (patients and clinicians at the beginning and end of their participation in the study. The main aim of the study is to determine whether or not the visualisation of biomechanical data can be used to improve the outcomes of tuning ankle-foot orthoses for stroke patients. Discussion In addition to answering the primary research question the broad range of measures that will be taken during this study are likely to contribute to a

  13. Optimising Ankle Foot Orthoses for children with Cerebral Palsy walking with excessive knee flexion to improve their mobility and participation; protocol of the AFO-CP study

    NARCIS (Netherlands)

    Kerkum, Y.L.; Harlaar, J.; Buizer, A.I.; van den Noort, J.C.; Becher, J.G.; Brehm, M.A.

    2013-01-01

    Background: Ankle-Foot-Orthoses with a ventral shell, also known as Floor Reaction Orthoses (FROs), are often used to reduce gait-related problems in children with spastic cerebral palsy (SCP), walking with excessive knee flexion. However, current evidence for the effectiveness (e.g. in terms of

  14. Optimising Ankle Foot Orthoses for children with cerebral palsy walking with excessive knee flexion to improve their mobility and participation; protocol of the AFO-CP study

    NARCIS (Netherlands)

    Kerkum, Yvette L.; Harlaar, Jaap; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Brehm, Merel-Anne

    2013-01-01

    Ankle-Foot-Orthoses with a ventral shell, also known as Floor Reaction Orthoses (FROs), are often used to reduce gait-related problems in children with spastic cerebral palsy (SCP), walking with excessive knee flexion. However, current evidence for the effectiveness (e.g. in terms of walking energy

  15. Ankle-foot orthoses in stroke: Effects on functional balance, weight-bearing asymmetry and the contribution of each lower limb to balance control

    NARCIS (Netherlands)

    Nikamp-Simons, Corien Diana Maria; van Asseldonk, Edwin H.F.; van der Kooij, Herman; Geurts, Alexander C.H.; Buurke, Jaap

    2009-01-01

    Background Ankle-foot orthoses are often provided to improve walking in stroke patients, although the evidence of effects on walking and balance control is still inconsistent. This could be caused by a lack of insight into the influence of orthoses on the underlying impairments. These impairments

  16. Poor compliance with ankle-foot-orthoses in Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Vinci, P; Gargiulo, P

    2008-03-01

    The aim of this study is to evaluate the compliance with ankle-foot orthoses (AFOs) in patients previously prescribed and affected with Charcot-Marie-Tooth disease (CMT). Twenty-five Italian patients (8 males 17 females; mean age: 41.6 years, range 16-54) with severe bilateral footdrop (leg-sole angle alpha >105 degrees ) alone or associated with other problems (rotation, plantarflexor failure, knee flexor failure) were examined by a physiatrist (with measurement of the leg-sole angle alpha' with their footwear) and interviewed by a psychologist. Only 5 patients (20%) used AFOs (3 prefabricated polypropylene AFOs, 2 custom-made short AFOs incorporated in high-top boots) with satisfactory functional results (alpha' <=94 degrees ; reported increased mobility and no more falls). The interview revealed that all patients had a bad relationship with their own body. The 3 subjects using prefabricated AFOs said that they hated them and one of them complained of pain. Patients not using AFOs justified their decision with statements such as: ''I am not yet ready to accept them'' (n=3) or ''I can still manage without them for a while'' (n=2) or both (n=15). Four patients had experienced pain during the trial, 2 had not found proper shoes to accommodate them and 12 were absolutely not interested in AFOs and, therefore, had not gone to an orthotist. Compliance with AFOs is poor. Patients with CMT discard AFOs because they highlight their disability, are not essential for their limited daily walking and are uncomfortable. We suggest that prescription of AFOs be accompanied with psychological support and that research of more comfortable and cosmetically acceptable solutions for the problem of footdrop be stimulated.

  17. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  18. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  19. Effect of Providing Ankle-Foot Orthoses in Patients with Acute and Subacute Stroke: a Randomized Controlled Trial : A randomized controlled trial

    NARCIS (Netherlands)

    Nikamp-Simons, Corien D.M.; Buurke, Jaap H.; Van Der Palen, Job; Hermens, Hermie J.; Rietman, Johan S.; Ibánez, Jaime; Azorín, José María; Akay, Metin; Pons, José Luis

    2017-01-01

    Despite frequent application of ankle-foot orthoses (AFOs), little scientific evidence is available to guide AFO-provision early after stroke. A randomized controlled trial was conducted to study the effects of AFO-provision in (sub-) acute stroke patients. Primary aim: to study effects of the

  20. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Domingo Antoinette

    2006-02-01

    Full Text Available Abstract Background Powered lower limb orthoses could reduce therapist labor during gait rehabilitation after neurological injury. However, it is not clear how patients respond to powered assistance during stepping. Patients might allow the orthoses to drive the movement pattern and reduce their muscle activation. The goal of this study was to test the effects of robotic assistance in subjects with incomplete spinal cord injury using pneumatically powered ankle-foot orthoses. Methods Five individuals with chronic incomplete spinal cord injury (ASIA C-D participated in the study. Each subject was fitted with bilateral ankle-foot orthoses equipped with artificial pneumatic muscles to power ankle plantar flexion. Subjects walked on a treadmill with partial bodyweight support at four speeds (0.36, 0.54, 0.72 and 0.89 m/s under three conditions: without wearing orthoses, wearing orthoses unpowered (passively, and wearing orthoses activated under pushbutton control by a physical therapist. Subjects also attempted a fourth condition wearing orthoses activated under pushbutton control by them. We measured joint angles, electromyography, and orthoses torque assistance. Results A therapist quickly learned to activate the artificial pneumatic muscles using the pushbuttons with the appropriate amplitude and timing. The powered orthoses provided ~50% of peak ankle torque. Ankle angle at stance push-off increased when subjects walked with powered orthoses versus when they walked with passive-orthoses (ANOVA, p Two of the five subjects were able to control the orthoses themselves using the pushbuttons. The other three subjects found it too difficult to coordinate pushbutton timing. Orthoses assistance and maximum ankle angle at push-off were smaller when the subject controlled the orthoses compared to when the therapist-controlled the orthoses (p Conclusion Mechanical assistance from powered ankle-foot orthoses improved ankle push-off kinematics without

  1. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients.

    Science.gov (United States)

    Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A M; Harlaar, Jaap; Nollet, Frans

    2007-10-01

    To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. A prospective uncontrolled study with a multiple baseline and follow-up design. Follow-up measurements continued until 26 weeks after intervention. Twenty adults with polio residuals (mean age 55 years). Each participant received a new carbon-composite KAFO, fitted according to a total-contact principle, which resulted in a rigid, lightweight and well-fitting KAFO. Energy cost of walking, walking speed, biomechanics of gait, physical functioning and patient satisfaction. The energy cost decreased significantly, by 8%, compared with the original KAFO. Furthermore, the incremention energy cost during walking with the carbon-composite KAFO was reduced by 18% towards normative values. An improvement in knee flexion, forward excursion of the centre of pressure, peak ankle moment, and timing of peak ankle power were significantly associated with the decrease in energy cost. Walking speed and physical functioning remained unchanged. In patients with former polio, carbon-composite KAFOs are superior to conventional leather/metal and plastic/metal KAFOs with respect to improving walking efficiency and gait, and are therefore important in reducing overuse and maintaining functional abilities in polio survivors.

  2. Day vs. day-night use of ankle-foot orthoses in young children with spastic diplegia: a randomized controlled study.

    Science.gov (United States)

    Zhao, Xiaoke; Xiao, Nong; Li, Hongying; Du, Senjie

    2013-10-01

    The aim of this study was to compare the effectiveness of treatment with hinged ankle-foot orthoses (AFOs) during the day vs. during both the day and the night in young ambulant children with spastic diplegia. In this prospective randomized controlled trial, 112 ambulatory children (70 boys and 42 girls; mean age, 2 yrs 6.93 mos; range, 1 yr 1 mo to 4 yrs 0 mo) with spastic diplegia participated. Forty-eight were classified at level I of the Gross Motor Function Classification System; the remaining 64 were at level II. Using stratified randomization, all children were assigned to either the day AFO-wearing group (n = 56, wearing AFOs all day) or the day-night AFO-wearing group (n = 56, wearing AFOs all day and all night). The two groups underwent conventional rehabilitative treatments five times a week for 8 wks. The primary outcomes measured were passive ankle dorsiflexion angle and sections D and E of the 66-item Gross Motor Function Measure; the root mean square of surface electromyography in the ventral and dorsal lower limb muscles was compared in a subgroup (ten from each group). Seven children did not complete the full intervention: three in the day AFO-wearing group and four in the day-night AFO-wearing group. Significant baseline-postintervention improvements were found for passive ankle dorsiflexion angle and the 66-item Gross Motor Function Measure in both groups (P day AFO-wearing group (P day AFO-wearing group, whereas the muscles affected in the day-night AFO-wearing group were the gastrocnemius (P day-night use. In addition, the prolonged wearing of AFOs may influence muscle activity, which should be monitored in the clinic.

  3. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.

    Science.gov (United States)

    Bregman, D J J; Harlaar, J; Meskers, C G M; de Groot, V

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the AFO in late stance will support ankle push-off, and reduce the energy cost of walking. In 10 patients with multiple sclerosis and stroke the energy cost of walking, 3D kinematics, joint power, and joint work were measured during gait, with and without the AFO. The mechanical characteristics of the AFO were measured separately, and used to calculate the contribution of the AFO to the ankle kinetics. We found a significant decrease of 9.8% in energy cost of walking when walking with the AFO. With the AFO, the range of motion of the ankle was reduced by 12.3°, and the net work around the ankle was reduced by 29%. The total net work in the affected leg remained unchanged. The AFO accounted for 60% of the positive ankle work, which reduced the total amount of work performed by the leg by 11.1% when walking with the AFO. The decrease in energy cost when walking with a spring-like energy-storing AFO in central neurological patients is not induced by an augmented net ankle push-off, but by the AFO partially taking over ankle work. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Optimising Ankle Foot Orthoses for children with Cerebral Palsy walking with excessive knee flexion to improve their mobility and participation; protocol of the AFO-CP study

    Directory of Open Access Journals (Sweden)

    Kerkum Yvette L

    2013-02-01

    Full Text Available Abstract Background Ankle-Foot-Orthoses with a ventral shell, also known as Floor Reaction Orthoses (FROs, are often used to reduce gait-related problems in children with spastic cerebral palsy (SCP, walking with excessive knee flexion. However, current evidence for the effectiveness (e.g. in terms of walking energy cost of FROs is both limited and inconclusive. Much of this ambiguity may be due to a mismatch between the FRO ankle stiffness and the patient’s gait deviations. The primary aim of this study is to evaluate the effect of FROs optimised for ankle stiffness on the walking energy cost in children with SCP, compared to walking with shoes alone. In addition, effects on various secondary outcome measures will be evaluated in order to identify possible working mechanisms and potential predictors of FRO treatment success. Method/Design A pre-post experimental study design will include 32 children with SCP, walking with excessive knee flexion in midstance, recruited from our university hospital and affiliated rehabilitation centres. All participants will receive a newly designed FRO, allowing ankle stiffness to be varied into three configurations by means of a hinge. Gait biomechanics will be assessed for each FRO configuration. The FRO that results in the greatest reduction in knee flexion during the single stance phase will be selected as the subject’s optimal FRO. Subsequently, the effects of wearing this optimal FRO will be evaluated after 12–20 weeks. The primary study parameter will be walking energy cost, with the most important secondary outcomes being intensity of participation, daily activity, walking speed and gait biomechanics. Discussion The AFO-CP trial will be the first experimental study to evaluate the effect of individually optimised FROs on mobility and participation. The evaluation will include outcome measures at all levels of the International Classification of Functioning, Disability and Health, providing a unique

  5. Ankle foot orthoses for people with Charcot Marie Tooth disease--views of users and orthotists on important aspects of use.

    Science.gov (United States)

    Phillips, Margaret; Radford, Kathryn; Wills, Adrian

    2011-01-01

    To explore important aspects of the benefits, important characteristics, barriers to use and disadvantages of using ankle foot orthoses (AFOs) as seen by people with Charcot Marie Tooth disease (CMT) and the orthotists who will fit and supply them. This qualitative study used the nominal group technique and individual semi-structured interviews, according to participant preference and ability to travel. Propositions were put to 15 participants (eight females) with CMT regarding benefits, disadvantages, barriers to use and important characteristics of ankle foot orthoses AFOs and regarding benefits and disadvantages to seven orthotists. Priorities in these areas were ranked and a thematic analysis of the free text was made separately by two observers and a joint decision made of final themes. Fifteen people (eight females) with CMT and seven orthotists participated. Users' themes concerned functional mobility walking, pain/discomfort, choice of AFOs and associated footwear, custom made design, use in practical situations and support for foot and ankle. They noted that AFOs improved walking, but practical aspects of use and provision, as well as consideration of cosmetic aspects, were frequently problematic. Orthotists had similar themes, but with a difference in emphasis, that included prevention of future complications, education regarding device limitations and craftsmanship as a further theme. Users understood the potential benefits of AFOs and could identify disadvantages which might be remedied, but were frustrated by the difficulties in translating this into practice. Further refinement of current orthoses and delivery of orthotic services may assist in addressing these issues. © 2011 Informa UK, Ltd.

  6. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.

    Science.gov (United States)

    Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J

    2013-10-01

    Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to

  7. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.

    Science.gov (United States)

    Zissimopoulos, Angelika; Fatone, Stefania; Gard, Steven

    2015-10-01

    Accurate and precise mediolateral foot placement is important for balance during gait, but is impaired post stroke. Mediolateral foot placement may be improved with ankle-foot orthosis use. The purpose of this study was to determine whether an ankle-foot orthosis improves mediolateral foot-placement ability during post-stroke ambulation. Crossover trial with randomized order of conditions tested. The accuracy and precision of mediolateral foot placement was quantified while subjects targeted four different randomized step widths. Subjects were tested with and without their regular non-rigid ankle-foot orthosis in two separate visits (order randomized). While ankle-foot orthosis use corrected foot and ankle alignment (i.e. significantly decreased mid-swing plantar flexion, p = 0.000), effects of ankle-foot orthosis use on hip hiking (p = 0.545), circumduction (p = 0.179), coronal plane hip range of motion (p = 0.06), and mediolateral foot-placement ability (p = 0.537) were not significant. While ankle-foot orthosis-mediated equinovarus correction of the affected foot and ankle was not associated with improved biomechanics of walking (i.e. proximal ipsilateral hip kinematics or mediolateral foot-placement ability), it may affect other aspects of balance that were not tested in this study (e.g. proprioception, cerebellar, vestibular, and cognitive mechanisms). Studies that investigate the effect of ankle-foot orthosis on gait can help advance stroke rehabilitation by documenting the specific gait benefits of ankle-foot orthosis use. In this study, we investigated the effect of ankle-foot orthosis use on mediolateral foot-placement ability, an aspect of gait important for maintaining balance. © The International Society for Prosthetics and Orthotics 2014.

  8. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.

    Science.gov (United States)

    Schmalz, Thomas; Pröbsting, Eva; Auberger, Roland; Siewert, Gordon

    2016-04-01

    The microprocessor-controlled leg orthosis C-Brace enables patients with paretic or paralysed lower limb muscles to use dampened knee flexion under weight-bearing and speed-adapted control of the swing phase. The objective of the present study was to investigate the new technical functions of the C-Brace orthosis, based on biomechanical parameters. The study enrolled six patients. The C-Brace orthosis is compared with conventional leg orthoses (four stance control orthoses, two locked knee-ankle-foot orthoses) using biomechanical parameters of level walking, descending ramps and descending stairs. Ground reaction forces, joint moments and kinematic parameters were measured for level walking as well as ascending and descending ramps and stairs. With the C-Brace, a nearly natural stance phase knee flexion was measured during level walking (mean value 11° ± 5.6°). The maximum swing phase knee flexion angle of the C-Brace approached the normal value of 65° more closely than the stance control orthoses (66° ± 8.5° vs 74° ± 6.4°). No significant differences in the joint moments were found between the C-Brace and stance control orthosis conditions. In contrast to the conventional orthoses, all patients were able to ambulate ramps and stairs using a step-over-step technique with C-Brace (flexion angle 64.6° ± 8.2° and 70.5° ± 12.4°). The results show that the functions of the C-Brace for situation-dependent knee flexion under weight bearing have been used by patients with a high level of confidence. The functional benefits of the C-Brace in comparison with the conventional orthotic mechanisms could be demonstrated most clearly for descending ramps and stairs. The C-Brace orthosis is able to combine improved orthotic function with sustained orthotic safety. © The International Society for Prosthetics and Orthotics 2014.

  9. Kinematic features of rear-foot motion using anterior and posterior ankle-foot orthoses in stroke patients with hemiplegic gait.

    Science.gov (United States)

    Chen, Chih-Chi; Hong, Wei-Hsien; Wang, Chin-Man; Chen, Chih-Kuang; Wu, Katie Pei-Hsuan; Kang, Chao-Fu; Tang, Simon F

    2010-12-01

    To evaluate the kinematic features of rear-foot motion during gait in hemiplegic stroke patients, using anterior ankle-foot orthoses (AFOs), posterior AFOs, and no orthotic assistance. Crossover design with randomization for the interventions. A rehabilitation center for adults with neurologic disorders. Patients with hemiplegia due to stroke (n=14) and able-bodied subjects (n=11). Subjects with hemiplegia were measured walking under 3 conditions with randomized sequences: (1) with an anterior AFO, (2) with a posterior AFO, and (3) without an AFO. Control subjects were measured walking without an AFO to provide a normative reference. Rear-foot kinematic change in the sagittal, coronal, and transverse planes. In the sagittal plane, compared with walking with an anterior AFO or without an AFO, the posterior AFO significantly decreased plantar flexion to neutral at initial heel contact (P=.001) and the swing phase (PRehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: A meta-analysis providing direction for future research

    Directory of Open Access Journals (Sweden)

    Sarah Prenton

    2017-10-01

    Full Text Available Objective: To compare the randomized controlled trial evidence for therapeutic effects on walking of functional electrical stimulation and ankle foot orthoses for foot drop caused by central nervous system conditions. Data sources: MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials, REHABDATA, PEDro, NIHR Centre for Reviews and Dissemination, Scopus and clinicaltrials.gov. Study selection: One reviewer screened titles/abstracts. Two independent reviewers then screened the full articles. Data extraction: One reviewer extracted data, another screened for accuracy. Risk of bias was assessed by 2 independent reviewers using the Cochrane Risk of Bias Tool. Data synthesis: Eight papers were eligible; 7 involving participants with stroke and 1 involving participants with cerebral palsy. Two papes reporting different measures from the same trial were grouped, resulting in 7 synthesized randomized controlled trials (n= 464. Meta-analysis of walking speed at final assessment (p = 0.46, for stroke participants (p = 0.54 and after 4–6 weeks’ use (p = 0.49 showed equal improvement for both devices. Conclusion: Functional electrical stimulation and ankle foot orthoses have an equally positive therapeutic effect on walking speed in non-progressive central nervous system diagnoses. The current randomized controlled trial evidence base does not show whether this improvement translates into the user’s own environment or reveal the mechanisms that achieve that change. Future studies should focus on measuring activity, muscle activity and gait kinematics. They should also report specific device details, capture sustained therapeutic effects and involve a variety of central nervous system diagnoses.

  11. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness.

    Science.gov (United States)

    Ramsey, Jason Allan

    2011-03-01

    A non-articulated plantarflexion resist ankle foot orthosis (AFO), commonly known as a posterior leaf spring AFO, is indicated for patients with motor impairment to the dorsiflexors. The AFO is often custom molded to a patient's lower limb anatomy and fabricated from polypropylene. There are no established guidelines for fabricating this type of AFO with predetermined stiffness of the ankle region for normal walking speeds. Therefore an AFO may not meet the biomechanical needs of the patient. Quantify the biomechanical ankle stiffness requirement for an individual with complete dorsiflexor impairment and develop a method for fabricating an AFO with ankle stiffness to meet that requirement. Experimental, bench research. The literature on sagittal biomechanics of non-pathological adults was reviewed to derive the stiffness of the ankle during loading response. Computer models of 144 AFOs were created with geometric variations to account for differences in human anthropometrics. Computer-based finite element analysis was employed to determine the stiffness and safety factor of the models. Stiffness of the AFOs ranged from 0.04 to 1.8 Nm/deg. This ample range is expected to account for the stiffness required for most adults with complete dorsiflexor impairment. At 5° deflection the factor of safety (ratio of strength to stress) ranged from 2.8 to 9.1. A computer program was generated that computes AFO stiffness from user-input variables of AFO geometry. The stiffness is compared to a theoretically appropriate stiffness based on the patient mass. The geometric variables can be modified until there is a close match, resulting in AFO design specification that is appropriate for the patient. Through validation on human subjects, this method may benefit patient outcomes in clinical practice by avoiding the current uncertainty surrounding AFO performance and reducing the labor and time involved in rectifying a custom AFO post-fabrication. This method provides an avenue for

  12. Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait.

    Directory of Open Access Journals (Sweden)

    Michael Rosenberg

    Full Text Available Passive ankle foot orthoses (AFOs are often prescribed for children with cerebral palsy (CP to assist locomotion, but predicting how specific device designs will impact energetic demand during gait remains challenging. Powered AFOs have been shown to reduce energy costs of walking in unimpaired adults more than passive AFOs, but have not been tested in children with CP. The goal of this study was to investigate the potential impact of powered and passive AFOs on muscle demand and recruitment in children with CP and crouch gait. We simulated gait for nine children with crouch gait and three typically-developing children with powered and passive AFOs. For each AFO design, we computed reductions in muscle demand compared to unassisted gait. Powered AFOs reduced muscle demand 15-44% compared to unassisted walking, 1-14% more than passive AFOs. A slower walking speed was associated with smaller reductions in absolute muscle demand for all AFOs (r2 = 0.60-0.70. However, reductions in muscle demand were only moderately correlated with crouch severity (r2 = 0.40-0.43. The ankle plantarflexor muscles were most heavily impacted by the AFOs, with gastrocnemius recruitment decreasing 13-73% and correlating with increasing knee flexor moments (r2 = 0.29-0.91. These findings support the potential use of powered AFOs for children with crouch gait, and highlight how subject-specific kinematics and kinetics may influence muscle demand and recruitment to inform AFO design.

  13. Ambulatory Function and Perception of Confidence in Persons with Stroke with a Custom-Made Hinged versus a Standard Ankle Foot Orthosis

    Directory of Open Access Journals (Sweden)

    Angélique Slijper

    2012-01-01

    Full Text Available Objective. The aim was to compare walking with an individually designed dynamic hinged ankle foot orthosis (DAFO and a standard carbon composite ankle foot orthosis (C-AFO. Methods. Twelve participants, mean age 56 years (range 26–72, with hemiparesis due to stroke were included in the study. During the six-minute walk test (6MW, walking velocity, the Physiological Cost Index (PCI, and the degree of experienced exertion were measured with a DAFO and C-AFO, respectively, followed by a Stairs Test velocity and perceived confidence was rated. Results. The mean differences in favor for the DAFO were in 6MW 24.3 m (95% confidence interval [CI] 4.90, 43.76, PCI −0.09 beats/m (95% CI −0.27, 0.95, velocity 0.04 m/s (95% CI −0.01, 0.097, and in the Stairs Test −11.8 s (95% CI −19.05, −4.48. All participants except one perceived the degree of experienced exertion lower and felt more confident when walking with the DAFO. Conclusions. Wearing a DAFO resulted in longer walking distance and faster stair climbing compared to walking with a C-AFO. Eleven of twelve participants felt more confident with the DAFO, which may be more important than speed and distance and the most important reason for prescribing an AFO.

  14. Defining the mechanical properties of a spring-hinged ankle foot orthosis to assess its potential use in children with spastic cerebral palsy.

    Science.gov (United States)

    Kerkum, Yvette L; Brehm, Merel-Anne; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap

    2014-12-01

    A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01-1.82 N · m · deg(-1). The moment-threshold increased with increasing stiffness (1.13-12.1 N · m), while ROM decreased (4.91-16.5°). Energy was returned by all springs (11.5-116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.

  15. The effect of footwear adapted with a multi-curved rocker sole in conjunction with knee-ankle-foot orthoses on walking in poliomyelitis subjects: a pilot study.

    Science.gov (United States)

    Mojaver, Ali; Arazpour, Mokhtar; Aminian, Gholamreza; Ahmadi Bani, Monireh; Bahramizadeh, Mahmood; Sharifi, Guive; Sherafatvaziri, Arash

    2017-10-01

    Knee-ankle-foot orthoses (KAFOs) are used by people with poliomyelitis to ambulate. Whist advances in orthotic knee joint designs for use in KAFOs such the provision of stance control capability have proven efficacy, little attention has been paid to shoe adaptations which may also improve gait. The aim of this study was to evaluate the alteration to the kinematics and temporal-spatial parameters of gait caused by the use of heel-to-toe rocker-soled footwear when ambulating with KAFOs. Nine adults with a history of poliomyelitis who routinely wore KAFOs participated in the study. A heel-to-toe rocker sole was added to footwear and worn on the affected side. A three-dimensional motion capture system was used to quantify the resulting alteration to specific gait parameters. Maximum hip joint extension was significantly increased (p = 0.011), and hip abduction and adduction were both significantly reduced (p = 0.011 and p = 0.007, respectively) when walking with the rocker sole. A significant increase in stride length (p = 0.035) was demonstrated but there were no significant increases in either walking speed or cadence. A heel-to-toe rocker sole adaptation may be useful for walking in patients with poliomyelitis who use KAFOs. Implications for Rehabilitation The poor functionality and difficulty in walking when using an orthotic device such as a KAFO which keeps the knee locked during ambulation, plus the significant energy required to walk, are complications of orthoses using. Little evidence exists regarding the biomechanical effect of walking with a KAFO incorporating fixed knee joints, in conjunction with rocker-soled footwear. The main aim of walking with a heel-to-toe rocker sole is to facilitate forward progression of the tibia when used with an AFO or KAFO or to provide easier walking for patients who have undergone an ankle arthrodesis. In this study, a rocker sole profile adaptation produced no significant alteration to hip joint flexion

  16. Gait COP trajectory of left side hip-dislocation and scoliotic patient using ankle-foot orthoses

    Science.gov (United States)

    Chong, Albert K.; Alrikabi, Redha; Milburn, Peter

    2017-07-01

    Plantar pressure-sensing mats and insole plantar sensor pads are ideal low-cost alternatives to force plates for capturing plantar COP excursion during gait. The acquired COP traces, in the form of pedobarographic images are favored by many clinicians and allied health professionals for evaluation of foot loading and balance in relation to foot biomechanics, foot injury, foot deformation, and foot ulceration. Researchers have recommended the use of COP trace for the biomechanical study of the deformed foot and lower-limb to improve orthosis design and testing. A correctly designed orthoses improves mobility and reduces pain in the foot, lower limb and lower spine region during gait. The research was carried out to evaluate the performance of two types of orthosis, namely: a custom-molded orthosis and an over-the-counter molded orthosis to determine the quality of gait of an adult scoliotic patient. COP trace patterns were compared with those of a healthy adult and showed the design of the custom-molded orthosis resulted in an improved quality of movements and provided enhanced stability for the deformed left foot during gait.

  17. Immediate effects of using ankle-foot orthoses in the kinematics of gait and in the balance reactions in Charcot-Marie-Tooth disease

    OpenAIRE

    Pereira, Rouse Barbosa; Felício, Lílian Ramiro; Ferreira, Arthur de Sá; Menezes, Sara Lúcia de; Freitas, Marcos Raimundo Gomes de; Orsini, Marco

    2014-01-01

    The Charcot-Marie-Tooth (CMT) disease is a peripheral hereditary neuropathy with progressive distal muscle atrophy and weakness, mainly in lower limbs, that evolves limiting the gait and balance. The objective of the study was to analyse the immediate effects of using Ankle-Foot Orthosis (AFO) in the gait's kinematics and balance in patients with CMT. Nine individuals were evaluated by Tinetti scales and Dynamic Gait Index (DGI) and gait's kinematics parameters through the motion capturing sy...

  18. Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO).

    Science.gov (United States)

    Yatsuya, Kanan; Hirano, Satoshi; Saitoh, Eiichi; Tanabe, Shigeo; Tanaka, Hirotaka; Eguchi, Masayuki; Katoh, Masaki; Shimizu, Yasuhiro; Uno, Akito; Kagaya, Hitoshi

    2018-01-01

    To compare the energy efficiency of Wearable Power-Assist Locomotor (WPAL) with conventional knee-ankle-foot orthoses (MSH-KAFO) such as Hip and Ankle Linked Orthosis (HALO) or Primewalk. Cross over case-series. Chubu Rosai Hospital, Aichi, Japan, which is affiliated with the Japan Organization of Occupational Health and Safety. Six patients were trained with MSH-KAFO (either HALO or Primewalk) and WPAL. They underwent 6-minute walk tests with each orthosis. Energy efficiency was estimated using physiological cost index (PCI) as well as heart rate (HR) and modified Borg score. Trial energy efficiency with MSH-KAFO was compared with WPAL to assess if differences in PCI became greater between MSH-KAFO and WPAL as time goes on during the 6-minute walk. Spearman correlation coefficient of time (range: 0.5-6.0 minutes) with the difference was calculated. The same statistical procedures were repeated for HR and modified Borg score. Greater energy efficiency, representing a lower gait demand, was observed in trials with WPAL compared with MSH-KAFO (Spearman correlation coefficients for PCI, HR and modified Borg were 0.93, 0.90 and 0.97, respectively, all P energy efficient type of robotics that may be used by patients with paraplegia.

  19. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Ankle foot orthosis-footwear combination tuning: an investigation into common clinical practice in the United Kingdom.

    Science.gov (United States)

    Eddison, Nicola; Chockalingam, Nachiappan; Osborne, Stephen

    2015-04-01

    Ankle foot orthoses are used to treat a wide variety of gait pathologies. Ankle foot orthosis-footwear combination tuning should be routine clinical practice when prescribing an ankle foot orthosis. Current research suggests that failure to tune ankle foot orthosis-footwear combinations can lead to immediate detrimental effect on function, and in the longer term, it may actually contribute to deterioration. The purpose of this preliminary study was to identify the current level of knowledge clinicians have in the United Kingdom regarding ankle foot orthosis-footwear combination tuning and to investigate common clinical practice regarding ankle foot orthosis-footwear combination tuning among UK orthotists. Cross-sectional survey. A prospective study employing a multi-item questionnaire was sent out to registered orthotists and uploaded on to the official website of British Association of Prosthetists and Orthotists to be accessed by their members. A total of 41 completed questionnaires were received. The results demonstrate that only 50% of participants use ankle foot orthosis-footwear combination tuning as standard clinical practice. The most prevalent factors preventing participants from carrying out ankle foot orthosis-footwear combination tuning are a lack of access to three-dimensional gait analysis equipment (37%) and a lack of time available in their clinics (27%). Although, ankle foot orthosis-footwear combination tuning has been identified as an essential aspect of the prescription of ankle foot orthoses, the results of this study show a lack of understanding of the key principles behind ankle foot orthosis-footwear combination tuning. © The International Society for Prosthetics and Orthotics 2014.

  1. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.

    Science.gov (United States)

    Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W

    2013-10-01

    The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.

  2. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A

    2016-06-01

    Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.

  3. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A

  4. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Y.L.; Buizer, A.I.; van den Noort, J.C.; Becher, J.G.; Harlaar, J.; Brehm, M.A.

    2015-01-01

    Introduction: Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off

  5. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    Science.gov (United States)

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.

  6. Use and tolerability of a side pole static ankle foot orthosis in children with neurological disorders.

    Science.gov (United States)

    Delvert, Céline; Rippert, Pascal; Margirier, Françoise; Vadot, Jean-Pierre; Bérard, Carole; Poirot, Isabelle; Vuillerot, Carole

    2017-04-01

    Transverse-plane foot deformities are a frequently encountered issue in children with neurological disorders. They are the source of many symptoms, such as pain and walking difficulties, making their prevention very important. We aim to describe the use and tolerability of a side pole static ankle foot orthosis used to prevent transverse-plane foot deformities in children with neurologic disorders. Monocentric, retrospective, observational study. Medical data were collected from 103 children with transverse-plane foot deformities in one or both feet caused by a neurological impairment. All children were braced between 2001 and 2010. Unilateral orthosis was prescribed for 32 children and bilateral orthosis for 71. Transverse-plane foot deformities were varus in 66% of the cases and an equinus was associated in 59.2% of the cases. Mean age for the first prescription was 8.6 years. For the 23 patients present at the 4-year visit, 84.8% still wore the orthosis daily, and 64.7% wore the orthosis more than 6 h per day. The rate of permanent discontinuation of wearing the orthosis was 14.7%. The side pole static ankle foot orthosis is well tolerated with very few side effects, which promotes regular wearing and observance. Clinical relevance Side pole static ankle foot orthoses are well tolerated and can be safely used for children with foot abnormalities in the frontal plane that have a neurological pathology origin.

  7. Ankle-foot orthosis bending axis influences running mechanics.

    Science.gov (United States)

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (pbenefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  8. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study

    OpenAIRE

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van De Walle, Patricia; Seyler, J

    2006-01-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (wit...

  9. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Science.gov (United States)

    Kerkum, Yvette L; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (ppush-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Dutch Trial Register NTR3418.

  10. The ankle-foot orthosis improves balance and reduces fall risk of chronic spastic hemiparetic patients.

    Science.gov (United States)

    Cakar, E; Durmus, O; Tekin, L; Dincer, U; Kiralp, M Z

    2010-09-01

    Ankle foot orthoses (AFO) are commonly used orthotic device in order to restore the ankle foot function and to improve the balance and gait in post-stroke hemiparetic patients. However, there remain some discussions about their effectiveness on long term hemiparetic patients who had mild to moderate spasticity. To investigate the relative effect of prefabricated thermoplastic posterior leaf spring AFO (PLS-AFO) on balance and fall risk. A cross-over interventional study The Department of PMR of a tertiary hospital. Twenty-five chronic post-stroke long duration hemiparetic patients who had Ashworth grade 1-2 spasticity at affected calf muscles and lower limb Brunnstrom stage 2-3 and also able to walk independently without an assistive device. Berg Balance Scale (BERG), and the postural stability test (PST) and the fall risk test (FRT) of Biodex balance systems were used for the assessments. All of the patients were assessed with AFO and without AFO. All assessments were made with footwear. The mean post-stroke duration was 20,32±7,46 months. The BERG scores were 42,12±9,05 without AFO and 47,52±7,77 with AFO; the overall stability scores of FRT were 3,35±1,97 without AFO and 2,69±1,65 with AFO (Pbalance and provide fall risk reduction in chronic post-stroke ambulatory hemiparetic patients who had mild to moderate spasticity on their affected lower limb. These results encourage the usage of AFO on long duration hemiparetic patients in order to provide better balance and lesser fall risk.

  11. The Effect of Rocker Bar Ankle Foot Orthosis on Functional Mobility in Post-Stroke Hemiplegic Patients

    Directory of Open Access Journals (Sweden)

    Farzad Farmani

    2015-09-01

    Full Text Available Objectives: Ankle Foot Orthoses (AFOs are widely utilized to improve walking ability in hemiplegic patients. The present study aimed to evaluate the effect of Rocker bar Ankle Foot Orthosis (RAFO on functional mobility in post-stroke hemiplegic patients. Methods: Fifteen hemiplegic patients (men and women who were at least 6-months post-stroke and able to walk without assistive device for at least 10 meters voluntarily participated in this study. The patients were examined with and without RAFO. Their functional mobility was evaluated through 10-meter walk test and Timed Up and Go (TUG test. Also, paired t-test was used to analyze obtained data. Results: When patients used RAFO, their gait speed significantly increased (P<0.05. Also, the time of performing TUG test experienced a significant decrease using RAFO compared with utilizing shoe only (P<0.05. Discussion: RAFO led to a significant improvement in functional mobility in hemiplegic patient’s secondary to stroke. It seems that, it has been due to the positive effect of rocker modification on improving push off and transferring weight during stance phase of gait.

  12. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Directory of Open Access Journals (Sweden)

    Yvette L Kerkum

    Full Text Available Rigid Ankle-Foot Orthoses (AFOs are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP. While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years were prescribed with a ventral shell spring-hinged AFO (vAFO. The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05 was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power

  13. Effect of Shoes on Stiffness and Energy Efficiency of Ankle-Foot Orthosis: Bench Testing Analysis.

    Science.gov (United States)

    Kobayashi, Toshiki; Gao, Fan; LeCursi, Nicholas; Foreman, K Bo; Orendurff, Michael S

    2017-12-01

    Understanding the mechanical properties of ankle-foot orthoses (AFOs) is important to maximize their benefit for those with movement disorders during gait. Though mechanical properties such as stiffness and/or energy efficiency of AFOs have been extensively studied, it remains unknown how and to what extent shoes influence their properties. The aim of this study was to investigate the effect of shoes on stiffness and energy efficiency of an AFO using a custom mechanical testing device. Stiffness and energy efficiency of the AFO were measured in the plantar flexion and dorsiflexion range, respectively, under AFO-alone and AFO-Shoe combination conditions. The results of this study demonstrated that the stiffness of the AFO-Shoe combination was significantly decreased compared to the AFO-alone condition, but no significant differences were found in energy efficiency. From the results, we recommend that shoes used with AFOs should be carefully selected not only based on their effect on alignment of the lower limb, but also their effects on overall mechanical properties of the AFO-Shoe combination. Further study is needed to clarify the effects of differences in shoe designs on AFO-Shoe combination mechanical properties.

  14. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Directory of Open Access Journals (Sweden)

    Gordon Keith E

    2007-12-01

    Full Text Available Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control. Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6 or myoelectric control (n = 6. We recorded lower limb electromyography (EMG, joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

  15. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  16. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO to Create Normal Ankle Joint Behavior

    Directory of Open Access Journals (Sweden)

    Amirhesam Amerinatanzi

    2017-12-01

    Full Text Available Hinge-based Ankle Foot Orthosis (HAFO is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II: (i subjects with bare foot; (ii subjects wearing a conventional HAFO with no spring; (iii subjects wearing a conventional Stainless Steel-based HAFO; and (iv subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree and an increased level of moment (0.55 versus 0.36 N·m/kg. Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  17. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior.

    Science.gov (United States)

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad

    2017-12-07

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  18. Balance and walking involvement in facioscapulohumeral dystrophy: a pilot study on the effects of custom lower limb orthoses.

    Science.gov (United States)

    Aprile, I; Bordieri, C; Gilardi, A; Lainieri Milazzo, M; Russo, G; De Santis, F; Frusciante, R; Iannaccone, E; Erra, C; Ricci, E; Padua, L

    2013-04-01

    Autosomal dominant facioscapulohumeral dystrophy (FSHD), the third most common muscular dystrophy, is characterised by asymmetric and highly variable muscle weakness. In FSHD patients, the coupling of the ankle muscles impairment with the knee, hip and abdominal muscles impairment, causes complex alterations of balance and walking with deterioration of quality of life (QoL). The aim of this pilot study is to evaluate the effects of custom orthoses (foot orthosis-FO and ankle foot orthosis-AFO) on balance, walking and QoL of FSHD patients through a multidimensional approach. Pilot study. Outpatient Rehabilitation Department of Don Gnocchi Foundation. Fifteen patients with facioscapulohumeral muscular dystrophy were studied. On 15 FSHD patients clinical evaluation (Manual Muscle Test-MMT, Clinical Severity Score), performance tests (10 meter Walking test-10mWT and 2 minute Walking Test-2minWT), instrumental assessment (stabilometric evaluation), disability (Rivermead Mobility Index- RMI, Berg Balance Scale-BBS) and patient-oriented (Medical Outcome Study 36-item Short Form-SF-36, North American Spine Society-NASS and Visual Analogue Scale-VAS) measures were performed. Patients were evaluated first, wearing their shoes and then wearing their shoes plus orthoses. This evaluation was performed 1 month after wearing the orthoses. The shoes plus orthoses evaluation, performed after one month in which the patients daily wore the custom lower limb orthoses, showed a significant improvement of walking performance (10-mWT pstudy shows that in FSHD patients' custom lower limb orthoses (foot-orthoses and ankle-foot-orthoses); evaluated by using a multidimensional approach, improve walking, balance and QoL. These preliminary results suggest that custom lower limb orthoses could reduce the risk of falling with a positive effect on our patients' safety. Our results should encourage the scientific community to do efficacy study on this hot topic.

  19. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.

    Science.gov (United States)

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van de Walle, Patricia; Seyler, J

    2006-10-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.

  20. The effect of ankle foot orthosis stiffness on the energy cost of walking : A simulation study

    NARCIS (Netherlands)

    Bregman, D.J.J.; Van der Krogt, M.M.; De Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  1. The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study.

    NARCIS (Netherlands)

    Bregman, D.J.J.; van der Krogt, M.M.; de Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background: In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot

  2. Development of an Active Ankle Foot Orthosis to Prevent Foot Drop and Toe Drag in Hemiplegic Patients: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Jungyoon Kim

    2011-01-01

    Full Text Available We developed an active ankle-foot orthosis (AAFO that controls dorsiflexion/plantarflexion of the ankle joint to prevent foot drop and toe drag during hemiplegic walking. To prevent foot slap after initial contact, the ankle joint must remain active to minimize forefoot collision against the ground. During late stance, the ankle joint must also remain active to provide toe clearance and to aid with push-off. We implemented a series elastic actuator in our AAFO to induce ankle dorsiflexion/plantarflexion. The activator was controlled by signals from force sensing register (FSR sensors that detected gait events. Three dimensional gait analyses were performed for three hemiplegic patients under three different gait conditions: gait without AFO (NAFO, gait with a conventional hinged AFO that did not control the ankle joint (HAFO, and gait with the newly-developed AFO (AAFO. Our results demonstrate that our newly-developed AAFO not only prevents foot drop by inducing plantarflexion during loading response, but also prevents toe drag by facilitating plantarflexion during pre-swing and dorsiflexion during swing phase, leading to improvement in most temporal-spatial parameters. However, only three hemiplegic patients were included in this gait analysis. Studies including more subjects will be required to evaluate the functionality of our newly developed AAFO.

  3. Weight transfer analysis in adults with hemiplegia using ankle foot orthosis.

    Science.gov (United States)

    Nolan, Karen J; Yarossi, Mathew

    2011-03-01

    Identifying and understanding the changes in transfer of momentum that are directly affected by orthotic intervention are significant factors related to the improvement of mobility in individuals with hemiplegia. The purpose of this investigation was to use a novel analysis technique to objectively measure weight transfer during double support (DS) in healthy individuals and individuals with hemiplegia secondary to stroke with and without an ankle foot orthosis. Prospective, Repeated measures, case-controlled trial. Participants included 25 adults with stroke-related hemiplegia >6 months using a prescribed ankle foot orthosis and 12 age-matched healthy controls. Main outcome measures included the weight transfer point timing (WTP, %DS), maximum total force timing (MTF, %DS), timing difference between WTP and MTF (MTF-WTP, %DS) and the linearity of loading (LOL, R(2)) during the DS phase of the gait cycle. The WTP and LOL were significantly different between conditions with and without the ankle foot orthosis for the affected and unaffected limb in post-stroke individuals, p ≤ 0.01. The MTF and difference in timing between MTF-WTP were significantly different during affected limb loading with and without the ankle foot orthosis in the stroke group, p ≤ 0.0001 and p = 0.03, respectively. MTF, MTF-WTP and LOL were significantly different between individuals with stroke (during affected limb loading) and healthy controls (during right limb loading). This research established a systematic method for analysing weight transfer during walking to evaluate the effect of an ankle foot orthosis on loading during double support in hemiplegic gait. This novel method can be used to elucidate biomechanical mechanisms behind orthosis-mediated changes in gait patterns and quantify functional mobility outcomes in rehabilitation. This novel approach to orthotic assessment will provide the clinician with needed objective evidence to select the most effective orthotic

  4. An ankle-foot orthosis powered by artificial pneumatic muscles.

    Science.gov (United States)

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  5. Effect of Ankle-foot Orthosis on Lower Limb Muscle Activities and Static Balance of Stroke Patients Authors’ Names

    OpenAIRE

    Lee, Youngmin; Her, Jin Gang; Choi, Youngeun; Kim, Heesoo

    2014-01-01

    [Purpose] This study examined the effects of an ankle-foot orthosis worn during balance training on lower limb muscle activity and static balance of chronic stroke patients. [Subjects] The subjects were twenty-five inpatients receiving physical therapy for chronic stroke. [Methods] The chronic stroke patients were divided into two groups: thirteen patients were assigned to the ankle-foot orthosis group, while the remaining twelve patients wore only their shoes. Each group performed balance tr...

  6. Diagnostic accuracy of physical examination tests of the ankle/foot complex: a systematic review.

    Science.gov (United States)

    Schwieterman, Braun; Haas, Deniele; Columber, Kirby; Knupp, Darren; Cook, Chad

    2013-08-01

    Orthopedic special tests of the ankle/foot complex are routinely used during the physical examination process in order to help diagnose ankle/lower leg pathologies. The purpose of this systematic review was to investigate the diagnostic accuracy of ankle/lower leg special tests. A search of the current literature was conducted using PubMed, CINAHL, SPORTDiscus, ProQuest Nursing and Allied Health Sources, Scopus, and Cochrane Library. Studies were eligible if they included the following: 1) a diagnostic clinical test of musculoskeletal pathology in the ankle/foot complex, 2) description of the clinical test or tests, 3) a report of the diagnostic accuracy of the clinical test (e.g. sensitivity and specificity), and 4) an acceptable reference standard for comparison. The quality of included studies was determined by two independent reviewers using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Nine diagnostic accuracy studies met the inclusion criteria for this systematic review; analyzing a total of 16 special tests of the ankle/foot complex. After assessment using the QUADAS-2, only one study had low risk of bias and low concerns regarding applicability. Most ankle/lower leg orthopedic special tests are confirmatory in nature and are best utilized at the end of the physical examination. Most of the studies included in this systematic review demonstrate notable biases, which suggest that results and recommendations in this review should be taken as a guide rather than an outright standard. There is need for future research with more stringent study design criteria so that more accurate diagnostic power of ankle/lower leg special tests can be determined. 3a.

  7. RELIABILITY OF ANKLE-FOOT MORPHOLOGY, MOBILITY, STRENGTH, AND MOTOR PERFORMANCE MEASURES.

    Science.gov (United States)

    Fraser, John J; Koldenhoven, Rachel M; Saliba, Susan A; Hertel, Jay

    2017-12-01

    Assessment of foot posture, morphology, intersegmental mobility, strength and motor control of the ankle-foot complex are commonly used clinically, but measurement properties of many assessments are unclear. To determine test-retest and inter-rater reliability, standard error of measurement, and minimal detectable change of morphology, joint excursion and play, strength, and motor control of the ankle-foot complex. Reliability study. 24 healthy, recreationally-active young adults without history of ankle-foot injury were assessed by two clinicians on two occasions, three to ten days apart. Measurement properties were assessed for foot morphology (foot posture index, total and truncated length, width, arch height), joint excursion (weight-bearing dorsiflexion, rearfoot and hallux goniometry, forefoot inclinometry, 1 st metatarsal displacement) and joint play, strength (handheld dynamometry), and motor control rating during intrinsic foot muscle (IFM) exercises. Clinician order was randomized using a Latin Square. The clinicians performed independent examinations and did not confer on the findings for the duration of the study. Test-retest and inter-tester reliability and agreement was assessed using intraclass correlation coefficients (ICC 2,k ) and weighted kappa ( K w ). Test-retest reliability ICC were as follows: morphology: .80-1.00, joint excursion: .58-.97, joint play: -.67-.84, strength: .67-.92, IFM motor rating: K W -.01-.71. Inter-rater reliability ICC were as follows: morphology: .81-1.00, joint excursion: .32-.97, joint play: -1.06-1.00, strength: .53-.90, and IFM motor rating: K w .02-.56. Measures of ankle-foot posture, morphology, joint excursion, and strength demonstrated fair to excellent test-retest and inter-rater reliability. Test-retest reliability for rating of perceived difficulty and motor performance was good to excellent for short-foot, toe-spread-out, and hallux exercises and poor to fair for lesser toe extension. Joint play measures had

  8. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  9. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR. We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs to matched abled-bodied (AB individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  10. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    Science.gov (United States)

    Rábago, Christopher A; Aldridge Whitehead, Jennifer; Wilken, Jason M

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  11. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton

    Science.gov (United States)

    Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk

    2018-01-01

    The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments. PMID:29551959

  12. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton

    Directory of Open Access Journals (Sweden)

    Philippe Malcolm

    2018-03-01

    Full Text Available The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments.

  13. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton.

    Science.gov (United States)

    Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk

    2018-01-01

    The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition . Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions . Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments.

  14. Effect of an ankle-foot orthosis on knee joint mechanics: a novel conservative treatment for knee osteoarthritis.

    Science.gov (United States)

    Fantini Pagani, Cynthia H; Willwacher, Steffen; Benker, Rita; Brüggemann, Gert-Peter

    2014-12-01

    Several conservative treatments for medial knee osteoarthritis such as knee orthosis and laterally wedged insoles have been shown to reduce the load in the medial knee compartment. However, those treatments also present limitations such as patient compliance and inconsistent results regarding the treatment success. To analyze the effect of an ankle-foot orthosis on the knee adduction moment and knee joint alignment in the frontal plane in subjects with knee varus alignment. Controlled laboratory study, repeated measurements. In total, 14 healthy subjects with knee varus alignment were analyzed in five different conditions: without orthotic, with laterally wedged insoles, and with an ankle-foot orthosis in three different adjustments. Three-dimensional kinetic and kinematic data were collected during gait analysis. Significant decreases in knee adduction moment, knee lever arm, and joint alignment in the frontal plane were observed with the ankle-foot orthosis in all three different adjustments. No significant differences could be found in any parameter while using the laterally wedged insoles. The ankle-foot orthosis was effective in reducing the knee adduction moment. The decreases in this parameter seem to be achieved by changing the knee joint alignment and thereby reducing the knee lever arm in the frontal plane. This study presents a novel approach for reducing the load in the medial knee compartment, which could be developed as a new treatment option for patients with medial knee osteoarthritis. © The International Society for Prosthetics and Orthotics 2013.

  15. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  16. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    Science.gov (United States)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  17. A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies

    Science.gov (United States)

    Belokar, R. M.; Banga, H. K.; Kumar, R.

    2017-12-01

    This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.

  18. Development of Ankle Foot Orthosis (AFO Using Pneumatic Artificial Muscle for Disabled Children

    Directory of Open Access Journals (Sweden)

    Ishak N.Z.

    2017-01-01

    Full Text Available Ankle foot orthosis (AFO are commonly used to correct the instabilities and joint weakness of lower limb. In this research, AFO was developed by using pneumatic artificial muscle (PAM to prevent plantarflexion to occur and also to correct the foot from the inversion syndrome. The research started with designing the AFO by using SolidWorks software based on anthropometry measurement data (n=5, age=12 years old. The mechanical simulation was conducted by using Autodesk Inventor software to obtain a safety factor before the fabrication process was conducted. The AFO was fabricated using 3D printer and the thermoplastic elastomer (TPE rubber was selected as the material. PAM was tested by using test bed machine to generate the force and contraction by muscle. The result shows that the PAM was suitable for low speed as the displacement was greater. The AFO could be valuable for the gait rehabilitation.

  19. Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Derave, Wim; De Clercq, Dirk

    2014-11-01

    A simple ankle-foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance during a maximal incremental exercise could be improved with an exoskeleton if the exoskeleton is still efficient during maximal exercise intensities. Therefore, we quantified the walking performance during a maximal incremental exercise test with a powered and unpowered exoskeleton: uphill walking with progressively higher weights. Nine female subjects performed two incremental exercise tests with an exoskeleton: 1 day with (powered condition) and another day without (unpowered condition) plantarflexion assistance. Subjects walked on an inclined treadmill (15%) at 5 km h(-1) and 5% of body weight was added every 3 min until exhaustion. At volitional termination no significant differences were found between the powered and unpowered condition for blood lactate concentration (respectively, 7.93 ± 2.49; 8.14 ± 2.24 mmol L(-1)), heart rate (respectively, 190.00 ± 6.50; 191.78 ± 6.50 bpm), Borg score (respectively, 18.57 ± 0.79; 18.93 ± 0.73) and VO₂ peak (respectively, 40.55 ± 2.78; 40.55 ± 3.05 ml min(-1) kg(-1)). Thus, subjects were able to reach the same (near) maximal effort in both conditions. However, subjects continued the exercise test longer in the powered condition and carried 7.07 ± 3.34 kg more weight because of the assistance of the exoskeleton. Our results show that plantarflexion assistance during push-off can increase walking performance during a maximal exercise test as subjects were able to carry more weight. This emphasizes the importance of acting on the ankle joint in assistive devices and the potential of simple ankle-foot exoskeletons for reducing metabolic power and increasing weight carrying capability, even during maximal intensities.

  20. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop

    Directory of Open Access Journals (Sweden)

    Chin Robin

    2009-06-01

    Full Text Available Abstract Background A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking. Methods The PhAFO was constructed from a two-part (tibia and foot carbon composite structure with an articulating ankle joint. Ankle motion control was accomplished through a cam-follower locking mechanism actuated via a pneumatic circuit connected to the bellow pump and embedded in the foam sole. Biomechanical performance of the prototype orthosis was assessed during multiple trials of treadmill walking of an able-bodied control subject (n = 1. Motion capture and pressure measurements were used to investigate the effect of the PhAFO on lower limb joint behavior and the capacity of the bellow pump to repeatedly generate the required pneumatic pressure for toe clearance. Results Toe clearance during swing was successfully achieved during all trials; average clearance 44 ± 5 mm. Free ankle motion was observed during stance and plantarflexion was blocked during swing. In addition, the bellow component repeatedly generated an average of 169 kPa per step of pressure during ten minutes of walking. Conclusion This study demonstrated that fluid power could be harvested with a pneumatic circuit built into an AFO, and used to operate an actuated cam-lock mechanism that controls ankle-foot motion at specific periods of the gait cycle.

  1. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    Full Text Available Abstract Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1 without wearing the orthosis, 2 wearing the orthosis with artificial muscles turned off, 3 wearing the orthosis activated under direct proportional myoelectric control, and 4 wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04 and knee ( r = 0.95 ± 0.04 joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17. Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current

  2. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Science.gov (United States)

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17). Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design

  3. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace.

    Science.gov (United States)

    Burdett, R G; Borello-France, D; Blatchly, C; Potter, C

    1988-08-01

    The effects of the Air-Stirrup (AS) standard ankle brace on the gait of 19 subjects with hemiplegia resulting from a cerebrovascular accident who exhibited excessive subtalar joint motion were studied. Videotaped trials and footprint analyses were used to measure subjects' hip, knee, and ankle sagittal plane angles; inversion and eversion of the calcaneus; and time-distance gait characteristics. A one-way analysis of variance for repeated measures was used to compare the gait of 19 subjects with the AS brace and unbraced and 11 subjects with the AS brace, unbraced, and with an ankle-foot orthosis. The AS brace was associated with more calcaneal stability during standing than the unbraced condition. The ankle-foot orthosis was associated with less plantar flexion at foot-strike than either the AS brace or unbraced condition. Both the AS brace and the ankle-foot orthosis were associated with less mid-swing plantar flexion and increased step length on the paretic side compared with no brace. These results support the effectiveness of the AS brace in controlling inversion and eversion instability in patients with hemiplegia.

  4. Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer.

    Science.gov (United States)

    Pauser, Johannes; Jendrissek, Andreas; Brem, Matthias; Gelse, Kolja; Swoboda, Bernd; Carl, Hans-Dieter

    2012-07-01

    To investigate the value of a built-in physical strain trainer for the monitoring of partial weight bearing with an ankle-foot orthosis. 12 healthy volunteers were asked to perform three trials. Plantar peak pressure values from normal gait (trial one) were defined as 100% (baseline). The following trials were performed with the Vacoped® dynamic vacuum ankle orthosis worn in a neutral position with full weight bearing (trial two) and a restriction to 10% body weight (BW) (trial three), as monitored with an integrated physical strain trainer. Peak plantar pressure values were obtained using the pedar® X system. Peak pressure values were statistically significantly reduced wearing the Vacoped® shoe with full weight bearing for the hindfoot to 68% of the baseline (normal gait) and for the midfoot and forefoot to 83% and 60%, respectively. Limited weight bearing with 10% BW as controlled by physical strain trainer further reduced plantar peak pressure values for the hindfoot to 19%, for the midfoot to 43% of the baseline and the forefoot to 22% of the baseline. The Vacoped® vacuum ankle orthosis significantly reduces plantar peak pressure. The integrated physical strain trainer seems unsuitable to monitor a limitation to 10% BW adequately for the total foot. The concept of controlling partial weight bearing with the hindfoot-addressing device within the orthosis seems debatable but may be useful when the hindfoot in particular must be off-loaded.

  5. Effect of ankle-foot orthosis on postural control after stroke: a systematic review.

    Science.gov (United States)

    Guerra Padilla, M; Molina Rueda, F; Alguacil Diego, I M

    2014-09-01

    Stroke is currently the main cause of permanent disability in adults. The impairments are a combination of sensory, motor, cognitive and emotional changes that result in restrictions on the ability to perform basic activities of daily living (BADL). Postural control is affected and causes problems with static and dynamic balance, thus increasing the risk of falls and secondary injuries. The purpose of this review was to compile the literature to date, and assess the impact of ankle-foot orthosis (AFO) on postural control and gait in individuals who have suffered a stroke. The review included randomised and controlled trials that examined the effects of AFO in stroke patients between 18 and 80 years old, with acute or chronic evolution. No search limits on the date of the studies were included, and the search lasted until April 2011. The following databases were used: Pubmed, Trip Database, Cochrane library, Embase, ISI Web Knowledge, CINHAL and PEDro. Intervention succeeded in improving some gait parameters, such as speed and cadence. However it is not clear if there was improvement in the symmetry, postural sway or balance. Because of the limitations of this systematic review, due to the clinical diversity of the studies and the methodological limitations, 0these results should be considered with caution. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  6. Validation of the Italian version of the Oxford Ankle Foot Questionnaire for children.

    Science.gov (United States)

    Martinelli, Nicolò; Romeo, Giovanni; Bonifacini, Carlo; Viganò, Marco; Bianchi, Alberto; Malerba, Francesco

    2016-01-01

    The purpose of this study was to translate the Oxford Ankle Foot Questionnaire (OAFQ) into Italian, to perform a cross-cultural adaptation and to evaluate its psychometric properties. The Italian OAFQ was developed according to the recommended forward/backward translation protocol and evaluated in pediatric patients treated for symptomatic flatfoot deformity. Feasibility, reliability, internal consistency, construct validity [comparing OAFQ domains with Child Health Questionnaire (CHQ) domains] and responsiveness to surgical treatment were assessed. A total of 61 children and their parents were enrolled in the study. Results showed satisfactory levels of internal consistency for both children and parent forms. The test-retest reliability was confirmed by high ICC values for both child and parents subscales. Good construct validity was showed by patterns of relationships consistent with theoretically related domains of the CHQ. After surgery, the mean OAFQ scores improved in all the domains after treatment with the subtalar arthroereisis, for both children and parent scales (p valid instrument in order to evaluate interventions used to treat children's foot or ankle problem, but needs further study on different clinical settings.

  7. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.

    Science.gov (United States)

    Shepherd, Max K; Rouse, Elliott J

    2017-12-01

    Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.

  8. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex.

    Science.gov (United States)

    Cheung, Jason Tak-Man; Zhang, Ming; An, Kai-Nan

    2004-10-01

    The plantar fascia is one of the major stabilizing structures of the longitudinal arch of human foot, especially during midstance of the gait cycle. Knowledge of its functional biomechanics is important for establishing the biomechanical rationale behind different rehabilitation, orthotic and surgical treatment of plantar fasciitis. This study aims at quantifying the biomechanical responses of the ankle-foot complex with different plantar fascia stiffness. A geometrical detailed three-dimensional finite element model of the human foot and ankle, incorporating geometric and contact nonlinearities was constructed by 3D reconstruction of MR images. A sensitivity study was conducted to evaluate the effects of varying elastic modulus (0-700 MPa) of the plantar fascia on the stress/strain distribution of the bony, ligamentous and encapsulated soft tissue structures. The results showed that decreasing the Young's modulus of plantar fascia would increase the strains of the long and short plantar and spring ligaments significantly. With zero fascia Young's modulus to simulate the plantar fascia release, there was a shift in peak von Mises stresses from the third to the second metatarsal bones and increased stresses at the plantar ligament attachment area of the cuboid bone. Decrease in arch height and midfoot pronation were predicted but did not lead to the total collapse of foot arch. Surgical dissection of the plantar fascia may induce excessive strains or stresses in the ligamentous and bony structures. Surgical release of plantar fascia should be well-planned to minimise the effect on its structural integrity to reduce the risk of developing arch instability and subsequent painful foot syndrome.

  9. The Oxford Ankle Foot Questionnaire for children: responsiveness and longitudinal validity.

    Science.gov (United States)

    Morris, Christopher; Doll, Helen; Davies, Neville; Wainwright, Andrew; Theologis, Tim; Willett, Keith; Fitzpatrick, Ray

    2009-12-01

    To evaluate how scores from the Oxford Ankle Foot Questionnaire change over time and with treatment using both distribution-based and anchor-based approaches. Eighty children aged 5-16 and their parent or career completed questionnaires at orthopaedic or trauma outpatient clinics. They were asked to complete and return a second set of questionnaires again within 2 weeks (retest), and then mailed a third set of questionnaires to complete again after 2 months (follow-up). The follow-up questionnaires included a global rating of change 'transition' item. Child- and parent-reported mean domain scores (Physical, School & Play, and Emotional) were all stable at retest, whereas positive mean changes were observed at follow-up. As we hypothesised, trauma patients had poorer scores than elective patients at baseline, and showed greater improvement at follow-up. For trauma patients, mean changes in per cent scores were large (scores improved between 40 and 56 for the Physical and School & Play domains, and 17 and 21 for Emotional); all effect sizes (ES) were large (>0.8). For elective patients, the mean improvement in per cent scores were more moderate (Physical: child 10, ES = 0.4, parent 11, ES = 0.5; School & Play child 0, ES = 0, parent 9 ES = 0.4; Emotional: child 6, ES = 0.2; parents 8, ES > 0.3). Minimal detectable change (MDC(90)), an indication of measurement error, ranged from 6 to 8. Half the standard deviation of baseline scores ranged from 11 to 18. Minimal important difference could only be calculated for elective patients (9 child and 13 parent ratings), these ranged from 7 to 17. The findings support the responsiveness and longitudinal validity of the scales. Changes in domain scores of, or exceeding, the MDC(90) (6-8) are likely to be beyond measurement error; further work is required to refine the estimate of change that can be considered important.

  10. The location of the peroneus longus tendon in the cuboid groove: sonographic study in various positions of the ankle-foot in asymptomatic volunteers.

    Science.gov (United States)

    Choo, Hye Jung; Lee, Sun Joo; Huang, Brady K; Resnick, Donald L

    2018-04-10

    To evaluate the normal location of the peroneus longus tendon (PL) in the cuboid groove in various ankle-foot positions by ultrasonography in asymptomatic volunteers. Ultrasonographic assessment of the PL in the cuboid groove was performed in 20 feet of ten healthy volunteers. Each PL was examined in five ankle-foot positions (i.e., neutral, dorsiflexion, plantar-flexion, supination, and pronation). The PL location was qualitatively categorized as "inside" when the PL was entirely within the cuboid groove, as "overlying" when some part of the PL was perched on the cuboid tuberosity, and as "outside" when the PL was entirely on the cuboid tuberosity. For quantitative evaluation of the PL location, the distance between the PL and the cuboid groove was measured. The width of the cuboid groove was measured in the neutral position. The PL location did not significantly change with changes in the ankle-foot position. Qualitatively, an "overlying" PL was the most common type, regardless of the ankle-foot position. "Inside" PLs were found in only 35, 20, 30, 25, and 35% of feet in neutral, dorsiflexion, plantar-flexion, supination, and pronation positions, respectively. The quantitative PL location was also not significantly different among all ankle-foot positions and it was significantly negatively correlated with the cuboid groove width. In healthy volunteers, 65% or more of the PLs were partially or completely located outside of the cuboid groove, regardless of the ankle-foot position. The PL location relative to the cuboid groove was related to the cuboid groove width.

  11. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.

    Science.gov (United States)

    Takahashi, Kota Z; Stanhope, Steven J

    2013-09-01

    Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking

    OpenAIRE

    Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2015-01-01

    Background Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from pus...

  13. The Effect of Passive Movement for Paretic Ankle-Foot and Brain Activity in Post-Stroke Patients.

    Science.gov (United States)

    Vér, Csilla; Emri, Miklós; Spisák, Tamás; Berényi, Ervin; Kovács, Kázmér; Katona, Péter; Balkay, László; Menyhárt, László; Kardos, László; Csiba, László

    2016-01-01

    This study aims at investigating the short-term efficacy of the continuous passive motion (CPM) device developed for the therapy of ankle-foot paresis and to investigate by fMRI the blood oxygen level-dependent responses (BOLD) during ankle passive movement (PM). Sixty-four stroke patients were investigated. Patients were assigned into 2 groups: 49 patients received both 15 min manual and 30 min device therapy (M + D), while the other group (n = 15) received only 15 min manual therapy (M). A third group of stroke patients (n = 12) was investigated by fMRI before and immediately after 30 min CPM device therapy. There was no direct relation between the fMRI group and the other 2 groups. All subjects were assessed using the Modified Ashworth Scale (MAS) and a goniometer. Mean MAS decreased, the ankle's mean plantar flexion and dorsiflexion passive range of motion (PROM) increased and the equinovalgus improved significantly in the M + D group. In the fMRI group, the PM of the paretic ankle increased BOLD responses; this was observed in the contralateral pre- and postcentral gyrus, superior temporal gyrus, central opercular cortex, and in the ipsilateral postcentral gyrus, frontal operculum cortex and cerebellum. Manual therapy with CPM device therapy improved the ankle PROM, equinovalgus and severity of spasticity. The ankle PM increased ipsi- and contralateral cortical activation. © 2016 S. Karger AG, Basel.

  14. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    Science.gov (United States)

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  15. Examination of a muscular activity estimation model using a Bayesian network for the influence of an ankle foot orthosis.

    Science.gov (United States)

    Inoue, Jun; Kawamura, Kazuya; Fujie, Masakatsu G

    2012-01-01

    In the present paper, we examine the appropriateness of a new model to examine the activity of the foot in gait. We developed an estimation model for foot-ankle muscular activity in the design of an ankle-foot orthosis by means of a statistical method. We chose three muscles for measuring muscular activity and built a Bayesian network model to confirm the appropriateness of the estimation model. We experimentally examined the normal gait of a non-disabled subject. We measured the muscular activity of the lower foot muscles using electromyography, the joint angles, and the pressure on each part of the sole. From these data, we obtained the causal relationship at every 10% level for these factors and built models for the stance phase, control term, and propulsive term. Our model has three advantages. First, it can express the influences that change during gait because we use 10% level nodes for each factor. Second, it can express the influences of factors that differ for low and high muscular-activity levels. Third, we created divided models that are able to reflect the actual features of gait. In evaluating the new model, we confirmed it is able to estimate all muscular activity level with an accuracy of over 90%.

  16. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    Science.gov (United States)

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  17. Validation of the translated Oxford ankle foot questionnaire in 82 Danish children aged between five and 16 years.

    Science.gov (United States)

    Martinkevich, P; Møller-Madsen, B; Gottliebsen, M; Kjeldgaard Pedersen, L; Rahbek, O

    2015-03-01

    We present the validation of a translation into Danish of the Oxford ankle foot questionnaire (OxAFQ). We followed the Isis Pros guidelines for translation and pilot-tested the questionnaire on ten children and their parents. Following modifications we tested the validity of the final questionnaire on 82 children (36 boys and 45 girls) with a mean age of 11.7 years (5.5 to 16.0) and their parents. We tested the reliability (repeatability (test-retest), child-parent agreement, internal consistency), feasibility (response rate, time to completion, floor and ceiling effects) and construct validity. The generic child health questionnaire was used for comparison. We found good internal consistency for the physical and the school and play domains, but lower internal consistency for the emotional domain. Overall, good repeatability was found within children and parents as well as agreement between children and parents. The OxAFQ was fast and easy to complete, but we observed a tendency towards ceiling effects in the school and play and emotional domains. To our knowledge this is the first independent validation of the OxAFQ in any language. We found it valid and feasible for use in the clinic to assess the impact on children's lives of foot and/or ankle disorders. It is a valuable research tool. ©2015 The British Editorial Society of Bone & Joint Surgery.

  18. Effects on foot external rotation of the modified ankle-foot orthosis on post-stroke hemiparetic gait.

    Science.gov (United States)

    Kim, Ha Jeong; Chun, Min Ho; Kim, Hong Min; Kim, Bo Ryun

    2013-08-01

    To evaluate the effects of heel-opened ankle foot orthosis (HOAFO) on hemiparetic gait after stroke, especially on external foot rotation, and to compare the effects of HOAFO with conventional plastic-AFO (pAFO) and barefoot during gait. This cross-over observational study involved 15 hemiparetic patients with external rotation of the affected foot. All subjects were able to walk independently, regardless of their usual use of a single cane, and had a less than fair-grade in ankle dorsiflexion power. Each patient was asked to walk in three conditions with randomized sequences: 1) barefoot, 2) with a pAFO, and 3) with an HOAFO. Their gait patterns were analyzed using a motion analysis system. Fifteen patients consisted of nine males and six females. On gait analysis, hip and foot external rotation were significantly greater in pAFO (-3.35° and -23.68°) than in barefoot and HOAFO conditions (pexternal rotation compared with pAFO; although there was no significant difference between HOAFO and barefoot walking. Walking speed and percentage of single limb support were significantly greater for HOAFO than in barefoot walking. HOAFO was superior to pAFO in reducing hip and foot external rotation during the stance phase in patients with post-stroke hemiparesis. HOAFO may, therefore, be useful in patients with excessive external rotation of the foot during conventional pAFO.

  19. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    Science.gov (United States)

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  20. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients' satisfaction, walking speed and physical activity level.

    NARCIS (Netherlands)

    Swigchem, R. van; Vloothuis, J.; Boer, J. de; Weerdesteijn, V.G.M.; Geurts, A.C.H.

    2010-01-01

    OBJECTIVE: The aim of this study was to evaluate whether community-dwelling chronic stroke patients wearing an ankle-foot orthosis would benefit from changing to functional electrical stimulation of the peroneal nerve. METHODS: In 26 community-dwelling chronic (> 6 months post-onset) patients after

  1. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    Science.gov (United States)

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  2. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    Science.gov (United States)

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  3. AN ANALYSIS OF THE MANUFACTURING POSSIBILITY OF SPECIAL ANKLE FOOT ORTHOSIS COMPONENTS BY OMPARISON BETWEEN THE REQUIRED PRECISION AND THE VAILABLE PRECISION ON A VERTICAL MACHINING CENTER PROGRAMED WITH TOPSOLID

    Directory of Open Access Journals (Sweden)

    Alexandru STANIMIR

    2010-06-01

    Full Text Available Validation of different solutions adopted to achieve new ankle foot orthosis involves among others their prototyping. In these paper we developed a representative part for two axis machining that requires the use of the main features of TopSolid Cad and Cam modules, and that assumes the use of the main manufacturing processes that usually may be met on a vertical machining center. Also, in order to determine the dimensional and geometrical deviations of the part this was done on the YMC 1050 machining center. After comparing the measured deviations with the requirements of various components of orthesis, we concluded that the available precision meets the requirements and that the machining center with TopSolid software that we have will enable us to realize special ankle foot orthosis of quality, for experimental research .

  4. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.

    Science.gov (United States)

    Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2015-02-22

    Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. We tested 10 able-bodied participants walking on a treadmill at 1.25 m · s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack

  5. A decision-making tool to prescribe knee orthoses in daily practice for patients with osteoarthritis.

    Science.gov (United States)

    Coudeyre, Emmanuel; Nguyen, Christelle; Chabaud, Aurore; Pereira, Bruno; Beaudreuil, Johann; Coudreuse, Jean-Marie; Deat, Philippe; Sailhan, Frédéric; Lorenzo, Alain; Rannou, François

    2018-03-01

    To develop a decision-making tool (DMT) to facilitate the prescription of knee orthoses for patients with osteoarthritis (OA) in daily practice. A steering committee gathered a multidisciplinary task force experienced in OA management/clinical research. Two members performed a literature review with qualitative analysis of the highest-quality randomized controlled trials and practice guidelines to confirm evidence concerning knee orthosis for OA. A first DMT draft was presented to the task force in a 1-day meeting in January 2016. The first version of the DMT was criticized and discussed regarding everyday practice issues. Every step was discussed and amended until consensus agreement was achieved within the task force. Then 4 successive consultation rounds occurred by electronic communication, first with primary- and secondary-care physicians, then with international experts. All corrections and suggestions by each member were shared with the rest of the task force and included to reach final consensus. The final version was validated by the steering committee. The definition and indication of several types of knee orthoses (sleeve, patello-femoral, hinged or unicompartmental offloading braces) were detailed. Orthoses may be proposed in addition to first-line non-pharmacological treatment if patient acceptance is considered good. At every step, a specific clinical assessment is needed. Based on the latest high-level evidence, practice guidelines, and an expert panel, a DMT to facilitate daily practice prescription of knee orthoses for OA patients was designed. An evaluation of DMT implementation in a wide range of health professionals is still needed. Copyright © 2018 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  6. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  7. Hinged roof timber

    Energy Technology Data Exchange (ETDEWEB)

    Shestov, P I; Golub, A G; Yefremov, V I

    1980-08-07

    A hinged roof timer is suggested which includes a beam with prong and loop on the end which have openings in the form of ring slits for the distance wedges and round for the pins. In this case the opening of the distance wedge in the ring is arranged in relation to the opening for the pin closer to the end of the beam, and in the prong, in the opposite order. In order to improve the operating quality by guaranteeing active support of the cantilever roof timber without increasing its overall dimensions for the height of the opening for the distance wedge in the prong and the ring, beams are arranged axisymmetrically to the longitudinal axis.

  8. 脑性瘫痪患儿踝足矫形器配戴前后对运动功能的量化评价%Quantitative assessment of motor function on children with cerebral palsy before and after wearing ankle foot orthopedic instruments

    Institute of Scientific and Technical Information of China (English)

    李润洁

    2002-01-01

    Objective To assess motor function quantitatively on children with cerebral palsy before and after wearing ankle foot orthopedic instruments.Method Ankle foot orthopedic instruments were made by Dalian Prosthesis Factory.Children' motor function was assessed with self made quantitative assessment scale according to the forth,fifth function area of motor assessment scale of children with cerebral palsy after one week of wearing orthopedic instruments. Result In all 23 patients, orthopedic instruments proved effective in controlling leg muscular tension,correcting equines,genu recurvatum,talips valgus and talipes varus,keeping erect posture and modifying gait.Motor function assessed show significant difference before and one week after wearing orthopedic instruments (P< 0.001).Conclusion Ankle foot orthopedic instruments play a positive role in improving motor function of lower extremity in cerebral palsy patients.

  9. The effects of orthoses, footwear, and walking aids on the walking ability of children and adolescents with spina bifida: A systematic review using International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) as a reference framework.

    Science.gov (United States)

    Ivanyi, Barbara; Schoenmakers, Marja; van Veen, Natasja; Maathuis, Karel; Nollet, Frans; Nederhand, Marc

    2015-12-01

    To date no review has been published that analyzes the efficacy of assistive devices on the walking ability of ambulant children and adolescents with spina bifida and, differentiates between the effects of treatment on gait parameters, walking capacity, and walking performance. To review the literature for evidence of the efficacy of orthotic management, footwear, and walking aids on gait and walking outcomes in ambulant children and adolescents with spina bifida. Systematic literature review. A systematic literature search was performed to identify studies that evaluated the effect of any type of lower limb orthoses, orthopedic footwear, or walking aids in ambulant children (≤18 years old) with spina bifida. Outcome measures and treatment results for gait parameters, walking capacity, and walking performance were identified using International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) as the reference framework. Six case-crossover studies met the criteria and were included in this systematic review. Four studies provided indications of the efficacy of the ankle-foot orthosis in improving a number of kinematic and kinetic properties of gait, stride characteristics, and the oxygen cost of walking. Two studies indicated that walking with forearm crutches may have a favorable effect on gait. The evidence level of these studies was low, and none of the studies assessed the efficacy of the intervention on walking capacity and walking performance. Some data support the efficacy of using ankle-foot orthosis and crutches for gait and walking outcomes at the body functions and structures level of the ICF-CY. Potential benefits at the activities and participation level have not been investigated. This is the first evidence-based systematic review of the efficacy of assistive devices for gait and walking outcomes for children with spina bifida. The ICF-CY is used as a reference framework to differentiate the effects of treatment

  10. Static Progressive Orthoses for Elbow Contracture: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-01-01

    Full Text Available Background. As one of the most common musculoskeletal complications following trauma, elbow contracture is a frequent source of disabled daily activities. Conventional interventions are inadequate to provide favorable outcome. The static progressive orthoses are getting popular in the treatment of this problem. Objective. The purpose of this review was to assess the effectiveness of static progressive orthoses for elbow contracture. Methods. Literatures when written in English published during 1 January 1997 and 31 January 2017 were searched in the following databases: Web of Science, Cochrane Library, PubMed, and EBSCOhost. Articles are quality-assessed by two assessors, each article was summarized in evidence tables, and a narrative synthesis was also performed. Results. Ten clinical trials were included. The study design and outcome measures used varied. Significant immediate improvement in the range of motion was reported by all studies, and those effects were still significant at follow-up. No significant difference was shown between static progressive and dynamic orthoses for elbow contracture in one randomized control trial. Conclusions. Current low-quality evidence suggested that static progressive orthoses provided assistance for elbow contracture through improving range of motion. Further research is recommended using high-quality randomized controlled trials.

  11. Efficacy of foot orthoses for the treatment of plantar heel pain

    DEFF Research Database (Denmark)

    Rasenberg, Nadine; Riel, Henrik; Rathleff, Michael S

    2018-01-01

    BACKGROUND: Plantar heel pain (PHP) is common. Foot orthoses are often applied as treatment for PHP, even though there is little evidence to support this. OBJECTIVE: To investigate the effects of different orthoses on pain, function and self-reported recovery in patients with PHP and compare them...

  12. Comparison of Three Orthoses Effects on Planter Fascitis

    Directory of Open Access Journals (Sweden)

    Ma'soumeh Nakha'ei

    2008-12-01

    Full Text Available Objective: Plantar Fasciitis is the common foot complaint that outbreaks as a result of an inflammation of plantar fascia. The purpose of this study was to compare the effectiveness of three orthoses, silicon heel pad, thermoplastic custom-made arch support and Tension Night splint, how they relived pain in plantar fasciitis. Materials & Methods: In this quasi experimental study that was done on 16 patients who were referred from Shariati Hospital Orthopedic ward to Saba Orthotics & Prosthetics Center age, sex, BMI, occupation and activity level were not inclusion criteria, systemic diseases and also surgery on foot in past were as exclusion criteria. The patients were assigned one by one to three treatment groups who were ready to admit them. Subject's pain was assessed for 3 months, at 2nd, 6th and 12th week, by Numerical Rating Scale and Verbal Rating Scale through phone. Data were analyzed with ANOVA, Pierson’s and Spearman’s correlation coefficients, Kruskal-Wallis test and Repeated Measurement test. Results: The coefficient correlation of Numerical score pain and rating score pain were 0.80. The average of morning (P=0.87, evening (P=0.198 and the worse pain (P=0.113 before entering the study were similar in three groups. The repeated measurement test defined that all the three orthoses were effective for the morning, evening and as so for the worse pain (P<0.001. There was not significant difference among the three groups in decrease of morning (P=0.483, evening (P=0.462 and worse pain (P=0.948.  Conclusion: Taking advantage of the three orthoses without any treatment was effective for the Plantar Fasciitis pain in this study.

  13. Reliability evaluation for hinges of folder devices using ESPI

    International Nuclear Information System (INIS)

    Lee, Tae Hun; Chang, Seok Weon; Jhang, Kyung Young

    2004-01-01

    Folder type electronic devices have hinge to support the rotational motion of folder. This hinge is stressed by the rotational inertia moment of folder at the maximum open limit position of folder. This stress is repeated whenever the folder is open, and it is a cause of hinge fracture. In this paper, the reliability evaluation for the hinge fracture in the folder type cellular phone is discussed. For this, the durability testing machine using crack-rocker mechanism is developed to evaluate the life cycle of the hinge, and the degradation after repetitions of opening and shutting is evaluated from the deformation around the hinge, where the deformation is measured by ESPI (electronic speckle pattern interferometer). Experimental results showed that ESPI was able to measure the deformation of hinge precisely, so we could monitor the change of deformation around the hinge as the repetition number of folder open is increased.

  14. Hinge(ga) Brand - tõhusaim relv mõrtsukate ja varaste vastu / Hinge Brand ; interv. Kaarel Kressa

    Index Scriptorium Estoniae

    Brand, Hinge, 1940-2007

    2006-01-01

    Intervjuu 40 aastat prokuröriametit pidanud ja pensionile siirduva Hinge Brandiga. Lisatud: Hinge Brandi CV ning Põhja ringkonnaprokuratuuri erisasjade prokuröri Jüri Kasesalu, siseministeeriumi arendusjuhi Lauri Taburi ja keskkriminaalpolitsei politseijuhtivinspektori Margus Maasepa kommentaarid

  15. The immediate effects of foot orthoses on functional performance in individuals with patellofemoral pain syndrome.

    Science.gov (United States)

    Barton, C J; Menz, H B; Crossley, K M

    2011-03-01

    Patellofemoral pain syndrome (PFPS) often results in reduced functional performance. There is growing evidence for the use of foot orthoses to treat this multifactorial condition. In this study, the immediate effects of foot orthoses on functional performance and the association of foot posture and footwear with improvements in function were evaluated. Fifty-two individuals with PFPS (18-35 years) were prescribed prefabricated foot orthoses (Vasyli Pro; Vasyli International, Labrador, Australia). Functional outcome measures evaluated included the change in (1) pain and (2) ease of a single-leg squat on a five-point Likert scale, and change in the number of (3) pain-free step downs and (4) single-leg rises from sitting. The association of foot posture using the Foot Posture Index, navicular drop and calcaneal angle relative to subtalar joint neutral; and the footwear motion control properties scale score with improved function were evaluated using Spearman's ρ statistics. Prefabricated foot orthoses produced significant improvements (psquat and improvements in the number of pain-free single-leg rises from sitting when wearing foot orthoses. In addition, a more pronated foot type was also found to be associated with improved ease of completing a single-leg squat when wearing foot orthoses. Prefabricated foot orthoses provide immediate improvements in functional performance, and these improvements are associated with a more pronated foot type and poorer footwear motion control properties.

  16. Comparison of plantar pressure distribution in CAD-CAM and prefabricated foot orthoses in patients with flexible flatfeet.

    Science.gov (United States)

    Khodaei, Banafsheh; Saeedi, Hassan; Jalali, Maryam; Farzadi, Maede; Norouzi, Ehsan

    2017-12-01

    The effect of foot orthoses on plantar pressure distribution has been proven by researchers but there are some controversies about advantages of custom-made foot orthoses to less expensive prefabricated foot orthoses. Nineteen flatfeet adults between 18 and 45 participated in this study. CAD-CAM foot orthoses were made for these patients according to their foot scan. Prefabricated foot orthoses were prepared according to their foot size. Plantar pressure, force and contact area were measured using pedar ® -x in-shoe system wearing shoe alone, wearing CAD-CAM foot orthoses and wearing prefabricated foot orthoses. Repeated measures ANOVA model with post-hoc, Bonferroni comparison were used to test differences. CAD-CAM and prefabricated foot orthoses both decreased pressure and force under 2nd, 3-5 metatarsal and heel regions comparing to shoe alone condition. CAD-CAM foot orthosis increased pressure under lateral toe region in comparison to shoe alone and prefabricated foot orthosis. Both foot orthoses increased pressure and contact area in medial midfoot region comparing to shoe alone condition. Increased forces were seen at hallux and lateral toes by prefabricated foot orthoses in comparison with CAD-CAM foot orthoses and control condition, respectively. According to the results, both foot orthoses could decrease the pressure under heel and metatarsal area. It seems that the special design of CAD-CAM foot orthoses could not make great differences in plantar pressure distribution in this sample. Further research is required to determine whether these results are associated with different scan systems or design software. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thermoelectric generator with hinged assembly for fins

    International Nuclear Information System (INIS)

    Purdy, D.L.; Shapiro, Z.M.; Hursen, T.F.; Maurer, G.W.

    1976-01-01

    A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield

  18. Is there any relationship between orthotic usage and functional activities in children with neuromuscular disorders?

    Science.gov (United States)

    Alemdaroğlu, İpek; Gür, Gozde; Bek, Nilgün; Yilmaz, Öznur T; Yakut, Yavuz; Uygur, Fatma; Karaduman, Ayşe

    2014-02-01

    Contractures of Achilles tendons and gastrocnemius muscle deteriorate the performance in daily living activities of patients with neuromuscular diseases. Ankle-foot orthoses help to prevent the progression of deformities and to obtain optimal position of the joints to support standing and walking. To investigate the relationship between orthotic usage and functional activities in pediatric patients with different neuromuscular diseases. Retrospective study. A total of 127 subjects' physical assessment forms were analyzed. Functional level, type of orthoses, falling frequencies, ankle joint range of motion, and timed performance tests were examined in two consecutive dates with an interval of 3 months. A total of 91 patients were using orthoses while 36 patients were not within assessment dates. A total of 64 of 91 (70.3%) patients were diagnosed with Duchenne muscular dystrophy. A total of 81 (89.0%) subjects were using plastic ankle-foot orthoses for positioning at nights and 10 (11%) were using different types of the orthoses (knee-ankle-foot orthoses, dynamic ankle-foot orthoses, and so on) for gait in the study group. Night ankle-foot orthoses were not found to be effective directly on functional performance in children with neuromuscular diseases, although they protect ankle from contractures and may help to correct gait and balance. This retrospective study shows that the positive effects of using an ankle-foot orthosis at night are not reflected in the functional performance of children with neuromuscular diseases. This may be due to the progressive deteriorating nature of the disease.

  19. Can orthoses and navicular drop affect foot motion patterns during running?

    Science.gov (United States)

    Eslami, Mansour; Ferber, Reed

    2013-07-01

    The purpose of this study was to examine the influence of semi-rigid foot orthoses on forefoot-rearfoot joint coupling patterns in individuals with different navicular drop measures during heel-toe running. Ten trials were collected from twenty-three male subjects who ran slowly shod at 170 steps per minute (2.23m/s) with a semi-rigid orthoses and without. Forefoot-rearfoot coupling motions were assessed using a vector coding technique during four intervals across the first 50% of stance. Subjects were divided into two groups based on navicular drop measures. A three way ANOVA was performed to examine the interaction and main effects of stance interval, orthoses condition and navicular drop (pForefoot-rearfoot coupling motion in the no-orthoses condition increased from heel-strike to foot-flat phase at a rate faster than the orthoses condition (p=0.02). Foot orthoses significantly decrease the forefoot-rearfoot joint coupling angle by reducing forefoot frontal plane motion relative to the rearfoot. Navicular drop measures did not influence joint coupling relationships between the forefoot and rearfoot during the first 50% of stance regardless of orthotic condition. Copyright © 2012 Sports Medicine Australia. All rights reserved.

  20. Effects of circumferential rigid wrist orthoses in rehabilitation of patients with radius fracture at typical site

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2005-01-01

    Full Text Available Background. The use of orthoses is a questionable rehabilitation method for patients with the distal radius fracture at typical site. The aim of this study was to compare the effects of the rehabilitation on patients with radius fracture at the typical site, who wore circumferential static wrist orthoses, with those who did not wear them. Methods. Thirty patients were divided into 3 equal groups, 2 experimental groups, and 1 control group. The patients in the experimental groups were given the rehabilitation program of wearing serially manufactured (off-the-shelf, as well as custom-fit orthoses. Those in the control group did not wear wrist orthoses. Evaluation parameters were pain, edema, the range of the wrist motion, the quality of cylindrical, spherical, and pinch-spherical grasp, the strength of pinch and hand grasp, and patient's assessment of the effects of rehabilitation. Results. No significant difference in the effects of rehabilitation on the patients in experimental groups as opposed to control group was found. Patients in the first experimental group, and in control group were more satisfied with the effects of rehabilitation, as opposed to the patients in the second experimental group (p<0,05. Conclusion. The effects of circumferential static wrist orthoses in the rehabilitation of patients with distal radius fracture at the typical site were not clinically significant. There was no significant difference between the custom and off-the-shelf orthoses.

  1. Effects of Rigid and Soft Foot Orthoses on Dynamic Balance in Females With Flatfoot

    Directory of Open Access Journals (Sweden)

    Hassan Saeedi

    2007-08-01

    Full Text Available Background:Various types of foot orthoses are prescribed for people with flatfoot.It has been reported that orthoses not only improve the biomechanics of the lower limb, but also have good effects on some balance parameters in these subjects.It is hypothesized that the latter effect is dependent on the rigidity of the orthoses. The aim of this study was to evaluate and compare the effects of rigid and soft foot orthoses on dynamic balance in females with flatfoot. The Biodex Balance System was used in a clinical trial study. Methods: 20 healthy students with bilateral flatfoot were randomly assigned to two equal groups. Each participant was tested on two days with 2-week interval. On each day, dynamic stability test was performed while standing in single-leg stance on an unstable platform of the balance system in 3 conditions (barefoot, with shoe, shoe with orthosis. SPSS11.5 was used for statistical analysis. Results: A significant group-by-day-by-condition interaction was found. Both groups on day 2 testing had a decreased overall stability index while wearing orthoses. Overall stability index was significantly lower on day 2 testing. Conclusion: Foot orthoses, depending on the amount of rigidity, were associated with some improvements in dynamic balance in subjects with flatfoot.

  2. Effectiveness of elastic band-type ankle–foot orthoses on postural control in poststroke elderly patients as determined using combined measurement of the stability index and body weight-bearing ratio

    Directory of Open Access Journals (Sweden)

    Kim JH

    2015-11-01

    foot pressure system, as used in our study, to provide evidence needed to support the development of a larger controlled trial to generate high-quality evidence on the effectiveness of E-AFOs. Keywords: ankle-foot orthoses, usability test, hemiplegia, Biodex Balance System, postural stability test

  3. Cyclic plastic hinges with degradation effects for frame structures

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  4. The Immediate Effects of Orthoses on Pain in People with Lateral Epicondylalgia

    Directory of Open Access Journals (Sweden)

    Ebrahim Sadeghi-Demneh

    2013-01-01

    Full Text Available Objective. Tennis elbow is a common cause of upper limb dysfunction and a primary reason for pain at the lateral aspect of the elbow. The purpose of this study was to investigate the effects of three commonly used orthoses on pain severity. An elbow band, an elbow sleeve, and a wrist splint were assessed for their ability to reduce the level of reported pain. Method. A crossover randomized controlled trial was used. The orthoses were worn in a randomized order, and all participants were required to complete a control trial for which they wore a placebo orthosis. 52 participants with lateral epicondylalgia were recruited, and the level of pain at their elbow was recorded using the visual analogue scale (VAS. Results. The reported pain for all orthoses was lower than that of the placebo (. Pain reduction was significantly greater with a counterforce elbow band or a counterforce elbow sleeve compared to a wrist splint (. There was no significant difference between a counterforce elbow band and a counterforce elbow sleeve (. Conclusion. All the types of orthoses studied showed an immediate improvement on pain severity in people with lateral epicondylalgia. The counterforce elbow orthoses (elbow band and elbow sleeve presented the greatest improvement, suggesting that either of them can be used as a first treatment choice to alleviate the pain in people with tennis elbow.

  5. God of the hinge: treating LGBTQIA patients.

    Science.gov (United States)

    Boland, Annie

    2017-11-01

    This paper looks at systems of gender within the context of analysis. It explores the unique challenges of individuation faced by transsexual, transgender, gender queer, gender non-conforming, cross-dressing and intersex patients. To receive patients generously we need to learn how a binary culture produces profound and chronic trauma. These patients wrestle with being who they are whilst simultaneously receiving negative projections and feeling invisible. While often presenting with the struggles of gender conforming individuals, understanding the specifically gendered aspect of their identity is imperative. An analyst's unconscious bias may lead to iatrogenic shaming. The author argues that rigorous, humble inquiry into the analyst's transphobia can be transformative for patient, analyst, and the work itself. Analysis may, then, provide gender-variant patients with their first remembered and numinous experience of authentic connection to self. Conjuring the image of a hinge, securely placed in the neutral region of a third space, creates a transpositive analytic temenos. Invoking the spirit of the Trickster in the construction of this matrix supports the full inclusion of gender-variant patients. Nuanced attunement scaffolds mirroring and the possibility of play. Being mindful that gender is sturdy and delicate as well as mercurial and defined enriches the analyst's listening. © 2017, The Society of Analytical Psychology.

  6. INFLUENCING OF FRICTION IN HINGES FORCE SIZE OF BARS

    Directory of Open Access Journals (Sweden)

    BOHOMAZ V. N.

    2016-04-01

    Full Text Available Formulation of the problem. The size of critical force of bar on the traditional method of calculation is determined in supposition of ideal hinge in the place of fixing of bar. There are both a hinge resistance at the turn of bar ends and their moving in the real hinges. Thus, there is the necessity of influencing character determination of these hinge imperfections on the size of critical force. In the existent scientific labours is devoted the alike problems, influencing of friction in the hinges of bar fastening on the size of critical force was not taken into account. At determination of bars stability with no ideality of hinges friction in them it is possible to take into account by the eccentric appendix of loading or appendix of moment. However at such approach it is difficult enough to define the size of attached force or moment. Purpose. To set influencing of friction in the hinge of bar fastening on of his critical force size in sense of Euler, and also build dependences for determination of bar critical force taking into account mechanical descriptions of hinges materials. Conclusion. For the task of determination the size of bar critical force with the joint fastening on ends are got the dependences which take into account mechanical descriptions of material hinge. The received dependences allow to define more exact meaning of critical force for bars. The examples of calculation of whole bar and bar with undercuting in the middle are resulted that values of critical force, certain on a traditional method are overpriced.

  7. Prostheses and orthoses in the collections of the Auschwitz-Birkenau State Museum.

    Science.gov (United States)

    Przeździak, Bogumił; Lutomirski, Adam; Kulczyk, Maria

    2011-01-01

    The authors described 424 orthopaedic appliances left by the prisoners of the Nazi Concentration Camp in Oświęcim. A collection of prostheses and orthoses, which is currently a part of the Auschwitz-Birkenau State Museum's exhibition, is extraordinary as it illustrates the fate of innocent, crippled people, who were incarcerated and murdered. Another point of value of the collection is its technical aspect, as it provides a clear picture of construction of prostheses and orthoses at the beginning of the 20th century.

  8. The role of hinges in primary total knee replacement.

    Science.gov (United States)

    Gehrke, T; Kendoff, D; Haasper, C

    2014-11-01

    The use of hinged implants in primary total knee replacement (TKR) should be restricted to selected indications and mainly for elderly patients. Potential indications for a rotating hinge or pure hinge implant in primary TKR include: collateral ligament insufficiency, severe varus or valgus deformity (>20°) with necessary relevant soft-tissue release, relevant bone loss including insertions of collateral ligaments, gross flexion-extension gap imbalance, ankylosis, or hyperlaxity. Although data reported in the literature are inconsistent, clinical results depend on implant design, proper technical use, and adequate indications. We present our experience with a specific implant type that we have used for over 30 years and which has given our elderly patients good mid-term results. Because revision of implants with long cemented stems can be very challenging, an effort should be made in the future to use shorter stems in modular versions of hinged implants. ©2014 The British Editorial Society of Bone & Joint Surgery.

  9. Effect of modified lumbosacral orthoses on treatment of patients with spondylolysis

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahramizadeh

    2009-08-01

    Full Text Available Introduction: In this study, the effect of modified lumbo sacral orthoses on lordosis andlumbosacral angle and reliving pain and functional disability was investigated.Materials and Methods: 30 patients (19 females, 11 males with spondylolysis (aged between 22-57 years were sampled in a simple randomized manner. They had a history of low back pain for 30.7(in average months. Modified lumbo sacral orthoses was prescribed for 3 months (23 hours daily.The brace was unique, bridged between xyphoid process to pubic symphysis anteriorly and seventhlumbar vertebrae to gluteal prminency posteriorly.Results: Our results show that 3-months using the modified lumbo sacral orthoses resulted insignificant decrement in pain and improvement in functional ability of patients. Although lordosis andlumbosacral angles decreased to 2.21 and 0.92 degrees, respectively, but these changes were notsignificant. Finally, patients with the lower duration of low back pain showed better results.Conclusion: Our findings indicate that the modified lumbosacral orthoses, as a non-invasiveprocedure, can be used for conservative treatments in spondylolysis patients.

  10. Custom-Made Foot Orthoses Decrease Medial Foot Loading During Drop Jump in Individuals With Patellofemoral Pain

    DEFF Research Database (Denmark)

    Rathleff, Michael S; Richter, Camilla; Brushøj, Christoffer

    2016-01-01

    OBJECTIVE: To investigate the effect of foot orthoses on medial-to-lateral plantar forces during drop jump and single leg squat, and second, to explore the self-reported change in symptoms after 12 weeks of wearing the orthoses in individuals with patellofemoral pain (PFP). DESIGN: Cohort study...... with 12 weeks of follow-up. SETTING: Hospital setting. PARTICIPANTS: 23 adults with PFP. INTERVENTIONS: Custom-made foot orthoses. MAIN OUTCOME MEASURES: Foot loading (plantar pressure) was collected from the most painful side during drop jump and single leg squat using pressure sensitive Pedar insoles....... Primary outcome was the medial-to-lateral peak force under the forefoot during drop jump. The PFP syndrome severity score was used to measure self-reported improvement from baseline to follow-up. RESULTS: Orthoses were associated with a significant 2.9%-point (95% confidence intervals: 0.7-5.1) reduction...

  11. Effect of Knee Orthoses on Hamstring Contracture in Children With Cerebral Palsy: Multiple Single-Subject Study.

    Science.gov (United States)

    Laessker-Alkema, Kristina; Eek, Meta Nyström

    2016-01-01

    To examine the effect of knee orthoses on extensibility of the hamstrings in children with spastic cerebral palsy (CP). The short-term effects of knee orthoses on passive range of motion (ROM), spasticity, and gross motor function of the hamstrings. Ten children with spastic CP, aged 5 to 14 years, at Gross Motor Function Classification System levels I to V, were followed. The orthoses were worn for a minimum of 30 minutes day, 5 days per week, during the intervention period of 8 weeks. Visual analysis using the Two Standard Deviation Band Method supported improvements in passive ROM for all 20 hamstring muscles and in 12 of 14 knee extension measurements. Analyses with the Wilcoxon signed rank test confirm the individual results and support a significant increase in hamstring muscles (P = .005) and knee extension (right: P =.028; left: P =.018) compared with baseline. In children with spastic CP, 8 weeks of treatment with knee orthoses can improve extensibility of the hamstrings.

  12. Optimal design of an extrusion process for a hinge bracket

    International Nuclear Information System (INIS)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong

    2016-01-01

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  13. Optimal design of an extrusion process for a hinge bracket

    Energy Technology Data Exchange (ETDEWEB)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  14. Orthotic management of instability of the knee related to neuromuscular and central nervous system disorders: systematic review, qualitative study, survey and costing analysis.

    OpenAIRE

    O'Connor, Joanne; McCaughan, Dorothy; McDaid, Catriona; Booth, Alison; Fayter, Debra; Rodriguez-Lopez, Roccio; Bowers, Roy; Dyson, Lisa; Iglesias, Cynthia P; Lalor, Simon; O'Connor, Rory J; Phillips, Margaret; Ramdharry, Gita

    2016-01-01

    BACKGROUND: \\ud \\ud Patients who have knee instability that is associated with neuromuscular disease (NMD) and central nervous system (CNS) conditions can be treated using orthoses, such as knee-ankle-foot orthoses (KAFOs).\\ud \\ud OBJECTIVES: \\ud \\ud To assess existing evidence on the effectiveness of orthoses; patient perspectives; types of orthotic devices prescribed in the UK NHS; and associated costs.\\ud \\ud METHODS: \\ud \\ud Qualitative study of views of orthoses users - a qualitative in-...

  15. Seismic response analysis for hinged-leg type port crane

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwazaki, A.; Kanayama, T.; Arai, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2000-04-01

    Container cranes and unloaders in Kobe Pont were severely damaged during the Southern Hyogo Prefecture Earthquake in 1995. Notably, some of the hinged-leg type of cranes with hinges at the end of sea-or land-side of legs were overturned. These damages were derived from the uplifting of their legs. To explain the uplifting and overturning behavior, we carried out nonlinear analyses and shaking table tests using a 1/8-scale model of the container crane. The results of nonlinear response analyses of hinged-leg type of crane, which are in an agreement with the state of damages in the Southern Hyogo Prefecture Earthquake and the result of shaking table tests, are described. (author)

  16. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  17. A fully redundant power hinge for LANDSAT-D appendages

    Science.gov (United States)

    Mamrol, F. E.; Matteo, D. N.

    1981-01-01

    The configuration and testing of a power driven hinge for deployment of the solar array and antenna boom for the LANDSAT-D spacecraft is discussed. The hinge is fully mechanically and electrically redundant and, thereby, can sustain a single point failure of any one motor (or its power supply), speed reducer, or bearing set without loss of its ability to function. This design utilizes the capability of the stepper motor drive to remove the flexibility of the drive train from the joint stiffness equation when the hinge is loaded against its stop. This feature precludes gapping of the joint under spacecraft maneuver loads even in the absence of a latching feature. Thus, retraction is easily accomplished by motor reversal without the need for a solenoid function to remove the latch.

  18. A structured overview of trends and technologies used in dynamic hand orthoses

    OpenAIRE

    Bos, Ronald A.; Haarman, Claudia J.W.; Stortelder, Teun; Nizamis, Kostas; Herder, Just L.; Stienen, Arno H.A.; Plettenburg, Dick H.

    2016-01-01

    The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient?s individual needs. Several review studies exist that cover the details of specific disciplines which play a part in the dev...

  19. Effectiveness of Foot Orthoses Versus Rocker-Sole Footwear for First Metatarsophalangeal Joint Osteoarthritis: Randomized Trial.

    Science.gov (United States)

    Menz, Hylton B; Auhl, Maria; Tan, Jade M; Levinger, Pazit; Roddy, Edward; Munteanu, Shannon E

    2016-05-01

    To compare the effectiveness of prefabricated foot orthoses to rocker-sole footwear in reducing foot pain in people with first metatarsophalangeal (MTP) joint osteoarthritis (OA). Participants (n = 102) with first MTP joint OA were randomly allocated to receive individualized, prefabricated foot orthoses or rocker-sole footwear. The primary outcome measure was the pain subscale on the Foot Health Status Questionnaire (FHSQ) at 12 weeks. Secondary outcome measures included the function, footwear, and general foot health subscales of the FHSQ; the Foot Function Index; severity of pain and stiffness at the first MTP joint; perception of global improvement; general health status; use of rescue medication and co-interventions to relieve pain; physical activity; and the frequency of self-reported adverse events. The FHSQ pain subscale scores improved in both groups, but no statistically significant difference between the groups was observed (adjusted mean difference 2.05 points, 95% confidence interval [95% CI] -3.61, 7.71; P = 0.477). However, the footwear group exhibited lower adherence (mean ± SD total hours worn 287 ± 193 versus 448 ± 234; P footwear are similarly effective at reducing foot pain in people with first MTP joint OA. However, prefabricated foot orthoses may be the intervention of choice due to greater adherence and fewer associated adverse events. © 2016 The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  20. Enhanced multimaterial 4D printing with active hinges

    Science.gov (United States)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  1. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: A randomised clinical trial

    Science.gov (United States)

    Vicenzino, Bill; Collins, Natalie; Crossley, Kay; Beller, Elaine; Darnell, Ross; McPoil, Thomas

    2008-01-01

    Background Patellofemoral pain syndrome is a highly prevalent musculoskeletal overuse condition that has a significant impact on participation in daily and physical activities. A recent systematic review highlighted the lack of high quality evidence from randomised controlled trials for the conservative management of patellofemoral pain syndrome. Although foot orthoses are a commonly used intervention for patellofemoral pain syndrome, only two pilot studies with short term follow up have been conducted into their clinical efficacy. Methods/design A randomised single-blinded clinical trial will be conducted to investigate the clinical efficacy and cost effectiveness of foot orthoses in the management of patellofemoral pain syndrome. One hundred and seventy-six participants aged 18–40 with anterior or retropatellar knee pain of non-traumatic origin and at least six weeks duration will be recruited from the greater Brisbane area in Queensland, Australia through print, radio and television advertising. Suitable participants will be randomly allocated to receive either foot orthoses, flat insoles, physiotherapy or a combined intervention of foot orthoses and physiotherapy, and will attend six visits with a physiotherapist over a 6 week period. Outcome will be measured at 6, 12 and 52 weeks using primary outcome measures of usual and worst pain visual analogue scale, patient perceived treatment effect, perceived global effect, the Functional Index Questionnaire, and the Anterior Knee Pain Scale. Secondary outcome measures will include the Lower Extremity Functional Scale, McGill Pain Questionnaire, 36-Item Short-Form Health Survey, Hospital Anxiety and Depression Scale, Patient-Specific Functional Scale, Physical Activity Level in the Previous Week, pressure pain threshold and physical measures of step and squat tests. Cost-effectiveness analysis will be based on treatment effectiveness against resource usage recorded in treatment logs and self-reported diaries

  2. Foot orthoses and physiotherapy in the treatment of patellofemoral pain syndrome: A randomised clinical trial

    Directory of Open Access Journals (Sweden)

    Darnell Ross

    2008-02-01

    Full Text Available Abstract Background Patellofemoral pain syndrome is a highly prevalent musculoskeletal overuse condition that has a significant impact on participation in daily and physical activities. A recent systematic review highlighted the lack of high quality evidence from randomised controlled trials for the conservative management of patellofemoral pain syndrome. Although foot orthoses are a commonly used intervention for patellofemoral pain syndrome, only two pilot studies with short term follow up have been conducted into their clinical efficacy. Methods/design A randomised single-blinded clinical trial will be conducted to investigate the clinical efficacy and cost effectiveness of foot orthoses in the management of patellofemoral pain syndrome. One hundred and seventy-six participants aged 18–40 with anterior or retropatellar knee pain of non-traumatic origin and at least six weeks duration will be recruited from the greater Brisbane area in Queensland, Australia through print, radio and television advertising. Suitable participants will be randomly allocated to receive either foot orthoses, flat insoles, physiotherapy or a combined intervention of foot orthoses and physiotherapy, and will attend six visits with a physiotherapist over a 6 week period. Outcome will be measured at 6, 12 and 52 weeks using primary outcome measures of usual and worst pain visual analogue scale, patient perceived treatment effect, perceived global effect, the Functional Index Questionnaire, and the Anterior Knee Pain Scale. Secondary outcome measures will include the Lower Extremity Functional Scale, McGill Pain Questionnaire, 36-Item Short-Form Health Survey, Hospital Anxiety and Depression Scale, Patient-Specific Functional Scale, Physical Activity Level in the Previous Week, pressure pain threshold and physical measures of step and squat tests. Cost-effectiveness analysis will be based on treatment effectiveness against resource usage recorded in treatment logs and

  3. Efficacy of customised foot orthoses in the treatment of Achilles tendinopathy: study protocol for a randomised trial

    Directory of Open Access Journals (Sweden)

    Menz Hylton B

    2009-10-01

    Full Text Available Abstract Background Achilles tendinopathy is a common condition that can cause marked pain and disability. Numerous non-surgical treatments have been proposed for the treatment of this condition, but many of these treatments have a poor or non-existent evidence base. The exception to this is eccentric calf muscle exercises, which have become a standard non-surgical intervention for Achilles tendinopathy. Foot orthoses have also been advocated as a treatment for Achilles tendinopathy, but the long-term efficacy of foot orthoses for this condition is unknown. This manuscript describes the design of a randomised trial to evaluate the efficacy of customised foot orthoses to reduce pain and improve function in people with Achilles tendinopathy. Methods One hundred and forty community-dwelling men and women aged 18 to 55 years with Achilles tendinopathy (who satisfy inclusion and exclusion criteria will be recruited. Participants will be randomised, using a computer-generated random number sequence, to either a control group (sham foot orthoses made from compressible ethylene vinyl acetate foam or an experimental group (customised foot orthoses made from semi-rigid polypropylene. Both groups will be prescribed a calf muscle eccentric exercise program, however, the primary difference between the groups will be that the experimental group receive customised foot orthoses, while the control group receive sham foot orthoses. The participants will be instructed to perform eccentric exercises 2 times per day, 7 days per week, for 12 weeks. The primary outcome measure will be the total score of the Victorian Institute of Sport Assessment - Achilles (VISA-A questionnaire. The secondary outcome measures will be participant perception of treatment effect, comfort of the foot orthoses, use of co-interventions, frequency and severity of adverse events, level of physical activity and health-related quality of life (assessed using the Short-Form-36 questionnaire

  4. Process Modelling of Rapid Manufacturing Based Mass Customisation System for Fabrication of Custom Foot Orthoses: Review Paper

    Directory of Open Access Journals (Sweden)

    Saleh Jumani

    2013-04-01

    Full Text Available The need for custom-made devices, rehabilitation aids and treatments is explicit in the medical sector. Applications of rapid manufacturing techniques based on additive fabrication processes combined with medical digitising technologies can generate high quality solutions in situations where the need for custom-made devices and rehabilitation aids and low-lead times are very important factors. Foot orthoses are medical devices applied in the treatment of biomechanical foot disorders, foot injuries and foot diseases including rheumatoid arthritis and diabetes. The significant challenge in the treatment of foot related diseases is progressing pathological deterioration in the affected sites of the foot which requires quick provision of the orthoses. A process model is developed using the IDEF0 modelling technique in which a rapid manufacturing approach is integrated in the design and fabrication process of custom foot orthoses. The process model will be used in the development of rapid manufacturing based design and fabrication system for mass customisation of foot orthoses. The developed system is aimed at mass scale production of custom foot orthoses with the advantages of reduced cost, reduced lead-time and improved product in terms of increased fit, consistency and accuracy in the final product.

  5. Comparison of foot orthoses made by podiatrists, pedorthists and orthotists regarding plantar pressure reduction in The Netherlands

    Directory of Open Access Journals (Sweden)

    Guldemond Nick A

    2005-12-01

    Full Text Available Abstract Background There is a need for evidence of clinical effectiveness of foot orthosis therapy. This study evaluated the effect of foot orthoses made by ten podiatrists, ten pedorthists and eleven orthotists on plantar pressure and walking convenience for three patients with metatarsalgia. Aims were to assess differences and variability between and within the disciplines. The relationship between the importance of pressure reduction and the effect on peak pressure was also evaluated. Methods Each therapist examined all three patients and was asked to rate the 'importance of pressure reduction' through a visual analogue scale. The orthoses were evaluated twice in two sessions while the patient walked on a treadmill. Plantar pressures were recorded with an in-sole measuring system. Patients scored walking convenience per orthosis. The effects of the orthoses on peak pressure reduction were calculated for the whole plantar surface of the forefoot and six regions: big toe and metatarsal one to five. Results Within each discipline there was an extensive variation in construction of the orthoses and achieved peak pressure reductions. Pedorthists and orthotists achieved greater maximal peak pressure reductions calculated over the whole forefoot than podiatrists: 960, 1020 and 750 kPa, respectively (p Conclusion The large variation for various aspects of foot orthoses therapy raises questions about a consistent use of concepts for pressures management within the professional groups.

  6. Prokurör nägi inimliku jõhkruse piiritust / Hinge Brand ; interv. Tiiu Põld

    Index Scriptorium Estoniae

    Brand, Hinge, 1940-2007

    2006-01-01

    Intervjuu ametist lahkuva prokurör Hinge Brandiga. Lisatud: Hinge Brandi CV; Hinge Brandi osavõtul peetud kõmulisemad mõrvaprotsessid. Kommenteerivad Aivar Pilv, Elmar Vaher, Alar Kirs, Eda Murak, Dilaila Nahkur-Tammiksaar

  7. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  8. Cyclic plastic hinges with degradation effects for frame structures

    OpenAIRE

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each gen...

  9. Design method for strut-beam connection in hinged frames

    OpenAIRE

    Cardenal Basté, Joan

    2011-01-01

    Glulam is almost exclusively the chosen material of timber frame structures. Of those, three-hinged (three-pin) portal frames are incomparably the most common type. Being both statically determinate and stable against horizontal forces in its own plane o er both practical (basic constructive details) and economical bene ts. The design of the haunch allows for various solutions: it can be curved with continuous laminates, nger jointed, jointed with steel dowels and slotted-i...

  10. Operational characterization of CSFH MEMS technology based hinges

    Science.gov (United States)

    Crescenzi, Rocco; Balucani, Marco; Belfiore, Nicola Pio

    2018-05-01

    Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple-field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D-RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

  11. Magnetic Actuation of Self-Assembled DNA Hinges

    Science.gov (United States)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  12. Can an ankle-foot orthosis change hearts and minds?

    Science.gov (United States)

    Patzkowski, Jeanne C; Blanck, Ryan V; Owens, Johnny G; Wilken, Jason M; Blair, James A; Hsu, Joseph R

    2011-01-01

    The current military conflicts of Operation Enduring Freedom and Operation Iraqi Freedom have been characterized by high-energy explosive wounding patterns, with the majority affecting the extremities. While many injuries have resulted in amputation, surgical advances have allowed the orthopaedic surgeon to pursue limb salvage in the face of injuries once considered unsalvageable. The military limb salvage patient is frequently highly active and motivated and expresses significant frustration with the slow nature of limb salvage rehabilitation and continued functional deficits. Inspired by these patients, efforts at this institution began to provide them with a more dynamic orthosis. Utilizing techniques and technology resulting from cerebral palsy, stroke, and amputation research, the Intrepid Dynamic Exoskeletal Orthosis was created. To date, this device has significantly improved the functional capabilities of the limb salvage wounded warrior population when combined with a high-intensity rehabilitation program. Clinical and biomechanical research is currently underway at this institution in order to fully characterize the device, its effect on patients, and what can be done to modify future generations of the device to best serve the combat-wounded limb salvage population.

  13. Can an Ankle-Foot Orthosis Change Hearts and Minds?

    Science.gov (United States)

    2011-01-01

    the commercial brace in both comfort and function. He continued to progress in his therapy, returning to recre- ational softball with a local team of...this design, we have been able to return patients with fused ankles to running, basketball, softball , skydiving, and combat arms deployments. We have

  14. Predictors of response to prefabricated foot orthoses or rocker-sole footwear in individuals with first metatarsophalangeal joint osteoarthritis.

    Science.gov (United States)

    Menz, Hylton B; Auhl, Maria; Tan, Jade M; Levinger, Pazit; Roddy, Edward; Munteanu, Shannon E

    2017-05-12

    Osteoarthritis of the first metatarsophalangeal joint (1st MTPJ OA) is a common and disabling condition commonly managed with footwear and orthotic interventions. The objective of this study was to identify factors associated with a successful treatment response in people with 1st MTPJ OA provided with prefabricated orthoses or rocker-sole footwear as part of a randomised clinical trial. People with 1st MTPJ OA (n = 88) who participated in a randomised trial were allocated to receive prefabricated foot orthoses (n = 47) or rocker-sole footwear (n = 41) and completed a baseline questionnaire including information on demographics, anthropometrics, general health, pain characteristics (including the Foot Health Status Questionnaire [FHSQ] and Foot Function Index [FFI]) and perceptions of the interventions, and a clinical assessment of foot posture, range of motion, radiographic severity and in-shoe plantar pressures. Adherence was documented using diaries. At 12 weeks, participants documented their perception of improvement on a 15-point scale. Those reporting at least moderate improvement on this scale were classified as 'responders'. There were 29 responders (62%) in the orthoses group and 16 responders (39%) in the rocker-sole group. In the orthoses group, responders had greater baseline pain severity while walking, a higher FFI difficulty score, and wore their orthoses more frequently. In the rocker-sole group, responders had a higher FFI stiffness score and greater radiographic severity. However, the accuracy of these variables in identifying responders in each group was modest (62 and 53%, respectively). The response to prefabricated orthoses or rocker-sole footwear in people with 1st MTPJ OA is related to measures of increased pain and disease severity. However, the overall classification accuracy associated with these factors is not sufficient for identifying individuals who are most likely to benefit from these interventions. Australian New

  15. Biomechanical Effects of Prefabricated Foot Orthoses and Rocker‐Sole Footwear in Individuals With First Metatarsophalangeal Joint Osteoarthritis

    Science.gov (United States)

    Auhl, Maria; Tan, Jade M.; Levinger, Pazit; Roddy, Edward; Munteanu, Shannon E.

    2016-01-01

    Objective To evaluate the effects of prefabricated foot orthoses and rocker‐sole footwear on spatiotemporal parameters, hip and knee kinematics, and plantar pressures in people with first metatarsophalangeal (MTP) joint osteoarthritis (OA). Methods. A total of 102 people with first MTP joint OA were randomly allocated to receive prefabricated foot orthoses or rocker‐sole footwear. The immediate biomechanical effects of the interventions (compared to usual footwear) were examined using a wearable sensor motion analysis system and an in‐shoe plantar pressure measurement system. Results Spatiotemporal/kinematic and plantar pressure data were available from 88 and 87 participants, respectively. The orthoses had minimal effect on spatiotemporal or kinematic parameters, while the rocker‐sole footwear resulted in reduced cadence, percentage of the gait cycle spent in stance phase, and sagittal plane hip range of motion. The orthoses increased peak pressure under the midfoot and lesser toes. Both interventions significantly reduced peak pressure under the first MTP joint, and the rocker‐sole shoes also reduced peak pressure under the second through fifth MTP joints and heel. When the effects of the orthoses and rocker‐sole shoes were directly compared, there was no difference in peak pressure under the hallux, first MTP joint, or heel; however, the rocker‐sole shoes exhibited lower peak pressure under the lesser toes, second through fifth MTP joints, and midfoot. Conclusion Prefabricated foot orthoses and rocker‐sole footwear are effective at reducing peak pressure under the first MTP joint in people with first MTP joint OA, but achieve this through different mechanisms. Further research is required to determine whether these biomechanical changes result in improvements in symptoms. PMID:26640157

  16. Ehlers-Danlos Syndrome, Hypermobility Type: Impact of Somatosensory Orthoses on Postural Control (A Pilot Study

    Directory of Open Access Journals (Sweden)

    Emma G. Dupuy

    2017-06-01

    Full Text Available Elhers-Danlos syndrome (EDS is the clinical manifestation of connective tissue disorders, and comprises several clinical forms with no specific symptoms and selective medical examinations which result in a delay in diagnosis of about 10 years. The EDS hypermobility type (hEDS is characterized by generalized joint hypermobility, variable skin hyperextensibility and impaired proprioception. Since somatosensory processing and multisensory integration are crucial for both perception and action, we put forth the hypothesis that somatosensory deficits in hEDS patients may lead, among other clinical symptoms, to misperception of verticality and postural instability. Therefore, the purpose of this study was twofold: (i to assess the impact of somatosensory deficit on subjective visual vertical (SVV and postural stability; and (ii to quantify the effect of wearing somatosensory orthoses (i.e., compressive garments and insoles on postural stability. Six hEDS patients and six age- and gender-matched controls underwent a SVV (sitting, standing, lying on the right side evaluation and a postural control evaluation on a force platform (Synapsys, with or without visual information (eyes open (EO/eyes closed (EC. These two latter conditions performed either without orthoses, or with compression garments (CG, or insoles, or both. Results showed that patients did not exhibit a substantial perceived tilt of the visual vertical in the direction of the body tilt (Aubert effect as did the control subjects. Interestingly, such differential effects were only apparent when the rod was initially positioned to the left of the vertical axis (opposite the longitudinal body axis. In addition, patients showed greater postural instability (sway area than the controls. The removal of vision exacerbated this instability, especially in the mediolateral (ML direction. The wearing of orthoses improved postural stability, especially in the eyes-closed condition, with a particularly

  17. [Localization and registration of the hinge axis in black Africans].

    Science.gov (United States)

    Assi, K D; N'Guessan, K S; N'Dindin, C; Bamba, A

    2003-06-01

    The study of the cinematic method using "SAM" and "Quick Axis of FAG" added to mandibular condyle palpation for the hinge axis limited points, show that the Black Africans mandibular condyle rotation axis position is higher (3.5 mm) and backer (2 mm) than the Caucasians. The axial points are located to between 11 and 12 mm in front of the tragus and between 7 and 8 mm below on the perpendicular line to the furrow defining the tragus superior side to the Ectocanthus.

  18. Characterization of flexure hinges for the French watt balance experiment

    Directory of Open Access Journals (Sweden)

    Pinot Patrick

    2014-01-01

    Full Text Available In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1 an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2 a mass comparator to determine the bending stiffness of unloaded pivots; 3 a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.

  19. Estudo da confiabilidade e validade da utilização do hidropletismômetro para medida de edema no tornozelo Study of the reliability and validity of the water plethysmographer for use in measurement of the edema at the ankle/foot

    Directory of Open Access Journals (Sweden)

    Ian Lara Lamounier Andrade

    2011-03-01

    measurements obtained by graduated cylinders from 10 to 1000 ml, water displacement device (gold standart. Intraclass correlation coefficients (ICCs evaluated intra- and inter-raters reliability, whereas paired Student t-tests and Pearson's correlation coefficients were used to establish validity of the water plethysmography.The results demonstrated excellent intra- and inter-rater reliability levels with levels with CCI3,1=0.99 and CCI3,2=0.99 respectively. No differences were found between the measures obtained with the water plethysmography compared to those of the water displacement device (p=0.40. Pearson's correlation coefficient showed a high magnitude and significance level between the measures (r=1,0; p<0.0001.The findings demonstrated that the water plethysmography is a reliable and valid instrument for measuring ankle/foot volume.

  20. A protocol for a randomised controlled trial of prefabricated versus customised foot orthoses for people with rheumatoid arthritis: the FOCOS RA trial [Foot Orthoses - Customised v Off-the-Shelf in Rheumatoid Arthritis].

    Science.gov (United States)

    Gallagher, Kellie S; Godwin, Jon; Hendry, Gordon J; Steultjens, Martijn; Woodburn, Jim

    2018-01-01

    Foot pain is common in rheumatoid arthritis and appears to persist despite modern day medical management. Several clinical practice guidelines currently recommend the use of foot orthoses for the treatment of foot pain in people with rheumatoid arthritis. However, an evidence gap currently exists concerning the comparative clinical- and cost-effectiveness of prefabricated and customised foot orthoses in people with early rheumatoid arthritis. Early intervention with orthotics may offer the best opportunity for positive therapeutic outcomes. The primary aim of this study is to evaluate the comparative clinical- and cost-effectiveness of prefabricated versus customised orthoses for reducing foot pain over 12 months. This is a multi-centre two-arm parallel randomised controlled trial comparing prefabricated versus customised orthoses in participants with early rheumatoid arthritis (rheumatoid arthritis, global functional status via the Stanford Health Assessment Questionnaire, foot disease activity via the Rheumatoid Arthritis Foot Disease Activity Index, and health-related quality of life at baseline, 6 and 12 months. Process outcomes will include recruitment/retention rates, data completion rates, intervention adherence rates, and participant intervention and trial participation satisfaction. Cost-utility and cost-effectiveness analyses will be undertaken. Outcome measures collected at baseline, 6 and 12 months will be used to evaluate the comparative clinical- and cost- effectiveness of customised versus prefabricated orthoses for this treatment of early rheumatoid arthritis foot conditions. This trial will help to guide orthotic prescription recommendations for the management of foot pain for people with early rheumatoid arthritis in future. ISRCTN13654421. Registered 09 February 2016.

  1. Flow over a cylinder with a hinged-splitter plate

    Science.gov (United States)

    Shukla, S.; Govardhan, R. N.; Arakeri, J. H.

    2009-05-01

    Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate

  2. Deployment Testing of Flexible Composite Hinges in Bi-Material Beams

    Science.gov (United States)

    Sauder, Jonathan F.; Trease, Brian

    2016-01-01

    Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.

  3. Impact of Plastic Hinge Properties on Capacity Curve of Reinforced Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Nasim Shatarat

    2017-01-01

    Full Text Available Pushover analysis is becoming recently the most practical tool for nonlinear analysis of regular and irregular highway bridges. The nonlinear behaviour of structural elements in this type of analysis can be modeled through automated-hinge or user-defined hinge models. The nonlinear properties of the user-defined hinge model for existing highway bridges can be determined in accordance with the recommendations of the Seismic Retrofit Manual by the Federal Highway Administration (FHWA-SRM. Finite element software such as the software SAP2000 offers a simpler and easier approach to determine the nonlinear hinge properties through the automated-hinge model which are determined automatically from the member material and cross section properties. However, the uncertainties in using the automated-hinge model in place of user-defined hinge model have never been addressed, especially for existing and widened bridges. In response to this need, pushover analysis was carried out for four old highway bridges, of which two were widened using the same superstructure but with more attention to seismic detailing requirements. The results of the analyses showed noticeable differences in the capacity curves obtained utilizing the user-defined and automated-hinge models. The study recommends that bridge design manuals clearly ask bridge designers to evaluate the deformation capacities of existing bridges and widened bridges using user-defined hinge model that is determined in accordance with the provisions of the FHWA-SRM.

  4. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  5. Modifications of Hinge Mechanisms for the Mobile Launcher

    Science.gov (United States)

    Ganzak, Jacob D.

    2018-01-01

    The further development and modifications made towards the integration of the upper and lower hinge assemblies for the Exploration Upper Stage umbilical are presented. Investigative work is included to show the process of applying updated NASA Standards within component and assembly drawings for selected manufacturers. Component modifications with the addition of drawings are created to precisely display part geometries and geometric tolerances, along with proper methods of fabrication. Comparison of newly updated components with original Apollo era components is essential to correctly model the part characteristics and parameters, i.e. mass properties, material selection, weldments, and tolerances. 3-Dimensional modeling software is used to demonstrate the necessary improvements. In order to share and corroborate these changes, a document management system is used to store the various components and associated drawings. These efforts will contribute towards the Mobile Launcher for Exploration Mission 2 to provide proper rotation of the Exploration Upper Stage umbilical, necessary for providing cryogenic fill and drain capabilities.

  6. Modal Characteristics of Novel Wind Turbine Rotors with Hinged Structures

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    The vibration problems of the wind turbine rotors have drawn public attention as the size of wind turbine has increased incredibly. Although various factors may cause the vibration problems, the flexibility is a big threat among them. Therefore, ensuring the high stiffness of the rotors by adopting novel techniques becomes a necessity. The study was a further investigation of several novel designs regarding the dynamic behaviour and the influencing mechanism. The modal testing experiments were conducted on a traditional blade and an isolated blade with the hinged rods mounted close to the root. The results showed that the rod increased both the modal frequency and the damping of the blade. More studies were done on the rods’ impact on the wind turbine rotor with a numerical model, where dimensionless parameters were defined to describe the configuration of the interveined and the bisymmetrical rods. Their influences on the modal frequencies of the rotor were analyzed and discussed.

  7. Prevention of recurrent foot ulcers with plantar pressure-based in-shoe orthoses: the CareFUL prevention multicenter randomized controlled trial.

    Science.gov (United States)

    Ulbrecht, Jan S; Hurley, Timothy; Mauger, David T; Cavanagh, Peter R

    2014-07-01

    To assess the efficacy of in-shoe orthoses that were designed based on shape and barefoot plantar pressure in reducing the incidence of submetatarsal head plantar ulcers in people with diabetes, peripheral neuropathy, and a history of similar prior ulceration. Single-blinded multicenter randomized controlled trial with subjects randomized to wear shape- and pressure-based orthoses (experimental, n = 66) or standard-of-care A5513 orthoses (control, n = 64). Patients were followed for 15 months, until a study end point (forefoot plantar ulcer or nonulcerative plantar forefoot lesion) or to study termination. Proportional hazards regression was used for analysis. There was a trend in the composite primary end point (both ulcers and nonulcerative lesions) across the full follow-up period (P = 0.13) in favor of the experimental orthoses. This trend was due to a marked difference in ulcer occurrence (P = 0.007) but no difference in the rate of nonulcerative lesions (P = 0.76). At 180 days, the ulcer prevention effect of the experimental orthoses was already significant (P = 0.003) when compared with control, and the benefit of the experimental orthoses with respect to the composite end point was also significant (P = 0.042). The hazard ratio was 3.4 (95% CI 1.3-8.7) for the occurrence of a submetatarsal head plantar ulcer in the control compared with experimental arm over the duration of the study. We conclude that shape- and barefoot plantar pressure-based orthoses were more effective in reducing submetatarsal head plantar ulcer recurrence than current standard-of-care orthoses, but they did not significantly reduce nonulcerative lesions. © 2014 by the American Diabetes Association.

  8. Prevention of Recurrent Foot Ulcers With Plantar Pressure–Based In-Shoe Orthoses: The CareFUL Prevention Multicenter Randomized Controlled Trial

    Science.gov (United States)

    Ulbrecht, Jan S.; Hurley, Timothy; Mauger, David T.

    2014-01-01

    OBJECTIVE To assess the efficacy of in-shoe orthoses that were designed based on shape and barefoot plantar pressure in reducing the incidence of submetatarsal head plantar ulcers in people with diabetes, peripheral neuropathy, and a history of similar prior ulceration. RESEARCH DESIGN AND METHODS Single-blinded multicenter randomized controlled trial with subjects randomized to wear shape- and pressure-based orthoses (experimental, n = 66) or standard-of-care A5513 orthoses (control, n = 64). Patients were followed for 15 months, until a study end point (forefoot plantar ulcer or nonulcerative plantar forefoot lesion) or to study termination. Proportional hazards regression was used for analysis. RESULTS There was a trend in the composite primary end point (both ulcers and nonulcerative lesions) across the full follow-up period (P = 0.13) in favor of the experimental orthoses. This trend was due to a marked difference in ulcer occurrence (P = 0.007) but no difference in the rate of nonulcerative lesions (P = 0.76). At 180 days, the ulcer prevention effect of the experimental orthoses was already significant (P = 0.003) when compared with control, and the benefit of the experimental orthoses with respect to the composite end point was also significant (P = 0.042). The hazard ratio was 3.4 (95% CI 1.3–8.7) for the occurrence of a submetatarsal head plantar ulcer in the control compared with experimental arm over the duration of the study. CONCLUSIONS We conclude that shape- and barefoot plantar pressure–based orthoses were more effective in reducing submetatarsal head plantar ulcer recurrence than current standard-of-care orthoses, but they did not significantly reduce nonulcerative lesions. PMID:24760263

  9. [Orthoses and assistive devices in rheumatology : Prevention of disability, support of residual function].

    Science.gov (United States)

    Fikentscher, T; Springorum, H R; Grifka, J; Götz, J

    2017-04-01

    Due to the frequent presence of comorbidities in patients suffering from rheumatism with increased perioperative risk factors, conservative treatment is often needed. Besides pharmacological treatment, physiotherapy and occupational therapy, a variety of orthoses are available depending on the individual indications. They can be used to stabilize or support joints, limit the range of motion, prevent unphysiological movements or provide relief for affected limbs. In order to choose the right kind of orthosis, the physician should know the underlying cause of disease. Furthermore, for patients with rheumatism many devices are available for daily living that use ergonomic handles or improved leverage effects to compensate for the often severe limitations and to improve the quality of life.

  10. [Survey of carbon fiber reinforced plastic orthoses and occupational and medical problems based on a questionnaire administered to companies involved in the manufacture of prosthetics and orthotics].

    Science.gov (United States)

    Kaneshiro, Yuko; Furuta, Nami; Makino, Kenichiro; Wada, Futoshi; Hachisuka, Kenji

    2011-09-01

    We surveyed carbon fiber reinforced plastic orthoses (carbon orthoses) and their associated occupational and medical problems based on a questionnaire sent to 310 companies which were members of the Japan Orthotics and Prosthetics Association. Of all the companies, 232 responded: 77 of the 232 companies dealt with ready-made carbon orthoses, 52 dealt with fabricated custom-made orthoses, and 155 did not dealt with carbon orthoses. Although the total number of custom-made carbon ortheses in Japan was 829/ 5 years, there was a difference by region, and one company fabricated only 12 (per 5 years) custom-made carbon orthoses on average. The advantages of the carbon orthosis were the fact that it was "light weight", "well-fitted", had a "good appearance", and "excellent durability", while the disadvantages were that it was "expensive", "high cost of production", of "black color", and required a "longer time for completion", and "higher fabrication techniques". From the standpoint of industrial medicine, "scattering of fine fragments of carbon fibers", "itching on the skin" and "health hazards" were indicated in companies that manufacture the orthosis. In order to make the carbon orthosis more popular, it is necessary to develop a new carbon material that is easier to fabricate at a lower cost, to improve the fabrication technique, and to resolve the occupational and medical problems.

  11. Plastic collapse load of crown-hinged steel circular arches : a theoretical method

    NARCIS (Netherlands)

    Spoorenberg, R.C.; Snijder, H.H.; Hoenderkamp, J.C.D.

    2013-01-01

    For construction purposes and to avoid detrimental influences of foundation settlements arches are not always made from a single arch-rib but are built by connecting two curvilinear elements at the crown with a hinge. These arches are also known as crown-hinged arches. This paper presents an

  12. The use of modal derivatives in determining stroke-dependent frequencies of large stroke flexure hinges

    NARCIS (Netherlands)

    van den Belt, Mieke; Schilder, Jurnan; Valasek, Michael; Sika, Zbynek; Vampola, Tomas

    2017-01-01

    Nowadays, a lot of use is made of large stroke flexure hinges in precision engineering. However, these large stroke flexure hinges typically lose stiffness in supporting direction during deflection. The lowest natural frequency is a commonly used measure for this property. Therefore, in shape and

  13. The effect of klapskate hinge position on push-off performance: a simulation study

    NARCIS (Netherlands)

    Houdijk, J.H.P.; Bobbert, M.F.; de Koning, J.J.; de Groot, G.

    2003-01-01

    Purpose: The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed

  14. Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage

    DEFF Research Database (Denmark)

    Yoon, G. H.; Kim, Y. Y.; Bendsøe, Martin P.

    2004-01-01

    In topology optimization applications for the design of compliant mechanisms, the formation of hinges is typically encountered. Often such hinges are unphysical artifacts that appear due to the choice of discretization spaces for design and analysis. The objective of this work is to present a new...... two-dimensional compliant mechanism design problems....

  15. Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

    Directory of Open Access Journals (Sweden)

    Z. Du

    2016-05-01

    Full Text Available Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.

  16. A Preliminary Study on the Effect of Computer-Aided Designed and Manufactured Orthoses on Chronic Plantar Heel Pain.

    Science.gov (United States)

    Gatt, Alfred; Grech, Mark; Chockalingam, Nachiappan; Formosa, Cynthia

    2018-04-01

    Chronic plantar heel pain (CPHP) is a significant, painful condition referring to a range of undifferentiated foot conditions that affect the heel of the foot. Participants presenting with CPHP of more than 6 months' duration were recruited on a first through the door basis. Computer-Aided Design and Computer-Aided Manufactured (CAD-CAM) orthoses were designed and constructed for each participant, then dispensed as per normal practice. Pre- and postintervention assessment of pain was performed at baseline and after 6 weeks of use, utilizing the pain subset of the Foot Function Index (FFI). There was a significant reduction in the mean pain scores for all participants in all constructs of the FFI. Total FFI score was also significant ( P = .003). CAD-CAM orthoses have the potential to become a treatment modality of choice in CPHP since they have resulted in a significant improvement in heel pain after only 6 weeks' use. Therapeutic, Level IV: Prospective, comparative trial.

  17. Predictors of response to prefabricated foot orthoses or rocker-sole footwear in individuals with first metatarsophalangeal joint osteoarthritis

    OpenAIRE

    Menz, HB; Auhl, M; Tan, JM; Levinger, P; Roddy, E; Munteanu, SE

    2017-01-01

    BACKGROUND: Osteoarthritis of the first metatarsophalangeal joint (1st MTPJ OA) is a common and disabling condition commonly managed with footwear and orthotic interventions. The objective of this study was to identify factors associated with a successful treatment response in people with 1st MTPJ OA provided with prefabricated orthoses or rocker-sole footwear as part of a randomised clinical trial. METHODS: People with 1st MTPJ OA (n = 88) who participated in a randomised trial were allocate...

  18. The role of functional foot orthoses on calcaneal and tibial kinematics : a clinical perspective using 3-dimensional motion analysis

    OpenAIRE

    Kelly, Joseph J

    2010-01-01

    peer-reviewed In-shoe orthoses are used in the treatment and prevention of lower limb injuries in particular patellofemoral pain associated with subtalar joint pronation. The aim of this thesis was to investigate the precise effects of in-shoe orthotic on the Calcaneus and Tibia. Two-dimension frontal plane kinematics may be used in the clinical setting to determine static and dynamic kinematics of the lower limb and foot. The findings of this thesis highlight several limitations of the...

  19. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.

    Science.gov (United States)

    Mian, Shahzad I; Li, Amy Y; Dutta, Satavisha; Musch, David C; Shtein, Roni M

    2009-12-01

    To determine whether corneal sensation and dry-eye signs and symptoms after myopic laser in situ keratomileusis (LASIK) surgery with a femtosecond laser are affected by varying hinge position, hinge angle, or flap thickness. University-based academic practice, Ann Arbor, Michigan, USA. This prospective randomized contralateral-eye study evaluated eyes after bilateral myopic LASIK with a femtosecond laser (IntraLase). Superior and temporal hinge positions, 45-degree and 90-degree hinge angles, and 100 microm and 130 microm corneal flap thicknesses were compared. Postoperative follow-up at 1 week and 1, 3, 6, and 12 months included central Cochet-Bonnet esthesiometry, the Ocular Surface Disease Index questionnaire, a Schirmer test with anesthesia, tear breakup time (TBUT), corneal fluorescein staining, and conjunctival lissamine green staining. The study evaluated 190 consecutive eyes (95 patients). Corneal sensation was reduced at all postoperative visits, with improvement over 12 months (P<.001). There was no difference in corneal sensation between the different hinge positions, angles, or flap thicknesses at any time point. The overall ocular surface disease index score was increased at 1 week, 1 month, and 3 months (P<.0001, P<.0001, and P = .046, respectively). The percentage of patients with a TBUT longer than 10 seconds was significantly lower at 1 week and 1 month (P<.0001). Dry-eye syndrome after myopic LASIK with a femtosecond laser was mild and improved after 3 months. Corneal flap hinge position, hinge angle, and thickness had no effect on corneal sensation or dry-eye syndrome.

  20. A Structurally Variable Hinged Tetrahedron Framework from DNA Origami

    Directory of Open Access Journals (Sweden)

    David M. Smith

    2011-01-01

    Full Text Available Nanometer-sized polyhedral wire-frame objects hold a wide range of potential applications both as structural scaffolds as well as a basis for synthetic nanocontainers. The utilization of DNA as basic building blocks for such structures allows the exploitation of bottom-up self-assembly in order to achieve molecular programmability through the pairing of complementary bases. In this work, we report on a hollow but rigid tetrahedron framework of 75 nm strut length constructed with the DNA origami method. Flexible hinges at each of their four joints provide a means for structural variability of the object. Through the opening of gaps along the struts, four variants can be created as confirmed by both gel electrophoresis and direct imaging techniques. The intrinsic site addressability provided by this technique allows the unique targeted attachment of dye and/or linker molecules at any point on the structure's surface, which we prove through the superresolution fluorescence microscopy technique DNA PAINT.

  1. The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.

    Directory of Open Access Journals (Sweden)

    Glen B Banks

    2010-05-01

    Full Text Available Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophin(DeltaR4-R23/DeltaCT with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophin(DeltaR4-R23/DeltaCT led to small myofibers (12% smaller than wild-type, Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophin(DeltaR4-R23/DeltaCT with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid alpha-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.

  2. Analysis of a piping system under seismic load using incremental hinge technique

    International Nuclear Information System (INIS)

    Ravi Kiran, A.; Agrawal, M.K.; Reddy, G.R.; Singh, R.K.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Ramesh Babu, R.

    2008-01-01

    ASME Boiler and Pressure Vessel Code treats piping system as a series of components but not as an overall structural system. Limit analyses and collapse tests at component level are used to establish stress allowables on seismic stresses. The code does not consider the load redistributions and structural redundancy existing in piping systems that prevent system collapse even when one or more individual components loaded beyond their collapse levels. This necessitates a simple analytical method for evaluation of inelastic seismic response at system level. The present paper presents a simplified analytical procedure for predicting inelastic response of a typical piping system subjected to seismic load. The analytical method known as incremental hinge technique is based on plastic system behavior in which the yielded components are replaced with hinge models when a critical hinge moment is reached. It also takes into account the inelastic response spectrum reduction factors and displacement ductility. The analytical method is used to obtain the inelastic response, location of hinge formation and level of base excitation needed for hinge formation. The predicted hinge locations and hinge ordering is compared with the results of a shake table test conducted on the piping system. (author)

  3. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves.

    Science.gov (United States)

    Simon, Hélène A; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P

    2010-11-01

    Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid-structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.

  4. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  5. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    Science.gov (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  6. Burst protection for reactor pressure vessels using a hinged support bearing

    International Nuclear Information System (INIS)

    Michel, E.; Maritsch, F.

    1976-01-01

    The invention deals with a simplification of the design and manufacture and the way of controlling a hinged support bearing used as burst protection. The pure pressure load of the, e.g., 32 hinged supports distributed along the circumference of the pressure vessel head is achieved in the braced state with little control effort by a pure rotating motion caused pneumatically or hydraulically. The hinged supports are inclined by about 45 0 upwards/outwards in the braced state and with their cap-shaped head and foot are selflocking by pivoted between a supporting structure, firmly connected with the building, and a fishing ring. (TK) [de

  7. Proposal of custom made wrist orthoses based on 3D modelling and 3D printing.

    Science.gov (United States)

    Abreu de Souza, Mauren; Schmitz, Cristiane; Marega Pinhel, Marcelo; Palma Setti, Joao A; Nohama, Percy

    2017-07-01

    Accessibility to three-dimensional (3D) technologies, such as 3D scanning systems and additive manufacturing (like 3D printers), allows a variety of 3D applications. For medical applications in particular, these modalities are gaining a lot of attention enabling several opportunities for healthcare applications. The literature brings several cases applying both technologies, but none of them focus on the spreading of how this technology could benefit the health segment. This paper proposes a new methodology, which employs both 3D modelling and 3D printing for building orthoses, which could better fit the demands of different patients. Additionally, there is an opportunity for sharing expertise, as it represents a trendy in terms of the maker-movement. Therefore, as a result of the proposed approach, we present a case study based on a volunteer who needs an immobilization orthosis, which was built for exemplification of the whole process. This proposal also employs freely available 3D models and software, having a strong social impact. As a result, it enables the implementation and effective usability for a variety of built to fit solutions, hitching useful and smarter technologies for the healthcare sector.

  8. Functionalisation of the hinge region in receptor molecules for explosive detection

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2003-01-01

    The functionalisation of the hinge region in a molecular tweezer molecule showing a strong binding to explosives is presented. Two versatile functional groups are introduced, a carboxylic acid and a bromine atom. (C) 2003 Elsevier Ltd. All rights reserved....

  9. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  10. Good Functional Recovery of Complex Elbow Dislocations Treated With Hinged External Fixation: A Multicenter Prospective Study

    NARCIS (Netherlands)

    Iordens, Gijs I. T.; den Hartog, Dennis; van Lieshout, Esther M. M.; Tuinebreijer, Wim E.; de Haan, Jeroen; Patka, Peter; Verhofstad, Michael H. J.; Schep, Niels W. L.; Bronkhorst, M. W. G. A.; de Vries, M. R.; Goslings, J. C.; Rhemrev, S. J.; Roukema, G. R.; van der Meulen, H. G. W. M.; Verleisdonk, E. J. M. M.; Vroemen, J. P. A. M.; Wittich, Ph

    2015-01-01

    After a complex dislocation, some elbows remain unstable after closed reduction or fracture treatment. Function after treatment with a hinged external fixator theoretically allows collateral ligaments to heal without surgical reconstruction. However, there is a lack of prospective studies that

  11. Good Functional Recovery of Complex Elbow Dislocations Treated With Hinged External Fixation: A Multicenter Prospective Study

    NARCIS (Netherlands)

    G.I.T. Iordens (Gijs); D. den Hartog (Dennis); E.M.M. van Lieshout (Esther); W.E. Tuinebreijer (Wim); J. de Haan (Jeroen); P. Patka (Peter); M.H.J. Verhofstad (Michiel); N.W.L. Schep (Niels)

    2015-01-01

    textabstractBackground: After a complex dislocation, some elbows remain unstable after closed reduction or fracture treatment. Function after treatment with a hinged external fixator theoretically allows collateral ligaments to heal without surgical reconstruction. However, there is a lack of

  12. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    Science.gov (United States)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.

    2013-12-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.

  13. Inelastic seismic response of precast concrete frames with constructed plastic hinges

    Science.gov (United States)

    Sucuoglu, H.

    1995-07-01

    A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.

  14. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    International Nuclear Information System (INIS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X Q

    2013-01-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures. (paper)

  15. Incremental-hinge piping analysis methods for inelastic seismic response prediction

    International Nuclear Information System (INIS)

    Jaquay, K.R.; Castle, W.R.; Larson, J.E.

    1989-01-01

    This paper proposes nonlinear seismic response prediction methods for nuclear piping systems based on simplified plastic hinge analyses. The simplified plastic hinge analyses utilize an incremental series of flat response spectrum loadings and replace yielded components with hinge elements when a predefined hinge moment is reached. These hinge moment values, developed by Rodabaugh, result in inelastic energy dissipation of the same magnitude as observed in seismic tests of piping components. Two definitions of design level equivalent loads are employed: one conservatively based on the peaks of the design acceleration response spectra, the other based on inelastic frequencies determined by the method of Krylov and Bogolyuboff recently extended by Lazzeri to piping. Both definitions account for piping system inelastic energy dissipation using Newmark-Hall inelastic response spectrum reduction factors and the displacement ductility results of the incremental-hinge analysis. Two ratchet-fatigue damage models are used: one developed by Rodabaugh that conservatively correlates Markl static fatigue expressions to seismic tests to failure of piping components; the other developed by Severud that uses the ratchet expression of Bree for elbows and Edmunds and Beer for straights, and defines ratchet-fatigue interaction using Coffin's ductility based fatigue equation. Comparisons of predicted behavior versus experimental results are provided for a high-level seismic test of a segment of a representative nuclear plant piping system. (orig.)

  16. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Hinse, Sébastien; Sadeghi, Heydar; Popov, Peter; Allard, Paul

    2009-11-01

    Changes in magnitude and timing of rearfoot eversion and tibial internal rotation by foot orthoses and their contributions to vertical ground reaction force and knee joint moments are not well understood. The objectives of this study were to test if orthoses modify the magnitude and time to peak rearfoot eversion, tibial internal rotation, active ground reaction force and knee adduction moment and determine if rearfoot eversion, tibial internal rotation magnitudes are correlated to peak active ground reaction force and knee adduction moment during the first 60% stance phase of running. Eleven healthy men ran at 170 steps per minute in shod and with foot orthoses conditions. Video and force-plate data were collected simultaneously to calculate foot joint angular displacement, ground reaction forces and knee adduction moments. Results showed that wearing semi-rigid foot orthoses significantly reduced rearfoot eversion 40% (4.1 degrees ; p=0.001) and peak active ground reaction force 6% (0.96N/kg; p=0.008). No significant time differences occurred among the peak rearfoot eversion, tibial internal rotation and peak active ground reaction force in both conditions. A positive and significant correlation was observed between peak knee adduction moment and the magnitude of rearfoot eversion during shod (r=0.59; p=0.04) and shod/orthoses running (r=0.65; p=0.02). In conclusion, foot orthoses could reduce rearfoot eversion so that this can be associated with a reduction of knee adduction moment during the first 60% stance phase of running. Finding implies that modifying rearfoot and tibial motions during running could not be related to a reduction of the ground reaction force.

  17. Hardness and posting of foot orthoses modify plantar contact area, plantar pressure, and perceived comfort when cycling.

    Science.gov (United States)

    Bousie, Jaquelin A; Blanch, Peter; McPoil, Thomas G; Vicenzino, Bill

    2018-07-01

    To evaluate the effects of hardness and posting of orthoses on plantar profile and perceived comfort and support during cycling. A repeated measures study with randomised order of orthoses, hardness, and posting conditions. Twenty-three cyclists cycled at a cadence of 90rpm and a perceived exertion rating of twelve. Contoured soft and hard orthoses with or without a medial forefoot or lateral forefoot post were evaluated. Plantar contact area, mean pressure and peak pressure were measured for nine plantar regions using the pedar ® -X system and represented as a percentage of the total (CA%, MP%, and PP% respectively). Perceived comfort and support was rated on a visual analogue scale. The softer orthosis significantly increased CA% (p=0.014) across the midfoot and heel with a decrease in the toe region and forefoot. MP% (p=0.034) and PP% (p=0.012) were significantly increased at the mid and lateral forefoot with reductions in MP% at the midfoot and in PP% at the hallux and toes. Forefoot posting significantly increased CA% (p=0.018) at the toes and forefoot and decreased it at the heel. PP% was significantly altered (p=0.013) based on posting position. Lateral forefoot posting significantly decreased heel comfort (p=0.036). When cycling, a soft, contoured orthosis increased contact across the midfoot and heel, modulating forefoot and midfoot plantar pressures but not altering comfort or support. Forefoot postings significantly modified contact areas and plantar pressures and reduced comfort at the heel. Copyright © 2017. Published by Elsevier Ltd.

  18. Kinematics analysis on hinges of robot arm gripper for harmful chemical handling

    Science.gov (United States)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Mustafa, Nurul Fahimah; Daud, Mohd Hisam

    2017-09-01

    The development of manufacturing industry is booming the application of industrial robot, and proportional to the use of robot arm. Some of the purpose of robot arm gripper is to sort things and place to the proper place. And some of the things are harmful to human, such as harmful chemical. By using robot arm to do picking and placing, it is expected to replace human tasks, as well as to reduce human from the harmful job. The problem of the robot arm gripper, most likely the problem of hinge, thus the analysis on the hinges of robot arm gripper to prevent claw is essential. By using robot arm, instead of human, is labored to do the harmful tasks and unexpected accident happen, costs and expenses in handling injured employee due to the harmful chemicals can be minimized. Thus the objective of this project is to make a kinematics analysis on the hinges of the robot arm gripper. Suitable material such as steel structure has also been selected for the construction of this hinges. This material has properties associated with compressive strength, fire resistance, corrosion and has a shape that is easy to move. Solid Works and ANSYS software is used to create animated movement on the design model and to detect deficiencies in the hinges. Detail methodology is described in this paper.

  19. Acceptability and Potential Effectiveness of a Foot Drop Stimulator in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    Prosser, Laura A.; Curatalo, Lindsey A.; Alter, Katharine E.; Damiano, Diane L.

    2012-01-01

    Aim: Ankle-foot orthoses are the standard of care for foot drop in cerebral palsy (CP), but may overly constrain ankle movement and limit function in those with mild CP. Functional electrical stimulation (FES) may be a less restrictive and more effective alternative, but has rarely been used in CP. The primary objective of this study was to…

  20. Seismic performance of a grout-repaired construction defect in a column plastic hinge

    International Nuclear Information System (INIS)

    Budek, A.

    2006-01-01

    A column built to test the use of high-strength transverse reinforcement in seismically-loaded shear-critical columns was found to have a construction defect. The column was built to be loaded in double bending and as such was expected to develop two plastic hinges, one at each end of column. In the plastic hinge region at the column top, a void was formed because the concrete could not pass through the load stub's reinforcing steel cage. This void was repaired using nonshrink grout placed in a fluid state. The column was tested after repair and performed satisfactorily. The grouted repair was able to support large plastic rotations and allowed the column to reach a high level of ductility. The only effects of the repair were slightly reduced concrete dilation and stiffness in the repaired hinge. (author)

  1. Knee joint kinetics in response to multiple three-dimensional printed, customised foot orthoses for the treatment of medial compartment knee osteoarthritis.

    Science.gov (United States)

    Allan, Richard; Woodburn, James; Telfer, Scott; Abbott, Mandy; Steultjens, Martijn Pm

    2017-06-01

    The knee adduction moment is consistently used as a surrogate measure of medial compartment loading. Foot orthoses are designed to reduce knee adduction moment via lateral wedging. The 'dose' of wedging required to optimally unload the affected compartment is unknown and variable between individuals. This study explores a personalised approach via three-dimensional printed foot orthotics to assess the biomechanical response when two design variables are altered: orthotic length and lateral wedging. Foot orthoses were created for 10 individuals with symptomatic medial knee osteoarthritis and 10 controls. Computer-aided design software was used to design four full and four three-quarter-length foot orthoses per participant each with lateral posting of 0° 'neutral', 5° rearfoot, 10° rearfoot and 5° forefoot/10° rearfoot. Three-dimensional printers were used to manufacture all foot orthoses. Three-dimensional gait analyses were performed and selected knee kinetics were analysed: first peak knee adduction moment, second peak knee adduction moment, first knee flexion moment and knee adduction moment impulse. Full-length foot orthoses provided greater reductions in first peak knee adduction moment (p = 0.038), second peak knee adduction moment (p = 0.018) and knee adduction moment impulse (p = 0.022) compared to three-quarter-length foot orthoses. Dose effect of lateral wedging was found for first peak knee adduction moment (p knee adduction moment (p knee adduction moment impulse (p knee adduction moment (p = 0.028) and knee adduction moment impulse (p = 0.036). Significant interaction effects were found between orthotic length and wedging condition for second peak knee adduction moment (p = 0.002). No significant changes in first knee flexion moment were found. Individual heterogeneous responses to foot orthosis conditions were observed for first peak knee adduction moment, second peak knee adduction moment and knee adduction moment impulse. Biomechanical response

  2. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives.

    Directory of Open Access Journals (Sweden)

    Brian Healy

    Full Text Available Nisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid 'hinge' region (N 20, M 21 and K 22 which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.

  3. Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine

    International Nuclear Information System (INIS)

    Okur, Melih; Akmandor, Ibrahim Sinan

    2011-01-01

    Hinged rolling piston compressor of a new thermodynamic cycle Pars engine promises high performance figures such as single stage high compression levels and higher volume flow discharge with competitively low input power and torque. The pumping characteristic of the present engine compressor unit has been increased by the implementation of a spring less vane configuration. The reciprocating vane which is usually operated by spring compression in air conditioning and refrigeration unit has been replaced by a hinge vane mechanism. At high speeds, the conventional spring loaded vane which is forced against the eccentrically moving rotor periphery does disconnect and starts rocking. With the new configuration, this mishap has been eliminated and subsequently resulting compressor pressure leaks have been avoided. Compressor experiments have been carried out at predetermined rotor speeds and compressed volume flow amounts and required shaft powers have been measured and derived accordingly. Experimentally determined pressure-volume relations have been compared with isentropic, isothermal, isochoric compressions as well as isobaric process. It is seen that at lower speeds, hinged vane compression is half way between isentropic and isochoric compressions whereas at high speed the compression process approaches further isochoric compression behavior. The isentropic compression efficiency of the hinged vane compressor is around 85% for pressures reaching 9 atm. - Research highlights: → Volume flow rate of rotary vane compressor unit has been increased by a hinged vane mechanism. → Hinged compressor pressure output is almost twice the performance of a spring loaded compressor. → The slipping and rocking of the spring loaded vane against the rolling piston have been eliminated.

  4. A hinged-pad test structure for sliding friction measurement in micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Boer, M.P. de; Redmond, J.M.; Michalske, T.A.

    1998-08-01

    The authors describe the design, modeling, fabrication and initial testing of a new test structure for friction measurement in MEMS. The device consists of a cantilevered forked beam and a friction pad attached via a hinge. Compared to previous test structures, the proposed structure can measure friction over much larger pressure ranges, yet occupies one hundred times less area. The placement of the hinge is crucial to obtaining a well-known and constant pressure distribution in the device. Static deflections on the device were measured and modeled numerically, Preliminary results indicate that friction pad slip is sensitive to friction pad normal force.

  5. The effect of klapskate hinge position on push-off performance: a simulation study

    OpenAIRE

    Houdijk, J.H.P.; Bobbert, M.F.; de Koning, J.J.; de Groot, G.

    2003-01-01

    Purpose: The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. Method: For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this m...

  6. Hinged and sectional complete dentures for restricted mouth opening: A case report and review

    Directory of Open Access Journals (Sweden)

    Aditi Sharma

    2013-01-01

    Full Text Available Restricted mouth opening is a definite prosthodontic hindrance to carry out treatment successfully. Restricted mouth opening can be due to many reasons such as microstomia, oral submucous fibrosis, some genetic disorder, and as a result of some surgical treatment. In the past, various techniques for prosthetic rehabilitation of limited oral opening have been tried such as surgeries, use of dynamic opening devices, magnetic devices, and modification of denture design. Here we present; a simplified technique and simple design for fabrication of maxillary hinged and mandibular hinged and sectional complete denture for a patient with restricted mouth opening due to oral submucous fibrosis.

  7. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  8. Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves

    Science.gov (United States)

    Hedayat, Mohammadali; Borazjani, Iman

    2017-11-01

    Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  9. Capillary origami of micro-machined micro-objects: Bi-layer conductive hinges

    NARCIS (Netherlands)

    Legrain, A.B.H.; Berenschot, Johan W.; Tas, Niels Roelof; Abelmann, Leon

    2015-01-01

    Recently, we demonstrated controllable 3D self-folding by means of capillary forces of silicon-nitride micro-objects made of rigid plates connected to each other by flexible hinges (Legrain et al., 2014). In this paper, we introduce platinum electrodes running from the substrate to the plates over

  10. An optimization approach for black-and-white and hinge-removal topology designs

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yongqing; Zhang, Xianmin [South China University of Technology, Guangzhou (China)

    2014-02-15

    An optimization approach for black-and-white and hinge-removal topology designs is studied. To achieve this motive, an optimal topology allowing grey boundaries is found firstly. When a suitable design has been obtained, this solution is then used as a starting point for the follow-up optimization with the goal to free unfavorable intermediate elements. For this purpose, an updated optimality criterion in which a threshold factor is introduced to gradually suppress elements with low density is proposed. The typical optimality method and new technique proposed are applied to the design procedure sequentially. Besides, to circumvent the one-point hinge connection problem producing in the process of freeing intermediate elements, a hinge-removal strategy is also proposed. During the optimization, the binary constraints on design variables are relaxed based on the scheme of solid isotropic material with penalization. Meanwhile, the mesh independency filter is employed to ensure the existence of a solution and remove well-known checkerboards. In this way, a solution that has few intermediate elements and is free of one-point hinge connections is obtained. Finally, different numerical examples including the compliance minimization, compliant mechanisms and vibration problems demonstrate the validity of the proposed approach.

  11. The influence of material properties on plastic hinge rotational capacity and strength

    NARCIS (Netherlands)

    Steenbergen, H.M.G.M.; Bijlaard, F.S.K.; Daniels, B.J.

    1996-01-01

    In this article the effects of standardised material stress-strain behaviours on plastic hinge length, moment and rotational capacity are investigated using a specially developed computer program. Material properties are described using three standard post-yield stress-strain characteristics, as

  12. Solar array deployment analysis considering path-dependent behavior of a tape spring hinge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Won; Park, Young Jin [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Solar array deployment analysis is conducted considering the path-dependent nonlinear behavior of tape spring hinge. Such hinges offer many advantages over rigid hinges; they are self-deployable, self-locking, lightweight, and simple. However, they show strongly nonlinear behavior with respect to rotation angle, making deployment analysis difficult. To accurately consider the characteristics of tape spring hinges for deployment analysis, a path-dependent path identification (PI) method for tracing the previous path of the moment is introduced. To analyze the deployment motion, the governing equation for solar array deployment is derived within the framework of Kane's dynamic equation for three deployable solar panels. The numerical solution is compared with the Recurdyn's multi-body dynamics analysis solution using experimentally measured moment-rotation profiles. Solar array deployment analysis is conducted by considering and not considering the path-dependent PI method. This simulation example shows that the proposed path-dependent PI method is very effective for accurately predicting the deployment motion.

  13. The effects of klapskate hinge position on push-off performance: a simulation study.

    Science.gov (United States)

    Houdijk, Han; Bobbert, Maarten F; De Koning, Jos J; De Groot, Gert

    2003-12-01

    The introduction of the klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this model performed a one-leg vertical jump, from a frictionless surface, while keeping its trunk horizontally. In this model, klapskate hinge position was varied by varying the length of the foot segment between 115 and 300 mm. With each foot length, an optimal control solution was found that resulted in the maximal amount of vertical kinetic and potential energy of the body's center of mass at take off (Weff). Foot length was shown to considerably affect push-off performance. Maximal Weff was obtained with a foot length of 185 mm and decreased by approximately 25% at either foot length of 115 mm and 300 mm. The reason for this decrease was that foot length affected the onset and control of foot rotation. This resulted in a distortion of the pattern of leg segment rotations and affected muscle work (Wmus) and the efficacy ratio (Weff/Wmus) of the entire leg system. Despite its simplicity, the model very well described and explained the effects of klapskate hinge position on push off performance that have been observed in speed-skating experiments. The simplicity of the model, however, does not allow quantitative analyses of optimal klapskate hinge position for speed-skating practice.

  14. Effectiveness of Orthoses and Foot Training in patients with Patellofemoral Pain and hyperpronation

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kaalund, Søren; Christensen, Marianne

    .   Methods and Measures: Forty patellofemoral patients, with excessive foot pronation were prospectively randomised to undergo a regimen of supervised exercise once a week for 3 months or to a control group. Both groups received a standard regimen of three supervised session with a physiotherapist over 3...... months. The patients were between 18-58 years old and 28 of 40 were women. Average age was 31.5 yrs. Average duration of PFPS was more than five years at baseline. Patellofemoral syndrome was diagnosed when at least two of four examinations were present: • Pain by isometric contraction of quadriceps...... The distribution of the study participants at baseline is shown in table 1. A significant improvement was seen with the training and orthoses intervention at both 4 months and 12 months follow up in all the KOOS sub scores and Kujala score (P

  15. The effectiveness of non-surgical intervention (Foot Orthoses for paediatric flexible pes planus: A systematic review: Update.

    Directory of Open Access Journals (Sweden)

    Sindhrani Dars

    Full Text Available Flexible pes planus (flat feet in children is a common presenting condition in clinical practice due to concerns amongst parents and caregivers. While Foot Orthoses (FOs are a popular intervention, their effectiveness remains unclear. Thus, the aim of this systematic review was to update the current evidence base for the effectiveness of FOs for paediatric flexible pes planus.A systematic search of electronic databases (Cochrane, Medline, AMED, EMBASE, CINHAL, SportDiscus, Scopus and PEDro was conducted from January 2011 to July 2017. Studies of children (0-18 years diagnosed with flexible pes planus and intervention to be any type of Foot Orthoses (FOs were included. This review was conducted and reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA statement. McMaster critical review form for quantitative studies, was used to assess the methodological quality of the included studies. Given the heterogeneity of the included studies, a descriptive synthesis of the included studies was undertaken.Out of 606 articles identified, 11 studies (three RCTs; two case-controls; five case-series and one single case study met the inclusion criteria. A diverse range of pre-fabricated and customised FOs were utilised and effectiveness measured through a plethora of outcomes. Summarised findings from the heterogeneous evidence base indicated that FOs may have a positive impact across a range of outcomes including pain, foot posture, gait, function and structural and kinetic measures. Despite these consistent positive outcomes reported in several studies, the current evidence base lacks clarity and uniformity in terms of diagnostic criteria, interventions delivered and outcomes measured for paediatric flexible pes planus.There continues to remain uncertainty on the effectiveness of FOs for paediatric flexible pes planus. Despite a number of methodological limitations, FOs show potential as a treatment method for

  16. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Saxena, R; Yoganathan, A P

    1996-11-01

    During recent clinical trials the Medtronic Parallel bileaflet mechanical heart valve was found to have an unacceptable number of valves with thrombus formation when implanted in the mitral position. Thrombi were observed in the hinge region and also in the upstream portion of the valve housing in the vicinity of the hinge. It was hypothesized that the flow conditions inside the hinge may have contributed to the thrombus formation. In order to investigate the flow structures within the hinge, laser Doppler anemometry (LDA) measurements were conducted in both steady and pulsatile flow at approximately 70 predetermined sites within the hinge region of a 27 mm Medtronic Parallel mitral valve with transparent housing. The pulsatile flow velocity measurements were animated in time using a graphical software package to visualize the hinge flow field throughout the cardiac cycle. The LDA measurements revealed that mean forward flow velocities through the hinge region were on the order of 0.10-0.20 m/s. In the inflow channel, a large vortical structure was present during diastole. Upon valve closure, peak reverse velocity reached 3 m/s close to the housing wall in the inflow channel. This area also experienced high turbulent shear stresses (> 6000 dynes/cm2) during the leakage flow phase. A disturbed, vortical flow was again present in the inflow channel after valve closure, while slightly above the leaflet peg and relief the flow was essentially stagnant. The high turbulent stresses near the top of the inflow channel, combined with a persistent vortex, implicate the inflow channel of the hinge as a likely region of thrombus formation. This experimental investigation revealed zones of flow stagnation in the inflow region of the hinge throughout the cardiac cycle and elevated turbulent shear stress levels in the inflow region during the leakage flow phase. These fluid mechanic phenomena are most likely a direct result of the complex geometry of the hinge of this valve

  17. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings

    Directory of Open Access Journals (Sweden)

    Ronja A. Schierjott

    2016-01-01

    Full Text Available Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens (n=3, whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  18. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings.

    Science.gov (United States)

    Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M

    2016-01-01

    Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  19. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    Science.gov (United States)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  20. Reconstruction of palatal defect using mucoperiosteal hinge flap and pushback palatoplasty.

    Science.gov (United States)

    Lee, S I; Lee, H S; Hwang, K

    2001-11-01

    This article describes a simple, new surgical technique to provide a complete two-layer closure of palatal defect resulting from a surgical complication of trans palatal resection of skull base chordoma. The nasal layer was reconstructed with triangular shape oral mucoperiosteal turn over hinge flap based on anterior margin of palatal defect and rectangular shaped lateral nasal mucosal hinge flaps. The oral layer was reconstructed with conventional pushback V-Y advancement 2-flaps palatoplasty. Each layer of the flaps were secured with two key mattress suture for flap coaptation. This technique has some advantages: simple, short operation time, one-stage procedure, no need of osteotomy. It can close small- to medium-sized palatal defect of palate or wide cleft palate and can prevent common complication of oronasal fistula, which could be caused by tension.

  1. DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

    Directory of Open Access Journals (Sweden)

    Gagarin Vladimir Gennad'evich

    2015-03-01

    Full Text Available Enveloping structures with hinged façade systems are nowadays widely used for moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insulation parameters is usually neglected. In the article the thermal resistance of an air gap and is considered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the conditions of cold weather. The thermal resistance of the air layer determines how the heat losses decrease.

  2. Modeling and design of a two-axis elliptical notch flexure hinge

    Science.gov (United States)

    Wu, Jianwei; Zhang, Yin; Lu, Yunfeng; Wen, Zhongpu; Bin, Deer; Tan, Jiubin

    2018-04-01

    As an important part of the joule balance system, the two-axis elliptical notch flexure hinge (TENFH) which typically consists of two single-axis elliptical notch flexure hinges was studied. First, a 6 degrees of freedom (6-DOF) compliance model was established based on the coordinate transformation method. In addition, the maximum stress of the TENFH was derived. The compliance and maximum stress model was verified using finite element analysis simulation. To decouple the attitude of the suspended coil system and reduce the offset between the centroid of the suspended coil mechanism and the mass comparator in the joule balance system, a new mechanical structure of TENFH was designed based on the compliance model and stress model proposed in this paper. The maximum rotation range is up to 10°, and the axial load is more than 5 kg, which meets the requirements of the system. The compliance model was also verified by deformation experimentation with the designed TENFH.

  3. The Physiological Benefits and Problems Associated With Using Standing and Walking Orthoses in Individuals With Spinal Cord Injury—A Meta-analytic Review

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi Taghi

    2012-06-01

    Full Text Available Spinal cord injury (SCI patients use two transportation systems that include orthosis and wheelchair. It was claimed that standing and walking bring some benefits for SCI patients, such as decreasing bone osteoporosis, preventing pressure sores, and improving various physiological functions. The main question posted here is as follows: Is there enough evidence to support the effect of walking with orthosis on the health status of the patients with SCI? A review of the relevant literature was carried out in Bioengineering Unit of Strathclyde University. The benefits of orthoses were evaluated. Evidence reported in the literature regarding the effectiveness of orthoses for improving the health condition of SCI patients is conflicting. The benefits that were mentioned in various research studies regarding using the orthosis include decreasing bone osteoporosis, preventing joint deformity, improving bowl and bladder function, improving digestive system function, decreasing muscle spasm, improving independent living, improving respiratory and cardiovascular systems function. Improvement of independence living and physiological health of the patients are the only two benefits that are supported by strong evidence. Unfortunately, conflicting results in the literature have led to criticism of most hypotheses based on theoretical grounds, with the effects of using orthoses on the health status remaining a matter of considerable debate.

  4. Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Bacot-Davis, Valjean R., E-mail: bacotdavis@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Palmenberg, Ann C., E-mail: acpalmen@wisc.edu [Institute for Molecular Virology, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States); Department of Biochemistry, University of Wisconsin-Madison, R.M. Bock Laboratories, 1525 Linden Dr. Madison, WI 53706 (United States)

    2013-08-15

    Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35–40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition. - Highlights: • The hinge domain provides critical residues in Cardiovirus L:Ran complex formation. • Leader prefers to bind Ran in a nucleotide free, GDP-conformation. • L-induced Nup62 phosphorylation is reduced with Ran-deficient binding mutations.

  5. Attitude Control of Nanosatellites by Paddle Motion Using Elastic Hinges Actuated by Shape Memory Alloy

    Science.gov (United States)

    Iai, Masafumi; Durali, Mohammad; Hatsuzawa, Takeshi

    Recent research has been extending the applications of small satellites called microsatellites, nanosatellites, or picosatellites. To further improve capability of those satellites, a lightweight, active attitude-control mechanism is needed. This paper proposes a concept of inertial orientation control, an attitude control method using movable solar arrays. This method is made suitable for nanosatellites by the use of shape memory alloy (SMA)-actuated elastic hinges and a simple maneuver generation algorithm. The combination of SMA and an elastic hinge allows the hinge to remain lightweight and free of frictional or rolling contacts. Changes in the shrinking and stretching speeds of the SMA were measured in a vacuum chamber. The proposed algorithm constructs a maneuver to achieve arbitrary attitude change by repeating simple maneuvers called unit maneuvers. Provided with three types of unit maneuvers, each degree of freedom of the satellite can be controlled independently. Such construction requires only simple calculations, making it a practical algorithm for a nanosatellite with limited computational capability. In addition, power generation variation caused by maneuvers was analyzed to confirm that a maneuver from any initial attitude to an attitude facing the sun was justifiable in terms of the power budget.

  6. Treatment of neglected elbow dislocations with the help of hinged external fixator: Report of two cases

    Directory of Open Access Journals (Sweden)

    Özgür Karakoyun

    2014-06-01

    Full Text Available Elbow dislocations are cases that have to be treated in emergency conditions. Neglected elbow dislocations are seen very rarely and the treatment of such cases are more complicated than acute cases. We present two cases of neglected elbow dislocations treated with open reduction and hinged external fixators. Case 1: 23 year old female patient had a neglected posterior dislocation of left elbow with ipsilateral humeral shaft fracture caused by car accident. The patient was treated after 3 months of initial trauma. We have performed open reduction for the joint. After that we fixed the joint whit a hinged external fixator. The humeral shaft fracture was also fixed with the components of the external fixator. Case 2: 33 year male patient had a large bone and soft tissue defect around the left elbow accompanying with neglected medial elbow dislocation. He presented to our clinic with a delay of 2 months. The patient was treated with open reduction and hinged external fixator after reconstruction of bone defect of distal humerus. Conclusion: The treatment of neglected cases is quite challenging. Open reduction and external fixation has satisfactory results in treatment of late cases of elbow dislocation with the possibility of early rehabilitation. This method can be considered as an option for such cases. J Clin Exp Invest 2014; 5 (2: 443-446

  7. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge

    NARCIS (Netherlands)

    Schellart, Wouter P.

    2005-01-01

    Geological observations indicate that along two active continental margins (East Asia and Mediterranean) major phases of overriding plate extension, resulting from subduction hinge-retreat, occurred synchronously with a reduction in subducting plate velocity. In this paper, results of fluid

  8. The use of cold porcelain orthoses to implement the act of playing of a child with motor deficit

    Directory of Open Access Journals (Sweden)

    Marilda Ferraz Santana

    2012-06-01

    Full Text Available playing of the child with motor deficit. Methods: Applied research, quantitative and qualitative, in the Center for Integrated Healthcare (NAMI in Fortaleza - CE, Brazil. The investigation occurred in the period from February to June 2008. Sample of 22 children, 14 selected in the survey entitled “Reduction in costs for making orthoses” and 8 indicated by professionals. We applied semi-structured interviews with officials, evaluate the play behavior based on the Protocol of Ferland. In the analysis of qualitative information, we used Bardin’s Content Analysis. For quantitative data, we used the statistical treatment of Morettin. Results: The qualitative categories were organized into three: the parents’ opinion about the act of playing of their children, type of toy and improvement in occupationalperformance with the use of orthosis. The quantitative analysis allowed the consolidation of data in tables, after the Behavior Assessment Playful, applied in the beginning and in the end of the study. Conclusions: This study showed, therefore, that the use of “cold porcelain” orthoses interfered, overwhelmingly, both in performing of the act of playing of the children who participated in this research, as well as in occupational performance in various areas, passing by significant changes, bringing value also in the interest, ability to perform an activity and relationships and feelings.

  9. Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings.

    Science.gov (United States)

    Tanaka, Kousuke; Hiraga, Atsushi; Takahashi, Toshiyuki; Kuwano, Atsutoshi; Morrison, Scott Edward

    2015-01-01

    We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mean ratio of the solar surface width to the articular surface width. These results suggest that the AHSs corrected the contracted feet in these yearling horses.

  10. Effects of aluminum hinged shoes on the structure of contracted feet in Thoroughbred yearlings

    OpenAIRE

    TANAKA, Kousuke; HIRAGA, Atsushi; TAKAHASHI, Toshiyuki; KUWANO, Atsutoshi; MORRISON, Scott Edward

    2015-01-01

    ABSTRACT We applied aluminum hinged shoes (AHSs) to the club foot-associated contracted feet of 11 Thoroughbred yearlings to examine the effects of the shoes on the shape of the hoof and third phalanx (P III). After 3 months of AHS use, the size of the affected hooves increased significantly, reaching the approximate size of the healthy contralateral hooves with respect to the maximum lateral width of the foot, the mean ratio of the bearing border width to the coronary band width, and the mea...

  11. Effects of opioids in the formalin test in the Speke's hinged tortoise (Kinixy's spekii)

    DEFF Research Database (Denmark)

    Wambugu, SN; Towett, PK; Kiama, SG

    2010-01-01

    decrease in the duration of limb retraction in the formalin test. The anti-nociceptive effects were naloxone (5 mg/kg) reversible. The data suggest that the formalin test is a good test for studying nociception and anti-nociception in tortoises and that the opioidergic system plays a role in the control......Little is known about analgesia in lower vertebrates such as the Speke's hinged tortoise (Kinixy's spekii), yet of late they are increasingly being adopted as pets. The effects of morphine (5, 7.5, 10 and 20 mg/kg), pethidine (10, 20, and 50 mg/kg) and naloxone (5 mg/kg) on nociception induced...... by the formalin test (12.5%, 100 microL) were studied in the Speke's hinged tortoise. Formalin induced a monophasic limb retraction behavioural response and its duration was recorded. The behaviour lasted for 16.4 +/- 0.8 min. Morphine (7.5, 10 and 20 mg/kg) and pethidine (20 and 50 mg/kg) induced significant...

  12. Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods

    Science.gov (United States)

    Lyle, Karen H.; Horta, Lucas G.

    2012-01-01

    Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.

  13. Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    Science.gov (United States)

    Boroughs, R. R.; Padmanabhan, V.

    1983-01-01

    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.

  14. A Study on the Modeling of the Oil Damper in an Auto-Door Hinge

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Jong Tae; Kim, Hwan Yeol

    2009-11-15

    An auto-door hinge, which is one of the automatic door-closing apparatuses, has been widely used to prevent fire propagations in living or commercial buildings. The auto-door hinge consists of a spring to accumulate power for closing a door and an oil damper to control door-closing velocity. To predict and optimize the temporal door behavior during the door-closing period, the auto-door closing system was modeled as a second order-damping system. And a damping coefficient of the oil damper was also theoretically modeled by analyzing Newtonian, incompressible, viscous flow through an oil passage between a oil control rod and a oil piston body. The temporal door behaviors during the door-closing period were predicted with respect to the gap distance of the oil passage, oil viscosity, and pre-compressing of the spring. Temporal door behavior measurement method using an encoder system was also developed to validate the modelling on the oil damping system. As using the developed test apparatus, the temporal door position, velocity, and rotational torque were measured, and the modelling method was evaluated.

  15. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-01-01

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  16. A Study on the Modeling of the Oil Damper in an Auto-Door Hinge

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Kim, Jong Tae; Kim, Hwan Yeol

    2009-11-01

    An auto-door hinge, which is one of the automatic door-closing apparatuses, has been widely used to prevent fire propagations in living or commercial buildings. The auto-door hinge consists of a spring to accumulate power for closing a door and an oil damper to control door-closing velocity. To predict and optimize the temporal door behavior during the door-closing period, the auto-door closing system was modeled as a second order-damping system. And a damping coefficient of the oil damper was also theoretically modeled by analyzing Newtonian, incompressible, viscous flow through an oil passage between a oil control rod and a oil piston body. The temporal door behaviors during the door-closing period were predicted with respect to the gap distance of the oil passage, oil viscosity, and pre-compressing of the spring. Temporal door behavior measurement method using an encoder system was also developed to validate the modelling on the oil damping system. As using the developed test apparatus, the temporal door position, velocity, and rotational torque were measured, and the modelling method was evaluated

  17. Integrin activation dynamics between the RGD-binding site and the headpiece hinge.

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-12-25

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII(10)-bound alpha(V)beta(3) integrin headpiece how the binding pocket and interdomain betaA/hybrid domain hinge on the distal end of the betaA domain are allosterically linked via a hydrophobic T-junction between the middle of the alpha1 helix and top of the alpha7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca(2+) in place of Mg(2+) at the site adjacent to the metal ion-dependent adhesion site ("ADMIDAS"). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca(2+) at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated.

  18. Integrin Activation Dynamics between the RGD-binding Site and the Headpiece Hinge*

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-01-01

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII10-bound αVβ3 integrin headpiece how the binding pocket and interdomain βA/hybrid domain hinge on the distal end of the βA domain are allosterically linked via a hydrophobic T-junction between the middle of the α1 helix and top of the α7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca2+ in place of Mg2+ at the site adjacent to the metal ion-dependent adhesion site (“ADMIDAS”). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca2+ at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated. PMID:19762919

  19. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity

    Directory of Open Access Journals (Sweden)

    Liang eZhou

    2015-01-01

    Full Text Available Lantibiotics are ribosomally synthesized (methyllanthionine containing peptides which can efficiently inhibit the growth of Gram-positive bacteria. As lantibiotics kill bacteria efficiently and resistance to them is difficult to be obtained, they have the potential to be used in many applications, e.g. in pharmaceutical industry or food industry. Nisin can inhibit the growth of Gram-positive bacteria by binding to lipid II and by making pores in their membrane. The C-terminal part of nisin is known to play an important role during translocation over the membrane and forming pore complexes. However, as the thickness of bacterial membranes varies between different species and environmental conditions, this property could have an influence on the pore forming activity of nisin. To investigate this, the so-called hinge region of nisin (residues NMK was engineered to vary from one to six amino acid residues and specific activity against different indicators was compared. Antimicrobial activity in liquid culture assays showed that wild type nisin is most active, while truncation of the hinge region dramatically reduced the activity of the peptide. However, one or two amino acids extensions showed only slightly reduced activity against most indicator strains. Notably, some variants (+2, +1, -1, -2 exhibited higher antimicrobial activity than nisin in agar well diffusion assays against Lactococcus lactis MG1363, Listeria monocytogenes, Enterococcus faecalis VE14089, Bacillus sporothermodurans IC4 and Bacillus cereus 4153 at certain temperatures.

  20. Study on Utilization of LVL Sengon (Paraserianthes falcataria for Three-Hinged Gable Frame Structures

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-07-01

    Full Text Available This study focuses on the utilization of non-prismatic LVL members of wood species Sengon (Paraserianthes falcataria for three-hinged gable frame structures. This wood species matures in 6 to 8 years, and the innovative application as LVL product for these structures is evaluated. A full-scale model of a beam-column connection is produced and tested to validate the moment-rotation response predicted by the numerical study using ABAQUS. The FEM results showed a linear-elastic moment-rotation curve response up to a joint rotation of 0.015 radians which is in very good agreement with the experiment. This validated FE model for the beam-column joint was further utilized to generate predictions for the moment-rotation relation using different bolt diameters and configurations. The last part of this study presents an evaluation of the maximum load bearing capacity of three-hinged gable frame timber structures considering a rigid and semi-rigid beam-column joint model. If the load carrying capacity is governed by the yielding of the bolt, the gable frame structure with the rigid beam-column joint overestimates the load bearing capacity by 17% to 25%.

  1. Formation of vortex pairs with hinged rigid flaps at the nozzle exit

    Science.gov (United States)

    Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant

    2013-11-01

    Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.

  2. Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.

  3. When, why and how foot orthoses (FOs should be prescribed for children with flexible pes planus: a Delphi survey of podiatrists

    Directory of Open Access Journals (Sweden)

    Sindhrani Dars

    2018-04-01

    Full Text Available Background Flexible pes planus (flat feet in children is a common reason parents and caregivers seek health professionals consult and a frequent reason podiatrists prescribe foot orthoses. Yet no universal agreement exists on the diagnosis of this condition, or when and how foot orthoses should be prescribed. The aim of this study was to garner consensus and agreement among podiatrists on the use of FOs for paediatric flexible pes planus. Methods A three round Delphi consensus survey was undertaken with 15 podiatry experts from Australia, New Zealand and the United Kingdom. Round One gathered consensus on the diagnosis and intervention into paediatric pes planus with specific questions on types of FOs and prescription variables used. Round Two and Three were based on answers from Round One and gathered agreement (rationale for choices on a five point Likert scale. 70% of respondents had to agree to a statement for it to be accepted as consensus or agreement. Results Consensus and agreement was achieved for 83 statements directing the diagnosis of pes planus (using FPI-6 and/or rearfoot measures, common signs and symptoms (e.g., pain, fatigue, abnormal gait and other functional concerns that direct when to intervene into paediatric flexible pes planus. Prefabricated orthoses were the preferred intervention where adequate control is gained with their use. When customised orthoses are prescribed, a vertical [heel] cast pour (71.4% and minimal arch fill (76.9% are the prescription variables of choice, plus or minus additional variables (i.e., medial heel (Kirby skive, the use of a University of California Biomechanical Laboratory device or a medial flange dependent on level of disorder and plane of excessive motion. Conclusions This study identified consensus and agreement on a series of diagnosis methods and interventions for the paediatric flexible pes planus. A clinical protocol was developed from the resultant consensus statements which provides

  4. Spinal Orthoses: The Crucial Role of Comfort on Compliance of Wearing - Monocentric Prospective Pilot Study of Randomized Cross-Over Design.

    Science.gov (United States)

    Herget, G W; Patermann, S; Strohm, P C; Zwingmann, J; Eichelberger, P; Südkamp, N P; Hirschmüller, A

    2017-01-01

    PURPOSE OF THE STUDY Various spine disorders are regularly treated by orthoses, and success of treatment depends on wearing these devices. In this study we examined the compliance, wear comfort, subjective stabilization and side effects associated with spinal orthoses using an individualized questionnaire and the Compact Short Form-12 Health Survey (SF-12). MATERIAL AND METHODS In this prospective pilot study of randomized cross-over design, twelve healthy volunteers with a mean age of 31.2 years wore three different types of orthoses, each for one week: A hyperextension brace (HB), a custom-made semirigid orthosis (SO) and a custom-made rigid orthosis (RO). The daily duration of wearing the orthosis was defined as primary endpoint; contentment was measured using an individualized questionnaire and the standardized SF-12. RESULTS In the study population calculated probability of wearing the HB and RO was between 0.2 und 38.5% (95% confidence interval). No volunteer wore the SO orthosis for the predefined time. The SO and RO each displayed high subjective stabilization, while the RO was more often associated with side effects like skin pressure marks than the SO. The need for rework due to discomfort was mainly necessary with the RO. We observed no substantial differences in feeling compression and sweating. Noteworthy, eight of 12 subjects complained of uncomfortable sternal pressure due to the upper pad of the HB. The SF-12: scores ranged from 52.1 to 48.6 on the physical (PCS), and from 53.7 to 50.8 on the mental component score (MCS), demonstrating an influence on QoL. DISCUSSION AND CONCLUSIONS The design as well as the orthosis itself influence the compliance of wearing and exert a moderate negative, but acceptable impact on QoL. The SO appeared to correlate with the best overall compromise between comfort and subjective stabilization. Further investigations are necessary in patients with spinal diseases, for whom the effect of orthosis wearing may surpass the

  5. Rocker-sole footwear versus prefabricated foot orthoses for the treatment of pain associated with first metatarsophalangeal joint osteoarthritis: study protocol for a randomised trial

    Science.gov (United States)

    2014-01-01

    Background Osteoarthritis affecting the first metatarsophalangeal joint of the foot is a common condition which results in pain, stiffness and impaired ambulation. Footwear modifications and foot orthoses are widely used in clinical practice to treat this condition, but their effectiveness has not been rigorously evaluated. This article describes the design of a randomised trial comparing the effectiveness of rocker-sole footwear and individualised prefabricated foot orthoses in reducing pain associated with first metatarsophalangeal joint osteoarthritis. Methods Eighty people with first metatarsophalangeal joint osteoarthritis will be randomly allocated to receive either a pair of rocker-sole shoes (MBT® Matwa, Masai Barefoot Technology, Switzerland) or a pair of individualised, prefabricated foot orthoses (Vasyli Customs, Vasyli Medical™, Queensland, Australia). At baseline, the biomechanical effects of the interventions will be examined using a wireless wearable sensor motion analysis system (LEGSys™, BioSensics, Boston, MA, USA) and an in-shoe plantar pressure system (Pedar®, Novel GmbH, Munich, Germany). The primary outcome measure will be the pain subscale of the Foot Health Status Questionnaire (FHSQ), measured at baseline and 4, 8 and 12 weeks. Secondary outcome measures will include the function, footwear and general foot health subscales of the FHSQ, severity of pain and stiffness at the first metatarsophalangeal joint (measured using 100 mm visual analog scales), global change in symptoms (using a 15-point Likert scale), health status (using the Short-Form-12® Version 2.0 questionnaire), use of rescue medication and co-interventions to relieve pain, the frequency and type of self-reported adverse events and physical activity levels (using the Incidental and Planned Activity Questionnaire). Data will be analysed using the intention to treat principle. Discussion This study is the first randomised trial to compare the effectiveness of rocker

  6. How Does Ankle-foot Orthosis Stiffness Affect Gait in Patients With Lower Limb Salvage?

    Science.gov (United States)

    2014-05-10

    IDEO), is available to injured service members but prescription guidelines are limited. Questions/purposes In this study we ask (1) does dynamic AFO...1.78 97.3 7.5 R LE tissue loss/trauma 4 40 1.81 81.0 9.3 L ankle fracture and osteoarthritis 5 30 1.75 79.1 9.8 L tibia/fibula fracture 6 30 1.76 78.2

  7. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    Directory of Open Access Journals (Sweden)

    Yong Ho Cha

    2017-01-01

    Full Text Available We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient’s lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec and 3D-printed AFO (56.5 cm/sec compared to that without an AFO (42.2 cm/sec. The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  8. Passive Ankle-Foot Prosthesis Prototype with Extended Push-Off

    OpenAIRE

    Brackx, Branko; Damme, Michaël Van; Matthys, Arnout; Vanderborght, Bram; Lefeber, Dirk

    2013-01-01

    Current commercially available prosthetic feet have succeeded in decreasing the metabolic cost and increasing the speed of walking compared to walking with conventional, mostly solid prosthetic feet. However, there is still a large discrepancy when compared with a non-disabled gait, and the walking pattern remains strongly disturbed. During the stance phase of the leg, these prostheses store and return energy using a spring element. This spring returns to its neutral position, which generates...

  9. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength

    Directory of Open Access Journals (Sweden)

    Diana Campelo

    2017-10-01

    Full Text Available NADPH-cytochrome P450 reductase (CPR is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction, a linker (hinge, and a connecting/FAD domain (NADPH oxidation. It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state to an ensemble of open conformations (unlocked state, the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.

  10. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose

    Science.gov (United States)

    Behzad, Hamed; Panahi, Roozbeh

    2017-06-01

    In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.

  11. Large Negative Linear Compressibility in InH(BDC)₂ from Framework Hinging.

    Science.gov (United States)

    Zeng, Qingxin; Wang, Kai; Zou, Bo

    2017-11-08

    Materials with negative linear compressibility (NLC) counterintuitively expand along one specific direction coupled to the volume reduction when compressed uniformly. NLC with a large value is desired for compression and materials science. However, NLC is generally smaller than -20 TPa -1 . High-pressure X-ray diffraction experiments reveal that the β-quartz-like InH(BDC) 2 generates an extreme NLC (-62.4 TPa -1 ) by framework hinging. InH(BDC) 2 is much safer and lower-cost than Au + /Ag + and CN - -containing materials that dominated the fields of large NLC. This work reconfirms that a negative thermal expansion flexible framework could likely exhibit large NLC. Moreover, a large NLC could be anticipated to arise from β-quartz-like or related frameworks composed of rigid linear ligands and flexible framework angles.

  12. Hinged concrete covers protect pipelines. [Protection of submarine pipelines from underscouring, trawlboards, and dragging anchors

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Providing effective protection for oil and gas pipelines is proving to be a difficult and expensive business, particularly in heavily used and environmentally sensitive waters such as the North Sea. The Danish Company Seditech has produced a design for ''hinged'' pipeline covers in concrete which are claimed to offer an effective solution to the problem. Model tests are currently (end of August 1977) being carried out at Trondheim, Norway, and this will be followed by a six-month feasibility study into the design of a suitable underwater installation vehicle. The aim is to produce total costs of the same order as pipe burial. The first step towards this has been achieved, as another Danish company has developed a combined vibration/pressure moulding system which allows individual cover elements to be produced in 3 to 5 min.

  13. Numerical modeling of cold room's hinged door opening and closing processes

    Science.gov (United States)

    Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.

    2016-06-01

    The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.

  14. The effect of foot orthoses with forefoot cushioning or metatarsal pad on forefoot peak plantar pressure in running

    Directory of Open Access Journals (Sweden)

    Michaela Hähni

    2016-11-01

    Full Text Available Abstract Background Foot orthoses are frequently used in sports for the treatment of overuse complaints with sufficient evidence available for certain foot-related overuse pathologies like plantar fasciitis, rheumatoid arthritis and foot pain (e.g., metatarsalgia. One important aim is to reduce plantar pressure under prominent areas like metatarsal heads. For the forefoot region, mainly two common strategies exist: metatarsal pad (MP and forefoot cushioning (FC. The aim of this study was to evaluate which of these orthosis concepts is superior in reducing plantar pressure in the forefoot during running. Methods Twenty-three (13 female, 10 male asymptomatic runners participated in this cross-sectional experimental trial. Participants ran in a randomised order under the two experimental (MP, FC conditions and a control (C condition on a treadmill (2.78 ms−1 for 2 min, respectively. Plantar pressure was measured with the in-shoe plantar pressure measurement device pedar-x®-System and mean peak pressure averaged from ten steps in the forefoot (primary outcome and total foot was analysed. Insole comfort was measured with the Insole Comfort Index (ICI, sum score 0–100 after each running trial. The primary outcome was tested using the Friedman test (α = 0.05. Secondary outcomes were analysed descriptively (mean ± SD, lower & upper 95%-CI, median and interquartile-range (IQR. Results Peak pressure [kPa] in the forefoot was significantly lower wearing FC (281 ± 80, 95%-CI: 246–315 compared to both C (313 ± 69, 95%-CI: 283–343; p = .003 and MP (315 ± 80, 95%-CI: 280–350; p = .001. No significant difference was found between C and MP (p = .858. Peak pressures under the total foot were: C: 364 ± 82, 95%-CI: 328–399; MP: 357 ± 80, 95%-CI: 326–387; FC: 333 ± 81 95%-CI: 298–368. Median ICI sum scores were: C 50, MP 49, FC 64. Conclusions In contrast to the metatarsal pad orthosis, the

  15. THE ESSENTIAL DYNAMICS OF THERMOLYSIN - CONFIRMATION OF THE HINGE-BENDING MOTION AND COMPARISON OF SIMULATIONS IN VACUUM AND WATER

    NARCIS (Netherlands)

    van Aalten, D.M.F.; Amadei, A; Linssen, A.B M; Eijsink, V.G.H.; Vriend, G.; Berendsen, H.J.C.

    Comparisons of the crystal structures of thermolysin and the thermolysin-like protease produced by B. cereus have recently led to the hypothesis that neutral proteases undergo a hinge-bending motion. We have investigated this hypothesis by analyzing molecular dynamics simulations of thermolysin in

  16. A stepwise approach for the management of capsular contraction syndrome in hinge-based accommodative intraocular lenses.

    Science.gov (United States)

    Page, Timothy P; Whitman, Jeffrey

    2016-01-01

    The aims of this study are to define the various stages of capsular contraction syndrome (CCS) and its effect on refractive error with hinge-based accommodating intraocular lenses (IOLs) and to describe a systematic approach for the management of the different stages of CCS. Hinge-based accommodative IOLs function via flexible hinges that vault the optic forward during accommodation. However, it is the flexibility of the IOL that makes it prone to deformation in the event of CCS. The signs of CCS are identified and described as posterior capsular striae, fibrotic bands across the anterior or posterior capsule, and capsule opacification. Various degrees of CCS may affect hinge-based accommodating IOLs in a spectrum from subtle changes in IOL appearance to significant increases in refractive error and loss of uncorrected visual acuity. The signs of CCS and its effect on IOL position and the resulting changes in refractive error are matched to appropriate treatment plans. A surgeon can avoid CCS and manage the condition if familiar with the early signs of CCS. If CCS is identified, yttrium-aluminum-garnet laser capsulotomy should be considered. If moderate CCS occurs, it may be effectively treated with insertion of a capsular tension ring. If CCS is allowed to progress to advanced stages, an IOL exchange may be necessary. Surgeons should be familiar with the stages of CCS and subsequent interventions. The steps outlined in this article help to guide surgeons in the prevention and management of CCS with hinge-based accommodative IOLs in order to provide improved refractive outcomes for patients.

  17. A stepwise approach for the management of capsular contraction syndrome in hinge-based accommodative intraocular lenses

    Directory of Open Access Journals (Sweden)

    Page TP

    2016-06-01

    Full Text Available Timothy P Page,1 Jeffrey Whitman2 1Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, 2Key-Whitman Eye Center, Dallas, TX, USA Purpose: The aims of this study are to define the various stages of capsular contraction syndrome (CCS and its effect on refractive error with hinge-based accommodating intraocular lenses (IOLs and to describe a systematic approach for the management of the different stages of CCS. Methods: Hinge-based accommodative IOLs function via flexible hinges that vault the optic forward during accommodation. However, it is the flexibility of the IOL that makes it prone to deformation in the event of CCS. The signs of CCS are identified and described as posterior capsular striae, fibrotic bands across the anterior or posterior capsule, and capsule opacification. Various degrees of CCS may affect hinge-based accommodating IOLs in a spectrum from subtle changes in IOL appearance to significant increases in refractive error and loss of uncorrected visual acuity. The signs of CCS and its effect on IOL position and the resulting changes in refractive error are matched to appropriate treatment plans. Results: A surgeon can avoid CCS and manage the condition if familiar with the early signs of CCS. If CCS is identified, yttrium–aluminum–garnet laser capsulotomy should be considered. If moderate CCS occurs, it may be effectively treated with insertion of a capsular tension ring. If CCS is allowed to progress to advanced stages, an IOL exchange may be necessary. Conclusion: Surgeons should be familiar with the stages of CCS and subsequent interventions. The steps outlined in this article help to guide surgeons in the prevention and management of CCS with hinge-based accommodative IOLs in order to provide improved refractive outcomes for patients. Keywords: z-syndrome, pseudophakic tilt, IOL subluxation, CTR, capsular tension ring, capsular fibrosis

  18. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals

    OpenAIRE

    Quintero, Hugo A.; Farris, Ryan J.; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to comm...

  19. A Hybrid Neuromechanical Ambulatory Assist System

    Science.gov (United States)

    2014-06-01

    meant to connect to whatever footplate or ankle foot orthoses (AFO) are desired. In the spirit of flexibility, the choice of foot attachment and...locking pressure criteria would not be of any use. The test setup is shown in Figure B2 . An aluminum arm was fabricated to attach to the axle of...Figure B2 . Experimental setup to test locking torque. 32 digital pressure gauges were attached to both chambers, allowing for pressure

  20. The influence of the reciprocal hip joint link in the advanced reciprocating gait orthosis on standing performance in paraplegia

    NARCIS (Netherlands)

    Baardman, G.; IJzerman, Maarten Joost; Hermens, Hermanus J.; Veltink, Petrus H.; Boom, H.B.K.; Zilvold, G.; Zilvold, G.

    1997-01-01

    The effect of reciprocally linking the hip hinges of a hip-knee-ankle-foot orthosis on standing performance was studied in a comparative trial of the Advanced Reciprocating Gait Orthosis (ARGO) and an ARGO in which the Bowden cable was removed (A_GO). Six male subjects with spinal cord injury (SCI)

  1. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region.

    Directory of Open Access Journals (Sweden)

    Veronika N Bade

    Full Text Available The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls, ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation. ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no

  2. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.

    Science.gov (United States)

    Lee, Jong Kook; Gopal, Ramamourthy; Park, Seong-Cheol; Ko, Hyun Sook; Kim, Yangmee; Hahm, Kyung-Soo; Park, Yoonkyung

    2013-01-01

    HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and an extended helical region (residues 6-20). To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9) (Anal 3-Pro) and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS). NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10) was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to DNA. These results indicate that the bending region of Anal 3- Pro peptide is prerequisite for effective

  3. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.

    Directory of Open Access Journals (Sweden)

    Jong Kook Lee

    Full Text Available HP (2-20 is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20 by substituting Trp for Gln(17 and Asp(19 (Anal 3 increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5 and an extended helical region (residues 6-20. To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9 (Anal 3-Pro and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE and sodium dodecyl sulfate (SDS. NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10 was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore <1.8 nm in diameter, which is similar to buforin II. Notably, scanning electron microscopic observation of Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly

  4. Custom rotating hinge total knee arthroplasty in patients with poliomyelitis affected limbs.

    Science.gov (United States)

    Rahman, Jeeshan; Hanna, Sammy A; Kayani, Babar; Miles, Jonathan; Pollock, Robin C; Skinner, John A; Briggs, Timothy W; Carrington, Richard W

    2015-05-01

    Total knee arthroplasty (TKA) in limbs affected by poliomyelitis is a technically challenging procedure. These patients often demonstrate acquired articular and metaphyseal angular deformities, bone loss, narrowness of the intramedullary canals, impaired quadriceps strength, flexion contractures and ligamentous laxity producing painful hyperextension. Thus, using condylar knee designs in these patients will likely result in early failure because of instability and abnormal load distribution. The aim of this study was to assess the outcomes associated with use of the customised (SMILES) rotating-hinge knee system at our institution for TKA in poliomyelitis-affected limbs. We retrospectively reviewed the outcome of 14 TKAs using the (SMILES) prosthesis in 13 patients with limbs affected by poliomyelitis. All patients had painful unstable knees with hyperextension. There were ten females and three males with a mean age of 66 years (range 51-84) at time of surgery. Patients were followed up clinically, radiologically and functionally with the Oxford knee score (OKS). Mean follow-up was 72 months (16-156). There were no immediate or early complications. One patient fell and sustained a peri-prosthetic fracture at seven months requiring revision to a longer stem. Radiological evaluation showed satisfactory alignment with no signs of loosening in all cases. Mean OKS improved from 11.6 (4-18) to 31.5 (18-40) postoperatively (p poliomyelitis. The device compensates well for ligamentous insufficiency as well as for any associated bony deformity.

  5. Customized Hinged Covered Metallic Stents for the Treatment of Benign Main Bronchial Stenosis.

    Science.gov (United States)

    Han, Xinwei; Al-Tariq, Quazi; Zhao, Yanle; Li, Lei; Cheng, Zhe; Wang, Huaqi; Liu, Chao; Jiao, Dechao; Wu, Gang

    2017-08-01

    To address the limitations of silicone stents, we designed a hinged self-expandable covered metallic stent. The aim of this study was to evaluate the safety and efficacy of the customized stents in clinical applications. This was a retrospective analysis. Under conscious sedation and local anesthesia, the stents were implanted or removed by interventional radiologists, with fluoroscopic guidance. Of 24 patients with benign main bronchial stenosis, stents were successfully placed in 21 (87.5%). The low-pressure balloon before dilation failed in 1 case (4.17%) of left main bronchial cicatricial stenosis. In 2 other cases (8.33%), stent placement was abandoned. Stents were successfully removed between 29 and 103 days after the procedure. After stent removal, the follow-up lasted for at least 12 months. Restenosis occurred only in 1 case (4.55%) owing to bronchial collapse 3 days after stent removal. Dyspnea occurred in another case (4.55%) at 2 months after retrieval; recurrence was confirmed using bronchoscopy, leading to a left pneumonectomy. The described procedure is safe and easy to be performed and avoids the use of intubation, bronchoscopy, and general anesthesia. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  7. The three-hinged arch as an example of piezomechanic passive controlled structure

    Science.gov (United States)

    Pagnini, Luisa Carlotta; Piccardo, Giuseppe

    2016-09-01

    Although piezoelectric transducers are employed in a variety of fields, their application for vibration control of civil or industrial structures has not yet been fully developed, at the best of authors' knowledge. Thanks to a new generation of ever more performing piezoceramic materials and to the recent development of scientific proposals based on a very simple technology, this paper presents a step forward to engineering applications for the control of structural systems. A three-hinged arch controlled by piezoelectric stack actuators and passive RL electrical circuits is chosen as a simple structural model that may represent the starting point for a generalization to the most common typologies of civil and industrial engineering structures. Based on the concept of electromechanical analogy, the evolution equations are obtained through a consistent Lagrangian approach. A multimodal vibration suppression is guaranteed by the spectral analogy between the mechanical and electrical components. Preliminary applications related to free oscillations, with one or more actuators on each member, seem to lead to excellent performance in terms of multimodal damping and dissipated energy.

  8. Optimization of elastic elements of a damping devices for cylindrical hinges in crane-manipulating installations of mobile machines

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-03-01

    Full Text Available The article considers the problems of designing an original damping devices worn for cylindrical hinges in crane-manipulating installations of mobile machines. These devices can significantly reduce the additional impact load on a steel structure manipulators due to the presence of increased gaps in the hinges. Formulated the general formulation of nonlinear constrained optimization of the sizes of the elastic elements of the damping devices. Considered a promising design variants of elastic elements. For circular and arc elastic elements with circular and rectangular cross-section for-mulated the problems of optimal design including criterion functions and systems of geometric, technological, stiffness and strength penalty constraints. Analysis of the impact of various operating and design parameters on the results of optimal design of elastic elements was performed. Were set to the recommended the use of the constructive types of elastic elements to generate the required stiffness of the damper devices.

  9. Synthetic study on cystinyl peptides using solution and solid phase metodology: human IgG1 hinge region

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Gut, Vladimír; Ježek, Jan; Buděšínský, Miloš; Kašička, Václav; Wünsch, Erich; Hlaváček, Jan

    2010-01-01

    Roč. 39, č. 3 (2010), s. 641-650 ISSN 0939-4451 R&D Projects: GA ČR GA203/03/1362; GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : hinge region * immunoglobulin * prion protein * solution synthesis * solid phase synthesis Subject RIV: CC - Organic Chemistry Impact factor: 4.106, year: 2010

  10. Geometric modeling of controlled third-class hinged mechanisms with a stand in one extreme position for cyclic automatic machines

    Science.gov (United States)

    Khomchenko, V. G.; Varepo, L. G.; Glukhov, V. I.; Krivokhatko, E. A.

    2017-06-01

    The geometric model for the synthesis of third-class lever mechanisms is proposed, which allows, by changing the length of the auxiliary link and the position of its fixed hinge, to rearrange the movement of the working organ onto the cyclograms with different predetermined dwell times. It is noted that with the help of the proposed model, at the expense of the corresponding geometric constructions, the best uniform Chebyshev approximation can be achieved at the interval of the standstill.

  11. Investigation of the Three-Dimensional Hinge Moment Characteristics Generated by the ONERA-M6 Wing with an Aileron

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The hinge moment characteristics for ONERA-M6 wing with aileron configuration have been investigated numerically based on the different gaps and deflecting angles. The results show that the effects on the wing made by the deflecting aileron are notable. Comparing with the nonaileron case, the chordwise pressure coefficient distribution for the wing with aileron has shown the totally different trends. The small gap can force the air flow through and form the extremely strong spraying flow. It can directly destroy the previously formed leading edge vortex (LEV. Due to the presence of the positive deflecting angle, the trailing edge vortex (TEV will begin to generate at the trailing edge of the aileron. The induced secondary LEV will be mixed with the developing TEVs and form the stronger TEVs at the downstream position. Comparing with the subsonic flow, the curve for the supersonic flow has shown a good linear. The corresponding hinge moments are also extremely sensitive to the changing angle of attack, and the slope of curves is also bigger than that of the subsonic flow. The bigger gap and deflecting angle can result in the curve of hinge moment bending upward at high angle of attack. The corresponding pressure cloud and streamlines have also been obtained computationally and analyzed in detail.

  12. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    International Nuclear Information System (INIS)

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.; Erb, Steven M.; Luy, Betty E.; Calvert, Amanda E.; Blair, Carol D.; Roehrig, John T.; Huang, Claire Y.-H.

    2011-01-01

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.

  13. Modified random hinge transport mechanics and multiple scattering step-size selection in EGS5

    International Nuclear Information System (INIS)

    Wilderman, S.J.; Bielajew, A.F.

    2005-01-01

    The new transport mechanics in EGS5 allows for significantly longer electron transport step sizes and hence shorter computation times than required for identical problems in EGS4. But as with all Monte Carlo electron transport algorithms, certain classes of problems exhibit step-size dependencies even when operating within recommended ranges, sometimes making selection of step-sizes a daunting task for novice users. Further contributing to this problem, because of the decoupling of multiple scattering and continuous energy loss in the dual random hinge transport mechanics of EGS5, there are two independent step sizes in EGS5, one for multiple scattering and one for continuous energy loss, each of which influences speed and accuracy in a different manner. Further, whereas EGS4 used a single value of fractional energy loss (ESTEPE) to determine step sizes at all energies, to increase performance by decreasing the amount of effort expended simulating lower energy particles, EGS5 permits the fractional energy loss values which are used to determine both the multiple scattering and continuous energy loss step sizes to vary with energy. This results in requiring the user to specify four fractional energy loss values when optimizing computations for speed. Thus, in order to simplify step-size selection and to mitigate step-size dependencies, a method has been devised to automatically optimize step-size selection based on a single material dependent input related to the size of problem tally region. In this paper we discuss the new transport mechanics in EGS5 and describe the automatic step-size optimization algorithm. (author)

  14. Floating Characteristics of Rudders and Elevators in Spinning Attitudes as Determined From Hinge-Moment-Coefficient Data With Application to Personal-Owner-Type Airplanes

    National Research Council Canada - National Science Library

    Bihrle, William

    1950-01-01

    A study was made of available rudder and elevator hinge-moment-coefficient-coefficient data in order to determine the floating characteristics of various types of rudders and elevators in spinning attitudes...

  15. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing.

    Directory of Open Access Journals (Sweden)

    Conor M Bolger

    Full Text Available The purposes of the current study were to 1 test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2 investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding's hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA. Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05. The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants.

  16. Hinge-deleted IgG4 blocker therapy for acetylcholine receptor myasthenia gravis in rhesus monkeys.

    Science.gov (United States)

    Losen, Mario; Labrijn, Aran F; van Kranen-Mastenbroek, Vivianne H; Janmaat, Maarten L; Haanstra, Krista G; Beurskens, Frank J; Vink, Tom; Jonker, Margreet; 't Hart, Bert A; Mané-Damas, Marina; Molenaar, Peter C; Martinez-Martinez, Pilar; van der Esch, Eline; Schuurman, Janine; de Baets, Marc H; Parren, Paul W H I

    2017-04-20

    Autoantibodies against ion channels are the cause of numerous neurologic autoimmune disorders. Frequently, such pathogenic autoantibodies have a restricted epitope-specificity. In such cases, competing antibody formats devoid of pathogenic effector functions (blocker antibodies) have the potential to treat disease by displacing autoantibodies from their target. Here, we have used a model of the neuromuscular autoimmune disease myasthenia gravis in rhesus monkeys (Macaca mulatta) to test the therapeutic potential of a new blocker antibody: MG was induced by passive transfer of pathogenic acetylcholine receptor-specific monoclonal antibody IgG1-637. The effect of the blocker antibody (IgG4Δhinge-637, the hinge-deleted IgG4 version of IgG1-637) was assessed using decrement measurements and single-fiber electromyography. Three daily doses of 1.7 mg/kg IgG1-637 (cumulative dose 5 mg/kg) induced impairment of neuromuscular transmission, as demonstrated by significantly increased jitter, synaptic transmission failures (blockings) and a decrease in the amplitude of the compound muscle action potentials during repeated stimulations (decrement), without showing overt symptoms of muscle weakness. Treatment with three daily doses of 10 mg/kg IgG4Δhinge-637 significantly reduced the IgG1-637-induced increase in jitter, blockings and decrement. Together, these results represent proof-of principle data for therapy of acetylcholine receptor-myasthenia gravis with a monovalent antibody format that blocks binding of pathogenic autoantibodies.

  17. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  18. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  19. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    Science.gov (United States)

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  20. Estimating the Mechanical Behavior of the Knee Joint during Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses

    Science.gov (United States)

    Damiano, Diane L.; Bulea, Thomas C.

    2016-01-01

    Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses. PMID:27101612

  1. Three-dimensional micro assembly of a hinged nickel micro device by magnetic lifting and micro resistance welding

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Hsu, Wensyang

    2009-01-01

    The three-dimensional micro assembly of hinged nickel micro devices by magnetic lifting and micro resistance welding is proposed here. By an electroplating-based surface machining process, the released nickel structure with the hinge mechanism can be fabricated. Lifting of the released micro structure to different tilted angles is accomplished by controlling the positions of a magnet beneath the device. An in situ electro-thermal actuator is used here to provide the pressing force in micro resistance welding for immobilizing the tilted structure. The proposed technique is shown to immobilize micro devices at controlled angles ranging from 14° to 90° with respect to the substrate. Design parameters such as the electro-thermal actuator and welding beam width are also investigated. It is found that there is a trade-off in beam width design between large contact pressure and low thermal deformation. Different dominated effects from resistivity enhancement and contact area enlargement during the welding process are also observed in the dynamic resistance curves. Finally, a lifted and immobilized electro-thermal bent-beam actuator is shown to displace upward about 27.7 µm with 0.56 W power input to demonstrate the capability of electrical transmission at welded joints by the proposed 3D micro assembly technique

  2. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    Science.gov (United States)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  3. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing

    Science.gov (United States)

    Bolger, Conor M.; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter

    2016-01-01

    The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding’s hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants. PMID:27203597

  4. Investigation at transonic speeds of the lateral-control and hinge-moment characteristics of a flap-type spoiler aileron on a 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G; Taylor, Robert T

    1954-01-01

    This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.

  5. Amino acid sequence requirements in the human IgA1 hinge for cleavage by streptococcal IgA1 proteases

    DEFF Research Database (Denmark)

    Senior, BW; Batten, MR; Kilian, Mogens

    2002-01-01

    All the IgA1 proteases of the different pathogenic species of Streptococcus cleave the hinge of the alpha chain of human IgA1 only at one proline-threonine peptide bond. In order to study the importance of these amino acids for cleavage, several hinge mutant recombinant IgA1 antibodies were const...... constructed. The mutations were found to be without major effect upon the structure or functional abilities of the antibodies. However, they had a major effect upon their sensitivity to cleavage by some of the IgA1 proteases....

  6. The Impact of the ‘Austrian’ Mutation of the Amyloid Precursor Protein Transmembrane Helix is Communicated to the Hinge Region

    DEFF Research Database (Denmark)

    Stelzer, Walter; Scharnagl, Christina; Leurs, Ulrike

    2016-01-01

    The transmembrane helix of the amyloid precursor protein is subject to proteolytic cleavages by γ-secretase at different sites resulting in Aβ peptides of different length and toxicity. A number of point mutations within this transmembrane helix alter the cleavage pattern thus enhancing production...... destabilizes amide hydrogen bonds in the hinge which connects dimerization and cleavage regions. Weaker intrahelical hydrogen bonds at the hinge may enhance helix bending and thereby affect recognition of the transmembrane substrate by the enzyme and/or presentation of its cleavage sites to the catalytic cleft....

  7. Modeling of rotary movement of the articulating crane with increased gaps in the hinge joints of the links

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-06-01

    Full Text Available The article made computer simulation of dynamics of hydraulic articulating cranes with fully rotary motion for the case when the cylindrical hinges have an increased gap. Considered the use of special damping devices to reduce shock loads due to the presence of increased gaps. In previously developed software package KBCrane performed a series of calcu-lations made it possible to establish the relationship between the stiffness and damping devices the effectiveness of their use in varying the magnitude of the gap. In the case of the rotary movement of the articulating crane, a comparative analysis of work of joints of the connection node of the boom and lifting device with no gap and with high gaps. The features of the damping devices work joints and cushioning. Conclusions on positive and negative sides of the use of elastic damping devices.

  8. Geoscience Education Opportunities: Partnerships to Advance TeacHing and Scholarship (GEOPATHS): A Kansas City Minority Student Recruitment Initiative

    Science.gov (United States)

    Adegoke, J. O.; Niemi, T. M.

    2009-12-01

    Geoscience Education Opportunities: Partnerships to Advance TeacHing and Scholarship (GEOPATHS) is a multi-year project funded by the National Science Foundation to address gaps in teacher preparation, improve teacher content in geosciences and help raise enrollment in the Geosciences, especially among populations that are traditionally underrepresented in the discipline. The project is a partnership between the University of Missouri Kansas City (UMKC) and the Kansas City Missouri School District (KCMSD). In this presentation we discuss strategies that we have successfully used to provide credible pathways into the discipline for minorities that have led to a significant increase in the number of underrepresented minority students who are interested in and majoring in geoscience fields at the University of Missouri-Kansas City.

  9. Role for the MED21-MED7 Hinge in Assembly of the Mediator-RNA Polymerase II Holoenzyme*

    Science.gov (United States)

    Sato, Shigeo; Tomomori-Sato, Chieri; Tsai, Kuang-Lei; Yu, Xiaodi; Sardiu, Mihaela; Saraf, Anita; Washburn, Michael P.; Florens, Laurence; Asturias, Francisco J.; Conaway, Ronald C.

    2016-01-01

    Mediator plays an integral role in activation of RNA polymerase II (Pol II) transcription. A key step in activation is binding of Mediator to Pol II to form the Mediator-Pol II holoenzyme. Here, we exploit a combination of biochemistry and macromolecular EM to investigate holoenzyme assembly. We identify a subset of human Mediator head module subunits that bind Pol II independent of other subunits and thus probably contribute to a major Pol II binding site. In addition, we show that binding of human Mediator to Pol II depends on the integrity of a conserved “hinge” in the middle module MED21-MED7 heterodimer. Point mutations in the hinge region leave core Mediator intact but lead to increased disorder of the middle module and markedly reduced affinity for Pol II. These findings highlight the importance of Mediator conformation for holoenzyme assembly. PMID:27821593

  10. Orthosis-Shaped Sandals Are as Efficacious as In-Shoe Orthoses and Better than Flat Sandals for Plantar Heel Pain: A Randomized Control Trial.

    Directory of Open Access Journals (Sweden)

    Bill Vicenzino

    Full Text Available To investigate efficacy of a contoured sandal being marketed for plantar heel pain with comparison to a flat flip-flop and contoured in-shoe insert/orthosis.150 volunteers aged 50 (SD: 12 years with plantar heel pain (>4 weeks were enrolled after responding to advertisements and eligibility determined by telephone and at first visit. Participants were randomly allocated to receive commercially available contoured sandals (n = 49, flat flip-flops (n = 50 or over the counter, pre-fabricated full-length foot orthotics (n = 51. Primary outcomes were a 15-point Global Rating of Change scale (GROC: 1 = a very great deal worse, 15 = a very great deal better, 13 to 15 representing an improvement and the 20-item Lower Extremity Function Scale (LEFS on which participants rate 20 common weight bearing activities and activities of daily living on a 5-point scale (0 = extreme difficulty, 4 = no difficulty. Secondary outcomes were worst level of heel pain in the preceding week, and the foot and ankle ability measure. Outcomes were collected blind to allocation. Analyses were done on an intention to treat basis with 12 weeks being the primary outcome time of interest.The contoured sandal was 68% more likely to report improvement in terms of GROC compared to flat flip-flop. On the LEFS the contoured sandal was 61% more likely than flat flip-flop to report improvement. The secondary outcomes in the main reflected the primary outcomes, and there were no differences between contoured sandal and shoe insert.Physicians can have confidence in supporting a patient's decision to wear contoured sandals or in-shoe orthoses as one of the first and simple strategies to manage their heel pain.The Australian New Zealand Clinical Trials Registry ACTRN12612000463875.

  11. Multi-functional hinge equipped with a magneto-rheological rotary damper for solar array deployment system

    Science.gov (United States)

    Wen, Mingfu; Yu, Miao; Fu, Jie; Wu, Zhengzhong

    2015-02-01

    This article describes the design and simulation of a novel multi-functional hinge equipped with a rotary magnetorheological damper for solar array deployment system, which is comprised of a hinge, an angular sensor, a positioning and locking mechanism and a rotary damper. In order to achieve the compact design in structure, some components were reused in different function modules. It's the first to use magnet-rheological fluid (MRF) to dissipate the energy in solar array deployment system. The main advantage in using MR rotary damper instead of a viscous fluid rotary damper is that the damping force of MR damper can be adjusted according to the external magnetic field environment excited. A mechanic model was built and the structure design was focused on the MR rotary damper, a damping force model of this damper is deduced based on hydromechanics with Bingham plastic constitutive model. A simulation of deployment motion was taken to validate the motion sequence of various components during the unfolding and locking process. It can be obtained that a constant damping coefficient can hardly balance the different performance of solar deployment system, then a simulation of the proposed deployment system equipped with rotary MR damper was carried out. According to the simulation, it can be obtained that the terminal velocity decreased by 75.81% and the deployment time decreased by 72.37% compared with a given constant damping coefficients. Therefore, the proposed new type of rotary damper can reach a compromise with different performance utilizing an on-off control strategy.

  12. Cost-effectiveness of the SEN-concept: Specialized Emergency Nurses (SEN treating ankle/foot injuries

    Directory of Open Access Journals (Sweden)

    van Tulder Maurits W

    2007-10-01

    Full Text Available Abstract Background Emergency Departments (EDs are confronted with progressive overcrowding. As a consequence, the workload for ED physicians increases and waiting times go up with the risk of unnecessary complications and patient dissatisfaction. To cope with these problems, Specialized Emergency Nurses (SENs, regular ED-nurses receiving a short, injury-specific course, were trained to assess and treat minor injuries according to a specific protocol. Methods An economic evaluation was conducted alongside a randomized controlled trial comparing House Officers (HOs and SENs in their assessment of ankle and foot injuries. Cost prices were established for all parts of healthcare utilization involved. Total costs of health care utilization were computed per patient in both groups. Cost-effectiveness was investigated by comparing the difference in total cost between groups with the difference in sensitivity and specificity between groups in diagnosing fractures and severe sprains. Finally, cost-effectiveness ratios were calculated and presented on a cost-effectiveness plane. Results No significant differences were seen between treatment groups for any of the health care resources assessed. However, the waiting times for both first assessment by a treatment officer and time spent waiting between hearing the diagnosis and final treatment were significantly longer in the HO group. There was no statistically significant difference in costs between groups. The total costs were € 186 (SD € 623 for patients in the SEN group and € 153 (SD € 529 for patients in the HO group. The difference in total costs was € 33 (95% CI: – € 84 to € 155. The incremental cost-effectiveness ratio was € 27 for a reduction of one missed diagnosis and € 18 for a reduction of one false negative. Conclusion Considering the benefits of the SEN-concept in terms of decreased workload for the ED physicians, increased patient satisfaction and decreased waiting times, SENs appear to be a useful solution to the problem of ED crowding.

  13. Synthesis of protected peptides from the human IgG1 hinge region on PEG support using disulfide bond synthons and alkaline or enzymatic detachment

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šafařík, Martin; Šebestík, Jaroslav; Gut, Vladimír; Maloň, Petr; Hlaváček, Jan

    2006-01-01

    Roč. 47, č. 6 (2006), s. 1023-1025 ISSN 0040-4039 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide synthesis * IgG1 hinge peptide * PEG carrier Subject RIV: CC - Organic Chemistry Impact factor: 2.509, year: 2006

  14. Comprehensive Analysis of the Therapeutic IgG4 Antibody Pembrolizumab: Hinge Modification Blocks Half Molecule Exchange In Vitro and In Vivo.

    Science.gov (United States)

    Yang, Xiaoyu; Wang, Fengqiang; Zhang, Ying; Wang, Larry; Antonenko, Svetlana; Zhang, Shuli; Zhang, Yi Wei; Tabrizifard, Mohammad; Ermakov, Grigori; Wiswell, Derek; Beaumont, Maribel; Liu, Liming; Richardson, Daisy; Shameem, Mohammed; Ambrogelly, Alexandre

    2015-12-01

    IgG4 antibodies are evolving as an important class of cancer immunotherapies. However, human IgG4 can undergo Fab arm (half molecule) exchange with other IgG4 molecules in vivo. The hinge modification by a point mutation (S228P) prevents half molecule exchange of IgG4. However, the experimental confirmation is still expected by regulatory agencies. Here, we report for the first time the extensive analysis of half molecule exchange for a hinge-modified therapeutic IgG4 molecule, pembrolizumab (Keytruda) targeting programmed death 1 (PD1) receptor that was approved for advanced melanoma. Studies were performed in buffer or human serum using multiple exchange partners including natalizumab (Tysabri) and human IgG4 pool. Formation of bispecific antibodies was monitored by fluorescence resonance energy transfer, exchange with Fc fragments, mixed mode chromatography, immunoassays, and liquid chromatography-mass spectrometry. The half molecule exchange was also examined in vivo in SCID (severe combined immunodeficiency) mice. Both in vitro and in vivo results indicate that the hinge modification in pembrolizumab prevented half molecule exchange, whereas the unmodified counterpart anti-PD1 wt showed active exchange activity with other IgG4 antibodies or self-exchange activity with its own molecules. Our work, as an example expected for meeting regulatory requirements, contributes to establish without ambiguity that hinge-modified IgG4 antibodies are suitable for biotherapeutic applications. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Modulation of formalin-induced pain-related behaviour by clonidine and yohimbine in the Speke's hinged tortoise (Kiniskys spekii)

    DEFF Research Database (Denmark)

    Makau, C M; Towett, P K; Abelson, K S P

    2017-01-01

    The study was designed to investigate the involvement of noradrenergic and serotonergic receptor systems in the modulation of formalin-induced pain-related behaviour in the Speke's hinged tortoise. Intradermal injection of 100 μL of formalin at a dilution of 12.5% caused pain-related behaviour (h...

  16. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor`s extracellular hinge region

    Directory of Open Access Journals (Sweden)

    Paul eGrzesik

    2015-09-01

    Full Text Available The human lutropin/choriogonadotropin receptor (LHCGR can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG - secreted by the placenta, and lutropin (LH - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich repeat domain (LRRD, as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting mutations. These helix preserving modifications showed no effect on hormone induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10 deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region s. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge region

  17. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy.

    Science.gov (United States)

    Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk

    2018-07-01

    Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the

  18. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor's Extracellular Hinge Region.

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) - secreted by the placenta, and lutropin (LH) - produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor's leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the hinge

  19. Differences in Signal Activation by LH and hCG are Mediated by the LH/CG Receptor’s Extracellular Hinge Region

    Science.gov (United States)

    Grzesik, Paul; Kreuchwig, Annika; Rutz, Claudia; Furkert, Jens; Wiesner, Burkhard; Schuelein, Ralf; Kleinau, Gunnar; Gromoll, Joerg; Krause, Gerd

    2015-01-01

    The human lutropin (hLH)/choriogonadotropin (hCG) receptor (LHCGR) can be activated by binding two slightly different gonadotropic glycoprotein hormones, choriogonadotropin (CG) – secreted by the placenta, and lutropin (LH) – produced by the pituitary. They induce different signaling profiles at the LHCGR. This cannot be explained by binding to the receptor’s leucine-rich-repeat domain (LRRD), as this binding is similar for the two hormones. We therefore speculate that there are previously unknown differences in the hormone/receptor interaction at the extracellular hinge region, which might help to understand functional differences between the two hormones. We have therefore performed a detailed study of the binding and action of LH and CG at the LHCGR hinge region. We focused on a primate-specific additional exon in the hinge region, which is located between LRRD and the serpentine domain. The segment of the hinge region encoded by exon10 was previously reported to be only relevant to hLH signaling, as the exon10-deletion receptor exhibits decreased hLH signaling, but unchanged hCG signaling. We designed an advanced homology model of the hormone/LHCGR complex, followed by experimental characterization of relevant fragments in the hinge region. In addition, we examined predictions of a helical exon10-encoded conformation by block-wise polyalanine (helix supporting) mutations. These helix preserving modifications showed no effect on hormone-induced signaling. However, introduction of a structure-disturbing double-proline mutant LHCGR-Q303P/E305P within the exon10-helix has, in contrast to exon10-deletion, no impact on hLH, but only on hCG signaling. This opposite effect on signaling by hLH and hCG can be explained by distinct sites of hormone interaction in the hinge region. In conclusion, our analysis provides details of the differences between hLH- and hCG-induced signaling that are mainly determined in the L2-beta loop of the hormones and in the

  20. Meteoric water circulation and rolling-hinge detachment faulting: Example of the Northern Snake Range core complex, Nevada

    Science.gov (United States)

    Gébelin, Aude; Teyssier, Christian; Heizler, Matthew T.; Andreas, Mulch

    2014-05-01

    The Northern Snake Range metamorphic core complex developed as a consequence of Oligo-Miocene extension of the Basin and Range Province and is bounded by an arched detachment that separates the cold, brittle upper crust from the ductile middle crust. On the western and eastern limbs of the arch, the detachment footwall displays continuous sections of muscovite-bearing quartzite and schist from which we report new microfabrics, δD values, and 40Ar/39Ar ages. Results indicate that the two limbs record distinct stages of the metamorphic and kinematic Cenozoic events, including Eocene collapse of previously overthickned crust in the west, and one main Oligo-Miocene extensional event in the east. Quartzite from the western part of the range preserves Eocene fabrics (~49-45 Ma) that developed during coaxial deformation in the presence of metamorphic fluids. In contrast, those from the east reveal a large component of non coaxial strain, Oligo-Miocene ages (27-21 Ma) and contain recrystallized muscovite grains indicating that meteoric fluids sourced at high elevation (low-δD) infiltrated the brittle-ductile transition zone during deformation. Percolation of meteoric fluids down to the mylonitic detachment footwall was made possible by the development of an east-dipping rolling-hinge detachment system that controlled the timing and location of active faulting in the brittle upper crust and therefore the pathway of fluids from the surface to the brittle-ductile transition. Oligo-Miocene upper crustal extension was accommodated by a fan-shaped fault pattern that generated shear and tension fractures and channelized surface fluids, while top-to-the-east ductile shearing and advection of hot material in the lower plate allowed the system to be progressively exhumed. As extension proceeded, brittle normal faults active in the wedge of the hanging wall gradually rotated and translated above the detachment fault where, became inactive and precluded the circulation of fluids

  1. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China.

    Science.gov (United States)

    Song, Changchun; Wang, Xianwei; Miao, Yuqing; Wang, Jiaoyue; Mao, Rong; Song, Yanyu

    2014-07-15

    The carbon (C) pool of permafrost peatland is very important for the global C cycle. Little is known about how permafrost thaw could influence C emissions in the Great Hing'an Mountains of China. Through aerobic and anaerobic incubation experiments, we studied the effects of permafrost thaw on CH4 and CO2 emissions. The rates of CH4 and CO2 emissions were measured at -10, 0 and 10°C. Although there were still C emissions below 0°C, rates of CH4 and CO2 emissions significantly increased with permafrost thaw under aerobic and anaerobic conditions. The C release under aerobic conditions was greater than under anaerobic conditions, suggesting that permafrost thaw and resulting soil environment change should be important influences on C emissions. However, CH4 stored in permafrost soils could affect accurate estimation of CH4 emissions from microbial degradation. Calculated Q10 values in the permafrost soils were significantly higher than values in active-layer soils under aerobic conditions. Our results highlight that permafrost soils have greater potential decomposability than soils of the active layer, and such carbon decomposition would be more responsive to the aerobic environment. © 2013 Elsevier B.V. All rights reserved.

  2. Custom-made hinged spacers in revision knee surgery for patients with infection, bone loss and instability.

    Science.gov (United States)

    Macmull, S; Bartlett, W; Miles, J; Blunn, G W; Pollock, R C; Carrington, R W J; Skinner, J A; Cannon, S R; Briggs, T W R

    2010-12-01

    Polymethyl methacrylate spacers are commonly used during staged revision knee arthroplasty for infection. In cases with extensive bone loss and ligament instability, such spacers may not preserve limb length, joint stability and motion. We report a retrospective case series of 19 consecutive patients using a custom-made cobalt chrome hinged spacer with antibiotic-loaded cement. The "SMILES spacer" was used at first-stage revision knee arthroplasty for chronic infection associated with a significant bone loss due to failed revision total knee replacement in 11 patients (58%), tumour endoprosthesis in four patients (21%), primary knee replacement in two patients (11%) and infected metalwork following fracture or osteotomy in a further two patients (11%). Mean follow-up was 38 months (range 24-70). In 12 (63%) patients, infection was eradicated, three patients (16%) had persistent infection and four (21%) developed further infection after initially successful second-stage surgery. Above knee amputation for persistent infection was performed in two patients. In this particularly difficult to treat population, the SMILES spacer two-stage technique has demonstrated encouraging results and presents an attractive alternative to arthrodesis or amputation. Copyright © 2009 Elsevier B.V. All rights reserved.

  3. A method for producing uniform dose distributions in the junction regions of large hinge angle electrol fields

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Beckham, W.A.; Roos, D.E.

    1996-01-01

    The planning problems presented by abutting electron fields are well recognised. Junctioning electron fields with large hinge angle compounds the problems because of the creation of closely situated 'hot' and 'cold' spots. The technique involving a compensated superficial x-ray (SXR) field to treat the junction region between electron fields was developed and used in a particular clinical case (treatment of a squamous cell carcinoma of the forehead/scalp). The SXR beam parameters were chosen and the compensator was designed to make the SXR field complementary to the electron fields. Application of a compensated SXR field eliminated 'cold' spots in the junction region and minimised 'hot' spots to (110%). In the clinical case discusses the 'hot' spots due to the SXR field would not appear because of increased attenuation of the soft x-rays in bone. The technique proposed produces uniform dose distribution up to 3 cm deep and can be considered as an additional tool for dealing with electron fields junctioning problems. (author)

  4. Computational study of the Risoe-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    Energy Technology Data Exchange (ETDEWEB)

    Troldborg, N.

    2005-03-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risoe-B1-18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should be to decrease fatigue-inducing oscillations on the blades. The computations were conducted using a 2D incompressible RANS solver with a k-w turbulence model under the assumption of a fully developed turbulent flow. The investigations were conducted at a Reynolds number of Re = 1.6 - 10{sup 6}. Calculations conducted on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice. (author)

  5. The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate.

    Science.gov (United States)

    Aksyuk, Anastasia A; Leiman, Petr G; Shneider, Mikhail M; Mesyanzhinov, Vadim V; Rossmann, Michael G

    2009-06-10

    The baseplate of bacteriophage T4 is a multicomponent protein complex, which controls phage attachment to the host. It assembles from six wedges and a central hub. During infection the baseplate undergoes a large conformational change from a dome-shaped to a flat, star-shaped structure. We report the crystal structure of the C-terminal half of gene product (gp) 6 and investigate its motion with respect to the other proteins during the baseplate rearrangement. Six gp6 dimers interdigitate, forming a ring that maintains the integrity of the baseplate in both conformations. One baseplate wedge contains an N-terminal dimer of gp6, whereas neighboring wedges are tied together through the C-terminal dimer of gp6. The dimeric interactions are preserved throughout the rearrangement of the baseplate. However, the hinge angle between the N- and C-terminal parts of gp6 changes by approximately 15 degrees , accounting for a 10 A radial increase in the diameter of the gp6 ring.

  6. Energy cost of ambulation in healthy and disabled Filipino children.

    Science.gov (United States)

    Luna-Reyes, O B; Reyes, T M; So, F Y; Matti, B M; Lardizabal, A A

    1988-11-01

    The energy expenditures (Ee) for locomotion by nondisabled and disabled Filipino children aged 7 to 13 were determined and compared using indirect calorimetry. Forty-one controls (20 boys and 21 girls) ambulated at a comfortable pace; 16 children (eight boys and eight girls) with lower extremity poliomyelitis of varying severity ambulated by (1) wheelchair propulsion, (2) bilateral axillary crutches, (3) unilateral lower extremity ankle-foot orthoses or knee-ankle-foot orthoses, and (4) unassisted. Disabled children, regardless of their mode of ambulation, had to expend significantly more energy to ambulate than normal children (p less than 0.05). Wheelchair propulsion cost 16% more energy than the normal gait; crutch ambulation cost 41% more than the control. Children using unilateral braces sacrificed speed to attain near-normal Ee. When they ambulated without orthoses, their Ee increased by 109% over the control. In ascending order, the least energy was expanded by normal ambulation followed by disabled ambulation with unilateral brace, disabled propelling a wheelchair, disabled ambulation with bilateral axillary crutches, and disabled ambulation without brace. Efficiency of locomotion was reflected in the values obtained for Ee in terms of kcal x 10(-3)/kg/m, as demonstrated by the lower Ee but slower ambulation of children with braces, as compared to the nondisabled children.

  7. Effect of pH on the hinge region of influenza viral protein: a combined constant pH and well-tempered molecular dynamics study

    Science.gov (United States)

    Pathak, Arup Kumar

    2018-05-01

    Despite the knowledge that the influenza protein, hemagglutinin, undergoes a large conformational change at low pH during the process of fusion with the host cell, its molecular mechanism remains elusive. The present constant pH molecular dynamics (CpHMD) study identifies the residues responsible for large conformational change in acidic condition. Based on the pKa calculations, it is predicted that His-106 is much more responsible for the large conformational change than any other residues in the hinge region of hemagglutinin protein. Potential of mean force profile from well-tempered meta-dynamics (WT-MtD) simulation is also generated along the folding pathway by considering radius of gyration (R gyr) as a collective variable (CV). It is very clear from the present WT-MtD study, that the initial bending starts at that hinge region, which may trigger other conformational changes. Both the protein–protein and protein–water HB time correlation functions are monitored along the folding pathway. The protein–protein (full or hinge region) HB time correlation functions are always found to be stronger than those of the protein–water time correlation functions. The dynamical balance between protein–protein and protein–water HB interactions favors the stabilization of the folded state.

  8. [Effectiveness comparison of suspension fixation plus hinged external fixator and double plate internal fixation in treatment of type C humeral intercondylar fractures].

    Science.gov (United States)

    Zhang, Jian; Lin, Xu; Zhong, Zeli; Wu, Chao; Tan, Lun

    2017-07-01

    To compare the effectiveness of suspension fixation plus hinged external fixator with double plate internal fixation in the treatment of type C humeral intercondylar fractures. Between January 2014 and April 2016, 30 patients with type C (Association for the Study of Internal Fixation, AO/ASIF) humeral intercondylar fractures were treated. Kirschner wire suspension fixation plus hinged external fixator was used in 14 cases (group A), and double plate internal fixation in 16 cases (group B). There was no significant difference in gender, age, injury cause, disease duration, injury side, and type of fracture between 2 groups ( P >0.05). There was no significant difference in operation time and hospitalization stay between 2 groups ( P >0.05). But the intraoperative blood loss in group A was significantly less than that in group B ( P internal fixation removal, the intraoperative blood loss, and VAS score at 1 day and 3 days after operation in group A were significant better than those in group B ( P external fixator and double plate internal fixation for the treatment of type C humeral intercondylar fractures have ideal outcome in elbow function. But the suspension fixation plus hinged external fixator is better than double plate internal fixation in intraoperative blood loss, postoperative VAS score, and time of internal fixation removal.

  9. Negative density dependence of sympatric Hinge-back Tortoises (Kinixys erosa and K. homeana in West Africa

    Directory of Open Access Journals (Sweden)

    Luca Luiselli

    2008-05-01

    Full Text Available A series of 59 transect surveys was conducted in selected wet forest habitats, along the coast of West Africa, to estimate the density distribution of African Hinge-back tortoises (Kinixys homeana and K. erosa. Line transect data were fed into a simple model to derive a detection function. The parameters estimated by the model produced an elaborate characterisation of tortoise distribution, which proved to be useful in the formulation of hypotheses about tortoise densities. Line transect data were analysed by DISTANCE, with a series of key and the series adjustment: the uniform function, the 1-parameter half-normal function, and the 2-parameter hazard-rate function were considered as key functions; the cosine series, simple polynomials, and Hermite polynomials were considered as series expansions. The detection function was estimated separately for Kinixys homeana and K. erosa, and for transects grouped for each study area by considering all the combinations of the above key functions and series expansions. The Akaike Information Criterion (AIC was computed for each candidate model and used for model selection. The best model of the detection function, for both the tortoise species was the uniform function with no series expansion. Model results indicated that the density of the two species was inversely related at the local scale, and complementary across the region; such that the density of one species increases from West to East while the other one declines. Overall, the comparison of density estimates between the two tortoises is consistent with a former hypothesis suggesting inter-specific competition and consequent resource partitioning. Other causes may contribute to explain the observed patterns, including the low productivity of rainforest habitats and long-term human perturbation.

  10. Mentor riietab hinge lahti

    Index Scriptorium Estoniae

    2008-01-01

    Küsimusele, mida ootavad mentorid neilt, kellele nad toeks astuvad, vastavad Nelli Sudnitsõna, Jaan Allem, Anti Orav, Erkki Susi, Margus Rink, Aavo Kokk, Janeck Uibo. Lisa: Fontese mentoriprogramm - esimene omalaadne Eestis. Kommenteerivad Tiiu Allikvee ja Piret Jamnes. Vt samas: Mida arvavad asjast menteed? Kommenteerivad Kaidi Kuusmaa ja Gristel Tali

  11. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals.

    Science.gov (United States)

    Quintero, Hugo A; Farris, Ryan J; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility.

  12. Internal Models Support Specific Gaits in Orthotic Devices

    DEFF Research Database (Denmark)

    Matthias Braun, Jan; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Patients use orthoses and prosthesis for the lower limbs to support and enable movements, they can not or only with difficulties perform themselves. Because traditional devices support only a limited set of movements, patients are restricted in their mobility. A possible approach to overcome such...... the system's accuracy and robustness on a Knee-Ankle-Foot-Orthosis, introducing behaviour changes depending on the patient's current walking situation. We conclude that the here presented model-based support of different gaits has the power to enhance the patient's mobility....

  13. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  14. Evidence on How a Conserved Glycine in the Hinge Region of HapR Regulates Its DNA Binding Ability: LESSONS FROM A NATURAL VARIANT.

    Energy Technology Data Exchange (ETDEWEB)

    M Dongre; N Singh; C Dureja; N Peddada; A Solanki; F Ashish; S Raychaudhuri

    2011-12-31

    HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapRV2) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapRV2 to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapRV2 (HapRV2G), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapRV2 and HapRV2G proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a 'Y' shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.

  15. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels

    OpenAIRE

    Shang, Lijun; Tucker, Stephen J.

    2007-01-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the ?helix-bundle crossing?. However, in the inwardly rectifying (Kir) potassium channel family, the role of this ?hinge? residue in the second transmembrane domain (TM2) and t...

  16. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription.

    OpenAIRE

    Saget, B M; Shevell, D E; Walker, G C

    1995-01-01

    The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosph...

  17. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  18. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus

    KAUST Repository

    Zhu, Lizhe

    2016-02-24

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Agos but rigid for eukaryotic Agos. © 2016 American Chemical Society.

  19. A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus.

    Science.gov (United States)

    Zhu, Lizhe; Jiang, Hanlun; Sheong, Fu Kit; Cui, Xuefeng; Gao, Xin; Wang, Yanli; Huang, Xuhui

    2016-03-17

    Argonaute proteins (Ago) are core components of the RNA Induced Silencing Complex (RISC) that load and utilize small guide nucleic acids to silence mRNAs or cleave foreign DNAs. Despite the essential role of Ago in gene regulation and defense against virus, the molecular mechanism of guide-strand loading into Ago remains unclear. We explore such a mechanism in the bacterium Thermus thermophilus Ago (TtAgo), via a computational approach combining molecular dynamics, bias-exchange metadynamics, and protein-DNA docking. We show that apo TtAgo adopts multiple closed states that are unable to accommodate guide-DNA. Conformations able to accommodate the guide are beyond the reach of thermal fluctuations from the closed states. These results suggest an induced-fit dominant mechanism for guide-strand loading in TtAgo, drastically different from the two-step mechanism for human Ago 2 (hAgo2) identified in our previous study. Such a difference between TtAgo and hAgo2 is found to mainly originate from the distinct rigidity of their L1-PAZ hinge. Further comparison among known Ago structures from various species indicates that the L1-PAZ hinge may be flexible in general for prokaryotic Ago's but rigid for eukaryotic Ago's.

  20. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    Science.gov (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Integrating hinge axis approximation and the virtual facial simulation of prosthetic outcomes for treatment with CAD-CAM immediate dentures: A clinical report of a patient with microstomia.

    Science.gov (United States)

    Kuric, Katelyn M; Harris, Bryan T; Morton, Dean; Azevedo, Bruno; Lin, Wei-Shao

    2017-09-29

    This clinical report describes a digital workflow using extraoral digital photographs and volumetric datasets from cone beam computed tomography (CBCT) imaging to create a 3-dimensional (3D), virtual patient with photorealistic appearance. In a patient with microstomia, hinge axis approximation, diagnostic casts simulating postextraction alveolar ridge profile, and facial simulation of prosthetic treatment outcome were completed in a 3D, virtual environment. The approach facilitated the diagnosis, communication, and patient acceptance of the treatment of maxillary and mandibular computer-aided design and computer-aided manufacturing (CAD-CAM) of immediate dentures at increased occlusal vertical dimension. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Computational study of the Risø-B1-18 airfoil with a hinged flap providing variable trailing edge geometry

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2005-01-01

    A comprehensive computational study, in both steady and unsteady flow conditions, has been carried out to investigate the aerodynamic characteristics of the Risø-B1.18 airfoil equipped with variable trailing edge geometry as produced by a hinged flap. The function of such flaps should...... on the baseline airfoil showed excellent agreement with measurements on the same airfoil with the same specified conditions. Furthermore, a more widespread comparison with an advanced potential theory code is presented. The influence of various key parameters, such as flap shape, flap size and oscillating...... frequencies, was investigated so that an optimum design can be suggested for application with wind turbine blades. It is concluded that a moderately curved flap with flap chord to airfoil curve ratio between 0.05 and 0.10 would be an optimum choice....

  3. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors

    Directory of Open Access Journals (Sweden)

    Xinran Tan

    2017-11-01

    Full Text Available This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec and positioning repeatability of 120 nrad (0.024 arcsec over a large angular range of ±4363 μrad (±900 arcsec for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  4. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    Science.gov (United States)

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  5. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering--A Comparison between Wild-Type Protein and a Hinge Mutant.

    Directory of Open Access Journals (Sweden)

    Saara Laulumaa

    Full Text Available Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS. The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.

  6. Surgical treatment of choanal atresia with transnasal endoscopic approach with stentless single side-hinged flap technique: 5 year retrospective analysis

    Directory of Open Access Journals (Sweden)

    Carmelo Saraniti

    Full Text Available Abstract Introduction: Choanal atresia is a rare congenital malformation of the nasal cavity characterized by the complete obliteration of the posterior choanae. In 67% of cases choanal atresia is unilateral, affecting mainly (71% the right nasal cavity. In contrast to the unilateral form, bilateral choanal atresia is a life-threatening condition often associated with respiratory distress with feeding and intermittent cyanosis exacerbated by crying. Surgical treatment remains the only therapeutic option. Objective: To report our experience in the use of a transnasal endoscopic approach with stentless single side-hinged flap technique for the surgical management of choanal atresia. Methods: A 5 year retrospective analysis of surgical outcomes of 18 patients treated for choanal atresia with a transnasal technique employing a single side-hinged flap without stent placement. All subjects were assessed preoperatively with a nasal endoscopy and a Maxillofacial computed tomography scan. Results: Ten males and eight females with a mean age at the time of surgery of 20.05 ± 11.32 years, underwent surgery for choanal atresia. Fifteen subjects (83.33% had a bony while 3 (26.77% a mixed bony-membranous atretic plate. Two and sixteen cases suffered from bilateral and unilateral choanal atresia respectively. No intra- and/or early postoperative complications were observed. Between 2 and 3 months after surgery two cases (11.11% of partial restenosis were found. Only one of these presented a relapse of the nasal obstruction and was subsequently successfully repaired with a second endoscopic procedure. Conclusion: The surgical technique described follows the basic requirements of corrective surgery and allows good visualization, evaluation and treatment of the atretic plate and the posterior third of the septum, in order to create the new choanal opening. We believe that the use of a stent is not necessary, as recommended in case of other surgical techniques

  7. Roles of the β subunit hinge domain in ATP synthase F1 sector: Hydrophobic network formed by introduced βPhe174 inhibits subunit rotation

    International Nuclear Information System (INIS)

    Nakanishi-Matsui, Mayumi; Kashiwagi, Sachiko; Kojima, Masaki; Nonaka, Takamasa; Futai, Masamitsu

    2010-01-01

    The ATP synthase β subunit hinge domain (βPhe148 ∼ βGly186, P-loop/α-helixB/loop/β-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F 1 with the βSer174 to Phe mutation in the domain lowered the γ subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F 1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the βMet159, βIle163, and βAla167 residues of the β subunit are involved together with the mutant βPhe174. The network is expected to stabilize the conformation of β DP (nucleotide-bound form of the β subunit), resulting in increased activation energy for transition to β E (empty β subunit). The modeling further predicts that replacement of βMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of βS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the β subunit hinge domain is pertinent for the rotational catalysis.

  8. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    Science.gov (United States)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  9. Can Good Infection Control Be Obtained in One-stage Exchange of the Infected TKA to a Rotating Hinge Design? 10-year Results.

    Science.gov (United States)

    Zahar, Akos; Kendoff, Daniel O; Klatte, Till O; Gehrke, Thorsten A

    2016-01-01

    Prosthetic joint infection (PJI) occurs in 1% to 2% of total knee arthroplasties (TKAs). Although two-stage exchange is the preferred management method of patients with chronic PJI in TKA in North America, one-stage exchange is an alternative treatment method, but long-term studies of this approach have not been conducted. We reviewed our minimum 9-year results of 70 patients who underwent one-stage exchange arthroplasty with a rotating hinge design to determine: (1) What was the proportion of patients free of infection? (2) What was the patient rate of survival free of any reoperation? (3) What were the clinical outcomes as measured by Hospital for Special Surgery scores? (4) What proportion of patients developed radiographic evidence of loosening? All one-stage revision TKAs for infection between January 1 and December 31, 2002, with a minimum 9-year followup (mean, 10 years; range, 9-11 years), in which patients had been seen within the last 1 year, were included in this retrospective review. During that period, 11 patients with infected TKAs were treated with other approaches (including two-stage approaches in eight); the general indication for one-stage revision was the diagnosis of PJI with a known causative organism. Exclusion criteria were culture-negative preoperative aspiration, known allergy to local antibiotics or bone cement, or cases in which radical débridement was impossible as a result of the involvement of important anatomical structures. Eighty-one patients with PJI were seen during this period; 70 underwent one-stage exchange using our strict protocol and were reimplanted with a rotating hinge TKA. Eleven patients (15.7%) were lost to followup. Hospital for Special Surgery scores were recorded and all radiographs were evaluated for prosthetic loosening. Failure was defined as revision surgery for infection or any other cause. Our 10-year infection-free survival was 93% (mean, 4.1; 95% confidence interval [CI], 89%-96%; p exchange techniques for

  10. Translating Comprehensive Conservative Care for Chronic Knee Pain Into a Digital Care Pathway: 12-Week and 6-Month Outcomes for the Hinge Health Program

    Science.gov (United States)

    Erhart-Hledik, Jennifer C; Kinsella, Rose; Hunter, Simon; Mecklenburg, Gabriel; Perez, Daniel

    2017-01-01

    Background Chronic knee pain (CKP) affects a large number of adults, many of whom do not receive best-practice care and are at high risk for unnecessary surgery. Objective The aim of this study was to investigate the effect of the Hinge Health 12-week digital care program (DCP) for CKP on knee pain and function, with secondary outcomes of surgery interest and satisfaction, at 12 weeks and 6 months after starting the program. Methods Individuals with CKP were recruited onto the 12-week program, comprising sensor-guided physical exercises, weekly education, activity tracking, and psychosocial support such as personal coaching and cognitive behavioral therapy (CBT). We used a single-arm design with assessment of outcomes at baseline, 12 weeks, and 6 months after starting the program. We used a linear mixed effects model with Tukey contrasts to compare timepoints and report intention-to-treat statistics with last observation carried forward. Results The cohort consisted of 41 individuals (32 female, mean age 52 years, SD 9 years). Between baseline and week 12, participants reported clinically significant improvements in the Knee Injury and Osteoarthritis Outcome Score (KOOS) pain and Knee Injury and Osteoarthritis Outcome Score-Physical Function Short Form (KOOS-PS) function scales of 16 points (95% CI 12-21, P<.001) and 10 points (95% CI 6-14, P<.001), respectively. Significant reductions of 57% (mean difference 30, 95% CI 21-38, P<.001) and 51% (mean difference 25, 95% CI 16-33, P<.001) in visual analog scale (VAS) knee pain and stiffness, respectively, were observed at 12 weeks, as well as a 67% reduction in surgery interest (mean reduction 2.3 out of 10, 95% CI 1.5-3.1, P<.001). Average satisfaction at week 12 was 9.2 out of 10. Critically, all improvements were maintained at 6 months at similar or greater magnitude. Conclusions Participants on the Hinge Health DCP for CKP showed substantial clinical improvements that were maintained 6 months after enrolling in the

  11. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.

  12. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Directory of Open Access Journals (Sweden)

    Bouyer Laurent J

    2009-06-01

    Full Text Available Abstract Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min, during (5 min and after (5 min exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion. To evaluate modifications in feedforward control, strides with no force field ('catch strides' were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%, subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99. Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%, plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.

  13. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.

    Science.gov (United States)

    Kim, Myunghee; Collins, Steven H

    2015-05-01

    Individuals with below-knee amputation have more difficulty balancing during walking, yet few studies have explored balance enhancement through active prosthesis control. We previously used a dynamical model to show that prosthetic ankle push-off work affects both sagittal and frontal plane dynamics, and that appropriate step-by-step control of push-off work can improve stability. We hypothesized that this approach could be applied to a robotic prosthesis to partially fulfill the active balance requirements of human walking, thereby reducing balance-related activity and associated effort for the person using the device. We conducted experiments on human participants (N = 10) with simulated amputation. Prosthetic ankle push-off work was varied on each step in ways expected to either stabilize, destabilize or have no effect on balance. Average ankle push-off work, known to affect effort, was kept constant across conditions. Stabilizing controllers commanded more push-off work on steps when the mediolateral velocity of the center of mass was lower than usual at the moment of contralateral heel strike. Destabilizing controllers enforced the opposite relationship, while a neutral controller maintained constant push-off work regardless of body state. A random disturbance to landing foot angle and a cognitive distraction task were applied, further challenging participants' balance. We measured metabolic rate, foot placement kinematics, center of pressure kinematics, distraction task performance, and user preference in each condition. We expected the stabilizing controller to reduce active control of balance and balance-related effort for the user, improving user preference. The best stabilizing controller lowered metabolic rate by 5.5% (p = 0.003) and 8.5% (p = 0.02), and step width variability by 10.0% (p = 0.009) and 10.7% (p = 0.03) compared to conditions with no control and destabilizing control, respectively. Participants tended to prefer stabilizing controllers. These effects were not due to differences in average push-off work, which was unchanged across conditions, or to average gait mechanics, which were also unchanged. Instead, benefits were derived from step-by-step adjustments to prosthesis behavior in response to variations in mediolateral velocity at heel strike. Once-per-step control of prosthetic ankle push-off work can reduce both active control of foot placement and balance-related metabolic energy use during walking.

  14. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases. PMID:19493356

  15. Effect of Rocker Bar Ankle Foot Orthosis on Functional Mobility in Post-Stroke Hemiplegic Patients: Timed Up and Go and Gait Speed Assessments

    Directory of Open Access Journals (Sweden)

    Farzad Farmani

    2016-03-01

    Discussion: RAFO led to a significant improvement in functional mobility in hemiplegic patients post stroke. This may be due to the positive effect of rocker modification on improving push off and transferring weight during the stance phase of gait.

  16. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  17. The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion

    Science.gov (United States)

    Dölker, Nicole; Górna, Maria W.; Sutto, Ludovico; Torralba, Antonio S.; Superti-Furga, Giulio; Gervasio, Francesco L.

    2014-01-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors. PMID:25299346

  18. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases

    DEFF Research Database (Denmark)

    Batten, MR; Senior, BW; Kilian, Mogens

    2003-01-01

    The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either...... side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial...... effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement...

  19. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    Science.gov (United States)

    Dölker, Nicole; Górna, Maria W; Sutto, Ludovico; Torralba, Antonio S; Superti-Furga, Giulio; Gervasio, Francesco L

    2014-10-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  20. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    Directory of Open Access Journals (Sweden)

    Nicole Dölker

    2014-10-01

    Full Text Available Regulation of the c-Abl (ABL1 tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL. Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2 domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  1. Gait analysis in a patient with severe Charcot-Marie-Tooth disease: a case study with a new orthotic device for footdrop.

    Science.gov (United States)

    Vinci, Paolo; Paoloni, M; Ioppolo, F; Gargiulo, P; Santilli, V

    2010-09-01

    Management of footdrop in severe Charcot-Marie-Tooth (CMT) patients is a challenge owing to the combination of quadriceps muscle weakness, distal muscular atrophy, sensory impairment and poor soft tissue resistance to the placement of an orthotic device. We present a case study of a patient who gradually became unable to use his ankle-foot orthoses because they hampered the compensative movements required to stabilize his knees passively and caused pain. The aim of this report is to describe orthotic management in such a severe CMT case and to present a new orthotic device that we devised for the footdrop in this patient. We provided him with 3 different footdrop devices, each of which was highly elastic to allow knee hyperextension, and left him free to decide which one to use: 1) the silicone-ankle-foot orthoses were rapidly discarded because of pain; 2) the Codivilla support was not used because of discomfort and poor aesthetic appearance; 3) a new device, called the "Soft Footdrop Insert" (SFI), consisting of a sheet of Veolform, a reticulated polyolephinic foam, stuck to the counter of midcalf boots, was found to be effective, comfortable, pain-free and aesthetically acceptable, and was consequently used the vast majority of the time. At a 3-year follow-up, an instrumental gait analysis, in which ordinary shoes were compared with the Codivilla support and the SFI, revealed that both the Codivilla support and the SFI controlled footdrop more effectively than ordinary shoes and increased swing and mean velocity; in addition, the SFI yielded the best gait performances. We think that a soft, invisible device, such as the SFI, may satisfy the needs of CMT patients and improve compliance with orthoses-wearing for footdrop.

  2. Inhibition of RM-1 prostate carcinoma and eliciting robust immune responses in the mouse model by using VEGF-M2-GnRH3-hinge-MVP vaccine.

    Science.gov (United States)

    Wang, Yiqin; Alahdal, Murad; Ye, Jia; Jing, Liangliang; Liu, Xiaoxin; Chen, Huan; Jin, Liang; Cao, Rongyue

    2018-01-23

    GnRH and VEGF have been investigated as prostate carcinoma enhancers that support tumor spread and progression. Although both have documented roles in prostate carcinoma and many cancer types, the weak immunogenicity of these peptides has remained a major challenge for use in immunotherapy. Here, we describe a novel strategy to inhibit GnRH and VEGF production and assess the effect on the immune responses against these hormones using the RM-1 prostate cancer model. We designed a novel recombinant fusion protein which combined GnRH and VEGF as a vaccine against this tumor. The newly constructed fusion protein hVEGF121-M2-GnRH3-hinge-MVP contains the human vascular endothelial growth factor (hVEGF121) and three copies of GnRH in sequential linear alignment and T helper epitope MVP as an immunogenic vaccine. The effectiveness of the vaccine in eliciting an immune response and attenuating the prostate tumor growth was evaluated. Results showed that administration of a new vaccine effectively elicited humoral and cellular immune responses. We found that, a novel fusion protein, hVEGF121-M2-GnRH3-hinge-MVP, effectively inhibited growth of RM-1 prostate model and effectively promoted immune response. In conclusion, hVEGF121-M2-GnRH3-hinge-MVP is an effective dual mechanism tumor vaccine that limits RM-1 prostate growth. This vaccine may be a promising strategy for the treatment of hormone refractory prostate malignancies.

  3. Anatomy of extremely thin marine sequences landward of a passive-margin hinge zone: Neogene Calvert Cliffs succession, Maryland, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, S.M. [Univ. of Chicago, IL (United States). Dept. of Geophysical Sciences

    1997-03-01

    Detailed examination of Neogene strata in cliffs 25--35 m high along the western shore of Chesapeake Bay, Maryland, reveals the complexity of the surviving record of siliciclastic sequences {approximately}150 km inland of the structural hinge zone of the Atlantic passive margin. Previous study of the lower to middle Miocene Calvert (Plum Point Member) and Choptank Formations documented a series of third-order sequences 7--10 m thick in which lowstand deposits are entirely lacking, transgressive tracts comprise a mosaic of condensed bioclastic facies, and regressive (highstand) tracts are present but partially truncated by the next sequence boundary; smaller-scale (fourth-order) cyclic units could not be resolved. Together, these sequences constitute the transgressive and early highstand tracts of a larger (second-order Miocene) composite sequence. The present paper documents stratigraphic relations higher in the Calvert Cliffs succession, including the upper Miocene St. Marys Formation, which represents late highstand marine deposits of the Miocene second-order sequence, and younger Neogene fluvial and tidal-inlet deposits representing incised-valley deposits of the succeeding second-order cycle. The St. Marys Formation consists of a series of tabular units 2--5 m thick, each with an exclusively transgressive array of facies and bounded by stranding surfaces of abrupt shallowing. These units, which are opposite to the flooding-surface-bounded regressive facies arrays of model parasequences, are best characterized as shaved sequences in which only the transgressive tract survives, and are stacked into larger transgressive, highstand, and forced-regression sets.

  4. The controlled formation and cleavage of an intramolecular d8-d8 Pt-Pt interaction in a dinuclear cycloplatinated molecular "pivot-hinge".

    Science.gov (United States)

    Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah

    2009-08-03

    The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.

  5. Elaboração de instrumento padronizado para o teste de materiais termoplásticos para órteses/Elaboration of standard instrument for the test of thermoplastic materials for orthoses

    Directory of Open Access Journals (Sweden)

    Luciana Bolzan Agnelli Martinez

    2017-09-01

    Full Text Available As órteses para os membros superiores devem ser confeccionadas sob medida e se faz necessária uma boa seleção do material. Os termoplásticos de baixa temperatura são os mais utilizados atualmente e suas propriedades devem ser conhecidas e mensuradas adequadamente pelos profissionais da área. O presente estudo teve por objetivo elaborar um protocolo para avaliar, de forma padronizada, algumas propriedades dos materiais termoplásticos de baixa temperatura necessárias na prática clínica. Trata-se de um estudo exploratório, pois envolveu a criação de um instrumento de avaliação, visando a descoberta e o achado. Para que os materiais possam ser avaliados de forma padronizada, possibilitando a comparação e replicação, foi elaborado um instrumento específico para isso, denominado “Manuseio Padronizado de Materiais Termoplásticos para Órteses”. Resultados: O instrumento contém cinco propriedades a serem avaliadas: Temperatura de Trabalho, Moldabilidade, Memória, Auto-aderência e Rigidez. O protocolo fornece, para cada um dos itens, a definição técnica, considerações relativas à aplicação na confecção de órteses e a descrição dos testes. Discussão: Na prática clínica as propriedades dos materiais geralmente são verificadas pela percepção do profissional que o manipula. Testes padronizados, como os propostos no presente estudo, são importantes para uma análise precisa dos materiais. Conclusão: Os testes criados para mensurar moldabilidade, memória e auto aderência representam um avanço para a análise e comparação entre materiais existentes no mercado. O instrumento elaborado poderá ser utilizado por profissionais da prática clínica e por pesquisadores que pretendem investigar materiais termoplásticos para essa finalidade. Abstract The orthoses for the upper limbs must be tailor-made and a good selection of the material is required. Low temperature thermoplastics are the most widely used today

  6. Hinge peegel - keha / Margit Adorf

    Index Scriptorium Estoniae

    Adorf, Margit, 1974-

    2006-01-01

    10. PÖFFi filmidest: "Suust suhu" (režissöör Björn Runge; Rootsi - Taani 2005), "Transamerica" (režissöör Duncan Tucer; USA 2005), "Ükski keha pole täiuslik" (režissöör Raphael Sibilla; Prantsusmaa 2006)

  7. Shape morphing hinged truss structures

    International Nuclear Information System (INIS)

    Sofla, A Y N; Elzey, D M; Wadley, H N G

    2009-01-01

    Truss structures are widely used for the support of structural loads in applications where minimum mass solutions are required. Their nodes are normally constructed to resist rotation to maximize their stiffness under load. A multi-link node concept has recently been proposed that permits independent rotation of tetrahedral trusses linked by such a joint. High authority shape morphing truss structures can therefore be designed by the installation of linear displacement actuators within the truss mechanisms. Examples of actuated structures with either linear or planar shapes are presented and their ability to bend, twist and undulate is demonstrated. An experimental device has been constructed using one-way shape memory wire actuators in antagonistic configurations that permit reversible actuated structures. It is shown that the actuated structure displacement response is significantly amplified by use of a mechanically magnified design

  8. Clinical effectiveness and cost-effectiveness of a multifaceted podiatry intervention for falls prevention in older people: a multicentre cohort randomised controlled trial (the REducing Falls with ORthoses and a Multifaceted podiatry intervention trial).

    Science.gov (United States)

    Cockayne, Sarah; Rodgers, Sara; Green, Lorraine; Fairhurst, Caroline; Adamson, Joy; Scantlebury, Arabella; Corbacho, Belen; Hewitt, Catherine E; Hicks, Kate; Hull, Robin; Keenan, Anne-Maree; Lamb, Sarah E; McIntosh, Caroline; Menz, Hylton B; Redmond, Anthony; Richardson, Zoe; Vernon, Wesley; Watson, Judith; Torgerson, David J

    2017-04-01

    Falls are a serious cause of morbidity and cost to individuals and society. Evidence suggests that foot problems and inappropriate footwear may increase the risk of falling. Podiatric interventions could help reduce falls; however, there is limited evidence regarding their clinical effectiveness and cost-effectiveness. To determine the clinical effectiveness and cost-effectiveness of a multifaceted podiatry intervention for preventing falls in community-dwelling older people at risk of falling, relative to usual care. A pragmatic, multicentred, cohort randomised controlled trial with an economic evaluation and qualitative study. Nine NHS trusts in the UK and one site in Ireland. In total, 1010 participants aged ≥ 65 years were randomised (intervention, n  = 493; usual care, n  = 517) via a secure, remote service. Blinding was not possible. All participants received a falls prevention leaflet and routine care from their podiatrist and general practitioner. The intervention also consisted of footwear advice, footwear provision if required, foot orthoses and foot- and ankle-strengthening exercises. The primary outcome was the incidence rate of falls per participant in the 12 months following randomisation. The secondary outcomes included the proportion of fallers and multiple fallers, time to first fall, fear of falling, fracture rate, health-related quality of life (HRQoL) and cost-effectiveness. The primary analysis consisted of 484 (98.2%) intervention and 507 (98.1%) usual-care participants. There was a non-statistically significant reduction in the incidence rate of falls in the intervention group [adjusted incidence rate ratio 0.88, 95% confidence interval (CI) 0.73 to 1.05; p  = 0.16]. The proportion of participants experiencing a fall was lower (50% vs. 55%, adjusted odds ratio 0.78, 95% CI 0.60 to 1.00; p  = 0.05). No differences were observed in key secondary outcomes. No serious, unexpected and related adverse events were reported. The

  9. Technology Epiphany and an Integrated Product and Service

    Directory of Open Access Journals (Sweden)

    Satoru Goto

    2017-07-01

    Full Text Available This study aims at exploring how an integrated product and service contributes to achieving Innovation of Meaning (IoM or technology epiphany. Existing IoM studies have focused on intended meaning (as defined in new product development and ignored the received meaning that users reconstruct. The process by which a user assigns meaning to things can not only be static but also dynamic. This study focuses on integrated products and contexts offered by services and analyses the case of Japan’s largest manufacturer of ankle-foot orthoses. The results show that the service guides the users to reconstruct the meaning in dynamic cognitive processes and use the metaphors that contribute to the consistency between products and services.

  10. Gait rehabilitation in a patient affected with Charcot-Marie-Tooth disease associated with pyramidal and cerebellar features and blindness.

    Science.gov (United States)

    Vinci, Paolo

    2003-05-01

    Charcot-Marie-Tooth (CMT) disease, an inherited neuropathy characterized by length-dependent degeneration of the motor and sensory nerve fibers with consequent distal muscle atrophy and sensory reduction, can be associated with symptoms and signs of involvement of the central nervous system and/or cranial nerves. We present a patient with relatively severe CMT, cerebellar ataxia, pyramidal involvement, and blindness due to Leber's hereditary optic neuropathy. The patient presented with poor standing and gait, with consequent severe disability. Factors responsible for the patient's functional impairment (plantarflexor failure, footdrop, foot rotation, knee flexor contracture, poor proprioception, cerebellar dysfunction, spastic paraparesis, blindness) were identified and addressed by a rehabilitation management, which included, as a main intervention, ankle stabilization by drop-foot boots instead of ankle-foot orthoses. Improved balance and independent ambulation resulted from rehabilitation.

  11. Single-stage multilevel soft-tissue surgery in the lower limbs with spastic cerebral palsy: Experience from a rehabilitation unit

    Directory of Open Access Journals (Sweden)

    Gupta Anupam

    2008-01-01

    Full Text Available Background: To assess the effect of single-stage multilevel soft-tissue surgery (Single Event Multiple Level Resections, SEMLR on deformities and locomotion in patients with cerebral palsy (CP with static contracture(s in lower limbs. Patients and Methods: Study included 34 patients (M:F, 23:11 with mean age of 9.53 ± 3.92 years (4-16 years. Among them 22 had diplegia and four each had quadriplegia and right and left hemiplegia. Fourteen patients (41.2% had their intelligence quotient (IQ in the normal range (IQ ≥ 80, while others had mental retardation (MR of varying severity: borderline MR (IQ = 70-79 in 12, mild MR (IQ = 50-69 in 5, and moderate MR (IQ = 35-49 in patients 3. All patients underwent surgery (total number of procedures 153, average 4.5 procedures/patient over a period of 30 months (April 2005 to September 2007. Improvement in functional abilities and locomotion was assessed using Gross Motor Functional Classification Scale (GMFCS scores and by physical examination. Results: Significant improvement in function was observed ( P = 0.000 after surgery when comparing the preoperative and postoperative GMFCS scores. All patients were maintaining ambulation at a mean follow-up duration of 13.12 ± 6.07 months (3-24 months, with five patients using knee-ankle-foot orthoses (KAFO, 22 using ankle-foot orthoses (AFO, and six patients using knee gaiters. Sixteen patients were using walker, and two were using crutches as assistive devices. Conclusion: This study suggests that CP patients with good trunk control and static contractures at multiple joints in the lower limbs can be made ambulant with single-stage multilevel soft-tissue surgery. It has to be a team effort of the surgeon and the rehabilitation team in the postoperative period for the attainment of satisfactory goal.

  12. Modeling initial contact dynamics during ambulation with dynamic simulation.

    Science.gov (United States)

    Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F

    2007-04-01

    Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward

  13. Performance of spinal cord injury individuals while standing with the Mohammad Taghi Karimi reciprocal gait orthosis (MTK-RGO)

    International Nuclear Information System (INIS)

    Karimi, Mohammad Taghi; Amiri, Pouya; Esrafilian, Amir; Sedigh, Jafar; Fatoye, Francis

    2013-01-01

    Most patients with spinal cord injury use a wheelchair to transfer from place to place, however they need to stand and walk with orthosis to improve their health status. Although many orthoses have been designed for paraplegic patients, they have experienced various problems while in use. A new type of reciprocal gait orthosis was designed in the Bioengineering Unit of Strathclyde University to solve the problems of the available orthoses. Since there was no research undertaken regarding testing of the new orthosis on paraplegic subjects, this study was aimed to evaluate the new orthosis during standing of paraplegic subjects. Five paraplegic patients with lesion level between T12 and L1 and aged matched normal subjects were recruited into this study. The stability of subjects was evaluated during quiet standing and while undertaking hand tasks during standing with the new orthosis and the knee ankle foot orthosis (KAFO). The difference between the performances of paraplegic subjects while standing with both orthoses, and between the function of normal and paraplegic subjects were compared using the paired t test and independent sample t test, respectively. The stability of paraplegic subjects in standing with the new orthosis was better than that of the KAFO orthosis (p < 0.05). Moreover, the force applied on the crutch differed between the orthoses. The functional performance of paraplegic subjects was better with the new orthosis compared with normal subjects. The performance of paraplegic subjects while standing with the new orthosis was better than the KAFO. Therefore, the new orthosis may be useful to improve standing and walking in patients with paraplegia.

  14. Geomorphic and Structural Evidence for Rolling Hinge Style Deformation in the Footwall of an Active Low Angle Normal Fault, Mai'iu Fault, Woodlark Rift, SE Papua New Guinea

    Science.gov (United States)

    Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.

    2016-12-01

    While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge

  15. The use of osteochondral allograft with bone marrow-derived mesenchymal cells and hinge joint distraction in the treatment of post-collapse stage of osteonecrosis of the femoral head.

    Science.gov (United States)

    Gagala, J; Tarczynska, M; Gaweda, K; Matuszewski, L

    2014-09-01

    Osteonecrosis of the femoral head is an entity which occurs mainly in young and active patients aged between 20 and 50. The success of hip joint preserving treatments ranges from 15% to 50% depending on the stage and amount of osteonecrotic lesion. Total hip replacement is indicated in late post-collapse hips but it has unsatisfactory survival because of the wear and osteolysis in young and active patients. Osteochondral allografts have been reported in the treatment of large articular lesions with defects in underlying bone in knee, talus and shoulder. By combining osteoconductive properties of osteochondral allograft with osteogenic abilities of bone marrow-derived mesenchymal cells it has a potential to be an alternative to an autologous graft. The adjunct of hinged joint distraction should minimize stresses in subchondral bone to promote creeping substitution and prevent femoral head collapse. Unlike current treatment modalities, it would provide both structural support and allow bony and articular substitution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Influence of Botulinum Toxin Therapy on Postural Control and Lower Limb Intersegmental Coordination in Children with Spastic Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Bernard Dan

    2013-01-01

    Full Text Available Botulinum toxin injections may significantly improve lower limb kinematics in gait of children with spastic forms of cerebral palsy. Here we aimed to analyze the effect of lower limb botulinum toxin injections on trunk postural control and lower limb intralimb (intersegmental coordination in children with spastic diplegia or spastic hemiplegia (GMFCS I or II. We recorded tridimensional trunk kinematics and thigh, shank and foot elevation angles in fourteen 3–12 year-old children with spastic diplegia and 14 with spastic hemiplegia while walking either barefoot or with ankle-foot orthoses (AFO before and after botulinum toxin infiltration according to a management protocol. We found significantly greater trunk excursions in the transverse plane (barefoot condition and in the frontal plane (AFO condition. Intralimb coordination showed significant differences only in the barefoot condition, suggesting that reducing the degrees of freedom may limit the emergence of selective coordination. Minimal relative phase analysis showed differences between the groups (diplegia and hemiplegia but there were no significant alterations unless the children wore AFO. We conclude that botulinum toxin injection in lower limb spastic muscles leads to changes in motor planning, including through interference with trunk stability, but a combination of therapies (orthoses and physical therapy is needed in order to learn new motor strategies.

  17. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing.

    Science.gov (United States)

    Franc, Vojtěch; Řehulka, Pavel; Raus, Martin; Stulík, Jiří; Novak, Jan; Renfrow, Matthew B; Šebela, Marek

    2013-10-30

    Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel

  18. On equally and completely stressed hinged mechanisms

    Science.gov (United States)

    Kovalev, M. D.

    2018-05-01

    The following new question is investigated: is there any bar and joint planar linkage with every bar having the same nonzero stress in each position of the linkage, and with each angle between adjacent bars varying, when the linkage moves? The absence of such mechanisms under appropriate condition is prooved.

  19. Lugu on teksti hing / Ott Karulin

    Index Scriptorium Estoniae

    Karulin, Ott, 1980-

    2008-01-01

    Sellest, mis juhtub näidendi looga lavastusprotsessis. Tähelepanekuid nelja lavastuse kohta: Urmas Lennuki kirjutatud ja lavastatud näidend "Päeva lõpus" ja Andres Keili lavastatud John Osborne'i "Vaata raevus tagasi" Rakvere Teatris, Enn Vetemaa, Erki Aule ja Merle Karusoo dokumentaallavastus "Sigma Tau-C705", lavastaja Merle Karusoo ja Uku Uusbergi William Shakespeare'i aineline diplomietendus "Head ööd, vend" Eesti Draamateatris

  20. Bilingual children's social preferences hinge on accent.

    Science.gov (United States)

    DeJesus, Jasmine M; Hwang, Hyesung G; Dautel, Jocelyn B; Kinzler, Katherine D

    2017-12-01

    Past research finds that monolingual and bilingual children prefer native speakers to individuals who speak in unfamiliar foreign languages or accents. Do children in bilingual contexts socially distinguish among familiar languages and accents and, if so, how do their social preferences based on language and accent compare? The current experiments tested whether 5- to 7-year-olds in two bilingual contexts in the United States demonstrate social preferences among the languages and accents that are present in their social environments. We compared children's preferences based on language (i.e., English vs. their other native language) and their preferences based on accent (i.e., English with a native accent vs. English with a non-native [yet familiar] accent). In Experiment 1, children attending a French immersion school demonstrated no preference between English and French speakers but preferred American-accented English to French-accented English. In Experiment 2, bilingual Korean American children demonstrated no preference between English and Korean speakers but preferred American-accented English to Korean-accented English. Across studies, bilingual children's preferences based on accent (i.e., American-accented English over French- or Korean-accented English) were not related to their own language dominance. These results suggest that children from diverse linguistic backgrounds demonstrate social preferences for native-accented speakers. Implications for understanding the potential relation between social reasoning and language acquisition are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mida ihkab mu hing? / Toomas Raudam

    Index Scriptorium Estoniae

    Raudam, Toomas, 1947-

    2003-01-01

    Arvustus: Joyce, James. Pagulased : [näidend] / tõlkinud Jaak Rähesoo. Tallinn : Varrak, 2003. Ilmunud ka: Raudam, Toomas. Väike äratundmiste raamat. Tallinn : Eesti Keele Sihtasutus, 2006. Lk. 124-128

  2. Orthotic management of instability of the knee related to neuromuscular and central nervous system disorders: systematic review, qualitative study, survey and costing analysis.

    Science.gov (United States)

    O'Connor, Joanne; McCaughan, Dorothy; McDaid, Catriona; Booth, Alison; Fayter, Debra; Rodriguez-Lopez, Roccio; Bowers, Roy; Dyson, Lisa; Iglesias, Cynthia P; Lalor, Simon; O'Connor, Rory J; Phillips, Margaret; Ramdharry, Gita

    2016-07-01

    Patients who have knee instability that is associated with neuromuscular disease (NMD) and central nervous system (CNS) conditions can be treated using orthoses, such as knee-ankle-foot orthoses (KAFOs). To assess existing evidence on the effectiveness of orthoses; patient perspectives; types of orthotic devices prescribed in the UK NHS; and associated costs. Qualitative study of views of orthoses users - a qualitative in-depth interview study was undertaken. Data were analysed for thematic content. A coding scheme was developed and an inductive approach was used to identify themes. Systematic review - 18 databases were searched up to November 2014: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, Cumulative Index to Nursing and Allied Health, EMBASE, PASCAL, Scopus, Science Citation Index, BIOSIS Previews, Physiotherapy Evidence Database, Recal Legacy, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Health Technology Assessment database, Cochrane Central Register of Controlled Trials, Conference Proceedings Citation Index: Science, Health Management Consortium, ClinicalTrials.gov, International Clinical Trials Registry Platform and National Technical Information Service. Studies of adults using an orthosis for instability of the knee related to NMD or a CNS disorder were included. Data were extracted and quality was assessed by two researchers. Narrative synthesis was undertaken. Survey and costing analysis - a web survey of orthotists, physiotherapists and rehabilitation medicine physicians was undertaken. Telephone interviews with orthotists informed a costing analysis. Qualitative study - a total of 24 people participated. Potential for engagement in daily activities was of vital importance to patients; the extent to which their device enabled this was the yardstick by which it was measured. Patients' prime desired outcome was a reduction in pain, falls or trips, with improved balance and stability. Effectiveness

  3. Patellar tendinopathy : Causes, consequences and the use of orthoses

    NARCIS (Netherlands)

    de Vries, Astrid Johanna

    2016-01-01

    Patellar tendinopathy (PT), also known as jumper’s knee, is a painful overuse injury of the patellar tendon. This injury is common in jumping athletes. There are numerous treatment options currently available for PT, yet none of them guarantee full recovery. As a result, many athletes have

  4. [Conservative treatment of idiopathic scoliosis with physical therapy and orthoses].

    Science.gov (United States)

    Weiss, H-R

    2003-02-01

    Opinions differ in the international literature about the efficacy of conservative approaches to scoliosis treatment. Because this divergence of opinion corresponds to a great discrepancy in the standards applied to conservative treatment methods, it is not astonishing that the results of conservative treatment as described in the literature also differ. Scoliosis normally does not have such dramatic effects that immediate surgery would be indicated.Moreover, it is clear from the published literature that it is the functional and physiological impairments of scoliosis patients--including pain, torso deformity, psychological disturbance, and pulmonary dysfunction--which require therapeutic intervention. In Germany the triad of outpatient physiotherapy, intensive inpatient rehabilitation, and bracing has proven effective in conservative scoliosis treatment.Indication, content, and results of the individual treatment procedures are described and discussed. The positive outcomes of this practice validate a policy of offering conservative scoliosis treatment as an alternative to patients, including those for whom surgery is indicated.

  5. Splint: the efficacy of orthotic management in rest to prevent equinus in children with cerebral palsy, a randomised controlled trial.

    Science.gov (United States)

    Maas, Josina C; Dallmeijer, Annet J; Huijing, Peter A; Brunstrom-Hernandez, Janice E; van Kampen, Petra J; Jaspers, Richard T; Becher, Jules G

    2012-03-26

    Range of motion deficits of the lower extremity occur in about the half of the children with spastic cerebral palsy (CP). Over time, these impairments can cause joint deformities and deviations in the children's gait pattern, leading to limitations in moblity. Preventing a loss of range of motion is important in order to reduce secondary activity limitations and joint deformities. Sustained muscle stretch, imposed by orthotic management in rest, might be an effective method of preventing a decrease in range of motion. However, no controlled study has been performed. A single blind randomised controlled trial will be performed in 66 children with spastic CP, divided over three groups with each 22 participants. Two groups will be treated for 1 year with orthoses to prevent a decrease in range of motion in the ankle (either with static or dynamic knee-ankle-foot-orthoses) and a third group will be included as a control group and will receive usual care (physical therapy, manual stretching). Measurements will be performed at baseline and at 3, 6, 9 and 12 months after treatment allocation. The primary outcome measure will be ankle dorsiflexion at full knee extension, measured with a custom designed hand held dynamometer. Secondary outcome measures will be i) ankle and knee flexion during gait and ii) gross motor function. Furthermore, to gain more insight in the working mechanism of the orthotic management in rest, morphological parameters like achilles tendon length, muscle belly length, muscle fascicle length, muscle physiological cross sectional area length and fascicle pennation angle will be measured in a subgroup of 18 participants using a 3D imaging technique. This randomised controlled trial will provide more insight into the efficacy of orthotic management in rest and the working mechanisms behind this treatment. The results of this study could lead to improved treatments. Nederlands Trial Register NTR2091.

  6. Splint: the efficacy of orthotic management in rest to prevent equinus in children with cerebral palsy, a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Maas Josina C

    2012-03-01

    Full Text Available Abstract Background Range of motion deficits of the lower extremity occur in about the half of the children with spastic cerebral palsy (CP. Over time, these impairments can cause joint deformities and deviations in the children's gait pattern, leading to limitations in moblity. Preventing a loss of range of motion is important in order to reduce secondary activity limitations and joint deformities. Sustained muscle stretch, imposed by orthotic management in rest, might be an effective method of preventing a decrease in range of motion. However, no controlled study has been performed. Methods A single blind randomised controlled trial will be performed in 66 children with spastic CP, divided over three groups with each 22 participants. Two groups will be treated for 1 year with orthoses to prevent a decrease in range of motion in the ankle (either with static or dynamic knee-ankle-foot-orthoses and a third group will be included as a control group and will receive usual care (physical therapy, manual stretching. Measurements will be performed at baseline and at 3, 6, 9 and 12 months after treatment allocation. The primary outcome measure will be ankle dorsiflexion at full knee extension, measured with a custom designed hand held dynamometer. Secondary outcome measures will be i ankle and knee flexion during gait and ii gross motor function. Furthermore, to gain more insight in the working mechanism of the orthotic management in rest, morphological parameters like achilles tendon length, muscle belly length, muscle fascicle length, muscle physiological cross sectional area length and fascicle pennation angle will be measured in a subgroup of 18 participants using a 3D imaging technique. Discussion This randomised controlled trial will provide more insight into the efficacy of orthotic management in rest and the working mechanisms behind this treatment. The results of this study could lead to improved treatments. Trial Registration Number

  7. A soft robotic exosuit improves walking in patients after stroke.

    Science.gov (United States)

    Awad, Louis N; Bae, Jaehyun; O'Donnell, Kathleen; De Rossi, Stefano M M; Hendron, Kathryn; Sloot, Lizeth H; Kudzia, Pawel; Allen, Stephen; Holt, Kenneth G; Ellis, Terry D; Walsh, Conor J

    2017-07-26

    Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite-and perhaps because of-their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb's residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer's paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle's swing phase dorsiflexion and 11 ± 3% increase in the paretic limb's generation of forward propulsion ( P exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    Science.gov (United States)

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  9. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  10. Efficacy and Effectiveness of Physical Therapy in Enhancing Postural Control in Children With Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Susan R. Harris

    2005-01-01

    Full Text Available The purpose of this article was to conduct a systematic review of studies that examined the efficacy and effectiveness of postural control intervention strategies for children with CP. Only physical therapy interventions were included, e.g. adaptive seating devices, ankle foot orthoses, neurodevelopmental treatment. A multifaceted search strategy was employed to identify all potential studies published between 1990 and 2004. The search strategy included electronic databases, reference list scanning, author and citation tracking of relevant studies, and hand searching of pediatric physical therapy journals and conference proceedings. Twelve studies (1991–2004, comprising ten group design studies and two single subject studies, met our inclusion criteria. A variety of age ranges and severity of children with cerebral palsy (n = 132 participated in the studies. The study quality scores ranged from 2 to 7 (total possible range of 0 to 7 with a median score of 5.5 and a mode of 6. As was true in an earlier systematic review on adaptive seating, most of the 12 ‘experimental’ studies published since 1990 that were aimed at evaluating the effectiveness of postural control strategies provided lower levels of evidence, i.e. Sackett Levels III to V. Additional studies with stronger designs are needed to establish that postural control interventions for children with CP are effective.

  11. Paokil uks ja 13 noort hinge / Pille-Riin Purje

    Index Scriptorium Estoniae

    Purje, Pille-Riin, 1963-

    2003-01-01

    12. mail esietendus Eesti Riiklikus Nukuteatris noortestuudio debüütlavastus "Kolmteist + uks" L. Knutzoni näidendi "Kõigepealt sa sünnid" põhjal, lavastaja R. Toots, muusikaline kujundaja J. Kreen, liikumine E. Ülevainult

  12. A sM*A*S*Hing CERN visit

    CERN Multimedia

    Amy Elizabeth Dusto

    2012-01-01

    Alan Alda, the actor best known for playing medic Hawkeye Pierce on yesteryear’s TV series M*A*S*H, really likes science. Moreover, the Scientific American Frontiers TV program inspired his passion for science communication. Since then, he has become an advocate for increased public literacy in science. He visited CERN and the ATLAS experiment last week.   Alan Alda enjoying his visit to the ATLAS cavern.  “I’d been reading about it so much, I just wanted to see it,” he said. He does in fact have a connection with one of the LHC experiments. A few years ago, a fan of his from ATLAS asked if he would draw an Einstein cartoon to go on their fundraising T-shirts. Alda said he spent weeks on the caricature, and he joked that, “there would be no ATLAS project without that T-shirt,” which was a hit. Indeed, his favourite moment was underground when he was standing on the platform and looking at the giant detector. Alda helped c...

  13. CERN: A hinge between LEP and the LHC

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Later this year, if all goes well, the beam energy of CERN's LEP electron-positron collider should be increased to around 70 GeV per beam (collision energy 140 GeV), giving a foretaste of things to come. Since 1989, the 27-kilometre ring has been operating around 45 GeV per beam to feed its four physics experiments with a steady diet of Z particles, the electrically neutral carriers of the weak nuclear force. This has given precision results on vital parameters of the Standard Model. Meanwhile work has been steadily pushing ahead to upgrade LEP to LEP2, installing superconducting radiofrequency cavities (January 1994, page 6) and ancillary cryogenics equipment to boost the machine's energy and reach new areas of physics interest. The initial goal is to produce pairs of W particles, the electrically charged counterparts of the Z. As far as the machine is concerned, at these higher energies, the 'beambeam' interaction between the contra-rotating electrons and positrons is reduced, so more particles can be pumped into the ring. To achieve this, LEP has switched to the new 'bunch train' scheme (see page 14) each train containing several 'carriages' (bunches) of particles. To attain its physics objectives, LEP2's target is 500 inverse picobarns of integrated luminosity over the next few years. This is a challenge as LEP's integrated luminosity to date (since the machine was commissioned in 1989) is some 160 inverse picobarns, itself viewed as no mean achievement. To reach higher energies, the accelerating power at LEP is being increased with installation of superconducting radiofrequency cavities. After initial trials with solid niobium, LEP2 relies on the more reliable performance provided by copper, with its better heat conduction properties, coated with a superconducting film of niobium. Even so heroic preprocessing is required to ensure optimal performance. After initial trials revealed welding weaknesses, the plumbing for the power couplers demanded a special effort, but this has been overcome. Overall, the development and installation programme for LEP2 cryogenics and associated equipment has been especially demanding

  14. Kunst on töö hing / Signe Kivi

    Index Scriptorium Estoniae

    Kivi, Signe, 1957-

    2009-01-01

    Eesti Kunstiakadeemia 95. Kunstikõrgkooli minevikust, olevikust ja tulevikust, 95. aastapäeva tähistamisest. 10. detsembril promoveeritakse EKA audoktoriteks Helsingi ülikooli emeriitprofessor Riitta Nikula ja Leideni ülikooli graafilise disaini õppejõud Gerard Unger. Uueks EKA auliikmeks on nimetatud Meelis Milder

  15. Melbourne Eesti Ühing Kodu aasta peakoosolek / Sirje Jõgi

    Index Scriptorium Estoniae

    Jõgi, Sirje

    2007-01-01

    18. märtsil, ühingus on 209 liiget ja viis auliiget. Esitati aruanded, valiti uus 9 liikmeline juhatus: Bruno Metsar, Glory Toom, Milvi Vaikma, Sirje Jõgi, Rolf Luik, Imbi Knappstein, Rein Valling, Diana Ritchie ja Siiri Taveter

  16. Inarritu "Paabel" - eri keeled, sarnane hing / Annika Koppel

    Index Scriptorium Estoniae

    Koppel, Annika

    2006-01-01

    Mängufilm "Paabel" ("Babel") : stsenarist Guillermo Arriaga : režissöör Alejandro Gonzalez Inarritu, võitis Cannes'is parima režissööri auhinna : peaosades Cate Blanchett, Brad Pitt, Gael Garcia Bernal, Koji Yokusho : Ameerika Ühendriigid 2006

  17. The Hinge of Salvation: Body, Liturgy, and Bioethics

    Directory of Open Access Journals (Sweden)

    John Christopher Sikorski

    2013-04-01

    Full Text Available Dominant trends within the philosophical debate over personhood and identity tend to discount the significance and meaning of the human body and often slip into dualistic conceptions. I will argue that a Catholic theology of the body challenges many of the prevalent understandings in bioethics today. Such a notion takes Christ’s Incarnation as its foundation and seeks to develop an account of the human body in the context of the call to communion imprinted on humanity as made in the image of the Trinitarian communion of love. Such a conception counteracts forms of utilitarian or technological reductionism of the person. While Catholic bioethicists will need to consider how such an account will have practical applicability to cases, the call to communion ought to be fostered through the liturgical life of the Church, which enables Catholic bioethicists to develop a liturgical worldview that guards against devaluations of the dignity of the human person.

  18. Hinges of Correlation: Spatial Devices of Social Coexistence

    DEFF Research Database (Denmark)

    Lunde Nielsen, Espen

    2015-01-01

    This project investigates the coexistence of and the correlation between the inhabitants within my apartment building, using artistic practices and my own lived experience. These everyday spaces form the primary interface between the individual and the larger social entity of the city. Consciously...

  19. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5

    OpenAIRE

    van der Wijst, Jenny; Leunissen, Elizabeth H.; Blanchard, Maxime G.; Venselaar, Hanka; Verkaart, Sjoerd; Paulsen, Candice E.; Bindels, Ren? J.; Hoenderop, Joost G.

    2017-01-01

    TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonst...

  20. Hinged Transpubic Approach to Delayed Repair of Posterior Urethral

    African Journals Online (AJOL)

    ... to the management of one of the most challenging injuries of the lower urinary tract. ... This patient underwent a successful re-operation with full recovery. ... delayed repair of urethral distraction defects complicating pelvic fracture is feasible.

  1. Hinge kaudu võimu juurde / Danah Zohar

    Index Scriptorium Estoniae

    Zohar, Danah

    2006-01-01

    Vt. järelkaja Director, 2006/Apr, nr. 4, lk. 8, kus arvamust avaldavad Thulema nõukogu esimees August Kull, GO Traveli nõukogu esimees Tiit Pruuli ja Eest Ekspressi vastutav väljaandja Hans H. Luik. 12 põhimõttest, millega edendada vaimselt intelligentset juhtimist. Vt. samas: Tammemäe, Aira. Kuidas sündis Camino de Santiago juhtimiskoolitus. Lisa: Mida saab Santiago teel õppida? Kommenteerivad Mare Pork, Hannes Tamjärv

  2. Russian Far East's future hinges on political fate

    International Nuclear Information System (INIS)

    Khartukov, E.M.

    1992-01-01

    This paper reports that according to recent geological surveys, the Russian Far East (RFE), encompassing former Soviet territories east of Eastern Siberia and Transbaikalia, is endowed with impressive fossil fuel resources, However, up to now, this energy resource potential has been rather modestly explored and developed. In particular, explored (proved and probable) reserves of liquid hydrocarbons (crude and condensate) in 40 known oil and gas accumulations are estimated at only 2.2 billion bbl, corresponding to one-seventh of RFE potential, recoverable oil resources. Putting these reserves data into the frame of national comparisons, one can conclude that, on the whole, explored RFE oil potential constitutes a negligible fraction (less than 1%) of Russia's oil reserves, while the region's gas endowment, though modest compared with that of northwestern Siberia, contributes nearly 60% of the Russian Federation's offshore gas reserves

  3. [Orthopedic management of spina bifida].

    Science.gov (United States)

    Biedermann, R

    2014-07-01

    Spina bifida is associated with congenital deformities, such as kyphosis, spinal malformations, teratological hip dislocations, clubfeet, vertical talus and also with acquired deformities due to muscle imbalance and impaired biomechanics. The degree of the acquired deformities and the mobility of the patient depend on the level of the spinal lesion. Neurological symptoms are mostly asymmetric and there is an inconsistent correlation between the anatomical level of the lesion and muscle function. Deficits of sensation are usually one to two levels lower than the motor level. An exact neurological diagnosis should not be made before the second or third year of life and an early prognosis about walking ability should be avoided. The level L3 and therefore function of the quadriceps is a functional milestone after which modified independent ambulation with the use of ankle foot orthoses (AFO) and crutches is possible. The basic principle is to support verticalization and gait even when loss of ambulation is later expected. It is also important to support and maintain sitting ability for high lesions, if necessary with correction of the spinal deformity. Findings in gait analysis have shifted the focus of treatment from radiological criteria to functional improvement, thus maintenance of the flexibility of the hip is the main goal of hip surgery. Reduction of the hip often leads to stiffness and has a high redislocation rate. Clubfoot deformities should be treated early and foot arthrodesis and stiffness have to be avoided. Another focus is the prevention of joint contracture by early prophylactic treatment. The purpose of management is to maximize the functional potential of the child. Subjective well-being, absence of pain, mobility and socialization are the main goals. This does not necessarily imply ambulation; nevertheless, verticalization and associated orthotic management is one major objective of the orthopedic management of spina bifida.

  4. Advantages and disadvantages of interdisciplinary consultation in the prescription of assistive technologies for mobility limitations.

    Science.gov (United States)

    de Laat, Fred A; van Heerebeek, Bart; van Netten, Jaap J

    2018-03-28

    , have to be taken into account. Professionals in the field of ankle-foot-orthoses and orthopaedic shoes (medical specialist as prescriber and orthopaedic technician) who are involved in interdisciplinary consultation appreciate it and want to continue.

  5. The influence of ankle joint mobility when using an orthosis on stability in patients with spinal cord injury: a pilot study.

    Science.gov (United States)

    Arazpour, M; Bani, M A; Hutchins, S W; Curran, S; Javanshir, M A

    2013-10-01

    Perceived risk of falling is an important factor for people with spinal cord injury (SCI). This study investigated the influence of ankle joint motion on postural stability and walking in people with SCI when using an orthosis. Volunteer subjects with SCI (n=5) participated in this study. Each subject was fitted with an advanced reciprocating gait orthosis (ARGO) equipped with either solid or dorsiflexion-assist type ankle-foot orthosis (AFOs) and walked at their self-selected speed along a flat walkway to enable the comparison of walking speed, cadence and endurance. A force plate system and a modified Falls Efficacy Scale (MFES) were utilized to measure postural sway and the perceived fear of falling, respectively. There were significant differences in the mean MFES scores between two types of orthosis (P=0.023). When using two crutches, there was no significant difference in static standing postural sway in the medio-lateral (M/L) direction (P=0.799), but significant difference in the antero-posterior (A/P) direction (P=0.014). However, during single crutch support, there was a significant difference in both M/L (P=0.019) and A/P (P=0.022) directions. Walking speed (7%) and endurance (5%) significantly increased when using the ARGO with dorsi flexion assisted AFOs. There was no significant deference between two types of orthoses in cadence (P=0.54). Using an ARGO with dorsiflexion-assisted AFOs increased the fear of falling, but improved static postural stability and increased walking speed and endurance, and should therefore be considered as an effective orthosis during the rehabilitation of people with SCI.

  6. Outcome Analysis following Operative Skeletal Stabilization in Established Non Unions of Malleolar Fractures - A Series of 11 Cases.

    Science.gov (United States)

    Balasubramanian, Navin; Babu, Ganesh; Prakasam, Sindhuja

    2015-01-01

    Established non-unions pose a real nightmare for even the most accomplished surgeon. The variations in anatomy due to extensive fibrous tissue growth, soft tissue contractures around the fracture site and bony alterations like smoothening and sclerosis of the fracture ends must each be addressed as a whole if good outcome is to be expected. Here we present a series of 11 patients who had bimalleolar fracture of the ankle following which they had native splinting. These patients presented to us with established non-union. There were 7 males and 4 females in the study. The average age was 44.63 years. Ten out of the 11 patients went on to union (90.1%) following internal fixation with or without immobilization in a plaster cast at an average of 13.8 weeks (range 12-17 weeks). The remaining patient did not progress to union and was advised revision fixation but she refused. She was put on an ankle foot orthoses and mobilized with satisfactory results. There was no infection in any of the patients. Two patients had delayed wound healing with delayed suture removal at 18 days. Weight bearing was started at the end of 16 weeks in all the patients. All patients were assessed using the Karlsson and Peterson functional score for the ankle. Six patients had excellent outcome, 3 had good outcome, 2 had fair with one patient having poor functional result. We conclude that open reduction internal fixation +/- bone grafting provides excellent union rates and good functional results in even the most established non unions of bimalleolar fractures of the ankle.

  7. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.

    Science.gov (United States)

    Huang, Tzu-wei P; Shorter, Kenneth A; Adamczyk, Peter G; Kuo, Arthur D

    2015-11-01

    The human ankle produces a large burst of 'push-off' mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s(-1), using ankle-foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. © 2015. Published by The Company of Biologists Ltd.

  8. Effects of a recreational ice skating program on the functional mobility of a child with cerebral palsy.

    Science.gov (United States)

    Walsh, Sharon Fleming; Scharf, Michael G

    2014-04-01

    The purpose of this study was to describe the effects of an ice skating program on the ambulation, strength, posture and balance of a child with cerebral palsy (CP). The subject was a five-year-old female with a diagnosis of CP and a Gross Motor Classification System level of III. The subject was a slow and labored household ambulator on level surfaces with bilateral forearm crutches and bilateral ankle foot orthoses. She was unable to transfer to and from the floor to stand independently, stand unsupported or take steps independently. Until the initiation of this study she was receiving physical therapy services 2×/week. For the purpose of this study she participated in a 1 h/week local ice skating program for people with disabilities for a period of four months. The subject displayed clinically significant improvements in functional mobility including: improved standing posture; independent transfer to and from the floor to stand; maintenance of independent standing for 3 min; independent walking for 10 feet; increased ability to isolate extremity musculature; increased strength; improved Gross Motor Function Measure-88 scores and increased endurance. A subsequent testing session four months after the ice skating program had ended displayed declines but not to pre-intervention levels in muscle strength; ability to transfer to and from the floor to stand; functional mobility and standing balance. The results appear to suggest that the participation in an ice skating program clinically improved this child's functional mobility. Further research needs to be done with regard to physical recreational programs and the benefit they can have on the function of children with activity limitations.

  9. Value of botulinum toxin injections preceding a comprehensive rehabilitation period for children with spastic cerebral palsy: A cost-effectiveness study.

    Science.gov (United States)

    Schasfoort, Fabienne; Dallmeijer, Annet; Pangalila, Robert; Catsman, Coriene; Stam, Henk; Becher, Jules; Steyerberg, Ewout; Polinder, Suzanne; Bussmann, Johannes

    2018-01-10

    Despite the widespread use of botulinum toxin in ambulatory children with spastic cerebral palsy, its value prior to intensive physiotherapy with adjunctive casting/orthoses remains unclear. A pragmatically designed, multi-centre trial, comparing the effectiveness of botulinum toxin + intensive physiotherapy with intensive physiotherapy alone, including economic evaluation. Children with spastic cerebral palsy, age range 4-12 years, cerebral palsy-severity Gross Motor Function Classification System levels I-III, received either botulinum toxin type A + intensive physiotherapy or intensive physiotherapy alone and, if necessary, ankle-foot orthoses and/or casting. Primary outcomes were gross motor func-tion, physical activity levels, and health-related quality-of-life, assessed at baseline, 12 (primary end-point) and 24 weeks (follow-up). Economic outcomes included healthcare and patient costs. Intention-to-treat analyses were performed with linear mixed models. There were 65 participants (37 males), with a mean age of 7.3 years (standard deviation 2.3 years), equally distributed across Gross Motor Function Classification System levels. Forty-one children received botulinum toxin type A plus intensive physio-therapy and 24 received intensive physiotherapy treatment only. At primary end-point, one statistically significant difference was found in favour of intensive physiotherapy alone: objectively measured percentage of sedentary behaviour (-3.42, 95% confidence interval 0.20-6.64, p=0.038). Treatment costs were significantly higher for botulinum toxin type A plus intensive physiotherapy (8,963 vs 6,182 euro, p=0.001). No statistically significant differences were found between groups at follow-up. The addition of botulinum toxin type A to intensive physiotherapy did not improve the effectiveness of rehabilitation for ambulatory children with spastic cerebral palsy and was also not cost-effective. Thus botulinum toxin is not recommended for use in improving gross

  10. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force feedback rehabilitation method

    Directory of Open Access Journals (Sweden)

    Gil eHerrnstadt

    2015-03-01

    Full Text Available Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance.Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper limb rehabilitation research suggests potential in enhancing functional recovery. Moreover studies suggest limb coordination and synchronization can improve treatment efficacy.In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A Bimanual Wearable Robotic Device (BWRD with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three one-hour sessions per participant, delivered in a week. Participants underwent pre and post training functional assessments along with proprioceptive measures. The post assessment was performed at the end of the last training session.The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force feedback movements, force feedback positioning, and force matching tasks with same and opposite direction movements. We are able to suggest identification

  11. Sissevaade lapse hinge ja väljavaade ilma / Mari Niitra

    Index Scriptorium Estoniae

    Niitra, Mari, 1979-

    2014-01-01

    Iko Marani raamatu "Londiste" näitel tuuakse välja kirjaniku rekonstruktsioon väikelapse maailmast ja väikelapse psüühika topeldamisest veelgi väiksema olendi silme läbi. Lastekirjanduse mõjust inimese kognitiivsetele (tunnetuslikele) protsessidele

  12. Ametiühing - töötajate esindusorganisatsioon / Kadi Pärnits

    Index Scriptorium Estoniae

    Pärnits, Kadi, 1965-

    1998-01-01

    Ametiühingute mõistest ja rollist, ettevõtte töötajate nõukogudest, ametiühingute õiguslikust regulatsioonist Eestis ja Euroopas, ametiühingutest kui juriidilistest isikutest, nende esindamisest, varalistest õigustest ja kohustustest ning vastutusest ametiühingute õiguste rikkumiste eest

  13. The projective hinge: phylogeny and ontogeny for a new descriptive geometry

    Directory of Open Access Journals (Sweden)

    Agostino De Rosa

    2012-06-01

    Full Text Available The architect- draughtsman uses a theoretical–graphic code whose foundations - of obvious Platonic lineage - attempt to organize and make sense to the reality. Perhaps the most powerful tool that he has in his hands  to translate the existing world in a dense and polysemous model and to envisage the future one, in a compelling and creative way, becomes from descriptive geometry. Today, the context in which the architect works is violently changed and the "geometry", in the digital image, seems to have lost memory of its projective origins. Two loci - one related to the stonecutting’s tradition, the other to the experiences of contemporary art - seem to be able to bring out in a renewed way, "the figures of the demonstration" associated with descriptive geometry.

  14. Ametiühing nõuab riigitöötajatele palgalisa

    Index Scriptorium Estoniae

    2007-01-01

    EAKL-i delegatsioon taotleb algavatel läbirääkimistel valitsusdelegatsioonilt riigiteenistujatele 15%-list palgatõusu, politsei-, pääste- ja vanglatöötajatele alampalga tõstmist 9000 kroonile. EAKL-i esimehe Harri Taliga arvamus

  15. Dynamic stability of a curved pipe bent in the arc of a circle on hinge ...

    Indian Academy of Sciences (India)

    of numerical solution of the dynamic stability of a pipe in its plane are developed. An example of a ... Most scientific researches in the area of vibrations of pipes conveying liquids are concerned with investigation of ..... is good coincidence. 5.

  16. U.S. E and P surge hinges on technology, not oil price

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Technology, not oil and gas prices, have fueled the recent surge in US activity, leading to greater sustainability, according to Clarance P. Cazalot Jr., vice-president of Texaco Inc. and president of Texaco Exploration and Production Inc. Cazalot expects gas and oil prices to decrease slightly to within the historical range of $18--21/bbl for oil and $1.50--2.00/Mcf for gas for the next few years. Cazalot said the most critical factors affecting the future of US exploration and production activities are technology and personnel. Technology is driving the current industry boom in the Us and is the basis for Texaco's projected US production growth. Perhaps industry's greatest challenge is attracting, developing, and retaining skilled people at all levels, said Cazalot. People shortages result in increased competition for personnel with critical skills, high employee turnover rates, and increased costs associated with attracting and retaining technical talent. A table gives data on costs of well drilling

  17. Tallink võttis kompromissi vastu, ametiühing mitte / Helga Koger

    Index Scriptorium Estoniae

    Koger, Helga, 1945-

    2008-01-01

    Tallink võttis vastu riikliku lepitaja kompromissettepaneku ja on valmis tõstma Eesti lipu all sõitvate laevade töötajate eelmises palgaleppes fikseeritud palka järgmisel kolmel aastal vastavalt 25,9 ja 6 protsendi võrra

  18. SVM-Maj: a majorization approach to linear support vector machines with different hinge errors

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); G.I. Nalbantov (Georgi); J.C. Bioch (Cor)

    2007-01-01

    textabstractSupport vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal

  19. Mis on hinge hind ehk Imet ei sündinud / Jaanus Kulli

    Index Scriptorium Estoniae

    Kulli, Jaanus, 1955-

    1999-01-01

    Mängufilm "Ristumine peateega" : režissöör ja produtsent Arko Okk : Stsenarist oma näidendi järgi Jaan Tätte : Operaator Dmitri Jermakov : Kunstnik Pille Jänes : Helilooja Jukka Linkola : Acuba Film 1999. Lisa : Arko Oki elu ja loomingu lühikokkuvõte

  20. Näidendile on vaja hing sisse saada / Madis Kalmet ; intervjueerinud Ruudu Raudsepp, Maria Lee Liivak

    Index Scriptorium Estoniae

    Kalmet, Madis, 1955-

    2011-01-01

    26. märtsil 2011 esietendus Tallinna Linnateatris Madis Kalmeti lavastus "Koletis kuu peal". M. Kalmet ameerika näitekirjaniku Richard Kalinoski näidendist ja selle lavastamisest, endast, oma teatrinägemusest ja selle muutumisest

  1. Biodiversity and systematics of apicomplexan parasites infecting South African leopard and hinged tortoises

    OpenAIRE

    2010-01-01

    M.Sc. Research into blood protozoans (haematozoans) infecting African tortoises is scanty with only a few records published, many during the early part of the last century. Little research had been done on the blood parasites of tortoises examined in this study namely, Kinixys lobatsiana, K. belliana belliana, K. natalensis, Geochelone pardalis pardalis, G. pardalis babcocki and Chersina angulata. The study therefore aimed to: 1) examine apicomplexan haematozoan parasites infecting several...

  2. WATCH: Warwick Assessment insTrument for Clinical teacHing: Development and testing.

    Science.gov (United States)

    Haider, Sonia Ijaz; Johnson, Neil; Thistlethwaite, Jill Elizabeth; Fagan, Gay; Bari, Muhammad Furqan

    2015-03-01

    Medical education and teaching skills are core competencies included in the generic curriculum for specialty training. To support the development of these skills, there is need for a validated instrument. This study aims to develop and test an instrument to measure the attributes of specialty trainees as effective teachers. The study was conducted in two phases. In first phase, the content of the instrument was generated from the literature and tested using the Delphi technique. In second phase, the instrument was field tested for validity and reliability using factor analysis and generalizability study. Feasibility was calculated by the time taken to complete the instrument. Acceptability and educational impact were determined by qualitative analysis of written feedback. Attributes of specialty trainees were assessed by clinical supervisors, peers, and students. The Delphi study produced consensus on 15 statements which formed the basis of the instrument. In field study, a total of 415 instruments were completed. Factor analysis demonstrated a three-factor solution ('learning-teaching milieu', 'teaching skills', and 'learner-orientated'). A generalizability coefficient was 0.92. Mean time to complete the instrument was five minutes. Feedback indicated that it was an acceptable and useful method of assessment. This new instrument provides valid, reliable, feasible, and acceptable assessment of clinical teaching.

  3. The impact of joint line restoration on functional results after hinged knee prosthesis

    Directory of Open Access Journals (Sweden)

    Serdar Yilmaz

    2016-01-01

    Conclusion: RHKA is an effective salvage procedure for serious instability and large bone defects. Restoration of the joint line improves the patellar score although it had no effect on the clinical outcome.

  4. Eesti filmipublikule läks hinge laste saatus / Maris Kuuda

    Index Scriptorium Estoniae

    Kuuda, Maris

    2006-01-01

    Pärnu 20. dokumentaal- ja antropoloogiafilmide festivali auhindade võitjad. Eesti Rahva Auhinna saaja ühisnimetaja "Inimene otsib õnne" all oli Richard Ladkani, Kief Davidsoni "Saatana kaevur" ("The Devil's Miner") : Saksamaa 2004. Peaauhinna sai Arunas Matelise "Enne maale naasmist", parim laste tehtud dokumentaaliks tunnistati Erlend E. Mo "Kas taevalaotuses võib surra?"

  5. Beliefs in moral luck: When and why blame hinges on luck.

    Science.gov (United States)

    Lench, Heather C; Domsky, Darren; Smallman, Rachel; Darbor, Kathleen E

    2015-05-01

    Belief in moral luck is represented in judgements that offenders should be held accountable for intent to cause harm as well as whether or not harm occurred. Scores on a measure of moral luck beliefs predicted judgements of offenders who varied in intent and the outcomes of their actions, although judgements overall were not consistent with abstract beliefs in moral luck. Prompting participants to consider alternative outcomes, particularly worse outcomes, reduced moral luck beliefs. Findings suggest that some people believe that offenders should be punished based on the outcome of their actions. Furthermore, prompting counterfactuals decreased judgements consistent with moral luck beliefs. The results have implications for theories of moral judgement as well as legal decision making. © 2014 The British Psychological Society.

  6. Dynamics Analysis of Origami-Folded Deployable Space Structures with Elastic Hinges

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of space exploration needs highly sophisticated deployable space structure technology in order to achieve the ambitious goals being set today. Several...

  7. Aeg ei küsi, kelle hinges laulab lind / Katrin Nielsen

    Index Scriptorium Estoniae

    Nielsen, Katrin

    2000-01-01

    Pärnu Mudaravilas avatud nongratalase Asta Isaku maalinäitusest "Looduses ja lootuses" ning Chaplini kunstikeskuses avatud Tammiste hooldekodu elaniku Aivar Kurvitsa maalinäitusest "Ära reosta loodust"

  8. Hiiumaa kalatööstus vaagub hinge tasemel tehasest hoolimata / Anneli Ammas

    Index Scriptorium Estoniae

    Ammas, Anneli, 1962-

    2004-01-01

    Hiiu Kalur on Kõrgessaare kalatööstusesse investeerinud 20 miljonit krooni, riigile ollakse võlgu 26 miljonit. Vald valmistab ette negatiivset lisaeelarvet. Lisa: Inimene peab ju kuskil töötama; kommenteerib: Raul Siem

  9. Euroopa hing / Joseph Ratzinger ; tõlk. Külli-Riin Tigasson

    Index Scriptorium Estoniae

    Ratzinger, Joseph

    2005-01-01

    Paavst Benedictus XVI sõnul võib moraalsete väärtuste purunemine viia Euroopa identiteedi enesehävitamiseni. Inimväärikusest ja inimõigustest peab kujunema tingimusteta väärtus, ka on Euroopa identiteedi jaoks keskne tähtsus abielul ja perekonnal. Sõnavabadusel peab olema piir: teise inimese au ega väärikust ei tohi haavata

  10. Telemark skiing injuries: an 11-year study.

    Science.gov (United States)

    Made, C; Borg, H; Thelander, D; Elmqvist, L G

    2001-11-01

    This study evaluated telemark injuries in a Swedish ski area in terms of injury ratio, location, and causes over time. During the seasons of 1989-2000 all injured telemark skiers ( n=94) who attended the medical center in Tärnaby, Sweden, within 48 h after the accident were registered and asked to fill in an injury form. A control group of noninjured telemark skiers were interviewed in the season of 1999-2000. The most common cause of injury was fall (70%) and the injury ratio was 1.2. There was a higher proportion of beginners in the injured population, and they had a fall/run ratio of 0.7, compared with 0.3 for average and advanced skiers. Ankle/foot injuries were most common (28% of injuries) followed by knee (20%) and head/neck (17%). The ankle/foot injuries decreased from 35% to 22% in the seasons 1989-1995 to 1995-2000. Beginners had more ankle/foot injuries than skilled participants. The severity of ankle/foot injuries classified as the Abbreviated Injury Scale group 2 or higher decreased from 33% to 21% during the study period. Twenty-seven percent used plastic and 73% leather boots. We found no association between boot material and ankle/foot injuries. The proportion of high boots with two or more buckles was 51%. High boots appeared to be protective against ankle/foot injuries. The proportion of high boots increased from 24% to 67% during the study period. Thus ankle/foot injuries were the most common injury location, but have decreased over time. The severity of these injuries has also decreased. A possible explanation could be the increased use of high boots.

  11. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia.

    Directory of Open Access Journals (Sweden)

    Sarah R Chang

    Full Text Available An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm and knee (6 Nm joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7° were within normal range, while average peak knee joint angles (40 ± 8° were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.

  12. The Effects of Fabrication Techniques and Storage Methods on the Dimensional Stability of Removable Acrylic Resin Orthoses.

    Science.gov (United States)

    1987-05-01

    Bruxism : a report and a case report. J. Dent. Med., 9:189-199, 1954. 138. Super, S: A modified occlusal splint for segmental osteotomy fixation. J. Oral...minimize linear dimensional change prior to the clinical use of a removable acrylic resin orthosis. . .. . . . . TABLE OF CONTENTS Title...distortion and clinical use of an orthosis having a precise and accurate fit. V % N II. LITERATURE REVIEW A. Terminology The therapeutic use of interocclusal

  13. Direct measurement of the intrinsic ankle stiffness during standing.

    Science.gov (United States)

    Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H

    2015-05-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. General cracked-hinge model for simulation of low-cycle damage in cemented beams on soil

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    The need for mechanistic constitutive models to evaluate the complex interaction between concrete crack propagation, geometry and soil foundation in concrete- and composite pavement systems has been recognized. Several models developed are either too complex or designed to solve relatively simple...

  15. Human pursuance of equality hinges on mental processes of projecting oneself into the perspectives of others and into future situations.

    Science.gov (United States)

    Takesue, Hirofumi; Miyauchi, Carlos Makoto; Sakaiya, Shiro; Fan, Hongwei; Matsuda, Tetsuya; Kato, Junko

    2017-07-19

    In the pursuance of equality, behavioural scientists disagree about distinct motivators, that is, consideration of others and prospective calculation for oneself. However, accumulating data suggest that these motivators may share a common process in the brain whereby perspectives and events that did not arise in the immediate environment are conceived. To examine this, we devised a game imitating a real decision-making situation regarding redistribution among income classes in a welfare state. The neural correlates of redistributive decisions were examined under contrasting conditions, with and without uncertainty, which affects support for equality in society. The dorsal anterior cingulate cortex (dACC) and the caudate nucleus were activated by equality decisions with uncertainty but by selfless decisions without uncertainty. Activation was also correlated with subjective values. Activation in both the dACC and the caudate nucleus was associated with the attitude to prefer accordance with others, whereas activation in the caudate nucleus reflected that the expected reward involved the prospective calculation of relative income. The neural correlates suggest that consideration of others and prospective calculation for oneself may underlie the support for equality. Projecting oneself into the perspective of others and into prospective future situations may underpin the pursuance of equality.

  16. Geoscience Education Opportunities: Partnerships to Advance TeacHing and Scholarship (GEOPATHS) in the Kansas City Metropolitan Area

    Science.gov (United States)

    Niemi, T. M.; Adegoke, J.; Stoddard, E.; Odom, L.; Ketchum, D.

    2007-12-01

    The GEOPATHS project is a partnership between the University of Missouri Kansas City (UMKC) and the Kansas City Missouri School District (KCMSD). The goal of GEOPATHS is to raise enrollment in the Geosciences, especially among populations that are traditionally underrepresented in the discipline. We are addressing this goal by expanding dual-credit and Advanced Placement (AP) opportunities for high school students and also by serving teachers through enhancing their understanding of geoscience content and inquiry teaching methods using GLOBE resources and protocols. Our focus in the first two years of the project is to increase the number of teachers that are certified to teach AP Environmental Science by offering specially designed professional development workshops for high school teachers in the Kansas City Metropolitan Area. The structure of the workshop for each year is divided into two weeks of content knowledge exploration using the learning cycle and concept mapping, and one week of inquiry-based experiments, field projects, and exercises. We are also supporting teachers in their use of these best-practice methods by providing materials and supplies along with lesson plans for inquiry investigations for their classes. The lesson plans include activities and experiments that are inquiry-based. The last two years of the project will include direct engagement/recruiting of promising minority high school students via paid summer research internships and scholarship offers.

  17. Eesti NATO Ühing juurutab demokraatlikke väärtusi / Victoria Punga ; interv. Aive Antsov

    Index Scriptorium Estoniae

    Punga, Victoria, 1977-

    2007-01-01

    Eesti NATO Ühingu tegevjuht organisatsiooni eesmärkidest, projektidest, koostööst teiste riikidega ning kaitsepoliitika ja majanduse seostest. Lisa: Väljavõte Victoria CVst; Eesti kaitsepoliitika viis plussi Victoria meelest

  18. Ajatud piirajad tervendavad hinge. Eile esietendus Tartus Tampere majas Sagar Sagitta lavastus "Ajatud" / Pille-Riin Purje

    Index Scriptorium Estoniae

    Purje, Pille-Riin, 1963-

    2006-01-01

    Sagar Sagitta lavastus "Ajatud" eesti folkloori, Uku Masingu ja Jakob Mändmetsa luule ja proosa põhjal Tartus Tampere majas, esitavad Jaan Tooming, Anne Maasik, Anne Türnpu, Madli Võsoberg, Heikki-Rein Veromann. Esietendus 26. jaan

  19. The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation.

    Science.gov (United States)

    Soultan, Alaaeldin; Safi, Kamran

    2017-01-01

    Digitized species occurrence data provide an unprecedented source of information for ecologists and conservationists. Species distribution model (SDM) has become a popular method to utilise these data for understanding the spatial and temporal distribution of species, and for modelling biodiversity patterns. Our objective is to study the impact of noise in species occurrence data (namely sample size and positional accuracy) on the performance and reliability of SDM, considering the multiplicative impact of SDM algorithms, species specialisation, and grid resolution. We created a set of four 'virtual' species characterized by different specialisation levels. For each of these species, we built the suitable habitat models using five algorithms at two grid resolutions, with varying sample sizes and different levels of positional accuracy. We assessed the performance and reliability of the SDM according to classic model evaluation metrics (Area Under the Curve and True Skill Statistic) and model agreement metrics (Overall Concordance Correlation Coefficient and geographic niche overlap) respectively. Our study revealed that species specialisation had by far the most dominant impact on the SDM. In contrast to previous studies, we found that for widespread species, low sample size and low positional accuracy were acceptable, and useful distribution ranges could be predicted with as few as 10 species occurrences. Range predictions for narrow-ranged species, however, were sensitive to sample size and positional accuracy, such that useful distribution ranges required at least 20 species occurrences. Against expectations, the MAXENT algorithm poorly predicted the distribution of specialist species at low sample size.

  20. Wentworth Miller : "Minu edu saladus? Kunstniku hing ja bürokraadi pulss" / Wentworth Miller ; koost. Triin Tael

    Index Scriptorium Estoniae

    Miller, Wentworth

    2006-01-01

    Cannes'is hotellis Carlton toimunud pressikonverentsist, kus ajakirjanike küsimustele vastasid põnevusseriaali "Põgenemine" peaosatäitjad Wentworth Miller ja Dominic Purcell. Lisaks "Wentworth SL Õhtulehele : "Minu südame võitmiseks tuleb oodata" ja tutvustus "Wentworthi läbimurdefilm täna õhtul ETVs"

  1. George Hinge and Jens A. Krasilnikoff (eds., Alexandria: A Cultural and Religious Melting Pot (Aarhus: Aarhus University Press, 2009

    Directory of Open Access Journals (Sweden)

    J. F. Humphrey

    2012-03-01

    Full Text Available The Canopus region of Egypt on the Mediterranean coast was already inhabited and a port prior to Alexander’s founding of his city. Pseudo-Callisthenes reports that Alexander awaited “an oracle from the god as to where he should found a city bearing his name” (Krasilnikoff, “Alexandria as Place,” 26.[1] According to this account, Alexander was visited in his sleep by the god who spoke thus to him: “King, to you I speak. the god of the ram’s horn. / If you wish forever to flourish in youth eternal, / Build an illustrious city above the island of Proteus/ Where once Aion Plutonius first took his throne as ruler… (Krasilnikoff, “Alexandria as Place,” 26-27.

  2. Eesti Raamatukoguhoidjate Ühing tähistas 90 aasta möödumist asutamisest / Reet Olevsoo

    Index Scriptorium Estoniae

    Olevsoo, Reet, 1956-

    2013-01-01

    Ülevaade aasta- ja kõnekoosolekust ning 2012. a preemiate võitjatest. Teadusraamatukogude aasta teona tunnustati uudsel RFID-tehnoloogial põhineva teavikute laenutamis- ja tagastamissüsteemi rakendamist TLÜ Akadeemilises Raamatukogus. Süsteemi rakendamist koordineerisid IT-teenistuse juhataja Peeter Kondratjev ja teenindusosakonna juhataja Heli Sirotkin

  3. MRT of the locomotor system. 4. rev. and enl. ed.; MRT des Bewegungsapparats

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, Martin [Praxisnetz Radiologie und Nuklearmedizin Bonn Bad Godesberg - RheinSieg, Bonn (Germany); Reiser, Maximilian (ed.) [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Klinische Radiologie

    2015-02-01

    The book on MRT of the locomotor system covers the following topics: relevant NMT imaging techniques, spinal cord, shoulder, elbows, wrist and fingers, hip region, knee, lower leg - ankle - foot, temporomandibular joint, skeletal muscles, bone marrow, bone and soft tissue tumors, osteoporosis, sacroiliac joint, jaw and periodontium.

  4. Feasibility of web-based decision aids in neurological patients

    NARCIS (Netherlands)

    van Til, Janine Astrid; Drossaert, Constance H.C.; Renzenbrink, Gerbert J.; Snoek, Govert J.; Dijkstra, Evelien; Stiggelbout, Anne M.; IJzerman, Maarten Joost

    2010-01-01

    Decision aids (DAs) may be helpful in improving patients' participation in medical decision-making. We investigated the potential for web-based DAs in a rehabilitation population. Two self-administered DAs focused on the treatment of acquired ankle-foot impairment in stroke and the treatment of

  5. Determining asymmetry of roll-over shapes in prosthetic walking

    NARCIS (Netherlands)

    Curtze, C.; Otten, Bert; Hof, A.L.; Postema, K.

    2011-01-01

    How does the inherent asymmetry of the locomotor system in people with lower-limb amputation affect the ankle-foot roll-over shape of prosthetic walking? In a single-case design, we evaluated the walking patterns of six people with lower-limb amputation (3 transtibial and 3 transfemoral) and three

  6. MRT of the locomotor system. 4. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Vahlensieck, Martin; Reiser, Maximilian

    2015-01-01

    The book on MRT of the locomotor system covers the following topics: relevant NMT imaging techniques, spinal cord, shoulder, elbows, wrist and fingers, hip region, knee, lower leg - ankle - foot, temporomandibular joint, skeletal muscles, bone marrow, bone and soft tissue tumors, osteoporosis, sacroiliac joint, jaw and periodontium.

  7. Integrated effect of treadmill training combined with dynamic ankle ...

    African Journals Online (AJOL)

    Abd El Aziz Ali Sherief

    2015-01-13

    Jan 13, 2015 ... of this study was to determine the combined effects of treadmill and dynamic ankle foot ... electrical stimulation, constrained induced therapy and ortho- ... restricted plantar flexion. .... older). (2) The child performs the item according to the criteria ... applied and intended to control position and motion of the.

  8. Direct measurement of the intrinsic ankle stiffness during standing

    NARCIS (Netherlands)

    Vlutters, Mark; Vlutters, M.; Boonstra, Tjitske; Schouten, Alfred Christiaan; van der Kooij, Herman

    2015-01-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic

  9. Anterior Transfer of Tibialis Posterior through the Interosseous ...

    African Journals Online (AJOL)

    Postoperative plaster of Paris cast for 6 weeks and ankle foot orthosis were used. We evaluated for correction and ability of the transferred tendon to actively dorsiflex at the ankle joint. Nineteen patients had good results 8 fair and 3 poor there was no neurovascular deficit. The purpose of this paper is to outline our outcome ...

  10. Two new dynamic devices / orthoses for training / assisting / rehabilitation of hand functionality in patients with stroke as a result of clinical experience

    Directory of Open Access Journals (Sweden)

    Catalin Moghioroiu

    2016-12-01

    Full Text Available Introduction - Observing stroke patients with hemiplegia we can easily identify one of the problems they face –inability to use affected upper limb. On a closer analysis we can see that this incapacity is determined, at many of them, by the incapacity to open the hand and grasp. They follow therapies for months and the results are often mediocre therefore respectively upper limb is neglected and forgotten and its activities are taken up by the healthy upper limb. These observations have prompted the search for other type of solutions to help / assist them and facilitate participation. In this way were created twodynamic devices/orthotics that assists finger extension, facilitates grasping and increase, at least in theory, the possibilities of participation. Objective - The main purpose of this study is to test the effectiveness of using these devices on short and medium term. Material and method - For this study we will select 60 patients with single stroke. Patients will be randomized into two groups. Patients in the control group will receive a physical therapy session per day for 10 days. Patients in the experimental group will receive in addition a functional workout (20-30 minutes of handling small objects and few simple functional gestures of the "activities of daily living" using one of the two devices –the one that will allow the patient to best accomplish the given tasks. We will perform an initial assessment, one final and one to three months. The initiation of this study will be made after obtaining the opinion of the ethics committee, and the inclusion of patients will occur only after obtaining informed consent. Conclusions - Creation of two dynamic devices/orthotics witch assist finger extension and facilitate prehension opened the possibility of carrying out a clinical trial to test the effectiveness of their use. To what extent that this will happen remains to be seen.

  11. A simple idea for reducing the cost and weight of plaster-cast orthoses Uma ideia simples para diminuir custo e peso das talas gessadas

    Directory of Open Access Journals (Sweden)

    André Esmanhotto

    2013-01-01

    Full Text Available OBJECTIVE: To reduce the cost and weight of plaster molded orthosis (increasing patient comfort, keeping the same resistance. METHODS: 22 plaster orthosis were analysed, 11 with conventional shape and 11 with pyramidal shape. It was compared, in theory (mathematcally and practice, the change of weight (and consequently cost and flexion resistance between conventional shape and pyramidal shape. RESULTS: Theorical analysis: weight and cost decrease of 26.7%-38.9%, according to the layers disposition of the cast. Laboratorial analysis: cast´s weight decrease of 34.5% (p = 0.000005 and resistance increase of 26.7% (p = 0.03. CONCLUSION: plaster molded orthosis made in a pyramidal shape, have a statistically significant decrease of weight (and consequently cost and statistically significant increase of resistance if compared with traditional shape. OBJETIVO: Diminuir o custo e o peso (aumentando o conforto para o paciente das talas gessadas, mantendo resistência semelhante. MÉTODOS: Foram analisadas 22 talas de gesso, 11 com formato convencional e 11 com formato piramidal. Foi feita comparação, teórica (matemática e prática, entre as talas convencionais e as piramidais quanto à mudança de peso (e consequentemente de custo e à resistência à flexão. RESULTADOS: Análise matemática – diminuição peso e custo entre 26,7% e 38,9%, variando conforme a disposição das camadas da tala. Análise prática – diminuição do peso em 34,5% (p = 0,000005 e resistência aumentada em 26,7% (p = 0,03. CONCLUSÃO: A tala gessada com formato piramidal apresenta diminuição estatisticamente significativa de peso (e consequentemente de custo, com aumento estatisticamente significativo da resistência, se comparada à tala de formato convencional.

  12. The validity of compliance monitors to assess wearing time of thoracic-lumbar-sacral orthoses in children with spinal cord injury.

    Science.gov (United States)

    Hunter, Louis N; Sison-Williamson, Mitell; Mendoza, Melissa M; McDonald, Craig M; Molitor, Fred; Mulcahey, M J; Betz, Randal R; Vogel, Lawrence C; Bagley, Anita

    2008-06-15

    Prospective multicenter observation. To determine the validity of 3 commercially available at recording thoracic-lumbar-sacral orthosis (TLSO) wearing time of children with spinal cord injury (SCI) and to assess each monitor's function during daily activities. A major limitation to studies assessing the effectiveness of spinal prophylactic bracing is the patient's compliance with the prescribed wearing time. Although some studies have begun to use objective compliance monitors, there is little documentation of the validity of the monitors during activities of daily life and no comparisons of available monitors. Fifteen children with SCI who wore a TLSO for paralytic scoliosis were observed for 4 days during their rehabilitation stay. Three compliance monitors (2 temperature and 1 pressure sensitive) were mounted onto each TLSO. Time of brace wear from the monitors was compared with the wear time per day recorded in diaries. Observed versus monitored duration of brace wear found the HOBO (temperature sensitive) to be the most valid compliance monitor. The HOBO had the lowest average of difference and variance of difference scores. The correlation between the recorded daily entries and monitored brace wear time was also highest for the HOBO in analysis of dependent and independent scores. Bland-Altman plots showed that the pressure sensitive monitor underestimated wear time whereas the temperature monitors overestimated wear time. Compliance to prescribed wearing schedule has been a barrier to studying TLSO efficacy. All 3 monitors were found to measure TLSO compliance, but the 2 temperature monitors were more in agreement with the daily diaries. Based on its functional advantages compared with the HOBO, the StowAway TidbiT will be used to further investigate the long-term compliance of TLSO bracing in children with SCI.

  13. A scoping literature review of the provision of orthoses and prostheses in resource-limited environments 2000-2010. Part one: considerations for success.

    Science.gov (United States)

    Ikeda, Andrea J; Grabowski, Alena M; Lindsley, Alida; Sadeghi-Demneh, Ebrahim; Reisinger, Kim D

    2014-08-01

    Literature Review We estimate that over 29 million people worldwide in resource-limited environments (RLEs) are in need of orthotic and prosthetic (O&P) devices and services. Our goal was to ascertain the current state of O&P provision in RLEs and identify factors that may lead to more successful O&P provision. We conducted a comprehensive scoping literature review of all information related to O&P provision in RLEs published from 2000 to 2010. We targeted Vietnam, Cambodia, Tanzania, Malawi, Colombia, and the Navajo Nation, but also included information about developing countries in general. We searched academic databases and grey literature. We extracted information from each article in the areas of design, manufacturing, distribution, service provision, and technology transfer. We identified commonly reported considerations and strategies for O&P provision from 431 articles. Analysis of expert consensus documents revealed recurring themes for improving O&P provision. We found that some suggestions from the consensus documents are being followed, but many are overlooked or have not yet been implemented. Areas for improvement include conducting field testing during the design process, providing services to rural environments, offering follow-up services, considering government collaboration, and encouraging an active role of the orthosis/prosthesis user. Outcomes and research studies will be further discussed in Part Two. © The International Society for Prosthetics and Orthotics 2013.

  14. Effects of foot and ankle devices on balance, gait and falls in adults with sensory perception loss: a systematic review.

    Science.gov (United States)

    Paton, Joanne; Hatton, Anna L; Rome, Keith; Kent, Bridie

    2016-12-01

    Foot and ankle devices are being developed as a method of preventing people with sensory perception loss sustaining a fall. Such devices are believed to work by reducing the likelihood of a fall by improving the balance and gait of the user. The objective of the review was to evaluate the effectiveness of foot and ankle devices for the prevention of falls and the improvement of balance and gait in adults with sensory perception loss. Participants were community-dwelling adults with bilateral pathological sensory perception loss. The current review evaluated any foot or ankle device, including but not restricted to, all types of footwear (therapeutic and retail), insoles (customized and prefabricated) and ankle-foot orthoses (AFOs). In the absence of randomized controlled trials (RCT), the review considered experimental and epidemiological study designs, except case series, individual case reports and descriptive cross-sectional studies. The primary outcome was number of falls. Secondary outcome measures were clinical or laboratory measures of balance or gait. A search for published and unpublished literature from inception to March 2015 written in the English language was conducted across a number of major electronic databases. A three-step search strategy was developed using MeSH terminology and keywords to ensure all that relevant materials are captured. Methodological quality of included studies was assessed by two reviewers, who appraised each study independently, using standardized Joanna Briggs Institute (JBI) critical appraisal tools. Quantitative data were extracted from the studies that were identified as meeting the criteria for methodological quality using the standardized JBI data extraction tools. Due to the heterogeneity of populations, interventions and outcome measures, meta-analyses were not possible and results are presented in narrative form. Nine trials (from 10 papers) involving 238 participants, (14 with multiple sclerosis and 16 with

  15. The smart Peano fluidic muscle : A low profile flexible orthosis actuator that feels pain

    NARCIS (Netherlands)

    Veale, Allan Joshua; Anderson, Iain Alexander; Xie, Shane Q.; Lynch, Jerome P.

    2015-01-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only

  16. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul

    2007-01-01

    Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, PForefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (Pstrike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.

  17. Kinematic Gait Changes Following Serial Casting and Bracing to Treat Toe Walking in a Child With Autism.

    Science.gov (United States)

    Barkocy, Marybeth; Dexter, James; Petranovich, Colleen

    2017-07-01

    To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.

  18. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking

    OpenAIRE

    Caputo, Joshua M.; Collins, Steven H.

    2014-01-01

    Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementall...

  19. The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion

    OpenAIRE

    Dölker, N.; Górna, M. W.; Sutto, L.; Torralba, A. S.; Superti-Furga, G.; Gervasio, F. L.

    2014-01-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys...

  20. Cloning of pCDNA3-IgG4 and pQE-2-IgG4 human hinge region ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... diseases and in allergy-related immunoassays, thus, anti-hIgG4 antibody is of interest in the development of ... pQE-2-. IgG4 will be used for protein expression in M15 prokaryotic .... Solution conformation of wild-type and ...

  1. Hinge-like motions in RNA Kink-turns: The role of the second A-minor motif and nominally unpaired bases

    Czech Academy of Sciences Publication Activity Database

    Rázga, Filip; Koča, Jaroslav; Leontis, Neocles B.; Šponer, Jiří

    2005-01-01

    Roč. 22, - (2005), s. 800-801 ISSN 0739-1102. [The 14th Conversation . 14.06.2005-18.06.2005, Albany] Institutional research plan: CEZ:AV0Z50040507 Keywords : Kink-turns * A-minor * RNAs Subject RIV: BO - Biophysics

  2. [19.-21. juulini korraldas Eesti Ulmeühing viiendat korda Eesti ulmehuviliste kokkutuleku "Estcon 2002". Tehti teatavaks ka aastaauhinnad Stalker laureaadid

    Index Scriptorium Estoniae

    2002-01-01

    Stalkeri laureaadid. Parim tõlkeromaan Roger Zelazny "Üksildane oktoobriöö" (Varrak, tlk. Juhan Habicht); parim kogumik Norman Spinradi "Suur lõõsk" (Skarabeus, tlk., koost. ja toim. Arvi Nikkarev); parim tõlkejutt "Katkuaastate päevikud" samast raamatust; parim algupärane raamat Indrek Hargla (õieti Marat Faizijev) kogumik "Pan Grpowski üheksa juhtumit" (Kuldsulg); parimaks algupärane jutustus Marat Faizijevi "Väendru" (Algernon, 2001, dets.); parim lühijutt Erkki Kõlu "Õnn kaalule, vana!" (Algernon, 2001, dets.)

  3. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    DEFF Research Database (Denmark)

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D...

  4. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Bohmdorfer, G.; Schleiffer, A.; Brunmeir, R.; Ferscha, S.; Nizhynska, V.; Kozák, Jaroslav; Angelis, Karel; Kreil, D. P.; Schweizer, D.

    2011-01-01

    Roč. 67, č. 3 (2011), s. 420-433 ISSN 0960-7412 R&D Projects: GA MŠk 1M0505; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : structural maintenance of chromosomes * DNA repair * somatic homologous recombination Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.160, year: 2011

  5. Delineation of the geometry of the nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M ≥ 6)

    International Nuclear Information System (INIS)

    Gorshkov, A.I.; Soloviev, A.A.; Panza, G.F.; Aoudia, A.; Peresan, A.

    2007-11-01

    In the junction zone between the Alps and the Dinarides, one of the most seismically active areas in Europe, we delineate a total of sixteen nodes which are capable of M ≥ 6.0 earthquakes using large-scale cartographic data. Seven of them have already experienced the occurrence of sufficiently well located earthquakes with M ≥ 6.0. Using these seven nodes as a learning set, we identify, by means of the pattern recognition methodology, three other nodes prone to earthquakes with M ≥ 6.0: one node in the Alpine domain and two in the northernmost Dinarides. (author)

  6. Androgüüni kummaline pilk : fotograaf Ly Lestberg uurib androgüüni motiivi kaudu inimese hinge / Kärt Hellerma

    Index Scriptorium Estoniae

    Hellerma, Kärt, 1956-

    1999-01-01

    Kunstnik-fotograafi Ly Lestbergi näitus "Insomnia" Raatuse galeriis ja Cafe Anglais: 9 mustvalget suureformaadilist fotot noorest naisest. Ilmunud ka kogumikus: Avanenud ruum / Kärt Hellerma. Tallinn, 2006, lk. 232-234

  7. Psychological Care, Patient Education, Orthotics, Ergonomics and Prevention Strategies for Neck Pain

    DEFF Research Database (Denmark)

    Gross, Anita R; Kaplan, Faith; Huang, Stacey

    2013-01-01

    To conduct an overview on psychological interventions, orthoses, patient education, ergonomics, and 1⁰/2⁰ neck pain prevention for adults with acute-chronic neck pain.......To conduct an overview on psychological interventions, orthoses, patient education, ergonomics, and 1⁰/2⁰ neck pain prevention for adults with acute-chronic neck pain....

  8. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Collins, Steven Hartley; De Clercq, Dirk

    2017-04-27

    Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg -1 ). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg -1 , leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits.

  9. A VACUUM ASSISTED CLOSURE (VAC THERAPY IN ORTHOPAEDIC TRAUMA : A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Suresh

    2015-10-01

    Full Text Available BACKGROUND: Management of open fractures and massive soft tissue injuries around leg ankle, foot and hand requires multi - disciplinary approach. VAC therapy is an innovative approach to the treatment of these wounds. VAC therapy facilitates granulation tissue formation, promotes healing, reduces infection and allows early skin grafting or flap closure. AIM: To describe our experience with VAC therapy for orthopaedics trauma around leg ankle, foot and hand. MATERIALS AND METHODS : 41 patients were included in Prospective Study performed at Preethi hospital, Madurai in years 2011 - 12. Only patients having t raumatic wound of leg, ankle, foot and hand were i ncluded. Patients with bleeding disorders were not included. VAC therapy was used as adjuvant to debridement in wound care. RESULTS: In 39 patients lower limb and in 2 patient hands was involved. The mean age was 39.3 years and 38 pateints were male 3 were female. Mean wound grade after VAC therapy decrease by 1 grade. Average wound area reduction was 10%. The mean duration of VAC therapy was 5.2 days. Plastic surgery was done in mean 6 days after removal of VAC dressing. Local flap was required in only 39% of patients. After VAC therapy all 10 patients having heel injury showed good granulation tissue. Complications like infection, bleeding and skin irritation were not seen in our study. CONCLUSION : VAC therapy is a viable adjuvant in the management of trau matic open wounds. It facilitates the rapid granulation tissue formation and wound healing. It reduces the duration of treatment, hospital stay and need of extensive plastic surgery

  10. Women in Combat Arms: A Study of the Global War on Terror

    Science.gov (United States)

    2013-05-23

    increased general joint laxity throughout the elbow, knee, and ankle joints than their male counterparts. This joint laxity and hyperextension...capture and torture to the nation’s daughters places a psychological anchor for men in combat filling a protectorate role.64 A presidential commission...tal cases) Back 17.3% 3,300 17.1% Knee 277 14.8% 2,953 15.3% 8.6% 91.4% 100.0% Ankle /Foot 273 14.6% 2,184 11.3% 11.1% 88.9% 100.0% Wrist/Hand 193 10.3

  11. Effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of unilateral transtibial prosthesis users

    OpenAIRE

    Mark Edwards, MHPE, CP; Stefania Fatone, PhD; Andrew Hansen, PhD; Elizabeth Klodd, MS

    2010-01-01

    The investigators conducted a double-blind randomized crossover study to determine the effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of 13 unilateral transtibial prosthesis users. Five experimental feet were fabricated for use in the study: F1, F2, F3, F4, and F5. F1 was most flexible, F5 was least flexible, and F3 was designed to conform to a biomimetic ankle-foot roll-over shape. The experimental feet were modeled after the Shape&Roll pros...

  12. Prospective study of ankle and foot fractures in elderly women

    Directory of Open Access Journals (Sweden)

    Yadagiri Surender Rao

    2015-01-01

    Full Text Available The epidemiology of ankle fractures in old people is changing as time passes on. The incidence of ankle fractures increases with advancing age. The study conducted was among a rural popula-tion which comprised of 68 women (32 women with ankle fractures & 36 women with foot fractures. Patients studied were in the age group more than 50 years. The study highlights the etiological & risk factors for fractures of ankle & foot. The commonest ankle fracture was the lateral malleolar fracture & the commonest foot fracture was the 5th Metatarsal fracture. Diabetes is a risk factor which increases the occurrence of ankle and foot injuries.

  13. Eesti Ajaloomuuseumi Suurgildi hoone. Püsinäitus "Visa hing. 11 000 aastat Eesti ajalugu" = Restoration of the Estonian History Museum Great Guild Hall building, permanent exhibition "Spirit of survival. 11,000 years of Estonian history" / Margit A

    Index Scriptorium Estoniae

    Argus, Margit, 1981-

    2012-01-01

    Suurgildi hoone renoveerimisest, sisekujundusest, ekspositsioonist. Sisearhitektid Margit Aule, Liis Lindvere, Margit Argus (Koko Arhitektid). Restaureerimisarhitekt: Mart Keskküla (Restor). Graafilise disaini autorid Jan Tomson, Indrek Sirkel, Mikk Heinsoo, Kaarel Nõmmik, Andrus Kõresaar (Produktsioonigrupp). Ekspositsiooni multimeedia ja interaktsioon: Produktsioonigrupp

  14. Characteristics and contributing factors related to sports injuries in young volleyball players

    Science.gov (United States)

    2013-01-01

    Background The participation of young in volleyball is becoming increasingly common, and this increased involvement raises concerns about the risk of installation of sports injuries. Therefore, the objectives the study were identify the characteristics of sports injuries in young volleyball players and associate anthropometric and training variables with contributing factors for injuries. Methods A total of 522 volleyball players participating in the High School Olympic Games of the State of São Paulo (Brazil) were interviewed. A reported condition inquiry was used to gather information on injuries, such as anatomic site affected, mechanism and moment of injury, as well as personal and training data. The level of significance was set at 5%. Results A 19% frequency of injuries was found. Higher age, weight, height, body mass index and training duration values were associated with the occurrence of injuries. The most affected anatomic site was the ankle/foot complex (45 injuries, 36.3%). Direct contact and contactless mechanisms were the main causes of injuries (61 injuries; 49.2% and 48 injuries; 38.7%, respectively). Training was the moment in which most injuries occurred (93 injuries; 75%), independently of personal and training characteristics. Conclusion Injuries affected the ankle/foot complex with a greater frequency. Direct contact and contactless mechanisms were the most frequently reported and injuries occurred mainly during training sessions. Personal and training characteristics were contributing factors for the occurrence of injuries. PMID:24124803

  15. Adaptation to walking with an exoskeleton that assists ankle extension.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The deformity correction and fixator-assisted treatment using Ilizarov versus Taylor spatial frame in the foot and ankle

    Directory of Open Access Journals (Sweden)

    Yudha Manggala

    2018-02-01

    Full Text Available This study was to report the comparison of outcomes between Ilizarov ring fixator (IRF and Taylor Spatial Frame® (Smith & Nephew, Memphis, Tenn.; TSF in terms of the effectiveness of ankle-foot deformities correction, follow-up results, and complications. Fourteen patients with ankle-foot deformities were corrected using circular external fixation (IRF group = 7 patients; TSF group = 7 patients and related procedures. Baseline data and treatment variables were recorded. The patients’ mean age was 42.9 years. Mean follow-up time was 6.5 months. Most common cause of deformity/traumatic condition was posttraumatic equinus. There were successful results in 8 patients (57.1%, partial successful results in 5 patients (35.7%, and revision-needed in 1 patient (7.1%. TSF group demonstrated significantly higher rate of successful results than IRF group (P=0.033. A trend of lower complication rate was found in TSF group (P=0.286. Deformity corrections using TSF provided significantly better clinical scores and higher rate of successful outcome than conventional IRF.

  17. Effects of a flat prosthetic foot rocker section on balance and mobility.

    Science.gov (United States)

    Hansen, Andrew; Nickel, Eric; Medvec, Joseph; Brielmaier, Steven; Pike, Alvin; Weber, Marilyn

    2014-01-01

    Previous studies have shown that the effective rocker shape of the physiologic ankle-foot system during standing and fore-aft swaying is much flatter than that used during walking, which indicates a more stable base of support for the standing/swaying activity. Previous work suggests that flat regions within the effective rocker shapes of prosthetic ankle-foot systems could provide enhanced stability for standing balance tasks. An experimental prosthetic foot was altered to provide three different flat region lengths within its effective rocker shape. It was hypothesized that longer flat regions of the effective rocker shape would lead to improved standing balance outcomes and reduced walking performance for unilateral transtibial prosthesis users. However, no significant changes were seen in the balance and mobility outcomes of 12 unilateral transtibial prosthesis users when using the three prosthetic foot conditions. Subjects in the study significantly preferred prosthetic feet with relatively low to moderate flat regions over those with long flat regions. All the subjects without loss of light touch or vibratory sensation selected the prosthetic foot with the shortest flat region. More work is needed to investigate the effects of prosthetic foot properties on balance and mobility of prosthesis users.

  18. Effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of unilateral transtibial prosthesis users.

    Science.gov (United States)

    Klodd, Elizabeth; Hansen, Andrew; Fatone, Stefania; Edwards, Mark

    2010-01-01

    The investigators conducted a double-blind randomized crossover study to determine the effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of 13 unilateral transtibial prosthesis users. Five experimental feet were fabricated for use in the study: F1, F2, F3, F4, and F5. F1 was most flexible, F5 was least flexible, and F3 was designed to conform to a biomimetic ankle-foot roll-over shape. The experimental feet were modeled after the Shape&Roll prosthetic foot (originally produced by Northwestern University, Chicago, Illinois; now in public domain) but had different numbers of saw cuts within the forefoot members, allowing more or less flexibility during walking. Participants walked at the same comfortable, freely selected speed on the treadmill for 7 min with each foot while energy expenditure was measured. No significant difference was found in oxygen cost (mL O(2)/kg/m) between the different feet (p = 0.17), and the order of use was also not significant (p = 0.94). However, the preference ranking was significantly affected by the flexibility of the feet (p = 0.002), with the most flexible foot (F1) ranking significantly poorer than feet F3 (p = 0.003) and F4 (p = 0.004). Users may prefer prosthetic feet that match the flexibility of an intact ankle-foot system, even though we did not detect an energetic benefit at freely selected speeds.

  19. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.

    Science.gov (United States)

    Kim, Myunghee; Collins, Steven H

    2013-06-01

    Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.

  20. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

    Science.gov (United States)

    Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh

    2011-05-27

    Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.

  1. Characteristics and contributing factors related to sports injuries in young volleyball players.

    Science.gov (United States)

    Vanderlei, Franciele Marques; Bastos, Fabio Nascimento; Tsutsumi, Gustavo Yuki Cantalejo; Vanderlei, Luiz Carlos Marques; Netto Júnior, Jayme; Pastre, Carlos Marcelo

    2013-10-14

    The participation of young in volleyball is becoming increasingly common, and this increased involvement raises concerns about the risk of installation of sports injuries. Therefore, the objectives the study were identify the characteristics of sports injuries in young volleyball players and associate anthropometric and training variables with contributing factors for injuries. A total of 522 volleyball players participating in the High School Olympic Games of the State of São Paulo (Brazil) were interviewed. A reported condition inquiry was used to gather information on injuries, such as anatomic site affected, mechanism and moment of injury, as well as personal and training data. The level of significance was set at 5%. A 19% frequency of injuries was found. Higher age, weight, height, body mass index and training duration values were associated with the occurrence of injuries. The most affected anatomic site was the ankle/foot complex (45 injuries, 36.3%). Direct contact and contactless mechanisms were the main causes of injuries (61 injuries; 49.2% and 48 injuries; 38.7%, respectively). Training was the moment in which most injuries occurred (93 injuries; 75%), independently of personal and training characteristics. Injuries affected the ankle/foot complex with a greater frequency. Direct contact and contactless mechanisms were the most frequently reported and injuries occurred mainly during training sessions. Personal and training characteristics were contributing factors for the occurrence of injuries.

  2. THE USE OF 3D SCANNING AND RAPID PROTOTYPING IN MEDICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Octavian CIOBANU

    2013-05-01

    Full Text Available New cost effective scanning and modeling techniques are used today to process data acquisition and3D reconstruction in order to fabricate prostheses and orthoses by 3D printing. Paper approaches two scanningand 3D modeling techniques used in order to fabricate orthoses and prostheses. In this study, an artificialprosthetic ear was produced through 3D printing using two scanning techniques: structured light scanningtechnique and single camera stereo photogrammetric scanning technique. The processing phases are describedand discussed from data acquisition to 3D printing. The surface scanning and 3D reconstruction techniques willcontinue to increase the accessibility of prostheses and orthoses, making them more cost-effective and morecomfortable.

  3. The current status of rehabilitation engineering

    Science.gov (United States)

    Reswick, J. B.

    1974-01-01

    Mechanical and electrical engineering devices for paralytic patient care are discussed as they are applied to medical problems. These include means of preventing bedsores, mobility aids, upper extremity orthoses, and electrical stimulation.

  4. 21 CFR 890.3490 - Truncal orthosis.

    Science.gov (United States)

    2010-04-01

    ... fractures, strains, or sprains of the neck or trunk of the body. Examples of truncal orthoses are the following: Abdominal, cervical, cervical-thoracic, lumbar, lumbo-sacral, rib fracture, sacroiliac, and...

  5. Patellofemoral Pain in Adolescence and Adulthood

    DEFF Research Database (Denmark)

    Rathleff, M S; Vicenzino, B; Middelkoop, M

    2015-01-01

    The mainstay of patellofemoral pain (PFP) treatment is exercise therapy, often in combination with adjunct treatments such as patient education, orthoses, patella taping and stretching, making the intervention multimodal in nature. The vast majority of randomised controlled trials among patients...

  6. The effects of orthoses, footwear, and walking aids on the walking ability of children and adolescents with spina bifida : A systematic review using International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) as a reference framework

    NARCIS (Netherlands)

    Ivanyi, B; Schoenmakers, MA; Veen, N.; Maathuis, Karel; Nollet, Frans; Nederhand, Marc

    2015-01-01

    BACKGROUND: To date no review has been published that analyzes the efficacy of assistive devices on the walking ability of ambulant children and adolescents with spina bifida and, differentiates between the effects of treatment on gait parameters, walking capacity, and walking performance.

  7. The effects of orthoses, footwear, and walking aids on the walking ability of children and adolescents with spina bifida: A systematic review using International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) as a reference framework

    NARCIS (Netherlands)

    Ivanyi, Barbara; Schoenmakers, Marja; van Veen, Natasja; Maathuis, Karel; Nollet, Frans; Nederhand, Marc

    2015-01-01

    To date no review has been published that analyzes the efficacy of assistive devices on the walking ability of ambulant children and adolescents with spina bifida and, differentiates between the effects of treatment on gait parameters, walking capacity, and walking performance. To review the

  8. Negative Pressure Wound Therapy Followed by Basic Fibroblast Growth Factor Spray as a Recovery Technique in Partial Necrosis of Distally Based Sural Flap for Calcaneal Osteomyelitis: A Case Report.

    Science.gov (United States)

    Mikami, Taro; Kaida, Eriko; Yabuki, Yuichiro; Kitamura, Sho; Kokubo, Ken'ichi; Maegawa, Jiro

    2018-03-28

    The distally based sural flap is regarded as the first choice for reconstruction in the distal part of the lower leg because the flap is easy to raise, reliable in its blood supply, and prone to only a few complications. Limited data have investigated the details of treatment in cases of failure of distally based sural flaps. We report a case of calcaneal osteomyelitis in which a successful outcome was finally obtained with a partially necrosed, distally based sural flap using negative pressure wound therapy with basic fibroblast growth factor spray. The 2-year follow-up examination was uneventful. Moreover, the patient was able to walk freely with an ankle-foot orthosis in her house. This technique can be considered as a useful and effective option to recover unfavorable results of distally based sural flaps. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Accident reconstruction to analyze impact of injured drivers during the collision. Ankle fracture in the car-to-car offset frontal collision; Join no jusho jokyo ni kansuru jiko saigen. Joyosha doshi no offset zenmen shototsuji no ashi kansetsu kossetsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, M [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    1997-10-01

    An accident reconstruction test of car-to-car crash was conducted in order to analyze the impact on the driver in the offset head-on collision. The ankle fracture of the driver resulting from the accident was examined with the test results and the accident data. The test results of the car-to-car crashes indicated that the belted driver`s ankle would have fractured in the early stage of the crash. The detailed information from the accident data, especially the cars` interior deformation and the driver`s X-ray photographs, was also very important in analyzing injury mechanisms of the ankle/foot region. The above results suggested an injury mechanism that the ankle joint fracture was due to dorsiflexion and valgus resulting from the impact and intrusion of the toeboard in the early stage of the crash. 12 refs., 11 figs.

  10. Factors related to serious injury in post-NCAP European cars involved in frontal crashes.

    Science.gov (United States)

    Frampton, Richard; Williams, Owen; Thomas, Pete

    2004-01-01

    ABSTRACT This study examined the relationship between EuroNCAP ratings for body region protection and real world injury risk for 653 belted drivers in frontal crashes. It was also able to comment on further improvements in crash protection for post-EuroNCAP cars. Protection for the head and lower leg appeared good. In terms of life threatening injury, results showed a need to prioritise chest protection, whilst for impairment, protection for the upper leg and ankle/foot should be considered. The EuroNCAP body region scoring system reflects trends in real crash injury risks to all body regions, except for the chest, where there is no clear trend. More generally, further development in the testing regime could usefully concentrate on a restraint system test and the use of smaller dummies seated appropriately, rather than an increase of the test speed.

  11. Powered AFO for Achilles tendon rupture.

    Science.gov (United States)

    Yoshizawa, Nobuyuki

    2008-01-01

    This paper proposes a powered ankle foot orthosis (AFO) for the treatment of a ruptured Achilles tendon. Usually, conservative orthosis treatment requires about two months, and a motionless ankle degrades activities of daily living (ADL). It is difficult to go to school or work on foot, and a pair of crutches is needed to go up and down stairs. In order to improve the ADL, an electric powered AFO has been designed to improve the ability to walk with a fixed ankle joint. The sole of the proposed AFO is equipped with an electric actuator. The prototype actuator consists of Nd magnets and electromagnets and is lightweight and battery driven. The actuator can switch the upright posture and the stepped forward posture of the patient. In an experiment, the use of this electric AFO made it possible to walk and to ascend and descend stairs with a fixed ankle joint.

  12. MRI of the Achilles tendon: A comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies

    Energy Technology Data Exchange (ETDEWEB)

    Pierre-Jerome, Claude; Moncayo, Valeria; Terk, Michael R. (Dept. of Radiology, Emory Univ. Orthopedics and Spine Center, Atlanta, GA (United States)), e-mail: cpierr3@emory.edu

    2010-05-15

    The Achilles tendon is the largest tendon in the body; it plays an important role in the biomechanics of the lower extremity. It can withstand great forces, especially during sporting exercises and pivoting. The pathologies related to the Achilles tendon are diverse and many carry undesirable consequences. We retrospectively analyzed the images of patients who underwent examinations of the ankle/foot region to review the anatomy of the Achilles tendon and its surroundings and to search for pathologies consistent with overuse injuries. The anatomy of the tendon is described from origin to insertion. The imaging characteristics of the Achilles tendon including pitfalls are reviewed. We also describe the Achilles overuse injuries: paratenonitis, tendinosis, tendon tear, atypical tear, tendon re-tear, retrocalcaneal bursitis, retro-Achilles bursitis, Haglund's deformity, and tendon calcification. We present other entities like tendon ossification and failed transplanted Achilles tendon, with emphasis on MRI

  13. MRI of the Achilles tendon: A comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies

    International Nuclear Information System (INIS)

    Pierre-Jerome, Claude; Moncayo, Valeria; Terk, Michael R.

    2010-01-01

    The Achilles tendon is the largest tendon in the body; it plays an important role in the biomechanics of the lower extremity. It can withstand great forces, especially during sporting exercises and pivoting. The pathologies related to the Achilles tendon are diverse and many carry undesirable consequences. We retrospectively analyzed the images of patients who underwent examinations of the ankle/foot region to review the anatomy of the Achilles tendon and its surroundings and to search for pathologies consistent with overuse injuries. The anatomy of the tendon is described from origin to insertion. The imaging characteristics of the Achilles tendon including pitfalls are reviewed. We also describe the Achilles overuse injuries: paratenonitis, tendinosis, tendon tear, atypical tear, tendon re-tear, retrocalcaneal bursitis, retro-Achilles bursitis, Haglund's deformity, and tendon calcification. We present other entities like tendon ossification and failed transplanted Achilles tendon, with emphasis on MRI

  14. Interobserver reliability in musculoskeletal ultrasonography: results from a "Teach the Teachers" rheumatologist course

    DEFF Research Database (Denmark)

    Naredo, ee.; Møller, I.; Moragues, C.

    2006-01-01

    , tendon lesions, bursitis, and power Doppler signal. Afterwards they compared the ultrasound findings and re-examined the patients together while discussing their results. RESULTS: Overall agreements were 91% for joint effusion/synovitis and tendon lesions, 87% for cortical abnormalities, 84......: The shoulder, wrist/hand, ankle/foot, or knee of 24 patients with rheumatic diseases were evaluated by 23 musculoskeletal ultrasound experts from different European countries randomly assigned to six groups. The participants did not reach consensus on scanning method or diagnostic criteria before...... the investigation. They were unaware of the patients' clinical and imaging data. The experts from each group undertook a blinded ultrasound examination of the four anatomical regions. The ultrasound investigation included the presence/absence of joint effusion/synovitis, bony cortex abnormalities, tenosynovitis...

  15. How does a cadaver model work for testing ultrasound diagnostic capability for rheumatic-like tendon damage?

    DEFF Research Database (Denmark)

    Janta, Iustina; Morán, Julio; Naredo, Esperanza

    2016-01-01

    between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned......To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance...... a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1...

  16. A new approach to implement a customized anatomic insole in orthopaedic footwear of lower limb orthosis

    Science.gov (United States)

    Peixoto, J.; Flores, P.; Souto, A. P.

    2017-10-01

    This paper concerns the development of a new approach for orthopaedic footwear to apply in KAFO orthosis (acronym for Knee Ankle Foot Orthosis). This procedure starts with full characterization of the problem with the purpose to characterize a plantar of a patient’s foot with polio. A 3D Scanner was used to collect their feet’s data to produce an anatomic insole. After this step, the patient performs a study of his gait using a static and dynamic study with the aim of characterizing the parameters to improve quality in the footwear. The insole was produced using a 3D printing technology. It was essential to optimize manufacturing processes and it was developed a footwear prototype with innovative characteristics, which is 25% lighter, allowing the user to consume less energy in daily routines.

  17. Atraumatic Pantalar Avascular Necrosis in a Patient With Alcohol Dependence.

    Science.gov (United States)

    Callachand, Fayaz; Milligan, David; Wilson, Alistair

    2016-01-01

    In the United States, an estimated 10,000 to 20,000 new cases of avascular necrosis are diagnosed each year. We present an unusual case of atraumatic avascular necrosis with widespread hindfoot and midfoot involvement. A 62-year-old female with a history of alcohol dependence and smoking, who had previously been treated for avascular necrosis of the knee, presented with right-sided foot pain and difficulty weightbearing. Imaging studies revealed extensive avascular necrosis of the hindfoot and midfoot, which precluded simple surgical intervention. The patient was followed up for 18 months. In the last 8 months of the 18-month period, the patient managed her symptoms using an ankle-foot orthosis. A diagnosis of avascular necrosis should be considered in patients with atraumatic foot and ankle pain, especially in the presence of risk factors such as alcohol excess and smoking. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Short-Term Absenteeism and Health Care Utilization Due to Lower Extremity Injuries Among Novice Runners: A Prospective Cohort Study.

    Science.gov (United States)

    Smits, Dirk-Wouter; Huisstede, Bionka; Verhagen, Evert; van der Worp, Henk; Kluitenberg, Bas; van Middelkoop, Marienke; Hartgens, Fred; Backx, Frank

    2016-11-01

    To describe absenteeism and health care utilization (HCU) within 6 weeks after occurrence of running-related injuries (RRIs) among novice runners and to explore differences relating to injury and personal characteristics. Prospective cohort study. Primary care. One thousand six hundred ninety-six novice runners (18-65 years) participating in a 6-week running program ("Start-to-Run"). Injury characteristics were assessed by weekly training logs and personal characteristics by a baseline questionnaire. Data on absenteeism and HCU were collected using questionnaires at 2 and 6 weeks after the RRI occurred. A total of 185 novice runners (11%) reported an RRI during the 6-week program. Of these injured novice runners, 78% reported absence from sports, whereas only 4% reported absence from work. Fifty-one percent of the injured novice runners visited a health care professional, mostly physical therapists (PTs) rather than physicians. Absenteeism was more common among women than men and was also more common with acute RRIs than gradual-onset RRIs. As regards HCU, both the variety of professionals visited and the number of PT visits were higher among runners with muscle-tendon injuries in the ankle/foot region than among those with other RRIs. Among novice runners sustaining an RRI during a 6-week running program, over three quarters reported short-term absence from sports, whereas absence from work was very limited, and over half used professional health care. Both absence and HCU are associated with injury characteristics. In future running promotion programs (eg in Start-to-Run programs), specific attention should be paid to acute injuries and to muscle-tendon injuries in the ankle/foot region.

  19. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.

    Science.gov (United States)

    Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2016-10-03

    Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In this experiment, participants with unilateral transtibial amputation (N=6) walked on a treadmill at a constant speed while wearing a powered prosthesis emulator. The prosthesis delivered different levels of ankle push-off work across conditions, ranging from the value for passive prostheses to double the value for non-amputee walking, while all other prosthesis mechanics were held constant. Participants completed six acclimation sessions prior to a data collection in which metabolic rate, kinematics, kinetics, muscle activity and user satisfaction were recorded. Metabolic rate was not affected by net prosthesis work rate (p=0.5; R 2 =0.007). Metabolic rate, gait mechanics and muscle activity varied widely across participants, but no participant had lower metabolic rate with higher levels of push-off work. User satisfaction was affected by push-off work (p=0.002), with participants preferring values of ankle push-off slightly higher than in non-amputee walking, possibly indicating other benefits. Restoring or augmenting ankle push-off work is not sufficient to improve energy economy for lower-limb amputees. Additional necessary conditions might include alternate timing or control, individualized tuning, or particular subject characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Coracoclavicular ligament reconstruction with the autogenous anterior half of the peroneus longus tendon for distal clavicle fracture (Neer type Ⅱ-b: A report of 26 cases

    Directory of Open Access Journals (Sweden)

    Guang-you YANG

    2017-12-01

    Full Text Available Objective To explore the clinical effect of coracoclavicular ligament reconstruction with the autogenous anterior half of peroneus longus tendon (AHPLT for distal clavicle fracture (Neer type Ⅱ-b. Methods The clinical data were retrospectively analyzed of 26 Neer type Ⅱ-b distal clavicle fracture surgically treated by coracoclavicular ligament reconstruction with autogenous AHPLT in Ganyu District People's Hospital of Lianyungang from June 2012 to May 2015. Among the 26 cases, 16 males and 10 females, aged from 19-56 years (average 38.7 years. Fracture occurred in left side in 18 cases and in right side in 8 cases. Postoperative observations were done on fracture healing, shoulder and ankle-foot function recovery. Results For all the 26 cases, surgical incisions were healed well, and no infection, vascular and peroneal nerve injury and iatrogenic fracture occurred. Follow-up was carried out for 10-24 months with average of 15.3 months. All the fractures were healed within 12-20 weeks with an average of 14.6 weeks. One patient was found of losing the fracture reduction part during the follow-up process, and then got eventual healing by extending the limb brake time. Another patient was found of slight tendon sensation disorder with no significant effect on daily life and exercise, and the symptoms disappeared 6 months later. At the last follow-up, the Constant-Murley score was 92-100 with an average of 97.8 points. The ankle-hind foot score of American Society of Ankle and Orthopedics was excellent. Conclusion Reconstruction of coracoclavicular ligament with autogenous AHPLT is an effective treatment for Neer type Ⅱ-b distal clavicle fracture with good safety and without negative effect on the ankle-foot function, and thus it is worthy of wider clinical use. DOI: 10.11855/j.issn.0577-7402.2017.12.12

  1. Inseneriharidus muudatuste teel / Jakob Kübarsepp

    Index Scriptorium Estoniae

    Kübarsepp, Jakob

    2007-01-01

    1.-4. juulil 2007. a. korraldasid kaks rahvusvahelist organisatsiooni - Euroopa Insenerihariduse Ühing SEFI ja Rahvusvaheline Inseneripedagoogika Ühing IGIP aastakonverentsi Miskolcki Ülikoolis Ungaris. Konverentsi nimetus oli "Joining Forces in Engineering Education Towards Excellence"

  2. Anatomical studies of timber and EPMA analysis of brass artefacts collected from steam engine shipwreck of Minicoy Island, Lakshadweep, India

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.; Shukla, S.R.; Som, V.; Sundaresh; Khedekar, V.; Shashikala, S.; Sharma, S.K.

    construction but also for anchors. During exploration of shipwreck off Minicoy doorframe hinge, latch, porthole, flanges, J hook were found and all these artefacts are made of brass. Moreover timber remains noticed on doorframe hinge and latch. In order...

  3. Asymmetry quantification from reflectance images of orthotic patients using structural similarity metrics

    Science.gov (United States)

    Boucher, Marc-Antoine; Watts, Nicolas; Gremillet, Frederic; Legare, Philippe; Kadoury, Samuel

    2018-02-01

    Pathologies like plantar fasciitis, a common soft tissue disorder of the foot, is frequently associated with older age, high BMI and little exercise. Like other pathologies associated with the foot, the knee or hip, foot orthoses can help the patient's posture and recent techniques allow the creation of personalized foot orthoses based on 3D foot model that are fitted with high accuracy to the foot surface. In order to assess the efficacy of the personalized orthoses on the patient's pose and balance, depth images with reflectance camera filters are acquired in order to evaluate the posture of the patient before and after the use of the orthoses. Images are analysed by clinicians to assess the region asymmetry and posture changes. However, this remains a subjective evaluation and a quantifiable measurement is required to follow patient progression. In this paper, we present a novel tool to assess and quantify the asymmetry of body regions using a color-based structural similarity metric calculated from paired regions. This provides a quantitative measure to evaluate the effect of the personalized orthoses on the patient. A user-friendly interface allows the user to select an area of the body and automatically generate a symmetry axis, along with a measure of asymmetry measuring reflectance variations from the skin. The tool was validated on 30 patients, demonstrating an 83% agreement rate compare to clinical observations.

  4. 75 FR 81422 - Airworthiness Directives; The Boeing Company Model 767 Airplanes

    Science.gov (United States)

    2010-12-28

    ... at both ends and damage to hinge stock; a detailed inspection of the ceiling area for any visible... and causing damage. We are issuing this AD to detect and correct improperly crimped hinge pins, which... at both ends and damage to hinge stock; a detailed inspection of the ceiling area for any visible...

  5. H3O2-, O22- and O2•- bridging ligands in cobalt(III) complexes of an acyclic phenolate-hinged dinucleating ligand

    DEFF Research Database (Denmark)

    Ghiladi, Morten; Gomez, Jonnes T.; Hazell, A.

    2003-01-01

    The dicobalt(III) complex, [Co2(bpbp)(μ-H3O2)2](ClO4)3 (bpbp− = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-tert-butylphenolate), obtained by reaction of cobalt(II) perchlorate with Hbpbp under ambient conditions contains two μ-H3O2− bridging ligands. The H-bonded O⋯O distances in this motif are 2...

  6. Apparatus Producing an Even Distribution of Strain into Carries

    Science.gov (United States)

    Hrabovský, Leopold

    2017-10-01

    In many high-rise residential buildings or multi-storey warehouses, machinery, so called lifts, is used for the vertical transportation of people or weights between two or more altitudinally distant places. Carriers used for lifts are steel ropes or sprocket chains, on which a cage or a counterbalance is hinged. Apparatus of all carriers, attached to the hinge of the cage or counterbalance, should be even. This can be made only by hammer hinge. Fixed or springe hinge cannot be a perfect equalizing apparatus. This article describes an apparatus, which allows an even distribution of the strain into lift carriers, which use springe hinge of carrier ropes.

  7. Les « granites à tablettes d'orthose » du Vivarais, témoins d'un magmatisme post-épaississement d'âge Dinantien inférieur ; identification d'une unité géologique Nord-Ouest-VivaraisThe orthoclase lath-rich granites from Vivarais, products of a Dinantian post-tectonic magmatism; identification of a NW-Vivarais geological unit

    Science.gov (United States)

    Briand, Bernard; Duthou, Jean-Louis; Guerrot, Catherine; Chenevoy, Maurice

    On the southern side of the Mont Pilat (eastern French Massif Central), an orthoclase-rich granite, which intrudes orthogneisses overlying a granito-migmatitic complex, gives a Dinantian age (RbSr age: 353±21 Ma; UPb age: 341+8/-5 Ma). Such a dating confirms the reality of a 'northwestern Vivarais' geological unit, whose metamorphic and granitic evolution cannot be assigned to a Late-Carboniferous event. These results impose a re-examination of both the 'granite du Velay' problematic and the geodynamic evolution of the eastern French Massif Central. To cite this article: B. Briand et al., C. R. Geoscience 334 (2002) 741-747.

  8. Chondromalacia.

    Science.gov (United States)

    Connors, G. Patrick

    Chondromalacia is the degeneration of the hyaline cartilage on the under surface of the kneecap. Its causes include patella maltracking (the kneecap does not glide properly over the joint), posttraumatic condition, and chronic overuse. The treatment can be a controlled rehabilitation program, various bracing techniques, foot orthoses, or, in…

  9. Effect of patellar strap and sports tape on pain in patellar tendinopathy: A randomized controlled trial

    NARCIS (Netherlands)

    de Vries, A.; Zwerver, J.; Diercks, R.; Tak, I.; van Berkel, S.; van Cingel, R.; van der Worp, H.; van den Akker-Scheek, I.

    2016-01-01

    Numerous athletes with patellar tendinopathy (PT) use a patellar strap or sports tape during sports. This study's aim was to investigate the short-term effect of these orthoses on patellar tendon pain. Participants performed the single-leg decline squat, vertical jump test, and triple-hop test under

  10. The Development of an Accelerometer System for Measuring Pelvic Motion During Walking.

    Science.gov (United States)

    1979-01-01

    9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, T ASK AFIT STUDENT AT: University of Oxford CONTROLLING OFFICE NAME AND...bones, joints or muscles and physiotherapy to improve the functioning of impaired lower limbs. When irreparable damage occurs, the normal locomotor system...restoring near normal functioning of the locomotor system. Any improvement in surgical procedures, physiotherapy techniques, orthoses or prostheses

  11. Orthotic intervention in forefoot and rearfoot strike running patterns.

    Science.gov (United States)

    Stackhouse, Carrie Laughton; Davis, Irene McClay; Hamill, Joseph

    2004-01-01

    To compare the differential effect of custom orthoses on the lower extremity mechanics of a forefoot and rearfoot strike pattern. Fifteen subjects ran with both a forefoot and a rearfoot strike pattern with and without orthoses. Lower extremity kinematic and kinetic variables were compared between strike pattern and orthotic conditions. Foot orthoses have been shown to be effective in controlling excessive rearfoot motion in rearfoot strikers. The effect of orthotic intervention on rearfoot motion in forefoot strikers has not been previously reported. Five trials were collected for each condition. Peak rearfoot eversion, eversion excursion, eversion velocity, peak inversion moment, and inversion work were compared between conditions. Kinematic variables in the sagittal plane of the rearfoot and in the frontal and sagittal plane of the knee were also determined. Increased rearfoot excursions and velocities and decreased peak eversion were noted in the forefoot strike pattern compared to the rearfoot strike pattern. Orthotic intervention, however,did not significantly change rearfoot motion in either strike pattern. Reductions in internal rotation and abduction of the knee were noted with orthotic intervention. Foot orthoses do not differentially effect rearfoot motion of a rearfoot strike and a forefoot strike running pattern. Orthotic intervention has a larger and more systematic effect on rearfoot kinetics compared to rearfoot kinematics.

  12. Value of botulinum toxin injections preceding a comprehensive rehabilitation period for children with spastic cerebral palsy: A cost-effectiveness study

    NARCIS (Netherlands)

    F.C. Schasfoort (Fabiënne); A.J. Dallmeijer (Annet); R.F. Pangalila (Robert); C. Catsman (Coriene); H.J. Stam (Henk); J.G. Becher (Jules); E.W. Steyerberg (Ewout W.); S. Polinder (Suzanne); J.B.J. Bussmann (Hans); H.L.D. Horemans (Herwin); E.M. Sneekes (E.); Bolster, E. (Eline); Viola, I. (Irma); Beek, K. (Karlijn) van; J.M.A. Verheijden (Johannes)

    2018-01-01

    textabstractObjective: Despite the widespread use of botulinum toxin in ambulatory children with spastic cerebral palsy, its value prior to intensive physiotherapy with adjunctive casting/orthoses remains unclear. Design: A pragmatically designed, multi-centre trial, comparing the effectiveness of

  13. National Rehabilitation Hospital Assistive Technology Research Center

    Science.gov (United States)

    1995-10-01

    Shoulder-Arm Orthoses Several years ago, the Rehabilitation Engineering Research Center (RERC) on Rehabilitation Robotics in Delaware1 identified a... exoskeletal applications for persons with disabilities. 2. Create a center of expertise in rehabilitation technology transfer that benefits persons with...AD COOPERATIVE AGREEMENT NUMBER: DAMD17-94-V-4036 TITLE: National Rehabilitation Hospital Assistive Technology- Research Center PRINCIPAL

  14. Robotic Bipedal Running : Increasing disturbance rejection

    NARCIS (Netherlands)

    Karssen, J.G.D.

    2013-01-01

    The goal of the research presented in this thesis is to increase the understanding of the human running gait. The understanding of the human running gait is essential for the development of devices, such as prostheses and orthoses, that enable disabled people to run or that enable able people to

  15. Effect of patellar strap and sports tape on pain in patellar tendinopathy : A randomized controlled trial

    NARCIS (Netherlands)

    Vries , de A.; Zwerver, J.; Diercks, R.; Tak, I.; van Berkel, S.; van Cingel, R.; van der Worp, H.; van den Akker-Scheek, I.

    2016-01-01

    Numerous athletes with patellar tendinopathy (PT) use a patellar strap or sports tape during sports. This study's aim was to investigate the short-term effect of these orthoses on patellar tendon pain. Participants performed the single-leg decline squat, vertical jump test, and triple-hop test under

  16. Role of three side support ankle–foot orthosis in improving the ...

    African Journals Online (AJOL)

    Cerebral palsy (CP) is a heterogeneous group of permanent, non-progressive motor disorders of movement and posture. Ankle–foot orthoses (AFOs) are frequently prescribed to correct skeletal misalignments in spastic CP. The present study aims to evaluate the effect of the three side support ankle–foot orthosis on ...

  17. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    Science.gov (United States)

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  18. Roof timber for fortifying mining works

    Energy Technology Data Exchange (ETDEWEB)

    Shirokov, A P; Kuntsevich, V IK; Pishchulin, V V; Seryi, A M; Volkov, P A

    1981-05-15

    The roof timber for fortifying mining works includes spring-mounted hinged elements made from a special rolled metal. In order to increase the carrying capacity of the support by increasing the deformation threshold, the springs are mounted by their expanded section to the lower side of the hinge; their ends are connected in turn to the elements made from the special rolled metal on both sides of the hinge.

  19. The computer program ELCOM in the planning and structural analysis of PWR fuel elements: an example

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da

    1990-01-01

    Is's presented some results obtained with the ELCOM computer code, such as deflections, moments and natural frequencies, used in the design and structural analysis of PWR fuels assemblies. It's studied the behavior of these results varying the number of spacer grids, the rigidity of the joint between the fuel pin and the spacer grid, and the fuel assembly's boundary condition, considered in the analysis, in it's mounting into the core (if clamped-clamped, clamped-hinged or hinged-hinged). (author)

  20. Controlling Flexible Robot Arms Using High Speed Dynamics Process

    Science.gov (United States)

    Jain, Abhinandan (Inventor)

    1996-01-01

    A robot manipulator controller for a flexible manipulator arm having plural bodies connected at respective movable hinges and flexible in plural deformation modes corresponding to respective modal spatial influence vectors relating deformations of plural spaced nodes of respective bodies to the plural deformation modes, operates by computing articulated body quantities for each of the bodies from respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables, and computing modal deformation accelerations and hinge accelerations is carried out for each one of the bodies beginning with the outermost body by computing a residual body force from a residual body force of a previous body and from the vector of deformation and hinge configuration variables, computing a resultant hinge acceleration from the body force, the residual body force and the articulated hinge inertia, and revising the residual body force modal body acceleration.